WO2019031592A1 - 酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置 - Google Patents

酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置 Download PDF

Info

Publication number
WO2019031592A1
WO2019031592A1 PCT/JP2018/029981 JP2018029981W WO2019031592A1 WO 2019031592 A1 WO2019031592 A1 WO 2019031592A1 JP 2018029981 W JP2018029981 W JP 2018029981W WO 2019031592 A1 WO2019031592 A1 WO 2019031592A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
transparent
transparent electrode
oxygen generation
nitride
Prior art date
Application number
PCT/JP2018/029981
Other languages
English (en)
French (fr)
Inventor
西山 洋
智弘 東
佐々木 豊
太郎 山田
一成 堂免
鈴木 洋一
秋山 誠治
Original Assignee
三菱ケミカル株式会社
国立大学法人 東京大学
人工光合成化学プロセス技術研究組合
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, 国立大学法人 東京大学, 人工光合成化学プロセス技術研究組合, 国立研究開発法人産業技術総合研究所 filed Critical 三菱ケミカル株式会社
Priority to CN201880051385.0A priority Critical patent/CN111051574B/zh
Priority to JP2019535721A priority patent/JP7222893B2/ja
Publication of WO2019031592A1 publication Critical patent/WO2019031592A1/ja
Priority to US16/784,678 priority patent/US11248304B2/en
Priority to US17/544,166 priority patent/US20220090278A1/en
Priority to JP2022183098A priority patent/JP7367167B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0617Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • C25B11/053Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/067Inorganic compound e.g. ITO, silica or titania
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a transparent electrode for oxygen generation, a method for producing the same, a tandem water-splitting reaction electrode including the transparent electrode for oxygen generation, and an oxygen generator using the transparent electrode for oxygen generation.
  • a photocatalyst is usually used.
  • a water-splitting electrode in which a cocatalyst is supported on the surface of a photosemiconductor such as conductive oxides, oxynitrides and nitrides.
  • Ta 3 N 5 tantalum nitride
  • TaO x tantalum oxide
  • a nitriding process using 100% ammonia gas is considered to be convenient because the nitriding reaction proceeds without detailed examination of conditions.
  • Non-Patent Document 2 a laminate of a quartz substrate and a transparent conductive film doped with tantalum is prepared, and an atomic layer of a precursor Ta (N (CH 3 ) 2 ) 5 of tantalum nitride is formed on the laminate. And a transparent laminate of quartz substrate and Ta 3 N 5 obtained by nitriding with 100% ammonia gas.
  • the laminate using Ta 3 N 5 disclosed in the non-patent document 1 disclosed above can not be used as a transparent electrode for oxygen generation because it uses a Ta mirror substrate. Further, the laminate using Ta 3 N 5 of Non-Patent Document 2 disclosed above takes a considerable time to obtain a thick film of Ta 3 N 5 because the precursor film is formed by atomic deposition. It is nearly impossible in the industrial world. In addition, since the precursor carbon source is mixed in the nitriding, the purity of the Ta 3 N 5 film is low and the transmittance is low.
  • An object of the present invention is to provide a transparent electrode for generating oxygen, which has high transparency and improved electrode performance as compared with the conventional Ta 3 N 5 electrode.
  • the present inventors have found that, in the process of nitriding a Ta nitride precursor to a Ta nitride, a carrier gas is added in addition to ammonia. It was conceived that the desired Ta nitride electrode could be obtained by performing nitriding using a mixed gas containing the same. Furthermore, it was conceived that the desired Ta nitride electrode could be obtained also by providing a nitride semiconductor layer between the transparent substrate and the Ta nitride precursor.
  • the present invention includes the following gist.
  • the transparent electrode for oxygen generation which has a Ta nitride layer on a ⁇ 1> transparent substrate, Forming a Ta nitride precursor layer on a transparent substrate, and nitriding the Ta nitride precursor layer with a mixed gas containing ammonia and a carrier gas.
  • the Ta nitride layer is a Ta 3 N 5 layer.
  • the transparent substrate is a sapphire substrate or a SiO 2 substrate.
  • the carrier gas is nitrogen gas.
  • the manufacturing method of a tandem-type water-splitting reaction electrode including the step of laminating the transparent electrode for oxygen generation manufactured by the manufacturing method in any one of ⁇ 10> ⁇ 1>- ⁇ 4>, and the electrode for hydrogen generation .
  • the tandem type water-splitting reaction electrode which combined the transparent electrode for oxygen generation as described in ⁇ 13> ⁇ 12>, and the electrode for hydrogen generation which has an absorption peak in the long wavelength side longer than wavelength 600nm.
  • An oxygen generator comprising the transparent electrode for oxygen generation according to any one of ⁇ 17> ⁇ 5> to ⁇ 9>, ⁇ 12>, and ⁇ 14> to ⁇ 16>.
  • the present invention it is possible to obtain a transparent electrode for generating oxygen, which has high transparency and improved electrode performance as compared with the conventional Ta 3 N 5 electrode. Since the transparent electrode for oxygen generation provided by the present invention has very high electrode performance and high transparency, it is possible to form a tandem water-splitting reaction electrode with the hydrogen generation electrode. With such a configuration, it is not necessary to arrange both electrodes side by side in a plane, and therefore water decomposition is about twice as efficient as that in the case where it is arranged in a plane with respect to incident light such as sunlight. It is possible to obtain an apparatus using this. As another effect of the present invention, it is possible to obtain a substrate for a semiconductor device in which a transparent tantalum nitride layer is provided on a transparent substrate. Further, as a further effect of the present invention, in the case of an electrode for oxygen generation using Ti nitride, it is possible to obtain a transparent electrode for oxygen generation which can utilize sunlight more efficiently.
  • FIG. 7 shows the transmittance of the transparent photoelectrode prepared in Example 1 at 600 nm to 900 nm.
  • FIG. 15 shows the transmittance of the transparent photoelectrode prepared in Example 2 at 600 nm to 900 nm.
  • the voltammogram of the transparent photoelectrode of the accumulation body obtained by nitriding on the conditions of 100% of ammonia gas measured in Example 1 is shown.
  • the relationship between the ratio of the mixed gas of ammonia gas and nitrogen gas and the photocurrent density in 1.23 V RHE is shown.
  • the voltammogram of the transparent photoelectrode of the accumulation body obtained by nitriding on the conditions of 100% of ammonia gas measured in Example 2 is shown.
  • the relationship between the ratio of the mixed gas of ammonia gas and nitrogen gas and the photocurrent density in 1.23 V RHE is shown.
  • the transparent electrode for oxygen generation according to the first embodiment of the present invention is a transparent electrode for oxygen generation having a Ta nitride layer on a transparent substrate.
  • a transparent nitride semiconductor layer may be provided between the transparent substrate and the Ta nitride layer.
  • the transparent electrode for oxygen generation of this embodiment is transparent, and specifically, the transparency of light having a wavelength of 600 nm to 900 nm is usually 80% or more, and preferably 85% or more. It is more preferable that it is the above, and it is still more preferable that it is 95% or more. The upper limit is usually 100%. Further, more preferably, the above-mentioned transmittance is obtained at wavelengths of 600 nm to 1200 nm.
  • 80% or more of light transmittance of wavelengths of 600 nm to 900 nm means that the average transmittance of light of wavelengths of 600 nm to 900 nm is 80% or more, and more preferably specific It is 80% or more at all wavelengths except for the point, and most preferably, the point at which the transmittance is lowest in the wavelength range of 600 nm to 900 nm is 80% or more.
  • the transparent electrode for oxygen generation of this embodiment has high transparency, it is preferable to use it in the form which forms a tandem-type water-splitting reaction electrode with the electrode for hydrogen generation. With the tandem type, there is no need to arrange both electrodes side by side in a plane, so that water decomposition is about twice as efficient as that in the case where it is arranged in a plane with respect to incident light such as sunlight Is possible.
  • the transparent substrate used in the present embodiment is a transparent support that supports the Ta nitride layer. Moreover, since it is used as a water-splitting electrode, it is preferable that the insulating substrate be chemically stable even in a wide pH range.
  • the transparency of the transparent substrate is preferably the same as that of the transparent electrode, but the light transmittance may be 80% or more and 90% or more in the entire visible light region.
  • the transparent substrate is not particularly limited as long as it is transparent and supports the Ta nitride layer.
  • the material constituting the transparent substrate include SiO 2 (quartz), transparent alumina containing sapphire, silicon nitride, aluminum nitride, gallium nitride (GaN) freestanding substrate, silicon carbide (SiC), diamond, alkali halide And alkaline earth metal halides and the like.
  • SiO 2 or sapphire is preferable.
  • a transparent substrate which is easy to provide a nitride semiconductor layer may be selected.
  • the material constituting the transparent substrate is preferably transparent alumina containing sapphire, particularly preferably sapphire, in view of the ease of provision of the GaN layer.
  • the thickness of the transparent substrate is not particularly limited, but when it is too thick, the transparency tends to be lowered, and when too thin, the strength as a support becomes insufficient, usually 10 ⁇ m or more, preferably 100 ⁇ m or more. And is usually 5 mm or less, preferably 1 mm or less.
  • the thickness of the Ta nitride layer formed on the transparent substrate is not particularly limited, but if it is too thick, the transparency tends to decrease, and if too thin, it may not have sufficient power generation performance, so It is 50 nm or more, preferably 100 nm or more, and usually 2 ⁇ m or less, preferably 1 ⁇ m or less.
  • the Ta nitride layer formed on the transparent substrate may be formed of only Ta nitride, but may be doped with impurities within the range not to impair the effects of the present invention.
  • the Ta nitride constituting the Ta nitride layer is not particularly limited, and examples thereof include ⁇ -TaN, ⁇ -TaN, Ta 3 N 5 and the like. Among these, Ta 3 N 5 is preferable from the viewpoint of high light transmittance, photosemiconductor characteristics, and high photocatalytic ability.
  • the nitride semiconductor layer may be disposed between the transparent substrate and the Ta nitride layer, and may ensure transparency of the transparent substrate when nitriding the Ta nitride precursor.
  • the nitride semiconductor layer preferably operates as an excitation carrier discrimination layer. The excitation carrier discrimination will be described below.
  • the transparent electrode for oxygen generation Te nitride transparent electrode
  • electrons and holes that are photoexcited carriers are generated.
  • the excitation carrier discrimination layer plays a role of rapidly separating the excitation carriers and suppressing recombination.
  • the nitride semiconductor layer By providing the nitride semiconductor layer, not only the transparency of the substrate can be secured, but also the ability to generate oxygen can be greatly improved.
  • the inventors of the present invention have made it possible that the nitride semiconductor layer significantly improves the performance of the transparent photocatalytic electrode by effectively suppressing the recombination process of electrons and holes that are photoexcited carriers as described above. Inferred from dynamical theory calculations.
  • the nitride semiconductor layer may be a transparent nitride semiconductor, but has an electronic band structure having a valence band upper end at an energy level deeper than the valence band upper end of Ta nitride and a conduction band lower end Is preferably located between the upper end of the valence band of Ta nitride and the lower end of the conduction band.
  • GaN, AlGaN, InGaN, InAlGaN, etc. may be mentioned.
  • These nitride semiconductor layers may be doped with a dopant to control the carrier concentration inside. Examples of the dopant include Mg, Si, Zn, Hg, Cd, Be, Li and C, and one or more kinds may be used.
  • the thickness of the nitride semiconductor layer is not particularly limited because it can be appropriately set according to the intensity of light to be used, but it is usually 100 nm or more, preferably 500 nm or more, since it easily absorbs light of the wavelength used for oxygen generation. .
  • the upper limit value is not particularly limited, but is usually 10 ⁇ m or less, preferably 6 ⁇ m or less. This is preferable because even if it is thickened to a certain extent or more, a portion where light of the wavelength used for oxygen generation can not reach is not used for oxygen generation, and the charge which is lost due to recombination can be reduced.
  • This nitride semiconductor layer may be replaced with a layer of diamond or SiC, and the preferred film thickness and energy level etc. when replaced with diamond or SiC are the same as those of the nitride semiconductor.
  • the transparent electrode for oxygen generation of the present embodiment may carry a cocatalyst as needed.
  • the oxygen generation capacity can be improved.
  • known ones can be appropriately used, and the method of supporting can also be used known methods, and the cocatalyst can be supported within the range that does not impair the transparency of the transparent electrode for oxygen generation.
  • Specific cocatalysts include metal oxides such as IrO x , NiO x , FeO x and CoO x , metal complex oxides such as NiCoO x and NiFeCoO x , cobalt phosphide and cobalt phosphate, and cobalt boride etc. Cobalt salt and the like.
  • the transparent electrode for oxygen generation according to this embodiment has high transparency, and in addition to this, it has high electrode performance.
  • the transparent electrode for oxygen generation according to this embodiment has high transparency, and in addition to this, it has high electrode performance.
  • 1.23 V vs. RHE (hereinafter, 1.23V RHE also hereinafter) under conditions 3mA / cm 2 or more, preferably of generating 4mA / cm 2 or more photocurrent density, it has a high electrode performance.
  • the manufacturing method according to the present embodiment includes a precursor forming step of forming a Ta nitride precursor layer on a transparent substrate, and a nitriding step of nitriding the Ta nitride precursor layer with a gas containing ammonia and a carrier gas. Including. If necessary, it may have a nitride semiconductor layer forming step of forming a nitride semiconductor layer between the transparent substrate and the Ta nitride precursor.
  • the step of forming the nitride semiconductor layer on the transparent substrate is not particularly limited, and the nitride semiconductor may be formed on the transparent substrate by a known method.
  • the nitride semiconductor may be formed by, for example, vapor deposition such as MOCVD, or physical vapor deposition such as sputtering or electron beam.
  • the precursor formation step is a step of forming a Ta nitride precursor layer on a transparent substrate or on a laminate of a transparent substrate and a nitride semiconductor layer when the nitride semiconductor layer is provided.
  • the Ta nitride precursor layer is not particularly limited as long as it is a compound that forms Ta nitride, preferably Ta 3 N 5 by nitriding, and examples include metallic tantalum, amorphous tantalum, TaO x , tantalum complex, TaCl 5 , Ta 2 O 5 and the like can be mentioned.
  • tantalum oxides preferred are tantalum oxides, tantalum halides and metallic tantalum which evaporate from the layer as water or chlorine without remaining in the layer as impurities after decomposition like carbon.
  • the thickness of the Ta nitride precursor layer is appropriately set in accordance with the desired thickness of the Ta nitride layer after nitriding.
  • the method of forming the Ta nitride precursor layer is not particularly limited, and may be vapor phase growth method such as MOCVD like the nitride semiconductor layer, and may be physical vapor phase such as MBE, PLD, sputtering or electron beam. It may be growth.
  • the Ta nitride precursor layer may be formed by a coating method using an ink such as inkjet printing, screen printing, or spin coating.
  • the raw material of the Ta nitride precursor to be used can use an available commercial item.
  • the formation temperature at the time of forming the Ta nitride precursor layer is not particularly limited as long as nitriding does not proceed, and may generally be a temperature of 1000 ° C. or less.
  • the atmosphere is not particularly limited, and may be under an air atmosphere, and may be under an inert atmosphere such as nitrogen gas or argon.
  • the pressure at the time of formation is not particularly limited, and may be atmospheric pressure, may be under reduced pressure, may be under pressure, and is usually 0 Pa or more and 10 MPa or less.
  • the nitriding step is a step of nitriding the Ta nitride precursor layer into a Ta nitride layer.
  • the Ta nitride precursor layer is nitrided with a mixed gas containing ammonia and a carrier gas in the nitriding step.
  • a mixed gas containing ammonia and a carrier gas in the nitriding step.
  • nitriding is performed using a gas of 100% ammonia.
  • the carrier gas in the mixed gas is preferably an inert gas such as nitrogen gas or argon, and is preferably nitrogen gas.
  • the volume ratio of ammonia to nitrogen in the mixed gas is not particularly limited, but is usually 99: 1 to 1:99, and 10:90 to 90:10. It may be from 15:85 to 70:30 and may be from 20:80 to 50:50.
  • the mixed gas may contain gases other than ammonia, nitrogen and argon within a range not to impair the effects of the present invention, but the proportion is preferably 5% by volume or less, preferably 3% or less, 2% Hereinafter, it may be 1% or less.
  • the nitriding temperature in the nitriding step is usually 500 ° C. or more and may be 1000 ° C. or less.
  • the temperature is usually 950 ° C. or less and may be 900 ° C. or less.
  • the nitriding time is not particularly limited, and is usually 1 minute or more, and may be 1 hour or more. Moreover, it is usually 10 hours or less, and may be 4 hours or less.
  • the transparent electrode for oxygen generation according to the second embodiment of the present invention is a transparent electrode for oxygen generation having a Ti nitride layer in place of the Ta nitride layer of the transparent electrode for oxygen generation according to the first embodiment. And a nitride semiconductor layer between the transparent substrate and the Ta nitride layer.
  • Ti nitride layer The thickness of the Ti nitride layer formed on the transparent substrate is not particularly limited, but if it is too thick, the transparency tends to decrease, and if too thin, it may not have sufficient power generation performance, so It is 50 nm or more, preferably 100 nm or more, and usually 2 ⁇ m or less, preferably 1 ⁇ m or less.
  • the Ti nitride layer formed on the transparent substrate may be formed only of Ti nitride (TiN), but may be doped with an impurity as long as the effects of the present invention are not impaired.
  • the feature of the second embodiment is that the nitride semiconductor layer is provided between the transparent substrate and the Ti nitride layer, whereby the excited carriers are rapidly separated to suppress the recombination.
  • the efficiency of the transparent electrode for oxygen generation using Ti nitride can be improved.
  • the manufacturing method of the transparent electrode for oxygen generation concerning 2nd Embodiment of this invention is demonstrated.
  • the manufacturing method according to the present embodiment is not particularly limited as long as the nitride semiconductor layer can be formed between the transparent substrate and the Ti nitride layer. More specifically, as in the method for producing a transparent electrode for oxygen generation according to the first embodiment of the present invention, a precursor forming step of forming a Ti nitride precursor layer on a transparent substrate, and ammonia and a carrier gas are included. And nitriding the Ti nitride precursor layer with gas. In the present embodiment, a nitride semiconductor layer forming step of forming a nitride semiconductor layer between the transparent substrate and the Ti nitride precursor is essential.
  • the “formation of a nitride semiconductor layer” and the “nitriding of a Ti nitride precursor layer” in the method for producing a transparent electrode for oxygen generation according to the second embodiment of the present invention will be described in the following.
  • the descriptions of “formation of nitride semiconductor layer” and “nitridation of Ta nitride precursor” in the method of manufacturing a transparent electrode for oxygen generation according to one embodiment will be used.
  • the precursor formation step is a step of forming a Ti nitride precursor layer on the transparent substrate, or on the laminate of the transparent substrate and the nitride semiconductor layer in the case of having the nitride semiconductor layer.
  • the Ti nitride precursor layer is not particularly limited as long as it is a compound which becomes Ti nitride (TiN) by nitriding, and examples thereof include metallic titanium, TiO x , a titanium complex, TiCl 4 and the like. Among them, preferred are titanium oxides, titanium halides and metallic titanium which evaporate from the inside of the layer as water or chlorine without remaining in the layer as impurities after decomposition like carbon.
  • the thickness of the Ti nitride precursor layer is appropriately set according to the desired thickness of the Ti nitride layer after nitriding.
  • the method of forming the Ti nitride precursor layer is not particularly limited, and may be vapor phase growth method such as MOCVD like the nitride semiconductor layer, and may be physical vapor phase such as MBE, PLD, sputtering or electron beam. It may be growth.
  • the Ti nitride precursor layer may be formed by a coating method using an ink such as inkjet printing, screen printing, spin coating, or immersion.
  • the raw material of the Ti nitride precursor to be used can use a commercially available product.
  • the formation temperature at the time of forming a Ti nitride precursor layer is not particularly limited as long as nitriding does not proceed, and may usually be a temperature of 1000 ° C. or less.
  • the atmosphere is not particularly limited, and may be under an air atmosphere, and may be under an inert atmosphere such as nitrogen gas or argon.
  • the pressure at the time of formation is not particularly limited, and may be atmospheric pressure, may be under reduced pressure, may be under pressure, and is usually 0 Pa or more and 10 MPa or less.
  • the water-splitting reaction electrode can be formed by installing the transparent electrode for oxygen generation according to the first embodiment or the second embodiment of the present invention in combination with the electrode for hydrogen generation which is a counter electrode.
  • the hydrogen generation electrode is not particularly limited as long as it is a p-type semiconductor photoelectrode having an absorption edge wavelength on the longer wavelength side than 600 nm.
  • copper indium gallium selenide CuIn x Ga 1 -x Se 2 Cu
  • Cu copper indium gallium selenide
  • Cu 2 ZnSnS 4 copper zinc tin sulfide
  • CuFeO 2 delafossite
  • La 5 Ti 2 CuS 5 O 7 indium copper sulfide
  • CuInS 2 copper sulfide
  • a group II-VI system such as cadmium telluride (CdTe), a III-V system such as gallium arsenide (GaAs), and p-type silicon (p-Si).
  • CdTe cadmium telluride
  • GaAs gallium arsenide
  • p-Si p-type silicon
  • the surface of these semiconductor photoelectrodes is modified with CdS, In 2 S 3 , ZnS, etc. to form a pn junction on the electrode surface, and then a cocatalyst to promote hydrogen generation represented by Pt, Ru, etc. It is preferable to immobilize and use for a water-splitting electrode.
  • the transparent electrode for oxygen generation according to the first or second embodiment of the present invention has a light transmittance of 80% or more, preferably 90% or more at a wavelength of 600 nm to 900 nm. It can be set as the tandem type water-splitting reaction electrode which laminated
  • the transparent electrode for oxygen generation according to the first or second embodiment of the present invention sufficiently transmits light with a long wavelength of 600 nm or more used by the electrode for hydrogen generation, the transparent electrode for oxygen generation
  • the transparent electrode for oxygen generation When laminating the electrode for hydrogen generation, light with a wavelength shorter than 600 nm among incident light from the outside generates oxygen by the transparent electrode for oxygen generation, and the wavelength longer than 600 nm not used in the transparent electrode for oxygen generation
  • the wavelength light is transmitted, and the transmitted light is used by an electrode for hydrogen generation. Therefore, when it is set as a tandem-type water-splitting reaction electrode, the oxygen generation transparent electrode is disposed closer to the incident light than the hydrogen generation electrode.
  • the transparent electrode for oxygen generation it is not necessary to arrange both electrodes side by side in a plane, compared to the case where they are arranged in a plane with respect to incident light such as sunlight. Water decomposition is possible with about twice the efficiency.
  • the present invention it is possible to provide a transparent electrode for oxygen generation having high transparency and high electrode performance, and producing oxygen with high efficiency as a water-splitting electrode etc. it can.
  • the transparent electrode for oxygen generation provided by the present invention is 1.23 V vs.
  • a photocurrent density of 5.7 mA / cm 2 can be generated under pseudo-sunlight (AM 1.5 G) irradiation, and when applied to a tandem water-splitting cell, the solar energy conversion efficiency 7 theoretically % Is achievable.
  • An oxygen generator according to a fourth embodiment of the present invention includes the transparent electrode for oxygen generation according to the first or second embodiment of the present invention.
  • the transparent electrode for oxygen generation it is possible to efficiently use solar energy to generate oxygen from water.
  • the water decomposition apparatus includes the transparent electrode for oxygen generation according to the first or second embodiment of the present invention and / or the tandem water decomposition reaction according to the third embodiment of the present invention It has an electrode.
  • the transparent electrode for oxygen generation and / or the tandem water-splitting reaction electrode it is possible to make an apparatus for efficiently using the solar energy to decompose water.
  • the method of synthesizing a compound according to the present embodiment includes the step of reacting hydrogen and / or oxygen obtained by decomposing water by the above-mentioned water splitting apparatus.
  • the synthesis reaction used in the synthesis method according to the present embodiment is not particularly limited, and the compound obtained by the synthesis may be an inorganic compound or an organic compound.
  • an inorganic compound ammonia, hydrogen peroxide etc. are mentioned, for example.
  • the organic compound include lower olefins having about 2 to 4 carbon atoms, alcohols and the like.
  • ammonia can be synthesized, for example, by reacting hydrogen obtained by decomposing water with the above-described water decomposition apparatus with nitrogen. Further, by reacting hydrogen with carbon dioxide, methanol which is a chemical raw material can be produced. Furthermore, ethylene and propylene can be synthesized from the obtained methanol by MTO reaction.
  • oxygen obtained by decomposing water by the above-mentioned water-splitting apparatus can synthesize ozone, for example, by irradiating energy such as ultraviolet light. Further, hydrogen peroxide can be synthesized by reacting oxygen with water in the presence of a photocatalyst.
  • the oxygen obtained by decomposing water by the above-mentioned water-splitting apparatus is, besides the above synthesis method, for example, production of ozone and hydrogen peroxide, steel making, refining of nonferrous metals, melting of glass raw materials, cutting of steel It can be used for applications such as rocket fuel, chemical oxidation, and medical oxygen.
  • the compound synthesis apparatus is a synthesis apparatus having a water decomposition apparatus and a reactor provided with a catalyst, wherein the hydrogen obtained from the water decomposition apparatus and the other raw materials are contained in the reactor It is an apparatus introduced into and reacted in the reactor. With such a configuration, the obtained hydrogen is introduced, together with other raw materials, into a reactor having a catalyst suitable for each reaction, and the desired compounds are synthesized by reacting them in the reactor. Can.
  • the other raw materials are not particularly limited, and may be appropriately selected according to the desired compound.
  • carbon dioxide, carbon monoxide, and nitrogen can be mentioned, for example.
  • By reaction of the obtained hydrogen with carbon dioxide or carbon monoxide for example, lower olefins having about 2 to 4 carbon atoms can be synthesized.
  • ammonia can be synthesized by the reaction of the obtained hydrogen and nitrogen.
  • Such other raw materials may be, for example, filled in advance in a raw material supply device and introduced into the reactor as required.
  • the reactor is not particularly limited as long as the reactor has a catalyst inside, and the desired compound can be synthesized by reacting internally the hydrogen obtained from the water decomposition apparatus with other raw materials. And known ones can be used. Since many reactions are reactions utilizing chemical equilibrium, it is possible to obtain the desired compound with higher efficiency by installing a separation membrane in the reactor and removing the obtained reaction product from the reactor. . Also, the catalyst may be appropriately selected from known catalysts in accordance with the synthesis reaction performed in the reactor.
  • the transparent electrode for oxygen generation By using the transparent electrode for oxygen generation according to the first or second embodiment of the present invention, decomposition of water into oxygen and hydrogen by so-called artificial photosynthesis can be easily achieved. In addition, various compounds can be efficiently obtained using hydrogen generated by water decomposition.
  • Example 1 Preparation Example 1: Preparation of Ta 3 N 5 photocatalyst on an insulating transparent substrate
  • TaO x which is a Ta 3 N 5 precursor
  • SiO 2 transparent substrate that has a thickness of 0.4 mm and a light of 200 mm or more and has a transmittance of about 93%.
  • Ta 3 N 5 precursor thin film / SiO 2 was obtained.
  • a Ta 3 N 5 precursor thin film was formed to a thickness of 500 nm using ES-250L manufactured by Eiko for the lamination of TaO x .
  • the assembly A is mixed with a mixed gas of ammonia gas and nitrogen gas, and mixed in a stream of air at a mixing ratio of 10: 0, 5: 5, 3: 7, 2: 8.
  • nitriding treatment at 950 ° C. for 1 hour, an aggregate B (Ta 3 N 5 photocatalyst film: film thickness 500 nm / SiO 2 ) was obtained.
  • UV-vis ultraviolet and visible
  • UV-vis reflection spectrum measurement UV-vis reflection spectrum measurement
  • XRD X-ray diffraction
  • the transparent photoelectrode of the integrated body B obtained by nitriding under the condition of 100% ammonia gas has a ratio of 1.23 V vs.
  • a photocurrent of 0.3 mA / cm 2 was generated at a reversible hydrogen electrode (V RHE ).
  • the voltammogram of the transparent photoelectrode thus obtained is shown in FIG.
  • the voltammogram of the transparent photoelectrode thus obtained is shown in FIG.
  • the development of a new nitriding process using mixed gas has succeeded in significantly increasing the photocurrent value.
  • the relationship between the ratio of the mixed gas of ammonia gas and nitrogen gas and the photocurrent density at 1.23 V RHE is shown in FIG. It became clear that the photocurrent density increased significantly as the ratio of ammonia gas decreased.
  • the voltammogram was measured at a potential sweep rate (v) of 10 mVs ⁇ 1 and a potential sweep range (1.5 V RHE ⁇ 0 V RHE ).
  • Example 2 Production of a Transparent Photocatalytic Electrode Introduced a Nitride Semiconductor Layer Between the Photocatalyst Layer and a Transparent Substrate
  • GaN gallium nitride: layer thickness of 4000 nm
  • TaO x which is a Ta 3 N 5 precursor
  • film thickness of 500 nm / GaN / sapphire was obtained.
  • the voltammogram of the transparent photoelectrode thus obtained is shown in FIG.
  • the transparent photoelectrode of the integrated body D obtained by nitriding with a mixed gas (ratio is NH 3 : N 2 3: 7) consisting of ammonia gas and nitrogen gas generates a high photocurrent of 5.7 mA / cm 2 did.
  • the voltammogram of the transparent photoelectrode thus obtained is shown in FIG.
  • the introduction of the nitride semiconductor layer significantly improves the performance of the transparent photocatalytic electrode by effectively suppressing the recombination process of electrons and holes, which are excitons.
  • the relationship between the ratio of the mixed gas of ammonia gas and nitrogen gas and the photocurrent density at 1.23 V RHE is shown in FIG.
  • the ratio of ammonia gas in the mixed gas decreased, the photocurrent density tended to increase significantly.
  • the ratio of ammonia gas was smaller than 20%, a decrease in photocurrent density was observed.
  • We succeeded in significantly increasing the water splitting activity by developing a new nitriding process using mixed gas and a new structure having an exciton discrimination layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Chemically Coating (AREA)

Abstract

透明基板上にTa窒化物層を有する、酸素生成用透明電極の製造方法であって、透明基板上にTa窒化物前駆体層を形成するステップ、及びアンモニア及びキャリアガスを含む混合ガスにより前記Ta窒化物前駆体層を窒化するステップ、を含む、製造方法。

Description

酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置
 本発明は、酸素生成用透明電極、その製造方法、前記酸素生成用透明電極を備えたタンデム型水分解反応電極、及び前記酸素生成用透明電極を用いた酸素発生装置に関する。
 エネルギー資源の大半を占める化石燃料は有限であることから、光エネルギーを利用して、水を水素と酸素に分解することでエネルギー源とする研究が進められている。その際には光触媒が用いられることが通常である。
 現在研究が進められている光触媒の具体的形態の一つとして、導電性の酸化物、酸窒化物、窒化物といった光半導体の表面に助触媒を担持させた水分解用電極がある。
 水分解用電極は水素生成用電極と酸素生成用電極があり、そのうち酸素生成用の光触媒として窒化タンタル(Ta)を用いたものが提案されている。例えば非特許文献1では、Ta鏡面基板上に窒化タンタルの前駆体である酸化タンタル(TaO)の薄膜を準備し、100%アンモニアガスにより窒化することで得られた、Ta鏡面基板とTaの積層体が開示される。一般的に、100%アンモニアガスを用いる窒化プロセスは、細かい条件検討を行わなくても窒化反応が進行するため、都合が良いと考えられている。
 また、非特許文献2には、石英基板とタンタルをドープした透明導電膜との積層体を準備し、該積層体上に窒化タンタルの前駆体Ta(N(CHの原子層を堆積させた後、100%アンモニアガスにより窒化することで得られた、石英基板とTaの透明積層体が開示される。
M.Zhong,et al., Angew.Chem.Int.Ed.,2017,56,4739-4743 H.Hajibabaei,et al.,Chem.Science,2016,7,6760
 上記開示された非特許文献1のTaを用いた積層体は、Ta鏡面基板を用いることから、透明の酸素生成用電極とすることは不可能である。また上記開示された非特許文献2のTaを用いた積層体は、前駆体膜を原子堆積により行うため、Taの厚膜を得るためには相当の時間を要し、工業的には不可能に近い。また、窒化の際に前駆体のカーボン源が混入するためTa膜の純度が低く、透過率が低い。
 本発明は、透明度が高く、かつ従来のTa電極よりも電極性能が改善された、酸素生成用透明電極を提供することを課題とする。
 本発明者らは、透明でかつ高い電極性能を有するTa窒化物電極を提供すべく鋭意検討を重ねた結果、Ta窒化物前駆体からTa窒化物への窒化プロセスにおいて、アンモニアに加えキャリアガスを含む混合ガスにより窒化を行うことで、所望のTa窒化物電極が得られることに想到した。更に、透明基板上においてTa窒化物前駆体との間に、窒化物半導体層を設けることでも、所望のTa窒化物電極が得られることに想到した。
 本発明は以下の要旨を含む。
<1>透明基板上にTa窒化物層を有する、酸素生成用透明電極の製造方法であって、
 透明基板上にTa窒化物前駆体層を形成するステップ、及び
 アンモニア及びキャリアガスを含む混合ガスにより前記Ta窒化物前駆体層を窒化するステップ、を含む、製造方法。
<2>前記Ta窒化物層がTa層である、<1>に記載の製造方法。
<3>前記透明基板がサファイア基板又はSiO基板である、<1>又は<2>に記載の製造方法。
<4>前記キャリアガスが窒素ガスである、<1>~<3>の何れかに記載の製造方法。
<5>透明基板上に、窒化物半導体層、及びTa窒化物層がこの順に積層された、酸素生成用透明電極。
<6>前記Ta窒化物層がTa層である、<5>に記載の酸素生成用透明電極。
<7>前記窒化物半導体層がGaN層である、<5>又は<6>に記載の酸素生成用透明電極。
<8>前記透明基板がサファイア基板又はSiO基板である、<5>~<7>の何れかに記載の酸素生成用透明電極。
<9>波長600nm~900nmの光透過率が80%以上である、<5>~<8>の何れかに記載の酸素生成用透明電極。
<10><1>~<4>の何れかに記載の製造方法により製造された酸素生成用透明電極と、水素生成用電極を積層するステップ、を含む、タンデム型水分解反応電極の製造方法。
<11><5>~<9>の何れかに記載の酸素生成用透明電極と水素生成用電極とを積層させた、タンデム型水分解反応電極。
<12>水分解反応において酸素発生側電極として使用されるTaを含む酸素生成用透明電極であって、600nm~900nmの光の透過率が80%以上、かつAM1.5G照射下、1.23VRHEでの光電流密度が3mA/cm以上である、酸素生成用透明電極。
<13><12>に記載の酸素生成用透明電極と、波長600nmよりも長波長側に吸収ピークを有する水素生成用電極を組み合わせた、タンデム型水分解反応電極。
<14>透明基板上に、窒化物半導体層、及びTi窒化物層がこの順に積層された、酸素生成用透明電極。
<15>前記窒化物半導体層がGaN層である、<14>に記載の酸素生成用透明電極。
<16>前記透明基板がサファイア基板又はSiO基板である、<14>又は<15>に記載の酸素生成用透明電極。
<17><5>~<9>、<12>及び<14>~<16>の何れかに記載の酸素生成用透明電極を備える、酸素発生装置。
<18><5>~<9>、<12>及び<14>~<16>の何れかに記載の酸素生成用透明電極並びに/又は<11>若しくは<13>に記載されたタンデム型水分解反応電極を備える、水分解装置。
<19>化合物の合成方法であって、
 <18>に記載の水分解装置により水を分解して得られた水素及び/又は酸素を反応させるステップ、を含む、合成方法。
<20>前記化合物が、低級オレフィン、アンモニア又はアルコールである、<19>に記載の合成方法。
<21><18>に記載の水分解装置、及び触媒を備えた反応器、を有する合成装置であって、
 前記水分解装置から得られる水素と、他の原料と、を前記反応器に導入し、反応器内で反応させる、合成装置。
 本発明によれば、透明度が高く、かつ従来のTa電極よりも電極性能が改善された、酸素生成用透明電極を得ることができる。本発明により提供される酸素生成用透明電極は電極性能が非常に高い上、透明度が高いことから、水素生成用電極との間でタンデム型水分解反応電極を形成することができる。このような形態により、両電極を平面状に並べて配置する必要がないことから、入射する太陽光等の光に対し、平面状に配置した場合と比較して約2倍の効率で水分解が可能となり、これを用いた装置を得ることもできる。
 また本発明の別の効果としては、透明基板上に透明な窒化タンタルの層を設けた半導体装置用の基板を得ることもできる。
 また、本発明のさらなる効果としては、Ti窒化物を用いた酸素生成用電極において、より効率的に太陽光を利用できる酸素生成用透明電極を得ることもできる。
実施例1で作成した透明光電極の、600nm~900nmでの透過率を示す。 実施例2で作成した透明光電極の、600nm~900nmでの透過率を示す。 実施例1で測定した、アンモニアガス100%の条件で窒化して得た集積体の透明光電極のボルタモグラムを示す。 実施例1で測定した、アンモニアガスと窒素ガスからなる混合ガス(NH:N=3:7)で窒化して得た集積体の透明光電極のボルタモグラムを示す。 アンモニアガスと窒素ガスの混合ガスの比率と、1.23VRHEでの光電流密度との関係を示す。 実施例2で測定した、アンモニアガス100%の条件で窒化して得た集積体の透明光電極のボルタモグラムを示す。 実施例2で測定した、アンモニアガスと窒素ガスからなる混合ガス(NH:N=3:7)で窒化して得た集積体の透明光電極のボルタモグラムを示す。 アンモニアガスと窒素ガスの混合ガスの比率と、1.23VRHEでの光電流密度との関係を示す。
 以下、本発明につき詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
<酸素生成用透明電極1>
 以下、本発明の第1実施形態に係る酸素生成用透明電極について説明する。
 本発明の第1実施形態に係る酸素生成用透明電極は、透明基板上にTa窒化物層を有する、酸素生成用透明電極である。透明基板とTa窒化物層との間に透明な窒化物半導体層を有してもよい。
(電極の透過率)
 本実施形態の酸素生成用透明電極は透明であり、具体的に透明とは、波長600nm以上900nm以下の光の透過率が通常80%以上であり、85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましい。上限は通常100%である。また、より好ましくは、波長600nmから1200nmにおいて上述の透過率になっていることである。ここでいう波長600nm以上900nm以下の光の透過率が80%以上とは、波長600nm以上900nm以下の光の平均透過率が80%以上であることを意味するが、より好ましくは、特異的な点を除きすべての波長で80%以上であることであり、もっとも好ましくは、波長600nm以上900nm以下の範囲で透過率が最も低くなる点が80%以上であることである。
 本実施形態の酸素生成用透明電極は透明度が高いことから、水素生成用電極との間でタンデム型水分解反応電極を形成する形態で使用することが好ましい。タンデム型とすることにより、両電極を平面状に並べて配置する必要がないことから、入射する太陽光等の光に対し、平面状に配置した場合と比較して約2倍の効率で水分解が可能となる。
(透明基板)
 本実施形態に用いられる透明基板は、Ta窒化物層を支持する透明な支持体である。また、水分解電極として使用されることから、幅広いpH領域においても化学的に安定な絶縁基板であることが好ましい。透明基板における透明性は上記透明電極における透明と同様であることが好ましいが、更に可視光全領域において光の透過率が80%以上であってよく、90%以上であってよい。
 透明基板は、透明であり、且つTa窒化物層を支持する限り特段限定されない。透明基板を構成する材料としては、具体的にはSiO(石英)、サファイアを含む透明アルミナ、窒化シリコン、窒化アルミニウム、窒化ガリウム(GaN)自立基板、シリコンカーバイド(SiC)、ダイヤモンド、ハロゲン化アルカリおよびハロゲン化アルカリ土類金属などが挙げられる。これらの中でも、SiO又はサファイアであることが好ましい。
 後述する窒化物半導体層を備える場合には、窒化物半導体層を設けることが容易な透明基板を選択してもよい。例えば窒化物半導体層がGaNである場合には、GaN層の設け易さから透明基板を構成する材料はサファイアを含む透明アルミナであることが好ましく、特にサファイアであることが好ましい。
 透明基板の厚さは特段限定されないが、厚すぎることで透明性が低下する傾向にあり、また薄過ぎることで支持体としての強度が不十分になることから、通常10μm以上、好ましくは100μm以上であり、また通常5mm以下、好ましくは1mm以下である。
(Ta窒化物層)
 透明基板上に形成されるTa窒化物層の厚みは特段限定されないが、厚すぎることで透明性が低下する傾向にあり、また薄過ぎることで十分な発電性能を有しない場合があるため、通常50nm以上、好ましくは100nm以上であり、また通常2μm以下、好ましくは1μm以下である。
 透明基板上に形成されるTa窒化物層は、Ta窒化物のみから形成されてもよいが、本発明の効果を阻害しない範囲で、不純物がドープされていてもよい。
 本実施形態において、Ta窒化物層を構成するTa窒化物としては、特に制限されず、例えば、θ-TaN、ε-TaN、Ta等を挙げることができる。これらの中でも、高い光透過率、光半導体特性、高い光触媒能の観点から、Taであることが好ましい。
(窒化物半導体層)
 窒化物半導体層は、透明基板とTa窒化物層との間に配置され、Ta窒化物前駆体の窒化の際には透明基板の透明性を担保し得る。窒化物半導体層は、励起キャリア弁別層として動作することが好ましい。励起キャリア弁別について、以下説明する。
 酸素生成用透明電極(Ta窒化物透明電極)表面では、透明電極表面に光が照射されると、光励起キャリアである電子と正孔が生じる。生成した光励起キャリアの正孔全てが速やかに水と反応して酸素を生成すれば、電極触媒の性能が無駄になることなく使用されるが、多くの場合そのようにはならず、ある割合の生成した光励起キャリアは、水と反応せずに電子と正孔が再結合してしまい、電極の性能を低下させる。この励起キャリアを速やかに分離し、再結合を抑制する役目を果たすのが励起キャリア弁別層である。
 窒化物半導体層を設けることで、基板の透明性を担保するのみならず、酸素生成能力が大幅に改善され得る。窒化物半導体層は、上記のとおり光励起キャリアである電子と空孔の再結合過程を効果的に抑制することにより、透明光触媒電極の性能を著しく向上させたのではないかと、本発明者は量子力学的理論計算から推測する。
 窒化物半導体層としては、透明な窒化物半導体であればよいが、電子バンド構造的に、Ta窒化物の価電子帯上端よりも深いエネルギー準位に価電子帯上端を持ち、また導電帯下端は、Ta窒化物の価電子帯上端と導電帯下端の間に位置していることが好ましい。具体的にはGaN、AlGaN、InGaN、InAlGaNなどがあげられる。これらの窒化物半導体層にドーパントをドーピングし、内部のキャリア濃度を制御してもよい。ドーパントとしては、例えばMg、Si、Zn、Hg、Cd、Be、Li、Cがあげられ、単独もしくは複数種類を用いてもよい。窒化物半導体層の厚みは、使用する光の強度により適宜設定できるため特段限定されないが、通常100nm以上、好ましくは500nm以上とすると、酸素生成に使用する波長の光を十分吸収しやすくなるため好ましい。また、上限値としては、特に限定されないが、通常10μm以下、好ましくは6μm以下である。これは、ある程度以上厚くしても、酸素生成に使用される波長の光が届かない部分は酸素生成に使用されないこと、及び再結合により失われる電荷を減らすことができること、から好ましい。
 この窒化物半導体層は、ダイヤモンド又はSiCの層と置き換えてもよく、ダイヤモンド又はSiCに置き換えた時の好ましい膜厚や、エネルギー準位等は窒化物半導体と同様である。
 本実施形態の酸素生成用透明電極は、必要に応じ助触媒を担持してもよい。助触媒を担持させることで、酸素生成能力が向上し得る。助触媒については、既知のものを適宜用いることができ、また担持させる方法も既知の方法を用いることができ、酸素生成用透明電極の透明性を阻害しない範囲で助触媒を担持させることができる。
 具体的な助触媒としてはIrO、NiO、FeO、CoOなどの金属酸化物、NiCoO、NiFeCoOなどの金属複合酸化物、およびリン化コバルトやリン酸コバルト、およびホウ化コバルトなどのコバルト塩などが挙げられる。
(電極性能)
 本実施形態に係る酸素生成用透明電極は高い透明性を有することは上記説明したとおりであり、これに加えて、高い電極性能を有する。具体的には、AM1.5G照射下、1.23V vs. RHE(以下、1.23VRHEとも表記する)の条件下で3mA/cm以上、好ましくは4mA/cm以上の光電流密度を生成するという、高い電極性能を有する。
<酸素生成用透明電極1の製造方法>
 以下、本発明の第1実施形態に係る酸素生成用透明電極の製造方法について説明する。
 本実施形態に係る製造方法は、透明基板上にTa窒化物前駆体層を形成する前駆体形成ステップ、及びアンモニア及びキャリアガスを含むガスにより前記Ta窒化物前駆体層を窒化する窒化ステップ、を含む。必要に応じ、透明基板とTa窒化物前駆体との間に窒化物半導体層を形成する窒化物半導体層形成ステップを有してもよい。
(窒化物半導体層の形成)
 透明基板上に窒化物半導体層を形成するステップは特段の制限はなく、既知の方法により窒化物半導体を透明基板上に形成すればよい。窒化物半導体を形成する方法としては、例えばMOCVDなどの気相成長法であってよく、スパッタリングや電子ビームなどの物理気相成長であってよい。
(Ta窒化物前駆体層の形成)
 前駆体形成ステップは、透明基板上に、又は上記窒化物半導体層を有する場合には透明基板と窒化物半導体層の積層体上に、Ta窒化物前駆体層を形成するステップである。
 Ta窒化物前駆体層は、窒化することでTa窒化物、好ましくはTaとなる化合物であれば特段限定されず、例えば金属タンタル、アモルファスのタンタル、TaO、タンタル錯体、TaCl、Taなどがあげられる。このうち好ましくは、炭素のように分解後に不純物として層内に残ることなく、水や塩素として層内から蒸発する、タンタル酸化物、タンタルハロゲン化物、金属タンタルである。
 Ta窒化物前駆体層の厚みは、窒化後のTa窒化物層の所望の厚みに応じて適宜設定される。
 Ta窒化物前駆体層を形成する方法は特段の制限はなく、窒化物半導体層と同様に例えばMOCVDなどの気相成長法であってよく、MBE、PLD、スパッタリングや電子ビームなどの物理気相成長であってよい。また、インクジェットプリンティング、スクリーンプリンティング、スピンコートなどインクを使用した塗布法によりTa窒化物前駆体層を形成してもよい。使用するTa窒化物前駆体の原料は、入手可能な市販品を用いることができる。Ta窒化物前駆体層を形成する際の形成温度は、窒化が進行しない温度であれば特段限定されず、通常、1000℃以下の温度であってよい。また、また雰囲気も特段限定されず、大気雰囲気下であってよく、窒素ガス、アルゴンなどの不活性雰囲気下であってよい。形成の際の圧力も特段限定されず、大気圧下であってよく、減圧下であってよく、加圧下であってよく、通常0Pa以上、10MPa以下である。
(Ta窒化物前駆体層の窒化)
 窒化ステップは、Ta窒化物前駆体層を窒化してTa窒化物層とするステップである。
 本実施形態では、窒化ステップにおいてアンモニア及びキャリアガスを含む混合ガスによりTa窒化物前駆体層を窒化する。従来、Ta窒化物層を形成するための窒化には、アンモニア100%のガスを用いて窒化を行っていた。本実施形態では、アンモニアに加え、キャリアガスとの混合ガスを用いることで、透明であり、且つ酸素生成能が高いTa窒化物層を得ることに想到した。
 混合ガス中のキャリアガスは、窒素ガス、アルゴンなどの不活性ガスであることが好ましく、窒素ガスであることが好ましい。混合ガスをアンモニアと窒素とで構成する場合には、混合ガス中のアンモニアと窒素との体積比は特段限定されないが、通常99:1~1:99であり、10:90~90:10であってよく、15:85~70:30であってよく、20:80~50:50であってよい。
 なお、混合ガス中には、本発明の効果を阻害しない範囲で、アンモニア、窒素、アルゴン以外のガスを含んでもよいが、その割合は5体積%以下であることが好ましく3%以下、2%以下、1%以下であってよい。
 窒化ステップにおける窒化温度は、通常500℃以上であり1000℃以下であってよい。また通常950℃以下であり、900℃以下であってよい。窒化時間も特段限定されず、通常1分以上であり、1時間以上であってよい。また通常10時間以下であり、4時間以下であってよい。
<酸素生成用透明電極2>
 以下、本発明の第2実施形態に係る酸素生成用透明電極について説明する。
 本発明の第2実施形態に係る酸素生成用透明電極は、上記第1実施形態に係る酸素生成用透明電極のTa窒化物層に代えて、Ti窒化物層を有する酸素生成用透明電極であり、透明基板とTa窒化物層との間に窒化物半導体層を有している。
(Ti窒化物層)
 透明基板上に形成されるTi窒化物層の厚みは特段限定されないが、厚すぎることで透明性が低下する傾向にあり、また薄過ぎることで十分な発電性能を有しない場合があるため、通常50nm以上、好ましくは100nm以上であり、また通常2μm以下、好ましくは1μm以下である。
 透明基板上に形成されるTi窒化物層は、Ti窒化物(TiN)のみから形成されてもよいが、本発明の効果を阻害しない範囲で、不純物がドープされていてもよい。
 第2実施形態に係る酸素生成用透明電極の「電極の透過率」、「透明基板」、「窒化物半導体層」及び「電極性質」の説明としては、第1実施形態に係る酸素生成用透明電極の「電極の透過率」、「透明基板」、「窒化物半導体層」及び「電極性能」の説明を援用する。すなわち、Taとの記載をTiとして読み替えればよい。
 この第2実施形態の特徴は、透明基板とTi窒化物層との間に窒化物半導体層を有していることであり、これにより、励起キャリアを速やかに分離し、再結合を抑制することができるため、Ti窒化物を用いた酸素生成用透明電極の効率を向上することができるのである。
<酸素生成用透明電極2の製造方法>
 本発明の第2実施形態に係る酸素生成用透明電極の製造方法について説明する。
 本実施形態に係る製造方法は、透明基板とTi窒化物層との間に窒化物半導体層を形成できる限り特に限定されない。より詳細には、本発明の第1実施形態に係る酸素生成用透明電極の製造方法と同様に透明基板上にTi窒化物前駆体層を形成する前駆体形成ステップ、及びアンモニア及びキャリアガスを含むガスにより前記Ti窒化物前駆体層を窒化する窒化ステップ、を含む。本実施形態においては、透明基板とTi窒化物前駆体との間に窒化物半導体層を形成する窒化物半導体層形成ステップが必須となる。
 なお、本発明の第2実施形態に係る酸素生成用透明電極の製造方法における「窒化物半導体層の形成」及び「Ti窒化物前駆体層の窒化」の説明としては、それぞれ、本発明の第1実施形態に係る酸素生成用透明電極の製造方法での「窒化物半導体層の形成」及び「Ta窒化物前駆体の窒化」の説明を援用する。
(Ti窒化物前駆体層の形成)
 前駆体形成ステップは、透明基板上に、又は上記窒化物半導体層を有する場合には透明基板と窒化物半導体層の積層体上に、Ti窒化物前駆体層を形成するステップである。
 Ti窒化物前駆体層は、窒化することでTi窒化物(TiN)となる化合物であれば特段限定されず、例えば金属チタン、TiO、チタン錯体、TiClなどがあげられる。このうち好ましくは、炭素のように分解後に不純物として層内に残ることなく、水や塩素として層内から蒸発する、チタン酸化物、チタンハロゲン化物、金属チタンである。
 Ti窒化物前駆体層の厚みは、窒化後のTi窒化物層の所望の厚みに応じて適宜設定される。
 Ti窒化物前駆体層を形成する方法は特段の制限はなく、窒化物半導体層と同様に例えばMOCVDなどの気相成長法であってよく、MBE、PLD、スパッタリングや電子ビームなどの物理気相成長であってよい。また、インクジェットプリンティング、スクリーンプリンティング、スピンコート、浸漬などインクを使用した塗布法によりTi窒化物前駆体層を形成してもよい。使用するTi窒化物前駆体の原料は、入手可能な市販品を用いることができる。Ti窒化物前駆体層を形成する際の形成温度は、窒化が進行しない温度であれば特段限定されず、通常、1000℃以下の温度であってよい。また、また雰囲気も特段限定されず、大気雰囲気下であってよく、窒素ガス、アルゴンなどの不活性雰囲気下であってよい。形成の際の圧力も特段限定されず、大気圧下であってよく、減圧下であってよく、加圧下であってよく、通常0Pa以上、10MPa以下である。
<水分解反応電極>
 本発明の第1の実施形態又は第2実施形態に係る酸素生成用透明電極は、対極である水素生成用電極と組み合わせて設置することで、水分解反応電極を形成することができる。
(水素生成用電極)
 水素生成用電極としては、公知のものを用いることができる。
 水素生成用電極は、600nmよりも長波長側に吸収端波長を持つp型の半導体光電極である限り特段限定されず、具体的にはセレン化銅インジウムガリウム(CuInGa1―xSe)、銅亜鉛硫化スズ(CuZnSnS)、デラフォサイト(CuFeO)ランタンチタン銅酸硫化物(LaTiCuS)、硫化インジウム銅(CuInS)などのCu(I)を組成に持つ多元系や、テルル化カドミウム(CdTe)などのII-VI族系、ヒ化ガリウム(GaAs)などのIII-V系、およびp-型シリコン(p-Si)などが挙げられる。これらの半導体光電極の表面にCdS、In、ZnSなどを修飾することで電極表面にp-n接合を形成し、ついでPtやRuなどに代表される水素生成を促進する助触媒を固定化して水分解電極に使用することが好ましい。
<タンデム型水分解反応電極>
 以下、本発明の第3実施形態に係るタンデム型水分解反応電極について説明する。
 本発明の第1又は第2実施形態に係る酸素生成用透明電極は、波長600nm~900nmにおける光透過率が80%以上、好ましくは90%以上であることから、かかる酸素生成用透明電極と水素生成用電極とを積層させた、タンデム型水分解反応電極とすることができる。すなわち、本発明の第1又は第2実施形態に係る酸素生成用透明電極は、水素生成用電極が使用する波長600nm以上の長波長の光を充分に透過させることから、酸素生成用透明電極と水素生成用電極とを積層させた場合に、外部からの入射光のうち600nmより短波長の光は酸素生成用透明電極によって酸素を生成し、酸素生成用透明電極で使用しない波長600nm以上の長波長光は透過させ、透過させた光を水素生成用電極が使用する。そのためタンデム型の水分解反応電極とする場合、酸素生成用透明電極は、水素生成用電極よりも入射光側に配置される。
 本実施形態に係る酸素生成用透明電極を用いることで、両電極を平面状に並べて配置する必要がないことから、入射する太陽光等の光に対し、平面状に配置した場合と比較して約2倍の効率で水分解が可能となる。
 以上のように、本発明によれば、透明性が高く、高い電極性能を有する、酸素生成用透明電極を提供することが可能となり、水分解用電極等として高い効率で酸素を製造することができる。本発明によって提供される酸素生成用透明電極は、1.23V vs. RHEにおいて5.7mA/cmの光電流密度を疑似太陽光(AM1.5G)照射下で生成可能であり、タンデム型水分解用セルに適用した場合、理論的には太陽光エネルギー変換効率7%を達成可能である。
<酸素発生装置>
 本発明の第4実施形態に係る酸素発生装置は、本発明の第1又は第2実施形態に係る酸素生成用透明電極を備える。前記酸素生成用透明電極を用いることにより、太陽エネルギーを効率的に用いて水から酸素を生成することができる。
<水分解装置>
 以下、本発明の第5実施形態に係る水分解装置は、本発明の第1若しくは第2実施形態に係る酸素生成用透明電極及び/又は本発明の第3実施形態に係るタンデム型水分解反応電極を備える。前記酸素生成用透明電極及び/又はタンデム型水分解反応電極を用いることにより、太陽エネルギーを効率的に用いて水を分解する装置を作ることができる。
<化合物の合成方法>
 以下、本発明の第6実施形態に係る化合物の合成方法について説明する。
 本実施形態に係る化合物の合成方法は、上記水分解装置により水を分解して得られた水素及び/又は酸素を反応させるステップ、を含む。
 本実施形態に係る合成方法で利用する合成反応は特に制限されず、合成によって得られる前記化合物は、無機化合物であってもよく、有機化合物であってもよい。無機化合物としては、例えば、アンモニア、過酸化水素等を挙げられる。有機化合物としては、炭素数2~4程度の低級オレフィン、アルコール等が挙げられる。
 より具体的には、例えば、上記水分解装置により水を分解して得られた水素を窒素と反応させることにより、アンモニアを合成することができる。また、水素を二酸化炭素と反応させることにより、化学原料品であるメタノールを製造することができる。さらには、MTO反応により、得られたメタノールからエチレン及びプロピレンを合成することができる。
 一方、上記水分解装置により水を分解して得られた酸素は、例えば紫外線のようなエネルギーを照射することにより、オゾンを合成することができる。また、酸素を光触媒の存在下で水と反応させることにより、過酸化水素を合成することができる。
 なお、上記水分解装置により水を分解して得られた酸素は、上記合成方法の他、例えばオゾンや過酸化水素の製造の他、製鋼、非鉄金属の精錬、ガラス原料の溶解や鋼材の切断、ロケット燃料、化学品の酸化、医療用酸素などの用途に使用できる。
<化合物の合成装置>
 以下、本発明の第7実施形態に係る化合物の合成装置について説明する。
 本実施形態に係る化合物の合成装置は、水分解装置、及び触媒を備えた反応器、を有する合成装置であって、前記水分解装置から得られる水素と、他の原料と、を前記反応器に導入し、反応器内で反応させる装置である。
 このような構成により、得られた水素を他の原料とともに、それぞれの反応に適した触媒を有する反応器中に導入し、それらを反応器中で反応させることにより、所望の化合物を合成することができる。
(他の原料)
 本実施形態において、他の原料は特に限定されず、所望の化合物に応じて適宜選択すればよい。具体的には、例えば二酸化炭素、一酸化炭素、及び窒素が挙げられる。
 得られた水素と二酸化炭素又は一酸化炭素との反応により、例えば炭素数2~4程度の低級オレフィンを合成することができる。また、得られた水素と窒素との反応により、アンモニアを合成することができる。
 このような他の原料は、例えば予め原料供給装置に充填しておき、必要に応じて前記反応器に導入すればよい。
(反応器)
 本実施形態において、反応器は、内部に触媒を備え、かつ、前記水分解装置から得られた水素と他の原料を内部で反応させて所望の化合物を合成することができる限り特に限定されず、公知のものを使用することができる。
 多くの反応が化学平衡を利用した反応になるため、反応器中に分離膜を設置し、得られた反応生成物を反応器から取り出すことにより、より高効率で所望の化合物を得ることができる。
 また、前記触媒は、反応器中で行われる合成反応に応じて公知の触媒から適宜選択し得る。
 本発明の第1又は第2実施形態に係る酸素生成用透明電極を利用することにより、いわゆる人工光合成による水の酸素と水素への分解を容易になし得る。また、水分解により生じた水素を用いて、効率的に各種化合物を得ることができる。
 以下に、実施例により本発明を更に詳細に説明するが、本発明の範囲が実施例のみに限定されないことはいうまでもない。
<実施例1>
(作製例1:絶縁性の透明基板上におけるTa光触媒の作製)
 RFマグネトロンスパッタを用いて、厚さ0.4mmで波長200mm以上の光で93%程度の透過率であるSiO透明基板上へTa前駆体であるTaOを積層させ、集積体A(Ta前駆体薄膜/SiO)を得た。TaOの積層には、Eiko社製ES-250Lを使用し、膜厚500nmでTa前駆体薄膜を積層した。
 集積体Aを電気管状炉にて、アンモニアガスと窒素ガスからなる混合ガスを用いて、10:0、5:5、3:7、2:8の混合率での気流下にて、750-950℃で1時間窒化処理することで集積体B(Ta光触媒膜:膜厚500nm/SiO)を得た。
 UV-vis(紫外・可視)透過スペクトル測定、UV-vis反射スペクトル測定およびXRD(X-ray diffraction)測定により評価を行い、得られた光触媒膜が窒化タンタル(Ta)であることを確認した。なお、UV-vis透過スペクトル測定およびUV-vis反射スペクトル測定には、日本分光社製紫外・可視分光光度計V-670を、XRD測定にはRigaku社製SmartLab X-ray diffractmeterをそれぞれ用い、以下の実施例においても同様の装置を用いた。
(助触媒形成)
 トリス(2-エチルヘキサン酸)鉄(III)と2-エチルヘキサン酸ニッケル(II)をヘキサンに溶解させ、この溶液を上記作製例1にて製造した集積体Bの光触媒薄膜の表面に滴下した。紫外線を照射して光触媒層表面にNi-Fe酸化物系助触媒を担持させた。そののち、ヘキサン溶媒で光触媒層表面を洗浄した。
(透明光電極の作製)
 上記作製例1にて製造した集積体Bの表面に、インジウムなどの低融点金属を用いてスポット半田付けし、光触媒薄膜と樹脂被覆付の金属線を集積体Bに接続した。なお、インジウムなどの金属類は、光触媒薄膜から外部回路への電気輸送の役割も担う。その後、光触媒層以外の金属露出部分をエポキシ樹脂で被覆した。
 こうして得られた透明光電極の600nm~900nmでの透過率を図1に示す。
(透明光電極の性能評価)
 上記作製例1にて製造した集積体Bの表面に助触媒を担持した透明光電極を用い、リン酸カリウムなどの支持電解質を溶解させた電解液中で、水分解反応の活性を光電気化学測定によって評価した。アルゴンガスを電解液へ通気することで、溶存酸素を取り除いた。
 Hokuto Denko社製(HSV 110)のポテンシオスタットを三極式の電気化学セルに接続し、透明光電極の電極電位を制御しながら、San-Ei Electronic社製のソーラーシミュレータ(XES-40S2)を用いて疑似太陽光を照射した。
(結果)
 アンモニアガス100%の条件で窒化して得た集積体Bの透明光電極は、1.23V vs.可逆水素電極(VRHE)で0.3mA/cmの光電流を生成した。こうして得られた透明光電極のボルタモグラムを図3に示す。
 一方、アンモニアガスと窒素ガスからなる混合ガス(NH:N=3:7)で窒化して得た集積体Bの透明光電極は、4.0mA/cmの一桁以上も大きい光電流を生成した。こうして得られた透明光電極のボルタモグラムを図4に示す。混合ガスを用いた新規窒化プロセスの開発によって、光電流値の大幅な増強に成功した。アンモニアガスと窒素ガスの混合ガスの比率と1.23VRHEでの光電流密度の関係を図5に示す。アンモニアガスの比率が小さくなるにつれて、光電流密度が顕著に大きくなることが明らかになった。
 なお、ボルタモグラムは、電位掃引速度(v)=10mVs-1、電位掃引範囲(1.5VRHE→0VRHE)で測定した。
<実施例2>
(作製例2:光触媒層と透明基板の間に窒化物半導体層を導入した透明光触媒電極の作製)
 GaN(窒化ガリウム:層厚4000nm)を積層させたサファイア透明基板を用いて、GaN表面に実施例1と同様の手法を用いTa前駆体であるTaOを積層させ、集積体C(Ta前駆体薄膜:膜厚500nm/GaN/サファイア)を得た。集積体Cを電気管状炉にて、アンモニアガスと窒素ガスからなる混合ガスを、10:0、8:2、7:3、3:7の様々な混合率での気流下にて、750℃~950℃で1時間窒化処理することで集積体D(Ta光触媒膜/GaN/サファイア)を得た。実施例1と同様の手法を用い評価を行い、得られた光触媒膜が窒化タンタル(Ta)であることを確認した。
(助触媒形成)
 実施例1と同様の手法を用い、助触媒を集積体Dの表面に適量担持した。
(透明光電極の作製)
 上記作製例2にて製造し、助触媒を担持した集積体DのGaNの部位に、実施例1と同様の手法を用い樹脂被覆付の金属線をインジウムでハンダ付けした。その際、金属線をはんだ付けするインジウム等の低融点金属がGaNのみまたは、TaおよびGaN両方に接触していても構わない。その後、光触媒層以外の金属露出部分(インジウム)をエポキシ樹脂で被覆した。
 こうして得られた透明光電極の600nm~900nmでの透過率を図2に示す。
(透明光電極の性能評価)
 実施例1と同様の手法を用い、助触媒を担持した集積体Dからなる透明光電極の水分解活性を評価した。
(結果)
 アンモニアガス100%の条件で窒化して得た集積体Dの透明光電極は、1.23VRHEで2.9mA/cmの光電流を生成した。こうして得られた透明光電極のボルタモグラムを図6に示す。
 アンモニアガスと窒素ガスからなる混合ガス(比率は、NH:N=3:7)で窒化して得た集積体Dの透明光電極は、5.7mA/cmの高い光電流を生成した。こうして得られた透明光電極のボルタモグラムを図7に示す。窒化物半導体層の導入によって、励起子である電子と空孔の再結合過程を効果的に抑制することにより、透明光触媒電極の性能を著しく向上させた。アンモニアガスと窒素ガスの混合ガスの比率と1.23VRHEでの光電流密度の関係を図8に示す。混合ガス中のアンモニアガスの比率が小さくなるにつれて、光電流密度は大幅に増加する傾向が見られた。ただし、アンモニアガスの比率が2割よりも小さくなると、逆に光電流密度の低下が観測された。混合ガスを用いた新規窒化プロセスと励起子弁別層を有する新規構造の開発によって、水分解活性を大幅に増加させることに成功した。

Claims (21)

  1.  透明基板上にTa窒化物層を有する、酸素生成用透明電極の製造方法であって、
     透明基板上にTa窒化物前駆体層を形成するステップ、及び
     アンモニア及びキャリアガスを含む混合ガスにより前記Ta窒化物前駆体層を窒化するステップ、を含む、製造方法。
  2.  前記Ta窒化物層がTa層である、請求項1に記載の製造方法。
  3.  前記透明基板がサファイア基板又はSiO基板である、請求項1又は2に記載の製造方法。
  4.  前記キャリアガスが窒素ガスである、請求項1~3の何れか1項に記載の製造方法。
  5.  透明基板上に、窒化物半導体層、及びTa窒化物層がこの順に積層された、酸素生成用透明電極。
  6.  前記Ta窒化物層がTa層である、請求項5に記載の酸素生成用透明電極。
  7.  前記窒化物半導体層がGaN層である、請求項5又は6に記載の酸素生成用透明電極。
  8.  前記透明基板がサファイア基板又はSiO基板である、請求項5~7の何れか1項に記載の酸素生成用透明電極。
  9.  波長600nm~900nmの光透過率が80%以上である、請求項5~8の何れか1項に記載の酸素生成用透明電極。
  10.  請求項1~4の何れか1項に記載の製造方法により製造された酸素生成用透明電極と、水素生成用電極を積層するステップ、を含む、タンデム型水分解反応電極の製造方法。
  11.  請求項5~9の何れか1項に記載の酸素生成用透明電極と水素生成用電極とを積層させた、タンデム型水分解反応電極。
  12.  水分解反応において酸素発生側電極として使用されるTaを含む酸素生成用透明電極であって、600nm~900nmの光の透過率が80%以上、かつAM1.5G照射下、1.23VRHEでの光電流密度が3mA/cm以上である、酸素生成用透明電極。
  13.  請求項12に記載の酸素生成用透明電極と、波長600nmよりも長波長側に吸収ピークを有する水素生成用電極を組み合わせた、タンデム型水分解反応電極。
  14.  透明基板上に、窒化物半導体層、及びTi窒化物層がこの順に積層された、酸素生成用透明電極。
  15.  前記窒化物半導体層がGaN層である、請求項14に記載の酸素生成用透明電極。
  16.  前記透明基板がサファイア基板又はSiO基板である、請求項14又は15に記載の酸素生成用透明電極。
  17.  請求項5~9、請求項12及び請求項14~16の何れか1項に記載の酸素生成用透明電極を備える、酸素発生装置。
  18.  請求項5~9、請求項12及び請求項14~16の何れか1項に記載の酸素生成用透明電極並びに/又は請求項11若しくは13に記載されたタンデム型水分解反応電極を備える、水分解装置。
  19.  化合物の合成方法であって、
     請求項18に記載の水分解装置により水を分解して得られた水素及び/又は酸素を反応させるステップ、を含む、合成方法。
  20.  前記化合物が、低級オレフィン、アンモニア又はアルコールである、請求項19に記載の合成方法。
  21.  請求項18に記載の水分解装置、及び触媒を備えた反応器、を有する合成装置であって、
     前記水分解装置から得られる水素と、他の原料と、を前記反応器に導入し、反応器内で反応させる、合成装置。
PCT/JP2018/029981 2017-08-09 2018-08-09 酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置 WO2019031592A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880051385.0A CN111051574B (zh) 2017-08-09 2018-08-09 制氧用透明电极、该透明电极的制造方法、具备该透明电极的串联型水分解反应电极,以及使用该透明电极的氧发生装置
JP2019535721A JP7222893B2 (ja) 2017-08-09 2018-08-09 酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置
US16/784,678 US11248304B2 (en) 2017-08-09 2020-02-07 Transparent electrode for oxygen production, method for producing same, tandem water decomposition reaction electrode provided with same, and oxygen production device using same
US17/544,166 US20220090278A1 (en) 2017-08-09 2021-12-07 Transparent electrode for oxygen production, method for producing same, tandem water decomposition reaction electrode provided with same, and oxygen production device using same
JP2022183098A JP7367167B2 (ja) 2017-08-09 2022-11-16 酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-154524 2017-08-09
JP2017154524 2017-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/784,678 Continuation US11248304B2 (en) 2017-08-09 2020-02-07 Transparent electrode for oxygen production, method for producing same, tandem water decomposition reaction electrode provided with same, and oxygen production device using same

Publications (1)

Publication Number Publication Date
WO2019031592A1 true WO2019031592A1 (ja) 2019-02-14

Family

ID=65272005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029981 WO2019031592A1 (ja) 2017-08-09 2018-08-09 酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置

Country Status (4)

Country Link
US (2) US11248304B2 (ja)
JP (2) JP7222893B2 (ja)
CN (1) CN111051574B (ja)
WO (1) WO2019031592A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021154260A (ja) * 2020-03-30 2021-10-07 国立研究開発法人産業技術総合研究所 アノード電極用触媒及び光アノード電極用助触媒
JP2023117608A (ja) * 2022-02-14 2023-08-24 本田技研工業株式会社 水電解装置および水電解方法
JP7573417B2 (ja) 2020-01-14 2024-10-25 太平洋セメント株式会社 窒化タンタルの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190816A (ja) * 2001-12-25 2003-07-08 Sumitomo Metal Mining Co Ltd 可視光域でも触媒活性を有する光触媒
JP2011056416A (ja) * 2009-09-10 2011-03-24 Toyota Central R&D Labs Inc 光触媒体および光触媒体の製造方法
WO2012157193A1 (ja) * 2011-05-16 2012-11-22 パナソニック株式会社 光電極およびその製造方法、光電気化学セルおよびそれを用いたエネルギーシステム、並びに水素生成方法
WO2016024452A1 (ja) * 2014-08-11 2016-02-18 富士フイルム株式会社 水素発生電極、および人工光合成モジュール
WO2016143704A1 (ja) * 2015-03-10 2016-09-15 富士フイルム株式会社 水分解用光触媒電極の製造方法
JP2017000971A (ja) * 2015-06-12 2017-01-05 富士フイルム株式会社 光触媒、薄膜状光触媒の製造方法および可視光応答性光触媒デバイス
WO2018110543A1 (ja) * 2016-12-12 2018-06-21 富士フイルム株式会社 酸素発生用光触媒電極、酸素発生用光触媒電極の製造方法およびモジュール

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866755B2 (en) * 2001-08-01 2005-03-15 Battelle Memorial Institute Photolytic artificial lung
JP2008155111A (ja) 2006-12-22 2008-07-10 Univ Of Tokyo 耐酸性電極触媒
JP2010189227A (ja) 2009-02-19 2010-09-02 Toyota Central R&D Labs Inc 光応答性を有する半導体材料、光電極材料及びその製造方法
JP4592829B1 (ja) * 2009-04-15 2010-12-08 昭和電工株式会社 透明導電性材料の製造方法
JP5765678B2 (ja) * 2010-02-25 2015-08-19 三菱化学株式会社 光水分解反応用光触媒および光水分解反応用光触媒の製造方法
EP2637991B1 (en) * 2010-11-10 2019-08-07 Silicon Fire AG Method and apparatus for the carbon dioxide based methanol synthesis
WO2012145622A1 (en) 2011-04-22 2012-10-26 Sun Catalytix Corporation Nanostructures, systems, and methods for photocatalysis
JP6082728B2 (ja) 2012-03-08 2017-02-15 国立大学法人 東京大学 光水分解反応用電極およびその製造方法
CN106653936A (zh) * 2015-11-04 2017-05-10 中国科学院大连化学物理研究所 一种Ta3N5光电极及其制备方法
CN107142494A (zh) * 2016-03-01 2017-09-08 松下知识产权经营株式会社 光电极及其制造方法和光电化学电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190816A (ja) * 2001-12-25 2003-07-08 Sumitomo Metal Mining Co Ltd 可視光域でも触媒活性を有する光触媒
JP2011056416A (ja) * 2009-09-10 2011-03-24 Toyota Central R&D Labs Inc 光触媒体および光触媒体の製造方法
WO2012157193A1 (ja) * 2011-05-16 2012-11-22 パナソニック株式会社 光電極およびその製造方法、光電気化学セルおよびそれを用いたエネルギーシステム、並びに水素生成方法
WO2016024452A1 (ja) * 2014-08-11 2016-02-18 富士フイルム株式会社 水素発生電極、および人工光合成モジュール
WO2016143704A1 (ja) * 2015-03-10 2016-09-15 富士フイルム株式会社 水分解用光触媒電極の製造方法
JP2017000971A (ja) * 2015-06-12 2017-01-05 富士フイルム株式会社 光触媒、薄膜状光触媒の製造方法および可視光応答性光触媒デバイス
WO2018110543A1 (ja) * 2016-12-12 2018-06-21 富士フイルム株式会社 酸素発生用光触媒電極、酸素発生用光触媒電極の製造方法およびモジュール

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7573417B2 (ja) 2020-01-14 2024-10-25 太平洋セメント株式会社 窒化タンタルの製造方法
JP2021154260A (ja) * 2020-03-30 2021-10-07 国立研究開発法人産業技術総合研究所 アノード電極用触媒及び光アノード電極用助触媒
JP7321121B2 (ja) 2020-03-30 2023-08-04 国立研究開発法人産業技術総合研究所 アノード電極用触媒及び光アノード電極用助触媒
JP2023117608A (ja) * 2022-02-14 2023-08-24 本田技研工業株式会社 水電解装置および水電解方法
JP7466582B2 (ja) 2022-02-14 2024-04-12 本田技研工業株式会社 水電解装置および水電解方法

Also Published As

Publication number Publication date
US20200173044A1 (en) 2020-06-04
JP2023015303A (ja) 2023-01-31
US20220090278A1 (en) 2022-03-24
US11248304B2 (en) 2022-02-15
JP7222893B2 (ja) 2023-02-15
CN111051574B (zh) 2022-03-18
CN111051574A (zh) 2020-04-21
JPWO2019031592A1 (ja) 2020-09-17
JP7367167B2 (ja) 2023-10-23

Similar Documents

Publication Publication Date Title
Tee et al. Recent progress in energy‐driven water splitting
Shyamal et al. Halide perovskite nanocrystal photocatalysts for CO2 reduction: successes and challenges
Zhang et al. Photocatalytic production of hydrogen peroxide over Z-scheme Mn3O4/Co9S8 with pn heterostructure
Li et al. Solar water splitting and nitrogen fixation with layered bismuth oxyhalides
Chu et al. Solar water oxidation by an InGaN nanowire photoanode with a bandgap of 1.7 eV
JP7367167B2 (ja) 酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置
van de Krol et al. Solar hydrogen production with nanostructured metal oxides
JP6883799B2 (ja) 金属化合物の製造方法、光触媒の製造方法、および光触媒複合体の製造方法
Hassan et al. Photoelectrochemical water splitting using post-transition metal oxides for hydrogen production: a review
Kim et al. Photoconversion of carbon dioxide into fuels using semiconductors
WO2011162372A1 (ja) 光触媒材料および光触媒装置
JP7026773B2 (ja) 水分解用光触媒電極および水分解装置
You et al. Tailoring the optoelectronic properties of eco‐friendly CuGaS2/ZnSe core/shell quantum dots for boosted photoelectrochemical solar hydrogen production
Deng et al. Efficient solar fuel production with a high-pressure CO2-captured liquid feed
JP2019171284A (ja) 光触媒および水素生成用光触媒電極
Xu et al. Recent advances in heterogeneous catalysis of solar-driven carbon dioxide conversion
Chu et al. Artificial photosynthesis on III-nitride nanowire arrays
Abdelmoneim et al. Enhanced solar-driven photoelectrochemical water splitting using nanoflower Au/CuO/GaN hybrid photoanodes
Kumari Oxides free materials for photocatalytic water splitting
Che Mohamad et al. Photocatalytic and Photoelectrochemical Overall Water Splitting
Hung et al. Demonstration of enhanced carrier transport, charge separation, and long-term stability for photocatalytic water splitting by a rapid hot pressing process
Kargul et al. Artificial Photosynthesis: Current Advances and Challenges
Raghu et al. Ceramic Materials for Photocatalytic/Photoelectrochemical Fuel Generation
JP2011183358A (ja) 光触媒材料及びこれを用いた光水素生成デバイス並びに水素の製造方法
Zhou et al. Gallium Nitride‐Based Artificial Photosynthesis Integrated Devices for Solar Hydrogen Generation and Carbon Dioxide Reduction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844362

Country of ref document: EP

Kind code of ref document: A1