WO2018107743A1 - 一种锂离子电池正极极片,其制备方法及使用该极片的电池 - Google Patents

一种锂离子电池正极极片,其制备方法及使用该极片的电池 Download PDF

Info

Publication number
WO2018107743A1
WO2018107743A1 PCT/CN2017/093184 CN2017093184W WO2018107743A1 WO 2018107743 A1 WO2018107743 A1 WO 2018107743A1 CN 2017093184 W CN2017093184 W CN 2017093184W WO 2018107743 A1 WO2018107743 A1 WO 2018107743A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium ion
ion battery
transition layer
electrode tab
Prior art date
Application number
PCT/CN2017/093184
Other languages
English (en)
French (fr)
Inventor
李星
张小文
邹武俊
王卫涛
段建
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2018107743A1 publication Critical patent/WO2018107743A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lithium ion battery technology, and in particular to a lithium ion battery positive electrode tab, a preparation method thereof, and a lithium ion battery using the positive electrode tab.
  • Lithium-ion batteries In recent years, lithium-ion batteries have been rapidly developed and their requirements are getting higher and higher. Lithium-ion batteries generally need to meet the following characteristics: (1) high energy and high power density; (2) wide operating temperature range, strong environmental adaptability; (3) long cycle life and service life; (4) outstanding safety and reliability Sex.
  • Lithium-ion batteries exhibit good performance at normal temperatures, while performance at low temperatures is significantly worse.
  • the effect of low temperature on the performance of lithium-ion battery mainly involves the following aspects: (1) reducing the conductivity of electrolyte and SEI film; (2) limiting the diffusion of lithium ions in graphite anode; (3) related to the first two factors High anodic polarization; (4) increased resistance to charge transfer between the electrolyte/electrode interface.
  • the negative electrode material used in the existing lithium ion battery is mainly a graphite negative electrode material, and the lithium insertion potential of the graphite material is only 0.1 to 0.2 V with respect to Li + /Li, and the resistance of lithium ion and electron migration in the electrode material at a low temperature is large.
  • the performance is that the impedance of the electrode is large, the polarization potential is large, and the lithium insertion potential of the graphite material is lowered, which is liable to cause lithium deposition in the negative electrode, and this process is irreversible. If the charging is repeated at a low temperature, the capacity of the lithium ion battery is rapidly reduced, and the service life of the lithium ion battery is reduced. At the same time, metallic lithium may precipitate on the surface of the carbon electrode to form lithium dendrites. If the dendrites grow further, it may pierce the separator, causing the positive and negative electrodes to meet, causing short circuit, causing damage to the battery and reducing the safety of the battery. It is subject to external extrusion, impact, etc., which poses a great hazard to the safety performance of lithium-ion batteries.
  • the primary object of the present application is to provide a positive electrode tab for a lithium ion battery.
  • a second object of the present application is to provide a method for producing the positive electrode tab.
  • a third object of the present application is to propose a lithium ion battery using the positive electrode tab.
  • the present application relates to a positive electrode tab for a lithium ion battery, comprising a current collector and a positive active material layer, and further comprising a transition layer between the current collector and the positive active material layer, the transition layer comprising a ceramic material and conducting And a binder, the ceramic material being a negative temperature coefficient semiconductor ceramic material.
  • the ceramic material is La(Mn x Ti y )O 3 , wherein 0.3 ⁇ x ⁇ 0.4, 0.6 ⁇ y ⁇ 0.7.
  • the ceramic material has a particle diameter of 0.01 to 1 ⁇ m.
  • the ceramic material has a weight content in the transition layer of from 20 to 65 wt%, preferably from 20 to 30%.
  • the conductive agent has a weight content in the transition layer of 5 to 35 wt%, and the binder has a weight content in the transition layer of 5 to 65 wt%.
  • the transition layer has a thickness of from 2 to 25 ⁇ m, preferably from 4 to 15 ⁇ m.
  • the conductive agent is at least one selected from the group consisting of a zero-dimensional carbon material, a one-dimensional carbon material, and a two-dimensional carbon material; more preferably, the zero-dimensional carbon material is at least one of fullerene and carbon black.
  • the one-dimensional carbon material is selected from at least one of carbon fiber and carbon nanotube; the two-dimensional carbon material is at least one selected from the group consisting of graphite, graphene and carbon nanobelts; and the three-dimensional carbon material is diamond .
  • the binder is an aqueous binder or an oil binder
  • the water-based binder is at least one selected from the group consisting of styrene-butadiene rubber, water-based acrylic resin, and carboxymethyl cellulose
  • the oily binder is at least one selected from the group consisting of polyvinylidene fluoride, ethylene-vinyl acetate copolymer, and polyvinyl alcohol.
  • the application also relates to a method for preparing a positive electrode tab of the lithium ion battery, comprising the following steps:
  • Step 1 Applying a transition layer slurry including the ceramic material, a conductive agent, and a binder to a surface of the cathode current collector to form a transition layer;
  • Step 2 Applying a slurry including a positive electrode active material to the surface of the transition layer to form a positive electrode active material layer, and obtaining a positive electrode tab of the lithium ion battery described in the present application.
  • the present application also relates to a lithium ion battery using the positive electrode tab of the lithium ion battery described herein.
  • the present application provides a positive electrode tab for a lithium ion battery, which comprises a transition layer containing a ceramic material, which can solve the problem that lithium ion batteries are easy to be decomposed during low temperature charging, thereby causing rapid battery capacity attenuation and high safety risk. It does not affect the use of the battery at normal temperature and high temperature.
  • the transition layer can also increase the adhesion between the positive active material and the current collector, reduce the expansion of the positive electrode sheet during the cycle, ensure the effectiveness of the conductive network, and prolong the service life of the battery.
  • the present application relates to a positive electrode tab for a lithium ion battery, comprising a current collector and a positive active material layer, and a transition layer between the current collector and the positive active material layer, the transition layer comprising a ceramic material, a conductive agent and a binder,
  • the ceramic material is a negative temperature coefficient semiconductor ceramic material.
  • ceramic materials are mostly used for diaphragm coating to improve the safety of the separator and the transfer rate of lithium ions, and the use of ceramic materials for current collector coating has rarely been reported.
  • the present invention mixes a ceramic material with a conductive agent and a binder, applies a transition layer on the surface of the positive current collector, and then coats the positive active material layer, and the obtained positive electrode piece can solve the current lithium ion battery in the low temperature charging process.
  • Lithium which causes problems such as rapid battery capacity degradation and high safety risks.
  • the ceramic material is La(Mn x Ti y )O 3 , wherein 0.3 ⁇ x ⁇ 0.4, 0.6 ⁇ y ⁇ 0.7.
  • La(Mn x Ti y )O 3 is an improved negative temperature coefficient semiconductor ceramic material with high impedance at low temperature and excellent electrical conductivity and stability at normal temperature and high temperature.
  • the resistance in the transition coating increases rapidly, that is, the resistance between the positive active material and the current collector is increased, and the polarization potential of the positive electrode is further increased, so that the charging voltage rapidly reaches the cut-off voltage, thereby ensuring No lithium is deposited on the surface of the negative electrode material at low temperatures.
  • the resistance of the transition layer is reduced, and a good electronic path is restored between the positive active material and the current collector, and the battery starts to be charged normally.
  • the ceramic material has a particle diameter of 0.01 to 1 ⁇ m.
  • the ceramic material is nano-scale, which will increase the manufacturing cost on the one hand, and affect the processing property of the transition layer slurry on the other hand; when the particle size is larger than 1 ⁇ m, the transition layer slurry is coated. It is easy to form particles, and there is a piercing of the separator (the thickness of the commonly used separator is 7-16 ⁇ m), which causes a risk of internal short circuit of the battery.
  • the thickness of the transition layer is also on the order of micrometers, and if the ceramic material particles are too large, a transition layer having a uniform thickness cannot be formed.
  • the ceramic material has a weight content in the transition layer of from 20 to 65 wt%, preferably from 20 to 30 wt%. If the mass content of the ceramic material is too low, there is almost no influence on the electrical resistance in the transition layer under low temperature charging, and the improvement in lithium deposition is not obvious. If the mass content of the ceramic material is too high, the electrical resistance between the current collector and the positive active material is too large, which affects the transmission of lithium ions between the positive and negative electrodes.
  • the conductive agent is contained in the transition layer in an amount of 5 to 35 wt%, and the binder in the transition layer is contained in an amount of 5 to 65 wt%.
  • the thickness of the transition layer is from 2 to 25 ⁇ m, preferably from 4 to 15 ⁇ m. If the thickness of the transition layer is less than 2 ⁇ m, the coating is difficult, and the transition layer cannot completely cover the positive current collector. There is a safety hazard in the region not covered by the coating; if the thickness of the transition layer is too large, the current collector and the positive electrode are caused. The distance of the active material layer is too far, which is not conducive to the transmission of lithium ions and electrons in the negative electrode material.
  • the conductive agent is selected from at least one of a zero-dimensional carbon material, a one-dimensional carbon material, and a two-dimensional carbon material; preferably, the zero-dimensional carbon material is fullerene and carbon black.
  • At least one of the one-dimensional carbon materials is selected from at least one of carbon fibers and carbon nanotubes; the two-dimensional carbon material is selected from at least one of graphite, graphene, and carbon nanobelts; and the three-dimensional carbon material is diamond.
  • Commonly used conductive agents include Ketchen Black (ultrafine conductive carbon black, particle size 30-40nm), SP (Super P, small particle conductive carbon black, particle size 30-40 ⁇ m), SO (ultrafine graphite powder, grain The diameter is 3-4 ⁇ m), KS-6 (large-grain graphite powder, particle size 6.5 ⁇ m), acetylene black, VGCF (vapor-grown carbon fiber, particle size 3-20 ⁇ m).
  • the binder is an aqueous binder or an oil binder
  • the water binder is at least one selected from the group consisting of styrene-butadiene rubber, water-based acrylic resin, and carboxymethyl cellulose.
  • the oily binder is selected from the group consisting of polyvinylidene fluoride, ethylene-vinyl acetate copolymer, and polyvinyl alcohol. At least one of (PVA).
  • the positive electrode active material layer includes a positive electrode active material, a conductive agent, and a binder.
  • the conductive agent and the binder used in the foregoing transition layer are also suitable for the positive electrode active material layer.
  • the present application also relates to a method for preparing a positive electrode tab of the lithium ion battery, comprising two coatings, specifically:
  • Step 1 applying a transition layer slurry comprising a ceramic material, a conductive agent and a binder to the surface of the cathode current collector, and forming a transition layer after drying;
  • Step 2 Applying a slurry including a positive electrode active material to the surface of the transition layer, and drying to form a positive electrode active material layer, thereby obtaining a positive electrode tab of the lithium ion battery of the present application.
  • the present application also relates to a lithium ion battery using the positive electrode tab of the lithium ion battery of the present application.
  • the lithium ion battery includes a positive electrode tab, a negative electrode tab, a separator, and an electrolyte.
  • the positive electrode sheet comprises a positive electrode current collector and a positive electrode active material and a transition layer coated on the positive electrode current collector;
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material coated on the negative electrode current collector;
  • the electrolyte includes a lithium salt and an organic Solvent;
  • the separator is located between adjacent positive and negative sheets.
  • the negative active material is selected from one or more of natural graphite, artificial graphite, soft carbon, hard carbon, lithium titanate, and silicon.
  • the lithium salt is selected from lithium hexafluorophosphate LiPF 6 , lithium tetrafluoroborate LiBF 4 , lithium bis(oxalate) borate LiB(C 2 O 4 ) 2 (abbreviated as LiBOB), lithium difluorooxalate borate LiBF 2 (C 2 O 4 ) (abbreviated as LiDFOB), lithium hexafluoroarsenate (LiAsF 6 ), lithium perchlorate (LiClO 4 ), lithium tris(perfluoroethyl) lithium trifluorophosphate, trifluoromethylsulfonate Lithium acid LiCF 3 SO 3 , bis(trifluoromethylsulfonate)methyllithium Li(FSO 2 ) 2 N, bis(trifluoromethanesulfonic acid) lithium imide LiN(CF 3 SO 2 ) 2 , two ( Perfluoroethylsulf
  • the organic solvent is selected from the group consisting of carbonates, sulfates, sulfones, nitriles, and the like, and the carbonate is selected from the group consisting of cyclic carbonates and chain carbonates; Cyclic sulfate, chain sulfate, and the like.
  • the organic solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl formate, ethyl formate, At least one of ethyl propionate, propyl propionate, methyl butyrate, ethyl acetate, N-methylpyrrolidone, N-methylformamide, N-methylacetamide, acetonitrile or methyl sulfide.
  • the conductive agent was added to the solvent N-methylpyrrolidone (NMP), stirred for 4-12 hours, then the binder was added to form a conductive paste, and finally the ceramic material was dispersed into the conductive paste to obtain a transition layer slurry.
  • NMP solvent N-methylpyrrolidone
  • the transition layer slurry is applied onto an aluminum foil by spraying, spin coating, casting, or the like, and dried to obtain a transition layer.
  • the ceramic material has a particle diameter D 50 of 0.1 ⁇ m.
  • SBR styrene butadiene rubber
  • CMC thickener sodium carboxymethylcellulose
  • the separator is a polypropylene (PP)/polyethylene (PE)/polypropylene (PP) three-layer composite porous film having a thickness of 12 ⁇ m;
  • LiPF 6 lithium hexafluorophosphate
  • the positive electrode sheet, the negative electrode sheet, and the separator are formed into a battery by a winding or lamination process, and then the battery is placed in a packaging bag, and the electrolyte is injected, and then formed into a battery by chemical conversion, packaging, capacity, and the like.
  • P1 was used as the positive electrode tab, and the obtained battery was denoted as C1, and P2 as the positive electrode tab, and the obtained battery was denoted as C2.
  • battery samples C1 to C13 were obtained.
  • the active material layer was prepared directly on the positive electrode current collector, and the obtained positive electrode piece was designated as P1#.
  • the other steps were the same as those in Example 1, and the obtained battery was designated as C1#.
  • a transition layer of P1 in the same manner as in Example 1 was prepared on the anode current collector. Only the active material layer was present on the cathode current collector, and the obtained positive electrode sheet was recorded as P2#. The other steps were the same as those in Example 1, and the obtained battery was recorded as C2#. .
  • the charging process is first to charge 4.20V with a constant current of 0.3C, then constant voltage charging until the current drops to 0.05C.
  • the discharge process is a constant current discharge to 2.8 V at a discharge rate of 1 C; finally, the battery is fully charged.
  • the battery when the thickness of the transition layer is small (corresponding to the pole piece P1, the thickness is 2 ⁇ m), the battery exhibits only a slight lithium deposition at -25 °C.
  • the thickness of the transition layer of the pole piece P2 is increased to 4 ⁇ m, lithium deposition has been completely overcome.
  • the thickness of the pole piece is between 4 ⁇ m and 15 ⁇ m (corresponding to the pole pieces P2 to P4), the battery does not exhibit lithium precipitation.
  • the thickness of the pole piece was increased to 25 ⁇ m (corresponding to the pole piece P5), a slight lithium evolution occurred at -25 °C.
  • the lithium deposition condition occurs at -15 ° C, indicating that the thickness of the transition layer is too small to cause coating difficulties, and the transition layer cannot completely cover the positive electrode current collector, which is not good.
  • the lithium deposition condition is improved; if the thickness of the transition layer is too large, the distance between the current collector and the positive active material layer is too long, which is disadvantageous for the transmission of lithium ions and electrons in the negative electrode material, and also brings about lithium deposition.
  • Control P7 ⁇ P10 if the thickness of the transition layer meets the scope of this application, when the content of ceramic material is small (corresponding to P8, the weight content of ceramic material is 4.7%) or the content of ceramic material is large (corresponding to P10, the weight content of ceramic material is When 33%), the temperature drops to -15 °C, there is a slight lithium deposition, indicating that the weight content of the ceramic material is too low or too high, the improvement of lithium is not obvious, the weight content of the ceramic material needs to be controlled at 20 to 65%. Preferably, it is in the range of 20% to 30%.
  • P11 and P12 show that changing the type of adhesive or conductive agent has little effect on battery performance.
  • Comparative Example 1 without using a ceramic material was slightly decomposed at -5 ° C, -15 ° C and Severe lithium is precipitated at -25 °C.
  • Comparative Example 2 the transition layer was applied to the negative electrode, and severe lithium evolution occurred at -5 ° C because the ceramic material had a large impedance at a low temperature, and was applied to the negative electrode to lower the conductivity of the negative electrode tab.
  • the polarization potential of the negative electrode is increased, and the potential for lithium deposition is more easily reached during the charging process, so the phenomenon of lithium deposition at a low temperature is severe.
  • the present application can obtain a lithium ion battery with better lithium-releasing ability, especially in the low-temperature charging process to ensure that the battery does not precipitate lithium, and the safety performance of the battery in the service period is satisfied.

Abstract

一种锂离子电池正极极片,包括集流体和正极活性材料层,还包括位于集流体和正极活性材料层之间的过渡层,该过渡层包括陶瓷材料、导电剂和粘结剂,该陶瓷材料为负温度系数半导体陶瓷材料。该正极极片能够解决当前锂离子电池在低温充电过程中容易析锂,从而导致电池容量衰减快,安全风险高的问题,且不影响电池在常温及高温下的使用。同时,该过渡层还可以增加正极活性物质与集流体之间的粘结力,减小正极极片在循环过程中的膨胀,保证导电网络的有效性,延长电芯的使用寿命。

Description

一种锂离子电池正极极片,其制备方法及使用该极片的电池 技术领域
本申请涉及锂离子电池技术领域,具体讲,涉及一种锂离子电池正极极片,其制备方法,及使用该正极极片的锂离子电池。
背景枝术
近年来,锂离子电池得到了迅速发展,同时对其要求也越来越高。锂离子电池一般需要满足以下特点:(1)高能量和高功率密度;(2)工作温度范围宽,环境适应性强;(3)长的循环寿命及使用年限;(4)突出的安全可靠性。
锂离子电池在常温下表现出很好的性能,而在低温下的性能明显变差。低温对锂离子电池性能的影响主要涉及以下几方面:(1)降低电解液和SEI膜的导电性;(2)限制了锂离子在石墨阳极中的扩散;(3)与前两个因素有关的高的阳极极化;(4)增加了电解液/电极界面间电荷传递的阻力。现有的锂离子电池使用的负极材料主要为石墨负极材料,石墨类材料的嵌锂电位相对Li+/Li仅为0.1~0.2V,低温下电极材料中锂离子、电子迁移的阻力较大,表现为电极的阻抗大,极化电位大,石墨类材料的嵌锂电位降低,极易造成负极析锂,这个过程不可逆。如果在低温下重复充电,会迅速降低锂离子电池的容量,减少锂离子电池的服役寿命。同时金属锂可能会在碳电极表面析出而形成锂枝晶,枝晶进一步生长,则可能刺穿隔膜,造成正负极相接,从而引起短路,对电池造成损害,降低电池的安全性,特别是在受到外界的挤压,冲击等,对锂离子电池的安全性能造成很大的危害。
有鉴于此,有必要提供一种在低温下具有良好抗析锂能力的锂离子电池。
发明内容
本申请的首要发明目的在于提出一种锂离子电池正极极片。
本申请的第二发明目的在于提出该正极极片的制备方法。
本申请的第三发明目的在于提出使用该正极极片的锂离子电池。
为了完成本申请的目的,采用的技术方案为:
本申请涉及一种锂离子电池正极极片,包括集流体和正极活性材料层,还包括位于所述集流体和所述正极活性材料层之间的过渡层,所述过渡层包括陶瓷材料、导电剂和粘结剂,所述陶瓷材料为负温度系数半导体陶瓷材料。
优选地,所述陶瓷材料为La(MnxTiy)O3,其中0.3≤x≤0.4,0.6≤y≤0.7。
优选地,所述陶瓷材料的粒径为0.01-1μm。
优选地,所述陶瓷材料在所述过渡层中的重量含量为20-65wt%,优选20-30%。
优选地,所述导电剂在所述过渡层中的重量含量为5-35wt%,所述粘结剂在所述过渡层中的重量含量为5-65wt%。
优选地,所述过渡层的厚度为2-25μm,优选为4-15μm。
优选地,所述导电剂选自零维碳材料、一维碳材料和二维碳材料中的至少一种;更优选地,所述零维碳材料为富勒烯、碳黑中的至少一种;所述一维碳材料选自碳纤维、碳纳米管中的至少一种;所述二维碳材料选自石墨、石墨烯和碳纳米带中的至少一种;所述三维碳材料为金刚石。
优选地,所述粘结剂为水性粘结剂或油性粘结剂,所述水系粘结剂选自丁苯橡胶、水系丙烯酸树脂、羧甲基纤维素中的至少一种,所述油性粘结剂选自聚偏氟乙烯、乙烯-醋酸乙烯酯共聚物、聚乙烯醇中的至少一种。
本申请还涉及所述锂离子电池正极极片的制备方法,包括以下步骤:
步骤一、将包括所述陶瓷材料、导电剂和粘结剂的过渡层浆料涂覆于正极集流体表面,形成过渡层;
步骤二、将包括正极活性物质的浆料涂覆于所述过渡层表面,形成正极活性材料层,得到本申请所述的锂离子电池正极极片。
本申请还涉及一种锂离子电池,其使用本申请所述的锂离子电池正极极片。
本申请的技术方案至少具有以下有益的效果:
本申请提供了一种锂离子电池正极极片,其包括含有陶瓷材料的过渡层,能够解决当前锂离子电池在低温充电过程中容易析锂,从而导致电池容量衰减快,安全风险高的问题,且不影响电池在常温及高温下的使用。同时,该过渡层还可以增加正极活性物质与集流体之间的粘结力,减小正极极片在循环过程中的膨胀,保证导电网络的有效性,延长电芯的使用寿命。
具体实施方式
下面结合具体实施例,进一步阐述本申请。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。
本申请涉及一种锂离子电池正极极片,包括集流体和正极活性材料层,还包括位于集流体和正极活性材料层之间的过渡层,过渡层包括陶瓷材料、导电剂和粘结剂,其中的陶瓷材料为负温度系数半导体陶瓷材料。现有技术中多是将陶瓷材料用于隔膜涂覆,以提高隔膜的安全性和锂离子的传送速率,而将陶瓷材料用于集流体涂覆的鲜有报道。本申请将陶瓷材料与导电剂、粘结剂混合,在正极集流体表面涂覆过渡层,然后涂覆正极活性材料层,得到的正极极片能够解决当前锂离子电池在低温充电过程中容易析锂,从而导致电池容量衰减快,安全风险高等问题。
作为本申请正极极片的一种改进,该陶瓷材料为La(MnxTiy)O3,其中0.3≤x≤0.4,0.6≤y≤0.7。La(MnxTiy)O3是一种改良的负温度系数半导体陶瓷材料,在低温下具有较大的阻抗,在常温和高温下具有优良的导电性和稳定性。低温下充电过程中,过渡涂层中的电阻迅速增大,即增大了正极活性材料与集流体之间的电阻,进一步增加正极的极化电位,从而使充电电压迅速达到截至电压,从而保证低温下负极材料表面不析锂。当温度恢复正常时,过渡层的电阻减小,正极活性材料与集流体之间重新恢复良好的电子通路,电池开始正常充电。
作为本申请正极极片的一种改进,陶瓷材料的粒径为0.01-1μm。当粒径过小低于0.01μm时,陶瓷材料为纳米级,一方面会提升制造成本,另一方面会影响过渡层浆料的加工性能;粒径大于1μm时,过渡层浆料在涂布时容易形成颗粒,有刺穿隔离膜(常用的隔离膜的厚度为7-16μm),导致电池内部短路的风险。且过渡层的厚度也为微米级,如果陶瓷材料颗粒过大无法形成厚度一致的过渡层。
作为本申请正极极片的一种改进,陶瓷材料在过渡层中的重量含量为20-65wt%,优选20-30wt%。如果陶瓷材料的质量含量过低,对低温充电下过渡层中的电阻几乎没有影响,析锂改善不明显。如果陶瓷材料的质量含量过高,集流体与正极活性材料之间的电阻过大,影响锂离子在正负极之间的传输。
作为本申请正极极片的一种改进,导电剂在所述过渡层中的重量含量为5-35wt%,粘结剂在所述过渡层中的重量含量为5-65wt%。
作为本申请正极极片的一种改进,过渡层的厚度为2-25μm,优选4-15μm。如果过渡层的厚度低于2μm时,涂覆较为困难,过渡层不能完全覆盖在正极集流体上,未被涂层覆盖的区域存在安全隐患;如果过渡层厚度过大,则导致集流体与正极活性材料层距离过远,不利于锂离子和电子在负极材料中的传输。
作为本申请正极极片的一种改进,导电剂选自零维碳材料、一维碳材料和二维碳材料中的至少一种;优选地,零维碳材料为富勒烯、碳黑中的至少一种;一维碳材料选自碳纤维、碳纳米管中的至少一种;二维碳材料选自石墨、石墨烯和碳纳米带中的至少一种;三维碳材料为金刚石。常用的导电剂包括科琴黑(超细导电碳黑,粒径为30-40nm)、SP(Super P,小颗粒导电碳黑,粒径为30-40μm)、S-O(超微细石墨粉,粒径为3-4μm)、KS-6(大颗粒石墨粉,粒径为6.5μm)、乙炔黑、VGCF(气相生长碳纤维,粒径为3-20μm)。
作为本申请正极极片的一种改进,粘结剂为水性粘结剂或油性粘结剂,水系粘结剂选自丁苯橡胶、水系丙烯酸树脂、羧甲基纤维素中的至少一种,油性粘结剂选自聚偏氟乙烯、乙烯-醋酸乙烯酯共聚物、聚乙烯醇 (PVA)中的至少一种。
作为本申请正极极片的一种改进,正极活性材料层包括正极活性材料、导电剂和粘结剂。前述过渡层中所用的导电剂和粘结剂同样适用于正极活性材料层。
本申请还涉及该锂离子电池正极极片的制备方法,包括两次涂布,具体为:
步骤一、将包括陶瓷材料、导电剂和粘结剂的过渡层浆料涂覆于正极集流体表面,烘干后形成过渡层;
步骤二、将包括正极活性物质的浆料涂覆于过渡层表面,烘干后形成正极活性材料层,得到本申请的锂离子电池正极极片。
本申请还涉及一种锂离子电池,其使用本申请的锂离子电池正极极片。具体地,该锂离子电池含有正极极片、负极极片、隔离膜以及电解液。其中,正极片包括正极集流体以及涂覆于正极集流体上的正极活性材料和过渡层;负极片包括负极集流体以及涂覆于负极集流体上的负极活性材料;电解液包括锂盐和有机溶剂;隔离膜位于相邻的正负极片之间。
作为本申请锂离子电池的一种改进,正极活性材料选自钴酸锂、锰酸锂、镍钴锰酸锂Li(NixMnyCoz)O2(0<x,y,z<1;x+y+z=1)中的一种或几种;负极活性材料选自天然石墨、人造石墨、软碳、硬碳、钛酸锂、硅中的一种或几种。
作为本申请锂离子电池的一种改进,锂盐选自六氟磷酸锂LiPF6、四氟硼酸锂LiBF4、双草酸硼酸锂LiB(C2O4)2(简写为LiBOB)、二氟草酸硼酸锂LiBF2(C2O4)(简写为LiDFOB)、六氟砷酸锂(LiAsF6)、高氯酸锂(LiClO4)、三(全氟乙基)三氟磷酸锂LiFAP、三氟甲基磺酸锂LiCF3SO3、二(三氟甲基磺酸)甲基锂Li(FSO2)2N、二(三氟甲基磺酸)亚氨锂LiN(CF3SO2)2、二(全氟乙基磺酸)亚氨锂Li(C2F5SO2)2N、Li(C4F9SO2)2N、Li(SO2(CF2)3SO2)2N中的至少一种,锂盐优选LiPF6、LiBF4、Li(FSO2)2N中的至少一种。
作为本申请锂离子电池的一种改进,有机溶剂选自碳酸酯、硫酸酯、砜类、腈类化合物等,碳酸酯选自环状碳酸酯、链状碳酸酯;硫酸酯选自 环状硫酸酯、链状硫酸酯等。具体可选自以下有机溶剂并不限于此:碳酸亚乙酯、碳酸亚丙酯、碳酸二甲酯、碳酸二乙酯、碳酸二丙酯、碳酸甲乙酯、甲酸甲酯、甲酸乙酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、乙酸乙酯、N-甲基吡咯烷酮、N-甲基甲酰胺、N-甲基乙酰胺、乙腈、甲硫醚中的至少一种。
实施例1
正极片的制备:
1、过渡层的制备
将导电剂加入到溶剂N-甲基吡咯烷酮(NMP)中,先搅拌4-12h,然后将粘结剂加入形成导电浆料,最后将陶瓷材料分散到导电浆料中,得到过渡层浆料。将上述过渡层浆料通过喷涂、旋涂、流延法等方式涂布到铝箔上,干燥,得到过渡层。
其中陶瓷材料的粒径D50为0.1μm。
2、活性材料层的制备
将粘接剂聚偏氟乙烯(PVDF)溶解在溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌,然后加入正极活性物质,即镍钴锰三元材料LiNi0.5Co0.2Mn0.3O2和导电剂Super P,其中重量比为正极活性物质:PVDF:Super P=95:2:3,最后抽真空脱除气泡。用150目不锈钢筛网过滤即得到所需的正极浆料。将得到的正极浆料均匀地涂覆在过渡层上,85℃下干燥,干燥完成后进行冷压裁片,得到正极极片。各正极极片的样品编号、过渡层的原料配比和过渡层厚度见表1。
表1
Figure PCTCN2017093184-appb-000001
Figure PCTCN2017093184-appb-000002
负极片的制备:
将粘结剂丁苯橡胶(SBR)溶解在水中,得到SBR水溶液,然后将人造石墨、Super P和增稠剂羧甲基纤维素钠(CMC)加入SBR水溶液中,其重量比为人造石墨:Super P:CMC2200:SBR=96:1:1:2,搅拌均匀后涂覆在厚度为8μm的铜箔上,然后在110℃下干燥,干燥后进行冷压裁片,得到负极极片;
隔离膜使用厚度为12μm厚的聚丙烯(PP)/聚乙烯(PE)/聚丙烯(PP)三层复合多孔膜;
电解液的制备:
将等体积的碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)混合均匀,得到混合溶剂,然后加入六氟磷酸锂(LiPF6),其中LiPF6的浓度为1mol/L。
将上述正极片、负极片、隔离膜通过卷绕或叠片工艺形成电芯,然后将电芯放入包装袋内,注入电解液后,化成、封装、容量等,组装成电池。以P1为正极极片,得到的电池记为C1,以P2为正极极片,得到的电池记为C2。以此类推,得到电池样品C1~C13。
对比例1
无过渡层,直接在正极集流体上制备活性材料层,得到的正极极片记为P1#,其它步骤同实施例1,得到的电池记为C1#。
对比例2
在负极集流体上制备同实施例1中P1的过渡层,正极集流体上仅有活性材料层,得到的正极极片记为P2#,其它步骤同实施例1,得到的电池记为C2#。
测试例
对实施例1,以及对比例1至3得到的电池进行如下测试:
1、测试电池在-5℃下,10个充放电循环后的析锂状况:其中充电过程为先以1C的充电倍率恒流充电到4.20V,然后再恒压充电直至电流降至0.05C;放电过程为以1C的放电倍率恒流放电到2.8V;最后将电池满充。
2、测试电池在-15℃下,10个充放电循环后的析锂状况:其中充电过程为先以0.5C的充电倍率恒流充电到4.20V,然后再恒压充电直至电流降至0.05C;放电过程为以1C的放电倍率恒流放电到2.8V;最后将电池满充。
3、测试电池在-25℃下,10个充放电循环后的析锂状况:其中充电过程为先以0.3C的充电倍率恒流充电到4.20V,然后再恒压充电直至电流降至0.05C;放电过程为以1C的放电倍率恒流放电到2.8V;最后将电池满充。
拆卸电池检查负极极片析锂状况,具体结果见表2。
表2
Figure PCTCN2017093184-appb-000003
Figure PCTCN2017093184-appb-000004
拆解电池发现,如果过渡层中的三种原料用量比满足本申请的范围,当过渡层厚度较小时(对应极片P1,厚度为2μm),电池仅在-25℃出现轻微析锂。当极片P2的过渡层厚度增加至4μm时,析锂已经完全被克服。当极片厚度处于4μm~15μm时(对应极片P2~P4),电池均没有出现析锂状况。当极片厚度增加至25μm时(对应极片P5),-25℃又出现轻微析锂。极片厚度继续增加至30μm时(对应极片P6),-15℃就出现析锂状况,说明过渡层的厚度过小造成涂覆困难,过渡层不能完全覆盖在正极集流体上,不能较好地改善析锂状况;过渡层厚度过大导致集流体与正极活性材料层距离过远,不利于锂离子和电子在负极材料中的传输,同样带来析锂问题。
对照P7~P10,如果过渡层厚度满足本申请的范围,当陶瓷材料含量较小(对应P8,陶瓷材料的重量含量为4.7%)或陶瓷材料含量较大(对应P10,陶瓷材料的重量含量为33%)时,温度降至-15℃都出现轻微析锂,说明陶瓷材料的重量含量过低或过高,对析锂改善均不明显,需要将陶瓷材料的重量含量控制在20~65%,优选20%~30%的范围内。
P11和P12说明,改变粘接剂或导电剂种类对电池性能影响不大。
相比之下,未使用陶瓷材料的对比例1在-5℃下轻微析锂,-15℃和 -25℃严重析锂。而对比例2将过渡层应用于负极,在-5℃就出现严重析锂,原因在于该陶瓷材料在低温下具有较大的阻抗,将其应用于负极,使负极极片的导电能力下降,增大了负极的极化电位,在充电过程中更容易达到析锂的电位,因此低温析锂现象严重。
因此,本申请能够得到抗析锂能力较好的锂离子电池,尤其是在低温充电过程中保证电芯不析锂,满足了电池在服役周期内的安全性能。
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (10)

  1. 一种锂离子电池正极极片,包括集流体和正极活性材料层,其特征在于,还包括位于所述集流体和所述正极活性材料层之间的过渡层,
    所述过渡层包括陶瓷材料、导电剂和粘结剂,所述陶瓷材料为负温度系数半导体陶瓷材料。
  2. 根据权利要求1所述的锂离子电池正极极片,其特征在于,所述陶瓷材料为La(MnxTiy)O3,其中0.3≤x≤0.4,0.6≤y≤0.7。
  3. 根据权利要求1所述的锂离子电池正极极片,其特征在于,所述陶瓷材料的粒径为0.01-1μm。
  4. 根据权利要求1所述的锂离子电池正极极片,其特征在于,所述陶瓷材料在所述过渡层中的重量含量为20-65%,优选20-30%。
  5. 根据权利要求1所述的锂离子电池正极极片,其特征在于,所述导电剂在所述过渡层中的重量含量为5-35%,所述粘结剂在所述过渡层中的重量含量为5-65%。
  6. 根据权利要求1所述的锂离子电池正极极片,其特征在于,所述过渡层的厚度为2-25μm,优选为4-15μm。
  7. 根据权利要求1所述的锂离子电池正极极片,其特征在于,所述导电剂选自零维碳材料、一维碳材料、二维碳材料和三维碳材料中的至少一种;
    优选地,所述零维碳材料为富勒烯、碳黑中的至少一种;所述一维碳材料选自碳纤维、碳纳米管中的至少一种;所述二维碳材料选自石墨、石墨烯和碳纳米带中的至少一种;所述三维碳材料为金刚石。
  8. 根据权利要求1所述的锂离子电池正极极片,其特征在于,所述粘结剂为水性粘结剂或油性粘结剂,所述水系粘结剂选自丁苯橡胶、水系丙烯酸树脂、羧甲基纤维素中的至少一种,所述油性粘结剂选自聚偏氟乙烯、乙烯-醋酸乙烯酯共聚物、聚乙烯醇中的至少一种。
  9. 如权利要求1至8中任一项所述的锂离子电池正极极片的制备方法,其特征在于,包括以下步骤:
    步骤一、将包括所述陶瓷材料、导电剂和粘结剂的过渡层浆料涂覆于正极集流体表面,形成过渡层;
    步骤二、将包括正极活性物质的浆料涂覆于所述过渡层表面,形成正极活性材料层,得到所述的锂离子电池正极极片。
  10. 一种锂离子电池,其特征在于,其使用权利要求1至8中任一项所述的锂离子电池正极极片。
PCT/CN2017/093184 2016-12-15 2017-07-17 一种锂离子电池正极极片,其制备方法及使用该极片的电池 WO2018107743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611159708.7A CN106784617B (zh) 2016-12-15 2016-12-15 一种锂离子电池正极极片,其制备方法及使用该极片的电池
CN201611159708.7 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018107743A1 true WO2018107743A1 (zh) 2018-06-21

Family

ID=58889206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093184 WO2018107743A1 (zh) 2016-12-15 2017-07-17 一种锂离子电池正极极片,其制备方法及使用该极片的电池

Country Status (2)

Country Link
CN (1) CN106784617B (zh)
WO (1) WO2018107743A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635138A (zh) * 2019-08-02 2019-12-31 河南平煤国能锂电有限公司 一种锂离子电池极片及其制作方法
CN111430665A (zh) * 2019-10-28 2020-07-17 蜂巢能源科技有限公司 正极片及其制备方法和应用
CN111477848A (zh) * 2020-04-13 2020-07-31 江苏中兴派能电池有限公司 一种负极水系导电浆料制备的电极和电池
CN111509232A (zh) * 2020-05-29 2020-08-07 蜂巢能源科技有限公司 正极片及其制备方法和应用
CN113097441A (zh) * 2021-03-31 2021-07-09 宁德新能源科技有限公司 电化学装置及电子装置
CN113359042A (zh) * 2021-06-07 2021-09-07 芜湖天弋能源科技有限公司 一种无损检测锂离子电池正极漏涂碳层的方法
CN113675366A (zh) * 2018-11-05 2021-11-19 宁德新能源科技有限公司 正极极片、电化学装置及包含其的电子装置
CN114068868A (zh) * 2020-07-31 2022-02-18 北京小米移动软件有限公司 极片、电池包以及极片的制作方法
CN114414606A (zh) * 2021-12-21 2022-04-29 天津力神电池股份有限公司 一种新能源电池用极片导电网络结构的表征方法及应用
CN114497455A (zh) * 2020-10-27 2022-05-13 荣盛盟固利新能源科技有限公司 一种射线辐照提高锂离子电池极片粘结性的方法及锂离子电池极片
CN114503300A (zh) * 2020-11-20 2022-05-13 宁德新能源科技有限公司 一种改善电极组件安全性的极片及包含其的电化学装置、电子装置
CN114628850A (zh) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 一种低温锂离子电池及其充放电方法
CN115133220A (zh) * 2022-06-27 2022-09-30 欣旺达电动汽车电池有限公司 复合材料及其制备方法、隔膜、电池
CN115692615A (zh) * 2021-07-30 2023-02-03 华中科技大学 一种基于水系粘结剂的低迂曲度厚电极、其制备和应用
CN115838163A (zh) * 2022-07-12 2023-03-24 宁德时代新能源科技股份有限公司 一种多孔碳材料及其制备方法、负极极片、锂离子电池
CN114414606B (zh) * 2021-12-21 2024-05-14 天津力神电池股份有限公司 一种新能源电池用极片导电网络结构的表征方法及应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784617B (zh) * 2016-12-15 2020-05-05 宁德时代新能源科技股份有限公司 一种锂离子电池正极极片,其制备方法及使用该极片的电池
CN108987795B (zh) * 2018-07-27 2020-09-11 孟海军 一种二次电池的电芯及电芯的制备方法
CN111200101B (zh) * 2018-11-16 2021-02-09 宁德时代新能源科技股份有限公司 一种正极极片及电化学装置
CN109904517B (zh) * 2019-03-06 2021-06-29 沁新集团(天津)新能源技术研究院有限公司 锂离子电池及其制备方法
CN110854356A (zh) * 2019-11-27 2020-02-28 安徽江淮汽车集团股份有限公司 一种金属箔涂覆导电粉体的方法
JP7240615B2 (ja) * 2020-02-17 2023-03-16 トヨタ自動車株式会社 リチウムイオン二次電池の負極およびその製造方法
CN114156434A (zh) * 2021-11-29 2022-03-08 珠海冠宇电池股份有限公司 一种极片和锂离子电池
CN116344733A (zh) * 2021-12-15 2023-06-27 宁德时代新能源科技股份有限公司 一种正极极片、二次电池、电池模块、电池包和用电装置
CN115295959A (zh) * 2022-08-02 2022-11-04 珠海冠宇电池股份有限公司 一种隔离层及包括该隔离层的电化学装置
WO2024087055A1 (zh) * 2022-10-26 2024-05-02 宁德时代新能源科技股份有限公司 正极极片、电极组件、电池单体、电池及用电设备
CN115832198A (zh) * 2022-11-30 2023-03-21 宁德时代新能源科技股份有限公司 极片、电极组件、二次电池及用电装置
CN116190663B (zh) * 2023-04-18 2023-07-21 蔚来电池科技(安徽)有限公司 二次电池和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202293491U (zh) * 2011-10-24 2012-07-04 杨桦 用于锂离子电池集流体的复合膜
TW201232570A (en) * 2011-01-21 2012-08-01 Murata Manufacturing Co Semiconducting ceramic and semiconductor ceramic element
CN103187568A (zh) * 2013-03-31 2013-07-03 复旦大学 一种锂离子电池正极材料及其合成方法
CN104868158A (zh) * 2015-05-06 2015-08-26 宁德新能源科技有限公司 一种锂离子电池
US20160149268A1 (en) * 2014-11-25 2016-05-26 American Lithium Energy Corporation Rechargeable battery with resistive layer for enhanced safety
CN106784617A (zh) * 2016-12-15 2017-05-31 宁德时代新能源科技股份有限公司 一种锂离子电池正极极片,其制备方法及使用该极片的电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI251359B (en) * 2003-10-10 2006-03-11 Lg Cable Ltd Lithium secondary battery having PTC powder and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201232570A (en) * 2011-01-21 2012-08-01 Murata Manufacturing Co Semiconducting ceramic and semiconductor ceramic element
CN202293491U (zh) * 2011-10-24 2012-07-04 杨桦 用于锂离子电池集流体的复合膜
CN103187568A (zh) * 2013-03-31 2013-07-03 复旦大学 一种锂离子电池正极材料及其合成方法
US20160149268A1 (en) * 2014-11-25 2016-05-26 American Lithium Energy Corporation Rechargeable battery with resistive layer for enhanced safety
CN104868158A (zh) * 2015-05-06 2015-08-26 宁德新能源科技有限公司 一种锂离子电池
CN106784617A (zh) * 2016-12-15 2017-05-31 宁德时代新能源科技股份有限公司 一种锂离子电池正极极片,其制备方法及使用该极片的电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CRANDLES, D.A: "Mott insulator to correlated metal: Optical study of La1-xTi03", PHYSICAL REVIEW B, vol. 49, no. 23, 15 June 1994 (1994-06-15), pages 16207 - 16213, XP055605838, ISSN: 1098-0121 *
HAO: "Temperature Sensitive Properties of the La(TixMn1-x)O3 System", JOURNAL OF ELECTROCERAMICS, vol. 15, no. 3, 31 December 2005 (2005-12-31), pages 251 - 255, XP019208322, ISSN: 1573-8663, DOI: doi:10.1007/s10832-005-3464-8 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113675366A (zh) * 2018-11-05 2021-11-19 宁德新能源科技有限公司 正极极片、电化学装置及包含其的电子装置
CN113675366B (zh) * 2018-11-05 2023-07-14 宁德新能源科技有限公司 正极极片、电化学装置及包含其的电子装置
CN110635138A (zh) * 2019-08-02 2019-12-31 河南平煤国能锂电有限公司 一种锂离子电池极片及其制作方法
CN111430665A (zh) * 2019-10-28 2020-07-17 蜂巢能源科技有限公司 正极片及其制备方法和应用
CN111477848A (zh) * 2020-04-13 2020-07-31 江苏中兴派能电池有限公司 一种负极水系导电浆料制备的电极和电池
CN111509232A (zh) * 2020-05-29 2020-08-07 蜂巢能源科技有限公司 正极片及其制备方法和应用
CN111509232B (zh) * 2020-05-29 2022-10-25 蜂巢能源科技有限公司 正极片及其制备方法和应用
CN114068868A (zh) * 2020-07-31 2022-02-18 北京小米移动软件有限公司 极片、电池包以及极片的制作方法
CN114497455A (zh) * 2020-10-27 2022-05-13 荣盛盟固利新能源科技有限公司 一种射线辐照提高锂离子电池极片粘结性的方法及锂离子电池极片
CN114503300A (zh) * 2020-11-20 2022-05-13 宁德新能源科技有限公司 一种改善电极组件安全性的极片及包含其的电化学装置、电子装置
CN114628850A (zh) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 一种低温锂离子电池及其充放电方法
CN113097441A (zh) * 2021-03-31 2021-07-09 宁德新能源科技有限公司 电化学装置及电子装置
CN113097441B (zh) * 2021-03-31 2023-03-21 宁德新能源科技有限公司 电化学装置及电子装置
CN113359042A (zh) * 2021-06-07 2021-09-07 芜湖天弋能源科技有限公司 一种无损检测锂离子电池正极漏涂碳层的方法
CN115692615A (zh) * 2021-07-30 2023-02-03 华中科技大学 一种基于水系粘结剂的低迂曲度厚电极、其制备和应用
CN114414606A (zh) * 2021-12-21 2022-04-29 天津力神电池股份有限公司 一种新能源电池用极片导电网络结构的表征方法及应用
CN114414606B (zh) * 2021-12-21 2024-05-14 天津力神电池股份有限公司 一种新能源电池用极片导电网络结构的表征方法及应用
CN115133220A (zh) * 2022-06-27 2022-09-30 欣旺达电动汽车电池有限公司 复合材料及其制备方法、隔膜、电池
CN115838163A (zh) * 2022-07-12 2023-03-24 宁德时代新能源科技股份有限公司 一种多孔碳材料及其制备方法、负极极片、锂离子电池

Also Published As

Publication number Publication date
CN106784617B (zh) 2020-05-05
CN106784617A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018107743A1 (zh) 一种锂离子电池正极极片,其制备方法及使用该极片的电池
WO2017128983A1 (zh) 全固态锂离子电池正极复合材料及其制备方法和应用
JP5046302B2 (ja) 非水二次電池
CN112103468B (zh) 一种负极片及包括该负极片的锂离子电池
CN106684320B (zh) 一种正极极片,其制备方法及二次电池
US11949108B2 (en) Lithium ion battery and negative electrode thereof
CN110556510B (zh) 一种锂离子电池极片及其制备方法和含有该极片的电池
CN111276674B (zh) 一种改性石墨负极材料及其制备方法及含该改性石墨负极的电池
JP2012178327A (ja) 非水電解質二次電池用電極、非水電解質二次電池及び非水電解質二次電池用電極の製造方法
CN105474440B (zh) 二次电池用正极和包含其的二次电池
EP3916848B1 (en) Secondary battery, battery module having same, battery pack, and device
WO2021008429A1 (zh) 二次电池及其相关的电池模块、电池包和装置
KR20160057813A (ko) 음극 활물질 및 이를 포함하는 리튬 전지
CN110739484A (zh) 一种耐宽温锂电池及其制作方法
WO2021128206A1 (zh) 一种电解液及电化学装置
WO2020043151A1 (zh) 正极极片、其制备方法及锂离子二次电池
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
CN108695487B (zh) 正极片及储能装置
CN111129447B (zh) 一种长循环寿命锂蓄电池用三元正极材料及其制备方法
KR101753943B1 (ko) 리튬이차전지의 음극 형성용 조성물, 이의 제조방법, 및 이를 이용하여 제조한 음극을 포함하는 리튬이차전지
WO2023070770A1 (zh) 一种正极极片及包含其的锂离子二次电池
WO2023102766A1 (zh) 电极、电化学装置和电子装置
CN113471512A (zh) 一种低温锂电池
JP2017134923A (ja) リチウム二次電池用負極、リチウム二次電池およびそれらの製造方法
JP5933252B2 (ja) 非水二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880486

Country of ref document: EP

Kind code of ref document: A1