WO2018110429A1 - 樹脂、レジスト組成物及びレジストパターンの製造方法 - Google Patents

樹脂、レジスト組成物及びレジストパターンの製造方法 Download PDF

Info

Publication number
WO2018110429A1
WO2018110429A1 PCT/JP2017/044030 JP2017044030W WO2018110429A1 WO 2018110429 A1 WO2018110429 A1 WO 2018110429A1 JP 2017044030 W JP2017044030 W JP 2017044030W WO 2018110429 A1 WO2018110429 A1 WO 2018110429A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
carbon atoms
structural unit
examples
Prior art date
Application number
PCT/JP2017/044030
Other languages
English (en)
French (fr)
Inventor
達郎 増山
山口 訓史
市川 幸司
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to EP17879787.4A priority Critical patent/EP3556781A4/en
Priority to KR1020197020307A priority patent/KR102507577B1/ko
Priority to US16/465,230 priority patent/US11261273B2/en
Publication of WO2018110429A1 publication Critical patent/WO2018110429A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/18Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/34Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/282Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/302Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and two or more oxygen atoms in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/303Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/305Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/382Esters containing sulfur and containing oxygen, e.g. 2-sulfoethyl (meth)acrylate

Definitions

  • the present invention relates to a resin, a resist composition containing the resin, a method for producing a resist pattern using the resist composition, and the like.
  • Patent Document 1 describes a resist composition containing a compound having the following structural formula, a resin containing a structural unit having an acid labile group, and an acid generator.
  • the present invention includes the following inventions.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, a hydrogen atom or a halogen atom.
  • Ar represents an aromatic hydrocarbon group having 6 to 24 carbon atoms which may have a substituent.
  • L 1 and L 2 each independently represent a group represented by any one of formulas (X 1 -1) to (X 1 -8).
  • L 11 , L 13 , L 15 and L 17 each independently represents an alkanediyl group having 1 to 6 carbon atoms.
  • L 12 , L 14 , L 16 and L 18 each independently represent —O—, —CO—, —CO—O—, —O—CO— or —O—CO—O—. * And ** are bonds, and ** represents a bond with an iodine atom. ]] [2] The resin according to [1], wherein the resin further comprises a structural unit having an acid labile group. [3] The resin according to [2], further comprising a structural unit that decomposes upon exposure to generate an acid. [4] A resist composition comprising the resin according to any one of [1] to [3] and an acid generator. [5] A resist composition containing the resin according to [3].
  • a resist pattern with good line edge roughness (LER) can be produced from a resist composition containing the resin of the present invention.
  • (meth) acrylate means “at least one of acrylate and methacrylate”.
  • the notations such as “(meth) acrylic acid” and “(meth) acryloyl” have the same meaning.
  • a group that can take a straight chain, a branched chain, and / or a ring such as an “aliphatic hydrocarbon group” includes both of them.
  • the “aromatic hydrocarbon group” also includes a group in which a hydrocarbon group is bonded to an aromatic ring. When stereoisomers exist, all stereoisomers are included.
  • the “solid content of the resist composition” means the total of components excluding the solvent (E) described later from the total amount of the resist composition.
  • the resin of the present invention contains a structural unit (hereinafter sometimes referred to as “structural unit (I)”) derived from a compound represented by the formula (I ′) (hereinafter sometimes referred to as compound (I ′)). To do.
  • structural unit (I) a structural unit derived from the compound represented by the formula (I ′)
  • compound (I ′) a resin containing a structural unit derived from the compound (I ′) is referred to as “resin (A)”.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, a hydrogen atom or a halogen atom.
  • Ar represents an aromatic hydrocarbon group having 6 to 24 carbon atoms which may have a substituent.
  • L 1 and L 2 each independently represent a group represented by any one of formulas (X 1 -1) to (X 1 -8).
  • L 11 , L 13 , L 15 and L 17 each independently represents an alkanediyl group having 1 to 6 carbon atoms.
  • L 12 , L 14 , L 16 and L 18 each independently represent —O—, —CO—, —CO—O—, —O—CO— or —O—CO—O—.
  • Examples of the alkyl group for R 1 and R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, and n-hexyl group.
  • halogen atoms for R 1 and R 2 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Examples of the alkyl group having a halogen atom for R 1 and R 2 include a trifluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluoroisopropyl group, a perfluorobutyl group, a perfluorosec-butyl group, a perfluorotert-butyl group, and a perfluoropentyl group.
  • R 1 and R 2 are preferably a hydrogen atom or a methyl group.
  • aromatic hydrocarbon group for Ar examples include aryl groups such as phenyl, 1-naphthyl, 2-naphthyl, anthonyl, biphenyl, anthryl, phenanthryl, and binaphthyl; dimethylphenyl, ethylphenyl, and the like
  • An cycloalkyl-aryl group such as a 4-cyclohexylphenyl group.
  • the carbon number of the aromatic hydrocarbon group is preferably 6 to 14, more preferably 6 to 10.
  • Examples of the substituent include a hydroxy group, a nitro group, a halogen atom, a cyano group, an alkoxy group having 1 to 12 carbon atoms, or a carboxyl group.
  • a hydroxy group, a nitro group, a halogen atom, a cyano group, or an alkoxy group having 1 to 12 carbon atoms is preferable.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkoxy group having 1 to 12 carbon atoms examples include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, undecyloxy group Group, dodecyloxy group and the like.
  • Ar is preferably a phenyl group which may have a substituent, and is a hydroxy group, a nitro group, a halogen atom, a cyano group, an alkyl group having 1 to 12 carbon atoms, or an alicyclic group having 3 to 12 carbon atoms. It is more preferably a hydrocarbon group or a phenyl group which may have an alkoxy group having 1 to 12 carbon atoms, such as a hydroxy group, a nitro group, a halogen atom, a cyano group, an alkyl group having 1 to 12 carbon atoms or a carbon group.
  • a phenyl group which may have an alkoxy group having 1 to 12 carbon atoms is more preferable, and a phenyl group which may have an alkoxy group having 1 to 12 carbon atoms is still more preferable.
  • alkyl group having 1 to 12 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, 2-ethylhexyl group, Nonyl group etc. are mentioned.
  • Examples of the alicyclic hydrocarbon group having 3 to 12 carbon atoms include the following groups and a cyclohexylcyclohexyl group. * Is a bond with a ring.
  • alkanediyl group of L 11 , L 13 , L 15 and L 17 examples include a methylene group, an ethylene group, a propane-1,3-diyl group, a propane-1,2-diyl group, and a butane-1,4-diyl group.
  • L 1 is preferably a group represented by the formula radical or formula represented by (X 1 -1) (X 1 -4), and more preferably a group represented by the formula (X 1 -1) .
  • Compound (I ′) is a compound represented by formula (I) in which L 1 and L 2 are groups represented by formula (X 1 -1) (hereinafter sometimes referred to as compound (I)). ) Is preferred.
  • Compound (I ′) is obtained by reacting a compound represented by formula (Ia), a compound represented by formula (I-b1), and a compound represented by formula (Ib2) in a solvent.
  • a solvent include chloroform, monochlorobenzene, tetrahydrofuran and toluene.
  • the reaction temperature is usually 10 ° C. to 80 ° C., and the reaction time is usually 0.5 hours to 24 hours.
  • Examples of the compound represented by the formula (Ia) include compounds represented by the following formula, and can be easily obtained from the market.
  • the structural unit derived from the compound (I ′) may be contained singly or in combination of two or more.
  • the content of the structural unit derived from the compound (I ′) is usually from 0.5 to 10 mol%, preferably from 1 to 8 mol%, more preferably from 1.5 to 10 mol% based on the total structural units of the resin. 5 mol%, more preferably 2 to 4 mol%.
  • Resin (A) preferably contains a structural unit having an acid labile group (hereinafter sometimes referred to as “structural unit (a1)”) in addition to the structural unit derived from compound (I ′).
  • structural unit (a1) a structural unit having an acid labile group
  • An “acid-labile group” has a leaving group, which is converted into a hydrophilic group (for example, a functional group having a hydroxy group or a carboxy group) by leaving the leaving group by contact with an acid. Means a group.
  • the structural unit (a1) is derived from a monomer having an acid labile group (hereinafter sometimes referred to as “monomer (a1)”).
  • the acid labile group contained in the resin (A) is preferably a group represented by the formula (1) and / or a group represented by the formula (2).
  • R a1 to R a3 each independently represents an alkyl group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, or a combination thereof; a1 and R a2 are bonded to each other to form a divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms together with the carbon atom to which they are bonded.
  • ma and na each independently represents 0 or 1, and at least one of ma and na represents 1. * Represents a bond.
  • R a1 ′ and R a2 ′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms
  • R a3 ′ represents a hydrocarbon group having 1 to 20 carbon atoms
  • R a2 ′ and R a3 ′ are bonded to each other to form a divalent heterocyclic group having 3 to 20 carbon atoms together with the carbon atom and X to which they are bonded, and the hydrocarbon group and the divalent heterocyclic group.
  • —CH 2 — contained in the ring group may be replaced by —O— or —S—.
  • X represents an oxygen atom or a sulfur atom.
  • na ′ represents 0 or 1. * Represents a bond.
  • Examples of the alkyl group for R a1 to R a3 include a methyl group, an ethyl group, a propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group.
  • the alicyclic hydrocarbon group represented by R a1 to R a3 may be any of monocyclic, polycyclic and spiro rings, and may be either saturated or unsaturated.
  • Examples of the monocyclic alicyclic hydrocarbon group include cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, methylcyclohexyl group, dimethylcyclohexyl group, and methylnorbornyl group. Can be mentioned.
  • Examples of the polycyclic alicyclic hydrocarbon group include a decahydronaphthyl group, an adamantyl group, a norbornyl group, an adamantylcyclohexyl group, and the following group (* represents a bond).
  • the carbon number of the alicyclic hydrocarbon group of R a1 to R a3 is preferably 3 to 16.
  • Examples of the group obtained by combining an alkyl group and an alicyclic hydrocarbon group include cycloalkyl-alkyl groups such as a cyclohexylmethyl group, an adamantylmethyl group, an adamantyldimethyl group, and a norbornylethyl group.
  • Examples of —C (R a1 ) (R a2 ) (R a3 ) in the case where R a1 and R a2 are bonded to each other to form a divalent alicyclic hydrocarbon group include the following groups.
  • the divalent alicyclic hydrocarbon group preferably has 3 to 12 carbon atoms. * Represents a bond with —O—.
  • Examples of the hydrocarbon group of R a1 ′ to R a3 ′ include an alkyl group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group formed by combining these.
  • Examples of the alkyl group and alicyclic hydrocarbon group are the same as those described above.
  • Aromatic hydrocarbon groups include phenyl groups, naphthyl groups, anthryl groups, biphenyl groups, phenanthryl groups and other aryl groups, tolyl groups, xylyl groups, cumenyl groups, mesityl groups, p-tert-butylphenyl groups, 2,6 -Alkyl-aryl groups such as diethylphenyl group and 2-methyl-6-ethylphenyl group; cycloalkyl-aryl groups such as p-adamantylphenyl group, and the like.
  • Examples of the group combining an alkyl group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group include a cycloalkyl-alkyl group (adamantylmethyl group, adamantylethyl group, cyclohexylmethyl group, cyclopentylmethyl group), aralkyl group (for example, Phenylmethyl, 1-phenylethyl, 2-phenylethyl, 1-phenyl-1-propyl, 1-phenyl-2-propyl, 2-phenyl-2-propyl, 3-phenyl-1-propyl Group, 4-phenyl-1-butyl group, 5-phenyl-1-pentyl group, 6-phenyl-1-hexyl group, etc.).
  • adamantylmethyl group adamantylethyl group, cyclohexylmethyl group, cyclopentylmethyl group
  • aralkyl group for example, Phenylmethyl, 1-phenylethyl
  • R a2 ′ and R a3 ′ are bonded to each other to form a divalent heterocyclic group together with the carbon atom to which they are bonded and X, —C (R a1 ′ ) (R a3 ′ ) —X—R a2 ′
  • the following groups may be mentioned as: * Represents a bond. At least one of R a1 ′ and R a2 ′ is preferably a hydrogen atom. na ′ is preferably 0.
  • the monomer (a1) is preferably a monomer having an acid labile group and an ethylenically unsaturated bond, and more preferably a (meth) acrylic monomer having an acid labile group.
  • the (meth) acrylic monomers having an acid labile group those having an alicyclic hydrocarbon group having 5 to 20 carbon atoms are preferable. If the resin (A) having a structural unit derived from the monomer (a1) having a bulky structure such as an alicyclic hydrocarbon group is used in the resist composition, the resolution of the resist pattern can be improved.
  • the structural unit derived from the (meth) acrylic monomer having a group represented by the formula (1) is preferably a structural unit represented by the formula (a1-0) (hereinafter referred to as the structural unit (a1-0)).
  • the structural unit represented by the formula (a1-1) (hereinafter sometimes referred to as the structural unit (a1-1)) or the structural unit represented by the formula (a1-2) (hereinafter referred to as the structural unit (a1-2)). And may be referred to as a structural unit (a1-2)). These may be used alone or in combination of two or more.
  • L a01 , L a1 and L a2 are each independently —O— or * —O— (CH 2 ) k1 —CO—O—, k1 represents an integer of 1 to 7, and * represents a bond to —CO—.
  • R a01 , R a4 and R a5 each independently represent a hydrogen atom or a methyl group.
  • R a02 , R a03 and R a04 each independently represent an alkyl group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 3 to 18 carbon atoms, or a combination thereof.
  • R a6 and R a7 each independently represent an alkyl group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group having 3 to 18 carbon atoms, or a group formed by combining these.
  • m1 represents an integer of 0 to 14.
  • n1 represents an integer of 0 to 10.
  • n1 ′ represents an integer of 0 to 3.
  • R a01 , R a4 and R a5 are preferably methyl groups.
  • L a01 , L a1 and L a2 are preferably an oxygen atom or * —O— (CH 2 ) k01 —CO—O— (where k01 is preferably an integer of 1 to 4, more preferably Is 1.), more preferably an oxygen atom.
  • Examples of the alkyl group, the alicyclic hydrocarbon group, and the combination thereof in R a02 , R a03, and R a04 include the same groups as those described for R a1 to R a3 in formula (1).
  • the number of carbon atoms of the alkyl group in R a6 and R a7 is preferably 1 to 6, more preferably a methyl group, an ethyl group, or an isopropyl group, and still more preferably an ethyl group or an isopropyl group.
  • the carbon number of the alkyl group of R a02 , R a03 , R a04 , R a6 and R a7 is preferably 1 to 6, more preferably a methyl group or an ethyl group, and still more preferably a methyl group.
  • the carbon number of the alicyclic hydrocarbon group of R a02 , R a03 , R a04 , R a6 and R a7 is preferably 3-8 , more preferably 3-6.
  • the group in which the alkyl group and the alicyclic hydrocarbon group are combined preferably has 18 or less total carbon atoms in combination of the alkyl group and the alicyclic hydrocarbon group.
  • R a02 and R a03 are preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group or an ethyl group.
  • R a04 is preferably an alkyl group having 1 to 6 carbon atoms or an alicyclic hydrocarbon group having 5 to 12 carbon atoms, more preferably a methyl group, an ethyl group, a cyclohexyl group, or an adamantyl group.
  • m1 is preferably an integer of 0 to 3, more preferably 0 or 1.
  • n1 is preferably an integer of 0 to 3, more preferably 0 or 1.
  • n1 ′ is preferably 0 or 1.
  • a structural unit represented by any one of formulas (a1-0-1) to (a1-0-12) and a methyl group corresponding to R a01 can be a hydrogen atom.
  • Examples thereof include substituted structural units, and structural units represented by any of formulas (a1-0-1) to (a1-0-10) are preferred.
  • Examples of the monomer that leads to the structural unit (a1-1) include monomers described in JP2010-204646A. Of these, a structural unit represented by any one of formulas (a1-1-1) to (a1-1-4) and a structural unit in which a methyl group corresponding to R a4 is replaced with a hydrogen atom are preferred. -1-1) to a structural unit represented by any one of formulas (a1-1-4) is more preferable.
  • the structural unit (a1-2) the structural unit represented by any one of the formulas (a1-2-1) to (a1-2-6) and the methyl group corresponding to R a5 were replaced with hydrogen atoms.
  • Examples of the structural unit include formula (a1-2-2), formula (a1-2-5) and formula (a1-2-6).
  • the total content thereof is the total structure of the resin (A)
  • the amount is usually 10 to 95 mol%, preferably 15 to 90 mol%, more preferably 20 to 85 mol%, based on the unit.
  • the structural unit derived from the (meth) acrylic monomer having a group represented by the formula (2) is a structural unit represented by the formula (a1-5) (hereinafter referred to as “structural unit (a1-5)”) Is also included).
  • R a8 represents an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, a hydrogen atom or a halogen atom.
  • Z a1 represents a single bond or * — (CH 2 ) h3 —CO—L 54 —, h3 represents an integer of 1 to 4, and * represents a bond to L 51 .
  • L 51 , L 52 , L 53 and L 54 each independently represent —O— or —S—.
  • s1 represents any integer of 1 to 3.
  • s1 ′ represents any integer of 0 to 3.
  • halogen atom examples include a fluorine atom and a chlorine atom, and a fluorine atom is preferable.
  • alkyl group having 1 to 6 carbon atoms which may have a halogen atom include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, fluoromethyl and trifluoro A methyl group is mentioned.
  • R a8 is preferably a hydrogen atom, a methyl group or a trifluoromethyl group.
  • L 51 is preferably an oxygen atom.
  • L 52 and L 53 one is preferably —O— and the other is preferably —S—.
  • s1 is preferably 1.
  • s1 ′ is preferably an integer of 0 to 2.
  • Z a1 is preferably a single bond or * —CH 2 —CO—O—.
  • Examples of the monomer for deriving the structural unit (a1-5) include monomers described in JP 2010-61117 A. Among these, structural units represented by formulas (a1-5-1) to (a1-5-4) are preferable, and are represented by formula (a1-5-1) or formula (a1-5-2). A structural unit is more preferable.
  • the content thereof is preferably 1 to 50 mol%, more preferably 3 to 45 mol% with respect to all the structural units of the resin (A). 5 to 40 mol% is more preferable.
  • Examples of the structural unit (a1) include the following structural units.
  • the content is preferably 10 to 95 mol%, more preferably 15 to 90 mol%, and more preferably 20 to 85 mol% with respect to all the structural units of the resin (A). % Is more preferable.
  • the resin (A) further includes a structural unit having no acid labile group described below (hereinafter sometimes referred to as “structural unit (s)”), a structural unit having a halogen atom (hereinafter referred to as “structural unit ( a4) ”)), a structural unit (a5) having a non-eliminating hydrocarbon group, and a structural unit derived from other known monomers.
  • resin (A) contains a structural unit (s).
  • the structural unit (s) is derived from a monomer having no acid labile group, which will be described later (hereinafter sometimes referred to as “monomer (s)”).
  • monomer (s) a monomer having no acid labile group known in the resist field can be used.
  • the structural unit (s) is preferably a structural unit having a hydroxy group or a lactone ring and not having an acid labile group.
  • the structural unit (s) usually does not have a halogen atom in the side chain.
  • a structure having a hydroxy group and having no acid labile group hereinafter sometimes referred to as “structural unit (a2)”) and / or a lactone ring and having no acid labile group
  • a resin having a unit hereinafter sometimes referred to as “structural unit (a3)
  • the hydroxy group contained in the structural unit (a2) may be an alcoholic hydroxy group or a phenolic hydroxy group.
  • the exposure light source is a high energy ray such as KrF excimer laser (248 nm), electron beam or EUV (extreme ultraviolet light), it has a phenolic hydroxy group. It is preferable to use the structural unit (a2).
  • the structural unit (a2) having an alcoholic hydroxy group is preferable.
  • 1 type may be included independently and 2 or more types may be included.
  • Examples of the structural unit (a2) having a phenolic hydroxy group include a structural unit represented by the formula (a2-A) (hereinafter sometimes referred to as “structural unit (a2-A)”).
  • structural unit (a2-A) represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom.
  • R a51 is a halogen atom, a hydroxy group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an acyl group having 2 to 4 carbon atoms, an acyloxy group having 2 to 4 carbon atoms, an acryloyloxy group, or Represents a methacryloyloxy group.
  • a a50 represents a single bond or * —X a51 — (A a52 —X a52 ) na —, and * represents a bond to the carbon atom to which —R a50 is bonded.
  • a a52 represents an alkanediyl group having 1 to 6 carbon atoms.
  • X a51 and X a52 each independently represent —O—, —CO —O— or —O—CO—.
  • na represents 0 or 1.
  • mb represents an integer of 0 to 4. When mb is an integer greater than or equal to 2, several Ra51 may mutually be same or different.
  • Examples of the halogen atom for R a50 include a fluorine atom, a chlorine atom and a bromine atom.
  • alkyl group having 1 to 6 carbon atoms which may have a halogen atom in R a50 examples include a trifluoromethyl group, a difluoromethyl group, a methyl group, a perfluoroethyl group, a 1,1,1-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, ethyl group, perfluoropropyl group, 1,1,1,2,2-pentafluoropropyl group, propyl group, perfluorobutyl group, 1,1,2,2, 3,3,4,4-octafluorobutyl group, butyl group, perfluoropentyl group, 1,1,1,2,2,3,3,4,4-nonafluoropentyl group, n-pentyl group, n- Examples include a hexyl group and an n-perfluorohexyl group.
  • R a50 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group for R a51 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, and an n-hexyl group.
  • Examples of the alkoxy group of R a51 include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, and tert-butoxy group.
  • An alkoxy group having 1 to 4 carbon atoms is preferable, a methoxy group or an ethoxy group is more preferable, and a methoxy group is further preferable.
  • Examples of the acyl group for R a51 include an acetyl group, a propionyl group, and a butyryl group.
  • Examples of the acyloxy group for R a51 include an acetyloxy group, a propionyloxy group, and a butyryloxy group.
  • R a51 is preferably a methyl group.
  • * —X a51 — (A a52 —X a52 ) na — includes : ——O—, * —CO—O—, * —O—CO—, * —CO—O—A a52 —CO—O—, * —O—CO—A a52 —O—, * —O—A a52 —CO—O—, * —CO—O—A a52 —O—CO—, * —O—CO—A a52 —O—CO -.
  • * —CO—O—, * —CO—O—A a52 —CO—O— or * —O—A a52 —CO—O— is preferable.
  • alkanediyl group examples include methylene group, ethylene group, propane-1,3-diyl group, propane-1,2-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane- 1,6-diyl group, butane-1,3-diyl group, 2-methylpropane-1,3-diyl group, 2-methylpropane-1,2-diyl group, pentane-1,4-diyl group and 2 -Methylbutane-1,4-diyl group and the like.
  • a a52 is preferably a methylene group or an ethylene group.
  • a a50 is preferably a single bond, * —CO—O— or * —CO—O—A a52 —CO—O—, and is preferably a single bond, * —CO—O— or * —CO—O—CH. 2 —CO—O— is more preferable, and a single bond or * —CO—O— is still more preferable.
  • Mb is preferably 0, 1 or 2, more preferably 0 or 1, and particularly preferably 0.
  • the hydroxyl group is preferably bonded to the o-position or p-position of the benzene ring, and more preferably bonded to the p-position.
  • structural units represented by formulas (a2-2-1) to (a2-2-8) can be given.
  • the structural unit (a2-A) is represented by the structural unit represented by the formula (a2-2-1), the structural unit represented by the formula (a2-2-1), and the formula (a2-2-5).
  • a structural unit represented by the formula (a2-2-6) are preferable.
  • Examples of the monomer for deriving the structural unit (a2-A) include monomers described in JP 2010-204634 A and JP 2012-12577 A.
  • the content of the structural unit (a2-A) is preferably 5 to 80 mol%, more preferably based on the total structural unit. It is 10 to 70 mol%, more preferably 15 to 65 mol%.
  • structural unit (a2) having an alcoholic hydroxy group examples include a structural unit represented by the formula (a2-1) (hereinafter sometimes referred to as “structural unit (a2-1)”).
  • L a3 represents —O— or * —O— (CH 2 ) k2 —CO—O—, k2 represents an integer of 1 to 7. * Represents a bond with —CO—.
  • R a14 represents a hydrogen atom or a methyl group.
  • R a15 and R a16 each independently represent a hydrogen atom, a methyl group or a hydroxy group.
  • o1 represents an integer of 0 to 10.
  • L a3 is preferably —O—, —O— (CH 2 ) f1 —CO—O— (wherein f1 is an integer of 1 to 4) More preferably, it is —O—.
  • R a14 is preferably a methyl group.
  • R a15 is preferably a hydrogen atom.
  • R a16 is preferably a hydrogen atom or a hydroxy group.
  • o1 is preferably an integer of 0 to 3, more preferably 0 or 1.
  • Examples of the structural unit (a2-1) include structural units derived from monomers described in JP 2010-204646 A.
  • a structural unit represented by any one of formulas (a2-1-1) to (a2-1-6) is preferred.
  • the content is usually 1 to 45 mol%, preferably 1 to 40 mol%, based on all the structural units of the resin (A). More preferably 1 to 35 mol%, still more preferably 2 to 20 mol%, and even more preferably 2 to 10 mol%.
  • the lactone ring of the structural unit (a3) may be a single ring such as a ⁇ -propiolactone ring, ⁇ -butyrolactone ring, or ⁇ -valerolactone ring, or a condensed ring of a monocyclic lactone ring and another ring. But you can.
  • a ⁇ -butyrolactone ring, an adamantane lactone ring, or a bridged ring containing a ⁇ -butyrolactone ring structure is used.
  • the structural unit (a3) is preferably a structural unit represented by the formula (a3-1), the formula (a3-2), the formula (a3-3) or the formula (a3-4). One of these may be contained alone, or two or more thereof may be contained.
  • L a4 , L a5 and L a6 each represent a group represented by —O— or * —O— (CH 2 ) k3 —CO—O— (k3 represents any integer of 1 to 7).
  • L a7 represents —O—, * —O—L a8 —O—, * —O—L a8 —CO—O—, * —O—L a8 —CO—O—L a9 —CO—O— or * —O—L a8 —O—CO—L a9 —O— is represented.
  • L a8 and L a9 each independently represent an alkanediyl group having 1 to 6 carbon atoms.
  • * represents a bond with a carbonyl group.
  • R a18 , R a19 and R a20 each represent a hydrogen atom or a methyl group.
  • R a24 represents an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, a hydrogen atom or a halogen atom.
  • R a21 represents an aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • R a22 , R a23 and R a25 each represent a carboxy group, a cyano group or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • R a21 , R a22 , R a23 and / or R a25 may be the same as or different from each other.
  • Examples of the aliphatic hydrocarbon group for R a21 , R a22 , R a23 and R a25 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group and tert-butyl group. An alkyl group is mentioned.
  • halogen atom for R a24 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkyl group for R a24 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, and an n-hexyl group.
  • An alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or an ethyl group is more preferable.
  • alkyl group having a halogen atom of R a24 examples include trifluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluoroisopropyl group, perfluorobutyl group, perfluorosec-butyl group, perfluorotert-butyl group, perfluoropentyl group, perfluoro A hexyl group, a trichloromethyl group, a tribromomethyl group, a triiodomethyl group, etc. are mentioned.
  • alkanediyl group of L a8 and L a9 examples include a methylene group, an ethylene group, a propane-1,3-diyl group, a propane-1,2-diyl group, a butane-1,4-diyl group, and a pentane-1,5. -Diyl group, hexane-1,6-diyl group, butane-1,3-diyl group, 2-methylpropane-1,3-diyl group, 2-methylpropane-1,2-diyl group, pentane-1, Examples include 4-diyl group and 2-methylbutane-1,4-diyl group.
  • L a4 to L a6 are independently of each other preferably —O— or k— is an integer of 1 to 4 * —O— ( A group represented by CH 2 ) k3 —CO—O—, more preferably —O— and * —O—CH 2 —CO—O—, still more preferably an oxygen atom.
  • R a18 to R a21 are preferably methyl groups.
  • R a22 and R a23 are independently of each other preferably a carboxy group, a cyano group or a methyl group.
  • p1, q1, r1 and w1 are independently of each other preferably an integer of 0 to 2, more preferably 0 or 1.
  • R a24 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably a hydrogen atom, a methyl group or an ethyl group, still more preferably a hydrogen atom or a methyl group. It is.
  • R a25 is preferably a carboxy group, a cyano group, or a methyl group.
  • L a7 is preferably —O— or * —O—L a8 —CO—O—, more preferably —O—, —O—CH 2 —CO—O— or —O—C 2 H 4 —. CO—O—.
  • the formula (a3-4) is preferably the formula (a3-4) ′. (Wherein R a24 and L a7 represent the same meaning as described above.)
  • the structural unit (a3) As monomers for deriving the structural unit (a3), monomers described in JP 2010-204646 A, monomers described in JP 2000-122294 A, monomers described in JP 2012-41274 A, and the like. Can be mentioned.
  • the structural unit (a3) the formula (a3-1-1) to the formula (a3-1-4), the formula (a3-2-1) to the formula (a3-2-4), and the formula (a3-3- A structural unit represented by any one of 1) to formula (a3-3-4) and formula (a3-4-1) to formula (a3-4-12) is preferable.
  • the total content is usually 5 to 70 mol%, preferably 10 to 65 mol%, based on all structural units of the resin (A). More preferably, it is 10 to 60 mol%.
  • the content rates of the structural unit (a3-1), the structural unit (a3-2), the structural unit (a3-3), and the structural unit (a3-4) are respectively based on the total structural units of the resin (A). 5 to 60 mol% is preferable, 5 to 50 mol% is more preferable, and 10 to 50 mol% is further preferable.
  • the structural unit (a4) is preferably a structural unit having a fluorine atom.
  • a structural unit represented by the formula (a4-0) can be given.
  • R 5 represents a hydrogen atom or a methyl group.
  • L 4 represents a single bond or an aliphatic saturated hydrocarbon group having 1 to 4 carbon atoms.
  • L 3 represents a perfluoroalkanediyl group having 1 to 8 carbon atoms or a perfluorocycloalkanediyl group having 3 to 12 carbon atoms.
  • R 6 represents a hydrogen atom or a fluorine atom.
  • Examples of the aliphatic saturated hydrocarbon group for L 4 include a methylene group, an ethylene group, a propane-1,3-diyl group, a straight-chain alkanediyl group such as a butane-1,4-diyl group, and ethane-1,1- Branched alkanediyl such as diyl group, propane-1,2-diyl group, butane-1,3-diyl group, 2-methylpropane-1,3-diyl group and 2-methylpropane-1,2-diyl group Groups.
  • the perfluoroalkanediyl group of L 3 includes a difluoromethylene group, a perfluoroethylene group, a perfluoropropane-1,1-diyl group, a perfluoropropane-1,3-diyl group, a perfluoropropane-1,2-diyl group, and a perfluoropropane.
  • L 3 perfluorocycloalkanediyl group examples include a perfluorocyclohexanediyl group, a perfluorocyclopentanediyl group, a perfluorocycloheptanediyl group, and a perfluoroadamantanediyl group.
  • L 4 is preferably a single bond, a methylene group or an ethylene group, and more preferably a single bond or a methylene group.
  • L 3 is preferably a perfluoroalkanediyl group having 1 to 6 carbon atoms, and more preferably a perfluoroalkanediyl group having 1 to 3 carbon atoms.
  • structural unit (a4-0) structural units shown below and structural units in which a methyl group corresponding to R 5 in the following structural units is replaced with a hydrogen atom can be mentioned.
  • Examples of the structural unit (a4) include a structural unit represented by the formula (a4-1). [In the formula (a4-1), R a41 represents a hydrogen atom or a methyl group.
  • R a42 represents an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, and —CH 2 — contained in the hydrocarbon group may be replaced by —O— or —CO—. Good.
  • a a41 represents an optionally substituted alkanediyl group having 1 to 6 carbon atoms or a group represented by the formula (a-g1). However, at least one of A a41 and R a42 has a halogen atom (preferably a fluorine atom) as a substituent.
  • a a42 and A a44 each independently represent a divalent saturated hydrocarbon group having 1 to 5 carbon atoms which may have a substituent.
  • a a43 represents a single bond or a divalent saturated hydrocarbon group having 1 to 5 carbon atoms which may have a substituent.
  • X a41 and X a42 each independently represent —O—, —CO—, —CO —O— or —O—CO—. However, the total number of carbon atoms of A a42 , A a43 , A a44 , X a41 and X a42 is 7 or less.
  • * Is a bond, and the * on the right is a bond with —O—CO—R a42 .
  • Examples of the hydrocarbon group for R a42 include chain and cyclic saturated hydrocarbon groups.
  • Chain and cyclic saturated hydrocarbon groups are formed by combining linear or branched alkyl groups and monocyclic or polycyclic alicyclic hydrocarbon groups, and alkyl groups and alicyclic hydrocarbon groups. And saturated hydrocarbon groups.
  • the chain saturated hydrocarbon group includes a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, and an n-decyl group. N-dodecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group and n-octadecyl group.
  • Cyclic saturated hydrocarbon groups include cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, methylcyclohexyl group, dimethylcyclohexyl group, methylnorbornyl group and other cycloalkyl groups; decahydronaphthyl And a polycyclic alicyclic hydrocarbon group such as a group, an adamantyl group, a norbornyl group, an adamantyl cyclohexyl group, and the following groups (* represents a bond).
  • R a42 may have a halogen atom or a group represented by the formula (a-g3) as a substituent.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned, Preferably it is a fluorine atom.
  • X a43 represents an oxygen atom, a carbonyl group, a carbonyloxy group or an oxycarbonyl group.
  • a a45 represents a saturated hydrocarbon group having 1 to 17 carbon atoms having at least one halogen atom. * Represents a bond.
  • R a42 is preferably a saturated hydrocarbon group which may have a halogen atom, more preferably an alkyl group having a halogen atom and / or a saturated hydrocarbon group having a group represented by the formula (ag3).
  • R a42 is a saturated hydrocarbon group having a halogen atom, it is preferably a saturated hydrocarbon group having a fluorine atom, more preferably a perfluoroalkyl group or a perfluorocycloalkyl group, and still more preferably a carbon number of 1 to 6 perfluoroalkyl group, particularly preferably a perfluoroalkyl group having 1 to 3 carbon atoms.
  • Examples of the perfluoroalkyl group include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluorohexyl group, a perfluoroheptyl group, and a perfluorooctyl group.
  • Examples of the perfluorocycloalkyl group include a perfluorocyclohexyl group.
  • R a42 is a saturated hydrocarbon group having a group represented by the formula (a-g3), including the number of carbons contained in the group represented by the formula (a-g3),
  • the total carbon number is preferably 15 or less, and more preferably 12 or less.
  • the group represented by the formula (ag3) is used as a substituent, the number is preferably 1.
  • the saturated hydrocarbon having a group represented by the formula (ag3) is more preferably a group represented by the formula (ag2).
  • a a46 represents a saturated hydrocarbon group having 1 to 17 carbon atoms which may have a halogen atom.
  • X a44 represents a carbonyloxy group or an oxycarbonyl group.
  • a a47 represents a saturated hydrocarbon group having 1 to 17 carbon atoms which may have a halogen atom.
  • the total number of carbon atoms of A a46 , A a47, and X a44 is 18 or less, and at least one of A a46 and A a47 has at least one halogen atom.
  • the carbon number of the saturated hydrocarbon group for A a46 is preferably 1 to 6, and more preferably 1 to 3.
  • the saturated hydrocarbon group of A a47 preferably has 4 to 15 carbon atoms, more preferably 5 to 12, and A a47 is more preferably a cyclohexyl group or an adamantyl group.
  • a more preferable structure of the partial structure represented by * -A a46 -X a44 -A a47 (* is a bond to a carbonyl group) is the following structure.
  • alkanediyl group of Aa41 a methylene group, an ethylene group, a propane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group
  • Linear alkanediyl group such as propane-1,2-diyl group, butane-1,3-diyl group, 2-methylpropane-1,2-diyl group, 1-methylbutane-1,4-diyl group, Examples thereof include branched alkanediyl groups such as 2-methylbutane-1,4-diyl group.
  • Examples of the substituent in the alkanediyl group of A a41 include a hydroxy group and an alkoxy group having 1 to 6 carbon atoms.
  • a a41 is preferably an alkanediyl group having 1 to 4 carbon atoms, more preferably an alkanediyl group having 2 to 4 carbon atoms, and still more preferably an ethylene group.
  • the saturated hydrocarbon group of A a42 , A a43 and A a44 in the group represented by the formula (a-g1) is preferably a chain or cyclic saturated hydrocarbon group or a group formed by combining them.
  • Examples of the saturated hydrocarbon group include a linear or branched alkyl group and a monocyclic alicyclic hydrocarbon group, and a saturated hydrocarbon group formed by combining an alkyl group and an alicyclic hydrocarbon group. Is mentioned.
  • a methylene group ethylene group, propane-1,3-diyl group, propane-1,2-diyl group, butane-1,4-diyl group, 1-methylpropane-1,3-diyl group, Examples thereof include 2-methylpropane-1,3-diyl group and 2-methylpropane-1,2-diyl group.
  • Examples of the substituent for the saturated hydrocarbon group of A a42 , A a43 and A a44 include a hydroxy group and an alkoxy group having 1 to 6 carbon atoms. s is preferably 0.
  • Examples of the group represented by the formula ( ag1) in which X a42 represents an oxygen atom, a carbonyl group, a carbonyloxy group or an oxycarbonyl group include the following groups. In the following examples, * and ** each represent a bond, and ** is a bond with —O—CO—R a42 .
  • Examples of the structural unit represented by the formula (a4-1) include the following structural units and structural units in which a methyl group corresponding to R a41 in the following structural units is replaced with a hydrogen atom.
  • Examples of the structural unit (a4) include a structural unit represented by the formula (a4-4).
  • R f21 represents a hydrogen atom or a methyl group.
  • a f21 represents — (CH 2 ) j1 —, — (CH 2 ) j2 —O— (CH 2 ) j3 — or — (CH 2 ) j4 —CO—O— (CH 2 ) j5 —.
  • j1 to j5 each independently represents an integer of 1 to 6.
  • R f22 represents a hydrocarbon group having 1 to 10 carbon atoms having a fluorine atom.
  • Examples of the hydrocarbon group having a fluorine atom represented by R f22 include chain and cyclic aliphatic hydrocarbon groups and aromatic hydrocarbon groups, and groups formed by combining these.
  • As the aliphatic hydrocarbon group an alkyl group (straight or branched) and an alicyclic hydrocarbon group are preferable.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-octyl group and 2 An ethylhexyl group.
  • the alicyclic hydrocarbon group may be monocyclic or polycyclic.
  • Examples of the monocyclic alicyclic hydrocarbon group include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, methylcyclohexyl group, dimethylcyclohexyl group, cycloheptyl group, cyclooctyl group, cycloheptyl group, and cyclodecyl group.
  • a cycloalkyl group is mentioned.
  • polycyclic alicyclic hydrocarbon group examples include decahydronaphthyl group, adamantyl group, 2-alkyladamantan-2-yl group, 1- (adamantan-1-yl) alkane-1-yl group, norbornyl group, A methyl norbornyl group and an isobornyl group are mentioned.
  • hydrocarbon group having a fluorine atom for R f22 examples include an alkyl group having a fluorine atom and an alicyclic hydrocarbon group having a fluorine atom.
  • alkyl group having a fluorine atom examples include a difluoromethyl group, a trifluoromethyl group, a 1,1-difluoroethyl group, a 2,2-difluoroethyl group, a 2,2,2-trifluoroethyl group, a perfluoroethyl group, 1 , 1,2,2-tetrafluoropropyl group, 1,1,2,2,3,3-hexafluoropropyl group, perfluoroethylmethyl group, 1- (trifluoromethyl) -1,2,2,2- Tetrafluoroethyl group, 1- (trifluoromethyl) -2,2,2-trifluoroethyl group, perfluoropropyl group, 1,1,2,2-tetrafluorobutyl group, 1,1,2,2,3 , 3-hexafluorobutyl group, 1,1,2,2,3,3,4,4-octafluorobutyl group, perfluorobuty
  • Examples of the alicyclic hydrocarbon group having a fluorine atom include fluorinated cycloalkyl groups such as a perfluorocyclohexyl group and a perfluoroadamantyl group.
  • R f22 is preferably a C 1-10 alkyl group having a fluorine atom or a C 1-10 alicyclic hydrocarbon group having a fluorine atom, more preferably a C 1-10 alkyl group having a fluorine atom.
  • an alkyl group having 1 to 6 carbon atoms having a fluorine atom is more preferable.
  • a f21 is preferably — (CH 2 ) j1 —, more preferably an ethylene group or a methylene group, and still more preferably a methylene group.
  • Examples of the structural unit represented by formula (a4-4) include the following structural units and structural units in which the methyl group corresponding to R f21 in the structural unit represented by the following formula is replaced with a hydrogen atom. It is done.
  • the content is preferably 1 to 20 mol%, more preferably 2 to 15 mol%, based on all the structural units of the resin (A). More preferred is ⁇ 10 mol%.
  • Examples of the structural unit (a5) include a structural unit represented by the formula (a5-1).
  • R 51 represents a hydrogen atom or a methyl group.
  • R 52 represents an alicyclic hydrocarbon group having 3 to 18 carbon atoms, and a hydrogen atom contained in the alicyclic hydrocarbon group may be substituted with an aliphatic hydrocarbon group having 1 to 8 carbon atoms.
  • the hydrogen atom bonded to the carbon atom at the bonding position with L 55 is not substituted with an aliphatic hydrocarbon group having 1 to 8 carbon atoms.
  • L 55 represents a single bond or a divalent saturated hydrocarbon group having 1 to 18 carbon atoms, and the methylene group contained in the saturated hydrocarbon group may be replaced with an oxygen atom or a carbonyl group.
  • the alicyclic hydrocarbon group for R 52 may be monocyclic or polycyclic. Examples of the monocyclic alicyclic hydrocarbon group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. Examples of the polycyclic alicyclic hydrocarbon group include an adamantyl group and a norbornyl group.
  • Examples of the aliphatic hydrocarbon group having 1 to 8 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, Examples thereof include alkyl groups such as octyl group and 2-ethylhexyl group.
  • Examples of the alicyclic hydrocarbon group having a substituent include a 3-methyladamantyl group.
  • R 52 is preferably an unsubstituted alicyclic hydrocarbon group having 3 to 18 carbon atoms, and more preferably an adamantyl group, a norbornyl group, or a cyclohexyl group.
  • Examples of the divalent saturated hydrocarbon group for L 55 include a divalent aliphatic saturated hydrocarbon group and a divalent alicyclic saturated hydrocarbon group, preferably a divalent aliphatic saturated hydrocarbon group. .
  • divalent aliphatic saturated hydrocarbon group examples include alkanediyl groups such as a methylene group, an ethylene group, a propanediyl group, a butanediyl group, and a pentanediyl group.
  • the divalent alicyclic saturated hydrocarbon group may be monocyclic or polycyclic.
  • Examples of the monocyclic alicyclic saturated hydrocarbon group include cycloalkanediyl groups such as cyclopentanediyl group and cyclohexanediyl group.
  • Examples of the polycyclic divalent alicyclic saturated hydrocarbon group include an adamantanediyl group and a norbornanediyl group.
  • Examples of the group in which the methylene group contained in the saturated hydrocarbon group is replaced with an oxygen atom or a carbonyl group include groups represented by formulas (L1-1) to (L1-4). In the following formula, * represents a bond with an oxygen atom.
  • X x1 represents a carbonyloxy group or an oxycarbonyl group.
  • L x1 represents a divalent aliphatic saturated hydrocarbon group having 1 to 16 carbon atoms.
  • L x2 represents a single bond or a divalent aliphatic saturated hydrocarbon group having 1 to 15 carbon atoms. However, the total carbon number of L x1 and L x2 is 16 or less.
  • L x3 represents a divalent aliphatic saturated hydrocarbon group having 1 to 17 carbon atoms.
  • L x4 represents a single bond or a divalent aliphatic saturated hydrocarbon group having 1 to 16 carbon atoms. However, the total carbon number of L x3 and L x4 is 17 or less.
  • L x5 represents a divalent aliphatic saturated hydrocarbon group having 1 to 15 carbon atoms.
  • L x6 and L x7 each independently represent a single bond or a divalent aliphatic saturated hydrocarbon group having 1 to 14 carbon atoms. However, the total carbon number of L x5 , L x6 and L x7 is 15 or less.
  • L x8 and L x9 represent a single bond or a divalent aliphatic saturated hydrocarbon group having 1 to 12 carbon atoms.
  • W x1 represents a divalent alicyclic saturated hydrocarbon group having 3 to 15 carbon atoms. However, the total carbon number of L x8 , L x9 and W x1 is 15 or less.
  • L x1 is preferably a divalent aliphatic saturated hydrocarbon group having 1 to 8 carbon atoms, more preferably a methylene group or an ethylene group.
  • L x2 is preferably a single bond or a divalent aliphatic saturated hydrocarbon group having 1 to 8 carbon atoms, more preferably a single bond.
  • L x3 is preferably a divalent aliphatic saturated hydrocarbon group having 1 to 8 carbon atoms.
  • L x4 is preferably a single bond or a divalent aliphatic saturated hydrocarbon group having 1 to 8 carbon atoms.
  • L x5 is preferably a divalent aliphatic saturated hydrocarbon group having 1 to 8 carbon atoms, more preferably a methylene group or an ethylene group.
  • L x6 is preferably a single bond or a divalent aliphatic saturated hydrocarbon group having 1 to 8 carbon atoms, more preferably a methylene group or an ethylene group.
  • L x7 is preferably a single bond or a divalent aliphatic saturated hydrocarbon group having 1 to 8 carbon atoms.
  • L x8 is preferably a single bond or a divalent aliphatic saturated hydrocarbon group having 1 to 8 carbon atoms, more preferably a single bond or a methylene group.
  • L x9 is preferably a single bond or a divalent aliphatic saturated hydrocarbon group having 1 to 8 carbon atoms, more preferably a single bond or a methylene group.
  • W x1 is preferably a C 3-10 divalent alicyclic saturated hydrocarbon group, more preferably a cyclohexanediyl group or an adamantanediyl group.
  • Examples of the group represented by the formula (L1-1) include the following divalent groups.
  • Examples of the group represented by the formula (L1-2) include the following divalent groups.
  • Examples of the group represented by the formula (L1-3) include the following divalent groups.
  • Examples of the group represented by the formula (L1-4) include the following divalent groups.
  • L 55 is preferably a single bond or a group represented by the formula (L1-1).
  • structural unit (a5-1) structural units shown below and structural units in which a methyl group corresponding to R 51 in the following structural units is replaced with a hydrogen atom can be mentioned.
  • the content is preferably 1 to 30 mol%, more preferably 2 to 20 mol%, based on all the structural units of the resin (A). More preferred is ⁇ 15 mol%.
  • the resin (A) may further contain a structural unit that decomposes upon exposure to generate an acid (hereinafter sometimes referred to as “structural unit (II)”.
  • structural unit (II) Specifically, a structural unit containing a group represented by the formula (III-1) or (III-2) described in JP-A-2016-79235 is mentioned, and a sulfonate group or a carboxylate group and an organic cation are included in the side chain. And a structural unit having a sulfonio group and an organic anion in the side chain.
  • the structural unit having a sulfonate group or a carboxylate group in the side chain is preferably a structural unit represented by the formula (II-2-A ′).
  • X III3 represents a divalent saturated hydrocarbon group having 1 to 18 carbon atoms, and —CH 2 — contained in the saturated hydrocarbon group may be replaced by —O—, —S— or —CO—.
  • the hydrogen atom contained in the saturated hydrocarbon group may be replaced by a halogen atom, an alkyl group having 1 to 6 carbon atoms which may have a halogen atom, or a hydroxy group.
  • a x1 represents an alkanediyl group having 1 to 8 carbon atoms, and a hydrogen atom contained in the alkanediyl group may be substituted with a fluorine atom or a perfluoroalkyl group having 1 to 6 carbon atoms.
  • RA - represents a sulfonate group or a carboxylate group.
  • R III3 represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom.
  • Z a + represents an organic cation.
  • Examples of the halogen atom represented by R III3 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the alkyl group which has carbon atoms 1 also 1-6 a halogen atom represented by R III3 the alkyl group which has carbon atoms 1 also 1-6 a halogen atom represented by R a8 The same can be mentioned.
  • the alkanediyl group having 1 to 8 carbon atoms represented by A x1 include a methylene group, an ethylene group, a propane-1,3-diyl group, a butane-1,4-diyl group, and a pentane-1,5-diyl group.
  • Hexane-1,6-diyl group ethane-1,1-diyl group, propane-1,1-diyl group, propane-1,2-diyl group, propane-2,2-diyl group, pentane-2, 4-diyl group, 2-methylpropane-1,3-diyl group, 2-methylpropane-1,2-diyl group, pentane-1,4-diyl group, 2-methylbutane-1,4-diyl group, etc. Can be mentioned.
  • Examples of the divalent saturated hydrocarbon group having 1 to 18 carbon atoms represented by XIII3 include a linear or branched alkanediyl group, a monocyclic or polycyclic divalent alicyclic saturated hydrocarbon group. These may be combined.
  • methylene group ethylene group, propane-1,3-diyl group, propane-1,2-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1 , 6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, nonane-1,9-diyl group, decane-1,10-diyl group, undecane-1,11-diyl group Linear alkanediyl groups such as dodecane-1,12-diyl group; butane-1,3-diyl group, 2-methylpropane-1,3-diyl group, 2-methylpropane-1,2-diyl group Branched alkanediyl groups such as pentane-1,4-diyl group, 2-methylbutane-1,4-diyl group; cycl
  • Examples of the group combining the alkanediyl group and the alicyclic saturated hydrocarbon group include cycloalkyl-alkanediyl groups such as a cyclohexylmethylene group, an adamantylmethylene group, and a norbornylethylene group.
  • Examples of the group in which —CH 2 — contained in the saturated hydrocarbon group is replaced by —O—, —S— or —CO— include divalent groups represented by the formulas (X1) to (X53), for example. Can be mentioned. However, the number of carbon atoms before —CH 2 — contained in the saturated hydrocarbon group is replaced by —O—, —S— or —CO— is 17 or less, respectively. In the following formulas, * represents a bond to A x1.
  • X 3 represents a divalent saturated hydrocarbon group having 1 to 16 carbon atoms.
  • X 4 represents a divalent saturated hydrocarbon group having 1 to 15 carbon atoms.
  • X 5 represents a divalent saturated hydrocarbon group having 1 to 13 carbon atoms.
  • X 6 represents an alkyl group having 1 to 14 carbon atoms.
  • X 7 represents a trivalent saturated hydrocarbon group having 1 to 14 carbon atoms.
  • X 8 represents a divalent saturated hydrocarbon group having 1 to 13 carbon atoms.
  • Examples of the organic cation represented by Z a + include organic onium cations such as organic sulfonium cation, organic iodonium cation, organic ammonium cation, organic benzothiazolium cation, and organic phosphonium cation.
  • organic sulfonium cation and organic iodonium cation are preferred, and arylsulfonium cations are more preferred.
  • Z a + is preferably a cation represented by any one of formulas (b2-1) to (b2-4) [hereinafter referred to as “cation (b2-1)” depending on the formula number, etc.]. ].
  • R b4 to R b6 each independently represents an alkyl group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 3 to 36 carbon atoms or an aromatic hydrocarbon group having 6 to 36 carbon atoms,
  • the hydrogen atom contained in may be substituted with a hydroxy group, an alkoxy group having 1 to 12 carbon atoms, an alicyclic hydrocarbon group having 3 to 12 carbon atoms, or an aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • the hydrogen atom contained in the alicyclic hydrocarbon group may be substituted with a halogen atom, an alkyl group having 1 to 18 carbon atoms, an acyl group having 2 to 4 carbon atoms, or a glycidyloxy group.
  • the hydrogen atom contained in the hydrocarbon group may be substituted with a halogen atom, a hydroxy group or an alkoxy group having 1 to 12 carbon atoms.
  • R b4 and R b5 may form a ring together with the sulfur atom to which they are bonded, and —CH 2 — contained in the ring may be replaced with —O—, —SO— or —CO—. .
  • R b7 and R b8 each independently represent a hydroxy group, an aliphatic hydrocarbon group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
  • m2 and n2 each independently represents an integer of 0 to 5.
  • R b9 and R b10 each independently represent an alkyl group having 1 to 36 carbon atoms or an alicyclic hydrocarbon group having 3 to 36 carbon atoms.
  • R b9 and R b10 may form a ring together with the sulfur atom to which they are bonded, and —CH 2 — contained in the ring may be replaced with —O—, —SO— or —CO—.
  • R b11 represents a hydrogen atom, an alkyl group having 1 to 36 carbon atoms, an alicyclic hydrocarbon group having 3 to 36 carbon atoms, or an aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • R b12 represents an alkyl group having 1 to 12 carbon atoms, an alicyclic hydrocarbon group having 3 to 18 carbon atoms, or an aromatic hydrocarbon group having 6 to 18 carbon atoms, and the hydrogen atom contained in the alkyl group is
  • the aromatic hydrocarbon group may be substituted with an aromatic hydrocarbon group having 6 to 18 carbon atoms, and the hydrogen atom contained in the aromatic hydrocarbon group is an alkoxy group having 1 to 12 carbon atoms or an alkylcarbonyloxy group having 1 to 12 carbon atoms. It may be substituted with a group.
  • R b11 and R b12 may together form a ring containing —CH—CO— to which they are bonded, and —CH 2 — contained in the ring is —O—, —SO—. Alternatively, it may be replaced by -CO-.
  • R b13 to R b18 each independently represents a hydroxy group, an aliphatic hydrocarbon group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
  • L b31 represents —S— or —O—.
  • o2, p2, s2, and t2 each independently represents an integer of 0 to 5.
  • q2 and r2 each independently represents an integer of 0 to 4.
  • u2 represents 0 or 1.
  • the plurality of R b13 may be the same or different.
  • the plurality of R b14 may be the same or different.
  • q2 is 2 or more
  • the plurality of R b15 may be the same or different.
  • the plurality of R b16 may be the same or different.
  • the plurality of R b17 is They may be the same or different, and when t2 is 2 or more, the plurality of R b18 may be the same or different.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group and 2-ethylhexyl group. It is done.
  • the alkyl group of R b9 to R b12 preferably has 1 to 12 carbon atoms.
  • the alicyclic hydrocarbon group may be monocyclic or polycyclic, and examples of the monocyclic alicyclic hydrocarbon group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. And cycloalkyl groups such as a cyclooctyl group and a cyclodecyl group.
  • Examples of the polycyclic alicyclic hydrocarbon group include decahydronaphthyl group, adamantyl group, norbornyl group, and the following groups. Among them, the carbon number of the alkyl group of R b9 to R b12 is preferably 3 to 18, and more preferably 4 to 12.
  • Examples of the alicyclic hydrocarbon group in which a hydrogen atom is substituted with an alkyl group include a methylcyclohexyl group, a dimethylcyclohexyl group, a 2-alkyladamantan-2-yl group, a methylnorbornyl group, and an isobornyl group. Can be mentioned.
  • the total number of carbon atoms of the alicyclic hydrocarbon group and the alkyl group is preferably 20 or less.
  • Examples of the aliphatic hydrocarbon group represented by R b7, R b8 , and R b13 to R b18 include the same alkyl groups, alicyclic hydrocarbon groups, and groups obtained by combining them.
  • aromatic hydrocarbon group examples include aryl groups such as a phenyl group, a biphenylyl group, a naphthyl group, and a phenanthryl group; a tolyl group, a xylyl group, a cumenyl group, a mesityl group, a p-ethylphenyl group, a p-tert-butylphenyl group, Examples thereof include alkyl-aryl groups such as 2,6-diethylphenyl group and 2-methyl-6-ethylphenyl group; cycloalkyl-aryl groups such as p-cyclohexylphenyl group and p-adamantylphenyl group.
  • aryl groups such as a phenyl group, a biphenylyl group, a naphthyl group, and a phenanthryl group
  • a tolyl group a xylyl group, a cumenyl group,
  • the aromatic hydrocarbon group includes an alkyl group or an alicyclic hydrocarbon group
  • an alkyl group having 1 to 18 carbon atoms and an alicyclic hydrocarbon group having 3 to 18 carbon atoms are preferable.
  • Examples of the aromatic hydrocarbon group in which a hydrogen atom is substituted with an alkoxy group include a p-methoxyphenyl group.
  • alkyl group in which a hydrogen atom is substituted with an aromatic hydrocarbon group examples include aralkyl groups such as a benzyl group, a phenethyl group, a phenylpropyl group, a trityl group, a naphthylmethyl group, and a naphthylethyl group.
  • alkoxy group examples include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, decyloxy group and dodecyloxy group.
  • acyl group examples include an acetyl group, a propionyl group, and a butyryl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • alkylcarbonyloxy group examples include a methylcarbonyloxy group, an ethylcarbonyloxy group, an n-propylcarbonyloxy group, an isopropylcarbonyloxy group, an n-butylcarbonyloxy group, a sec-butylcarbonyloxy group, a tert-butylcarbonyloxy group, Examples thereof include a pentylcarbonyloxy group, a hexylcarbonyloxy group, an octylcarbonyloxy group, and a 2-ethylhexylcarbonyloxy group.
  • the ring that R b4 and R b5 may form together with the sulfur atom to which they are bonded is any of monocyclic, polycyclic, aromatic, non-aromatic, saturated and unsaturated rings. There may be.
  • the ring include a ring having 3 to 18 carbon atoms, and a ring having 4 to 18 carbon atoms is preferable.
  • examples of the ring containing a sulfur atom include a 3-membered ring to a 12-membered ring, preferably a 3-membered ring to a 7-membered ring, and specifically include the following rings.
  • the ring formed by R b9 and R b10 together with the sulfur atom to which they are bonded may be any of monocyclic, polycyclic, aromatic, non-aromatic, saturated and unsaturated rings. Good. Examples of this ring include a 3-membered ring to a 12-membered ring, preferably a 3-membered ring to a 7-membered ring. Examples thereof include a thiolane-1-ium ring (tetrahydrothiophenium ring), thian-1-ium ring. Ring, 1,4-oxathian-4-ium ring and the like.
  • the ring formed by combining R b11 and R b12 may be any of monocyclic, polycyclic, aromatic, non-aromatic, saturated and unsaturated rings.
  • the ring include a 3-membered ring to a 12-membered ring, preferably a 3-membered ring to a 7-membered ring.
  • examples thereof include an oxocycloheptane ring, an oxocyclohexane ring, an oxonorbornane ring, and an oxoadamantane ring. It is done.
  • the cation (b2-1) to cation (b2-4) the cation (b2-1) is preferable.
  • Examples of the cation (b2-1) include the following cations.
  • Examples of the cation (b2-2) include the following cations.
  • Examples of the cation (b2-3) include the following cations.
  • Examples of the cation (b2-4) include the following cations.
  • the structural unit represented by the formula (II-2-A ′) is preferably a structural unit represented by the formula (II-2-A).
  • R III3 , X III3 and Z a + represent the same meaning as described above.
  • z represents an integer of 0 to 6.
  • R III2 and R III4 each independently represent a hydrogen atom, a fluorine atom or a C 1-6 perfluoroalkyl group, and when z is 2 or more, the plurality of R III2 and R III4 are the same as each other It may be different or different.
  • Q a and Q b each independently represent a fluorine atom or a C 1-6 perfluoroalkyl group.
  • Examples of the perfluoroalkyl group having 1 to 6 carbon atoms represented by R III2 , R III4 , Q a and Q b include the same as the perfluoroalkyl group having 1 to 6 carbon atoms represented by Q 1 described later. .
  • the structural unit represented by the formula (II-2-A) is preferably a structural unit represented by the formula (II-2-A-1).
  • R III2 , R III3 , R III4 , Q a , Q b , z and Z a + represent the same meaning as described above.
  • R III5 represents a saturated hydrocarbon group having 1 to 12 carbon atoms.
  • X 2 represents a divalent saturated hydrocarbon group having 1 to 11 carbon atoms, and —CH 2 — contained in the saturated hydrocarbon group may be replaced by —O—, —S— or —CO—.
  • the hydrogen atom contained in the saturated hydrocarbon group may be substituted with a halogen atom or a hydroxy group.
  • Examples of the saturated hydrocarbon group having 1 to 12 carbon atoms represented by R III5 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, Examples thereof include linear or branched alkyl groups such as heptyl group, octyl group, nonyl group, decyl group, undecyl group and dodecyl group.
  • Examples of the divalent saturated hydrocarbon group having 1 to 11 carbon atoms represented by X 2 include groups having 11 or less carbon atoms among the specific examples of the divalent saturated hydrocarbon group represented by X III3. .
  • a structural unit represented by the formula (II-2-A-2) is more preferable.
  • R III3 , R III5 and Z a + represent the same meaning as described above.
  • m and n each independently represent 1 or 2.
  • Examples of the structural unit represented by the formula (II-2-A-1) include the following structural units and the structural units described in WO2012 / 050015.
  • Z a + represents an organic cation.
  • the structural unit having a sulfonio group and an organic anion in the side chain is preferably a structural unit represented by the formula (II-1-1).
  • a II1 represents a single bond or a divalent linking group.
  • R II1 represents a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • R II2 and R II3 each independently represent a hydrocarbon group having 1 to 18 carbon atoms, and R II2 and R II3 may be bonded to each other to form a ring together with S + to which they are bonded.
  • R II4 represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 6 carbon atoms which may have a halogen atom.
  • a ⁇ represents an organic anion.
  • Examples of the divalent aromatic hydrocarbon group having 6 to 18 carbon atoms represented by R II1 include a phenylene group and a naphthylene group.
  • Examples of the hydrocarbon group having 1 to 18 carbon atoms represented by R II2 and R II3 include an alkyl group having 1 to 18 carbon atoms, an alicyclic hydrocarbon group having 3 to 18 carbon atoms, and an aromatic group having 6 to 18 carbon atoms. Group hydrocarbon group and the like.
  • Examples of the alkyl group having 1 to 18 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group and nonyl group.
  • a linear or branched alkyl group such as a decyl group, an undecyl group and a dodecyl group.
  • Examples of the alicyclic hydrocarbon group having 3 to 18 carbon atoms include cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, methylcyclohexyl group, dimethylcyclohexyl group, and methylnorbornyl group.
  • a polycyclic alicyclic hydrocarbon group such as a decahydronaphthyl group, an adamantyl group, a norbornyl group, and an adamantylcyclohexyl group.
  • the aromatic hydrocarbon group having 6 to 18 carbon atoms include a phenyl group, a naphthyl group, and an anthracenyl group.
  • the ring formed by combining R II2 and R II3 together with S + may further have an oxygen atom or may have a polycyclic structure.
  • halogen atom represented by R II4 examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • alkyl group which has carbon atoms 1 also 1-6 a halogen atom represented by R II4 is an alkyl group which has carbon atoms 1 also 1-6 a halogen atom represented by R a8 The same can be mentioned.
  • Examples of the divalent linking group represented by A II1 include a divalent saturated hydrocarbon group having 1 to 18 carbon atoms, and —CH 2 — contained in the divalent saturated hydrocarbon group is It may be replaced by —O—, —S— or —CO—. Specific examples thereof include the same ones as the divalent saturated hydrocarbon group having 1 to 18 carbon atoms represented by XIII3 .
  • Examples of the structural unit containing a cation in formula (II-1-1) include the structural units represented below.
  • Examples of the organic anion represented by A ⁇ include a sulfonate anion, a sulfonylimide anion, a sulfonylmethide anion, and a carboxylate anion.
  • a - organic anion represented by the sulfonate anion are preferable, and more preferably an anion contained in the later-described acid generator (B1).
  • Examples of the structural unit (II-1) include the structural units represented below.
  • the content of the structural unit (II) is preferably 1 to 20 mol% with respect to the total structural units of the resin (A).
  • the amount is preferably 2 to 15 mol%, more preferably 3 to 10 mol%.
  • the resin (A) is preferably a resin comprising the structural unit (I), the structural unit (a1), and the structural unit (s), that is, the compound (I ′), the monomer (a1), and the monomer (s). It is a copolymer.
  • the structural unit (a1) is preferably at least one selected from the structural unit (a1-1) and the structural unit (a1-2) (preferably the structural unit having a cyclohexyl group or a cyclopentyl group), more preferably the structural unit ( a1-1) or a structural unit (a1-1) and a structural unit (a1-2) (preferably the structural unit having a cyclohexyl group or a cyclopentyl group).
  • the structural unit (s) is preferably at least one of the structural unit (a2) and the structural unit (a3).
  • the structural unit (a2) is preferably a structural unit represented by the formula (a2-1).
  • the structural unit (a3) is preferably a structural unit represented by formula (a3-1-1) to formula (a3-1-4), formula (a3-2-1) to formula (a3-2-4) And at least one selected from structural units represented by formula (a3-4-1) to formula (a3-4-2).
  • the structural unit (I), the structural unit (a1), the structural unit (s), the structural unit (a4), the structural unit (a5) and the structural unit (II) constituting the resin (A) are each one kind or two Two or more species may be used in combination, and these monomers can be produced by a known polymerization method (for example, radical polymerization method) using a monomer for deriving these structural units.
  • the content rate of each structural unit which resin (A) has can be adjusted with the usage-amount of the monomer used for superposition
  • the weight average molecular weight of the resin (A) is preferably 2,000 or more (more preferably 2,500 or more, more preferably 3,000 or more), 50,000 or less (more preferably 30,000 or less, further preferably 15,000 or less).
  • the weight average molecular weight is a value obtained by gel permeation chromatography under the conditions described in Examples.
  • the resist composition of the present invention contains a resin (A).
  • examples of the resist composition of the present invention include a resist composition containing a resin (A) and an acid generator (hereinafter sometimes referred to as “acid generator (B)”).
  • acid generator (B) an acid generator
  • the resist composition of the present invention does not have an acid generator (B)
  • it preferably contains a resin (A) having a structural unit (II).
  • the resist composition of the present invention comprises, in addition to the resin (A) and the acid generator (B), a resin other than the resin (A), a quencher (hereinafter sometimes referred to as “quencher (C)”) and / or It preferably contains a solvent (hereinafter sometimes referred to as “solvent (E)”).
  • Resin other than resin (A) examples include a resin containing the structural unit (a4) (hereinafter sometimes referred to as “resin (X)”).
  • resin (X) examples include the structural unit (a1), the structural unit (a2), the structural unit (a3), the structural unit (a5), and other known structural units.
  • the resin (X) is more preferably a resin composed of the structural unit (a4) and / or the structural unit (a5).
  • the content is preferably 40 mol% or more, more preferably 45 mol% or more, and more preferably 50 mol% or more with respect to all the structural units of the resin (X). Is more preferable.
  • the content is preferably 10 to 60 mol%, more preferably 20 to 55 mol%, more preferably 25 to 25 mol% with respect to all the structural units of the resin (X). 50 mol% is more preferable.
  • the structural unit (a1), structural unit (s), structural unit (a4), and structural unit (a5) constituting the resin (X) may be used alone or in combination of two or more. It can be produced by a known polymerization method (for example, radical polymerization method) using a monomer for deriving a unit. The content rate of each structural unit which resin (X) has can be adjusted with the usage-amount of the monomer used for superposition
  • the weight average molecular weight of the resin (X) is preferably 6,000 or more (more preferably 7,000 or more) and 80,000 or less (more preferably 60,000 or less).
  • the means for measuring the weight average molecular weight of the resin (X) is the same as that for the resin (A).
  • the content thereof is preferably 1 to 60 parts by mass, more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the resin (A).
  • the amount is preferably 1 to 40 parts by mass, particularly preferably 2 to 30 parts by mass.
  • the solid content of the resist composition and the resin content relative thereto can be measured by a known analysis means such as liquid chromatography or gas chromatography.
  • the resist composition of the present invention preferably further contains an acid generator (B).
  • an acid generator is classified into a nonionic type and an ionic type, any may be used for the acid generator (B) of the resist composition of this invention.
  • Nonionic acid generators include organic halides, sulfonate esters (for example, 2-nitrobenzyl ester, aromatic sulfonate, oxime sulfonate, N-sulfonyloxyimide, sulfonyloxyketone, diazonaphthoquinone 4-sulfonate), sulfones (For example, disulfone, ketosulfone, sulfonyldiazomethane) and the like.
  • Typical examples of the ionic acid generator include onium salts containing onium cations (for example, diazonium salts, phosphonium salts, sulfonium salts, and iodonium salts).
  • the anion of the onium salt include a sulfonate anion, a sulfonylimide anion, and a sulfonylmethide anion.
  • Examples of the acid generator (B) include JP-A-63-26653, JP-A-55-164824, JP-A-62-69263, JP-A-63-146038, JP-A-63-163452, Kaisho 62-153853, JP 63-146029, U.S. Pat. No. 3,779,778, U.S. Pat. No. 3,849,137, German Patent 3914407, European Patent 126,712, etc.
  • produces an acid by the radiation as described in 1 can be used. Moreover, you may use the compound manufactured by the well-known method.
  • An acid generator (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the acid generator (B) is preferably a fluorine-containing acid generator, more preferably a salt represented by the formula (B1) (hereinafter sometimes referred to as “acid generator (B1)”).
  • Q 1 and Q 2 each independently represents a fluorine atom or a C 1-6 perfluoroalkyl group.
  • L b1 represents a divalent saturated hydrocarbon group having 1 to 24 carbon atoms which may have a substituent, and —CH 2 — contained in the divalent saturated hydrocarbon group is —O— or -CO- may be substituted, and a hydrogen atom contained in the divalent saturated hydrocarbon group may be substituted with a fluorine atom or a hydroxy group.
  • Y represents a hydrogen atom or an alicyclic hydrocarbon group having 3 to 18 carbon atoms which may have a substituent, and —CH 2 — contained in the alicyclic hydrocarbon group is —O—, It may be replaced by —SO 2 — or —CO—.
  • Z + represents an organic cation.
  • Examples of the perfluoroalkyl group for Q 1 and Q 2 include trifluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluoroisopropyl group, perfluorobutyl group, perfluorosec-butyl group, perfluorotert-butyl group, perfluoropentyl group, and perfluoro group. A hexyl group etc. are mentioned.
  • Q 1 and Q 2 are preferably each independently a fluorine atom or a trifluoromethyl group, and more preferably a fluorine atom.
  • the divalent saturated hydrocarbon group for L b1 include a linear alkanediyl group, a branched alkanediyl group, a monocyclic or polycyclic divalent alicyclic saturated hydrocarbon group, and these It may be a group formed by combining two or more of the groups.
  • methylene group ethylene group, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1 , 7-diyl group, octane-1,8-diyl group, nonane-1,9-diyl group, decane-1,10-diyl group, undecane-1,11-diyl group, dodecane-1,12-diyl group
  • Straight chain such as tridecane-1,13-diyl group, tetradecane-1,14-diyl group, pentadecane-1,15-diyl group, hexadecane-1,16-diyl group and heptadecane-1,17-diyl group Alkanediyl group; Ethane-1,1-diyl group, propane
  • Examples of the group in which —CH 2 — contained in the divalent saturated hydrocarbon group of L b1 is replaced by —O— or —CO— include any of formulas (b1-1) to (b1-3) The group represented by these is mentioned. In the formulas (b1-1) to (b1-3) and the specific examples below, * represents a bond with —Y.
  • L b2 represents a single bond or a divalent saturated hydrocarbon group having 1 to 22 carbon atoms, and the hydrogen atom contained in the saturated hydrocarbon group may be substituted with a fluorine atom.
  • L b3 represents a single bond or a divalent saturated hydrocarbon group having 1 to 22 carbon atoms, and the hydrogen atom contained in the saturated hydrocarbon group may be substituted with a fluorine atom or a hydroxy group, The methylene group contained in the hydrocarbon group may be replaced with an oxygen atom or a carbonyl group. However, the total number of carbon atoms of L b2 and L b3 is 22 or less.
  • L b4 represents a single bond or a divalent saturated hydrocarbon group having 1 to 22 carbon atoms, and the hydrogen atom contained in the saturated hydrocarbon group may be substituted with a fluorine atom.
  • L b5 represents a single bond or a divalent saturated hydrocarbon group having 1 to 22 carbon atoms, and the hydrogen atom contained in the saturated hydrocarbon group may be substituted with a fluorine atom or a hydroxy group, The methylene group contained in the hydrocarbon group may be replaced with an oxygen atom or a carbonyl group. However, the total number of carbon atoms of L b4 and L b5 is 22 or less.
  • L b6 represents a single bond or a divalent saturated hydrocarbon group having 1 to 23 carbon atoms, and the hydrogen atom contained in the saturated hydrocarbon group may be substituted with a fluorine atom or a hydroxy group.
  • L b7 represents a single bond or a divalent saturated hydrocarbon group having 1 to 23 carbon atoms, and the hydrogen atom contained in the saturated hydrocarbon group may be substituted with a fluorine atom or a hydroxy group.
  • the methylene group contained in the hydrocarbon group may be replaced with an oxygen atom or a carbonyl group. However, the total number of carbon atoms of L b6 and L b7 is 23 or less.
  • the carbon number before the replacement is the carbon number of the saturated hydrocarbon group. It is a number.
  • divalent saturated hydrocarbon group examples include the same divalent saturated hydrocarbon group of L b1.
  • L b2 is preferably a single bond.
  • L b3 is preferably a divalent saturated hydrocarbon group having 1 to 4 carbon atoms.
  • L b4 is preferably a divalent saturated hydrocarbon group having 1 to 8 carbon atoms, and the hydrogen atom contained in the divalent saturated hydrocarbon group may be substituted with a fluorine atom.
  • L b5 is preferably a single bond or a divalent saturated hydrocarbon group having 1 to 8 carbon atoms.
  • L b6 is preferably a single bond or a divalent saturated hydrocarbon group having 1 to 4 carbon atoms, and the hydrogen atom contained in the saturated hydrocarbon group may be substituted with a fluorine atom.
  • L b7 is preferably a single bond or a divalent saturated hydrocarbon group having 1 to 18 carbon atoms, and the hydrogen atom contained in the saturated hydrocarbon group may be substituted with a fluorine atom or a hydroxy group, The methylene group contained in the divalent saturated hydrocarbon group may be replaced with an oxygen atom or a carbonyl group.
  • the group in which —CH 2 — in the divalent saturated hydrocarbon group for L b1 is replaced by —O— or —CO— is a group represented by the formula (b1-1) or the formula (b1-3) Is preferred.
  • Examples of formula (b1-1) include groups represented by formula (b1-4) to formula (b1-8).
  • L b8 represents a single bond or a divalent saturated hydrocarbon group having 1 to 22 carbon atoms, and the hydrogen atom contained in the saturated hydrocarbon group may be substituted with a fluorine atom or a hydroxy group.
  • L b9 represents a divalent saturated hydrocarbon group having 1 to 20 carbon atoms.
  • L b10 represents a single bond or a divalent saturated hydrocarbon group having 1 to 19 carbon atoms, and the hydrogen atom contained in the divalent saturated hydrocarbon group may be substituted with a fluorine atom or a hydroxy group.
  • the total carbon number of L b9 and L b10 is 20 or less.
  • L b11 represents a divalent saturated hydrocarbon group having 1 to 21 carbon atoms.
  • L b12 represents a single bond or a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, and the hydrogen atom contained in the divalent saturated hydrocarbon group may be substituted with a fluorine atom or a hydroxy group. .
  • the total carbon number of L b11 and L b12 is 21 or less.
  • L b13 represents a divalent saturated hydrocarbon group having 1 to 19 carbon atoms.
  • L b14 represents a single bond or a divalent saturated hydrocarbon group having 1 to 18 carbon atoms.
  • L b15 represents a single bond or a divalent saturated hydrocarbon group having 1 to 18 carbon atoms, and the hydrogen atom contained in the divalent saturated hydrocarbon group may be substituted with a fluorine atom or a hydroxy group. . However, the total carbon number of L b13 to L b15 is 19 or less.
  • L b16 represents a divalent saturated hydrocarbon group having 1 to 18 carbon atoms.
  • L b17 represents a divalent saturated hydrocarbon group having 1 to 18 carbon atoms.
  • L b18 represents a single bond or a divalent saturated hydrocarbon group having 1 to 17 carbon atoms, and the hydrogen atom contained in the divalent saturated hydrocarbon group may be substituted with a fluorine atom or a hydroxy group. . However, the total carbon number of L b16 to L b18 is 19 or less. ]
  • L b8 is preferably a divalent saturated hydrocarbon group having 1 to 4 carbon atoms.
  • L b9 is preferably a divalent saturated hydrocarbon group having 1 to 8 carbon atoms.
  • L b10 is preferably a single bond or a divalent saturated hydrocarbon group having 1 to 19 carbon atoms, and more preferably a single bond or a divalent saturated hydrocarbon group having 1 to 8 carbon atoms.
  • L b11 is preferably a divalent saturated hydrocarbon group having 1 to 8 carbon atoms.
  • L b12 is preferably a single bond or a divalent saturated hydrocarbon group having 1 to 8 carbon atoms.
  • L b13 is preferably a divalent saturated hydrocarbon group having 1 to 12 carbon atoms.
  • L b14 is preferably a single bond or a divalent saturated hydrocarbon group having 1 to 6 carbon atoms.
  • L b15 is preferably a single bond or a divalent saturated hydrocarbon group having 1 to 18 carbon atoms, and more preferably a single bond or a divalent saturated hydrocarbon group having 1 to 8 carbon atoms.
  • L b16 is preferably a divalent saturated hydrocarbon group having 1 to 12 carbon atoms.
  • L b17 is preferably a divalent saturated hydrocarbon group having 1 to 6 carbon atoms.
  • L b18 is preferably a single bond or a divalent saturated hydrocarbon group having 1 to 17 carbon atoms, more preferably a single bond or a divalent saturated hydrocarbon group having 1 to 4 carbon atoms.
  • Examples of formula (b1-3) include groups represented by formulas (b1-9) to (b1-11), respectively.
  • L b19 represents a single bond or a divalent saturated hydrocarbon group having 1 to 23 carbon atoms, and the hydrogen atom contained in the divalent saturated hydrocarbon group may be substituted with a fluorine atom.
  • L b20 represents a single bond or a divalent saturated hydrocarbon group having 1 to 23 carbon atoms, and the hydrogen atom contained in the divalent saturated hydrocarbon group is substituted with a fluorine atom, a hydroxy group or an acyloxy group. Also good.
  • the methylene group contained in the acyloxy group may be replaced with an oxygen atom or a carbonyl group, and the hydrogen atom contained in the acyloxy group may be substituted with a hydroxy group.
  • the total carbon number of L b19 and L b20 is 23 or less.
  • L b21 represents a single bond or a divalent saturated hydrocarbon group having 1 to 21 carbon atoms
  • the hydrogen atom contained in the divalent saturated hydrocarbon group may be substituted with a fluorine atom
  • L b22 represents a single bond or a divalent saturated hydrocarbon group having 1 to 21 carbon atoms.
  • L b23 represents a single bond or a divalent saturated hydrocarbon group having 1 to 21 carbon atoms, and the hydrogen atom contained in the divalent saturated hydrocarbon group is substituted with a fluorine atom, a hydroxy group or an acyloxy group. May be.
  • the methylene group contained in the acyloxy group may be replaced with an oxygen atom or a carbonyl group, and the hydrogen atom contained in the acyloxy group may be substituted with a hydroxy group.
  • the total carbon number of L b21 to L b23 is 21 or less.
  • L b24 represents a single bond or a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, and the hydrogen atom contained in the divalent saturated hydrocarbon group may be substituted with a fluorine atom.
  • L b25 represents a divalent saturated hydrocarbon group having 1 to 21 carbon atoms.
  • L b26 represents a single bond or a divalent saturated hydrocarbon group having 1 to 20 carbon atoms, and the hydrogen atom contained in the divalent saturated hydrocarbon group is substituted with a fluorine atom, a hydroxy group or an acyloxy group. May be.
  • the methylene group contained in the acyloxy group may be replaced with an oxygen atom or a carbonyl group, and the hydrogen atom contained in the acyloxy group may be substituted with a hydroxy group. Provided that the total carbon number of L b24 ⁇ L b26 is 21 or less.
  • the number of carbon atoms in the acyloxy group, CO in the ester bond, and The number of carbon atoms of the divalent saturated hydrocarbon group including the number of O is used.
  • acyloxy group examples include acetyloxy group, propionyloxy group, butyryloxy group, cyclohexylcarbonyloxy group, adamantylcarbonyloxy group and the like.
  • acyloxy group having a substituent examples include an oxoadamantylcarbonyloxy group, a hydroxyadamantylcarbonyloxy group, an oxocyclohexylcarbonyloxy group, and a hydroxycyclohexylcarbonyloxy group.
  • examples of the group represented by the formula (b1-4) include the following.
  • examples of the group represented by the formula (b1-5) include the following.
  • examples of the group represented by the formula (b1-6) include the following.
  • examples of the group represented by the formula (b1-7) include the following.
  • examples of the group represented by the formula (b1-8) include the following.
  • Examples of the group represented by the formula (b1-2) include the following.
  • examples of the group represented by the formula (b1-9) include the following.
  • examples of the group represented by the formula (b1-10) include the following groups.
  • examples of the group represented by the formula (b1-11) include the following groups.
  • Examples of the alicyclic hydrocarbon group represented by Y include groups represented by formulas (Y1) to (Y11) and formulas (Y36) to (Y38).
  • Y two hydrogen atoms contained in an alicyclic hydrocarbon group are each replaced by an oxygen atom, and the two oxygen atoms together with an alkanediyl group having 1 to 8 carbon atoms form a ketal ring.
  • a structure in which an oxygen atom is bonded to each of different carbon atoms may be included.
  • the alkanediyl group between the two oxygens is one or more fluorine atoms. It preferably has an atom.
  • the alkanediyl groups contained in the ketal structure those in which the methylene group adjacent to the oxygen atom is not substituted with a fluorine atom are preferred.
  • Examples of the substituent of the alicyclic hydrocarbon group represented by Y include a halogen atom, a hydroxy group, an alkyl group having 1 to 12 carbon atoms, a hydroxy group-containing alkyl group having 1 to 12 carbon atoms, and a carbon group having 3 to 16 carbon atoms.
  • An alicyclic hydrocarbon group, an alkoxy group having 1 to 12 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, an aralkyl group having 7 to 21 carbon atoms, an acyl group having 2 to 4 carbon atoms, a glycidyloxy group, or — (CH 2 ) ja —O—CO—R b1 group (wherein R b1 is an alkyl group having 1 to 16 carbon atoms, an alicyclic hydrocarbon group having 3 to 16 carbon atoms, or a group having 6 to 18 carbon atoms) Represents an aromatic hydrocarbon group, and ja represents an integer of 0 to 4.
  • Examples of the hydroxy group-containing alkyl group having 1 to 12 carbon atoms include a hydroxymethyl group and a hydroxyethyl group.
  • alkoxy group examples include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, decyloxy group and dodecyloxy group.
  • Aromatic hydrocarbon groups include phenyl groups, naphthyl groups, anthryl groups, biphenyl groups, phenanthryl groups and other aryl groups; tolyl groups, xylyl groups, cumenyl groups, mesityl groups, 2,6-diethylphenyl groups, p-tert. -Alkyl-aryl groups such as butylphenyl group and 2-methyl-6-ethylphenyl group; and cycloalkyl-aryl groups such as p-adamantylphenyl group.
  • aralkyl group examples include a benzyl group, a phenethyl group, a phenylpropyl group, a naphthylmethyl group, and a naphthylethyl group.
  • acyl group examples include an acetyl group, a propionyl group, and a butyryl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Examples of Y include the following.
  • Y is preferably an alicyclic hydrocarbon group having 3 to 18 carbon atoms which may have a substituent, and more preferably an adamantyl group which may have a substituent.
  • the methylene group may be replaced by an oxygen atom, a sulfonyl group or a carbonyl group.
  • Y is more preferably an adamantyl group, a hydroxyadamantyl group or an oxoadamantyl group, or a group represented by the following.
  • Examples of the sulfonate anion in the salt represented by the formula (B1) include anions represented by the formulas (B1-A-1) to (B1-A-55) [hereinafter referred to as “anions (B1 -A-1) ".
  • Anions (B1-A-1) are preferably represented by formulas (B1-A-1) to (B1-A-4), (B1-A-9), (B1-A-10), and (B1-A-24) to (B1-A-33), Formula (B1-A-36) to Formula (B1-A-40), Formula (B1-A-47) to Formula (B1-A-55)
  • An anion is more preferable.
  • R i2 to R i7 are, for example, an alkyl group having 1 to 4 carbon atoms, preferably a methyl group or an ethyl group.
  • R i8 is, for example, an aliphatic hydrocarbon group having 1 to 12 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, an alicyclic hydrocarbon group having 5 to 12 carbon atoms, or a combination thereof. It is a group to be formed, more preferably a methyl group, an ethyl group, a cyclohexyl group or an adamantyl group.
  • L 44 is a single bond or an alkanediyl group having 1 to 4 carbon atoms.
  • Specific examples of the sulfonate anion in the salt represented by the formula (B1) include the anions described in JP-A No. 2010-204646.
  • Preferred examples of the sulfonate anion in the salt represented by the formula (B1) include anions represented by the formulas (B1a-1) to (B1a-34), respectively.
  • formula (B1a-1) to formula (B1a-3) and formula (B1a-7) to formula (B1a-16), formula (B1a-18), formula (B1a-19), formula (B1a-22) ) To (B1a-34) are preferred.
  • Examples of the organic cation of Z + include an organic onium cation, such as an organic sulfonium cation, an organic iodonium cation, an organic ammonium cation, a benzothiazolium cation, and an organic phosphonium cation, and preferably an organic sulfonium cation or an organic iodonium cation. More preferably, an arylsulfonium cation is mentioned.
  • the acid generator (B1) is a combination of the above sulfonic acid anion and the above organic cation, and these can be arbitrarily combined.
  • the acid generator (B1) is preferably an anion and a cation (b2) represented by any of the formulas (B1a-1) to (B1a-3) and (B1a-7) to (B1a-16) And a combination with -1).
  • Examples of the acid generator (B1) include those represented by formulas (B1-1) to (B1-48), respectively. Among them, formula (B1-1) to formula (B1-3), formula (B1) -5) to formula (B1-7), formula (B1-11) to formula (B1-14), formula (B1-17), formula (B1-20) to formula (B1-26), formula (B1- 29) and those represented by formulas (B1-31) to (B1-48) are preferable.
  • the acid generator (B) may contain an acid generator other than the acid generator (B1).
  • the acid generator (B1) may contain one kind alone or plural kinds.
  • the content of the acid generator (B1) is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more, based on the total amount of the acid generator (B). It is particularly preferable that only the agent (B1) is present.
  • the content of the acid generator (B) is preferably 1 part by mass or more (more preferably 3 parts by mass or more), preferably 40 parts by mass or less (more preferably 35 parts by mass) with respect to 100 parts by mass of the resin (A). Part or less).
  • the content of the solvent (E) is usually 90% by mass or more, preferably 92% by mass or more, more preferably 94% by mass or more, and 99.9% by mass or less, preferably 99% by mass or less in the resist composition. It is.
  • the content rate of a solvent (E) can be measured by well-known analysis means, such as a liquid chromatography or a gas chromatography, for example.
  • Examples of the solvent (E) include glycol ether esters such as ethyl cellosolve acetate, methyl cellosolve acetate and propylene glycol monomethyl ether acetate; glycol ethers such as propylene glycol monomethyl ether; ethyl lactate, butyl acetate, amyl acetate and ethyl pyruvate Esters; ketones such as acetone, methyl isobutyl ketone, 2-heptanone and cyclohexanone; cyclic esters such as ⁇ -butyrolactone; One kind of the solvent (E) may be contained alone, or two or more kinds may be contained.
  • glycol ether esters such as ethyl cellosolve acetate, methyl cellosolve acetate and propylene glycol monomethyl ether acetate
  • glycol ethers such as propylene glycol monomethyl ether
  • ethyl lactate butyl acetate,
  • the resist composition of the present invention may contain a quencher (hereinafter sometimes referred to as “quencher (C)”).
  • the quencher (C) may be a basic nitrogen-containing organic compound or a salt that generates an acid having a lower acidity than the acid generator (B).
  • ⁇ Basic nitrogen-containing organic compound examples include amines and ammonium salts.
  • examples of amines include aliphatic amines and aromatic amines.
  • Aliphatic amines include primary amines, secondary amines and tertiary amines.
  • ammonium salts include tetramethylammonium hydroxide, tetraisopropylammonium hydroxide, tetrabutylammonium hydroxide, tetrahexylammonium hydroxide, tetraoctylammonium hydroxide, phenyltrimethylammonium hydroxide, and 3- (trifluoromethyl) phenyltrimethyl.
  • ammonium hydroxide tetra-n-butylammonium salicylate, choline, and the like.
  • the acidity in a salt that generates an acid having a weaker acidity than the acid generated from the acid generator is indicated by an acid dissociation constant (pKa).
  • the salt that generates an acid having a weaker acidity than the acid generated from the acid generator is a salt in which the pKa of the acid generated from the salt is usually -3 ⁇ pKa, preferably -1 ⁇ pKa ⁇ 7. More preferably, the salt is 0 ⁇ pKa ⁇ 5.
  • Examples of the salt that generates an acid weaker than the acid generated from the acid generator include a salt represented by the following formula, a weak acid inner salt described in JP-A-2015-147926, and JP-A-2012-229206. Examples thereof include salts described in JP 2012-6908 A, JP 2012-72109 A, JP 2011-39502 A, and JP 2011-191745 A.
  • Examples of the salt that generates an acid having a lower acidity than the acid generated from the acid generator include the following salts.
  • the content of the quencher (C) is preferably 0.01 to 5% by mass, more preferably 0.01 to 4% by mass, and particularly preferably 0.01 to 3% by mass in the solid content of the resist composition. % By mass.
  • the resist composition of the present invention may contain components other than the above components (hereinafter sometimes referred to as “other components (F)”) as necessary.
  • the other component (F) is not particularly limited, and additives known in the resist field, such as sensitizers, dissolution inhibitors, surfactants, stabilizers, dyes, and the like can be used.
  • a resin (A) and an acid generator, and a resin (X), a quencher (C), a solvent (E) and other components (F) used as necessary are mixed.
  • the mixing order is arbitrary and is not particularly limited.
  • the mixing temperature can be selected appropriately depending on the type of resin and the like, the solubility of the resin and the like in the solvent (E), and is usually 10 to 40 ° C.
  • the mixing time can be selected appropriately depending on the mixing temperature, and is usually 0.5 to 24 hours.
  • the mixing means is not particularly limited, and stirring and mixing can be used.
  • a filter having a pore size of about 0.003 to 0.2 ⁇ m After mixing each component, it is preferable to filter using a filter having a pore size of about 0.003 to 0.2 ⁇ m.
  • the method for producing a resist pattern of the present invention includes (1) The process of apply
  • the resist composition can be applied onto the substrate by a commonly used apparatus such as a spin coater.
  • the substrate include an inorganic substrate such as a silicon wafer.
  • the substrate may be washed, or an antireflection film or the like may be formed on the substrate.
  • the solvent is removed and a composition layer is formed. Drying is performed, for example, by evaporating the solvent using a heating device such as a hot plate (so-called pre-baking), or using a decompression device.
  • the heating temperature is preferably 50 to 200 ° C.
  • the heating time is preferably 10 to 180 seconds.
  • the pressure during drying under reduced pressure is preferably about 1 to 1.0 ⁇ 10 5 Pa.
  • the obtained composition layer is usually exposed using an exposure machine.
  • the exposure machine may be an immersion exposure machine.
  • Exposure light sources include those that emit laser light in the ultraviolet region such as KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), F 2 excimer laser (wavelength 157 nm), solid-state laser light source (YAG or semiconductor laser) Etc.) Using various lasers such as those that convert wavelength of laser light from the laser and emit harmonic laser light in the far-ultraviolet region or vacuum ultraviolet region, those that irradiate electron beams or extreme ultraviolet light (EUV), etc. Can do. In this specification, irradiating these radiations may be collectively referred to as “exposure”. At the time of exposure, exposure is usually performed through a mask corresponding to a required pattern. When the exposure light source is an electron beam, exposure may be performed by direct drawing without using a mask.
  • the composition layer after exposure is subjected to heat treatment (so-called post-exposure baking) in order to promote the deprotection reaction in the acid labile group.
  • the heating temperature is usually about 50 to 200 ° C, preferably about 70 to 150 ° C.
  • the heated composition layer is usually developed using a developer using a developing device.
  • the developing method include a dipping method, a paddle method, a spray method, and a dynamic dispensing method.
  • the development temperature is preferably 5 to 60 ° C., and the development time is preferably 5 to 300 seconds.
  • a positive resist pattern or a negative resist pattern can be produced by selecting the type of developer as follows.
  • an alkaline developer is used as a developer.
  • the alkaline developer may be various alkaline aqueous solutions used in this field. Examples thereof include an aqueous solution of tetramethylammonium hydroxide and (2-hydroxyethyl) trimethylammonium hydroxide (commonly called choline).
  • the alkali developer may contain a surfactant.
  • organic developer a developer containing an organic solvent (hereinafter sometimes referred to as “organic developer”) is used as a developer.
  • Organic solvents contained in the organic developer include ketone solvents such as 2-hexanone and 2-heptanone; glycol ether ester solvents such as propylene glycol monomethyl ether acetate; ester solvents such as butyl acetate; glycols such as propylene glycol monomethyl ether Examples include ether solvents; amide solvents such as N, N-dimethylacetamide; aromatic hydrocarbon solvents such as anisole.
  • the content of the organic solvent is preferably 90% by mass or more and 100% by mass or less, more preferably 95% by mass or more and 100% by mass or less, and still more preferably only the organic solvent.
  • the organic developer is preferably a developer containing butyl acetate and / or 2-heptanone.
  • the total content of butyl acetate and 2-heptanone in the organic developer is preferably 50% by mass or more and 100% by mass or less, more preferably 90% by mass or more and 100% by mass or less, and substantially butyl acetate and / or 2 -More preferably only heptanone.
  • the organic developer may contain a surfactant.
  • the organic developer may contain a trace amount of water.
  • development may be stopped by substituting a solvent of a different type from the organic developer.
  • the rinsing liquid is not particularly limited as long as it does not dissolve the resist pattern, and a solution containing a general organic solvent can be used, and an alcohol solvent or an ester solvent is preferable.
  • the resist composition of the present invention includes a resist composition for KrF excimer laser exposure, a resist composition for ArF excimer laser exposure, a resist composition for electron beam (EB) exposure, or a resist composition for EUV exposure, particularly an electron. It is suitable as a resist composition for line (EB) exposure or a resist composition for EUV exposure, and is useful for fine processing of semiconductors.
  • the weight average molecular weight is a value obtained by gel permeation chromatography under the following conditions.
  • Example 1 [Synthesis of Resin A1] As the monomer, monomer (a1-1-3), monomer (a1-2-9), monomer (a2-1-3), monomer (a3-2-1), monomer (a3-1-1) and monomer ( I-1) and its molar ratio [monomer (a1-1-3): monomer (a1-2-9): monomer (a2-1-3): monomer (a3-2-1): monomer (a3 -1-1): monomer (I-1)] is mixed to 28: 25: 3: 10: 31: 3, and 1.5 mass times the total monomer amount of ketyl ethyl ketone is added to the solution. did.
  • azobisisobutyronitrile and azobis (2,4-dimethylvaleronitrile) were added at 1.5 mol% and 4.5 mol%, respectively, with respect to the total monomer amount, and heated at 75 ° C. for about 5 hours. .
  • the obtained reaction mixture was poured into a large amount of methanol / water mixed solvent to precipitate the resin, and this resin was filtered.
  • the obtained resin was added to a methanol / water mixed solvent, repulped and then filtered twice, and a copolymer having a weight average molecular weight of 7.4 ⁇ 10 3 was obtained at a yield of 65%. Obtained.
  • This copolymer has the following structural units, and is designated as resin A1.
  • azobisisobutyronitrile and azobis (2,4-dimethylvaleronitrile) were added at 1.5 mol% and 4.5 mol%, respectively, with respect to the total monomer amount, and heated at 75 ° C. for about 5 hours. .
  • the obtained reaction mixture was poured into a large amount of methanol / water mixed solvent to precipitate the resin, and this resin was filtered.
  • the obtained resin was added to a methanol / water mixed solvent, repulped and then filtered twice, and a copolymer having a weight average molecular weight of 7.6 ⁇ 10 3 was obtained in a yield of 61%. Obtained.
  • This copolymer has the following structural units and is designated as resin A3.
  • azobisisobutyronitrile and azobis (2,4-dimethylvaleronitrile) were added at 1.5 mol% and 4.5 mol%, respectively, with respect to the total monomer amount, and heated at 75 ° C. for about 5 hours. .
  • the obtained reaction mixture was poured into a large amount of methanol / water mixed solvent to precipitate the resin, and this resin was filtered.
  • the obtained resin was added to a methanol / water mixed solvent, repulped, and then subjected to a refining operation of filtering twice to obtain a copolymer having a weight average molecular weight of 7.0 ⁇ 10 3 at a yield of 58%. Obtained.
  • This copolymer has the following structural units and is designated as resin A4.
  • azobisisobutyronitrile and azobis (2,4-dimethylvaleronitrile) were added at 1.5 mol% and 4.5 mol%, respectively, with respect to the total monomer amount, and heated at 75 ° C. for about 5 hours. .
  • the obtained reaction mixture was poured into a large amount of methanol / water mixed solvent to precipitate the resin, and this resin was filtered.
  • the resulting resin was added to a methanol / water mixed solvent, repulped, and then filtered twice to obtain a copolymer having a weight average molecular weight of 8.8 ⁇ 10 3 in a yield of 62%. Obtained.
  • This copolymer has the following structural units and is designated as resin AX1.
  • the obtained resist pattern (line and space pattern) was observed with a scanning electron microscope, and the exposure amount at which the line width and space width of the 60 nm line and space pattern were 1: 1 was defined as effective sensitivity.
  • Line edge roughness evaluation The width of unevenness on the side wall surface of a resist pattern manufactured with effective sensitivity was measured with a scanning electron microscope to obtain line edge roughness. The results are shown in Table 2.
  • the resin of the present invention and the resist composition containing the resin have good line edge roughness, and are useful for fine processing of semiconductors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

式(I')で表される化合物に由来する構造単位及び酸不安定基を有する構造単位を含む樹脂。 [式中、R及びRは、それぞれ独立に、ハロゲン原子を有していてもよいアルキル基、水素原子又はハロゲン原子を表す。Arは、置換基を有していてもよい芳香族炭化水素基を表す。Lは、式(X-1)等で表される基を表す。L11、L13、L15及びL17は、それぞれ独立して、アルカンジイル基を表す。L12、L14、L16及びL18は、それぞれ独立して、-O-、-CO-、-CO-O-、-O-CO-又は-O-CO-O-を表す。*、**は結合手であり、**はヨウ素原子との結合手を表す。)]

Description

樹脂、レジスト組成物及びレジストパターンの製造方法
 本発明は、樹脂、該樹脂を含有するレジスト組成物及び該レジスト組成物を用いるレジストパターンの製造方法等に関する。
 特許文献1には、下記構造式からなる化合物と、酸不安定基を有する構造単位を含む樹脂と、酸発生剤とを含有するレジスト組成物が記載されている。
Figure JPOXMLDOC01-appb-I000003
特開2015-180928号公報
 ラインエッジラフネス(LER)が良いレジストフォルムを得ることができる組成物が求められていた。
 本発明は、以下の発明を含む。
 〔1〕式(I’)で表される化合物に由来する構造単位を含む樹脂。
Figure JPOXMLDOC01-appb-I000004
 [式(I’)中、
 R及びRは、それぞれ独立に、ハロゲン原子を有していてもよい炭素数1~6のアルキル基、水素原子又はハロゲン原子を表す。
 Arは、置換基を有していてもよい炭素数6~24の芳香族炭化水素基を表す。
 L及びLは、は、それぞれ独立に、式(X-1)~式(X-8)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-I000005
  (式(X-5)~式(X-8)中、
 L11、L13、L15及びL17は、それぞれ独立して、炭素数1~6のアルカンジイル基を表す。
 L12、L14、L16及びL18は、それぞれ独立して、-O-、-CO-、-CO-O-、-O-CO-又は-O-CO-O-を表す。
 *、**は結合手であり、**はヨウ素原子との結合手を表す。)]
〔2〕前記樹脂が、さらに、酸不安定基を有する構造単位を含む〔1〕に記載の樹脂。
〔3〕さらに、露光により分解して酸を発生する構造単位を含む〔2〕に記載の樹脂。
〔4〕〔1〕~〔3〕の何れか1つに記載の樹脂及び酸発生剤を含有するレジスト組成物。
〔5〕〔3〕に記載の樹脂を含有するレジスト組成物。
〔6〕酸発生剤から発生する酸よりも酸性度の弱い酸を発生する塩をさらに含有する〔4〕又は〔5〕記載のレジスト組成物。
〔7〕(1)〔4〕又は〔5〕に記載のレジスト組成物を基板上に塗布する工程、
 (2)塗布後の組成物を乾燥させて組成物層を形成する工程、
 (3)組成物層に露光する工程、
 (4)露光後の組成物層を加熱する工程、及び
 (5)加熱後の組成物層を現像する工程を含むレジストパターンの製造方法。
 本発明の樹脂を含むレジスト組成物より、ラインエッジラフネス(LER)が良好なレジストパターンを作製することができる。
 本明細書において「(メタ)アクリレート」とは、それぞれ「アクリレート及びメタクリレートの少なくとも一種」を意味する。「(メタ)アクリル酸」や「(メタ)アクリロイル」等の表記も、同様の意味を有する。
 特に断りのない限り、「脂肪族炭化水素基」のように直鎖、分岐及び/又は環をとり得る基は、そのいずれをも含む。「芳香族炭化水素基」は芳香環に炭化水素基が結合した基をも包含する。立体異性体が存在する場合は、全ての立体異性体を包含する。
  本明細書において、「レジスト組成物の固形分」とは、レジスト組成物の総量から、後述する溶剤(E)を除いた成分の合計を意味する。
 〔樹脂(A)〕
 本発明の樹脂は、式(I’)で表される化合物(以下、化合物(I’)という場合がある)に由来する構造単位(以下「構造単位(I)」という場合がある)を含有する。以下、化合物(I’)に由来する構造単位を含む樹脂を「樹脂(A)」という。
Figure JPOXMLDOC01-appb-I000006
 [式(I’)中、
 R及びRは、それぞれ独立に、ハロゲン原子を有していてもよい炭素数1~6のアルキル基、水素原子又はハロゲン原子を表す。
 Arは、置換基を有していてもよい炭素数6~24の芳香族炭化水素基を表す。
 L及びLは、それぞれ独立に、式(X-1)~式(X-8)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-I000007
 (式(X-5)~式(X-8)中、
 L11、L13、L15及びL17は、それぞれ独立して、炭素数1~6のアルカンジイル基を表す。
 L12、L14、L16及びL18は、それぞれ独立して、-O-、-CO-、-CO-O-、-O-CO-又は-O-CO-O-を表す。
 *、**は結合手であり、**はヨウ素原子との結合手を表す。)]
 R1及びRのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基及びn-ヘキシル基等が挙げられ、好ましくは、炭素数1~4のアルキル基であり、より好ましくは、メチル基及びエチル基である。
 R1及びRのハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 R1及びRのハロゲン原子を有するアルキル基としては、トリフルオロメチル基、ペルフルオロエチル基、ペルフルオロプロピル基、ペルフルオロイソプロピル基、ペルフルオロブチル基、ペルフルオロsec-ブチル基、ペルフルオロtert-ブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルクロロメチル基、ペルブロモメチル基及びペルヨードメチル基等が挙げられる。
 R1及びRは、水素原子又はメチル基であることが好ましい。
 Arの芳香族炭化水素基としては、フェニル基、1-ナフチル基、2-ナフチル基、アントニル基、ビフェニル基、アントリル基、フェナントリル基、ビナフチル基等のアリール基;ジメチルフェニル基、エチルフェニル基等のアルキル-アリール基;4-シクロヘキシルフェニル基等のシクロアルキル-アリール基が挙げられる。芳香族炭化水素基の炭素数は、好ましくは6~14であり、より好ましくは6~10である。
 置換基としては、ヒドロキシ基、ニトロ基、ハロゲン原子、シアノ基、炭素数1~12のアルコキシ基又はカルボキシル基が挙げられる。なかでも、ヒドロキシ基、ニトロ基、ハロゲン原子、シアノ基又は炭素数1~12のアルコキシ基であることが好ましい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 炭素数1~12のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基等が挙げられる。
 Arは、置換基を有していてもよいフェニル基であることが好ましく、ヒドロキシ基、ニトロ基、ハロゲン原子、シアノ基、炭素数1~12のアルキル基、炭素数3~12の脂環式炭化水素基又は炭素数1~12のアルコキシ基を有していてもよいフェニル基であることがより好ましく、ヒドロキシ基、ニトロ基、ハロゲン原子、シアノ基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基を有していてもよいフェニル基であることがさらに好ましく、炭素数1~12のアルコキシ基を有していてもよいフェニル基がさらにより好ましい。
 炭素数1~12のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、ノニル基等が挙げられる。
 炭素数3~12の脂環式炭化水素基としては、下記に示す基及びシクロヘキシルシクロヘキシル基等が挙げられる。*は環との結合手である。
Figure JPOXMLDOC01-appb-I000008
 L11、L13、L15及びL17のアルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ブタン-1,3-ジイル基、2-メチルプロパン-1,3-ジイル基、2-メチルプロパン-1,2-ジイル基、ペンタン-1,4-ジイル基及び2-メチルブタン-1,4-ジイル基等が挙げられる。
 なかでも、Lは、式(X-1)で表される基又は式(X-4)で表される基が好ましく、式(X-1)で表される基がより好ましい。
 化合物(I’)は、なかでも、L及びLが式(X-1)で表される基である式(I)で表される化合物(以下、化合物(I)という場合がある)が好ましい。
Figure JPOXMLDOC01-appb-I000009
 (式(I)中、R1、R2及びArは、上記と同義である。) 
 化合物(I’)は、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000010
  
Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012
  式(I-1)~式(I-17)でそれぞれ表される化合物において、R1及びRに相当するメチル基の双方又は一方が水素原子で置き換わった化合物も、化合物(I’)の具体例として挙げることができる。
 
 <化合物(I’)の製造方法>
 化合物(I’)は、式(I-a)で表される化合物と式(I-b1)で表される化合物と式(I-b2)で表される化合物とを溶媒中で、反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-I000013
 [式中、R1、R2、L、L及びArは、上記と同義である。]
 溶媒としては、クロロホルム、モノクロロベンゼン、テトラヒドロフラン及びトルエンなどが挙げられる。
 反応温度は通常10℃~80℃であり、反応時間は通常0.5時間~24時間である。
 式(I-a)で表される化合物としては、下記式で表される化合物等が挙げられ、市場より容易に入手することができる。
Figure JPOXMLDOC01-appb-I000014
 式(I-b1)及び式(I-b2)で表される化合物としては、下記式で表される化合物等が挙げられ、市場より容易に入手することができる。
Figure JPOXMLDOC01-appb-I000015
 本発明の樹脂(A)において、化合物(I’)に由来する構造単位は、単独で含有されていてもよいし、2種以上含まれていてもよい。化合物(I’)に由来する構造単位の含有率は、樹脂の全構造単位に対して、通常0.5~10モル%であり、好ましくは1~8モル%、より好ましくは1.5~5モル%、さらに好ましくは2~4モル%である。
 樹脂(A)は、化合物(I’)に由来する構造単位に加えて、さらに酸不安定基を有する構造単位(以下「構造単位(a1)」という場合がある)を含むことが好ましい。「酸不安定基」とは、脱離基を有し、酸との接触により脱離基が脱離して、親水性を有する基(例えば、ヒドロキシ基又はカルボキシ基を有する官能基)に変換される基を意味する。
 〈構造単位(a1)〉
 構造単位(a1)は、酸不安定基を有するモノマー(以下「モノマー(a1)」という場合がある)から導かれる。
 樹脂(A)に含まれる酸不安定基は、式(1)で表される基及び/又は式(2)で表される基が好ましい。
Figure JPOXMLDOC01-appb-I000016
 [式(1)中、Ra1~Ra3は、それぞれ独立に、炭素数1~8のアルキル基、炭素数3~20の脂環式炭化水素基又はこれらを組み合わせた基を表すか、Ra1及びRa2は互いに結合してそれらが結合する炭素原子とともに炭素数3~20の2価の脂環式炭化水素基を形成する。
ma及びnaは、それぞれ独立して、0又は1を表し、ma及びnaの少なくとも一方は1を表す。
 *は結合手を表す。]
Figure JPOXMLDOC01-appb-I000017
 [式(2)中、Ra1’及びRa2’は、それぞれ独立に、水素原子又は炭素数1~12の炭化水素基を表し、Ra3’は、炭素数1~20の炭化水素基を表すか、Ra2’及びRa3’は互いに結合してそれらが結合する炭素原子及びXとともに炭素数3~20の2価の複素環基を形成し、該炭化水素基及び該2価の複素環基に含まれる-CH2-は、-O-又は-S-で置き換わってもよい。
  Xは、酸素原子又は硫黄原子を表す。
 na’は、0又は1を表す。
 *は結合手を表す。]
 Ra1~Ra3のアルキル基としては、メチル基、エチル基、プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられる。
 Ra1~Ra3の脂環式炭化水素基は、単環式、多環式及びスピロ環のいずれでもよく、飽和及び不飽和のいずれでもよい。単環式の脂環式炭化水素基としては、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロオクチル基、メチルシクロヘキシル基、ジメチルシクロへキシル基、メチルノルボルニル基等のシクロアルキル基が挙げられる。多環式の脂環式炭化水素基としては、デカヒドロナフチル基、アダマンチル基、ノルボルニル基、アダマンチルシクロヘキシル基及び下記の基(*は結合手を表す。)等が挙げられる。Ra1~Ra3の脂環式炭化水素基の炭素数は、好ましくは3~16である。
Figure JPOXMLDOC01-appb-I000018
 アルキル基と脂環式炭化水素基とを組み合わせた基としては、例えば、シクロヘキシルメチル基、アダマンチルメチル基、アダマンチルジメチル基、ノルボルニルエチル基等のシクロアルキル-アルキル基が挙げられる。
 Ra1及びRa2が互いに結合して2価の脂環式炭化水素基を形成する場合の-C(Ra1)(Ra2)(Ra3)としては、下記の基が挙げられる。2価の脂環式炭化水素基は、好ましくは炭素数3~12である。*は-O-との結合手を表す。
Figure JPOXMLDOC01-appb-I000019

 Ra1'~Ra3'の炭化水素基としては、アルキル基、脂環式炭化水素基、芳香族炭化水素基及びこれらを組み合わせることにより形成される基等が挙げられる。
 アルキル基及び脂環式炭化水素基は、上記と同様のものが挙げられる。
 芳香族炭化水素基としては、フェニル基、ナフチル基、アントリル基、ビフェニル基、フェナントリル基等のアリール基、トリル基、キシリル基、クメニル基、メシチル基、p-tert-ブチルフェニル基、2,6-ジエチルフェニル基、2-メチル-6-エチルフェニル基等のアルキル-アリール基;p-アダマンチルフェニル基等のシクロアルキル-アリール基、等が挙げられる。
 アルキル基、脂環式炭化水素基及び芳香族炭化水素基を組合せた基としては、シクロアルキル-アルキル基(アダマンチルメチル基、アダマンチルエチル基、シクロヘキシルメチル基、シクロペンチルメチル基)、アラルキル基(例えば、フェニルメチル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニル-1-プロピル基、1-フェニル-2-プロピル基、2-フェニル-2-プロピル基、3-フェニル-1-プロピル基、4-フェニル-1-ブチル基、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基等)等が挙げられる。
 Ra2'及びRa3'が互いに結合してそれらが結合する炭素原子及びXとともに2価の複素環基を形成する場合、-C(Ra1’)(Ra3’)-X-Ra2’としては、下記の基が挙げられる。*は、結合手を表す。
Figure JPOXMLDOC01-appb-I000020
 Ra1'及びRa2'のうち、少なくとも1つは水素原子であることが好ましい。
 na’は、好ましくは0である。
 式(1)で表される基としては、1,1-ジアルキルアルコキシカルボニル基(式(1)中においてRa1~Ra3がアルキル基、ma=0、na=1、好ましくはtert-ブトキシカルボニル基)、2-アルキルアダマンタン-2-イルオキシカルボニル基(式(1)中、Ra1、Ra2及びこれらが結合する炭素原子がアダマンチル基、Ra3がアルキル基、ma=0、na=1)及び1-(アダマンタン-1-イル)-1-アルキルアルコキシカルボニル基(式(1)中、Ra1及びRa2がアルキル基、Ra3がアダマンチル基、ma=0、na=1)等、さらに以下の基が挙げられる。*は結合手を表す。
Figure JPOXMLDOC01-appb-I000021
  式(2)で表される基の具体例としては、以下の基が挙げられる。*は結合手を表す。
Figure JPOXMLDOC01-appb-I000022
  モノマー(a1)は、好ましくは、酸不安定基とエチレン性不飽和結合とを有するモノマー、より好ましくは酸不安定基を有する(メタ)アクリル系モノマーである。
 酸不安定基を有する(メタ)アクリル系モノマーのうち、好ましくは、炭素数5~20の脂環式炭化水素基を有するものが挙げられる。脂環式炭化水素基のような嵩高い構造を有するモノマー(a1)に由来する構造単位を有する樹脂(A)をレジスト組成物に使用すれば、レジストパターンの解像度を向上させることができる。
 式(1)で表される基を有する(メタ)アクリル系モノマーに由来する構造単位として、好ましくは、式(a1-0)で表される構造単位(以下、構造単位(a1-0)という場合がある。)、式(a1-1)で表される構造単位(以下、構造単位(a1-1)という場合がある。)又は式(a1-2)で表される構造単位(以下、構造単位(a1-2)という場合がある。)が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-I000023
[式(a1-0)、式(a1-1)及び式(a1-2)中、La01、La1及びLa2は、それぞれ独立に、-O-又は-O-(CHk1-CO-O-を表し、k1は1~7のいずれかの整数を表し、*は-CO-との結合手を表す。
 Ra01、Ra4及びRa5は、それぞれ独立に、水素原子又はメチル基を表す。
 Ra02、Ra03及びRa04は、それぞれ独立に、炭素数1~8のアルキル基、炭素数3~18の脂環式炭化水素基又はこれらを組み合わせた基を表す。
 Ra6及びRa7は、それぞれ独立に、炭素数1~8のアルキル基、炭素数3~18の脂環式炭化水素基又はこれらを組合せることにより形成される基を表す。
 m1は0~14のいずれかの整数を表す。
 n1は0~10のいずれかの整数を表す。
 n1’は0~3のいずれかの整数を表す。]
a01、Ra4及びRa5は、好ましくはメチル基である。
a01、La1及びLa2は、好ましくは酸素原子又は*-O-(CHk01-CO-O-であり(但し、k01は、好ましくは1~4のいずれかの整数、より好ましくは1である。)、より好ましくは酸素原子である。
 Ra02、Ra03及びRa04におけるアルキル基、脂環式炭化水素基及びこれらを組合せた基としては、式(1)のRa1~Ra3で挙げた基と同様の基が挙げられる。
 Ra6及びRa7におけるアルキル基の炭素数は、好ましくは1~6であり、より好ましくはメチル基、エチル基又はイソプロピル基であり、さらに好ましくはエチル基又はイソプロピル基である。
a02、Ra03、Ra04、Ra6及びRa7のアルキル基の炭素数は、好ましくは1~6であり、より好ましくはメチル基又はエチル基であり、さらに好ましくはメチル基である。
 Ra02、Ra03、Ra04、Ra6及びRa7の脂環式炭化水素基の炭素数は、好ましくは3~8であり、より好ましくは3~6である。
 アルキル基と脂環式炭化水素基とを組合せた基は、これらアルキル基と脂環式炭化水素基とを組合せた合計炭素数が、18以下であることが好ましい。
 Ra02及びRa03は、好ましくは炭素数1~6のアルキル基であり、より好ましくはメチル基又はエチル基である。
 Ra04は、好ましくは炭素数1~6のアルキル基又は炭素数5~12の脂環式炭化水素基であり、より好ましくはメチル基、エチル基、シクロヘキシル基又はアダマンチル基である。
 m1は、好ましくは0~3のいずれかの整数であり、より好ましくは0又は1である。
 n1は、好ましくは0~3のいずれかの整数であり、より好ましくは0又は1である。
 n1’は好ましくは0又は1である。
 構造単位(a1-0)としては、例えば、式(a1-0-1)~式(a1-0-12)のいずれかで表される構造単位及びRa01に相当するメチル基が水素原子に置き換わった構造単位が挙げられ、式(a1-0-1)~式(a1-0-10)のいずれかで表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000025
  構造単位(a1-1)を導くモノマーとしては、例えば、特開2010-204646号公報に記載されたモノマーが挙げられる。中でも、式(a1-1-1)~式(a1-1-4)のいずれかで表される構造単位及びRa4に相当するメチル基が水素原子に置き換わった構造単位が好ましく、式(a1-1-1)~式(a1-1-4)のいずれかで表される構造単位がより好ましい。
Figure JPOXMLDOC01-appb-I000026
構造単位(a1-2)としては、式(a1-2-1)~式(a1-2-6)のいずれかで表される構造単位及びRa5に相当するメチル基が水素原子に置き換わった構造単位が挙げられ、式(a1-2-2)、式(a1-2-5)及び式(a1-2-6)が好ましい。
Figure JPOXMLDOC01-appb-I000027
樹脂(A)が構造単位(a1-0)及び/又は構造単位(a1-1)及び/又は構造単位(a1-2)を含む場合、これらの合計含有率は、樹脂(A)の全構造単位に対して、通常10~95モル%であり、好ましくは15~90モル%であり、より好ましくは20~85モル%である。
 式(2)で表される基を有する(メタ)アクリル系モノマーに由来する構造単位としては、式(a1-5)で表される構造単位(以下「構造単位(a1-5)」という場合がある)も挙げられる。
Figure JPOXMLDOC01-appb-I000028
 式(a1-5)中、
 Ra8は、ハロゲン原子を有していてもよい炭素数1~6のアルキル基、水素原子又はハロゲン原子を表す。
 Za1は、単結合又は*-(CH2h3-CO-L54-を表し、h3は1~4のいずれかの整数を表し、*は、L51との結合手を表す。
 L51、L52、L53及びL54は、それぞれ独立に、-O-又は-S-を表す。
 s1は、1~3のいずれかの整数を表す。
 s1’は、0~3のいずれかの整数を表す。
 ハロゲン原子としては、フッ素原子及び塩素原子が挙げられ、フッ素原子が好ましい。
 ハロゲン原子を有していてもよい炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、フルオロメチル基及びトリフルオロメチル基が挙げられる。
 式(a1-5)においては、Ra8は、水素原子、メチル基又はトリフルオロメチル基が好ましい。
  L51は、酸素原子が好ましい。
  L52及びL53のうち、一方が-O-であり、他方が-S-であることが好ましい。
  s1は、1が好ましい。
 s1’は、0~2のいずれかの整数が好ましい。
 Za1は、単結合又は*-CH2-CO-O-が好ましい。
 構造単位(a1-5)を導くモノマーとしては、例えば、特開2010-61117号公報に記載されたモノマーが挙げられる。中でも、式(a1-5-1)~式(a1-5-4)でそれぞれ表される構造単位が好ましく、式(a1-5-1)又は式(a1-5-2)で表される構造単位がより好ましい。
Figure JPOXMLDOC01-appb-I000029
 樹脂(A)が、構造単位(a1-5)を有する場合、その含有率は、樹脂(A)の全構造単位に対して、1~50モル%が好ましく、3~45モル%がより好ましく、5~40モル%がさらに好ましい。
構造単位(a1)としては、以下の構造単位も挙げられる。
Figure JPOXMLDOC01-appb-I000030
 樹脂(A)が上記構造単位を含む場合、その含有率は、樹脂(A)の全構造単位に対して、10~95モル%が好ましく、15~90モル%がより好ましく、20~85モル%がさらに好ましい。
 〈構造単位(s)〉
 樹脂(A)は、さらに、後述する酸不安定基を有さない構造単位(以下「構造単位(s)」という場合がある)、ハロゲン原子を有する構造単位(以下、場合により「構造単位(a4)」という。)、非脱離炭化水素基を有する構造単位(a5)及びその他の公知のモノマーに由来する構造単位を含んでいてもよい。なかでも、樹脂(A)は、構造単位(s)を含むことが好ましい。構造単位(s)は、後述する酸不安定基を有さないモノマー(以下「モノマー(s)」という場合がある)から導かれる。モノマー(s)は、レジスト分野で公知の酸不安定基を有さないモノマーを使用できる。
 構造単位(s)としては、ヒドロキシ基又はラクトン環を有し、かつ酸不安定基を有さない構造単位が好ましい。構造単位(s)は、通常、ハロゲン原子を側鎖に有しない。ヒドロキシ基を有し、かつ酸不安定基を有さない構造単位(以下「構造単位(a2)」という場合がある)及び/又はラクトン環を有し、かつ酸不安定基を有さない構造単位(以下「構造単位(a3)」という場合がある)を有する樹脂を本発明のレジスト組成物に使用すれば、レジストパターンの解像度及び基板との密着性を向上させることができる。
 〈構造単位(a2)〉
 構造単位(a2)が有するヒドロキシ基は、アルコール性ヒドロキシ基でも、フェノール性ヒドロキシ基でもよい。
 本発明のレジスト組成物からレジストパターンを製造するとき、露光光源がKrFエキシマレーザ(248nm)、電子線又はEUV(超紫外光)等の高エネルギー線である場合には、フェノール性ヒドロキシ基を有する構造単位(a2)を用いることが好ましい。また、露光光源がArFエキシマレーザ(193nm)等である場合には、アルコール性ヒドロキシ基を有する構造単位(a2)が好ましい。構造単位(a2)としては、1種を単独で含んでいてもよく、2種以上を含んでいてもよい。
 フェノール性ヒドロキシ基有する構造単位(a2)としては、式(a2-A)で表される構造単位(以下「構造単位(a2-A)」という場合がある)が挙げられる。
Figure JPOXMLDOC01-appb-I000031
 [式(a2-A)中、
 Ra50は、水素原子、ハロゲン原子又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を表す。
 Ra51は、ハロゲン原子、ヒドロキシ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~4のアシル基、炭素数2~4のアシルオキシ基、アクリロイルオキシ基又はメタクリロイルオキシ基を表す。
 Aa50は、単結合又は-Xa51-(Aa52-Xa52na-を表し、*は-Ra50が結合する炭素原子との結合手を表す。
 Aa52は、炭素数1~6のアルカンジイル基を表す。
 Xa51及びXa52は、それぞれ独立に、-O-、-CO-O-又は-O-CO-を表す。
 naは、0又は1を表す。
mbは0~4の整数を表す。mbが2以上の整数である場合、複数のRa51は互いに同一であっても異なってもよい。]
 Ra50におけるハロゲン原子としては、フッ素原子、塩素原子及び臭素原子等が挙げられる。
 Ra50におけるハロゲン原子を有していてもよい炭素数1~6のアルキル基としては、トリフルオロメチル基、ジフルオロメチル基、メチル基、ペルフルオロエチル基、1,1,1-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基、エチル基、ペルフルオロプロピル基、1,1,1,2,2-ペンタフルオロプロピル基、プロピル基、ペルフルオロブチル基、1,1,2,2,3,3,4,4-オクタフルオロブチル基、ブチル基、ペルフルオロペンチル基、1,1,1,2,2,3,3,4,4-ノナフルオロペンチル基、n-ペンチル基、n-ヘキシル基及びn-ペルフルオロヘキシル基が挙げられる。
 Ra50は、水素原子又は炭素数1~4のアルキル基が好ましい。
 Ra51のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基が挙げられる。
a51のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基が挙げられる。炭素数1~4のアルコキシ基が好ましく、メトキシ基又はエトキシ基がより好ましく、メトキシ基がさらに好ましい。
 Ra51におけるアシル基としては、アセチル基、プロピオニル基及びブチリル基等が挙げられる。
 Ra51におけるアシルオキシ基としては、アセチルオキシ基、プロピオニルオキシ基及びブチリルオキシ基が挙げられる。
 Ra51は、メチル基が好ましい。
 -Xa51-(Aa52-Xa52na-としては、-O-、-CO-O-、-O-CO-、-CO-O-Aa52-CO-O-、-O-CO-Aa52-O-、-O-Aa52-CO-O-、-CO-O-Aa52-O-CO-、-O-CO-Aa52-O-CO-、が挙げられる。なかでも、-CO-O-、-CO-O-Aa52-CO-O-又は-O-Aa52-CO-O-が好ましい。
 アルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ブタン-1,3-ジイル基、2-メチルプロパン-1,3-ジイル基、2-メチルプロパン-1,2-ジイル基、ペンタン-1,4-ジイル基及び2-メチルブタン-1,4-ジイル基等が挙げられる。
 Aa52は、メチレン基又はエチレン基であることが好ましい。
 Aa50は、単結合、-CO-O-又は-CO-O-Aa52-CO-O-であることが好ましく、単結合、-CO-O-又は-CO-O-CH2-CO-O-であることがより好ましく、単結合又は-CO-O-であることがさらに好ましい。
 mbは0、1又は2が好ましく、0又は1がより好ましく、0が特に好ましい。
 水酸基は、ベンゼン環のo-位又はp-位に結合することが好ましく、p-位に結合することがより好ましい。
 構造単位(a2-A)としては、式(a2-2-1)~式(a2-2-8)で表される構造単位が挙げられる。構造単位(a2-A)は、式(a2-2-1)で表される構造単位、式(a2-2-1)で表される構造単位、式(a2-2-5)で表される構造単位及び式(a2-2-6)で表される構造単位であることが好ましい。
Figure JPOXMLDOC01-appb-I000032
  構造単位(a2-A)を誘導するモノマーとしては、特開2010-204634号公報、特開2012-12577号公報に記載されているモノマーが挙げられる。
 樹脂(A)中に構造単位(a2-A)が含まれる場合、構造単位(a2-A)の含有率は、全構造単位に対して、好ましくは5~80モル%であり、より好ましくは10~70モル%であり、さらに好ましくは15~65モル%である。
 アルコール性ヒドロキシ基を有する構造単位(a2)としては、式(a2-1)で表される構造単位(以下「構造単位(a2-1)」という場合がある。)が挙げられる。
Figure JPOXMLDOC01-appb-I000033
 式(a2-1)中、
 La3は、-O-又は-O-(CH2k2-CO-O-を表し、
 k2は1~7のいずれかの整数を表す。*は-CO-との結合手を表す。
 Ra14は、水素原子又はメチル基を表す。
 Ra15及びRa16は、それぞれ独立に、水素原子、メチル基又はヒドロキシ基を表す。
 o1は、0~10のいずれかの整数を表す。
 式(a2-1)では、La3は、好ましくは、-O-、-O-(CH2f1-CO-O-であり(前記f1は、1~4のいずれかの整数である)、より好ましくは-O-である。
  Ra14は、好ましくはメチル基である。
  Ra15は、好ましくは水素原子である。
 Ra16は、好ましくは水素原子又はヒドロキシ基である。
 o1は、好ましくは0~3のいずれかの整数、より好ましくは0又は1である。
構造単位(a2-1)としては、例えば、特開2010-204646号公報に記載されたモノマーに由来する構造単位が挙げられる。式(a2-1-1)~式(a2-1-6)のいずれかで表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-I000034
 樹脂(A)が構造単位(a2-1)を含む場合、その含有率は、樹脂(A)の全構造単位に対して、通常1~45モル%であり、好ましくは1~40モル%であり、より好ましくは1~35モル%であり、さらに好ましくは2~20モル%であり、さらにより好ましくは2~10モル%である。
 
 〈構造単位(a3)〉
 構造単位(a3)が有するラクトン環は、β-プロピオラクトン環、γ-ブチロラクトン環、δ-バレロラクトン環のような単環でもよく、単環式のラクトン環と他の環との縮合環でもよい。好ましくは、γ-ブチロラクトン環、アダマンタンラクトン環、又は、γ-ブチロラクトン環構造を含む橋かけ環が挙げられる。
 構造単位(a3)は、好ましくは、式(a3-1)、式(a3-2)、式(a3-3)又は式(a3-4)で表される構造単位である。これらの1種を単独で含有してもよく、2種以上を含有していてもよい。
Figure JPOXMLDOC01-appb-I000035
[式(a3-1)、式(a3-2)、式(a3-3)及び式(a3-4)中、
a4、La5及びLa6は、-O-又は-O-(CHk3-CO-O-(k3は1~7のいずれかの整数を表す。)で表される基を表す。La7は、-O-、-O-La8-O-、-O-La8-CO-O-、-O-La8-CO-O-La9-CO-O-又は-O-La8-O-CO-La9-O-を表す。
  La8及びLa9は、それぞれ独立に、炭素数1~6のアルカンジイル基を表す。
 *はカルボニル基との結合手を表す。
  Ra18、Ra19及びRa20は、水素原子又はメチル基を表す。
 Ra24は、ハロゲン原子を有していてもよい炭素数1~6のアルキル基、水素原子又はハロゲン原子を表す。
 Ra21は炭素数1~4の脂肪族炭化水素基を表す。
 Ra22、Ra23及びRa25は、カルボキシ基、シアノ基又は炭素数1~4の脂肪族炭化水素基を表す。
 p1は0~5のいずれかの整数を表す。
 q1は、0~3のいずれかの整数を表す。
 r1は、0~3のいずれかの整数を表す。
 w1は、0~8のいずれかの整数を表す。
 p1、q1、r1及び/又はw1が2以上のとき、複数のRa21、Ra22、Ra23及び/又はRa25は互いに同一であってもよく、異なってもよい。]
 Ra21、Ra22、Ra23及びRa25の脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基及びtert-ブチル基等のアルキル基が挙げられる。
 Ra24のハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 Ra24のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基及びn-ヘキシル基等が挙げられ、好ましくは炭素数1~4のアルキル基が挙げられ、より好ましくはメチル基又はエチル基が挙げられる。
 Ra24のハロゲン原子を有するアルキル基としては、トリフルオロメチル基、ペルフルオロエチル基、ペルフルオロプロピル基、ペルフルオロイソプロピル基、ペルフルオロブチル基、ペルフルオロsec-ブチル基、ペルフルオロtert-ブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、トリクロロメチル基、トリブロモメチル基、トリヨードメチル基等が挙げられる。
 La8及びLa9のアルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ブタン-1,3-ジイル基、2-メチルプロパン-1,3-ジイル基、2-メチルプロパン-1,2-ジイル基、ペンタン-1,4-ジイル基及び2-メチルブタン-1,4-ジイル基等が挙げられる。 
 式(a3-1)~式(a3-3)において、La4~La6は、互いに独立に、好ましくは-O-又は、k3が1~4のいずれかの整数である*-O-(CHk3-CO-O-で表される基、より好ましくは-O-及び*-O-CH-CO-O-、さらに好ましくは酸素原子である。
 Ra18~Ra21は、好ましくはメチル基である。
 Ra22及びRa23は、互いに独立に、好ましくはカルボキシ基、シアノ基又はメチル基である。
 p1、q1、r1及びw1は、互いに独立に、好ましくは0~2のいずれかの整数であり、より好ましくは0又は1である。 
 式(a3-4)において、Ra24は、好ましくは水素原子又は炭素数1~4のアルキル基であり、より好ましくは水素原子、メチル基又はエチル基であり、さらに好ましくは水素原子又はメチル基である。
 Ra25は、好ましくはカルボキシ基、シアノ基又はメチル基である。
 La7は、好ましくは-O-又は-O-La8-CO-O-であり、より好ましくは-O-、-O-CH-CO-O-又は-O-C-CO-O-である。
 特に、式(a3-4)は、式(a3-4)’が好ましい。
Figure JPOXMLDOC01-appb-I000036
 (式中、Ra24、La7は、上記と同じ意味を表す。)
構造単位(a3)を導くモノマーとしては、特開2010-204646号公報に記載されたモノマー、特開2000-122294号公報に記載されたモノマー、特開2012-41274号公報に記載されたモノマーが挙げられる。構造単位(a3)としては、式(a3-1-1)~式(a3-1-4)、式(a3-2-1)~式(a3-2-4)、式(a3-3-1)~式(a3-3-4)及び式(a3-4-1)~式(a3-4-12)のいずれかで表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-I000037
 
 
Figure JPOXMLDOC01-appb-I000038
 上記の式(a3-4-1)~式(a3-4-12)で表される構造単位において、Ra24に相当するメチル基が水素原子に置き換わった化合物も、構造単位(a3-4)の具体例として挙げることができる。
 樹脂(A)が構造単位(a3)を含む場合、その合計含有率は、樹脂(A)の全構造単位に対して、通常5~70モル%であり、好ましくは10~65モル%であり、より好ましくは10~60モル%である。
構造単位(a3-1)、構造単位(a3-2)、構造単位(a3-3)及び構造単位(a3-4)の含有率は、それぞれ、樹脂(A)の全構造単位に対して、5~60モル%が好ましく、5~50モル%がより好ましく、10~50モル%がさらに好ましい。
 〈構造単位(a4)〉
 構造単位(a4)は、フッ素原子を有する構造単位であることが好ましい。構造単位(a4)としては、式(a4-0)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-I000039
 [式(a4-0)中、R5は、水素原子又はメチル基を表す。
  L4は、単結合又は炭素数1~4の脂肪族飽和炭化水素基を表す。
  L3は、炭素数1~8のペルフルオロアルカンジイル基又は炭素数3~12のペルフルオロシクロアルカンジイル基を表す。
 R6は、水素原子又はフッ素原子を表す。]
 L4の脂肪族飽和炭化水素基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基等の直鎖状アルカンジイル基、エタン-1,1-ジイル基、プロパン-1,2-ジイル基、ブタン-1,3-ジイル基、2-メチルプロパン-1,3-ジイル基及び2-メチルプロパン-1,2-ジイル基等の分岐状アルカンジイル基が挙げられる。
 L3のペルフルオロアルカンジイル基としては、ジフルオロメチレン基、ペルフルオロエチレン基、ペルフルオロプロパン-1,1-ジイル基、ペルフルオロプロパン-1,3-ジイル基、ペルフルオロプロパン-1,2-ジイル基、ペルフルオロプロパン-2,2-ジイル基、ペルフルオロブタン-1,4-ジイル基、ペルフルオロブタン-2,2-ジイル基、ペルフルオロブタン-1,2-ジイル基、ペルフルオロペンタン-1,5-ジイル基、ペルフルオロペンタン-2,2-ジイル基、ペルフルオロペンタン-3,3-ジイル基、ペルフルオロヘキサン-1,6-ジイル基、ペルフルオロヘキサン-2,2-ジイル基、ペルフルオロヘキサン-3,3-ジイル基、ペルフルオロヘプタン-1,7-ジイル基、ペルフルオロヘプタン-2,2-ジイル基、ペルフルオロヘプタン-3,4-ジイル基、ペルフルオロヘプタン-4,4-ジイル基、ペルフルオロオクタン-1,8-ジイル基、ペルフルオロオクタン-2,2-ジイル基、ペルフルオロオクタン-3,3-ジイル基、ペルフルオロオクタン-4,4-ジイル基等が挙げられる。
 L3のペルフルオロシクロアルカンジイル基としては、ペルフルオロシクロヘキサンジイル基、ペルフルオロシクロペンタンジイル基、ペルフルオロシクロヘプタンジイル基、ペルフルオロアダマンタンジイル基等が挙げられる。
 L4は、好ましくは単結合、メチレン基又はエチレン基であり、より好ましくは、単結合、メチレン基である。
 L3は、好ましくは炭素数1~6のペルフルオロアルカンジイル基であり、より好ましくは炭素数1~3のペルフルオロアルカンジイル基である。
 構造単位(a4-0)としては、以下に示す構造単位及び下記構造単位中のRに相当するメチル基が水素原子に置き換わった構造単位が挙げられる。
Figure JPOXMLDOC01-appb-I000040
 
Figure JPOXMLDOC01-appb-I000041
  構造単位(a4)としては、式(a4-1)で表される構造単位も挙げられる。
Figure JPOXMLDOC01-appb-I000042
 [式(a4-1)中、Ra41は、水素原子又はメチル基を表す。
 Ra42は、置換基を有していてもよい炭素数1~20の炭化水素基を表し、該炭化水素基に含まれる-CH2-は、-O-又は-CO-に置き換わっていてもよい。
 Aa41は、置換基を有していてもよい炭素数1~6のアルカンジイル基又は式(a-g1)で表される基を表す。ただし、Aa41及びRa42のうち少なくとも1つは、置換基としてハロゲン原子(好ましくはフッ素原子)を有する。
Figure JPOXMLDOC01-appb-I000043
 〔式(a-g1)中、sは0又は1を表す。
 Aa42及びAa44は、それぞれ独立に、置換基を有していてもよい炭素数1~5の2価の飽和炭化水素基を表す。
 Aa43は、単結合又は置換基を有していてもよい炭素数1~5の2価の飽和炭化水素基を表す。
 Xa41及びXa42は、それぞれ独立に、-O-、-CO-、-CO-O-又は-O-CO-を表す。
 ただし、Aa42、Aa43、Aa44、Xa41及びXa42の炭素数の合計は7以下である。〕
 *は結合手であり、右側の*が-O-CO-Ra42との結合手である。]
 Ra42の炭化水素基としては、鎖式及び環式の飽和炭化水素基が挙げられる。
 鎖式及び環式の飽和炭化水素基としては、直鎖又は分岐のアルキル基及び単環又は多環の脂環式炭化水素基、並びに、アルキル基及び脂環式炭化水素基を組み合わせることにより形成される飽和炭化水素基等が挙げられる。
 鎖式の飽和炭化水素基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基、n-ドデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基及びn-オクタデシル基が挙げられる。環式の飽和炭化水素基としては、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロオクチル基、メチルシクロヘキシル基、ジメチルシクロへキシル基、メチルノルボルニル基等のシクロアルキル基;デカヒドロナフチル基、アダマンチル基、ノルボルニル基、アダマンチルシクロヘキシル基及び下記の基(*は結合手を表す。)等の多環式の脂環式炭化水素基が挙げられる。
Figure JPOXMLDOC01-appb-I000044
  Ra42は、置換基として、ハロゲン原子又は式(a-g3)で表される基を有していてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、好ましくはフッ素原子である。
Figure JPOXMLDOC01-appb-I000045
 [式(a-g3)中、
 Xa43は、酸素原子、カルボニル基、カルボニルオキシ基又はオキシカルボニル基を表す。Aa45は、少なくとも1つのハロゲン原子を有する炭素数1~17の飽和炭化水素基を表す。*は結合手を表す。]
a45の飽和炭化水素基としては、Ra42で例示したものと同様の基が挙げられる。
a42は、ハロゲン原子を有していてもよい飽和炭化水素基が好ましく、ハロゲン原子を有するアルキル基及び/又は式(a-g3)で表される基を有する飽和炭化水素基がより好ましい。
 Ra42がハロゲン原子を有する飽和炭化水素基である場合、好ましくはフッ素原子を有する飽和炭化水素基であり、より好ましくはペルフルオロアルキル基又はペルフルオロシクロアルキル基であり、さらに好ましくは炭素数が1~6のペルフルオロアルキル基であり、特に好ましくは炭素数1~3のペルフルオロアルキル基である。ペルフルオロアルキル基としては、ペルフルオロメチル基、ペルフルオロエチル基、ペルフルオロプロピル基、ペルフルオロブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、ペルフルオロヘプチル基及びペルフルオロオクチル基等が挙げられる。ペルフルオロシクロアルキル基としては、ペルフルオロシクロヘキシル基等が挙げられる。
 Ra42が、式(a-g3)で表される基を有する飽和炭化水素基である場合、式(a-g3)で表される基に含まれる炭素数を含めて、飽和炭化水素基の総炭素数は、15以下が好ましく、12以下がより好ましい。式(a-g3)で表される基を置換基として有する場合、その数は1個が好ましい。
 式(a-g3)で表される基を有する飽和炭化水素は、さらに好ましくは式(a-g2)で表される基である。
Figure JPOXMLDOC01-appb-I000046
 [式(a-g2)中、
 Aa46は、ハロゲン原子を有していてもよい炭素数1~17の飽和炭化水素基を表す。
  Xa44は、カルボニルオキシ基又はオキシカルボニル基を表す。
 Aa47は、ハロゲン原子を有していてもよい炭素数1~17の飽和炭化水素基を表す。
 ただし、Aa46、Aa47及びXa44の炭素数の合計は18以下であり、Aa46及びAa47のうち、少なくとも一方は、少なくとも1つのハロゲン原子を有する。
  *はカルボニル基との結合手を表す。]
  Aa46の飽和炭化水素基の炭素数は1~6が好ましく、1~3がより好ましい。
  Aa47の飽和炭化水素基の炭素数は4~15が好ましく、5~12がより好ましく、Aa47は、シクロヘキシル基又はアダマンチル基がさらに好ましい。
 *-Aa46-Xa44-Aa47で表される部分構造(*はカルボニル基との結合手である)のより好ましい構造は、以下の構造である。
Figure JPOXMLDOC01-appb-I000047
 Aa41のアルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基等の直鎖状アルカンジイル基;プロパン-1,2-ジイル基、ブタン-1,3-ジイル基、2-メチルプロパン-1,2-ジイル基、1-メチルブタン-1,4-ジイル基、2-メチルブタン-1,4-ジイル基等の分岐状アルカンジイル基が挙げられる。
 Aa41のアルカンジイル基における置換基としては、ヒドロキシ基及び炭素数1~6のアルコキシ基等が挙げられる。
 Aa41は、好ましくは炭素数1~4のアルカンジイル基であり、より好ましくは炭素数2~4のアルカンジイル基であり、さらに好ましくはエチレン基である。
 式(a-g1)で表される基におけるAa42、Aa43及びAa44の飽和炭化水素基は、鎖式及び環式の飽和炭化水素基並びにこれらを組合せることにより形成される基が好ましい。該飽和炭化水素基としては、直鎖又は分岐のアルキル基及び単環の脂環式炭化水素基、並びに、アルキル基及び脂環式炭化水素基を組合せることにより形成される飽和炭化水素基等が挙げられる。具体的には、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、ブタン-1,4-ジイル基、1-メチルプロパン-1,3-ジイル基、2-メチルプロパン-1,3-ジイル基、2-メチルプロパン-1,2-ジイル基等が挙げられる。
 Aa42、Aa43及びAa44の飽和炭化水素基の置換基としては、ヒドロキシ基及び炭素数1~6のアルコキシ基等が挙げられる。
 sは、0であることが好ましい。
 Xa42が酸素原子、カルボニル基、カルボニルオキシ基又はオキシカルボニル基を表す式(a-g1)で表される基としては、以下の基等が挙げられる。以下の例示において、*及び**はそれぞれ結合手を表わし、**が-O-CO-Ra42との結合手である。
Figure JPOXMLDOC01-appb-I000048
  式(a4-1)で表される構造単位としては、以下に示す構造単位及び下記構造単位中のRa41に相当するメチル基が水素原子に置き換わった構造単位が挙げられる。
Figure JPOXMLDOC01-appb-I000049
 
Figure JPOXMLDOC01-appb-I000050
  構造単位(a4)としては、式(a4-4)で表される構造単位も挙げられる。
Figure JPOXMLDOC01-appb-I000051
 [式(a4-4)中、Rf21は、水素原子又はメチル基を表す。
 Af21は、-(CH2j1-、-(CH2j2-O-(CH2j3-又は-(CH2j4-CO-O-(CH2j5-を表す。
  j1~j5は、それぞれ独立に、1~6のいずれかの整数を表す。
  Rf22は、フッ素原子を有する炭素数1~10の炭化水素基を表す。]
 Rf22のフッ素原子を有する炭化水素基としては、鎖式及び環式の脂肪族炭化水素基及び芳香族炭化水素基並びにこれらの組み合わせることにより形成される基を含む。脂肪族炭化水素基としては、アルキル基(直鎖又は分岐)、脂環式炭化水素基が好ましい。
 アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基及び2-エチルヘキシル基が挙げられる。
 脂環式炭化水素基は、単環式であってもよいし、多環式であってもよい。単環式の脂環式炭化水素基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、ジメチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロヘプチル基、シクロデシル基等のシクロアルキル基が挙げられる。多環式の脂環式炭化水素基としては、デカヒドロナフチル基、アダマンチル基、2-アルキルアダマンタン-2-イル基、1-(アダマンタン-1-イル)アルカン-1-イル基、ノルボルニル基、メチルノルボルニル基及びイソボルニル基が挙げられる。
 Rf22のフッ素原子を有する炭化水素基としては、フッ素原子を有するアルキル基、フッ素原子を有する脂環式炭化水素基等が挙げられる。
 フッ素原子を有するアルキル基としては、ジフルオロメチル基、トリフルオロメチル基、1,1-ジフルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、ペルフルオロエチル基、1,1,2,2-テトラフルオロプロピル基、1,1,2,2,3,3-ヘキサフルオロプロピル基、ペルフルオロエチルメチル基、1-(トリフルオロメチル)-1,2,2,2-テトラフルオロエチル基、1-(トリフルオロメチル)-2,2,2-トリフルオロエチル基、ペルフルオロプロピル基、1,1,2,2-テトラフルオロブチル基、1,1,2,2,3,3-ヘキサフルオロブチル基、1,1,2,2,3,3,4,4-オクタフルオロブチル基、ペルフルオロブチル基、1,1-ビス(トリフルオロ)メチル-2,2,2-トリフルオロエチル基、2-(ペルフルオロプロピル)エチル基、1,1,2,2,3,3,4,4-オクタフルオロペンチル基、ペルフルオロペンチル基、1,1,2,2,3,3,4,4,5,5-デカフルオロペンチル基、1,1-ビス(トリフルオロメチル)-2,2,3,3,3-ペンタフルオロプロピル基、2-(ペルフルオロブチル)エチル基、1,1,2,2,3,3,4,4,5,5-デカフルオロヘキシル基、1,1,2,2,3,3,4,4,5,5,6,6-ドデカフルオロヘキシル基、ペルフルオロペンチルメチル基及びペルフルオロヘキシル基等のフッ化アルキル基が挙げられる。
 フッ素原子を有する脂環式炭化水素基としては、ペルフルオロシクロヘキシル基、ペルフルオロアダマンチル基等のフッ化シクロアルキル基が挙げられる。
f22は、フッ素原子を有する炭素数1~10のアルキル基又はフッ素原子を有する炭素数1~10の脂環式炭化水素基が好ましく、フッ素原子を有する炭素数1~10のアルキル基がより好ましく、フッ素原子を有する炭素数1~6のアルキル基がさらに好ましい。
 式(a4-4)においては、Af21としては、-(CH2j1-が好ましく、エチレン基又はメチレン基がより好ましく、メチレン基がさらに好ましい。
 式(a4-4)で表される構造単位としては、例えば、以下の構造単位及び以下の式で表される構造単位においてはRf21に相当するメチル基が水素原子に置き換わった構造単位が挙げられる。
Figure JPOXMLDOC01-appb-I000052
 
Figure JPOXMLDOC01-appb-I000053
 樹脂(A)が、構造単位(a4)を有する場合、その含有率は、樹脂(A)の全構造単位に対して、1~20モル%が好ましく、2~15モル%がより好ましく、3~10モル%がさらに好ましい。
 〈構造単位(a5)〉
 構造単位(a5)が有する非脱離炭化水素基としては、直鎖、分岐又は環状の炭化水素基を有する基が挙げられる。なかでも、構造単位(a5)は、脂環式炭化水素基を有する基を含むものが好ましい。
 構造単位(a5)としては、式(a5-1)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-I000054
 [式(a5-1)中、R51は、水素原子又はメチル基を表す。
 R52は、炭素数3~18の脂環式炭化水素基を表し、該脂環式炭化水素基に含まれる水素原子は炭素数1~8の脂肪族炭化水素基で置換されていてもよい。但し、L55との結合位置にある炭素原子に結合する水素原子は、炭素数1~8の脂肪族炭化水素基で置換されない。
55は、単結合又は炭素数1~18の2価の飽和炭化水素基を表し、該飽和炭化水素基に含まれるメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよい。]
 R52の脂環式炭化水素基としては、単環式及び多環式のいずれでもよい。単環式の脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基が挙げられる。多環式の脂環式炭化水素基としては、例えば、アダマンチル基及びノルボルニル基等が挙げられる。
 炭素数1~8の脂肪族炭化水素基は、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基及び2-エチルヘキシル基等のアルキル基が挙げられる。置換基を有した脂環式炭化水素基としては、3-メチルアダマンチル基などが挙げられる。
 R52は、好ましくは、無置換の炭素数3~18の脂環式炭化水素基であり、より好ましくは、アダマンチル基、ノルボルニル基又はシクロヘキシル基である。
 L55の2価の飽和炭化水素基としては、2価の脂肪族飽和炭化水素基及び2価の脂環式飽和炭化水素基が挙げられ、好ましくは2価の脂肪族飽和炭化水素基である。
 2価の脂肪族飽和炭化水素基としては、例えば、メチレン基、エチレン基、プロパンジイル基、ブタンジイル基及びペンタンジイル基等のアルカンジイル基が挙げられる。
 2価の脂環式飽和炭化水素基は、単環式及び多環式のいずれでもよい。単環式の脂環式飽和炭化水素基としては、シクロペンタンジイル基及びシクロヘキサンジイル基等のシクロアルカンジイル基が挙げられる。多環式の2価の脂環式飽和炭化水素基としては、アダマンタンジイル基及びノルボルナンジイル基等が挙げられる。
 飽和炭化水素基に含まれるメチレン基が、酸素原子又はカルボニル基で置き換わった基としては、例えば、式(L1-1)~式(L1-4)で表される基が挙げられる。下記式中、*は酸素原子との結合手を表す。
Figure JPOXMLDOC01-appb-I000055
  式(L1-1)中、
 Xx1は、カルボニルオキシ基又はオキシカルボニル基を表す。
  Lx1は、炭素数1~16の2価の脂肪族飽和炭化水素基を表す。
  Lx2は、単結合又は炭素数1~15の2価の脂肪族飽和炭化水素基を表す。
  ただし、Lx1及びLx2の合計炭素数は、16以下である。
 式(L1-2)中、
 Lx3は、炭素数1~17の2価の脂肪族飽和炭化水素基を表す。
  Lx4は、単結合又は炭素数1~16の2価の脂肪族飽和炭化水素基を表す。
  ただし、Lx3及びLx4の合計炭素数は、17以下である。
 式(L1-3)中、
 Lx5は、炭素数1~15の2価の脂肪族飽和炭化水素基を表す。
  Lx6及びLx7は、それぞれ独立に、単結合又は炭素数1~14の2価の脂肪族飽和炭化水素基を表す。
  ただし、Lx5、Lx6及びLx7の合計炭素数は、15以下である。
 式(L1-4)中、
 Lx8及びLx9は、単結合又は炭素数1~12の2価の脂肪族飽和炭化水素基を表す。
 Wx1は、炭素数3~15の2価の脂環式飽和炭化水素基を表す。
  ただし、Lx8、Lx9及びWx1の合計炭素数は、15以下である。 
 Lx1は、好ましくは、炭素数1~8の2価の脂肪族飽和炭化水素基、より好ましくは、メチレン基又はエチレン基である。
 Lx2は、好ましくは、単結合又は炭素数1~8の2価の脂肪族飽和炭化水素基、より好ましくは、単結合である。
 Lx3は、好ましくは、炭素数1~8の2価の脂肪族飽和炭化水素基である。
 Lx4は、好ましくは、単結合又は炭素数1~8の2価の脂肪族飽和炭化水素基である。
 Lx5は、好ましくは、炭素数1~8の2価の脂肪族飽和炭化水素基、より好ましくは、メチレン基又はエチレン基である。
 Lx6は、好ましくは、単結合又は炭素数1~8の2価の脂肪族飽和炭化水素基、より好ましくは、メチレン基又はエチレン基である。
 Lx7は、好ましくは、単結合又は炭素数1~8の2価の脂肪族飽和炭化水素基である。
 Lx8は、好ましくは、単結合又は炭素数1~8の2価の脂肪族飽和炭化水素基、より好ましくは、単結合又はメチレン基である。
 Lx9は、好ましくは、単結合又は炭素数1~8の2価の脂肪族飽和炭化水素基、より好ましくは、単結合又はメチレン基である。
 Wx1は、好ましくは、炭素数3~10の2価の脂環式飽和炭化水素基、より好ましくは、シクロヘキサンジイル基又はアダマンタンジイル基である。
 式(L1-1)で表される基としては、例えば、以下に示す2価の基が挙げられる。
Figure JPOXMLDOC01-appb-I000056
  式(L1-2)で表される基としては、例えば、以下に示す2価の基が挙げられる。
Figure JPOXMLDOC01-appb-I000057
  式(L1-3)で表される基としては、例えば、以下に示す2価の基が挙げられる。
Figure JPOXMLDOC01-appb-I000058
  式(L1-4)で表される基としては、例えば、以下に示す2価の基が挙げられる。
Figure JPOXMLDOC01-appb-I000059
  L55は、好ましくは、単結合又は式(L1-1)で表される基である。
 構造単位(a5-1)としては、以下に示す構造単位及び下記構造単位中のR51に相当するメチル基が水素原子に置き換わった構造単位が挙げられる。
Figure JPOXMLDOC01-appb-I000060
Figure JPOXMLDOC01-appb-I000061
 樹脂(A)が、構造単位(a5)を有する場合、その含有率は、樹脂(A)の全構造単位に対して、1~30モル%が好ましく、2~20モル%がより好ましく、3~15モル%がさらに好ましい。
 <構造単位(II)>
 樹脂(A)は、さらに、露光により分解して酸を発生する構造単位(以下、「構造単位(II)という場合がある)を含有していてもよい。構造単位(II)としては、具体的には特開2016-79235号公報記載の式(III-1)又は式(III-2)により表される基を含む構造単位が挙げられ、側鎖にスルホナート基若しくはカルボキシレート基と有機カチオンとを有する構造単位又は側鎖にスルホニオ基と有機アニオンとを有する構造単位であることが好ましい。
 側鎖にスルホナート基若しくはカルボキシレート基を有する構造単位は、式(II-2-A’)で表される構造単位であることが好ましい。
Figure JPOXMLDOC01-appb-I000062
 [式(II-2-A’)中、
 XIII3は、炭素数1~18の2価の飽和炭化水素基を表し、該飽和炭化水素基に含まれる-CH-は、-O-、-S-又は-CO-に置き換わっていてもよく、該飽和炭化水素基に含まれる水素原子は、ハロゲン原子、ハロゲン原子を有していてもよい炭素数1~6のアルキル基又はヒドロキシ基で置き換わっていてもよい。
x1は、炭素数1~8のアルカンジイル基を表し、該アルカンジイル基に含まれる水素原子は、フッ素原子又は炭素数1~6のペルフルオロアルキル基で置換されていてもよい。
RAは、スルホナート基又はカルボキシレート基を表す。
 RIII3は、水素原子、ハロゲン原子又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を表す。
 Za+は、有機カチオンを表す。]
 RIII3で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。
 RIII3で表されるハロゲン原子を有していてもよい炭素数1~6のアルキル基としては、Ra8で表されるハロゲン原子を有していてもよい炭素数1~6のアルキル基と同じものが挙げられる。
x1で表される炭素数1~8のアルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、エタン-1,1-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-2,2-ジイル基、ペンタン-2,4-ジイル基、2-メチルプロパン-1,3-ジイル基、2-メチルプロパン-1,2-ジイル基、ペンタン-1,4-ジイル基、2-メチルブタン-1,4-ジイル基等が挙げられる。
 XIII3で表される炭素数1~18の2価の飽和炭化水素基としては、直鎖又は分岐状アルカンジイル基、単環式又は多環式の2価の脂環飽和炭化水素基が挙げられ、これらの組み合わせてあってもよい。
 具体的には、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基等の直鎖状アルカンジイル基;ブタン-1,3-ジイル基、2-メチルプロパン-1,3-ジイル基、2-メチルプロパン-1,2-ジイル基、ペンタン-1,4-ジイル基、2-メチルブタン-1,4-ジイル基等の分岐状アルカンジイル基;シクロブタン-1,3-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基、シクロオクタン-1,5-ジイル基等のシクロアルカンジイル基;ノルボルナン-1,4-ジイル基、ノルボルナン-2,5-ジイル基、アダマンタン-1,5-ジイル基、アダマンタン-2,6-ジイル基等の2価の多環式脂環式飽和炭化水素基等が挙げられる。
 アルカンジイル基と脂環式飽和炭化水素基とを組み合わせた基としては、例えば、シクロヘキシルメチレン基、アダマンチルメチレン基、ノルボルニルエチレン基等のシクロアルキル-アルカンジイル基が挙げられる。
 飽和炭化水素基に含まれる-CH-が、-O-、-S-又は-CO-で置き換わったものとしては、例えば式(X1)~式(X53)で表される2価の基が挙げられる。ただし、飽和炭化水素基に含まれる-CH-が、-O-、-S-又は-CO-で置き換わる前の炭素数はそれぞれ17以下である。下記式において、*はAx1との結合手を表す。
Figure JPOXMLDOC01-appb-I000063
 
Figure JPOXMLDOC01-appb-I000064
  X3は、2価の炭素数1~16の飽和炭化水素基を表す。
  X4は、2価の炭素数1~15の飽和炭化水素基を表す。
  X5は、2価の炭素数1~13の飽和炭化水素基を表す。
  X6は、炭素数1~14のアルキル基を表す。
  X7は、3価の炭素数1~14の飽和炭化水素基を表す。
  X8は、2価の炭素数1~13の飽和炭化水素基を表す。
 Za+で表される有機カチオンとしては、有機オニウムカチオン、例えば有機スルホニウムカチオン、有機ヨードニウムカチオン、有機アンモニウムカチオン、有機ベンゾチアゾリウムカチオン及び有機ホスホニウムカチオンなどが挙げられ、有機スルホニウムカチオン及び有機ヨードニウムカチオンが好ましく、アリールスルホニウムカチオンがより好ましい。
 Za+は、好ましくは式(b2-1)~式(b2-4)のいずれかで表されるカチオン〔以下、式番号に応じて「カチオン(b2-1)」等という場合がある。〕である。
Figure JPOXMLDOC01-appb-I000065
 [式(b2-1)~式(b2-4)において、
 Rb4~Rb6は、それぞれ独立に、炭素数1~30のアルキル基、炭素数3~36の脂環式炭化水素基又は炭素数6~36の芳香族炭化水素基を表し、該アルキル基に含まれる水素原子は、ヒドロキシ基、炭素数1~12のアルコキシ基、炭素数3~12の脂環式炭化水素基又は炭素数6~18の芳香族炭化水素基で置換されていてもよく、該脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~18のアルキル基、炭素数2~4のアシル基又はグリシジルオキシ基で置換されていてもよく、該芳香族炭化水素基に含まれる水素原子は、ハロゲン原子、ヒドロキシ基又は炭素数1~12のアルコキシ基で置換されていてもよい。
  Rb4とRb5とは、それらが結合する硫黄原子とともに環を形成してもよく、該環に含まれる-CH-は、-O-、-SO-又は-CO-に置き換わってもよい。
 Rb7及びRb8は、それぞれ独立に、ヒドロキシ基、炭素数1~12の脂肪族炭化水素基又は炭素数1~12のアルコキシ基を表す。
  m2及びn2は、それぞれ独立に、0~5のいずれかの整数を表す。
 m2が2以上のとき、複数のRb7は同一であっても異なってもよく、n2が2以上のとき、複数のRb8は同一であっても異なってもよい。
  Rb9及びRb10は、それぞれ独立に、炭素数1~36のアルキル基又は炭素数3~36の脂環式炭化水素基を表す。
 Rb9とRb10とは、それらが結合する硫黄原子とともに環を形成してもよく、該環に含まれる-CH-は、-O-、-SO-又は-CO-に置き換わってもよい。
 Rb11は、水素原子、炭素数1~36のアルキル基、炭素数3~36の脂環式炭化水素基又は炭素数6~18の芳香族炭化水素基を表す。
 Rb12は、炭素数1~12のアルキル基、炭素数3~18の脂環式炭化水素基又は炭素数6~18の芳香族炭化水素基を表し、該アルキル基に含まれる水素原子は、炭素数6~18の芳香族炭化水素基で置換されていてもよく、該芳香族炭化水素基に含まれる水素原子は、炭素数1~12のアルコキシ基又は炭素数1~12のアルキルカルボニルオキシ基で置換されていてもよい。
 Rb11とRb12とは、一緒になってそれらが結合する-CH-CO-を含む環を形成していてもよく、該環に含まれる-CH-は、-O-、-SO-又は-CO-に置き換わってもよい。
 Rb13~Rb18は、それぞれ独立に、ヒドロキシ基、炭素数1~12の脂肪族炭化水素基又は炭素数1~12のアルコキシ基を表す。
 Lb31は、-S-又は-O-を表す。
 o2、p2、s2、及びt2は、それぞれ独立に、0~5のいずれかの整数を表す。
 q2及びr2は、それぞれ独立に、0~4のいずれかの整数を表す。
 u2は、0又は1を表す。
 o2が2以上のとき、複数のRb13は同一であっても異なってもよく、p2が2以上のとき、複数のRb14は同一であっても異なってもよく、q2が2以上のとき、複数のRb15は同一であっても異なってもよく、r2が2以上のとき、複数のRb16は同一であっても異なってもよく、s2が2以上のとき、複数のRb17は同一であっても異なってもよく、t2が2以上のとき、複数のRb18は同一であっても異なってもよい。]
 アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基及び2-エチルヘキシル基等が挙げられる。中でも、Rb9~Rb12のアルキル基は、好ましくは炭素数1~12である。
 脂環式炭化水素基は、単環式又は多環式のいずれでもよく、単環式の脂環式炭化水素基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基等のシクロアルキル基が挙げられる。多環式の脂環式炭化水素基としては、デカヒドロナフチル基、アダマンチル基、ノルボルニル基及び下記の基等が挙げられる。
Figure JPOXMLDOC01-appb-I000066
 中でも、Rb9~Rb12のアルキル基の炭素数は、好ましくは3~18であり、より好ましくは4~12である。
 水素原子がアルキル基で置換された脂環式炭化水素基としては、例えば、メチルシクロヘキシル基、ジメチルシクロへキシル基、2-アルキルアダマンタン-2-イル基、メチルノルボルニル基、イソボルニル基等が挙げられる。水素原子があるきる基で置換された脂環式炭化水素基においては、脂環式炭化水素基とアルキル基との合計炭素数が好ましくは20以下である。
 Rb7及びRb8、Rb13~Rb18の脂肪族炭化水素基は上述したアルキル基、脂環式炭化水素基及びそれらを組み合わせた基と同様のものが挙げられる。
 芳香族炭化水素基としては、フェニル基、ビフェニリル基、ナフチル基、フェナントリル基等のアリール基;トリル基、キシリル基、クメニル基、メシチル基、p-エチルフェニル基、p-tert-ブチルフェニル基、2,6-ジエチルフェニル基、2-メチル-6-エチルフェニル基等のアルキル-アリール基;p-シクロへキシルフェニル基、p-アダマンチルフェニル基等のシクロアルキル-アリール基が挙げられる。
 芳香族炭化水素基に、アルキル基又は脂環式炭化水素基が含まれる場合は、炭素数1~18のアルキル基及び炭素数3~18の脂環式炭化水素基が好ましい。
 水素原子がアルコキシ基で置換された芳香族炭化水素基としては、p-メトキシフェニル基等が挙げられる。
 水素原子が芳香族炭化水素基で置換されたアルキル基としては、ベンジル基、フェネチル基、フェニルプロピル基、トリチル基、ナフチルメチル基、ナフチルエチル基等のアラルキル基が挙げられる。
 アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、デシルオキシ基及びドデシルオキシ基等が挙げられる。
 アシル基としては、アセチル基、プロピオニル基及びブチリル基等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。
 アルキルカルボニルオキシ基としては、メチルカルボニルオキシ基、エチルカルボニルオキシ基、n-プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基、sec-ブチルカルボニルオキシ基、tert-ブチルカルボニルオキシ基、ペンチルカルボニルオキシ基、ヘキシルカルボニルオキシ基、オクチルカルボニルオキシ基及び2-エチルヘキシルカルボニルオキシ基等が挙げられる。
 Rb4とRb5とがそれらが結合している硫黄原子とともに形成してもよい環は、単環式、多環式、芳香族性、非芳香族性、飽和及び不飽和のいずれの環であってもよい。この環としては、炭素数3~18の環が挙げられ、好ましくは炭素数4~18の環が挙げられる。また、硫黄原子を含む環としては、3員環~12員環が挙げられ、好ましくは3員環~7員環が挙げられ、具体的には下記の環が挙げられる。
Figure JPOXMLDOC01-appb-I000067
  Rb9とRb10とがそれらが結合している硫黄原子とともに形成する環は、単環式、多環式、芳香族性、非芳香族性、飽和及び不飽和のいずれの環であってもよい。この環としては、3員環~12員環が挙げられ、好ましくは3員環~7員環が挙げられ、例えば、チオラン-1-イウム環(テトラヒドロチオフェニウム環)、チアン-1-イウム環、1,4-オキサチアン-4-イウム環等が挙げられる。
 Rb11とRb12とが一緒になって形成する環は、単環式、多環式、芳香族性、非芳香族性、飽和及び不飽和のいずれの環であってもよい。この環としては、3員環~12員環が挙げられ、好ましくは3員環~7員環が挙げられ、例えば、オキソシクロヘプタン環、オキソシクロヘキサン環、オキソノルボルナン環、オキソアダマンタン環等が挙げられる。
 カチオン(b2-1)~カチオン(b2-4)の中で、好ましくはカチオン(b2-1)が挙げられる。
 カチオン(b2-1)としては、以下のカチオンが挙げられる。
Figure JPOXMLDOC01-appb-I000068

Figure JPOXMLDOC01-appb-I000069
 
Figure JPOXMLDOC01-appb-I000070
 カチオン(b2-2)としては、以下のカチオンが挙げられる。
Figure JPOXMLDOC01-appb-I000071
 カチオン(b2-3)としては、以下のカチオンが挙げられる。
Figure JPOXMLDOC01-appb-I000072
 カチオン(b2-4)のとしては、以下のカチオンが挙げられる。
Figure JPOXMLDOC01-appb-I000073
 式(II-2-A’)で表される構造単位は、式(II-2-A)で表される構造単位であることが好ましい。
Figure JPOXMLDOC01-appb-I000074
  [式(II-2-A)中、RIII3、XIII3及びZa+は、上記と同じ意味を表す。zは、0~6の整数を表す。RIII2及びRIII4は、それぞれ独立して、水素原子、フッ素原子又は炭素数1~6のペルフルオロアルキル基を表し、zが2以上のとき、複数のRIII2及びRIII4は互いに同一であってもよいし、異なっていてもよい。Q及びQは、それぞれ独立して、フッ素原子又は炭素数1~6のペルフルオロアルキル基を表す。]
 RIII2、RIII4、Q及びQで表される炭素数1~6のペルフルオロアルキル基としては、後述するQで表される炭素数1~6のペルフルオロアルキル基と同じものが挙げられる。
 式(II-2-A)で表される構造単位は、式(II-2-A-1)で表される構造単位であることが好ましい。
Figure JPOXMLDOC01-appb-I000075
 [式(II-2-A-1)中、
 RIII2、RIII3、RIII4、Qa、Qb、z及びZa+は、上記と同じ意味を表す。RIII5は、炭素数1~12の飽和炭化水素基を表す。
 X2は、炭素数1~11の2価の飽和炭化水素基を表し、該飽和炭化水素基に含まれる-CH-は、-O-、-S-又は-CO-に置き換わっていてもよく、該飽和炭化水素基に含まれる水素原子は、ハロゲン原子又はヒドロキシ基で置換されていてもよい。]
 RIII5で表される炭素数1~12の飽和炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基及びドデシル基等の直鎖又は分岐のアルキル基が挙げられる。
 Xで表される炭素数1~11の2価の飽和炭化水素基としては、XIII3で表される2価の飽和炭化水素基の具体例のうちの炭素数11以下の基が挙げられる。
 式(II-2-A-1)で表される構造単位としては、式(II-2-A-2)で表される構造単位がさらに好ましい。
Figure JPOXMLDOC01-appb-I000076
  [式(II-2-A-2)中、RIII3、RIII5及びZa+は、上記と同じ意味を表す。
  m及びnは、互いに独立に、1又は2を表す。]
式(II-2-A-1)で表される構造単位としては、例えば、以下の構造単位及びWO2012/050015記載の構造単位が挙げられる。Za+は、有機カチオンを表す。
Figure JPOXMLDOC01-appb-I000077
 
Figure JPOXMLDOC01-appb-I000078
 側鎖にスルホニオ基と有機アニオンとを有する構造単位は、式(II-1-1)で表される構造単位であることが好ましい。
Figure JPOXMLDOC01-appb-I000079
  [式(II-1-1)中、
 AII1は、単結合又は2価の連結基を表す。
 RII1は、炭素数6~18の2価の芳香族炭化水素基を表す。
 RII2及びRII3は、それぞれ独立して、炭素数1~18の炭化水素基を表し、RII2及びRII3は互いに結合してそれらが結合するS+とともに環を形成していてもよい。
 RII4は、水素原子、ハロゲン原子又はハロゲン原子を有していてもよい炭素数1~6のアルキル基を表す。
は、有機アニオンを表す。]
 RII1で表される炭素数6~18の2価の芳香族炭化水素基としては、フェニレン基及びナフチレン基等が挙げられる。
 RII2及びRII3で表される炭素数1~18の炭化水素基としては、炭素数1~18のアルキル基、炭素数3~18の脂環式炭化水素基、炭素数6~18の芳香族炭化水素基等が挙げられる。炭素数1~18のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基及びドデシル基等の直鎖又は分岐のアルキル基が挙げられる。炭素数3~18の脂環式炭化水素基としては、シクロプロピル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロオクチル基、メチルシクロヘキシル基、ジメチルシクロへキシル基、メチルノルボルニル基等のシクロアルキル基;デカヒドロナフチル基、アダマンチル基、ノルボルニル基、アダマンチルシクロヘキシル基等の多環の脂環式炭化水素基が挙げられる。炭素数6~18の芳香族炭化水素基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられる。
II2及びRII3が互いに結合してS+とともに形成する環は、更に酸素原子を有してよいし、多環構造を有していてもよい。
 RII4で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。
 RII4で表されるハロゲン原子を有していてもよい炭素数1~6のアルキル基としては、Ra8で表されるハロゲン原子を有していてもよい炭素数1~6のアルキル基と同じものが挙げられる。
 AII1で表される2価の連結基としては、例えば、炭素数1~18の2価の飽和炭化水素基が挙げられ、該2価の飽和炭化水素基に含まれる-CH-は、-O-、-S-又は-CO-で置き換わっていてもよい。具体的には、XIII3で表される炭素数1~18の2価の飽和炭化水素基と同じものが挙げられる。
 式(II-1-1)中のカチオンを含む構造単位としては、以下で表される構造単位などが挙げられる。
Figure JPOXMLDOC01-appb-I000080
 
Figure JPOXMLDOC01-appb-I000081
 Aで表される有機アニオンとしては、スルホン酸アニオン、スルホニルイミドアニオン、スルホニルメチドアニオン及びカルボン酸アニオン等が挙げられる。Aで表される有機アニオンは、スルホン酸アニオンが好ましく、後述する酸発生剤(B1)に含まれるアニオンであることがより好ましい。
  Aで表されるスルホニルイミドアニオンとしては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000082
  構造単位(II-1)としては、以下で表される構造単位などが挙げられる。
Figure JPOXMLDOC01-appb-I000083
  樹脂(A)中に、構造単位(II)を含有する場合の構造単位(II)の含有率は、樹脂(A)の全構造単位に対して、好ましくは1~20モル%であり、より好ましくは2~15モル%であり、さらに好ましくは3~10モル%である。
 樹脂(A)は、好ましくは、構造単位(I)と構造単位(a1)と構造単位(s)とからなる樹脂、すなわち、化合物(I’)とモノマー(a1)とモノマー(s)との共重合体である。
 構造単位(a1)は、好ましくは構造単位(a1-1)及び構造単位(a1-2)(好ましくはシクロヘキシル基、シクロペンチル基を有する該構造単位)から選ばれる少なくとも一種、より好ましくは構造単位(a1-1)又は構造単位(a1-1)及び構造単位(a1-2)(好ましくはシクロヘキシル基、シクロペンチル基を有する該構造単位)から選ばれる少なくとも二種である。
 構造単位(s)は、好ましくは構造単位(a2)及び構造単位(a3)の少なくとも一種である。構造単位(a2)は、好ましくは式(a2-1)で表される構造単位である。構造単位(a3)は、好ましくは式(a3-1-1)~式(a3-1-4)で表される構造単位、式(a3-2-1)~式(a3-2-4)及び式(a3-4-1)~式(a3-4-2)で表される構造単位から選ばれる少なくとも一種である。
 樹脂(A)を構成する構造単位(I)、構造単位(a1)、構造単位(s)、構造単位(a4)、構造単位(a5)及び構造単位(II)は、それぞれ1種のみ又は2種以上を組み合わせて用いてもよく、これら構造単位を誘導するモノマーを用いて、公知の重合法(例えばラジカル重合法)によって製造することができる。樹脂(A)が有する各構造単位の含有率は、重合に用いるモノマーの使用量で調整できる。
 樹脂(A)の重量平均分子量は、好ましくは、2,000以上(より好ましくは2,500以上、さらに好ましくは3,000以上)、50,000以下(より好ましくは30,000以下、さらに好ましくは15,000以下)である。本明細書では、重量平均分子量は、ゲルパーミエーションクロマトグラフィーで実施例に記載の条件により求めた値である。
 〔レジスト組成物〕
 本発明のレジスト組成物は、樹脂(A)を含有する。
 本発明のレジスト組成物として、樹脂(A)と、酸発生剤(以下「酸発生剤(B)」という場合がある。)とを含有するレジスト組成物が挙げられる。
  本発明のレジスト組成物は、酸発生剤(B)を有しない場合、構造単位(II)を有する樹脂(A)を含有することが好ましい。
 本発明のレジスト組成物は、樹脂(A)と酸発生剤(B)に加えて、樹脂(A)以外の樹脂、クエンチャー(以下「クエンチャー(C)」という場合がある)及び/又は溶剤(以下「溶剤(E)」という場合がある)を含有していることが好ましい。
 <樹脂(A)以外の樹脂>
 樹脂(A)以外の樹脂としては、例えば、構造単位(a4)を含む樹脂(以下「樹脂(X)」という場合がある)が挙げられる。
樹脂(X)がさらに有していてもよい構造単位としては、構造単位(a1)、構造単位(a2)、構造単位(a3)、構造単位(a5)及びその他の公知構造単位が挙げられる。
 樹脂(X)は、構造単位(a4)及び又は構造単位(a5)からなる樹脂であることがより好ましい。
 樹脂(X)が構造単位(a4)を含む場合、その含有率は、樹脂(X)の全構造単位に対して、40モル%以上が好ましく、45モル%以上がより好ましく、50モル%以上がさらに好ましい。
 樹脂(X)が構造単位(a5)を含む場合、その含有率は、樹脂(X)の全構造単位に対して、10~60モル%が好ましく、20~55モル%がより好ましく、25~50モル%がさらに好ましい。
 樹脂(X)を構成する構造単位(a1)、構造単位(s)、構造単位(a4)及び構造単位(a5)は、それぞれ1種のみ又は2種以上を組み合わせて用いてもよく、これら構造単位を誘導するモノマーを用いて、公知の重合法(例えばラジカル重合法)によって製造することができる。樹脂(X)が有する各構造単位の含有率は、重合に用いるモノマーの使用量で調整できる。
 樹脂(X)の重量平均分子量は、好ましくは、6,000以上(より好ましくは7,000以上)、80,000以下(より好ましくは60,000以下)である。かかる樹脂(X)の重量平均分子量の測定手段は、樹脂(A)の場合と同様である。
 レジスト組成物が樹脂(X)を含む場合、その含有量は、樹脂(A)100質量部に対して、好ましくは1~60質量部であり、より好ましくは1~50質量部であり、さらに好ましくは1~40質量部であり、特に好ましくは2~30質量部である。
 樹脂(A)と樹脂(A)以外の樹脂との合計含有率は、レジスト組成物の固形分に対して、80質量%以上99質量%以下が好ましく、90質量%以上99質量%以下が好ましい。レジスト組成物の固形分及びこれに対する樹脂の含有率は、液体クロマトグラフィー又はガスクロマトグラフィー等の公知の分析手段で測定することができる。
 <酸発生剤(B)>
 本発明のレジスト組成物は、更に、酸発生剤(B)を含有することが好ましい。
 酸発生剤は、非イオン系とイオン系とに分類されるが、本発明のレジスト組成物の酸発生剤(B)は、いずれを用いてもよい。非イオン系酸発生剤としては、有機ハロゲン化物、スルホネートエステル類(例えば2-ニトロベンジルエステル、芳香族スルホネート、オキシムスルホネート、N-スルホニルオキシイミド、スルホニルオキシケトン、ジアゾナフトキノン 4-スルホネート)、スルホン類(例えばジスルホン、ケトスルホン、スルホニルジアゾメタン)等が挙げられる。イオン系酸発生剤としては、オニウムカチオンを含むオニウム塩(例えばジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩)が代表的である。オニウム塩のアニオンとしては、スルホン酸アニオン、スルホニルイミドアニオン、スルホニルメチドアニオン等が挙げられる。
 酸発生剤(B)としては、特開昭63-26653号、特開昭55-164824号、特開昭62-69263号、特開昭63-146038号、特開昭63-163452号、特開昭62-153853号、特開昭63-146029号、米国特許第3,779,778号、米国特許第3,849,137号、独国特許第3914407号、欧州特許第126,712号等に記載の放射線によって酸を発生する化合物を使用することができる。また、公知の方法で製造した化合物を使用してもよい。酸発生剤(B)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 酸発生剤(B)は、好ましくはフッ素含有酸発生剤であり、より好ましくは式(B1)で表される塩(以下「酸発生剤(B1)」という場合がある)である。
Figure JPOXMLDOC01-appb-I000084
 [式(B1)中、
 Q及びQは、それぞれ独立に、フッ素原子又は炭素数1~6のペルフルオロアルキル基を表す。
 Lb1は、置換基を有していてもよい炭素数1~24の2価の飽和炭化水素基を表し、該2価の飽和炭化水素基に含まれる-CH-は、-O-又は-CO-に置き換わっていてもよく、該2価の飽和炭化水素基に含まれる水素原子は、フッ素原子又はヒドロキシ基で置換されていてもよい。
 Yは、水素原子又は置換基を有していてもよい炭素数3~18の脂環式炭化水素基を表し、該脂環式炭化水素基に含まれる-CH-は、-O-、-SO-又は-CO-に置き換わっていてもよい。
 Zは、有機カチオンを表す。]
 Q及びQのペルフルオロアルキル基としては、トリフルオロメチル基、ペルフルオロエチル基、ペルフルオロプロピル基、ペルフルオロイソプロピル基、ペルフルオロブチル基、ペルフルオロsec-ブチル基、ペルフルオロtert-ブチル基、ペルフルオロペンチル基及びペルフルオロヘキシル基等が挙げられる。
 Q及びQは、互いに独立に、フッ素原子又はトリフルオロメチル基であることが好ましく、ともにフッ素原子であることがより好ましい。
b1の2価の飽和炭化水素基としては、直鎖状アルカンジイル基、分岐状アルカンジイル基、単環式又は多環式の2価の脂環式飽和炭化水素基が挙げられ、これらの基のうち2種以上を組合せることにより形成される基でもよい。
 具体的には、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基、トリデカン-1,13-ジイル基、テトラデカン-1,14-ジイル基、ペンタデカン-1,15-ジイル基、ヘキサデカン-1,16-ジイル基及びヘプタデカン-1,17-ジイル基等の直鎖状アルカンジイル基;
 エタン-1,1-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-2,2-ジイル基、ペンタン-2,4-ジイル基、2-メチルプロパン-1,3-ジイル基、2-メチルプロパン-1,2-ジイル基、ペンタン-1,4-ジイル基、2-メチルブタン-1,4-ジイル基等の分岐状アルカンジイル基;
 シクロブタン-1,3-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基、シクロオクタン-1,5-ジイル基等のシクロアルカンジイル基である単環式の2価の脂環式飽和炭化水素基;
 ノルボルナン-1,4-ジイル基、ノルボルナン-2,5-ジイル基、アダマンタン-1,5-ジイル基、アダマンタン-2,6-ジイル基等の多環式の2価の脂環式飽和炭化水素基等が挙げられる。
 Lb1の2価の飽和炭化水素基に含まれる-CH-が-O-又は-CO-で置き換わった基としては、例えば、式(b1-1)~式(b1-3)のいずれかで表される基が挙げられる。なお、式(b1-1)~式(b1-3)及び下記の具体例において、*は-Yとの結合手を表す。
Figure JPOXMLDOC01-appb-I000085
 [式(b1-1)中、
 Lb2は、単結合又は炭素数1~22の2価の飽和炭化水素基を表し、該飽和炭化水素基に含まれる水素原子は、フッ素原子に置換されていてもよい。Lb3は、単結合又は炭素数1~22の2価の飽和炭化水素基を表し、該飽和炭化水素基に含まれる水素原子は、フッ素原子又はヒドロキシ基に置換されていてもよく、該飽和炭化水素基に含まれるメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよい。
 ただし、Lb2とLb3との炭素数合計は、22以下である。
 式(b1-2)中、
 Lb4は、単結合又は炭素数1~22の2価の飽和炭化水素基を表し、該飽和炭化水素基に含まれる水素原子は、フッ素原子に置換されていてもよい。Lb5は、単結合又は炭素数1~22の2価の飽和炭化水素基を表し、該飽和炭化水素基に含まれる水素原子は、フッ素原子又はヒドロキシ基に置換されていてもよく、該飽和炭化水素基に含まれるメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよい。
 ただし、Lb4とLb5との炭素数合計は、22以下である。
 式(b1-3)中、
 Lb6は、単結合又は炭素数1~23の2価の飽和炭化水素基を表し、該飽和炭化水素基に含まれる水素原子は、フッ素原子又はヒドロキシ基に置換されていてもよい。
 Lb7は、単結合又は炭素数1~23の2価の飽和炭化水素基を表し、該飽和炭化水素基に含まれる水素原子は、フッ素原子又はヒドロキシ基に置換されていてもよく、該飽和炭化水素基に含まれるメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよい。ただし、Lb6とLb7との炭素数合計は、23以下である。]
  式(b1-1)~式(b1-3)においては、飽和炭化水素基に含まれるメチレン基が酸素原子又はカルボニル基に置き換わっている場合、置き換わる前の炭素数を該飽和炭化水素基の炭素数とする。
 2価の飽和炭化水素基としては、Lb1の2価の飽和炭化水素基と同様のものが挙げられる。
 Lb2は、好ましくは単結合である。
 Lb3は、好ましくは炭素数1~4の2価の飽和炭化水素基である。
 Lb4は、好ましくは炭素数1~8の2価の飽和炭化水素基であり、該2価の飽和炭化水素基に含まれる水素原子はフッ素原子に置換されていてもよい。
 Lb5は、好ましくは単結合又は炭素数1~8の2価の飽和炭化水素基である。
 Lb6は、好ましくは単結合又は炭素数1~4の2価の飽和炭化水素基であり、該飽和炭化水素基に含まれる水素原子はフッ素原子に置換されていてもよい。
 Lb7は、好ましくは単結合又は炭素数1~18の2価の飽和炭化水素基であり、該飽和炭化水素基に含まれる水素原子はフッ素原子又はヒドロキシ基に置換されていてもよく、該2価の飽和炭化水素基に含まれるメチレン基は酸素原子又はカルボニル基に置き換わっていてもよい。
 Lb1の2価の飽和炭化水素基に含まれる-CH-が-O-又は-CO-で置き換わった基としては、式(b1-1)又は式(b1-3)で表される基が好ましい。
 式(b1-1)としては、式(b1-4)~式(b1-8)でそれぞれ表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000086
 [式(b1-4)中、
 Lb8は、単結合又は炭素数1~22の2価の飽和炭化水素基を表し、該飽和炭化水素基に含まれる水素原子は、フッ素原子又はヒドロキシ基に置換されていてもよい。
 式(b1-5)中、
 Lb9は、炭素数1~20の2価の飽和炭化水素基を表す。
b10は、単結合又は炭素数1~19の2価の飽和炭化水素基を表し、該2価の飽和炭化水素基に含まれる水素原子は、フッ素原子又はヒドロキシ基に置換されていてもよい。
 ただし、Lb9及びLb10の合計炭素数は20以下である。
 式(b1-6)中、
 Lb11は、炭素数1~21の2価の飽和炭化水素基を表す。
b12は、単結合又は炭素数1~20の2価の飽和炭化水素基を表し、該2価の飽和炭化水素基に含まれる水素原子は、フッ素原子又はヒドロキシ基に置換されていてもよい。
 ただし、Lb11及びLb12の合計炭素数は21以下である。
 式(b1-7)中、
 Lb13は、炭素数1~19の2価の飽和炭化水素基を表す。
 Lb14は、単結合又は炭素数1~18の2価の飽和炭化水素基を表す。
b15は、単結合又は炭素数1~18の2価の飽和炭化水素基を表し、該2価の飽和炭化水素基に含まれる水素原子は、フッ素原子又はヒドロキシ基に置換されていてもよい。
 ただし、Lb13~Lb15の合計炭素数は19以下である。
 式(b1-8)中、
 Lb16は、炭素数1~18の2価の飽和炭化水素基を表す。
 Lb17は、炭素数1~18の2価の飽和炭化水素基を表す。
b18は、単結合又は炭素数1~17の2価の飽和炭化水素基を表し、該2価の飽和炭化水素基に含まれる水素原子は、フッ素原子又はヒドロキシ基に置換されていてもよい。
 ただし、Lb16~Lb18の合計炭素数は19以下である。]
 Lb8は、好ましくは炭素数1~4の2価の飽和炭化水素基である。
  Lb9は、好ましくは炭素数1~8の2価の飽和炭化水素基である。
 Lb10は、好ましくは単結合又は炭素数1~19の2価の飽和炭化水素基であり、より好ましくは単結合又は炭素数1~8の2価の飽和炭化水素基である。
 Lb11は、好ましくは炭素数1~8の2価の飽和炭化水素基である。
 Lb12は、好ましくは単結合又は炭素数1~8の2価の飽和炭化水素基である。
 Lb13は、好ましくは炭素数1~12の2価の飽和炭化水素基である。
 Lb14は、好ましくは単結合又は炭素数1~6の2価の飽和炭化水素基である。
 Lb15は、好ましくは単結合又は炭素数1~18の2価の飽和炭化水素基であり、より好ましくは単結合又は炭素数1~8の2価の飽和炭化水素基である。
 Lb16は、好ましくは炭素数1~12の2価の飽和炭化水素基である。
 Lb17は、好ましくは炭素数1~6の2価の飽和炭化水素基である。
 Lb18は、好ましくは単結合又は炭素数1~17の2価の飽和炭化水素基であり、より好ましくは単結合又は炭素数1~4の2価の飽和炭化水素基である。
 式(b1-3)としては、式(b1-9)~式(b1-11)でそれぞれ表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000087
 [式(b1-9)中、
 Lb19は、単結合又は炭素数1~23の2価の飽和炭化水素基を表し、該2価の飽和炭化水素基に含まれる水素原子は、フッ素原子に置換されていてもよい。
 Lb20は、単結合又は炭素数1~23の2価の飽和炭化水素基を表し、該2価の飽和炭化水素基に含まれる水素原子はフッ素原子、ヒドロキシ基又はアシルオキシ基に置換されていてもよい。該アシルオキシ基に含まれるメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよく、該アシルオキシ基に含まれる水素原子は、ヒドロキシ基に置換されていてもよい。
 ただし、Lb19及びLb20の合計炭素数は23以下である。
  式(b1-10)中、
 Lb21は、単結合又は炭素数1~21の2価の飽和炭化水素基を表し、該2価の飽和炭化水素基に含まれる水素原子は、フッ素原子に置換されていてもよい。
 Lb22は、単結合又は炭素数1~21の2価の飽和炭化水素基を表す。
 Lb23は、単結合又は炭素数1~21の2価の飽和炭化水素基を表し、該2価の飽和炭化水素基に含まれる水素原子は、フッ素原子、ヒドロキシ基又はアシルオキシ基に置換されていてもよい。該アシルオキシ基に含まれるメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよく、該アシルオキシ基に含まれる水素原子は、ヒドロキシ基に置換されていてもよい。
 ただし、Lb21~Lb23の合計炭素数は21以下である。
 式(b1-11)中、
 Lb24は、単結合又は炭素数1~20の2価の飽和炭化水素基を表し、該2価の飽和炭化水素基に含まれる水素原子は、フッ素原子に置換されていてもよい。
 Lb25は、炭素数1~21の2価の飽和炭化水素基を表す。
 Lb26は、単結合又は炭素数1~20の2価の飽和炭化水素基を表し、該2価の飽和炭化水素基に含まれる水素原子は、フッ素原子、ヒドロキシ基又はアシルオキシ基に置換されていてもよい。該アシルオキシ基に含まれるメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよく、該アシルオキシ基に含まれる水素原子は、ヒドロキシ基に置換されていてもよい。
 ただし、Lb24~Lb26の合計炭素数は21以下である。]
 式(b1-9)から式(b1-11)においては、2価の飽和炭化水素基に含まれる水素原子がアシルオキシ基に置換されている場合、アシルオキシ基の炭素数、エステル結合中のCO及びOの数をも含めて、該2価の飽和炭化水素基の炭素数とする。
 アシルオキシ基としては、アセチルオキシ基、プロピオニルオキシ基、ブチリルオキシ基、シクロヘキシルカルボニルオキシ基、アダマンチルカルボニルオキシ基等が挙げられる。
 置換基を有するアシルオキシ基としては、オキソアダマンチルカルボニルオキシ基、ヒドロキシアダマンチルカルボニルオキシ基、オキソシクロヘキシルカルボニルオキシ基、ヒドロキシシクロヘキシルカルボニルオキシ基等が挙げられる。
 式(b1-1)で表される基のうち、式(b1-4)で表される基としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000088
 式(b1-1)で表される基のうち、式(b1-5)で表される基としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000089
 式(b1-1)で表される基のうち、式(b1-6)で表される基としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000090
 式(b1-1)で表される基のうち、式(b1-7)で表される基としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000091
 式(b1-1)で表される基のうち、式(b1-8)で表される基としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000092
 式(b1-2)で表される基としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000093
 式(b1-3)で表される基のうち、式(b1-9)で表される基としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000094
 式(b1-3)で表される基のうち、式(b1-10)で表される基としては、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-I000095
 式(b1-3)で表される基のうち、式(b1-11)で表される基としては、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-I000096
 Yで表される脂環式炭化水素基としては、式(Y1)~式(Y11)、式(Y36)~式(Y38)で表される基が挙げられる。
 Yで表される脂環式炭化水素基に含まれる-CH-が-O-、-SO-又は-CO-で置き換わる場合、その数は1つでもよいし、2以上の複数でもよい。そのような基としては、式(Y12)~式(Y35)、式(Y36)~式(Y38)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000097
 つまり、Yは、脂環式炭化水素基に含まれる水素原子2つがそれぞれ、酸素原子に置換され、その2つの酸素原子が炭素数1~8のアルカンジイル基と一緒になってケタール環を形成してもよいし、異なる炭素原子にそれぞれ酸素原子が結合した構造を含んでいてもよい。ただし、式(Y28)~式(Y33)、式(Y39)~式(Y40)等の酸素原子を含むスピロ環を構成する場合には、2つの酸素間のアルカンジイル基は、1以上のフッ素原子を有することが好ましい。また、ケタール構造に含まれるアルカンジイル基のうち、酸素原子に隣接するメチレン基には、フッ素原子が置換されていないものが好ましい。
 中でも、好ましくは式(Y1)~式(Y20)、式(Y30)、式(Y31)、式(Y39)~式(Y40)のいずれかで表される基が挙げられ、より好ましくは式(Y11)、式(Y15)、式(Y16)、式(Y19)、式(Y20)、式(Y30)~式(Y31)、又は式(Y39)~式(Y40)で表される基が挙げられ、さらに好ましくは式(Y11)、式(Y15)、式(Y30)、式(Y39)又は式(Y40)で表される基が挙げられる。
 Yで表される脂環式炭化水素基の置換基としては、ハロゲン原子、ヒドロキシ基、炭素数1~12のアルキル基、ヒドロキシ基含有炭素数1~12のアルキル基、炭素数3~16の脂環式炭化水素基、炭素数1~12のアルコキシ基、炭素数6~18の芳香族炭化水素基、炭素数7~21のアラルキル基、炭素数2~4のアシル基、グリシジルオキシ基又は-(CHja-O-CO-Rb1基(式中、Rb1は、炭素数1~16のアルキル基、炭素数3~16の脂環式炭化水素基又は炭素数6~18の芳香族炭化水素基を表す。jaは、0~4のいずれかの整数を表す。炭素数1~16のアルキル基、及び炭素数3~16の脂環式炭化水素基に含まれる-CH-は、-O-、-S(O)-又は-CO-で置き換わっていてもよい。)等が挙げられる。
 ヒドロキシ基含有炭素数1~12のアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基等が挙げられる。
 アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、デシルオキシ基及びドデシルオキシ基等が挙げられる。
 芳香族炭化水素基としては、フェニル基、ナフチル基、アントリル基、ビフェニル基、フェナントリル基等のアリール基;トリル基、キシリル基、クメニル基、メシチル基、2,6-ジエチルフェニル基、p-tert-ブチルフェニル基、2-メチル-6-エチルフェニル基等のアルキル-アリール基;p-アダマンチルフェニル基等のシクロアルキル-アリール基等が挙げられる。
 アラルキル基としては、ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基及びナフチルエチル基等が挙げられる。
 アシル基としては、例えば、アセチル基、プロピオニル基及びブチリル基等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。
 Yとしては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000098
Figure JPOXMLDOC01-appb-I000099
 Yは、好ましくは置換基を有していてもよい炭素数3~18の脂環式炭化水素基であり、より好ましく置換基を有していてもよいアダマンチル基であり、これらの基を構成するメチレン基は、酸素原子、スルホニル基又はカルボニル基に置き換わっていてもよい。Yは、さらに好ましくはアダマンチル基、ヒドロキシアダマンチル基又はオキソアダマンチル基又は下記で表される基である。
Figure JPOXMLDOC01-appb-I000100
 式(B1)で表される塩におけるスルホン酸アニオンとしては、式(B1-A-1)~式(B1-A-55)で表されるアニオン〔以下、式番号に応じて「アニオン(B1-A-1)」等という場合がある。〕が好ましく、式(B1-A-1)~式(B1-A-4)、式(B1-A-9)、式(B1-A-10)、式(B1-A-24)~式(B1-A-33)、式(B1-A-36)~式(B1-A-40)、式(B1-A-47)~式(B1-A-55)のいずれかで表されるアニオンがより好ましい。 
Figure JPOXMLDOC01-appb-I000101
 
Figure JPOXMLDOC01-appb-I000102
Figure JPOXMLDOC01-appb-I000103
 
Figure JPOXMLDOC01-appb-I000104
Figure JPOXMLDOC01-appb-I000105
 ここでRi2~Ri7は、例えば、炭素数1~4のアルキル基、好ましくはメチル基又はエチル基である。
 Ri8は、例えば、炭素数1~12の脂肪族炭化水素基であり、好ましくは炭素数1~4のアルキル基、炭素数5~12の脂環式炭化水素基又はこれらを組合せることにより形成される基であり、より好ましくはメチル基、エチル基、シクロヘキシル基又はアダマンチル基である。
 L44は、単結合又は炭素数1~4のアルカンジイル基である。
 Q及びQは、上記と同じ意味を表す。
 式(B1)で表される塩におけるスルホン酸アニオンとしては、具体的には、特開2010-204646号公報に記載されたアニオンが挙げられる。
 好ましい式(B1)で表される塩におけるスルホン酸アニオンとしては、式(B1a-1)~式(B1a-34)でそれぞれ表されるアニオンが挙げられる。
Figure JPOXMLDOC01-appb-I000106
Figure JPOXMLDOC01-appb-I000107

Figure JPOXMLDOC01-appb-I000108
Figure JPOXMLDOC01-appb-I000109
 なかでも、式(B1a-1)~式(B1a-3)及び式(B1a-7)~式(B1a-16)、式(B1a-18)、式(B1a-19)、式(B1a-22)~式(B1a-34)のいずれかで表されるアニオンが好ましい。
 Zの有機カチオンとしては、有機オニウムカチオン、例えば、有機スルホニウムカチオン、有機ヨードニウムカチオン、有機アンモニウムカチオン、ベンゾチアゾリウムカチオン、有機ホスホニウムカチオン等が挙げられ、好ましくは有機スルホニウムカチオン又は有機ヨードニウムカチオンが挙げられ、より好ましくはアリールスルホニウムカチオンが挙げられる。
 具体的には、構造単位(II)における有機カチオンで例示したものと同様のものが挙げられる。
 酸発生剤(B1)は、上述のスルホン酸アニオン及び上述の有機カチオンの組合せであり、これらは任意に組合せることができる。酸発生剤(B1)としては、好ましくは式(B1a-1)~式(B1a-3)及び式(B1a-7)~式(B1a-16)のいずれかで表されるアニオンとカチオン(b2-1)との組合せが挙げられる。
 酸発生剤(B1)としては、式(B1-1)~式(B1-48)でそれぞれ表されるものが挙げられ、中でも式(B1-1)~式(B1-3)、式(B1-5)~式(B1-7)、式(B1-11)~式(B1-14)、式(B1-17)、式(B1-20)~式(B1-26)、式(B1-29)、式(B1-31)~式(B1-48)でそれぞれ表されるものが好ましい。
Figure JPOXMLDOC01-appb-I000110
Figure JPOXMLDOC01-appb-I000111
 
Figure JPOXMLDOC01-appb-I000112
Figure JPOXMLDOC01-appb-I000113
Figure JPOXMLDOC01-appb-I000114
 
Figure JPOXMLDOC01-appb-I000115
Figure JPOXMLDOC01-appb-I000116
 酸発生剤(B)は、酸発生剤(B1)以外の酸発生剤を含んでいてもよい。
 本発明のレジスト組成物においては、酸発生剤(B1)は、1種を単独で含有してもよく、複数種を含有していてもよい。酸発生剤(B1)の含有率は、酸発生剤(B)の総量に対して、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上であり、酸発生剤(B1)のみであることが特に好ましい。
 酸発生剤(B)の含有量は、樹脂(A)100質量部に対して、好ましくは1質量部以上(より好ましくは3質量部以上)、好ましくは40質量部以下(より好ましくは35質量部以下)である。
 <溶剤(E)>
 溶剤(E)の含有率は、通常、レジスト組成物中90質量%以上、好ましくは92質量%以上、より好ましくは94質量%以上であり、99.9質量%以下、好ましくは99質量%以下である。溶剤(E)の含有率は、例えば液体クロマトグラフィー又はガスクロマトグラフィー等の公知の分析手段で測定できる。
 溶剤(E)としては、エチルセロソルブアセテート、メチルセロソルブアセテート及びプロピレングリコールモノメチルエーテルアセテート等のグリコールエーテルエステル類;プロピレングリコールモノメチルエーテル等のグリコールエーテル類;乳酸エチル、酢酸ブチル、酢酸アミル及びピルビン酸エチル等のエステル類;アセトン、メチルイソブチルケトン、2-ヘプタノン及びシクロヘキサノン等のケトン類;γ-ブチロラクトン等の環状エステル類;等を挙げることができる。溶剤(E)の1種を単独で含有してもよく、2種以上を含有していてもよい。
 <クエンチャー(C)>
 本発明のレジスト組成物は、クエンチャー(以下「クエンチャー(C)」という場合がある)を含有していてもよい。クエンチャー(C)は、塩基性の含窒素有機化合物又は酸発生剤(B)よりも酸性度の弱い酸を発生する塩が挙げられる。
 〈塩基性の含窒素有機化合物〉
 塩基性の含窒素有機化合物としては、アミン及びアンモニウム塩が挙げられる。アミンとしては、脂肪族アミン及び芳香族アミンが挙げられる。脂肪族アミンとしては、第一級アミン、第二級アミン及び第三級アミンが挙げられる。
 具体的には、1-ナフチルアミン、2-ナフチルアミン、アニリン、ジイソプロピルアニリン、2-,3-又は4-メチルアニリン、4-ニトロアニリン、N-メチルアニリン、N,N-ジメチルアニリン、ジフェニルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、トリエチルアミン、トリメチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、メチルジブチルアミン、メチルジペンチルアミン、メチルジヘキシルアミン、メチルジシクロヘキシルアミン、メチルジヘプチルアミン、メチルジオクチルアミン、メチルジノニルアミン、メチルジデシルアミン、エチルジブチルアミン、エチルジペンチルアミン、エチルジヘキシルアミン、エチルジヘプチルアミン、エチルジオクチルアミン、エチルジノニルアミン、エチルジデシルアミン、ジシクロヘキシルメチルアミン、トリス〔2-(2-メトキシエトキシ)エチル〕アミン、トリイソプロパノールアミン、エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’-ジアミノ-1,2-ジフェニルエタン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、2,2’-メチレンビスアニリン、イミダゾール、4-メチルイミダゾール、ピリジン、4-メチルピリジン、1,2-ジ(2-ピリジル)エタン、1,2-ジ(4-ピリジル)エタン、1,2-ジ(2-ピリジル)エテン、1,2-ジ(4-ピリジル)エテン、1,3-ジ(4-ピリジル)プロパン、1,2-ジ(4-ピリジルオキシ)エタン、ジ(2-ピリジル)ケトン、4,4’-ジピリジルスルフィド、4,4’-ジピリジルジスルフィド、2,2’-ジピリジルアミン、2,2’-ジピコリルアミン、ビピリジン等が挙げられ、好ましくはジイソプロピルアニリンが挙げられ、特に好ましくは2,6-ジイソプロピルアニリンが挙げられる。
 アンモニウム塩としては、テトラメチルアンモニウムヒドロキシド、テトライソプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド、フェニルトリメチルアンモニウムヒドロキシド、3-(トリフルオロメチル)フェニルトリメチルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムサリチラート及びコリン等が挙げられる。
 〈酸性度の弱い酸を発生する塩〉
 酸発生剤から発生する酸よりも酸性度の弱い酸を発生する塩における酸性度は酸解離定数(pKa)で示される。酸発生剤から発生する酸よりも酸性度の弱い酸を発生する塩は、該塩から発生する酸のpKaが、通常-3<pKaの塩であり、好ましくは-1<pKa<7の塩であり、より好ましくは0<pKa<5の塩である。酸発生剤から発生する酸よりも弱い酸を発生する塩としては、下記式で表される塩、特開2015-147926号公報記載の弱酸分子内塩、並びに特開2012-229206号公報、特開2012-6908号公報、特開2012-72109号公報、特開2011-39502号公報及び特開2011-191745号公報記載の塩が挙げられる。
Figure JPOXMLDOC01-appb-I000117
 酸発生剤から発生する酸よりも酸性度の弱い酸を発生する塩としては、としては、以下の塩が挙げられる。
Figure JPOXMLDOC01-appb-I000118
 
Figure JPOXMLDOC01-appb-I000119
 クエンチャー(C)の含有率は、レジスト組成物の固形分中、好ましくは、0.01~5質量%であり、より好ましく0.01~4質量%であり、特に好ましく0.01~3質量%である。
 〈その他の成分〉
 本発明のレジスト組成物は、必要に応じて、上述の成分以外の成分(以下「その他の成分(F)」という場合がある。)を含有していてもよい。その他の成分(F)に特に限定はなく、レジスト分野で公知の添加剤、例えば、増感剤、溶解抑止剤、界面活性剤、安定剤、染料等を利用できる。
 〈レジスト組成物の調製〉
 本発明のレジスト組成物は、樹脂(A)及び酸発生剤、並びに、必要に応じて用いられる樹脂(X)、クエンチャー(C)、溶剤(E)及びその他の成分(F)を混合することにより調製することができる。混合順は任意であり、特に限定されるものではない。混合する際の温度は、樹脂等の種類や樹脂等の溶剤(E)に対する溶解度等に応じて適切な温度を選ぶことができ、通常10~40℃である。混合時間は、混合温度に応じて適切な時間を選ぶことができ、通常0.5~24時間である。なお、混合手段も特に制限はなく、攪拌混合等を用いることができる。
 各成分を混合した後は、孔径0.003~0.2μm程度のフィルターを用いてろ過することが好ましい。
 <レジストパターンの製造方法>
 本発明のレジストパターンの製造方法は、
 (1)本発明のレジスト組成物を基板上に塗布する工程、
 (2)塗布後の組成物を乾燥させて組成物層を形成する工程、
 (3)組成物層に露光する工程、
 (4)露光後の組成物層を加熱する工程、及び
 (5)加熱後の組成物層を現像する工程を含む。
 レジスト組成物を基板上に塗布するには、スピンコーター等、通常、用いられる装置によって行うことができる。基板としては、シリコンウェハ等の無機基板が挙げられる。レジスト組成物を塗布する前に、基板を洗浄してもよいし、基板上に反射防止膜等が形成されていてもよい。
 塗布後の組成物を乾燥することにより、溶剤を除去し、組成物層を形成する。乾燥は、例えば、ホットプレート等の加熱装置を用いて溶剤を蒸発させること(いわゆるプリベーク)により行うか、あるいは減圧装置を用いて行う。加熱温度は50~200℃が好ましく、加熱時間は10~180秒間が好ましい。また、減圧乾燥する際の圧力は、1~1.0×105Pa程度が好ましい。
 得られた組成物層に、通常、露光機を用いて露光する。露光機は、液浸露光機であってもよい。露光光源としては、KrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、F2エキシマレーザ(波長157nm)のような紫外域のレーザ光を放射するもの、固体レーザ光源(YAG又は半導体レーザ等)からのレーザ光を波長変換して遠紫外域または真空紫外域の高調波レーザ光を放射するもの、電子線や、超紫外光(EUV)を照射するもの等、種々のものを用いることができる。本明細書において、これらの放射線を照射することを総称して「露光」という場合がある。露光の際、通常、求められるパターンに相当するマスクを介して露光が行われる。露光光源が電子線の場合は、マスクを用いずに直接描画により露光してもよい。
 露光後の組成物層を、酸不安定基における脱保護反応を促進するために加熱処理(いわゆるポストエキスポジャーベーク)を行う。加熱温度は、通常50~200℃程度、好ましくは70~150℃程度である。
 加熱後の組成物層を、通常、現像装置を用いて、現像液を利用して現像する。現像方法としては、ディップ法、パドル法、スプレー法、ダイナミックディスペンス法等が挙げられる。現像温度は5~60℃が好ましく、現像時間は5~300秒間が好ましい。現像液の種類を以下のとおりに選択することにより、ポジ型レジストパターン又はネガ型レジストパターンを製造できる。
 本発明のレジスト組成物からポジ型レジストパターンを製造する場合は、現像液としてアルカリ現像液を用いる。アルカリ現像液は、この分野で用いられる各種のアルカリ性水溶液であればよい。例えば、テトラメチルアンモニウムヒドロキシドや(2-ヒドロキシエチル)トリメチルアンモニウムヒドロキシド(通称コリン)の水溶液等が挙げられる。アルカリ現像液には、界面活性剤が含まれていてもよい。
 現像後レジストパターンを超純水で洗浄し、次いで、基板及びパターン上に残った水を除去することが好ましい。
 本発明のレジスト組成物からネガ型レジストパターンを製造する場合は、現像液として有機溶剤を含む現像液(以下「有機系現像液」という場合がある)を用いる。
 有機系現像液に含まれる有機溶剤としては、2-ヘキサノン、2-ヘプタノン等のケトン溶剤;プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテルエステル溶剤;酢酸ブチル等のエステル溶剤;プロピレングリコールモノメチルエーテル等のグリコールエーテル溶剤;N,N-ジメチルアセトアミド等のアミド溶剤;アニソール等の芳香族炭化水素溶剤等が挙げられる。
 有機系現像液中、有機溶剤の含有率は、90質量%以上100質量%以下が好ましく、95質量%以上100質量%以下がより好ましく、実質的に有機溶剤のみであることがさらに好ましい。
 中でも、有機系現像液としては、酢酸ブチル及び/又は2-ヘプタノンを含む現像液が好ましい。有機系現像液中、酢酸ブチル及び2-ヘプタノンの合計含有率は、50質量%以上100質量%以下が好ましく、90質量%以上100質量%以下がより好ましく、実質的に酢酸ブチル及び/又は2-ヘプタノンのみであることがさらに好ましい。
 有機系現像液には、界面活性剤が含まれていてもよい。また、有機系現像液には、微量の水分が含まれていてもよい。
 現像の際、有機系現像液とは異なる種類の溶剤に置換することにより、現像を停止してもよい。
 現像後のレジストパターンをリンス液で洗浄することが好ましい。リンス液としては、レジストパターンを溶解しないものであれば特に制限はなく、一般的な有機溶剤を含む溶液を使用することができ、好ましくはアルコール溶剤又はエステル溶剤である。
 洗浄後は、基板及びパターン上に残ったリンス液を除去することが好ましい。
 〈用途〉
 本発明のレジスト組成物は、KrFエキシマレーザ露光用のレジスト組成物、ArFエキシマレーザ露光用のレジスト組成物、電子線(EB)露光用のレジスト組成物又はEUV露光用のレジスト組成物、特に電子線(EB)露光用のレジスト組成物又はEUV露光用のレジスト組成物として好適であり、半導体の微細加工に有用である。
 
 実施例を挙げて、本発明をさらに具体的に説明する。例中、含有量ないし使用量を表す「%」及び「部」は、特記しないかぎり質量基準である。
 重量平均分子量は、ゲルパーミエーションクロマトグラフィーで下記条件により求めた値である。
  装置:HLC-8120GPC型(東ソー社製)
  カラム:TSKgel Multipore HXL-M x 3 + guardcolumn(東ソー社製)
  溶離液:テトラヒドロフラン
  流量:1.0mL/min
  検出器:RI検出器
  カラム温度:40℃
  注入量:100μl
  分子量標準:標準ポリスチレン(東ソー社製)
 また、化合物の構造は、質量分析(LCはAgilent製1100型、MASSはAgilent製LC/MSD型)を用い、分子イオンピークを測定することで確認した。以下の実施例ではこの分子イオンピークの値を「MASS」で示す。 
 合成例1〔式(I-1)で表される化合物の合成〕
Figure JPOXMLDOC01-appb-I000120
 式(I-1-a)で表される化合物10部及びモノクロロベンゼン50部を混合し、23℃で30分間攪拌した。得られた混合溶液に、式(I-1-b)で表される化合物10.7部を添加し、40℃で3時間攪拌した後、濃縮した。得られた反応物に、クロロホルム15部及びn-ヘプタン60部を混合し、23℃で30分間攪拌した後、ろ過することにより、式(I-1)で表される化合物9.18部を得た。
 MS(質量分析):375.0 [M+H]
 
 合成例2〔式(I-4)で表される化合物の合成〕
Figure JPOXMLDOC01-appb-I000121
 式(I-4-a)で表される化合物10.9部及びモノクロロベンゼン50部を混合し、23℃で30分間攪拌した。得られた混合溶液に、式(I-1-b)で表される化合物10.7部を添加し、40℃で3時間攪拌した後、濃縮した。得られた反応物に、クロロホルム5部及びn-ヘプタン50部を混合し、23℃で30分間攪拌した後、ろ過することにより、式(I-4)で表される化合物8.28部を得た。
 MS(質量分析):405.0 [M+H]
 
 合成例3〔式(I-10)で表される化合物の合成〕
Figure JPOXMLDOC01-appb-I000122
 式(I-1-a)で表される化合物10部及びモノクロロベンゼン50部を混合し、23℃で30分間攪拌した。得られた混合溶液に、式(I-10-b)で表される化合物25.6部を添加し、60℃で12時間攪拌した後、濃縮した。得られた反応物に、n-ヘプタン50部を混合し、23℃で30分間攪拌した後、ろ過することにより、式(I-10)で表される化合物2.14部を得た。
 MS(質量分析):615.0 [M+H]
 
 樹脂の合成
 樹脂の合成において使用した化合物(モノマー)を下記に示す。
Figure JPOXMLDOC01-appb-I000123
 以下、これらのモノマーを式番号に応じて「モノマー(a1-1-3)」等という。
 実施例1〔樹脂A1の合成〕
 モノマーとして、モノマー(a1-1-3)、モノマー(a1-2-9)、モノマー(a2-1-3)、モノマー(a3-2-1)、モノマー(a3-1-1)及びモノマー(I-1)を用い、そのモル比〔モノマー(a1-1-3):モノマー(a1-2-9):モノマー(a2-1-3):モノマー(a3-2-1):モノマー(a3-1-1):モノマー(I-1)〕が28:25:3:10:31:3となるように混合し、全モノマー量の1.5質量倍のケチルエチルケトンを加えて溶液とした。そこに開始剤としてアゾビスイソブチロニトリルとアゾビス(2,4-ジメチルバレロニトリル)を全モノマー量に対してそれぞれ1.5mol%、4.5mol%添加し、75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。得られた樹脂を、メタノール/水混合溶媒に添加し、リパルプした後、ろ過するという精製操作を2回行い、重量平均分子量が7.4×10である共重合体を収率65%で得た。この共重合体は、以下の構造単位を有するものであり、これを樹脂A1とする。
Figure JPOXMLDOC01-appb-I000124
  実施例2〔樹脂A2の合成〕
 モノマーとして、モノマー(a1-1-3)、モノマー(a1-2-9)、モノマー(a2-1-3)、モノマー(a3-2-1)、モノマー(a3-1-1)、モノマー(II-2-A-1-1)及びモノマー(I-1)を用い、そのモル比〔モノマー(a1-1-3):モノマー(a1-2-9):モノマー(a2-1-3):モノマー(a3-2-1):モノマー(a3-1-1):モノマー(II-2-A-1-1):モノマー(I-1)〕が28:25:3:7:31:3:3となるように混合し、樹脂A2と同様の方法により、重量平均分子量が8.6×10である共重合体を収率55%で得た。この共重合体は、以下の構造単位を有するものであり、これを樹脂A2とする。

Figure JPOXMLDOC01-appb-I000125
 実施例3〔樹脂A3の合成〕
 モノマーとして、モノマー(a1-1-3)、モノマー(a1-2-9)、モノマー(a2-1-3)、モノマー(a3-2-1)、モノマー(a3-1-1)及びモノマー(I-4)を用い、そのモル比〔モノマー(a1-1-3):モノマー(a1-2-9):モノマー(a2-1-3):モノマー(a3-2-1):モノマー(a3-1-1):モノマー(I-4)〕が28:25:3:10:31:3となるように混合し、全モノマー量の1.5質量倍のケチルエチルケトンを加えて溶液とした。そこに開始剤としてアゾビスイソブチロニトリルとアゾビス(2,4-ジメチルバレロニトリル)を全モノマー量に対してそれぞれ1.5mol%、4.5mol%添加し、75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。得られた樹脂を、メタノール/水混合溶媒に添加し、リパルプした後、ろ過するという精製操作を2回行い、重量平均分子量が7.6×10である共重合体を収率61%で得た。この共重合体は、以下の構造単位を有するものであり、これを樹脂A3とする。
Figure JPOXMLDOC01-appb-I000126
 実施例4〔樹脂A4の合成〕
 モノマーとして、モノマー(a1-1-3)、モノマー(a1-2-9)、モノマー(a2-1-3)、モノマー(a3-2-1)、モノマー(a3-1-1)及びモノマー(I-10)を用い、そのモル比〔モノマー(a1-1-3):モノマー(a1-2-9):モノマー(a2-1-3):モノマー(a3-2-1):モノマー(a3-1-1):モノマー(I-10)〕が28:25:3:10:31:3となるように混合し、全モノマー量の1.5質量倍のケチルエチルケトンを加えて溶液とした。そこに開始剤としてアゾビスイソブチロニトリルとアゾビス(2,4-ジメチルバレロニトリル)を全モノマー量に対してそれぞれ1.5mol%、4.5mol%添加し、75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。得られた樹脂を、メタノール/水混合溶媒に添加し、リパルプした後、ろ過するという精製操作を2回行い、重量平均分子量が7.0×10である共重合体を収率58%で得た。この共重合体は、以下の構造単位を有するものであり、これを樹脂A4とする。
Figure JPOXMLDOC01-appb-I000127
 合成例4〔樹脂AX1の合成〕
 モノマーとして、モノマー(a1-1-3)、モノマー(a1-2-9)、モノマー(a2-1-3)、モノマー(a3-2-1)、モノマー(a3-1-1)及びモノマー(IX-1)を用い、そのモル比〔モノマー(a1-1-3):モノマー(a1-2-9):モノマー(a2-1-3):モノマー(a3-2-1):モノマー(a3-1-1):モノマー(IX-1)〕が28:25:3:10:31:3となるように混合し、全モノマー量の1.5質量倍のケチルエチルケトンを加えて溶液とした。そこに開始剤としてアゾビスイソブチロニトリルとアゾビス(2,4-ジメチルバレロニトリル)を全モノマー量に対してそれぞれ1.5mol%、4.5mol%添加し、75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。得られた樹脂を、メタノール/水混合溶媒に添加し、リパルプした後、ろ過するという精製操作を2回行い、重量平均分子量が8.8×10である共重合体を収率62%で得た。この共重合体は、以下の構造単位を有するものであり、これを樹脂AX1とする。
Figure JPOXMLDOC01-appb-I000128
 合成例5〔樹脂AX2の合成〕
 モノマーとして、モノマー(a5-x1)、モノマー(a5-x2)及びモノマー(IX-1)、を用い、そのモル比〔モノマー(a5-x1):モノマー(a5-x2):モノマー(IX-1)〕が65:35:5となるように混合し、全モノマー量の1.5質量倍のプロピレングリコールモノメチルエーテルアセテートを加えて溶液とした。この溶液に、開始剤としてアゾビスイソブチロニトリルを全モノマー量に対して、8mol%添加し、これらを75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。得られた樹脂を再び、メタノールに注いでリパルプし、この樹脂をろ過することにより、重量平均分子量1.4×104の樹脂AX2(共重合体)を収率55%で得た。この樹脂AX2は、以下の構造単位を有するものである。
Figure JPOXMLDOC01-appb-I000129
合成例6〔樹脂AX3の合成〕
 モノマーとして、モノマー(a1-1-3)、モノマー(a1-2-9)、モノマー(a2-1-3)、モノマー(a3-2-1)及びモノマー(a3-1-1)を用い、そのモル比〔モノマー(a1-1-3):モノマー(a1-2-9):モノマー(a2-1-3):モノマー(a3-2-1):モノマー(a3-1-1)〕が28:25:3:10:34となるように混合し、全モノマー量の1.5質量倍のケチルエチルケトンを加えて溶液とした。そこに開始剤としてアゾビスイソブチロニトリルとアゾビス(2,4-ジメチルバレロニトリル)を全モノマー量に対してそれぞれ1mol%、3mol%添加し、75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。得られた樹脂を、メタノール/水混合溶媒に添加し、リパルプした後、ろ過するという精製操作を2回行い、重量平均分子量が7.5×10である共重合体を収率65%で得た。この共重合体は、以下の構造単位を有するものであり、これを樹脂AX3とする。
Figure JPOXMLDOC01-appb-I000130
 <レジスト組成物の調製>
 以下に示す成分の各々を表1に示す質量部で混合して溶剤に溶解し、孔径0.2μmのフッ素樹脂製フィルターでろ過して、レジスト組成物を調製した。
Figure JPOXMLDOC01-appb-T000131
 <樹脂(A)>
 A1~A4、AX1、AX2:樹脂A1~樹脂A4、樹脂AX1、樹脂AX2
 <酸発生剤(B)>
 B1-25:式(B1-25)で表される塩;特開2011-126869号公報記載の方法で合成
Figure JPOXMLDOC01-appb-I000132
 <クエンチャー(C)>
 C1:特開2011-39502号公報記載の方法で合成
Figure JPOXMLDOC01-appb-I000133
 D1:(東京化成工業(株)製)
Figure JPOXMLDOC01-appb-I000134
 D2:特開2015-180928号公報の実施例に従って合成
Figure JPOXMLDOC01-appb-I000135
 <溶剤(E)>
 プロピレングリコールモノメチルエーテルアセテート   400部
 プロピレングリコールモノメチルエーテル        100部
 γ-ブチロラクトン                    5部
 (レジスト組成物の電子線露光評価)
 6インチのシリコンウェハを、ダイレクトホットプレート上で、ヘキサメチルジシラザンを用いて90℃で60秒処理した。このシリコンウェハに、レジスト組成物を、組成物層の膜厚が0.04μmとなるようにスピンコートした。その後、ダイレクトホットプレート上で、表1の「PB」欄に示す温度で60秒間プリベークして組成物層を形成した。ウェハ上に形成された組成物層に、電子線描画機〔(株)日立製作所製の「HL-800D 50keV」〕を用い、露光量を段階的に変化させてラインアンドスペースパターンを直接描画した。
 露光後、ホットプレート上にて表1の「PEB」欄に示す温度で60秒間ポストエキスポジャーベークを行い、さらに2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で60秒間のパドル現像を行うことにより、レジストパターンを得た。
 得られたレジストパターン(ラインアンドスペースパターン)を走査型電子顕微鏡で観察し、60nmのラインアンドスペースパターンのライン幅とスペース幅とが1:1となる露光量を実効感度とした。
 ラインエッジラフネス評価(LER):実効感度で製造されたレジストパターンの側壁面の凹凸の振れ幅を走査型電子顕微鏡で測定し、ラインエッジラフネスを求めた。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000136
 本発明の樹脂及びその樹脂を含むレジスト組成物は、ラインエッジラフネスが良好であり、半導体の微細加工に有用である。

Claims (7)

  1.  式(I’)で表される化合物に由来する構造単位を含む樹脂。
    Figure JPOXMLDOC01-appb-I000001
     [式(I’)中、
     R及びRは、それぞれ独立に、ハロゲン原子を有していてもよい炭素数1~6のアルキル基、水素原子又はハロゲン原子を表す。
     Arは、置換基を有していてもよい炭素数6~24の芳香族炭化水素基を表す。
     L及びLは、それぞれ独立して、式(X-1)~式(X-8)のいずれかで表される基を表す。
    Figure JPOXMLDOC01-appb-I000002
     (式(X-5)~式(X-8)中、
     L11、L13、L15及びL17は、それぞれ独立して、炭素数1~6のアルカンジイル基を表す。
     L12、L14、L16及びL18は、それぞれ独立して、-O-、-CO-、-CO-O-、-O-CO-又は-O-CO-O-を表す。
     *、**は結合手であり、**はヨウ素原子との結合手を表す。)]
  2.  さらに、酸不安定基を有する構造単位を含む請求項1に記載の樹脂。
  3.  さらに、露光により分解して酸を発生する構造単位を含む請求項2に記載の樹脂。
  4.  請求項1~3の何れか1項に記載の樹脂及び酸発生剤を含有するレジスト組成物。
  5.  請求項3に記載の樹脂を含有するレジスト組成物。
  6.  酸発生剤から発生する酸よりも酸性度の弱い酸を発生する塩をさらに含有する請求項4又は5記載のレジスト組成物。
  7.  (1)請求項4又は5に記載のレジスト組成物を基板上に塗布する工程、
     (2)塗布後の組成物を乾燥させて組成物層を形成する工程、
     (3)組成物層に露光する工程、
     (4)露光後の組成物層を加熱する工程、及び
     (5)加熱後の組成物層を現像する工程、
    を含むレジストパターンの製造方法。
PCT/JP2017/044030 2016-12-14 2017-12-07 樹脂、レジスト組成物及びレジストパターンの製造方法 WO2018110429A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17879787.4A EP3556781A4 (en) 2016-12-14 2017-12-07 RESIN, RESERVE COMPOSITION, AND METHOD FOR MANUFACTURING RESERVE PATTERN
KR1020197020307A KR102507577B1 (ko) 2016-12-14 2017-12-07 수지, 레지스트 조성물 및 레지스트 패턴의 제조 방법
US16/465,230 US11261273B2 (en) 2016-12-14 2017-12-07 Resin, resist composition and method for producing resist pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016242645 2016-12-14
JP2016-242645 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018110429A1 true WO2018110429A1 (ja) 2018-06-21

Family

ID=62558560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044030 WO2018110429A1 (ja) 2016-12-14 2017-12-07 樹脂、レジスト組成物及びレジストパターンの製造方法

Country Status (6)

Country Link
US (1) US11261273B2 (ja)
EP (1) EP3556781A4 (ja)
JP (1) JP7042598B2 (ja)
KR (1) KR102507577B1 (ja)
TW (1) TWI748018B (ja)
WO (1) WO2018110429A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020433B2 (ja) * 2017-02-08 2022-02-16 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
KR20210077852A (ko) * 2019-12-17 2021-06-28 삼성전자주식회사 레지스트 조성물 및 이를 사용한 반도체 소자 제조 방법

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779778A (en) 1972-02-09 1973-12-18 Minnesota Mining & Mfg Photosolubilizable compositions and elements
US3849137A (en) 1971-10-12 1974-11-19 Basf Ag Lithographic printing plates and photoresists comprising a photosensitive polymer
JPS55164824A (en) 1979-06-05 1980-12-22 Basf Ag Positiveeprocessing layerrtype transfer print material
EP0126712A1 (de) 1983-05-18 1984-11-28 Ciba-Geigy Ag Härtbare Zusammensetzung und deren Verwendung
JPS6269263A (ja) 1985-09-24 1987-03-30 Toshiba Corp 感光性組成物
JPS62153853A (ja) 1985-12-27 1987-07-08 Toshiba Corp 感光性組成物
JPS6326653A (ja) 1986-07-21 1988-02-04 Tosoh Corp フオトレジスト材
JPS63146038A (ja) 1986-12-10 1988-06-18 Toshiba Corp 感光性組成物
JPS63146029A (ja) 1986-12-10 1988-06-18 Toshiba Corp 感光性組成物
JPS63163452A (ja) 1986-12-17 1988-07-06 チバ−ガイギー アクチェンゲゼルシャフト 画像形成方法
DE3914407A1 (de) 1989-04-29 1990-10-31 Basf Ag Strahlungsempfindliche polymere und positiv arbeitendes aufzeichnungsmaterial
JPH10226707A (ja) * 1996-10-03 1998-08-25 Alain Vallee ポリイオン性ポリマー化合物、その製造方法及び光開始剤としての使用
JP2000122294A (ja) 1998-08-10 2000-04-28 Toshiba Corp 感光性組成物及びパタ―ン形成方法
CN1376662A (zh) * 2002-04-04 2002-10-30 湘潭大学 自由基和阳离子杂化光固化引发剂及其制备方法和用途
JP2003113131A (ja) * 2001-09-28 2003-04-18 Tokyo Kasei Kogyo Kk アルコール類の新規酸化法
JP2010061117A (ja) 2008-08-07 2010-03-18 Sumitomo Chemical Co Ltd 化学増幅型ポジ型レジスト組成物
JP2010204634A (ja) 2008-12-11 2010-09-16 Sumitomo Chemical Co Ltd フォトレジスト組成物
JP2010204646A (ja) 2009-02-06 2010-09-16 Sumitomo Chemical Co Ltd 化学増幅型フォトレジスト組成物及びパターン形成方法
WO2010140372A1 (ja) * 2009-06-03 2010-12-09 国立大学法人京都大学 リビングラジカル重合の重合開始剤
JP2011039502A (ja) 2009-07-14 2011-02-24 Sumitomo Chemical Co Ltd レジスト組成物
JP2011126869A (ja) 2009-11-18 2011-06-30 Sumitomo Chemical Co Ltd 酸発生剤用の塩及びレジスト組成物
JP2011256357A (ja) * 2010-05-12 2011-12-22 Nagase Chemtex Corp ハードコート用組成物、ハードコートフィルム及び表示デバイス
JP2012006908A (ja) 2010-01-14 2012-01-12 Sumitomo Chemical Co Ltd 塩、フォトレジスト組成物及びレジストパターンの製造方法
JP2012012577A (ja) 2010-06-01 2012-01-19 Shin-Etsu Chemical Co Ltd 重合性モノマー、高分子化合物、化学増幅ポジ型レジスト材料、及びパターン形成方法
JP2012017399A (ja) * 2010-07-07 2012-01-26 Nagase Chemtex Corp 帯電防止性粘着剤組成物、粘着剤層、粘着シート、表面保護フィルム及び偏光板
JP2012041274A (ja) 2010-08-12 2012-03-01 Idemitsu Kosan Co Ltd ホモアダマンタン誘導体、その製造方法及びフォトレジスト組成物
JP2012072109A (ja) 2010-02-16 2012-04-12 Sumitomo Chemical Co Ltd 塩及び酸発生剤の製造方法
WO2012050015A1 (ja) 2010-10-13 2012-04-19 セントラル硝子株式会社 重合性含フッ素スルホン酸塩類、含フッ素スルホン酸塩樹脂、レジスト組成物及びそれを用いたパターン形成方法
JP2012229206A (ja) 2011-04-13 2012-11-22 Sumitomo Chemical Co Ltd 塩、レジスト組成物及びレジストパターンの製造方法
JP2015147926A (ja) 2014-01-10 2015-08-20 住友化学株式会社 樹脂及びレジスト組成物
JP2015180928A (ja) 2014-03-03 2015-10-15 住友化学株式会社 レジスト組成物、レジストパターンの製造方法及び化合物
JP2016079235A (ja) 2014-10-14 2016-05-16 住友化学株式会社 樹脂、レジスト組成物及びレジストパターンの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3902115A1 (de) * 1989-01-25 1990-08-02 Basf Ag Strahlungsempfindliche polymere
JP4410326B2 (ja) * 1998-10-29 2010-02-03 信越化学工業株式会社 化学増幅ポジ型レジスト材料及びパターン形成方法
JP2004037789A (ja) * 2002-07-03 2004-02-05 Kyocera Chemical Corp ポジ型感光性樹脂組成物およびそのパターン形成方法
JP2004091613A (ja) 2002-08-30 2004-03-25 Mitsubishi Rayon Co Ltd 架橋性モノマー、およびそれを用いた熱可塑性架橋ポリマー
JP5466863B2 (ja) * 2009-03-04 2014-04-09 株式会社Adeka 重合性化合物、これを含有する重合性組成物及びその重合体
KR101884497B1 (ko) * 2011-06-17 2018-08-01 도오꾜오까고오교 가부시끼가이샤 화합물, 라디칼 중합 개시제, 화합물의 제조 방법, 중합체, 레지스트 조성물, 레지스트 패턴 형성 방법
US20140029267A1 (en) * 2012-07-25 2014-01-30 Electronics And Telecommunications Research Institute Chemical compound being used for forming a random wrinkle structure, composition containing the compound, film having the structure, method of forming the film, and oled comprising the film
JP5940496B2 (ja) * 2012-09-26 2016-06-29 富士フイルム株式会社 半硬化物、硬化物およびそれらの製造方法、光学部品、硬化樹脂組成物ならびに化合物
JP5904180B2 (ja) * 2013-09-11 2016-04-13 信越化学工業株式会社 スルホニウム塩、化学増幅型レジスト組成物、及びパターン形成方法
KR102339283B1 (ko) * 2014-11-19 2021-12-15 삼성디스플레이 주식회사 유기막 형성용 조성물, 이를 이용하여 제조된 유기 발광 표시 장치 및 이의 제조 방법
US9575408B2 (en) * 2015-01-07 2017-02-21 Sumitomo Chemical Company, Limited Photoresist composition and method for producing photoresist pattern

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849137A (en) 1971-10-12 1974-11-19 Basf Ag Lithographic printing plates and photoresists comprising a photosensitive polymer
US3779778A (en) 1972-02-09 1973-12-18 Minnesota Mining & Mfg Photosolubilizable compositions and elements
JPS55164824A (en) 1979-06-05 1980-12-22 Basf Ag Positiveeprocessing layerrtype transfer print material
EP0126712A1 (de) 1983-05-18 1984-11-28 Ciba-Geigy Ag Härtbare Zusammensetzung und deren Verwendung
JPS6269263A (ja) 1985-09-24 1987-03-30 Toshiba Corp 感光性組成物
JPS62153853A (ja) 1985-12-27 1987-07-08 Toshiba Corp 感光性組成物
JPS6326653A (ja) 1986-07-21 1988-02-04 Tosoh Corp フオトレジスト材
JPS63146029A (ja) 1986-12-10 1988-06-18 Toshiba Corp 感光性組成物
JPS63146038A (ja) 1986-12-10 1988-06-18 Toshiba Corp 感光性組成物
JPS63163452A (ja) 1986-12-17 1988-07-06 チバ−ガイギー アクチェンゲゼルシャフト 画像形成方法
DE3914407A1 (de) 1989-04-29 1990-10-31 Basf Ag Strahlungsempfindliche polymere und positiv arbeitendes aufzeichnungsmaterial
JPH10226707A (ja) * 1996-10-03 1998-08-25 Alain Vallee ポリイオン性ポリマー化合物、その製造方法及び光開始剤としての使用
JP2000122294A (ja) 1998-08-10 2000-04-28 Toshiba Corp 感光性組成物及びパタ―ン形成方法
JP2003113131A (ja) * 2001-09-28 2003-04-18 Tokyo Kasei Kogyo Kk アルコール類の新規酸化法
CN1376662A (zh) * 2002-04-04 2002-10-30 湘潭大学 自由基和阳离子杂化光固化引发剂及其制备方法和用途
JP2010061117A (ja) 2008-08-07 2010-03-18 Sumitomo Chemical Co Ltd 化学増幅型ポジ型レジスト組成物
JP2010204634A (ja) 2008-12-11 2010-09-16 Sumitomo Chemical Co Ltd フォトレジスト組成物
JP2010204646A (ja) 2009-02-06 2010-09-16 Sumitomo Chemical Co Ltd 化学増幅型フォトレジスト組成物及びパターン形成方法
WO2010140372A1 (ja) * 2009-06-03 2010-12-09 国立大学法人京都大学 リビングラジカル重合の重合開始剤
JP2011039502A (ja) 2009-07-14 2011-02-24 Sumitomo Chemical Co Ltd レジスト組成物
JP2011126869A (ja) 2009-11-18 2011-06-30 Sumitomo Chemical Co Ltd 酸発生剤用の塩及びレジスト組成物
JP2012006908A (ja) 2010-01-14 2012-01-12 Sumitomo Chemical Co Ltd 塩、フォトレジスト組成物及びレジストパターンの製造方法
JP2012072109A (ja) 2010-02-16 2012-04-12 Sumitomo Chemical Co Ltd 塩及び酸発生剤の製造方法
JP2011256357A (ja) * 2010-05-12 2011-12-22 Nagase Chemtex Corp ハードコート用組成物、ハードコートフィルム及び表示デバイス
JP2012012577A (ja) 2010-06-01 2012-01-19 Shin-Etsu Chemical Co Ltd 重合性モノマー、高分子化合物、化学増幅ポジ型レジスト材料、及びパターン形成方法
JP2012017399A (ja) * 2010-07-07 2012-01-26 Nagase Chemtex Corp 帯電防止性粘着剤組成物、粘着剤層、粘着シート、表面保護フィルム及び偏光板
JP2012041274A (ja) 2010-08-12 2012-03-01 Idemitsu Kosan Co Ltd ホモアダマンタン誘導体、その製造方法及びフォトレジスト組成物
WO2012050015A1 (ja) 2010-10-13 2012-04-19 セントラル硝子株式会社 重合性含フッ素スルホン酸塩類、含フッ素スルホン酸塩樹脂、レジスト組成物及びそれを用いたパターン形成方法
JP2012229206A (ja) 2011-04-13 2012-11-22 Sumitomo Chemical Co Ltd 塩、レジスト組成物及びレジストパターンの製造方法
JP2015147926A (ja) 2014-01-10 2015-08-20 住友化学株式会社 樹脂及びレジスト組成物
JP2015180928A (ja) 2014-03-03 2015-10-15 住友化学株式会社 レジスト組成物、レジストパターンの製造方法及び化合物
JP2016079235A (ja) 2014-10-14 2016-05-16 住友化学株式会社 樹脂、レジスト組成物及びレジストパターンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3556781A4

Also Published As

Publication number Publication date
KR102507577B1 (ko) 2023-03-09
JP7042598B2 (ja) 2022-03-28
JP2018095853A (ja) 2018-06-21
EP3556781A1 (en) 2019-10-23
EP3556781A4 (en) 2020-09-09
US20200010594A1 (en) 2020-01-09
TWI748018B (zh) 2021-12-01
US11261273B2 (en) 2022-03-01
KR20190091350A (ko) 2019-08-05
TW201835123A (zh) 2018-10-01

Similar Documents

Publication Publication Date Title
JP7114242B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP7299367B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP7204343B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP7115915B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP7389622B2 (ja) 塩、クエンチャー、レジスト組成物及びレジストパターンの製造方法
JP2018193359A (ja) 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP7210959B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP7115914B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP7233871B2 (ja) 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP7114394B2 (ja) 化合物、レジスト組成物及びレジストパターンの製造方法
JP7042598B2 (ja) 樹脂、レジスト組成物及びレジストパターンの製造方法
JP7153478B2 (ja) 樹脂、レジスト組成物及びレジストパターンの製造方法
JP7193021B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP6232837B2 (ja) レジスト組成物及びレジストパターンの製造方法
WO2018147094A1 (ja) 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP2018070868A (ja) 樹脂、レジスト組成物及びレジストパターンの製造方法
JP2018090779A (ja) 樹脂、レジスト組成物及びレジストパターンの製造方法
JP2018062506A (ja) 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP7449081B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP7363018B2 (ja) 樹脂、レジスト組成物及びレジストパターンの製造方法
JP7167539B2 (ja) 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP7178169B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP6963979B2 (ja) 樹脂、レジスト組成物及びレジストパターンの製造方法
JP7389683B2 (ja) 樹脂、レジスト組成物及びレジストパターンの製造方法
JP7264764B2 (ja) 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197020307

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017879787

Country of ref document: EP

Effective date: 20190715