WO2011162372A1 - 光触媒材料および光触媒装置 - Google Patents

光触媒材料および光触媒装置 Download PDF

Info

Publication number
WO2011162372A1
WO2011162372A1 PCT/JP2011/064534 JP2011064534W WO2011162372A1 WO 2011162372 A1 WO2011162372 A1 WO 2011162372A1 JP 2011064534 W JP2011064534 W JP 2011064534W WO 2011162372 A1 WO2011162372 A1 WO 2011162372A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
layer
photocatalyst
gan
semiconductor
Prior art date
Application number
PCT/JP2011/064534
Other languages
English (en)
French (fr)
Inventor
早紀 園田
修 川崎
純一 加藤
睦生 竹永
Original Assignee
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学 filed Critical 国立大学法人京都工芸繊維大学
Priority to US13/806,950 priority Critical patent/US20130105306A1/en
Priority to JP2012521548A priority patent/JP5885662B2/ja
Publication of WO2011162372A1 publication Critical patent/WO2011162372A1/ja
Priority to US14/824,658 priority patent/US20160093448A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/205Light-sensitive devices comprising a semiconductor electrode comprising AIII-BV compounds with or without impurities, e.g. doping materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photocatalyst material and a photocatalyst device, and more particularly to a photocatalyst material having a multiband structure capable of photocatalytic operation in the infrared light, visible light, and ultraviolet light regions, and a photocatalyst device using the same.
  • the photocatalyst makes use of the fact that holes and electrons excited in the catalyst by light have very strong oxidizing power and reducing power, respectively, making it harmless by decomposition of harmful substances, hydrogen and oxygen by decomposition of water. Generation can take place.
  • a semiconductor photocatalyst has an energy band structure in which a conduction band and a valence band are separated by a forbidden band. When the photocatalyst is irradiated with light having energy greater than the band gap, electrons in the valence band are excited to the conduction band, and holes are generated in the valence band. Electrons excited in the conduction band have a stronger reducing power than those in the valence band, and holes have a stronger oxidizing power.
  • the energy level at the bottom of the conduction band is more negative than the redox potential of H + / H 2
  • the energy level at the top of the valence band is the redox potential of O 2 / H 2 O. Need to be more positive. In other words, if there is no overvoltage of the reaction, the band gap needs to be 1.23 eV or more, and in order to function as a photocatalytic device, it is generally desirable to be 1.8 eV or more.
  • a typical semiconductor photocatalyst that has been studied so far is titanium oxide TiO 2 .
  • the opportunity for direct hydrogen production from water by a semiconductor photocatalyst is the research of Hyundai and Fujishima in the 1970s (Non-patent Document 1). It was shown that by irradiating light to the TiO 2 electrode of a photochemical cell composed of a TiO 2 photoelectrode and a Pt electrode, water can be directly photolyzed to generate hydrogen. Sunlight reaching the surface of the earth has a maximum intensity of radiation around 500 nm of visible light.
  • TiO 2 has a band gap of 3.2 eV which is considerably wider than 1.8 eV, the photocatalytic function is high, but it is active only in the ultraviolet region having a wavelength of 390 nm or less, and the utilization efficiency of sunlight is poor. There is a problem that hydrogen generation efficiency is low.
  • titanium oxide TiO 2 For titanium oxide TiO 2 , a method has been proposed in which the light absorption wavelength is shifted to the longer wavelength side with active oxynitride.
  • a metal oxide (tungsten oxide) WO 3 having an acid point other than titanium oxide on the surface of titanium oxide TiO 2 has been proposed to achieve high activity by irradiation with visible light.
  • the light absorption coefficient is still small on the longer wavelength side (Patent Document 1).
  • Patent Document 1 there is Ti—O—N, which shows higher activity at 400 to 480 nm than TiO 2 , but the activity is extremely low at 500 nm or more, which is the central wavelength of visible light.
  • the Ti—Cr—O—N film containing Cr and N forms a new level in the band gap, and is 400 to 500 nm more than that of TiO 2 , Ti—O—N, and Ti—O—S.
  • the light absorption coefficient is large (Patent Document 3).
  • none of these conventional examples have large light absorption in the entire visible light region of 360 to 830 nm or longer, and the problem of low utilization efficiency of sunlight has not been solved.
  • GaN and GaN photocatalysts mixed with InN have also been studied with photocatalytic activity.
  • GaN photocatalysts exhibit photocatalytic activity only in the ultraviolet region, while GaN photocatalysts mixed with InN have more visible light.
  • it exhibits photocatalytic activity, it only increases light absorption only in the vicinity of the wavelength corresponding to the band gap, and in order to increase photocatalytic activity in a wider wavelength region, a complex structure called a tandem structure that is a multilayer structure is adopted. Must be present (Patent Document 4).
  • Patent Document 5 a gas using a compound composed of one or more Group 3 elements selected from the group consisting of indium (In), gallium (Ga), and aluminum (Al) and nitrogen (N).
  • a generator has been proposed (Patent Document 5).
  • the nitride semiconductor of Patent Document 5 is a compound represented by the general formula: Al X In Y Ga 1-X -YN (where 0 ⁇ X ⁇ 1, 0 ⁇ Y ⁇ 1, and X + Y ⁇ 1).
  • the band gap of a physical semiconductor can be variably controlled from 1.9 eV to 6.2 eV depending on the composition, and light having a wavelength from ultraviolet light to a wavelength of 650 nm can be absorbed depending on the band gap.
  • light absorption only in the vicinity of the wavelength corresponding to the band gap is increased, and sunlight in a wider wavelength range cannot be effectively used.
  • the active wavelength is 400 nm or less, and the sun There is no large absorption in the entire range of 360 to 830 nm, which is the visible light region exceeding 40% of the light energy, and the problem of low energy use efficiency of sunlight has not been solved.
  • the light absorption coefficient in the wavelength band of 300 to 1500 nm can be realized only as small as a minimum value of about 600 to 700 cm ⁇ 1 in the case of GaN and about 200 to 300 cm ⁇ 1 in the case of AlN (for example, non Patent Document 2).
  • the present invention has been made in view of the above circumstances, and (1) absorbs light in almost all regions of infrared light, visible light, and ultraviolet light of sunlight, and (2) energy level at the bottom of the conduction band. Is more negative than the redox potential of H + / H 2 , and the upper end of the valence band is more positive than the redox potential of O 2 / H 2 O. (3) The material is deteriorated even when irradiated with light in water.
  • An object of the present invention is to provide a photocatalyst material that satisfies the conditions of no or very little, and a photocatalyst device using the material.
  • the present invention has been conducted as a result of various studies.
  • the nitride-based compound semiconductor having an impurity band has an absorption efficiency in almost all regions of sunlight ultraviolet light, visible light, and infrared light. Therefore, the efficiency of charge carrier excitation by sunlight irradiation is high, the deterioration during use is extremely small, the energy level at the bottom of the conduction band is more negative than the redox potential of H + / H 2 , and the valence electrons
  • the present invention has been completed by finding that the upper end of the band is more positive than the redox potential of O 2 / H 2 O.
  • a part of Al and / or Ga of the compound represented by the general formula Al 1-y Ga y N (0 ⁇ y ⁇ 1) is substituted with at least one 3d transition metal.
  • the 3d transition metal is preferably at least one selected from the group consisting of Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu.
  • the photocatalytic material of the present invention is represented by the general formula (Al 1-y Ga y ) 1-x T x N, where y is the Ga substitution amount for Al and x is the substitution amount for the 3d transition metal T.
  • Y is preferably 0 ⁇ y ⁇ 1, and x is preferably in the range of 0.02 ⁇ x ⁇ 0.3.
  • the nitride compound semiconductor layer is doped with an acceptor dopant and / or a donor dopant.
  • a second semiconductor layer made of an n-GaN layer or a p-GaN layer is laminated on the first semiconductor layer made of the nitride compound semiconductor.
  • the first semiconductor layer and the second semiconductor layer form a pn junction.
  • the first semiconductor layer made of the nitride compound semiconductor is preferably made of two layers forming a pn junction.
  • the photocatalytic device of the present invention is a nitridation in which a part of Al and / or Ga of a compound represented by the general formula Al 1-y Ga y N (0 ⁇ y ⁇ 1) is substituted with at least one 3d transition metal.
  • a compound semiconductor having one or more impurity bands between a valence band and a conduction band, and having a light absorption coefficient of 1000 cm ⁇ 1 or more in all wavelength regions of a wavelength region of 1500 nm or less and 300 nm or more.
  • a photocatalytic material containing a nitride compound semiconductor is used.
  • the photocatalyst device of the present invention it is preferable that an electrically connected cathode and anode are provided, and the photocatalyst material is used for the cathode or the anode.
  • a second semiconductor layer made of an n-GaN layer or a p-GaN layer is laminated on the first semiconductor layer made of the nitride compound semiconductor.
  • the first semiconductor layer and the second semiconductor layer form a pn junction.
  • the first semiconductor layer made of the nitride compound semiconductor is made of two layers forming a pn junction.
  • the photocatalyst material of the present invention has an intermediate band composed of an impurity band between the band gaps, not only ultraviolet light but also a visible light region that cannot be absorbed by the matrix before substituting the 3d transition metal, Can absorb light in the infrared region with high efficiency. That is, the light absorption coefficient in the entire wavelength region of 1500 nm or less and 300 nm or more is 1000 cm ⁇ 1 or more. Conventionally, in this wavelength region, the minimum value of the light absorption coefficient is about 600 to 700 cm ⁇ 1 for GaN and 200 to 300 cm ⁇ 1 for AlN.
  • the photocatalyst material of the present invention has a large light absorption coefficient for light in a wide wavelength band, even if the wavelength distribution of sunlight on the ground changes due to weather changes such as sunny weather, cloudy weather, and rain, the change does not occur. A small photocatalytic effect can be realized.
  • the photocatalytic material of the present invention is manufactured at a high temperature of 300 ° C. to 1000 ° C., and thus has excellent heat stability. Further, since it is stable against water, it is possible to realize excellent stability when used in a photocatalytic device.
  • the photocatalytic material of the present invention is environmentally superior because it does not use toxic elements such as As and Cd, unlike GaAs and CdTe compound semiconductors.
  • a rare metal such as In is not used, it can be manufactured at a lower cost, so that a low-cost photocatalytic device can be provided.
  • the photocatalytic material of the present invention can be produced not only by the MBE method but also by a film forming method such as a sputtering method, and can easily produce a large-area element in large quantities, thereby providing a lower cost photocatalytic device.
  • the material design can be easily adapted to the usage environment such as the sunshine condition by selecting the base material, selecting the type of 3d transition metal, and the amount of substitution.
  • the light irradiated to the photocatalyst material of the present invention is not limited to sunlight, and artificial light such as a fluorescent lamp can also be used.
  • the use of the photocatalyst material in the present invention is not limited to a photocatalyst device for generating hydrogen that obtains hydrogen from water (aqueous solution), and it is harmful to decompose and detoxify toxic substances by redox reaction of electrons and holes. It can also be used for a photocatalytic device for substance decomposition.
  • FIG. 1 It is a schematic diagram which shows another example of the structure of the photocatalyst apparatus using the photocatalyst material of FIG. It is a schematic diagram which shows the band structure of the photocatalyst material used for the photocatalyst apparatus which concerns on Embodiment 4, 5 of this invention. It is a schematic diagram which shows an example of the structure of the photocatalyst apparatus using the photocatalyst material of FIG. It is a schematic diagram which shows another example of the structure of the photocatalyst apparatus using the photocatalyst material of FIG.
  • it is a 3d transition metal is V, It is a light absorption spectrum of GaVN, AlGaVN, and AlVN substituted 5% with V.
  • 3d transition metal is Cr, It is the light absorption spectrum of GaCrN, AlGaCrN, and AlCrN substituted by 9% with Cr.
  • 3d transition metal is Co and is a light absorption spectrum of GaCoN and AlCoN.
  • 3d transition metal is Mn, It is a light absorption spectrum of AlMnN (Mn: 11%) and AlGaMnN (Mn: 20%).
  • 3d transition metal is Ni and is a light absorption spectrum of AlNiN and AlGaNiN. It is a schematic diagram which shows the band structure of the photocatalyst material used for the photocatalyst device which concerns on Embodiment 7 of this invention. It is a schematic diagram which shows an example of the structure of the photocatalyst apparatus using the photocatalyst material of FIG.
  • a part of Al and / or Ga of the compound semiconductor represented by the general formula Al 1-y Ga y N (0 ⁇ y ⁇ 1) is at least one 3d transition metal (in T It is a material containing a nitride compound semiconductor substituted by
  • Compound semiconductors represented by the general formula Al 1-y Ga y N (0 ⁇ y ⁇ 1) include GaN-based, GaAlN-based, and AlN-based compound semiconductors.
  • GaN-based compound semiconductors GaN has a band gap of 3.4 eV (corresponding to the light wavelength of 365 nm) and absorbs ultraviolet light but does not absorb light having a wavelength longer than visible light. There is no transition of electrons from the valence band to the conduction band even when light having a wavelength longer than that of light is irradiated.
  • GaTN a compound semiconductor represented by the general formula Ga 1-x T x N (0.02 ⁇ x ⁇ 0.3) in which a part of Ga is substituted with a 3d transition metal T.
  • the 3d transition metal is not limited to one type, and a plurality of 3d transition metals can be used. In this case, the total substitution amount by the plurality of 3d transition metals is x.
  • replacing Ga and / or Al with a 3d transition metal means that Ga or Al can be replaced with a 3d transition metal within a range in which the substituted 3d transition metal can form an impurity band.
  • AlN-based compound semiconductors Among AlN-based compound semiconductors, AlN has a band gap of 6.2 eV (200 nm) and absorbs ultraviolet light, but does not absorb light having a wavelength longer than that of visible light. There is no transition of electrons from the valence band to the conduction band even when irradiated with light having.
  • a compound semiconductor hereinafter abbreviated as AlTN
  • AlTN a compound semiconductor represented by the general formula Al 1-x T x N (0.02 ⁇ x ⁇ 0.3) in which a part of Al is substituted with a 3d transition metal T.
  • the 3d transition metal is not limited to one type, and a plurality of 3d transition metals can be used, and the total substitution by the plurality of 3d transition metals is x.
  • GaAlN-based compound semiconductors GaAlN-based compound semiconductors, GaAlN has a band gap of 3.4 to 6.2 eV (200 to 365 nm) and absorbs ultraviolet light but does not absorb light having a wavelength longer than visible light. Even when light having a wavelength longer than visible light is irradiated, there is no transition of electrons from the valence band to the conduction band.
  • a compound semiconductor represented by the general formula (GaAl) 1-x T x N (0.02 ⁇ x ⁇ 0.3) in which a part of Ga and Al is substituted with a 3d transition metal T (hereinafter, (Abbreviated as GaAlTN) has an impurity band due to T, which is a substituted 3d transition metal, in the band gap while maintaining the band structure of GaAlN.
  • T which is a 3d transition metal
  • T which is a 3d transition metal
  • T which is a 3d transition metal
  • T which is a 3d transition metal
  • the total substitution by the plurality of 3d transition metals is x.
  • the 3d transition metal one or more metals selected from the group consisting of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu are used. More preferred are V, Cr, Mn, and Co.
  • a band mainly composed of a 3d orbital of a transition metal can form an impurity band in the band gap of GaN without overlapping with a valence band or a conduction band. Further, even if there are two or more 3d transition metals, an impurity band corresponding to the metal species can be formed, so that two or more impurity bands can be formed.
  • Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu are 3d4s 2 , 3d 2 4s 2 , 3d 3 4s 2 , 3d 5 4s, 3d 5 4s 2 , 3d 6 4s 2 , respectively. It has an electron configuration of 3d 7 4s 2 , 3d 8 4s 2 , 3d 10 4s.
  • the 3d transition metal has 2 or less outermost 4s electrons that form a crystal bond.
  • the trivalent Ga and / or Al and the 3d transition metal are substituted, one electron is insufficient and one 3d electron is used. As a result, an impurity band that can accommodate five d electrons becomes unoccupied.
  • the impurity band When the impurity band is in an unoccupied state, in addition to direct transition from the valence band to the conduction band of GaN, GaAlN, or AlN, two or more steps of light absorption through the impurity band are possible, and high conversion efficiency can be expected.
  • V, Cr, Mn, and Co are particularly preferable because Mn has a good balance between the unoccupied state of the impurity band and the ground state of the electron as described above, and thus the probability of carrier transition due to light irradiation is high. This is preferable.
  • a GaN-based compound semiconductor containing Mn can be represented by the general formula Ga 1-x Mn x N, and 0.02 ⁇ x ⁇ 0.3.
  • the range of x is more preferably 0.05 ⁇ x ⁇ 0.25, and further preferably 0.05 ⁇ x ⁇ 0.20. If x is smaller than 0.02, a sufficient impurity band capable of efficiently performing carrier transition by light irradiation is not generated, and if larger than 0.3, the impurity band overlaps with the valence band and conduction band, No impurity band is formed between them.
  • a sufficient impurity band that efficiently performs carrier transition by light irradiation is not formed means that the light absorption coefficient in the wavelength band of 300 to 1500 nm is smaller than 1000 cm ⁇ 1 . If x is larger than 0.3, an impurity band having a sufficient density is not formed, so that the light absorption coefficient in the wavelength region 300 to 1500 nm is similarly smaller than 1000 cm ⁇ 1 .
  • Another photocatalytic material of the present invention is a GaN-based, GaAlN-based, or AlN-based compound semiconductor in which Ga and / or Al is substituted with at least one 3d transition metal and an acceptor dopant and / or donor dopant is doped. And having a light absorption coefficient of 1000 cm ⁇ 1 or more at least in the wavelength region of 300 to 1500 nm.
  • the 3d transition metal is a metal having an atomic number of 21 to 29, and is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. More preferred are V, Cr, Co, and Mn. More preferably, it is Mn.
  • the acceptor dopant usually receives electrons from the base material (GaN or GaAlN or AlN) and generates holes in the valence band, but in the present invention, by depriving electrons from the impurity band derived from the 3d orbital, An unoccupied state can be formed in the impurity band. Thereby, photoelectric conversion efficiency can be improved.
  • the acceptor dopant include Mg, Ca, C and the like, and Mg is particularly preferable.
  • the GaN-based, GaAlN-based, or AlN-based compound semiconductor doped with Mg is not particularly limited, but a GaN-based, GaAlN-based, or AlN-based compound semiconductor containing Mn is preferable.
  • a material obtained by doping Mg into a GaN-based compound semiconductor containing Mn has the general formula Ga 1-xz Mn x Mg z N (0.02 ⁇ x ⁇ 0.3, 0 ⁇ z ⁇ 0.125) or (GaAl) 1-xz Mn x Mg z N (0.02 ⁇ x ⁇ 0.3, 0 ⁇ z ⁇ 0.125) or Al 1-xz Mn x Mg z N (0.02 ⁇ x ⁇ 0.3, 0 ⁇ z ⁇ 0.125).
  • the range of x is more preferably 0.05 ⁇ x ⁇ 0.3.
  • Mn hardly dissolves, which is not preferable.
  • the donor dopant usually gives electrons to the base material (GaN, GaAlN, or AlN) and generates electrons as carriers in the conduction band.
  • electrons emitted from the donor dopant are non-impurity bands. Enter the occupied part. Thereby, photoelectric conversion efficiency can be improved.
  • the donor dopant include H (hydrogen atom), Si, and O (oxygen atom), and H is particularly preferable.
  • a material obtained by doping H into a GaN-based compound semiconductor containing Mn has the general formula Ga 1-x Mn x N: H y (0.02 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ x) or (GaAl) 1-x Mn x N: H y (0.02 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ x) or Al 1-x Mn x N: H y (0.02 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ x).
  • the range of x is more preferably 0.05 ⁇ x ⁇ 0.3.
  • acceptor dopant and donor dopant may coexist in Ga 1-x Mn x N, (GaAl) 1-x T x N, or Al 1-x T x N.
  • Ga 1-x Mn x N the general formula is Ga 1-xz Mn x Mg z N: H y (0.02 ⁇ x ⁇ 0.3, 0 ⁇ z ⁇ 0.125, y>
  • the nitride compound semiconductor such as GaTN, GaAlTN, or AlTN of the present invention can absorb two or more steps of light through an impurity band, and from the valence band of the base material GaN, GaAlN, or AlN to the conduction band.
  • there is a peak or tail of light absorption In addition to the direct transition, there is a peak or tail of light absorption.
  • the peak or tail has a light absorption coefficient of 1000 cm ⁇ 1 or more in at least a wavelength region of 1500 nm or less and 300 nm or more. More preferably, the light absorption coefficient is 3000 cm ⁇ 1 or more.
  • the light absorption coefficient is 1000 cm ⁇ 1 or more, more preferably 3000 cm ⁇ 1 or more.
  • the reason why the GaN-based, GaAlN-based or AlN-based compound semiconductor of the present invention has a high light absorption coefficient means that the balance between the unoccupied state of the impurity band and the ground state of the electron is good, and the probability of the transition itself is high. This shows that higher conversion efficiency can be realized as a photoelectric conversion material.
  • the light absorption coefficient indicates the ratio of light that is absorbed while proceeding the unit length, and the unit is cm ⁇ 1 .
  • FIG. 1 is a schematic diagram showing the relationship between the band levels of main nitride semiconductors and oxidation-reduction potentials.
  • the vertical axis represents the oxidation-reduction potential (standard hydrogen electrode reference (NHE)), the hydrogen generation potential is 0 V (vs. NHE), and the oxygen generation potential is 1.23 V (vs. NHE).
  • NHE standard hydrogen electrode reference
  • the top of the valence band of the semiconductor used as the photocatalyst must be more positive than the oxygen generation potential.
  • the bottom of the conduction band of the semiconductor used as the photocatalyst generates hydrogen. Must be more negative than the potential. From FIG.
  • the nitride-based compound semiconductor (Al 1-y Ga y ) 1-x T x N which is the photocatalytic material of the present invention, has an intermediate band, and not only the ultraviolet region of sunlight but also the visible light region, infrared region It can absorb light in the light region, excite electrons to the conduction band and excite holes to the valence band. And even if it has an intermediate band, the positions of the original conduction band and valence band do not change, so both conditions are satisfied. That is, the photocatalyst material of the present invention has (1) having an intermediate band, so that the light absorption efficiency is high not only in the ultraviolet region of sunlight but also in the entire region including the visible light region and the infrared light region.
  • the energy level at the bottom of the body is more negative than the redox potential of H + / H 2 (the upper end of the valence band is more positive than the redox potential of O 2 / H 2 O for oxygen production. ) (3) Satisfies conditions such as no material deterioration or very little even under light irradiation in water. Also, as can be seen from the figure, if the Al content in AlGaMnN with y ⁇ 1 is increased, the band gap widens, so the reducing power and valence body due to the electrons activated in the conduction band by light absorption. The oxidizing power due to the activated holes is increased, and a more efficient photocatalytic device can be provided.
  • a nitride compound semiconductor such as GaTN, GaAlTN or AlTN of the present invention can be produced by a molecular beam epitaxy method (MBE method) using a nitrogen-containing atomic gas such as ammonia or hydrazine as a nitrogen source.
  • MBE method molecular beam epitaxy method
  • a nitrogen-containing atomic gas is introduced into a vacuum atmosphere, and the nitrogen-containing atomic gas is photodecomposed or thermally decomposed on or near the substrate, while Ga or Al and a metal molecular beam of 3d transition metal T are formed on the substrate.
  • the concentration of the 3d transition metal T can be changed by adjusting the temperature of the 3d transition metal element cell during film formation and adjusting the supply amount.
  • the nitride compound semiconductor such as GaTN, GaAlTN or AlTN of the present invention can also be produced by a high frequency sputtering method. Since the film formation by sputtering is easy to change the composition and is suitable for the film formation of a large area, the nitride compound semiconductor film such as GaN-based, GaAlN-based or AlN-based of the present invention is manufactured. Suitable for In the sputtering method, a substrate and a GaN, GaAlN, or AlN target are placed in a vacuum chamber, a mixed gas of nitrogen and argon is introduced to generate high-frequency plasma, and the sputtered GaN, GaAlN, or AlN is deposited on the substrate. To form a film.
  • a GaN-based compound semiconductor in which Ga and / or Al is substituted with a 3d transition metal is obtained by installing a 3d transition metal chip on a GaN, GaAlN, or AlN target.
  • the amount of substitution can be arbitrarily adjusted by a method such as changing the area, number, and arrangement of the 3d transition metal tips.
  • a nitride compound semiconductor such as a GaN-based, GaAlN-based, or AlN-based manufactured by a sputtering method has a microcrystalline or amorphous-like structure.
  • GaN-based film in which a part of Ga produced by sputtering was replaced with a 3d transition metal showed n-type conductivity when Hall effect measurement was performed by the van der Pau method.
  • the photocatalyst material is composed only of a nitride compound semiconductor such as GaTN, GaAlTN, or AlTN has been described.
  • a nitride compound semiconductor layer such as GaTN, GaAlTN, or AlTN has another semiconductor. The thing which has the structure which laminated
  • a nitride compound semiconductor such as GaTN, GaAlTN, or AlTN has high crystallinity when manufactured by the MBE method, and has a microcrystalline or amorphous state when manufactured by the sputtering method.
  • the MBE method When the MBE method is used, a pn junction having a lattice constant similar to that of GaN, GaAlN, or AlN and lattice matching can be formed. Therefore, the general formula Al 1-m Ga m N (0 ⁇ m ⁇ 1, m may be the same as y) in the first semiconductor layer made of a nitride compound semiconductor such as GaTN, GaAlTN, or AlTN.
  • a second semiconductor layer such as a GaN-based, GaAlN-based, or AlN-based semiconductor layer can be stacked. More preferably, the first semiconductor layer and the second semiconductor layer can form a pn junction.
  • a hetero pn junction made of p-GaTN / n-GaN or p-GaTN / n-GaN can be formed.
  • a p-GaN / pn-GaTN hetero pn junction can be formed on a p-GaN substrate by sputtering to form GaTN in which a part of Ga is substituted with a 3d transition metal.
  • the first semiconductor layer made of a nitride compound semiconductor such as GaTN, GaAlTN, or AlTN can be formed of two layers forming a pn junction.
  • p-GaTN can be obtained by injecting an acceptor dopant
  • n-GaTN can be obtained by injecting a donor dopant, so that n-GaTN / p-GaTN can be manufactured.
  • the first semiconductor layer, the intermediate layer, and the second semiconductor layer are stacked, the intermediate layer is formed of a nitride-based compound semiconductor such as GaTN, GaAlTN, or AlTN, and the first semiconductor layer and the second semiconductor layer are formed.
  • the layer may have a structure made of a compound represented by the general formula Al 1-n Ga n N (0 ⁇ n ⁇ 1, n may be the same as y).
  • the form of the photocatalytic material of the present invention is not particularly limited, and may be a film or a powder.
  • the photocatalytic device of the present invention is not particularly limited as long as it uses the photocatalytic material of the present invention.
  • Specific examples include a photocatalyst device for hydrogen generation that obtains hydrogen from water (aqueous solution), and a photocatalyst device for decomposition of toxic substances that decomposes and detoxifies toxic substances by redox reactions of electrons and holes. it can.
  • a photocatalytic device for hydrogen generation there is a device having a photocatalyst material and dipping means for immersing the photocatalyst material in an aqueous solution (or water), and irradiating the photocatalyst material with sunlight to decompose the aqueous solution to generate hydrogen.
  • a photocatalytic material is used for the anode or the cathode, and the aqueous solution is decomposed by irradiating the photocatalytic material with sunlight.
  • an apparatus for generating hydrogen is used for the anode or the cathode, and the aqueous solution is decomposed by irradiating the photocatalytic material with sunlight.
  • a water tank can be used as the dipping means.
  • the shape of the water tank is not particularly limited as long as the photocatalyst material can be irradiated with sunlight.
  • the aqueous solution can be continuously supplied to the water tank using a supply means such as a pump for continuously supplying the aqueous solution.
  • FIG. 2 is a schematic diagram showing an example of the band structure of GaMnN of the present invention.
  • VB is the valence band
  • CB is the conduction band
  • E g is the band gap of the GaMnN
  • E f is the Fermi level
  • E u is between the conduction band and the impurity band band gap
  • e l represents the band gap between the valence band and the impurity band.
  • the band gap E g of GaMnN be intermediate band exists is the same as the band gap of GaN without added Mn.
  • electrons e ⁇ are directly excited from the valence band VB to the conduction band CB by ultraviolet light ((0) described in the figure), and also by visible light and infrared light. Excitation of electrons e ⁇ from the valence band VB to the unoccupied part of the impurity band IB via the intermediate band IB ((2) described in the figure), and from the occupied part of the intermediate band IB to the conduction band CB Three types of excitation of electron e ⁇ occur ((1) described in the figure). These excitations cause many electrons e ⁇ in the conduction band CB and many holes h + in the valence band VB.
  • the photocatalytic material of the present invention can be used not only for ultraviolet light but also for visible light and infrared light as described above. It can absorb sunlight in a wide wavelength range and excite charge carriers with high efficiency. That is, the photocatalytic material of the present invention is characterized by having an intermediate band that can excite electrons e ⁇ .
  • Mn is used as the 3d transition metal.
  • a plurality of 3d transition metals selected from the group consisting of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu are used, a plurality of 3d transition metals are used.
  • An intermediate band can be formed, and the photoelectric conversion efficiency can be further improved.
  • FIG. 3 is a schematic diagram showing the structure of the photocatalytic device 100 using the photocatalytic material including the GaMnN layer whose band structure is shown in FIG. 2 as an anode.
  • the water tank 107 is filled with pure water or an aqueous electrolyte solution 108 and is divided into an anode chamber 109 and a cathode chamber 110 by an ion exchange membrane 105.
  • a platinum plate is installed as the cathode 106 in the cathode chamber 110, and an anode 101 is installed in the anode chamber 109.
  • the anode 101 includes a GaMnN layer 102, and a charge extraction electrode 104 is formed on the back surface of the GaMnN layer 102.
  • the charge extraction electrode 104 is coated with a waterproof insulating film 112 so as not to directly contact the aqueous electrolyte solution 108.
  • 113 is a waterproof insulating tube for preventing the conductive wire 111 from coming into direct contact with the electrolyte aqueous solution 108.
  • the GaMnN layer 102 of the anode 101 When the GaMnN layer 102 of the anode 101 is irradiated with sunlight, as described above, charge carriers are effectively excited by a wide range of wavelength components of sunlight ultraviolet light, visible light, and infrared light.
  • the excited electrons e ⁇ move from the charge extraction electrode 104 to the cathode 106 via the conductive wire 111.
  • the electrolyte aqueous solution 108 On the surface of the GaMnN layer 102, it reacts with the electrolyte aqueous solution 108 to generate oxygen and hydrogen ions by the oxidation action of holes h +, and the hydrogen ions move to the cathode chamber 110 through the ion exchange membrane 105, and in the cathode 106, electrons Hydrogen is generated by the reducing action.
  • the same solution is used as the electrolyte solution 108, but different solutions may be used for the cathode chamber 110 and the anode chamber 109.
  • GaMnN is n-type with a donor dopant
  • the Fermi level becomes high and the hydrogen generation efficiency becomes high.
  • platinum is used as the cathode, materials such as carbon, carbon carrying platinum, nickel, copper, zinc, ruthenium, and rhodium can be used. Further, carbon, semiconductor, or ceramic supporting the above metal can also be used.
  • FIG. 4 is a schematic diagram showing an example of a band structure of a p-GaN / GaMnN stacked structure.
  • 211 is a p-GaN layer
  • 212 is a GaMnN layer
  • VB is a valence band
  • CB is a conduction band
  • IB is an intermediate band consisting of impurity bands
  • E g is a GaMnN band gap
  • E f Fermi. level
  • e u is the band gap
  • e l between the conduction band and the impurity band shows the band gap between the valence band and the impurity band.
  • FIG. 5 is a schematic diagram showing a configuration of a photocatalyst device 200 using the photocatalyst material having the p-GaN / GaMnN laminated structure of FIG. 4 as an anode.
  • the water tank 207 is filled with pure water or an aqueous electrolyte solution 208 and is divided into an anode chamber 209 and a cathode chamber 210 by an ion exchange membrane 205.
  • a platinum plate is installed as the cathode 206 in the cathode chamber 210, and an anode 201 is installed in the anode chamber 209.
  • the anode 201 has a structure in which p-GaN 202 is laminated on one main surface of the GaMnN layer 203, and a charge extraction electrode 204 is formed on the other main surface of the GaMnN layer 203.
  • the charge extraction electrode 204 is coated with a waterproof insulating film 212 so as not to contact the electrolyte aqueous solution 208 directly.
  • reference numeral 213 denotes a waterproof insulating tube for preventing the conducting wire 211 from directly contacting the electrolyte aqueous solution 208.
  • the n-type layer can be used as the GaMnN layer 203 by the donor dopant.
  • FIG. 6 is a schematic diagram showing the structure of a photocatalytic device 300 using the photocatalytic material having the p-GaN / GaMnN laminated structure shown in FIG. 4 as a cathode.
  • the water tank 307 is filled with pure water or an aqueous electrolyte solution 308 and is divided into a cathode chamber 309 and an anode chamber 310 by an ion exchange membrane 305.
  • a platinum plate is installed as an anode 306 in the anode chamber 310, and a cathode 301 is installed in the cathode chamber 309.
  • the cathode 301 has a structure in which a GaMnN layer 302 is stacked on one main surface of a p-GaN layer 303, and a charge extraction electrode 304 is formed on the other main surface of the p-GaN layer 303.
  • the charge extraction electrode 304 is coated with a waterproof insulating film 312 so as not to contact the electrolyte aqueous solution 308 directly.
  • reference numeral 313 denotes a waterproof insulating tube for preventing the conducting wire 311 from coming into direct contact with the electrolyte aqueous solution 308.
  • GaMnN layer 302 of the cathode 301 When the GaMnN layer 302 of the cathode 301 is irradiated with sunlight, charge carriers are excited, and the holes h + excited in the valence band of the GaMnN layer 302 move to the p-GaN layer 303, and the conduction of the GaMnN layer 302. The electrons e ⁇ excited in the band move to the surface of the GaMnN layer 302. Then, a current flows from the charge extraction electrode 304 to the anode 306 through the conductive wire 311.
  • the GaMnN layer 302 can be an n-type one based on a donor dopant.
  • platinum is used as the anode, but materials such as carbon, carbon carrying platinum, nickel, copper, zinc, ruthenium, rhodium, etc. can be used. Further, carbon, semiconductor, or ceramic supporting the above metal can be used.
  • FIG. 7 is a schematic diagram showing another example of a band structure of a laminated structure of n-GaN / GaMnN.
  • 401 is an n-GaN layer
  • 402 is a GaMnN layer
  • VB is a valence band
  • CB is a conduction band
  • MB is an intermediate band consisting of impurity bands
  • E g is a band gap of GaN
  • E f Fermi. level
  • e u is the band gap
  • e l between the conduction band and the impurity band shows the band gap between the valence band and the impurity band.
  • FIG. 8 is a schematic diagram showing the structure of a photocatalytic device 400 using the photocatalytic material having the n-GaN / GaMnN laminated structure of FIG. 7 as an anode.
  • the water tank 407 is filled with pure water or an aqueous electrolyte solution 408 and is divided into a cathode chamber 410 and an anode chamber 409 by an ion exchange membrane 405.
  • a platinum plate is installed as a cathode 406 in the cathode chamber 410, and an anode 401 is installed in the anode chamber 409.
  • the anode 401 has a structure in which a GaMnN layer 402 is laminated on one main surface of an n-GaN layer 403, and a charge extraction electrode 404 is formed on the other main surface of the n-GaN layer 403.
  • the charge extraction electrode 404 is coated with a waterproof insulating film 412 so as not to come into direct contact with the aqueous electrolyte solution 408.
  • reference numeral 413 denotes a waterproof insulating tube for preventing the conductive wire 411 from coming into direct contact with the electrolyte aqueous solution 408.
  • the GaMnN layer 402 of the anode 401 When the GaMnN layer 402 of the anode 401 is irradiated with sunlight, the electrons e ⁇ are excited, and the holes h + excited in the valence band of the GaMnN layer 402 move to the surface of the GaMnN layer 402. Electrons e ⁇ excited in the conduction band move to the n-GaN layer 403, and further move from the charge extraction electrode 404 to the cathode 406 through the conducting wire 411.
  • the n-GaN layer 403 reacts with water to generate oxygen and hydrogen ions by the oxidation of holes h + , and the hydrogen ions move to the cathode chamber 410 through the ion exchange membrane 405, and the cathode 406 reduces electrons. Hydrogen is generated by the action.
  • the GaMnN layer 402 can be a p-type layer using an acceptor dopant.
  • platinum is used for the cathode
  • materials such as carbon, carbon carrying platinum, nickel, copper, zinc, ruthenium, and rhodium can be used.
  • carbon, semiconductor, or ceramic supporting the above metal can be used.
  • FIG. 9 is a schematic diagram showing the structure of a photocatalytic device 500 using the photocatalytic material having the n-GaN / GaMnN laminated structure shown in FIG. 7 as a cathode.
  • the water tank 507 is filled with pure water or an aqueous electrolyte solution 508 and is divided into a cathode chamber 509 and an anode chamber 510 by an ion exchange membrane 505.
  • a platinum plate is installed in the anode chamber 510 as an anode 506, and a cathode 501 is installed in the cathode chamber 509.
  • the cathode 501 has a structure in which an n-GaN layer 503 is stacked on one main surface of the GaMnN layer 502, and a charge extraction electrode 504 is formed on the other main surface of the n-GaN layer 503.
  • the charge extraction electrode 508 is coated with a waterproof insulating film 512 so as not to come into direct contact with the aqueous electrolyte solution 508.
  • reference numeral 513 denotes a waterproof insulating tube for preventing the conducting wire 511 from coming into direct contact with the electrolyte aqueous solution 508.
  • the GaMnN layer 502 of the cathode 501 When the GaMnN layer 502 of the cathode 501 is irradiated with sunlight, electrons e ⁇ are excited, and holes h + excited in the valence band of the GaMnN layer 502 move to the surface of the GaMnN layer 502, Electrons e ⁇ excited in the conduction band move to the n-GaN layer 531. Then, a current flows from the charge extraction electrode 504 to the anode 506 through the conductive wire 511. The anode 506 reacts with water to generate oxygen and hydrogen ions through the oxidation of holes h + , the hydrogen ions move to the cathode chamber 509 through the ion exchange membrane 505, and the n-GaN layer 503 reduces electrons. Hydrogen is generated by the action.
  • the GaMnN layer 502 can be a p-type layer using an acceptor dopant.
  • platinum is used as the anode, but materials such as carbon, carbon carrying platinum, nickel, copper, zinc, ruthenium, rhodium, etc. can be used. Further, carbon, semiconductor, or ceramic supporting the above metal can be used.
  • GaMnN is used alone, and in the second to fifth embodiments, the photocatalytic material having a stacked structure of p-GaN / GaMnN or n-GaN / GaMnN is used. However, p-GaMnN / GaMnN is used. Alternatively, a photocatalytic material having a stacked structure of n-GaMnN / GaMnN can be used.
  • FIG. 10 is a schematic diagram showing a structure of a photocatalytic device 600 using a photocatalytic material having a laminated structure of p-GaMnN / n-GaMnN.
  • Reference numeral 601 denotes an n-GaMnN layer
  • 602 denotes a p-GaMnN layer
  • a water tank 607 is filled with pure water or an electrolyte aqueous solution 608, and an ion exchange membrane is formed with a junction surface of a p-GaMnN / n-GaMnN laminated structure as a boundary.
  • 605 is divided into a cathode chamber 610 and an anode chamber 609.
  • An n-GaMnN layer 601 is in contact with the cathode chamber 610, and a p-GaMnN layer 602 is in contact with the electrolyte aqueous solution 608 in the anode chamber 609.
  • sunlight is irradiated on one or both sides of the n-GaMnN layer 601 or the p-GaMnN layer 602 (light is irradiated only on the p-GaMnN layer 602 in the figure)
  • charge carriers are excited and valence electrons are excited.
  • the holes h + excited in the band move to the p-GaMnN layer 602, and the electrons e ⁇ excited in the conduction band move to the n-GaMnN layer 601.
  • the surface of the p-GaMnN layer 602 reacts with water to generate oxygen and hydrogen ions due to the oxidation of holes h +, and the hydrogen ions move to the cathode chamber 610 through the ion exchange membrane 605, and the n-GaMnN layer 601. On the side, hydrogen is generated by the reducing action of electrons.
  • a photocatalytic material having a stacked structure of p-GaMnN / n-GaMnN is used.
  • a material etc. can also be used.
  • the n-GaMnN or p-GaMnN side is mainly irradiated with sunlight.
  • the photocatalytic device can be configured in the same manner as in the first to fifth embodiments.
  • the photocatalyst material of the present invention is formed into a thin film and used as an electrode.
  • the photocatalyst material of the present invention may be formed into particles and supported on the electrode material. it can.
  • an electrode formed by supporting the photocatalyst material of the present invention on an electrode material includes those in which the photocatalyst material of the present invention is supported on a stainless plate having excellent durability.
  • the photocatalyst device using the electrode made of the photocatalyst material of the present invention has been described.
  • the photocatalyst of the present invention is provided in a water tank containing an aqueous solution.
  • a mode in which hydrogen is generated using a method in which a material is dispersed and irradiated with sunlight can also be used.
  • Embodiment 7 In Embodiments 1 to 6, an example using GaMnN as a photocatalyst material has been described. Next, as another photocatalyst material, GaN as a base material, GaCoN using Co as a 3d transition metal, AlN as a base material, 3d transition An embodiment using materials such as AlNiN using Ni as a metal, AlGaN as a base material, and AlGaNiN using Ni as a 3d transition metal will be described.
  • FIG. 22 is a schematic diagram showing an example of a band structure of a stacked structure of p-GaN / GaCoN in which GaCoN is formed on p-type GaN.
  • 703 is a p-GaN layer
  • 702 is a GaCoN layer
  • VB is a valence band
  • CB is a conduction band
  • IB is an intermediate band consisting of impurity bands
  • E g is a GaCoN band gap
  • E f Fermi.
  • e u is the band gap
  • e l between the conduction band and the impurity band shows the band gap between the valence band and the impurity band.
  • the arrow of the chain line in the figure indicates that the electron e ⁇ is directly excited (0) from the valence band to the conduction band by irradiating the GaCoN layer 702 with sunlight, and from the valence band via the impurity band. It shows that the excitation of electrons to the unoccupied part of the impurity band (2) and the excitation of electrons from the occupied part of the impurity band to the conduction band (1) occur. Electrons e ⁇ due to excitation are blocked by the p-GaN layer 703 and remain in the GaCoN layer 702, and the holes h + move to the p-GaN layer 703, and charge carriers are separated.
  • FIG. 23 shows a structure of a photocatalytic device 700 using, as a semiconductor electrode 704, a structure in which the p-GaN 703 / GaCoN 702 shown in FIG. 22 is stacked on a sapphire substrate 701 by a sputtering method (which can also be produced by an MBE method). It is a schematic diagram.
  • the photocatalytic material GaCoN702 has a composition of 87% Ga and 13% Co.
  • the water tank 707 is filled with a 1 mol / L hydrochloric acid aqueous solution as an electrolyte aqueous solution 708, and the water electrode 707 is provided with a platinum electrode 706 as a cathode electrode together with a semiconductor electrode 704 installed as an anode electrode.
  • a GaCoN layer 702 is stacked on one main surface of the p-GaN layer 703, and a charge extraction electrode 705 is formed on the junction surface between the p-GaN layer 703 and the GaCoN layer 702.
  • the charge extraction electrode 705 is coated with an epoxy resin as a waterproof insulating film 713 so as not to come into direct contact with the aqueous electrolyte solution 708.
  • reference numeral 712 denotes an external power source for applying a voltage to the charge extraction electrode 705, and the conducting wire 711 serves to electrically connect the charge extraction electrode 705 and the platinum electrode 706.
  • the GaCoN layer 702 When the GaCoN layer 702 is irradiated with sunlight, three steps from the valence band to the conduction band, from the valence band to the unoccupied part of the impurity band through the impurity band, and from the occupied part of the impurity band to the conduction band.
  • the holes h + excited in the valence band of the GaCoN layer 702 move to the p-GaN layer 703, and the electrons e ⁇ excited in the conduction band of the GaCoN layer 702 remain in the GaCoN layer 702. .
  • the electron e ⁇ flows from the charge extraction electrode 705 to the platinum electrode 706 via the conducting wire 711.
  • the external power source 712 for applying a voltage to the charge extraction electrode 704 is not necessary, but it is necessary for generating hydrogen in this experiment. The reason is that various defects in the semiconductor electrode 704 can be considered, but details are not clear, and further detailed analysis is planned.
  • FIG. 24 is a schematic diagram showing an example of a band structure of a p-GaN / GaCoN / n-GaN pan stacked structure.
  • 824 is a p-GaN layer
  • 822 is a GaCoN layer which is a photocatalytic material
  • 823 is an n-GaN layer
  • VB is a valence band
  • CB is a conduction band
  • IB is an intermediate band consisting of an impurity band
  • E g is the band gap between the band gap
  • e f is the Fermi level
  • e u the band gap between the conduction band and the impurity band
  • e l is the valence band and the impurity band of GaMnN.
  • the arrow of the chain line in the figure indicates that the electron e ⁇ is directly excited (0) from the valence band to the conduction band by irradiating the GaCoN layer 822 with sunlight, and from the valence band via the impurity band. It shows that the excitation of electrons to the unoccupied part of the impurity band (2) and the excitation of electrons from the occupied part of the impurity band to the conduction band (1) occur. Electrons e ⁇ due to excitation are blocked by the p-GaN layer 824 and moved to the n-GaN layer 823, and holes h + are blocked by the n-GaN layer 823 and moved to the p-GaN layer 804, and charge carriers are separated. Done effectively.
  • FIG. 25 shows a structure in which p-GaN 804 / GaCoN (300 nm thickness) 802 / n-GaN (250 nm thickness) 803 similar to the pan structure shown in FIG. 24 is stacked on a sapphire substrate 801 as a semiconductor electrode.
  • GaCoN 802 a material having a composition of 93.5% Ga and 6.5% Co is used.
  • the water tank 807 is filled with a 1 mol / L hydrochloric acid aqueous solution as an electrolyte aqueous solution 808, and the water tank 807 is provided with a platinum electrode 806 as an electrode together with a semiconductor electrode.
  • a GaCoN layer 802 is formed on one main surface of the p-GaN layer 803 formed on the sapphire substrate 801, and an n-GaN layer 803 is formed on the GaCoN layer 802.
  • a charge extraction electrode 805 is formed on one main surface of the n-GaN 803.
  • the charge extraction electrode 805 is coated with an epoxy resin as a waterproof insulating film 813 so as not to contact the electrolyte aqueous solution 808 directly.
  • reference numeral 812 denotes an external power source for applying a voltage to the charge extraction electrode 805.
  • the conducting wire 811 serves to electrically connect the charge extraction electrode 805 and the platinum electrode 806.
  • the GaCoN layer 802 in FIG. 25 When the GaCoN layer 802 in FIG. 25 is irradiated with sunlight, electrons are excited in three stages as described above, and the holes h + excited in the valence band of the GaCoN layer 802 are transferred to the p-GaN layer 804. The electrons e ⁇ that have moved and excited in the conduction band of the GaCoN layer 802 move to the surface of the n-GaN layer 803. Then, the electrons e ⁇ flow from the charge extraction electrode 804 to the platinum plate 806 through the conductive wire 811. When the GaCoN layer 802 was irradiated with sunlight or visible light, hydrogen was generated from the n-GaN layer 803 side when no voltage was applied to the charge extraction electrode 805 from the external power source 812.
  • Embodiment 9 26 shows a photocatalytic material having a structure in which p-GaN / GaCoN (300 nm thickness) / n-GaN (250 nm thickness) similar to the pan structure shown in FIG. 24 is stacked on a sapphire substrate 901 as a semiconductor electrode. It is a schematic diagram which shows the structure of the photocatalyst apparatus 900 which shows another embodiment used as.
  • the photocatalytic material GaCoN layer 902 is composed of 93.5% Ga and 6.5% Co.
  • the water tank 907 is filled with a 1 mol / L hydrochloric acid aqueous solution as an electrolyte aqueous solution 908, and unlike the eighth embodiment, only a semiconductor electrode is provided as an electrode.
  • a charge extraction electrode 905 is formed on the joint surface between the GaCoN layer 902 and the n-GaN layer 903.
  • the charge extraction electrode 905 is coated with an epoxy resin as a waterproof insulating film 913 so as not to contact the electrolyte aqueous solution 908 directly.
  • Reference numeral 912 denotes an external power source for applying a voltage between the charge extraction electrodes 905.
  • the conducting wire 911 serves to electrically connect the charge extraction electrodes 905.
  • FIG. 27 is a schematic diagram showing a structure of a photocatalytic device 1000 using a semiconductor electrode 1004 having a structure in which AlNiN 1002 and further AlN 1003 are stacked on a sapphire substrate 1001.
  • the photocatalyst material AlNiN 1002 has a composition of 80% Al and 20% 3d transition metal Ni.
  • the water tank 1007 is filled with a 1 mol / L hydrochloric acid aqueous solution as the electrolyte aqueous solution 1008, and the platinum electrode 1006 is installed in the water tank 1007 together with the semiconductor electrode 1004.
  • Charge extraction electrodes 1005 are formed on the end faces of the AlNiN layer 1002 and the AlN layer 1003.
  • the charge extraction electrode 1005 is coated with an epoxy resin as a waterproof insulating film 1013 so as not to directly contact the electrolyte aqueous solution 1008.
  • reference numeral 1012 denotes an external power source for applying a voltage to the charge extraction electrode 1005.
  • the conducting wire 1011 serves to electrically connect the charge extraction electrode 1005 and the platinum electrode 1006.
  • hydrogen can be generated by visible light.
  • the band gap is about 6.2 eV, so that electrons are not excited by irradiation with visible light, but the AlNiN layer 1002 has an intermediate band and thus visible light. This shows that the electrons are excited by irradiation, and that light in the ultraviolet, visible, and infrared regions of sunlight can be used effectively for hydrogen generation.
  • FIG. 28 is a schematic view showing the structure of a photocatalytic device 1100 using a semiconductor electrode 1104 having a structure in which n-GaN 1103 and AlGaNiN 1102 are stacked on a sapphire substrate 1101.
  • the photocatalytic material AlGaNiN 1002 has a composition in which the ratio of Al to Ga is 10%: 90%, (AlGa) is 92%, and the 3d transition metal Ni is 8%.
  • the water tank 1107 is filled with a 1 mol / L hydrochloric acid aqueous solution as the electrolyte aqueous solution 1108, and the platinum electrode 1106 is installed in the water tank 1107 together with the semiconductor electrode 1104.
  • a 1 mol / L hydrochloric acid aqueous solution as the electrolyte aqueous solution 1108, and the platinum electrode 1106 is installed in the water tank 1107 together with the semiconductor electrode 1104.
  • an AlGaNiN layer 1102 is formed and a charge extraction electrode 1105 is formed.
  • the charge extraction electrode 1105 is coated with an epoxy resin as a waterproof insulating film 1113 so as not to contact the electrolyte aqueous solution 1108 directly.
  • reference numeral 1112 denotes an external power source for applying a voltage to the charge extraction electrode 1105.
  • the conducting wire 1111 serves to electrically connect the charge extraction electrode 1105 and the platinum electrode 1106.
  • the generation of hydrogen is observed even when only visible light is irradiated because AlGaN (Al: Ga is 10%: 90%) which is the base material of this embodiment has a band gap of about 3.7 eV. Electrons are not excited by light irradiation, but the AlGaNiN layer 1102 has an intermediate band, indicating that electrons are excited even by visible light irradiation, indicating that sunlight can be used effectively for hydrogen generation. ing.
  • Example 1 (Preparation of Ga 1-x Mn x N film) A Ga 1-x Mn x N film was prepared using an MBE apparatus. This apparatus has a vacuum chamber, and a gas introduction nozzle for introducing ammonia gas from a gas source, a first vapor deposition source, and a second vapor deposition source are arranged on the bottom wall side. A heater is arranged on the ceiling side of the vacuum chamber. In the first and second vapor deposition sources, a first metal material mainly containing Ga and a second metal material mainly containing Mn are arranged. As the substrate, sapphire, silicon, quartz, GaN or the like can be used, but here a sapphire substrate was used.
  • the temperature of the sapphire substrate is decreased to 550 ° C., ammonia gas is ejected from the gas nozzle, and sprayed onto the sapphire substrate.
  • the first metal material in the first vapor deposition source was heated to generate a metal molecular beam mainly composed of Ga, and the surface of the sapphire substrate was irradiated to form a buffer layer made of a GaN thin film.
  • the sapphire substrate is heated to 720 ° C., and nitrogen-containing atomic gas (in this case, ammonia gas) is directly blown onto the surface of the buffer layer by a gas nozzle to cause thermal decomposition.
  • nitrogen-containing atomic gas in this case, ammonia gas
  • the first and second metal materials in the first and second vapor deposition sources are heated and irradiated with a molecular beam mainly composed of Ga and a molecular beam mainly composed of Mn toward the buffer layer.
  • a GaMnN film was formed on the buffer layer surface.
  • a GaMnN film having a thickness of 1 ⁇ m was formed under conditions of a first vapor deposition source temperature of 850 ° C., a second vapor deposition source temperature of 630 ° C., and an ammonia gas flow rate of 5 sccm.
  • the sapphire substrate was removed by, for example, chemical etching using a mixed acid of sulfuric acid and phosphoric acid or a polishing method to obtain a GaMnN film.
  • the X-ray diffraction pattern of the GaMnN film produced by MBE method was measured using a thin film X-ray diffractometer (manufactured by Philips Japan, X'part). Similar to wurtzite GaN, a reflection peak was observed at around 34.5 degrees, and it was found to be wurtzite.
  • the light absorption spectrum was measured using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, UV-3600 and SOLID Spec-3700).
  • the radiation intensity spectrum of sunlight AM0: on earth orbit, AM1.5: ground surface
  • the radiation intensity spectrum of a white light source manufactured by Asahi Spectroscope Co., Ltd., MAX-302
  • GaN does not exhibit absorption in the wavelength range of 400 nm to 2000 nm
  • the Ga 1-x Mn x N film has an absorption coefficient of 8000 cm ⁇ 1 or more in the wavelength range of 400 to 1000 nm. Also, it has more absorption than GaN in the ultraviolet and infrared regions.
  • the light absorption spectrum of the Ga 1-x Mn x N film substantially corresponds to the wavelength range of the radiation intensity spectrum of sunlight, and effectively utilizes the unused light of sunlight. Is possible.
  • Example 2 (Preparation of Ga 1-x Mn x N film) A Ga 1-x Mn x N film was produced in the same manner as in Example 1 except that the Mn supply amount was controlled by adjusting the Mn cell temperature during film formation. The film thickness was 0.4 ⁇ m and x was 0.05. The light absorption coefficient was 1000 cm ⁇ 1 or more in the wavelength range of 300 to 1500 nm.
  • Example 3 (Preparation of Ga 1-xz Mn x Mg z N film) A Ga 1-xz Mn x Mg z N film was produced in the same manner as in Example 2 except that Mg was supplied simultaneously with Ga and Mn at the time of production. The film thickness was 0.4 ⁇ m, x was 0.05, and z was 0.02. The light absorption coefficient was 1000 cm ⁇ 1 or more in the wavelength range of 300 to 1500 nm.
  • Example 4 (Preparation of Ga 1-x Mn x N: H y film) The same method as in Example 1 except that when producing the Ga 1-x Mn x N film, the substrate temperature was set to a low value of about 600 ° C., and hydrogen was left by partially suppressing decomposition of ammonia. Thus, a Ga 1-x Mn x N: H y film was produced. In addition, for a Ga 1-x Mn x N film produced at a high substrate temperature of 700 ° C. or more and having no hydrogen remaining, hydrogen molecules are thermally decomposed by a hot filament method in a hydrogen atmosphere, and Ga 1-x Mn Ga 1-x Mn x N: H y was produced by irradiating the x N film.
  • H y film is at 7000 cm -1 or more in the wavelength region of 400 ⁇ 1000 nm, had a 1000 cm -1 or more absorption coefficient in the wavelength range of 300 ⁇ 1500 nm. Also, it has a larger absorption than GaN in the ultraviolet and infrared regions. Absorption due to the impurity band was observed in a broad peak structure in the 1500 to 700 nm region and a continuous absorption structure in the 700 to 400 nm region.
  • the example of film formation of the photocatalyst material by MBE method and the example when doping 3d transition metal to GaN were shown as the characteristic, but it is equally excellent when filmed by doping 3d transition metal to GaAlN and AlN It can also be used as a photocatalytic material for the photocatalytic element of the present invention.
  • Example 5 (Production by sputtering method) For example, an example in which a GaN-based compound semiconductor is produced by a sputtering method will be described.
  • P-GaN or n-GaN formed on single crystal sapphire as a substrate is placed in a vacuum chamber of a high-frequency sputtering apparatus, and a GaN target is placed opposite to this.
  • a chip of 3d transition metal T to be substituted for Ga was placed on the target. The amount of 3d transition metal T added was adjusted by changing the number of chips here.
  • a substrate heating heater is installed on the back surface of the holder on which the substrate is installed.
  • a mixed gas of Ar—N 2 was introduced, the substrate was heated to a predetermined temperature, high frequency power was applied to induce plasma, and sputtering film formation was performed for a predetermined time. Further, the substrate and the target may be cleaned in plasma prior to sputtering film formation.
  • the main sputtering film forming conditions are shown below.
  • composition analysis The obtained Ga 1-x T x N film was a dense and flat film with few defects regardless of whether or not a 3d transition metal was added.
  • Composition analysis of the GaN-based compound semiconductor film produced by the sputtering method was performed by Rutherford backscattering spectroscopy, and x of Ga 1-x T x N was obtained. The analysis results showed that the thin film had a non-stoichiometric composition from the analytical amounts of Ga and 3d transition metals and the analytical amount of nitrogen. Thus, some of the 3d transition metal elements may not replace the Ga position, but details are currently under investigation.
  • FIGS. 13 to 16 show examples of measurement results of light absorption spectra of samples in which Ga of GaN is substituted with various 3d transition metals.
  • the absorption coefficient at a wavelength of 300 to 1500 nm is 3000 cm ⁇ 1 or more.
  • the absorption coefficient at a wavelength of 300 to 1500 nm is 1000 cm ⁇ 1 or more.
  • FIG. 15 is a light absorption spectrum of a sample in which the 3d transition metal is Co.
  • the sample produced by the MBE method had a clear absorption peak near 1.5 eV as shown in FIG. 18, whereas the sample produced by the sputtering method had a high absorption coefficient, but the clear peak was Not observed.
  • Example 6 an example of film formation of a photocatalyst material by a sputtering method and its characteristics show excellent light absorption characteristics even when GaN, GaAlN, and AlN are doped with a 3d transition metal T.
  • the light absorption spectrum of the thin film formed by sputtering was measured.
  • FIGS. 17 to 21 show the measurement results of light absorption spectra of samples in which Ga or Al of GaN, GaAlN, AlN or various 3d transition metals T are substituted.
  • the absorption coefficient at a wavelength of 300 to 1500 nm is 3000 cm ⁇ 1 or more.
  • the absorption coefficient at a wavelength of 300 to 1500 nm is 1000 cm ⁇ 1 or more.
  • FIG. 19 is a light absorption spectrum of a sample in which the base material is AlN and the 3d transition metal is Co.
  • the absorption coefficient at is 1000 cm ⁇ 1 or more.
  • a tail with a high absorption coefficient is provided on the longer wavelength side than 370 nm.
  • the absorption coefficient at 300 to 1500 nm is 5000 cm ⁇ 1 or more.
  • the sample produced by the MBE method had a clear absorption peak near 1.5 eV as shown in FIG. 18, whereas the sample produced by the sputtering method had a high absorption coefficient, but the clear peak was Not observed.
  • the absorption coefficient at 300-1500 nm is 3000 cm ⁇ 1 or more.
  • a photocatalytic element formed using a photocatalytic material capable of absorbing a wide wavelength region of sunlight and converting it to electricity is used, so a photocatalytic device that generates hydrogen directly from water or an aqueous solution Can be used.
  • Photocatalyst device 101 201, 401 Anode 102, 202, 222, 302, 402, 422, 502 GaMnN layer 702, 802, 822, 902 GaCoN layer 1002 AlNiN 1003 AlN 203, 211, 202, 221, 303, 703, 804, 824, 904 p-GaN layer 401, 403, 421, 503, 803, 823, 903 n-GaN layer 601 n-GaMnN 602 p-GaMnN 701, 801, 901, 1001, 1101 Sapphire substrate 704, 1004, 1104 Semiconductor electrode 104, 204, 304, 404, 504, 705, 805, 905, 1005, 1105 Charge extraction electrode 706, 806, 1006, 1106 Platinum electrode 105 , 205, 305, 405, 505, 605 Ion exchange membrane 106, 206, 301, 406, 501 Cathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Catalysts (AREA)

Abstract

 太陽光照射により水から水素を高効率で発生させることの可能な光触媒材料および光触媒装置を提供する。本発明の光触媒材料は、Gaおよび/またはAlの一部が3d遷移金属で置換された窒化物系化合物半導体からなり、1以上の不純物バンドを有するものであり、波長領域1500nm以下、300nm以上の全波長領域における光吸収係数が1000cm-1以上である窒化物系化合物半導体を含むものである。また、伝導体の底のエネルギー準位がH/Hの酸化還元電位よりも負であり、価電子帯の上端のエネルギー準位がO/HOの酸化還元電位よりも正であるという条件を満たし、水中で光照射下しても材料劣化がないか極めて少ない。

Description

光触媒材料および光触媒装置
 本発明は、光触媒材料および光触媒装置に関し、さらに詳しくは赤外光及び可視光及び紫外光の領域で光触媒動作が可能なマルチバンド構造を有する光触媒材料およびそれを用いた光触媒装置に関する。
 近年、化石燃料の使用によるCO排出問題を代表とする地球環境問題や、原油価格の高騰等のエネルギーコストの問題を背景に、太陽電池や水素を燃料とする燃料電池やエネルギー装置等に代表されるように、クリーンな新エネルギー創出への期待が高まっている。上記燃料電池やエネルギー装置等の燃料である水素を化石燃料から得るのではなく、水分解光触媒を用いた水からの水素の製造法は、環境およびエネルギー問題の解決に貢献できる可能性が高く期待も大きい。
 光触媒は、光によって触媒中に励起された正孔と電子が、それぞれ非常に強い酸化力と還元力を持つことを利用して、有害物質の分解による無害化、水の分解による水素と酸素の発生を行うことができる。半導体光触媒は伝導帯と価電子帯が禁制帯で隔てられたエネルギーバンド構造を有する。光触媒にバンドギャップ以上のエネルギーを持った光を照射すると、価電子帯の電子は伝導帯に励起され、価電子帯には正孔が生成される。伝導帯に励起された電子は価電子帯に存在したときよりも還元力が強くなり、正孔は強い酸化力を持つ。
 水を分解するには、伝導帯の底のエネルギー準位がH/Hの酸化還元電位よりも負で、価電子帯の上端のエネルギー準位がO/HOの酸化還元電位よりも正であることが必要である。つまり、反応の過電圧が全くないとすれば、バンドギャップは1.23eV以上であることが必要であり、光触媒装置として機能させるには、一般的に1.8eV以上であることが望ましい。
 これまでに研究されている半導体光触媒の代表は酸化チタンTiOである。半導体光触媒による水からの直接水素製造の契機は、1970年代の本多、藤島の研究である(非特許文献1)。TiO光電極とPt電極からなる光化学電池のTiO極に光を照射することにより、水を直接光分解して水素を発生させることができることを示した。地表に到達する太陽光は可視光の500nm付近に放射の最大強度をもっている。しかし、TiOはバンドギャップが1.8eVよりもかなり広い3.2eVであるため、光触媒機能は高いが、390nm以下の波長を持つ紫外光領域でのみ活性であり、太陽光の利用効率が悪く、水素発生効率が低いという課題がある。
 一方、太陽光の紫外光領域のみならず可視光領域を高効率に吸収するために、よりバンドギャップの小さい非酸化物半導体が模索された。これらの半導体の代表は、CdS、CdSeなどの金属カルコゲナイドであるが、光照射下で価電子帯に生成する正孔によって材料自身が酸化溶融し、安定に機能しない課題がある。また、有機材料でも模索されたが、同様に材料の安定性の課題が大きく実用化されていない。
 酸化チタンTiOでは、活性酸窒化物で光吸収波長を長波長側にシフトさせる方法が提案されている。例えば、酸化チタンTiOの表面に、酸化チタン以外の酸点をもつ金属酸化物(酸化タングステン)WOを配することにより、可視光線の照射によって高い活性をねらったものが提案されている。しかし、400~500nmで多少活性を示すが、より長波長側では光吸収係数は依然として小さいという課題がある(特許文献1)。別の従来例として、Ti-O-Nがあり、TiOよりも400~480nmで高い活性を示すが、可視光の中心波長である500nm以上では活性は極めて低い(特許文献2)。また、CrおよびNを含有するTi-Cr-O-N膜はバンドギャップ内に新たな準位を形成し、TiO 、Ti-O-N、Ti-O-Sの場合よりも400~500nmの長波長領域において光吸収係数が大きい(特許文献3)。しかし、これらの従来例では、可視光領域である360~830nm全域およびそれ以上の波長での光吸収が大きいものはなく、太陽光の利用効率は低いという課題は依然として解決されていない。
 酸化チタンTiO以外では、窒化物半導体を用いたものが提案されている。GaN及びGaNにInN を混合したGaN 光触媒も光触媒活性を有し研究されているが、GaN光触媒では光触媒活性を示すのは紫外光領域のみであり、InN を混合したGaN光触媒ではより可視光側で光触媒活性を示すが、バンドギャップに対応した波長近傍のみの光吸収が大きくなるだけであり、より広い波長領域での光触媒活性を高めるためには、多層構造であるタンデム構造という複雑な構造を採らなければならない(特許文献4)。
 また、窒化物半導体極として、インジウム(In)、ガリウム(Ga)及びアルミニウム(Al)から成る群から選択される一つ以上の3族元素と窒素(N)から構成される化合物を用いたガス発生装置が提案されている(特許文献5)。特許文献5の窒化物半導体は一般式:AlIn Ga1-X -YN(但し、0≦X≦1かつ0≦Y≦1かつX+Y≦1)で示される化合物であり、上記窒化物半導体のバンドギャップは組成により1.9eVから6.2eVまで可変制御でき、そのバンドギャップに依存して紫外光から波長650nmまでの波長の光を吸収することが可能である。しかし、この場合もバンドギャップに対応した波長近傍のみの光吸収が大きくなるだけであり、より広い波長範囲の太陽光を有効に利用することはできない。
 加えて、p型GaNを用いた、またはp型GaNにRuO等の助触媒を担持させた水分解触媒が提案されているが(特許文献6)、活性な波長は400nm以下であり、太陽光のエネルギーの40%を超える可視光領域である360~830nm全域での吸収が大きいものはなく、やはり太陽光のエネルギー利用効率は低いという課題は解決されていない。また、300~1500nmの波長帯域での光吸収係数は、GaNの場合では最小値が600~700cm-1程度、AlNの場合では200~300cm-1程度と小さな値しか実現できていない(例えば非特許文献2)。
特開2002-126517号公報 特開2002-095976号公報 特開2001-205104号公報 国際公開WO2005/089942号パンフレット 特開2003-024764号公報 特開2007-125496号公報
K.Honda, A.Fujishima, Nature, 238, 37 (1972) Appl. Phys. Lett., 81, 5159 (2002)
 以上に述べたように、太陽光の照射による半導体光触媒による水からの高効率な直接水素製造のためには、(1)太陽光の紫外光領域だけでなく可視光領域、赤外光領域を含む広い領域での光吸収効率が高いこと、(2)水素製造のためには伝導帯の底のエネルギー準位がH/Hの酸化還元電位よりも負であり、酸素製造のためには価電子帯の上端がO/HOの酸化還元電位よりも正であること、および(3)水中で光照射しても材料劣化がないか極めて少ないこと、等の条件を満たす材料が必要である。上記の3条件を満たす様々な試みがなされているが、背景技術で述べたように、実用可能な技術は未だ見出されていないのが現状である。
 本発明は、上記実情に鑑みてなされたもので、(1)太陽光の赤外光、可視光、紫外光のほぼ全領域の光を吸収し、(2)伝導帯の底のエネルギー準位がH/Hの酸化還元電位よりも負で、価電子帯の上端がO/HOの酸化還元電位よりも正であり、(3)水中で光照射しても材料劣化がないか極めて少ない、という条件を満たす光触媒材料およびそれを用いた光触媒装置を提供することを目的とした。
 本発明は、上記課題を解決するため、様々な研究を実施した結果、不純物バンドを有する窒化物系化合物半導体が、太陽光の紫外光、可視光、赤外光のほぼ全領域での吸収効率が高く、従って太陽光照射による電荷キャリア励起の効率が高く、また使用時の劣化が極めて小さく、伝導帯の底のエネルギー準位がH/Hの酸化還元電位よりも負で、価電子帯の上端がO/HOの酸化還元電位よりも正であることを見出して、本発明を完成させたものである。
 すなわち、本発明の光触媒材料は、一般式Al1-yGaN(0≦y≦1)で表される化合物のAlおよび/またはGaの一部が少なくとも1種の3d遷移金属で置換された窒化物系化合物半導体であって、価電子帯と伝導帯の間に1以上の不純物バンドを有し、波長領域1500nm以下、300nm以上の全波長領域における光吸収係数が1000cm-1以上の値を有する窒化物系化合物半導体を含むことを特徴とするものである。
 本発明の光触媒材料においては、上記3d遷移金属が、Sc、Ti、V、Cr、Mn、Fe、Co、NiおよびCuからなる群から選択された少なくても1種であることが好ましい。
 また、本発明の光触媒材料は、上記Alに対するGa置換量をyとし、3d遷移金属Tの置換量をxとしたとき、一般式(Al1-yGa1-xNで表され、yが0≦y≦1であり、xが0.02≦x≦0.3の範囲であることが好ましい。
 また、本発明の光触媒材料は、上記窒化物系化合物半導体層にアクセプタドーパントおよび/またはドナードーパントがドープされていることが好ましい。
 また、本発明の光触媒材料は、上記窒化物系化合物半導体からなる第1の半導体層に、n-GaN層またはp-GaN層からなる第2の半導体層が積層されていることが好ましい。
 また、本発明の光触媒材料は、上記の第1の半導体層と上記の第2の半導体層がpn接合を形成していることが好ましい。
 また、本発明の光触媒材料は、上記窒化物系化合物半導体からなる第1の半導体層が、pn接合を形成する二層からなることが好ましい。
 本発明の光触媒装置は、一般式Al1-yGaN(0≦y≦1)で表される化合物のAlおよび/またはGaの一部が少なくとも1種の3d遷移金属で置換された窒化物系化合物半導体であって、価電子帯と伝導帯の間に1以上の不純物バンドを有し、波長領域1500nm以下、300nm以上の全波長領域における光吸収係数が1000cm-1以上の値を有する窒化物系化合物半導体を含む光触媒材料を用いることを特徴とするものである。
 本発明の光触媒装置においては、電気的に接続されたカソードとアノードとを備え、該カソードまたは該アノードに上記光触媒材料を用いることが好ましい。
 また、本発明の光触媒装置においては、上記窒化物系化合物半導体からなる第1の半導体層に、n-GaN層またはp-GaN層からなる第2の半導体層が積層されていることが好ましい。
 また、本発明の光触媒装置においては、上記の第1の半導体層と上記の第2の半導体層がpn接合を形成していることが好ましい。
 また、本発明の光触媒装置においては、上記窒化物系化合物半導体からなる第1の半導体層が、pn接合を形成する二層からなることが好ましい。
 本発明の光触媒材料は、バンドギャップの間に不純物バンドからなる中間バンドを有しているので、紫外光のみならず、3d遷移金属を置換する前の母体では吸収し得ない可視光領域、さらには赤外光領域の光を高効率で吸収することができる。つまり、波長領域1500nm以下、300nm以上の全波長領域における光吸収係数が1000cm-1以上である。従来、この波長領域では、GaNにおいては光吸収係数の最小値が600~700cm-1程度、AlNにおいては同様に200~300cm-1であったのに比べ、非常に大きな光吸収係数を有する。これにより、3d遷移金属を置換する前の母体では利用し得なかった波長の太陽光を利用することができるので、光触媒効率を向上でき、水素発生効率を向上させることが可能である。また、本発明の光触媒材料は広い波長帯域の光に対して大きな光吸収係数を有するので、晴天、曇り、雨などの天候変化により太陽光の地上での波長分布が変化しても、変化の少ない光触媒効果を実現することができる。
 また、本発明の光触媒材料は、300℃~1000℃の高温で製造するため、熱に対しての安定性に優れている。また水に対しても安定であるため、光触媒装置に用いた時に優れた安定性を実現することが可能である。
 また、本発明の光触媒材料は、GaAs系やCdTe系の化合物半導体のようにAsやCd等の毒性の強い元素を使用しないので、環境的にも優れている。また、In等の希少金属を使用しないので、より低コストで製造できるので、低コストな光触媒装置を提供することが可能である。
 また、本発明の光触媒材料は、MBE法だけではなくスパッタ法などの製膜法でも製造でき、大面積素子の大量製造が容易であり、より低コストな光触媒装置を提供することが可能である。また、母材の選択、3d遷移金属の種類選択と置換量によって日照条件などの使用環境に合わせた材料設計が容易である。
 なお、本発明の光触媒材料に照射する光は太陽光に限定されず、蛍光灯等の人工光を用いることもできる。また、本発明に光触媒材料の用途としては、水(水溶液)から水素を得る水素発生用の光触媒装置に限定されず、電子および正孔の酸化還元反応により有毒物質を分解して無毒化する有害物質分解用の光触媒装置にも用いることができる。
窒化物半導体のバンド準位と酸化還元電位との関係を示す模式図である。 本発明の実施の形態1に係る光触媒装置に用いる光触媒材料のバンド構造を示す模式図である。 図2の光触媒材料を用いた光触媒装置の構造の一例を示す模式図である。 本発明の実施の形態2、3に係る光触媒装置に用いる光触媒材料のバンド構造を示す模式図である。 図4の光触媒材料を用いた光触媒装置の構造の一例を示す模式図である。 図4の光触媒材料を用いた光触媒装置の構造の別の例を示す模式図である。 本発明の実施の形態4、5に係る光触媒装置に用いる光触媒材料のバンド構造を示す模式図である。 図7の光触媒材料を用いた光触媒装置の構造の一例を示す模式図である。 図7の光触媒材料を用いた光触媒装置の構造の別の例を示す模式図である。 本発明の実施の形態6に係る光触媒装置に用いる光触媒材料を用いた光触媒装置の構造の一例を示す模式図である。 本発明の実施例1の光電変換材料の光吸収スペクトルである。 本発明の実施例4の光電変換材料の光吸収スペクトルである。 本発明の実施例5において、3d遷移金属がVで、x=0.056の試料の光吸収スペクトルである。 本発明の実施例5において、3d遷移金属がCrであり、x=0.088の試料の光吸収スペクトルである。 本発明の実施例5において、3d遷移金属がCoであり、x=0.052、x=0.128の試料の光吸収スペクトルである。 本発明の実施例5において、3d遷移金属がMnであり、x=0.2の試料の光吸収スペクトルである。 本発明の実施例6において、3d遷移金属がVであり、Vで5%置換したGaVN、AlGaVN、AlVNの光吸収スペクトルである。 本発明の実施例6において、3d遷移金属がCrであり、Crで9%置換したGaCrN、AlGaCrN、AlCrNの光吸収スペクトルである。 本発明の実施例6において、3d遷移金属がCoであり、GaCoN、AlCoNの光吸収スペクトルである。 本発明の実施例6において、3d遷移金属がMnであり、AlMnN( Mn:11%)、AlGaMnN(Mn:20%)の光吸収スペクトルである。 本発明の実施例6において、3d遷移金属がNiであり、AlNiN、AlGaNiNの光吸収スペクトルである。 本発明の実施の形態7に係る光触媒装置に用いる光触媒材料のバンド構造を示す模式図である。 図22の光触媒材料を用いた光触媒装置の構造の一例を示す模式図である。 本発明の実施の形態8、9に係る光触媒装置に用いる光触媒材料のバンド構造を示す模式図である。 図24の光触媒材料を用いた光触媒装置の構造の一例を示す模式図である。 図24の光触媒材料を用いた光触媒装置の構造の別の例を示す模式図である。 光触媒材料AlNiNを用いた本発明の実施の形態10である光触媒装置の構造を示す模式図である。 光触媒材料AlGaNiNを用いた本発明の実施の形態11光触媒装置の構造を示す模式図である。
 以下本発明の実施の形態について図面を参照しつつ詳細に説明する。
 本発明の光触媒材料は、一般式Al1-yGaN(0≦y≦1)で表される化合物半導体のAlおよび/またはGaの一部が、少なくとも1種の3d遷移金属(Tで表す)で置換された窒化物系化合物半導体を含む材料である。
 一般式Al1-yGaN(0≦y≦1)で表される化合物半導体には、GaN系、GaAlN系およびAlN系化合物半導体が含まれる。
 GaN系化合物半導体のうち、GaNは、バンドギャップが3.4eV(光の波長の365nmに相当)であり紫外光は吸収するが、可視光以上の波長を持つ光を吸収しない半導体であり、可視光以上の波長を持つ光を照射しても価電子帯から伝導帯への電子の遷移はない。これに対し、Gaの一部を3d遷移金属Tで置換した、一般式Ga1-xN(0.02≦x≦0.3)で表される化合物半導体(以下、GaTNと略す。)は、GaNのバンド構造を保持した状態で、バンドギャップ中に、置換した3d遷移金属であるTによる不純物バンドを有する。ここで3d遷移金属は一種類に限るものではなく複数用いることもでき、その場合、複数の3d遷移金属による置換合計がxになるように構成する。なお、本発明においては、Gaおよび/またはAlを3d遷移金属で置換するとは、置換した3d遷移金属が不純物バンドを形成できる範囲内でGaあるいはAlを3d遷移金属で置換できることをいう。
 また、AlN系化合物半導体のうち、AlNは、バンドギャップが6.2eV(200nm)であり紫外光は吸収するが、可視光以上の波長を持つ光を吸収しない半導体であり、可視光以上の波長を持つ光を照射しても価電子帯から伝導帯への電子の遷移はない。これに対し、Alの一部を3d遷移金属Tで置換した、一般式Al1-xN(0.02≦x≦0.3)で表される化合物半導体(以下、AlTNと略す。)は、AlNのバンド構造を保持した状態で、バンドギャップ中に、置換した3d遷移金属であるTによる不純物バンドを有する。ここで3d遷移金属は一種類に限るものではなく複数の3d遷移金属を用いることができ、複数の3d遷移金属による置換合計がxになるように構成する。
 また、GaAlN系化合物半導体のうち、GaAlNは、バンドギャップが3.4~6.2eV(200~365nm)であり紫外光は吸収するが、可視光以上の波長を持つ光を吸収しない半導体であり、可視光以上の波長を持つ光を照射しても価電子帯から伝導帯への電子の遷移はない。これに対し、GaおよびAlの一部を3d遷移金属Tで置換した、一般式(GaAl)1-xN(0.02≦x≦0.3)で表される化合物半導体(以下、GaAlTNと略す。)は、GaAlNのバンド構造を保持した状態で、バンドギャップ中に、置換した3d遷移金属であるTによる不純物バンドを有する。同様に、3d遷移金属であるTは一種類に限るものではなく複数の3d遷移金属を用いることができ、複数の3d遷移金属による置換合計がxになるように構成する。
 3d遷移金属には、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、およびCuからなる群から選択された1種以上の金属を用いる。より好ましくはV、Cr、Mn、Coである。遷移金属の3d軌道を主成分とするバンドは、価電子帯や伝導帯と重なりあうことなくGaNのバンドギャップの中に不純物バンドをつくることができる。また、3d遷移金属が2種以上であっても、その金属種に対応した不純物バンドを作ることができるので、2以上の不純物バンドを形成することもできる。ここで、Sc、Ti、V、Cr、Mn、Fe、Co、NiおよびCuは、それぞれ3d4s、3d4s、3d4s、3d4s、3d4s、3d4s、3d4s、3d4s、3d104sの電子配置を有する。3d遷移金属は、結晶の結合をつくる最外殻の4s電子が2個以下である。一方、3価のGaおよび/またはAlと3d遷移金属が置換すると、電子が一つ足りないため、3d電子が1個使われることになる。そうするとd電子を5個収容できる不純物バンドが非占有状態となる。不純物バンドが非占有状態となると、GaNあるいはGaAlNあるいはAlNの価電子帯から伝導帯への直接遷移以外に、不純物バンドを介した2段階以上の光吸収が可能であり、高い変換効率が期待できる。特に、V、Cr、Mn、Coは、特に好ましくはMnが上記で述べた様に不純物バンドの非占有状態と電子の基底状態とのバランスが良いため、光の照射によるキャリア遷移の確率が高いことから好ましい。
 例えば、Mnを含むGaN系化合物半導体は、一般式Ga1-xMnNで表すことができ、0.02≦x≦0.3である。xの範囲は、より好ましくは、0.05≦x≦0.25であり、さらに好ましいのは0.05≦x≦0.20である。xが0.02より小さいと光の照射によるキャリア遷移を効率良く行うことができる十分な不純物バンドが生成せず、また、0.3より大きいと不純物バンドと価電子帯、伝導帯が重なり合い、これらの間に不純物バンドが形成されない。ここで、本発明において、光の照射によるキャリア遷移を効率的におこなう十分な不純物バンドが形成されないとは、300~1500nmの波長帯域における光吸収係数が1000cm-1より小さいことをいう。また、xが0.3より大きいと、十分な密度の不純物バンドが形成されないため、波長領域300~1500nmにおける光吸収係数は同様に1000cm-1より小さくなる。
 また、本発明の別の光触媒材料は、Gaおよび/またはAlが少なくとも1種の3d遷移金属で置換され、アクセプタドーパントおよび/またはドナードーパントがドープされてなるGaN系あるいはGaAlN系あるいはAlN系化合物半導体からなり、少なくとも波長領域300~1500nmにおける光吸収係数が1000cm-1以上であることを特徴とするものである。ここで、3d遷移金属は、原子番号21~29の金属であり、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、およびCuである。より好ましくは、V、Cr、Co、Mnである。さらに好ましくはMnである。
 アクセプタドーパントは、通常、母材(GaNあるいはGaAlNあるいはAlN)から電子を受け取り、価電子帯に正孔を生成させるが、本発明においては、3d軌道に由来する不純物バンドから電子を奪うことにより、不純物バンドに非占有状態を形成することができる。これにより光電変換効率を高めることができる。このアクセプタドーパントの例としては、Mg、Ca、C等を挙げることができるが、特にMgが好ましい。MgをドープするGaN系あるいはGaAlN系あるいはAlN系化合物半導体は特に限定されないが、Mnを含むGaN系あるいはGaAlN系あるいはAlN系化合物半導体が好ましい。これは、MnとMgの組み合わせであれば良好な結晶が得られるからである。例えば、Mnを含むGaN系化合物半導体にMgをドープした材料は、一般式Ga1-x-zMnMgN(0.02≦x≦0.3、0<z≦0.125)あるいは(GaAl)1-x-zMnMgN(0.02≦x≦0.3、0<z≦0.125)あるいはAl1-x-zMnMgN(0.02≦x≦0.3、0<z≦0.125)で表すことができる。xの範囲は、より好ましくは、0.05≦x≦0.3である。ここで、zが0.125より大きいとMnが固溶しにくくなるので好ましくない。
 また、ドナードーパントは、通常、母材(GaNあるいはGaAlNあるいはAlN)に電子を与え、伝導帯にキャリアとして電子を生成させるが、本発明においては、ドナードーパントから放出された電子は不純物バンドの非占有部分に入り込む。これにより光電変換効率を高めることができる。このドナードーパントの例としては、H(水素原子)、Si、O(酸素原子)を挙げることができるが、特にHが好ましい。例えば、Mnを含むGaN系化合物半導体にHをドープした材料は、一般式Ga1-xMnN:H(0.02≦x≦0.3、0<y<x)あるいは(GaAl)1-xMnN:H(0.02≦x≦0.3、0<y<x)あるいはAl1-xMnN:H(0.02≦x≦0.3、0<y<x)で表すことができる。yがx以上であると不純物バンドがすべて占有され、2段階以上の吸収が起こらないからである。xの範囲は、より好ましくは、0.05≦x≦0.3である。
 また、これらアクセプタドーパントとドナードーパントはGa1-xMnNあるいは(GaAl)1-xNあるいはAl1-xN中に共存してもよい。例えば、Ga1-xMnNの場合、一般式はGa1-x-zMnMgN:H(0.02≦x≦0.3、0<z≦0.125、y>zの場合は0<y-z<x、y≦zの場合は0<y≦z)あるいは(GaAl)1-x-zMnMgN:H(0.02≦x≦0.3、0<z≦0.125、y>zの場合は0<y-z<x、y≦zの場合は0<y≦z)あるいはAl1-x-zMnMgN:H(0.02≦x≦0.3、0<z≦0.125、y>zの場合は0<y-z<x、y≦zの場合は0<y≦z)で表すことができる。ドナーである水素濃度yがアクセプターであるMg濃度zより高い場合、すなわちy>zの場合、(y-z)は有効ドナー数を表すが、(y-z)がxより大きいと不純物バンドがすべて占有され、2段階以上の吸収が起こらないからである。
 本発明のGaTN、GaAlTNあるいはAlTNなどの窒化物系化合物半導体は、不純物バンドを介した2段階以上の光吸収が可能であり、母材であるGaN、GaAlNあるいはAlNの価電子帯から伝導帯への直接遷移以外にも光吸収のピークないしはテールを有する。そのピークないしテールは、少なくとも波長領域1500nm以下、300nm以上において、光吸収係数が1000cm-1以上である。より好ましくは光吸収係数が3000cm-1以上である。さらに好ましくは赤外線領域(800~2000nm)においても、光吸収係数が1000cm-1以上、より好ましくは3000cm-1以上である。本発明のGaN系、GaAlN系あるいはAlN系化合物半導体が高い光吸収係数を有する理由としては、不純物バンドの非占有状態と電子の基底状態とのバランスが良く、遷移自体の確率が高いことを意味しており、光電変換材料として、より高い変換効率が実現できることを示している。ここで、光吸収係数とは、光が単位長さ進む間に吸収される割合を示し、単位はcm-1である。
 図1は、主な窒化物半導体のバンド準位と酸化還元電位との関係を示す模式図である。縦軸は酸化還元電位(標準水素電極基準(NHE))であり、水素発生電位は0V(vs.NHE)であり、酸素発生電位は1.23V(vs.NHE)である。酸素発生のためには、光触媒として用いる半導体の価電子帯の上端が酸素発生電位よりも正でなくてはならず、水素発生のためには、光触媒として用いる半導体の伝導帯の底が水素発生電位よりも負でなくてはならない。図1より、本発明の光触媒材料である窒化物系化合物半導体(Al1-yGa1-xNは中間バンドを持ち、太陽光の紫外領域だけでなく可視光領域、赤外光領域で光を吸収して、電子を伝導帯に励起し、正孔を価電子帯に励起することができる。そして、中間バンドを有してももともとの伝導帯と価電子帯の位置は変わらないので、この条件を共に満たしている。つまり、本発明の光触媒材料は、(1)中間バンドを有することにより、太陽光の紫外領域だけでなく可視光領域、赤外光領域を含む全領域の光吸収効率が高い、(2)伝導体の底のエネルギー準位がH/Hの酸化還元電位よりも負である(酸素製造のためには価電子帯の上端がO/HOの酸化還元電位よりも正である)という条件を満たす、(3)水中で光照射下しても材料劣化がないか極めて少ない、等の条件を満たしている。また、同図から分かるように、y<1としたAlGaMnNにおいてAlの含有量を増やしていけば、バンドギャップが広がるので光吸収により伝導帯に活性化された電子による還元力と価電子体に活性化された正孔による酸化力が強まり、より高効率な光触媒装置を提供することができる。
 本発明のGaTN、GaAlTNあるいはAlTNなどの窒化物系化合物半導体は、アンモニアやヒドラジン等の含窒素原子ガスを窒素源とする分子線エピタキシー法(MBE法)により製造することができる。MBE法では、含窒素原子ガスを真空雰囲気中に導入し、含窒素原子ガスを基板上あるいはその近傍で光分解又は熱分解しながら、基板上にGaあるいはAlと3d遷移金属Tの金属分子線を照射し、GaTNあるいはGaAlTNあるいはAlTNを成長させる。3d遷移金属Tの濃度は、成膜時の3d遷移金属元素セルの温度を調整し供給量を調整することにより変化させることができる。
 また、本発明のGaTN、GaAlTNあるいはAlTNなどの窒化物系化合物半導体は、高周波スパッタ法によっても製造することができる。スパッタによる製膜は、組成を変更することが容易であり、かつ大面積の製膜に適しているため、本発明のGaN系あるいはGaAlN系あるいはAlN系などの窒化物化合物半導体膜を製造するのに適している。スパッタ法では真空槽中に基板とGaNあるいはGaAlNあるいはAlNターゲットを設置し、窒素とアルゴンの混合ガスを導入して高周波によるプラズマを生成し、スパッタされたGaNあるいはGaAlNあるいはAlNを基板上に堆積させて製膜する。この時、GaNあるいはGaAlNあるいはAlNターゲット上に3d遷移金属チップを設置することにより、Gaおよび/またはAlが3d遷移金属で置換されたGaN系化合物半導体が得られる。また、3d遷移金属チップの面積や個数、配置を変化させるなどの方法により、置換量を任意に調整することができる。また、スパッタ法で作製されたGaN系あるいはGaAlN系あるいはAlN系などの窒化物化合物半導体は微結晶またはアモルファス様の構造をしめす。
 例えば、MBE法で作製したGa1-xMnNのホール効果測定をファンデルパウ法により行ったところ、p型の伝導性を示し、xが0.068の時のキャリア濃度は2×1020/cmであった。
 一方、例えばスパッタ法により作製したGaの一部を3d遷移金属で置換したGaN系膜(GaTdN)は同様にホール効果測定をファンデルパウ法により行ったところ、n型の導電性を示した。なお、製膜の方法によって導電性の型が変わる理由については不明であるが、現在その原因を究明中である。
 ここまでは、光触媒材料がGaTN、GaAlTNあるいはAlTNなどの窒化物系化合物半導体のみからなる場合について説明したが、本発明には、GaTN、GaAlTNあるいはAlTNなどの窒化物系化合物半導体層に他の半導体層を積層した構造を有するものも含まれる。
 本発明のGaTN、GaAlTNあるいはAlTNなどの窒化物系化合物半導体は、MBE法で作製したものは結晶性が高く、スパッタ法で作製したものは微結晶またはアモルファス様態を有している。MBE法で作成した場合は、GaN系あるいはGaAlN系あるいはAlN系と同様の格子定数を有し、格子整合したpn接合を形成することができる。したがって、GaTN、GaAlTNあるいはAlTNなどの窒化物系化合物半導体からなる第1の半導体層に、一般式Al1-mGaN(0≦m≦1、mはyと同じであってもよい。)で表される化合物、例えばGaN系あるいはGaAlN系あるいはAlN系等の第2の半導体層を積層させることができる。より好ましくは第1の半導体層と第2の半導体層がpn接合を形成させることができる。例えば、本発明のGaTNを、n-GaN膜上にMBE法により成長させれば、p-GaTN/n-GaNやp-GaTN/n-GaNからなるヘテロpn接合を形成することができる。あるいは、p-GaN基板上にスパッタにより3d遷移金属でGaの一部を置換したGaTNを製膜してp-GaN/n-GaTNのヘテロpn接合を形成することができる。
 また、GaTN、GaAlTNあるいはAlTNなどの窒化物系化合物半導体からなる第1の半導体層を、pn接合を形成する二層から構成することもできる。例えば、アクセプタドーパントを注入してp-GaTNが得られ、ドナードーパントを注入してn-GaTNが得られるので、n-GaTN/p-GaTNを作製することができる。
 また、積層された第1の半導体層、中間層および第2の半導体層からなり、中間層がGaTN、GaAlTNあるいはAlTNなどの窒化物系化合物半導体からなり、第1の半導体層および第2の半導体層が一般式Al1-nGaN(0≦n≦1、nはyと同じであってもよい。)で表される化合物からなる構造を有してもよい。
 また、本発明の光触媒材料の形態は、特に限定されず、膜でも粉末でもよい。
 本発明の光触媒装置は、本発明の光触媒材料を用いるものであれば特に限定されない。具体例としては、水(水溶液)から水素を得る水素発生用の光触媒装置や、電子および正孔の酸化還元反応により有毒物質を分解して無毒化する有害物質分解用の光触媒装置を挙げることができる。
 水素発生用の光触媒装置としては、光触媒材料と、該光触媒材料を水溶液(あるいは水)に浸漬させる浸漬手段を有し、光触媒材料に太陽光を照射し水溶液を分解して水素を発生させる装置を挙げることができる。また、電気的に接続されたカソードとアノードと、該カソードとアノードを水溶液に浸漬させる浸漬手段を有し、該アノードまたは該カソードに光触媒材料を用い、光触媒材料に太陽光を照射し水溶液を分解して水素を発生させる装置を挙げることができる。浸漬手段には、水槽を用いることができる。水槽は、光触媒材料に太陽光を照射可能であればその形状は特に限定されない。また、必要に応じて、水溶液を連続的に供給するポンプ等の供給手段を用い、水槽に連続的に水溶液を供給することもできる。
実施の形態1
 図2は、本発明のGaMnNのバンド構造の一例を示す模式図である。同図中、VBは価電子帯、CBは伝導帯、IBは不純物バンドからなる中間バンド、EはGaMnNのバンドギャップ、Eはフェルミ準位、Eは不純物バンドと伝導帯の間のバンドギャップ、Eは価電子帯と不純物バンドの間のバンドギャップを示す。ここで、中間バンドが存在してもGaMnNのバンドギャップEは、Mnを添加していないGaNのバンドギャップと同じである。GaMnNに太陽光を照射することにより、紫外光により価電子帯VBから伝導帯CBに電子eが直接励起(同図中に記載の(0))されるとともに、可視光および赤外光により中間バンドIBを介して価電子帯VBから不純物バンドIBの非占有部分への電子eの励起(同図中に記載の(2))、そして中間バンドIBの占有部分から伝導帯CBへの電子eの励起(同図中に記載の(1))の3タイプの励起が起きる。これらの励起によって伝導帯CBには多くの電子eが、価電子帯VBには多くの正孔hが存在するようになる。この直接励起(0)と不純物バンドIBを介した励起(1)(2)が可能なことにより、本発明の光触媒材料は、前述のように紫外光だけでなく、可視光、赤外光にいたる広い波長範囲の太陽光を吸収し、高効率で電荷キャリアを励起することができる。つまり、本発明の光触媒材料は、電子eの励起が可能な中間バンドを有することが大きな特徴である。
 なお、ここでは3d遷移金属としてMnのみを用いたが、Sc、Ti、V、Cr、Mn、Fe、Co、NiおよびCuからなる群から選択された複数の3d遷移金属を用いれば、複数の中間バンドが形成でき、さらに光電変換効率を向上することができる。
 また、図3は、図2にバンド構造を示したGaMnN層を含む光触媒材料をアノードとして用いた光触媒装置100の構造を示す模式図である。水槽107は純水または電解質水溶液108で満たされ、イオン交換膜105によりアノード室109とカソード室110に分けられている。カソード室110には白金板がカソード106として設置され、アノード室109にはアノード101が設置されている。アノード101は、GaMnN層102からなり、GaMnN層102の裏面には電荷取り出し電極104が形成されている。さらに、電荷取り出し電極104は直接電解質水溶液108と接触しないように防水絶縁膜112でコートされている。ここで113は導線111が直接電解質水溶液108と接触しないようにするための防水絶縁管である。
 アノード101のGaMnN層102に太陽光が照射されると前述のように太陽光の紫外光、可視光、赤外光の広い範囲の波長成分により電荷キャリアが有効に励起される。励起された電子eは電荷取り出し電極104から導線111を介してカソード106へ移動する。GaMnN層102の表面では、電解質水溶液108と反応して正孔h+の酸化作用により酸素と水素イオンを発生し、水素イオンはイオン交換膜105を通ってカソード室110へ移動し、カソード106では電子の還元作用により水素を発生する。なお、ここでは電解質溶液108として同じ溶液を使用しているが、カソード室110とアノード室109で異なった溶液を用いてもよい。
 ここで、GaMnNはドナードーパントによるn型のものを用いればフェルミ準位が高くなり水素発生効率が高くなる。また、カソードとして白金を用いているが、炭素、白金を担持した炭素、ニッケル、銅、亜鉛、ルテニウム、ロジウム等の材料を用いることができる。また、上記の金属を担持した炭素、半導体、セラミックを用いることもできる。
実施の形態2
 図4は、p-GaN/GaMnNの積層構造のバンド構造の一例を示す模式図である。同図中、211はp-GaN層、212はGaMnN層であり、VBは価電子帯、CBは伝導帯、IBは不純物バンドからなる中間バンド、EはGaMnNのバンドギャップ、Eはフェルミ準位、Eは不純物バンドと伝導帯の間のバンドギャップ、Eは価電子帯と不純物バンドの間のバンドギャップを示す。GaMnN層212に光を照射することにより、価電子帯から伝導帯に電子eが直接励起(0)されるとともに、不純物バンドを介して価電子帯から不純物バンドの非占有部分への電子の励起(2)、そして不純物バンドの占有部分から伝導帯への電子の励起(1)が起きることを示している。励起による電子eはp-GaN層211によりブロックされGaMnN層212に留まり、正孔hはp-GaN層211へ移動し、電荷キャリアの分離が行われる。ここで、紫外線照射によってp-GaN層211でも価電子帯から伝導帯に電子eが直接励起されるが、基本的動作は変わらないので説明の明確化のため図4では省略している。
 図5は、図4のp-GaN/GaMnNの積層構造を有する光触媒材料をアノードとして用いた光触媒装置200の構成を示す模式図である。水槽207は純水または電解質水溶液208で満たされ、イオン交換膜205によりアノード室209とカソード室210に分けられている。カソード室210には白金板がカソード206として設置され、アノード室209にはアノード201が設置されている。アノード201は、GaMnN層203の一方の主面にp-GaN202が積層された構造を有し、GaMnN層203の他方の主面には電荷取り出し電極204が形成されている。電荷取り出し電極204は直接電解質水溶液208と接触しないように防水絶縁膜212でコートされている。ここで213は導線211が直接電解質水溶液208と接触しないようにするための防水絶縁管である。
 アノード201のGaMnN層203に太陽光が照射されると電荷キャリアが励起され、GaMnN層203の価電子帯に励起された正孔hはp-GaN層202に移動し、GaMnN層203の伝導帯に励起された電子eはGaMnN層203の表面へ移動する。電子eは電荷取り出し電極204から導線211を介してカソード206へ移動する。アノード200のp-GaN層202の表面では水と反応して正孔hの酸化作用により酸素と水素イオンが発生し、水素イオンはイオン交換膜205を通ってカソード室210へ移動し、カソード206では電子の還元作用により水素を発生する。ここで、内部電界によるキャリア分離移動効率を上げるためにGaMnN層203はドナードーパントによるn型のものを用いることができる。
実施の形態3
 図6は、図4に示したp-GaN/GaMnNの積層構造を有する光触媒材料をカソードとして用いた光触媒装置300の構造を示す模式図である。水槽307は純水または電解質水溶液308で満たされ、イオン交換膜305によりカソード室309とアノード室310に分けられている。アノード室310には白金板がアノード306として設置され、カソード室309にはカソード301が設置されている。カソード301は、p-GaN層303の一方の主面にGaMnN層302が積層された構造を有し、p-GaN層303の他方の主面には電荷取り出し電極304が形成されている。電荷取り出し電極304は直接電解質水溶液308と接触しないように防水絶縁膜312でコートされている。ここで313は導線311が電解質水溶液308と直接接触しないようにするための防水絶縁管である。
 カソード301のGaMnN層302に太陽光が照射されると電荷キャリアが励起され、GaMnN層302の価電子帯に励起された正孔hはp-GaN層303に移動し、GaMnN層302の伝導帯に励起された電子eはGaMnN層302の表面へ移動する。そして、電流が電荷取り出し電極304から導線311を介してアノード306へ流れる。アノード306では水と反応して正孔hの酸化作用により酸素と水素イオンを発生し、水素イオンはイオン交換膜305を通って移動し、カソード301のp-GaN層303の表面では電子の還元作用により水素を発生する。ここで、内部電界による電荷キャリア分離移動効率を上げるためにGaMnN層302はドナードーパントによるn型のものを用いることができる。
 ここで、アノードとして白金を用いているが、炭素、白金を担持した炭素、ニッケル、銅、亜鉛、ルテニウム、ロジウム等の材料を用いることができる。また、上記の金属を担持した炭素、半導体、セラミックを用いることができる。
実施の形態4
 図7は、n-GaN/GaMnNの積層構造のバンド構造の別の例を示す模式図である。同図中、401はn-GaN層、402はGaMnN層であり、VBは価電子帯、CBは伝導帯、MBは不純物バンドからなる中間バンド、EはGaNのバンドギャップ、Eはフェルミ準位、Eは不純物バンドと伝導帯の間のバンドギャップ、Eは価電子帯と不純物バンドの間のバンドギャップを示す。光照射により、価電子帯から伝導帯に電子が励起され、また価電子帯から不純物バンドの非占有部分への電子の励起(2)、そして不純物バンドの占有部分から伝導帯への電子の励起(1)が起きることを示している。光励起による電子eはn-GaN層401へ移動するが、正孔hはn-GaN層401にブロックされGaMnN層402内に留まる。ここで、紫外線照射によってn-GaN層401でも価電子帯から伝導帯に電子eが直接励起されるが、基本的動作は変わらないので説明の明確化のため図7では省略している。
 図8は、図7のn-GaN/GaMnNの積層構造を有する光触媒材料をアノードとして用いた光触媒装置400の構造を示す模式図である。水槽407は純水または電解質水溶液408で満たされ、イオン交換膜405によりカソード室410とアノード室409に分けられている。カソード室410には白金板がカソード406として設置され、アノード室409にはアノード401が設置されている。アノード401は、n-GaN層403の一方の主面にGaMnN層402が積層された構造を有し、n-GaN層403の他方の主面には電荷取り出し電極404が形成されている。電荷取り出し電極404は電解質水溶液408と直接接触しないように防水絶縁膜412でコートされている。ここで413は導線411が電解質水溶液408と直接接触しないようにするための防水絶縁管である。
 アノード401のGaMnN層402に太陽光が照射されると電子eが励起され、GaMnN層402の価電子帯に励起された正孔hはGaMnN層402の表面へ移動し、GaMnN層402の伝導帯に励起された電子eはn-GaN層403に移動し、さらに電荷取り出し電極404から導線411を介してカソード406へ移動する。n-GaN層403では水と反応して正孔hの酸化作用により酸素と水素イオンを発生し、水素イオンはイオン交換膜405を通ってカソード室410へ移動し、カソード406では電子の還元作用により水素を発生する。ここで、キャリア分離移動効率を上げるためにGaMnN層402はアクセプタドーパントによるp型のものを用いることができる。
 ここで、カソードには白金を用いているが、炭素、白金を担持した炭素、ニッケル、銅、亜鉛、ルテニウム、ロジウム等の材料を用いることができる。また、上記の金属を担持した炭素、半導体、セラミックを用いることができる。
実施の形態5
 図9は、図7に示したn-GaN/GaMnNの積層構造を有する光触媒材料をカソードとして用いた光触媒装置500の構造を示す模式図である。水槽507は純水または電解質水溶液508で満たされ、イオン交換膜505によりカソード室509とアノード室510に分けられている。アノード室510には白金板がアノード506として設置され、カソード室509にはカソード501が設置されている。カソード501は、GaMnN層502の一方の主面にn-GaN層503が積層された構造を有し、n-GaN層503の他方の主面には電荷取り出し電極504が形成されている。電荷取り出し電極508は電解質水溶液508と直接接触しないように防水絶縁膜512でコートされている。ここで513は導線511が電解質水溶液508と直接接触しないようにするための防水絶縁管である。
 カソード501のGaMnN層502に太陽光が照射されると電子eが励起され、GaMnN層502の価電子帯に励起された正孔hはGaMnN層502の表面へ移動し、GaMnN層502の伝導帯に励起された電子eはn-GaN層531に移動する。そして、電流が電荷取り出し電極504から導線511を介してアノード506へ流れる。アノード506では水と反応して正孔hの酸化作用により酸素と水素イオンを発生し、水素イオンはイオン交換膜505を通ってカソード室509へ移動し、n-GaN層503では電子の還元作用により水素を発生する。また、キャリア分離移動効率を上げるためにGaMnN層502はアクセプタドーパントによるp型のものを用いることができる。
 ここで、アノードとして白金を用いているが、炭素、白金を担持した炭素、ニッケル、銅、亜鉛、ルテニウム、ロジウム等の材料を用いることができる。また、上記の金属を担持した炭素、半導体、セラミックを用いることができる。
 なお、実施の形態1ではGaMnNを単独で、実施の形態2から5では、p-GaN/GaMnNやn-GaN/GaMnNの積層構造を有する光触媒材料を用いて説明したが、p-GaMnN/GaMnNやn-GaMnN/GaMnNの積層構造を有する光触媒材料などを用いることもできる。
実施の形態6
 図10は、p-GaMnN/n-GaMnNの積層構造を有する光触媒材料を用いた光触媒装置600の構造を示す模式図である。601はn-GaMnN層、602はp-GaMnN層であり、水槽607は純水または電解質水溶液608で満たされ、p-GaMnN/n-GaMnNの積層構造の接合面を境にして、イオン交換膜605によりカソード室610とアノード室609に分けられている。カソード室610にはn-GaMnN層601が、アノード室609にはp-GaMnN層602が電解質水溶液608と接している。n-GaMnN層601もしくはp-GaMnN層602の片側または両側に太陽光が照射されると(図中ではp-GaMnN層602にのみ光が照射されている)、電荷キャリアが励起され、価電子帯に励起された正孔hはp-GaMnN層602に移動し、伝導帯に励起された電子eはn-GaMnN層601へ移動する。p-GaMnN層602の表面では水と反応して正孔h+の酸化作用により酸素と水素イオンを発生し、水素イオンはイオン交換膜605を通ってカソード室610へ移動し、n-GaMnN層601側では電子の還元作用により水素を発生する。
 ここでは、p-GaMnN/n-GaMnNの積層構造を有する光触媒材料を用いたが、p-GaN/n-GaMnNの積層構造を有する光触媒材料、p-GaMnN/n-GaNの積層構造を有する光触媒材料などを用いることもできる。ただし、主に太陽光を照射するのはn-GaMnNまたはp-GaMnN側である。
 実施の形態1から6では、光触媒材料として、母材にGaN、3d遷移金属としてMnを用いた例について説明したが、母材にGaAlNまたはAlNを用い、3d遷移金属としてMn以外のSc、Ti、V、Cr、Fe、Co、NiおよびCuからなる群から選択された少なくとも1種を用いた場合でも、実施の形態1から5の場合と同様に光触媒装置を構成することができる。
 また、上記の実施の形態1から6では、本発明の光触媒材料を薄膜形成して電極として用いているが、本発明の光触媒材料を粒子状に形成して電極材料に担持して用いることもできる。例えば、本発明の光触媒材料を電極材料に担持して形成した電極には、耐久性に優れたステンレス板に本発明の光触媒材料を坦持したものが含まれる。
 また、実施の形態1から6では、本発明の光触媒材料からなる電極を用いた光触媒装置の例について説明したが、本発明の光触媒装置の別の態様として、水溶液を含む水槽に本発明の光触媒材料を分散させて太陽光を照射する方法を用いて水素を発生させる態様を用いることもできる。
実施の形態7
 実施の形態1から6では光触媒材料としてGaMnNを用いた例について説明したが、次に別の光触媒材料として、母材としてGaN、3d遷移金属としてCoを使用したGaCoN、母材としてAlN、3d遷移金属としてNiを使用したAlNiN、母材としてAlGaN、3d遷移金属としてNiを使用したAlGaNiNなどの材料を用いた実施形態を説明する。
 まず光触媒材料としてGaCoNを用いた実施形態について説明を行う。図22は、p型GaNの上にGaCoNを形成したp-GaN/GaCoNの積層構造体のバンド構造の一例を示す模式図である。同図中、703はp-GaN層、702はGaCoN層であり、VBは価電子帯、CBは伝導帯、IBは不純物バンドからなる中間バンド、EはGaCoNのバンドギャップ、Eはフェルミ準位、Eは不純物バンドと伝導帯の間のバンドギャップ、Eは価電子帯と不純物バンドの間のバンドギャップを示す。同図中の鎖線の矢印は、GaCoN層702に太陽光を照射することにより、価電子帯から伝導帯に電子eが直接励起(0)されるとともに、不純物バンドを介して価電子帯から不純物バンドの非占有部分への電子の励起(2)、そして不純物バンドの占有部分から伝導帯への電子の励起(1)が起きることを示している。励起による電子eはp-GaN層703によりブロックされGaCoN層702に留まり、正孔hはp-GaN層703へ移動し、電荷キャリアの分離が行われる。
 図23は、サファイア基板701の上にスパッタリング法(MBE法でも作製可能)で図22に示したp-GaN703/GaCoN702が積層された構造体を半導体電極704として用いた光触媒装置700の構造を示す模式図である。ここで、光触媒材料GaCoN702はGaが87%でCoが13%の組成のものを使用している。水槽707には1mol/Lの塩酸水溶液が電解質水溶液708として満たされており、また、水槽707にはアノード電極として設置された半導体電極704とともに白金電極706がカソード電極として設置されている。p-GaN層703の一方の主面にはGaCoN層702が積層され、p-GaN層703とGaCoN層702の接合面に、電荷取り出し電極705が形成されている。電荷取り出し電極705は直接電解質水溶液708と接触しないように防水絶縁膜713としてエポキシ樹脂でコートされている。ここで712は電荷取り出し電極705に電圧を印加するための外部電源であり、導線711は電荷取り出し電極705と白金電極706を電気的に接続する役目を果たすものである。
 GaCoN層702に太陽光が照射されると、価電子帯から伝導帯へ、不純物バンドを介して価電子帯から不純物バンドの非占有部分へ、そして不純物バンドの占有部分から伝導帯への3段階で電子が励起され、GaCoN層702の価電子帯に励起された正孔hはp-GaN層703に移動し、GaCoN層702の伝導帯に励起された電子eはGaCoN層702にとどまる。そして、電子eが電荷取り出し電極705から導線711を介して白金電極706へ流れる。
 光を照射していない状態で、外部電源712により電荷取り出し電極704に-3V~+2.5Vを印加した時は、半導体電極704および白金電極706には水素の発生は観測されなかった。太陽光を照射した状態では、外部電源712により電荷取り出し電極705に+2.2V以上の電圧を印加すれば半導体電極704および白金電極706に水素の発生が観測された。また、-0.3V以下の電圧を印加すれば、白金電極706に多量の水素の発生が観測された。また、太陽光のように紫外、可視、赤外領域の光を含んだものでなく、可視光のみの照射でも外部電源712により電荷取り出し電極704に-0.3V以下の電圧を印加すれば、白金電極706に多量の水素の発生が観測された。この現象は、GaNではバンドギャップが約3.4eVであるため可視光の照射では電子は励起されないが、GaCoN層702では3d遷移金属Co添加による中間バンドを有しているため可視光照射でも電子が励起されていることを示しており、従来の酸化チタンTiOのように紫外光による価電子帯から伝導帯への単一の電子励起しか行えない光触媒材料に比べ、太陽光が含む紫外、可視、赤外領域の光を有効に水素発生に使用できることを示している。ここで、原理上は、電荷取り出し電極704に電圧を印加するための外部電源712は必要ないが、本実験では水素を発生させるために必要であった。理由は、半導体電極704での種々の欠陥が考えられるが詳細は明確ではなく、さらにより詳細な解析を行う予定である。
実施の形態8
 図24は、p-GaN/GaCoN/n-GaNのpan積層構造体のバンド構造の一例を示す模式図である。同図中、824はp-GaN層、822は光触媒材料であるGaCoN層、823はn-GaN層であり、VBは価電子帯、CBは伝導帯、IBは不純物バンドからなる中間バンド、EはGaMnNのバンドギャップ、Eはフェルミ準位、Eは不純物バンドと伝導帯の間のバンドギャップ、Eは価電子帯と不純物バンドの間のバンドギャップを示す。同図中の鎖線の矢印は、GaCoN層822に太陽光を照射することにより、価電子帯から伝導帯に電子eが直接励起(0)されるとともに、不純物バンドを介して価電子帯から不純物バンドの非占有部分への電子の励起(2)、そして不純物バンドの占有部分から伝導帯への電子の励起(1)が起きることを示している。励起による電子eはp-GaN層824によりブロックされn-GaN層823へ移動し、正孔hはn-GaN層823によりブロックされp-GaN層804へ移動し、電荷キャリアの分離が有効に行われる。
 図25は、サファイア基板801の上に図24に示したpan構造体と同様のp-GaN 804/GaCoN(300nm厚) 802/n-GaN(250nm厚) 803が積層された構造体を半導体電極として用いた光触媒装置800の構造を示す模式図である。光触媒材料GaCoN 802はGaが93.5%でCoが6.5%の組成のものを使用している。水槽807には1mol/Lの塩酸水溶液が電解質水溶液808として満たされており、また、水槽807には半導体電極とともに白金電極806が電極として設置されている。サファイア基板801上に形成されたp-GaN層803の一方の主面にはGaCoN層802が形成され、GaCoN層802の上にはn-GaN層803が形成されている。さらにn-GaN803の一主面には電荷取り出し電極805が形成されている。電荷取り出し電極805は直接電解質水溶液808と接触しないように防水絶縁膜813としてエポキシ樹脂でコートされている。ここで812は電荷取り出し電極805に電圧を印加するための外部電源である。導線811は電荷取り出し電極805と白金電極806を電気的に接続する役目を果たす。
 図25のGaCoN層802に太陽光が照射されると既に述べてきたように3段階で電子が励起され、GaCoN層802の価電子帯に励起された正孔hはp-GaN層804に移動し、GaCoN層802の伝導帯に励起された電子eはn-GaN層803の表面へ移動する。そして、電子eが電荷取り出し電極804から導線811を介して白金板806へ流れる。GaCoN層802に太陽光または可視光を照射した状態で、外部電源812により、電荷取り出し電極805に電圧を印加しない時にはn-GaN層803側から水素が発生した。GaCoN層802に太陽光を照射した状態で、外部電源812により、電荷取り出し電極805に負電圧を印加したときには主に白金電極806側から水素が発生し、電荷取り出し電極805に正電圧を印加したときには主にn-GaN層803側から水素が発生した。また、可視光のみの照射でも同様の方法により多量の水素の発生が観測された。この現象は既に述べてきたように中間バンドにより可視光照射により電子の励起が起こっていることを示している。ここで、動作原理上は、外部電源812は必要ないが、本実験ではより高効率で水素を発生させるために必要であった。理由は、半導体電極を形成するp-GaN804/GaCoN802/n-GaN803構造での種々の欠陥が考えられるが、詳細は明確ではなくさらに解析を行う予定である。
実施の形態9
 図26は、サファイア基板901の上に図24に示したpan構造体と同様のp-GaN/GaCoN(300nm厚)/n-GaN(250nm厚)が積層された構造を有する光触媒材料を半導体電極として用いたもう一つの実施の形態を示す光触媒装置900の構造を示す模式図である。光触媒材料GaCoN層902はGaが93.5%でCoが6.5%の組成のものを使用している。水槽907には1mol/Lの塩酸水溶液が電解質水溶液908として満たされており、実施の形態8と異なり半導体電極のみが電極として設置されている。GaCoN層902とn-GaN層903の接合面には電荷取り出し電極905が形成されている。電荷取り出し電極905は直接電解質水溶液908と接触しないように防水絶縁膜913としてエポキシ樹脂でコートされている。ここで912は電荷取り出し電極905間に電圧を印加するための外部電源である。導線911は電荷取り出し電極905間を電気的に接続する役目を果たす。
 図26のGaCoN層902に太陽光が照射されると電子が励起され、GaCoN層902の価電子帯に励起された正孔hはp-GaN層904に移動し、GaCoN層902の伝導帯に励起された電子eはn-GaN層903の表面へ移動する。そして、電荷取り出し電極905間を電子eが導線911を介して流れる。GaCoN層902に太陽光を照射した状態で、外部電源912により電荷取り出し電極905に電圧を印加しなくても、n-GaN層903側から水素が発生した。また、可視光のみの照射でも同様にn-GaN層903側から水素の発生が観測された。この現象は既に述べてきたように、可視光照射により中間バンドを介した電子の励起が起こっていることを示している。
実施の形態10
 次に、光触媒材料としてAlNiNを用いた実施の形態10について説明を行う。図27は、サファイア基板1001の上にAlNiN 1002を、さらにAlN 1003を積層した構造を有する半導体電極1004として用いた光触媒装置1000の構造を示す模式図である。光触媒材料AlNiN 1002はAlが80%で3d遷移金属Niが20%の組成のものを使用している。水槽1007には1mol/Lの塩酸水溶液が電解質水溶液1008として満たされており、また、水槽1007には半導体電極1004とともに白金電極1006が設置されている。AlNiN層1002とAlN層1003との端面には電荷取り出し電極1005が形成されている。電荷取り出し電極1005は直接電解質水溶液1008と接触しないように防水絶縁膜1013としてエポキシ樹脂でコートされている。ここで1012は電荷取り出し電極1005に電圧を印加するための外部電源である。導線1011は電荷取り出し電極1005と白金電極1006を電気的に接続する役目を果たす。
 AlNiN層1002に太陽光が照射されると電子が励起され、外部電源1012により電荷取り出し電極1005に電圧を印加しない時には、半導体電極1004のAlN層1003側から水素発生が観測された。また、可視光のみの照射でも半導体電極1004のAlN層1003側から水素発生が観測された。太陽光あるいは可視光の照射時に、外部電源1012により電荷取り出し電極1005に負電圧を印加した時には、白金電極1006側から水素発生が観測された。また、外部電源1012により電荷取り出し電極1005に正電圧を印加した時には、半導体電極1004のAlN層1003側から水素発生が観測された。ここで、可視光で水素発生ができるのは、AlNではバンドギャップが約6.2eVであるため可視光の照射では電子は励起されないが、AlNiN層1002では中間バンドを有しているため可視光照射でも電子が励起されていることを示しており、太陽光の紫外、可視、赤外領域の光を有効に水素発生に使用できることを示している。
実施の形態11
 光触媒材料としてAlGaNiNを用いた実施の形態11ついて説明を行う。図28は、サファイア基板1101の上にn-GaN 1103を、さらにAlGaNiN 1102を積層した構造を有する半導体電極1104として用いた光触媒装置1100の構造を示す模式図である。ここで、光触媒材料AlGaNiN 1002は、AlとGaの比率は10%:90%で、(AlGa)が92%で3d遷移金属Niが8%の組成のものを使用している。水槽1107には1mol/Lの塩酸水溶液が電解質水溶液1108として満たされており、また、水槽1107には半導体電極1104とともに白金電極1106が設置されている。サファイア基板1101上に形成されたn-GaN層1103には、AlGaNiN層1102が形成されるとともに、電荷取り出し電極1105が形成されている。電荷取り出し電極1105は直接電解質水溶液1108と接触しないように防水絶縁膜1113としてエポキシ樹脂でコートされている。ここで1112は電荷取り出し電極1105に電圧を印加するための外部電源である。導線1111は電荷取り出し電極1105と白金電極1106を電気的に接続する役目を果たす。
 AlGaNiN層1102に太陽光が照射されると電子が励起され、外部電源1112により電荷取り出し電極1105に電圧を印加しない時には、白金電極1106側から水素発生が観測された。また、可視光のみの照射でも白金電極1106側から水素発生が観測された。太陽光および可視光の照射時ともに、外部電源1112により電荷取り出し電極1105に負電圧を印加した時には白金電極1106側から、正電圧を印加した時には半導体電極1104のAlGaNiN層1102側から水素発生が観測された。ここで、可視光のみの照射でも水素発生が観測されるのは、本実施形態の母材であるAlGaN(Al:Gaが10%:90%)ではバンドギャップが約3.7eVであるため可視光の照射では電子は励起されないが、AlGaNiN層1102が中間バンドを有しているため可視光照射でも電子が励起されていることを示しており、太陽光を有効に水素発生に使用できることを示している。
 以下、実施例を用いて本発明の光触媒材料をさらに詳しく説明するが、本発明は以下の実施例に限定されるものではない。
実施例1(Ga1-xMnN膜の作製)
 MBE装置を用いてGa1-xMnN膜を作製した。この装置は、真空槽を有し、その底壁側にはガス源からアンモニアガスを導入するガス導入ノズルと、第1の蒸着源および第2の蒸着源とが配置されている。真空槽の天井側にはヒータが配置されている。第1、第2の蒸着源内には、それぞれGaを主成分とする第1の金属材料と、Mnを主成分とする第2の金属材料が配置されている。基板には、サファイア、シリコン、石英、GaNなどが使用できるがここではサファイア基板を用いた。
 ヒータに通電して発熱させ、サファイア基板を950℃に加熱して清浄化処理を行った後、サファイア基板の温度を550℃まで降温させ、ガスノズルからアンモニアガスを噴出させ、サファイア基板に吹き付けるとともに、第1の蒸着源内の第1の金属材料を加熱し、Gaを主成分とする金属分子線を発生させ、サファイア基板表面に照射し、GaN薄膜からなるバッファ層を形成した。
 バッファ層を所定膜厚(0.2μm)に形成した後、サファイア基板を720℃に昇温させ、ガスノズルによってバッファ層表面に含窒素原子ガス(ここではアンモニアガス)を直接吹き付け、熱分解させると共に、第1、第2の蒸着源内の第1、第2の金属材料を加熱し、それぞれGaを主成分とする分子線とMnを主成分とする分子線とを、バッファ層に向けて照射して、バッファ層表面にGaMnN膜を形成した。第1の蒸着源の温度850℃、第2の蒸着源の温度630℃、アンモニアガスの流量5sccmの条件で、厚さ1μmのGaMnN膜を成膜した。
 GaMnN膜を成膜後、サファイア基板を、例えば硫酸と燐酸の混酸による化学エッチングまたは研磨工法で除き、GaMnN膜を得た。
 得られたGa1-xMnN膜のMn濃度を電子線マイクロアナライザー(EPMA)で測定したところ、xは0.082であった。
(結晶構造解析)
 薄膜X線回折装置(日本フィリップス製、X’part)を用いて、MBE法で作製したGaMnN膜のX線回折パターンの測定を行った。ウルツ鉱型GaNと同様に34.5度付近に反射ピークを観測し、ウルツ鉱型であることがわかった。
(光吸収スペクトル測定)
 光吸収スペクトルは、紫外可視分光光度計(島津製作所製、UV-3600及びSOLID Spec-3700)を用いて測定した。
 図11は、得られたGa1-xMnN膜(x=0.082)の光吸収スペクトルの一例である。また、参考のため、太陽光の放射強度スペクトル(AM0:地球軌道上、AM1.5:地表)と白色光源(朝日分光社製、MAX-302)の放射強度スペクトルを図中に示す。GaNが400nm~2000nmの波長域で吸収を示さないのに対し、Ga1-xMnN膜は、400~1000nmの波長域で8000cm-1以上の吸収係数を有している。また、紫外及び赤外領域でもGaNよりも吸収を有する。不純物バンドによる吸収は1500~700nm領域のブロードなピーク構造および700~400nm領域の連続吸収構造に認められる。また、図11から明らかなように、Ga1-xMnN膜の光吸収スペクトルは、太陽光の放射強度スペクトルと概ね波長域が対応しており、太陽光の未利用光を有効に利用することが可能である。
実施例2(Ga1-xMnN膜の作製)
 成膜時のMnセル温度を調整することによりMn供給量を制御した以外は、実施例1と同様の方法により、Ga1-xMnN膜を作製した。膜厚は0.4μm、xは0.05であった。光吸収係数は、300~1500nmの波長域で1000cm-1以上であった。
実施例3(Ga1-x-zMnMgN膜の作製)
 作製時にGa、Mnと同時にMgを供給した以外は、実施例2と同様の方法によりGa1-x-zMnMgN膜を作製した。膜厚は0.4μm、xは0.05、zは0.02であった。光吸収係数は、300~1500nmの波長域で1000cm-1以上であった。
実施例4(Ga1-xMnN:H膜の作製)
 Ga1-xMnN膜を作製する際、基板温度を600℃程度の低い値に設定し、アンモニアの分解を一部抑制することで水素を残留させた以外は実施例1と同様の方法によりGa1-xMnN:H膜を作製した。また、700℃以上の高い基板温度で作製し、水素が残留しなかったGa1-xMnN膜については、水素雰囲気中でホットフィラメント法により水素分子を熱分解し、Ga1-xMnN膜に照射することで、Ga1-xMnN:Hを作製した。膜厚は0.3μm、xは0.06、yは0.03であった。光吸収スペクトルを図12に示す。Ga1-xMnN:H膜は、400~1000nmの波長域で7000cm-1以上であり、300~1500nmの波長域で1000cm-1以上の吸収係数を有していた。また、紫外及び赤外領域でもGaNよりも大きな吸収を有する。不純物バンドによる吸収は1500~700nm領域のブロードなピーク構造および700~400nm領域の連続吸収構造に認められた。なお、MBE法による光触媒材料の製膜例とその特性としてGaNに3d遷移金属をドープした時の例を示したが、GaAlN、AlNに3d遷移金属をドープして製膜した時にも同様に優れた光吸収特性を示し、本発明の光触媒素子用の光触媒材料として用いることができる。
実施例5(スパッタ法による作製)
 例えば、スパッタ法によってGaN系化合物半導体を作製した例を説明する。高周波スパッタ装置の真空槽内に基板として単結晶サファイア上に形成したp-GaN、あるいはn-GaNを設置し、これと対向してGaNターゲットを設置する。ターゲット上にはGaと置換する3d遷移金属Tのチップを設置した。3d遷移金属Tの添加量の調整は、ここではチップの個数を変化させて行った。基板を設置するホルダーの裏面には基板加熱用ヒータが設置されている。チャンバ内を一旦排気した後、Ar-Nの混合ガスを導入し、基板を所定温度に加熱した後、高周波電力を印加してプラズマを誘起し、所定時間スパッタ製膜を行った。また、スパッタ製膜に先立って、基板およびターゲットをプラズマ中で清浄化してもよい。
主なスパッタ製膜条件を下記に示す。
RFパワー:200W
 基板温度 :300℃
 Ar:N混合比:2:1
製膜速度  :11nm/min
(組成分析)
 得られたGa1―xN膜は、3d遷移金属添加の有無に関わらず、緻密で平坦性を有し、また欠陥の少ない膜であった。スパッタ法により作製したGaN系化合物半導体膜の組成分析をラザフォード後方散乱分光法により行い、Ga1-xNのxを求めた。分析結果では、Gaおよび3d遷移金属の分析量と窒素の分析量から、薄膜が非化学量論的な組成を有する薄膜となっていることを示した。したがって、3d遷移金属元素の一部はGa位置を置換していない可能性もあるが、詳細は現在究明中である。
(結果)
 スパッタ法で製膜した薄膜の光吸収スペクトルを測定した。例えば、図13~図16にGaNのGaを各種の3d遷移金属で置換した試料の光吸収スペクトルの測定結果の一例を示す。図13は3d遷移金属がVで、x=0.056の試料の光吸収スペクトルであり、3.3eVより長波長側に吸収のテールを有し、1.5eV近傍にブロードな吸収ピーク持つ。波長300~1500nmでの吸収係数は3000cm―1以上である。
 図14は3d遷移金属がCrであり、x=0.088の試料の光吸収スペクトルであり、3.3eVより長波長側に吸収のテールを有し、1.5~2.0eV近傍にブロードな吸収ピーク持つ。波長300~1500nmでの吸収係数は1000cm―1以上である。
 図15は3d遷移金属がCoである試料の光吸収スペクトルであり、x=0.052の試料は3.3eVより長波長側に吸収のテールを有し、波長300~1500nmでの吸収係数は1000cm―1以上である。また、同様にx=0.128の試料は吸収係数の高いテールを有し、1.7eV近傍にピークを有し、300~1500nmでの吸収係数は3000cm―1以上である。
 図16は3d遷移金属がMnであり、x=0.2の試料の光吸収スペクトルであり、3.3eVより長波長側に吸収係数の高いテールを有しており、300~1500nmでの吸収係数は5000cm―1以上である。MBE法で作製した試料は図18に示したように1.5eV近傍に明確な吸収ピークを有していたのに対し、スパッタ法で作製した試料は高い吸収係数を有するものの、明確なピークは観察されなかった。この原因は明らかとなっていないが、MBE法で作製した試料は比較的結晶性が高いのに対して、スパッタ法で作製した試料は結晶性が低いため明確な不純物バンドを形成しない代わりに、バンドギャップに複数のエネルギー準位を形成したものと推定されるが、現在究明中である。
実施例6
 次に、スパッタ法による光触媒材料の製膜例とその特性としてGaN、GaAlN、AlNに3d遷移金属Tをドープして製膜した時にも同様に優れた光吸収特性を示す。スパッタ法で製膜した薄膜の光吸収スペクトルを測定した。図17~図21にGaN、GaAlN、AlNのGaあるいはAlを各種の3d遷移金属Tで置換した試料の光吸収スペクトルの測定結果を示す。図17は母材がGaN、AlGaN、AlNであり、3d遷移金属TがVで、x=0.056の試料の光吸収スペクトルであり、3.3eVより長波長側に吸収のテールを有し、1.5eV近傍にブロードな吸収ピーク持つ。波長300~1500nmでの吸収係数は3000cm―1以上である。
 図18は母材がGaN、AlGaN、AlNであり、3d遷移金属がCrであり、x=0.088の試料の光吸収スペクトルであり、3.3eVより長波長側に吸収のテールを有し、1.5~2.0eV近傍にブロードな吸収ピーク持つ。波長300~1500nmでの吸収係数は1000cm―1以上である。
 図19は母材がAlNであり、3d遷移金属がCoである試料の光吸収スペクトルであり、x=0.052の試料は370nmより長波長側に吸収のテールを有し、波長300~1500nmでの吸収係数は1000cm―1以上である。また、同様にx=0.13の試料は吸収係数の高いテールを有し、730nm近傍にピークを有し、300~1500nmでの吸収係数は3000cm―1以上である。
 図20は母材がAlGaN、AlNであり、3d遷移金属がMnであり、x=0.11および0.2の試料の光吸収スペクトルであり、370nmより長波長側に吸収係数の高いテールを有しており、300~1500nmでの吸収係数は5000cm―1以上である。MBE法で作製した試料は図18に示したように1.5eV近傍に明確な吸収ピークを有していたのに対し、スパッタ法で作製した試料は高い吸収係数を有するものの、明確なピークは観察されなかった。この原因は明らかとなっていないが、MBE法で作製した試料は比較的結晶性が高いのに対して、スパッタ法で作製した試料は結晶性が低いため明確な不純物バンドを形成しない代わりに、バンドギャップに複数のエネルギー準位を形成したものと推定されるが、現在究明中である。
 図21は母材がAlGaN、AlNであり、3d遷移金属がNiであり、x=0.09の試料の光吸収スペクトルであり、370nmより長波長側に吸収係数の高いテールを有しており、300~1500nmでの吸収係数は3000cm―1以上である。
 本発明では、太陽光の広い波長領域を吸収して電気に変換することができる光触媒材料を用いて形成した光触媒素子を使用しているので、水または水溶液から直接的に水素を発生する光触媒装置に用いることができる。
 100、200、300、400、500、600、700、800、900、1000、1100 光触媒装置
 101、201、401 アノード
 102、202、222、302、402、422、502 GaMnN層
 702、802、822、902 GaCoN層
 1002 AlNiN
 1003 AlN
 203、211、202、221、303、703、804、824、904 
p-GaN層
 401、403、421、503、803、823、903 n-GaN層
 601 n-GaMnN
 602 p-GaMnN
 701、801、901、1001、1101 サファイア基板
 704、1004、1104 半導体電極
 104、204、304、404、504、705、805、905、1005、1105 電荷取り出し電極
 706、806、1006、1106 白金電極
 105、205、305、405、505、605 イオン交換膜
 106、206、301、406、501 カソード
 107、207、307、407、507、607、707、807、907、1007、1107 水槽
 108、208、308、408、508、608、708、808、908、1008、1108 電解質水溶液
 109、209、310、409、510、609 アノード室
 110、210、309、410、509、610 カソード室
 111、211、311、411、511、711、811、911、1011、1111 導線
 112、212、312、412、512、713、813、913、1013、1113 防水絶縁膜
 113、213、313、413、513 防水絶縁管
 712、812、912、1012、1112 外部電源

Claims (16)

  1.  一般式Al1-yGaN(0≦y≦1)で表される化合物のAlおよび/またはGaの一部が少なくとも1種の3d遷移金属で置換された窒化物系化合物半導体であって、価電子帯と伝導帯の間に1以上の不純物バンドを有し、波長領域1500nm以下、300nm以上の全波長領域における光吸収係数が1000cm-1以上の値を有する窒化物系化合物半導体を含む光触媒材料。
  2.  上記3d遷移金属が、Sc、Ti、V、Cr、Mn、Fe、Co、NiおよびCuからなる群から選択された少なくても1種である請求項1記載の光触媒材料。
  3.  上記Alに対するGa置換量をyとし、3d遷移金属Tの置換量をxとしたとき、一般式(Al1-yGa1-xNで表され、yが0≦y≦1であり、xが0.02≦x≦0.3の範囲である請求項1記載の光触媒材料。
  4.  上記窒化物系化合物半導体にアクセプタドーパントおよび/またはドナードーパントがドープされてなる請求項1記載の光触媒材料。
  5.  上記窒化物系化合物半導体からなる第1の半導体層に、一般式Al1-mGaN(0≦m≦1、mはyと同じであってもよい。)で表される化合物からなる第2の半導体層が積層されてなる請求項1記載の光触媒材料。
  6.  上記の第1の半導体層と上記の第2の半導体層がpn接合を形成している請求項5記載の光触媒材料。
  7.  上記窒化物系化合物半導体からなる第1の半導体層が、pn接合を形成する二層からなる請求項1記載の光触媒材料。
  8.  積層された第1の半導体層、中間層および第2の半導体層からなり、中間層が上記窒化物系化合物半導体からなり、第1の半導体層および第2の半導体層が一般式Al1-nGaN(0≦n≦1、nはyと同じであってもよい。)で表される化合物からなる請求項1記載の光触媒材料。
  9.  上記窒化物系化合物半導体のみからなる請求項1記載の光触媒材料。
  10.  一般式Al1-yGaN(0≦y≦1)で表される化合物のAlおよび/またはGaの一部が少なくとも1種の3d遷移金属で置換された窒化物系化合物半導体であって、価電子帯と伝導帯の間に1以上の不純物バンドを有し、波長領域1500nm以下、300nm以上の全波長領域における光吸収係数が1000cm-1以上の値を有する窒化物系化合物半導体を含む光触媒材料を用いる光触媒装置。
  11.  上記窒化物系化合物半導体からなる第1の半導体層に、一般式Al1-mGaN(0≦m≦1、mはyと同じであってもよい。)で表される化合物からなる第2の半導体層が積層されてなる光触媒材料を用いる請求項10記載の光触媒装置。
  12.  上記の第1の半導体層と上記の第2の半導体層がpn接合を形成してなる光触媒材料を用いる請求項11記載の光触媒装置。
  13.  上記窒化物系化合物半導体からなる第1の半導体層が、pn接合を形成する二層からなる光触媒材料を用いる請求項10記載の光触媒装置。
  14.  積層された第1の半導体層、中間層および第2の半導体層からなり、中間層が上記窒化物系化合物半導体からなり、第1の半導体層および第2の半導体層が一般式Al1-nGaN(0≦n≦1、nはyと同じであってもよい。)で表される化合物からなる光触媒材料を用いる請求項10記載の光触媒装置。
  15.  上記窒化物系化合物半導体のみからなる光触媒材料を用いる請求項10記載の光触媒材料。
  16.  電気的に接続されたカソードとアノードとを備え、該カソードまたは該アノードに上記光触媒材料を用いる請求項10記載の光触媒装置。
PCT/JP2011/064534 2010-06-25 2011-06-24 光触媒材料および光触媒装置 WO2011162372A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/806,950 US20130105306A1 (en) 2010-06-25 2011-06-24 Photocatalyst material and photocatalyst device
JP2012521548A JP5885662B2 (ja) 2010-06-25 2011-06-24 光触媒材料および光触媒装置
US14/824,658 US20160093448A1 (en) 2010-06-25 2015-08-12 Photocatalyst material and photocatalyst device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010145138 2010-06-25
JP2010-145138 2010-06-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/806,950 A-371-Of-International US20130105306A1 (en) 2010-06-25 2011-06-24 Photocatalyst material and photocatalyst device
US14/824,658 Division US20160093448A1 (en) 2010-06-25 2015-08-12 Photocatalyst material and photocatalyst device

Publications (1)

Publication Number Publication Date
WO2011162372A1 true WO2011162372A1 (ja) 2011-12-29

Family

ID=45371538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064534 WO2011162372A1 (ja) 2010-06-25 2011-06-24 光触媒材料および光触媒装置

Country Status (3)

Country Link
US (2) US20130105306A1 (ja)
JP (1) JP5885662B2 (ja)
WO (1) WO2011162372A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174811A1 (ja) * 2013-04-26 2014-10-30 パナソニックIpマネジメント株式会社 水素を生成する方法、およびそのために用いられる水素生成デバイス
WO2014185062A1 (ja) * 2013-05-13 2014-11-20 パナソニック株式会社 二酸化炭素還元装置および二酸化炭素を還元する方法
JP2017121597A (ja) * 2016-01-05 2017-07-13 日本電信電話株式会社 半導体光触媒
WO2020059171A1 (ja) * 2018-09-18 2020-03-26 日立化成株式会社 機能水の製造方法及び機能水生成器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636139B2 (ja) * 2012-08-27 2014-12-03 パナソニック株式会社 二酸化炭素還元用光化学電極、および該光化学電極を用いて二酸化炭素を還元する方法
JP6249362B2 (ja) * 2013-05-21 2017-12-20 パナソニックIpマネジメント株式会社 二酸化炭素を還元する方法、二酸化炭素還元セル及び二酸化炭素還元装置
WO2017037599A1 (en) * 2015-08-28 2017-03-09 Sabic Global Technologies B.V. Hydrogen production using hybrid photonic-electronic materials
JP6802474B2 (ja) 2016-04-28 2020-12-16 富士通株式会社 光化学電極、光化学電極の製造方法
CN106868537B (zh) * 2017-02-15 2019-02-22 广东工业大学 一种复合薄膜光阳极及其制备方法
US11342131B2 (en) * 2017-07-17 2022-05-24 The United States Of America As Represented By The Secretary Of The Army Electron acceleration and capture device for preserving excess kinetic energy to drive electrochemical reduction reactions
KR102058629B1 (ko) * 2018-03-06 2019-12-23 한양대학교 산학협력단 격자 정합에 의하여 기재 상에 촉매 성분이 고정된 광 촉매 구조물 및 이를 제조하는 방법
US20190381476A1 (en) * 2018-06-19 2019-12-19 Flux Photon Corporation Photocatalytic Device
US11217805B1 (en) * 2021-06-28 2022-01-04 II Richard W. Fahs Point of use hydrogen production unit
CN114843563A (zh) * 2022-02-24 2022-08-02 电子科技大学长三角研究院(湖州) 一种光催化产出的氢气转化为电能的装置及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024764A (ja) * 2001-07-16 2003-01-28 Japan Science & Technology Corp ガス発生装置
JP2005144210A (ja) * 2003-11-11 2005-06-09 Japan Science & Technology Agency ガリウムナイトライド固溶体からなる水分解用触媒
JP2007125496A (ja) * 2005-11-04 2007-05-24 Nagaoka Univ Of Technology 光による水分解触媒及びその製造方法。
JP2008290028A (ja) * 2007-05-25 2008-12-04 Toyoda Gosei Co Ltd 光源一体型光触媒装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463113A (ja) * 1990-06-29 1992-02-28 Hitachi Ltd 炭酸ガスの光還元セル
JP3831888B2 (ja) * 1999-03-24 2006-10-11 バブコック日立株式会社 光触媒ユニット及びそれを用いる装置
JP4424840B2 (ja) * 1999-09-08 2010-03-03 シャープ株式会社 Iii−n系化合物半導体装置
JPWO2005089942A1 (ja) * 2004-03-18 2007-08-09 独立行政法人科学技術振興機構 GaN光触媒
JP2007253148A (ja) * 2006-02-24 2007-10-04 Osaka Prefecture Univ 光触媒、光触媒の製造方法、水の電気分解方法、水素の製造方法、電気分解装置および水素製造用装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024764A (ja) * 2001-07-16 2003-01-28 Japan Science & Technology Corp ガス発生装置
JP2005144210A (ja) * 2003-11-11 2005-06-09 Japan Science & Technology Agency ガリウムナイトライド固溶体からなる水分解用触媒
JP2007125496A (ja) * 2005-11-04 2007-05-24 Nagaoka Univ Of Technology 光による水分解触媒及びその製造方法。
JP2008290028A (ja) * 2007-05-25 2008-12-04 Toyoda Gosei Co Ltd 光源一体型光触媒装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUKI FUJIWARA ET AL.: "3d Sen'i Kinzoku Tenka GaN Usumaku no Kogakuteki Tokusei", DAI 57 KAI OYO BUTSURIGAKU KANKEI RENGO KOENKAI, 3 March 2010 (2010-03-03) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174811A1 (ja) * 2013-04-26 2014-10-30 パナソニックIpマネジメント株式会社 水素を生成する方法、およびそのために用いられる水素生成デバイス
JP5966160B2 (ja) * 2013-04-26 2016-08-10 パナソニックIpマネジメント株式会社 水素を生成する方法、およびそのために用いられる水素生成デバイス
US10047444B2 (en) 2013-04-26 2018-08-14 Panasonic Intellectual Property Management Co., Ltd. Method for generating hydrogen and hydrogen generation device used therefor
WO2014185062A1 (ja) * 2013-05-13 2014-11-20 パナソニック株式会社 二酸化炭素還元装置および二酸化炭素を還元する方法
JP5753641B2 (ja) * 2013-05-13 2015-07-22 パナソニック株式会社 二酸化炭素還元装置および二酸化炭素を還元する方法
JP2017121597A (ja) * 2016-01-05 2017-07-13 日本電信電話株式会社 半導体光触媒
WO2020059171A1 (ja) * 2018-09-18 2020-03-26 日立化成株式会社 機能水の製造方法及び機能水生成器
JPWO2020059171A1 (ja) * 2018-09-18 2021-08-30 昭和電工マテリアルズ株式会社 機能水の製造方法及び機能水生成器

Also Published As

Publication number Publication date
US20160093448A1 (en) 2016-03-31
JP5885662B2 (ja) 2016-03-15
JPWO2011162372A1 (ja) 2013-08-22
US20130105306A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5885662B2 (ja) 光触媒材料および光触媒装置
van de Krol et al. Solar hydrogen production with nanostructured metal oxides
Lai et al. Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage
JP5753641B2 (ja) 二酸化炭素還元装置および二酸化炭素を還元する方法
US9551077B2 (en) Photoelectrode used for carbon dioxide reduction and method for reducing carbon dioxide using the photoelectrode
WO2013031062A1 (ja) 二酸化炭素を還元する方法
JP2007239048A (ja) 光エネルギー変換装置及び半導体光電極
JP5734276B2 (ja) 光吸収材料およびそれを用いた光電変換素子
WO2014068944A1 (ja) 光半導体電極、光電気化学セル及びエネルギーシステム
JP7367167B2 (ja) 酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置
EP2543438B1 (en) Optical semiconductor, optical semiconductor electrode using same, photoelectrochemical cell, and energy system
WO2022187133A9 (en) Crystallographic- and oxynitride-based surface
JPWO2010095681A1 (ja) 光吸収材料及びそれを用いた光電変換素子
JP2014227563A (ja) 二酸化炭素還元用光化学電極、二酸化炭素還元装置、及び二酸化炭素の還元方法
KR20210017346A (ko) 전기화학적 물분해용 질화갈륨 나노와이어 광전극 제조 방법
JP5907973B2 (ja) 水素の製造方法及び光水素生成デバイス
JP2011183358A (ja) 光触媒材料及びこれを用いた光水素生成デバイス並びに水素の製造方法
JP2016098419A (ja) 水素の生成方法、水素生成装置および水素生成用のアノード電極
Ogita et al. InGaN photocatalysts on conductive Ga2O3 substrates
WO2022235423A2 (en) Photoelectrodes and methods of making and use thereof
전상언 Photoelectrochemical Characteristics of Atomically Thin Two-Dimensional Materials and Single Atom Catalysts
Fan III-nitride nanowire photoelectrodes: design, epitaxial growth, and solar-to-fuels production
US20140014501A1 (en) Dual Absorber Electrodes
Tokue et al. Characterization of conduction band offset in nanocrystalline TiO2/p-InGaN for application to water photolysis using visible light
Zhuk et al. Engineering Cu2O/CuO heterojunction catalysts through atmospheric pressure plasma induced defect passivation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798253

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012521548

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13806950

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798253

Country of ref document: EP

Kind code of ref document: A1