WO2018107419A1 - 控制方法、装置、设备及可移动平台 - Google Patents

控制方法、装置、设备及可移动平台 Download PDF

Info

Publication number
WO2018107419A1
WO2018107419A1 PCT/CN2016/110059 CN2016110059W WO2018107419A1 WO 2018107419 A1 WO2018107419 A1 WO 2018107419A1 CN 2016110059 W CN2016110059 W CN 2016110059W WO 2018107419 A1 WO2018107419 A1 WO 2018107419A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable platform
coordinate system
angle
control device
axis
Prior art date
Application number
PCT/CN2016/110059
Other languages
English (en)
French (fr)
Inventor
钱杰
李昊南
赵丛
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/110059 priority Critical patent/WO2018107419A1/zh
Priority to CN201680003397.7A priority patent/CN107003678B/zh
Publication of WO2018107419A1 publication Critical patent/WO2018107419A1/zh
Priority to US16/292,897 priority patent/US20190196474A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0858Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted for vertical take-off of aircraft

Definitions

  • Embodiments of the present invention relate to the field of control, and in particular, to a control method, apparatus, device, and mobile platform of a mobile platform.
  • mobile platforms such as unmanned aerial vehicles and remote control cameras are equipped with detection devices such as radar, binocular obstacle avoidance system, ultrasonic system, etc., for detecting obstacles around the movable platform, and avoiding the movable platform being in motion. When it hits the obstacle in front.
  • detection devices such as radar, binocular obstacle avoidance system, ultrasonic system, etc.
  • the controller of the movable platform controls the pan/tilt rotation, so that the shooting device can track the target object at a time, or shoot the target object from different angles, thereby causing the movable platform.
  • the direction of motion is different from the shooting direction of the shooting device.
  • the detection direction of the detecting device disposed on the handpiece may be inconsistent with the moving direction of the movable platform, and the movable platform may be Only obstacles in the direction of the head can be detected, and obstacles on the left and right sides can not be detected.
  • the head of the movable platform is aimed at the target object while moving left, backward, or backward, it is easy. An obstacle that causes the movable platform to hit its left and right or rear side.
  • the current lack of effective obstacle avoidance control methods may reduce the operational safety of mobile platforms.
  • Embodiments of the present invention provide a control method, apparatus, device, and a mobile platform to improve operational security of a mobile platform.
  • An aspect of an embodiment of the present invention provides a control method, including:
  • the orientation of the movable platform is controlled in accordance with the moving direction of the movable platform such that the detecting device disposed on the movable platform can detect an obstacle in the moving direction.
  • control apparatus including:
  • a control module configured to control an orientation of the movable platform according to a moving direction of the movable platform, so that a detecting device disposed on the movable platform can detect an obstacle in the moving direction.
  • Another aspect of an embodiment of the present invention is to provide a control device comprising: one or more processors operating separately or in cooperation, the processor for:
  • the orientation of the movable platform is controlled in accordance with the moving direction of the movable platform such that the detecting device disposed on the movable platform can detect an obstacle in the moving direction.
  • a mobile platform including:
  • a power system mounted to the fuselage for providing operating power
  • a detecting device mounted on the body for detecting an obstacle in front of the movable platform
  • the control method, the device, the device and the movable platform provided by the embodiments of the present invention control the orientation of the movable platform according to the moving direction of the movable platform by determining the moving direction of the movable platform, so as to ensure that the detecting device can detect the moving direction. Obstacle avoids that when the detecting direction of the detecting device is inconsistent with the moving direction of the movable platform, the detecting device cannot detect the collision of the obstacle in the moving direction of the movable platform, thereby improving the operational safety of the movable platform. .
  • FIG. 1 is a schematic diagram of an unmanned aerial vehicle and a target object photographed according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an unmanned aerial vehicle and a target object photographed according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a control method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a XoY plane of a world coordinate system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a XoY plane of a world coordinate system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of adjusting an orientation of an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of adjusting an orientation of an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a control method according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a moving direction of an unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 10 is a flowchart of a control method according to another embodiment of the present invention.
  • FIG. 11 is a schematic diagram of adjusting an orientation of an unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram of adjusting an orientation of an unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 13 is a schematic diagram of adjusting an orientation of an unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 14 is a schematic diagram of adjusting an orientation of an unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 15 is a flowchart of a control method according to another embodiment of the present invention.
  • FIG. 16 is a structural diagram of a control device according to an embodiment of the present invention.
  • 17 is a structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 18 is a structural diagram of a control apparatus according to an embodiment of the present invention.
  • FIG. 19 is a structural diagram of a control device according to another embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • the movable platform in the embodiment of the present invention may be any movable object configured with a detecting device for detecting an obstacle, wherein the movable platform may be specifically an unmanned aerial vehicle, a remote control shooting vehicle, etc., and the unmanned aerial vehicle is used below.
  • the movable platform may be specifically an unmanned aerial vehicle, a remote control shooting vehicle, etc., and the unmanned aerial vehicle is used below.
  • the unmanned aerial vehicle is used below.
  • a mobile platform for illustrative purposes all of the UAVs below can be replaced with a mobile platform.
  • Embodiments of the present invention do not limit the mobile platform to the UAV, and other types of personnel are available to those skilled in the art. Mobile platform.
  • the schematic diagram of the unmanned aerial vehicle and the target object to be photographed can be as shown in Fig. 1.
  • 11 denotes the propeller of the unmanned aerial vehicle
  • 12 denotes the fuselage of the unmanned aerial vehicle
  • 13 denotes the detecting device
  • the detecting device can be set In front of the unmanned aerial vehicle, it can be set in the nose of the unmanned aerial vehicle
  • 14 represents the head of the unmanned aerial vehicle
  • 15 represents the unmanned aerial vehicle.
  • the photographing device 15 is connected to the body of the UAV through the pan/tilt head 14, 16 is a photographing lens of the photographing device, 17 is an optical axis direction of the photographing lens 16, and the optical axis direction 17 is directed to the photographed target object 20, 20 indicates the photographing direction of the photographing device 16, and 20 indicates the target object photographed by the photographing lens 16.
  • the detecting device 13 is configured to sense an obstacle around the unmanned aerial vehicle, and the detecting device 13 includes at least one of the following: a radar, an ultrasonic detecting device, a TOF ranging detecting device, a visual detecting device, and a laser detecting device.
  • the flight controller in the unmanned aerial vehicle can control the rotation of the gimbal 14 , and the photographing device 15 rotates with the rotation of the gimbal 14 .
  • the flight controller can control the attitude angle of the gimbal 14 , and the attitude angle includes the pitch angle. : pitch angle), roll angle (English: roll angle), heading angle (English: yaw angle), the flight controller controls the attitude angle of the photographing device by controlling the attitude angle of the pan/tilt 14 to enable the photographing device to be aligned.
  • the target object 20 is photographed.
  • the target object 20 needs to be photographed from a plurality of different angles.
  • One achievable way is to keep the center of the unmanned aircraft body pointing to the target object 20, as shown in FIG. , o represents the center of the unmanned aircraft fuselage, 1 indicates the direction of the center of the unmanned aircraft body pointing to the target object 20, the optical axis direction 17 of the photographing lens 16 is aligned with the photographed target object 20, and the unmanned aerial vehicle is controlled at the gimbal Movement in the coordinate system, the PTZ coordinate system refers to the left-hand coordinate system with the center o of the UAV fuselage as the coordinate origin, and the X-axis positive direction of the PTZ coordinate system points to the center of the UAV fuselage pointing to the target object 20 The direction is the direction indicated by the arrow 1, the positive direction of the Y-axis is the direction indicated by the arrow 3, the positive direction of the Z-axis is the direction indicated by the arrow 5, and the center o1 of the photographing apparatus 15 is on
  • the target object 20 is not moving, if the unmanned aerial vehicle is controlled to move in the direction indicated by the arrow 1, the target object 20 is used as a reference object, which is equivalent to pushing the shooting lens 16; if the unmanned aerial vehicle is controlled along the arrow 2 The direction of movement indicated, with the target object 20 as a reference, is equivalent to pushing the shooting lens 16; if the unmanned aerial vehicle is controlled to move in the direction indicated by the arrow 3, the target object 20 is used as a reference object, which is equivalent to traversing to the right.
  • the photographing lens 16 is controlled; if the unmanned aerial vehicle is controlled to move in the direction indicated by the arrow 4, the target object 20 is used as a reference, which is equivalent to traversing the photographing lens 16 to the left.
  • the target object 20 can be photographed from a plurality of different angles, achieving a better shooting effect.
  • the detecting device 13 since the detecting device 13 is disposed in front of the unmanned aerial vehicle, that is, the detecting device is disposed on the nose of the unmanned aerial vehicle, the detecting device 13 can only detect the unmanned flying.
  • the obstacle in front of the walker that is, only the obstacle in the direction indicated by the arrow 1 can be detected, the rear of the unmanned aerial vehicle, and the left and right obstacles cannot be detected, that is, when the unmanned aerial vehicle is controlled to move in the direction indicated by the arrow 2
  • the detecting device 13 cannot detect the obstacle behind the UAV.
  • the detecting device 13 cannot detect the obstacle on the right side of the UAV when controlling the UAV.
  • the detecting device 13 cannot detect the obstacle on the left side of the UAV, causing the UAV to easily hit an obstacle outside the detection range of the detecting device.
  • the unmanned aerial vehicle can intelligently follow the target object 20, and the smart following mode includes: a normal trailing mode, a parallel mode, and a locked mode.
  • This embodiment takes a parallel mode as an example.
  • the parallel mode the UAV will follow the motion on one side of the target object 20 and maintain the relative position with the target object 20, as shown in Figure 2, assuming that the target object 20 moves from position A to position B, in order to maintain Relative to the target object 20, the UAV moves from position C to position D, and the direction from position A to position B is parallel to the direction from position C to position D, ie the UAV is always following the target object 20.
  • the parallel mode the UAV will follow the motion on one side of the target object 20 and maintain the relative position with the target object 20, as shown in Figure 2, assuming that the target object 20 moves from position A to position B, in order to maintain Relative to the target object 20, the UAV moves from position C to position D, and the direction from position A to position B is parallel to the direction from position C to position D,
  • the detection direction 21 of the detection device 13 and the direction of movement of the UAV that is, the direction from the position C to the position D
  • the detecting device 13 can only detect the obstacle in the detecting direction 21, and cannot detect the moving direction of the unmanned aerial vehicle, that is, the obstacle in the direction from the position C to the position D, resulting in no
  • the human aircraft easily collides with obstacles in the direction of its movement in a parallel following mode.
  • FIG. 3 is a flowchart of a control method according to an embodiment of the present invention. As shown in FIG. 3, the method in this embodiment may include:
  • Step S101 Determine a moving direction of the movable platform.
  • the movable platform in the embodiment of the present invention may be any movable object configured with a detecting device for detecting an obstacle, and the following will be schematically illustrated with the unmanned aerial vehicle as a movable platform, when the movable platform is an unmanned aerial vehicle
  • the execution body of the embodiment may be a flight controller of the unmanned aerial vehicle, and the flight controller may acquire data output by the sensor system configured by the unmanned aerial vehicle, for detecting the position, acceleration, angular acceleration, speed, Squat Elevation angle, roll angle and heading angle, etc.
  • the sensor system may include a motion sensor and/or a vision sensor, and the motion sensor includes a gyroscope, an accelerometer, an inertial measurement unit, a Global Positioning System (GPS), and a flight control.
  • GPS Global Positioning System
  • the sensor system can be used to determine the direction of movement of the UAV.
  • the flight controller can determine the moving direction of the unmanned aerial vehicle according to the sensor system.
  • the achievable manner in which the flight controller determines the moving direction of the unmanned aerial vehicle includes the following two types:
  • the first type determining the moving direction of the unmanned aerial vehicle according to the displacement of the unmanned aerial vehicle.
  • This embodiment uses a world coordinate system to determine the position of the UAV relative to the ground, assuming that the UAV flight altitude is known, at which a plane parallel to the ground can be determined, as shown in Figure 4, in this plane.
  • the north direction is the positive X-axis direction of the world coordinate system
  • the east direction is the positive direction of the Y coordinate of the world coordinate system
  • the direction perpendicular to the XoY plane is the positive direction of the Z coordinate of the world coordinate system
  • the unmanned aerial vehicle The position change is the displacement of the unmanned aerial vehicle. It is assumed that the UAV moves from position E to position F in the XoY plane of the world coordinate system.
  • the position change from position E to position F is the displacement of the unmanned aerial vehicle.
  • the displacement is a vector having both directions and sizes. Specifically, the displacement is the distance from the position E to the position F, and the displacement direction is the direction from the position E to the position F.
  • the moving direction of the UAV in the world coordinate system may be determined according to the displacement of the UAV in the world coordinate system.
  • the UAV is located at E at the previous time t1, and at the next time t2, at the time point F, the coordinate of the E point in the X-axis direction is x1, and the coordinate in the Y-axis direction is Y1, the coordinate of the point F in the X-axis direction is x2, the coordinate in the Y-axis direction is y2, and the movement of the UAV from the position E to the position F, the displacement of the UAV in the X-axis direction is from x1
  • the position to x2 changes, and the displacement of the UAV in the X-axis direction is (x2-x1), the displacement of the UAV in the Y-axis direction is from y1 to y2, and the UAV is in the Y-axis direction.
  • the displacement magnitude is (y2-y1).
  • the direction from the position E to the position F can be determined as the direction of movement of the unmanned aerial vehicle at time t1, and/or the direction of movement of the unmanned aerial vehicle at time t2, since no one
  • the direction of motion of the aircraft is varied, so that after the time t2, or before time t1, the direction of motion of the UAV may be different from the direction from position E to position F.
  • the angle from the position E to the position F and the positive direction of the Y-axis is ⁇ , specifically, according to the displacement of the UAV in the X-axis direction (x2-x1), and the UAV
  • the magnitude of the displacement in the Y-axis direction (y2-y1) determines the relationship between the direction from the position E to the position F and the positive direction of the Y-axis, ⁇ , ⁇ , (x2-x1), (y2-y1) It can be determined according to formula (1):
  • the size of ⁇ can be determined according to formula (2):
  • the angle ⁇ is the angle between the direction of movement of the UAV and the positive direction of the Y-axis of the world coordinate system during the movement of the UAV from position E to position F. Therefore, the angle ⁇ can be used to represent the movement of the UAV. direction.
  • Second determining the direction of motion of the UAV based on the speed of movement of the UAV.
  • the motion speed of the UAV is also a vector with both direction and size.
  • the motion speed of the UAV can be a vector that changes in real time.
  • OE indicates that there is no time at the previous time t1.
  • the speed of movement of the human aircraft, OF represents the speed of the unmanned aerial vehicle at the next moment t2, and at time t1, the component of the speed OE of the unmanned aerial vehicle on the X-axis of the world coordinate system is x1, the component on the Y-axis It is y1; at time t2, the moving speed OF of the UAV is x2 on the X-axis of the world coordinate system, and the component on the Y-axis is y2.
  • the moving direction of the unmanned aerial vehicle can also be determined according to the ratio of the component of the U-axis of the UAV to the component on the X-axis of the world coordinate system and the component on the Y-axis. At the moment of the moment, it can be reasonably assumed that the direction of motion of the UAV is consistent with the direction of the speed of the UAV.
  • the angle ⁇ 1 between the moving speed OE of the UAV and the positive direction of the Y axis can be used to indicate the moving direction of the UAV at time t1, and the angle ⁇ 1 can be determined according to formula (3) or formula (4):
  • the angle ⁇ 2 between the moving speed OF of the UAV and the positive direction of the Y axis can be used to indicate the moving direction of the UAV at time t2, and the angle ⁇ 2 can be according to formula (5) or formula (6). determine:
  • the movement direction of the UAV is not the same at time t1 and time t2. Similarly, at different times, the direction of movement of the UAV can be different.
  • Step S102 Control an orientation of the movable platform according to a moving direction of the movable platform, so that a detecting device disposed on the movable platform can detect an obstacle in the moving direction.
  • the orientation of the unmanned aerial vehicle is controlled according to the moving direction of the unmanned aerial vehicle.
  • the moving direction of the unmanned aerial vehicle is from the direction of C to D, and the detecting is performed.
  • the detecting direction of the device is always the direction indicated by the arrow 21, and the two are inconsistent. Therefore, the flight controller can control the orientation of the unmanned aerial vehicle according to the moving direction of the unmanned aerial vehicle, so that the detecting device of the unmanned aerial vehicle head is provided.
  • the direction of detection is consistent with the direction of movement of the UAV, that is, the direction of motion of the UAV determines the orientation of the UAV.
  • the flight controller can adjust the UAV.
  • the orientation is such that the detection direction of the detecting device provided on the UAV handpiece coincides with the moving direction of the UAV, so that the detecting device 13 can detect an obstacle in the moving direction CD.
  • the photographing direction of the photographing device 15, that is, the optical axis direction 17 is always aligned with the photographed target object 20, and the following photographing of the target object 20 is achieved.
  • 60 denotes a quadrotor unmanned aerial vehicle
  • 63 denotes a detecting device provided on the nose of the unmanned aerial vehicle 60
  • 61 denotes a detecting direction of the detecting device
  • 62 denotes a moving direction of the unmanned aerial vehicle, and no adjustment is made.
  • the detecting direction of the detecting device is inconsistent with the moving direction of the unmanned aerial vehicle.
  • the flight controller can control the orientation of the unmanned aerial vehicle, and adjust the orientation of the unmanned aerial vehicle to adjust the orientation of the unmanned aerial vehicle.
  • the detecting direction 61 of the detecting device coincides with the moving direction 62 of the unmanned aerial vehicle.
  • the detecting device 63 can detect not only obstacles in the direction indicated by the arrow 61, but also the detecting device 63 can detect the direction indicated by the arrow 61, the angle range of ⁇ , as shown in FIG.
  • the obstacle inside in this case, after adjusting the orientation of the UAV, the detecting direction 61 of the detecting device may be incomplete with the moving direction 62 of the UAV As a result, as long as the angle between the detecting direction 61 of the detecting device and the moving direction 62 of the UAV is less than ⁇ , it is ensured that the detecting device 63 can detect an obstacle in the moving direction 62.
  • the orientation of the unmanned aerial vehicle is controlled according to the moving direction of the unmanned aerial vehicle, and the detecting device can detect the obstacle in the moving direction, thereby avoiding the detecting direction of the detecting device and the unmanned
  • the detecting device cannot detect the collision of obstacles in the direction of movement of the UAV, thereby improving the flight safety of the unmanned aerial vehicle.
  • FIG. 8 is a flowchart of a control method according to another embodiment of the present invention.
  • the UAV is determined according to the ratio of the speed of the UAV in the X-axis direction in the world coordinate system to the speed in the Y-axis direction.
  • the direction of motion in the world coordinate system can include:
  • Step S201 Determine an angle indicating the moving direction according to a ratio of a speed of the UAV in the X-axis direction in the world coordinate system to a speed in the Y-axis direction.
  • the angle indicating the moving direction is the angle of the moving direction with respect to the reference direction, wherein the positive direction of the Y-axis is the reference direction in FIG. 5, and the moving speeds OE and Y of the unmanned aerial vehicle are
  • the angle ⁇ 1 of the positive direction of the axis represents the moving direction of the UAV at time t1.
  • the angle ⁇ 2 between the moving speed OF of the UAV and the positive direction of the Y axis represents the moving direction of the UAV at time t2.
  • the angle ⁇ 1 is a negative angle.
  • the angle ⁇ 2 is a positive angle.
  • the angle indicating the direction of movement of the UAV is from 0 degrees to minus 180 degrees. It can be seen that the range of the angle indicating the direction of movement of the UAV is from 180 degrees to minus 180 degrees, wherein the reference direction selects the Y-axis positive direction is only a schematic specification, and those skilled in the art can select other directions as the reference direction, for example,
  • the positive direction of the X-axis is the reference direction, which is not specifically limited herein.
  • the motion speed of the unmanned aerial vehicle detected by the sensor system on the unmanned aerial vehicle is constantly changing, that is, the detected speed of the unmanned aerial vehicle is different at different times.
  • Step S202 If the previous time indicates that the absolute value of the difference between the angle of the moving direction and the angle indicating the moving direction at a later time is greater than a preset value, the replacement angle is determined.
  • the speed of the unmanned aerial vehicle is constantly changing, the speed of movement of the inertial measurement unit, the gyroscope and/or the GPS-detected unmanned aerial vehicle on the UAV is also constantly changing when the UAV is hovering. Or when flying at a small speed, the direction of the speed of the unmanned aerial vehicle may change rapidly, as shown in Fig.
  • the angle ⁇ 1 indicating the direction of movement of the unmanned aerial vehicle is 170 degrees
  • the next moment T2 indicating that the angle ⁇ 2 of the direction of movement of the unmanned aerial vehicle is -170 degrees
  • comparing 170 degrees and -170 degrees indicating that the direction of movement of the unmanned aerial vehicle has undergone a large change in a short period of time, that is, a step occurs, resulting in
  • the angle of the direction of movement of the UAV is discontinuous.
  • the angle indicating the direction of the motion direction and the angle indicating the direction of the motion at the next moment may be continuously processed according to the angle indicating the direction of the motion at each moment, for example, the previous moment t1 , indicating that the angle ⁇ 1 of the direction of movement of the unmanned aerial vehicle is 170 degrees, and the next time t2, the angle ⁇ 2 indicating the direction of movement of the unmanned aerial vehicle is -170 degrees, and the absolute value of the difference between the two angles is 340 degrees, if If the value is 180 degrees, then 340 degrees is greater than the preset value.
  • the replacement angle of the angle ⁇ 2 indicating the moving direction of the unmanned aerial vehicle and replace the time t2 with the replacement angle to indicate the unmanned aerial vehicle.
  • the direction of motion is ⁇ 2.
  • the UAV needs to rotate 20 degrees from 170 degrees in the counterclockwise direction to -170 degrees, and the UAV needs to rotate from 170 degrees in the clockwise direction to -170 degrees.
  • Rotating 340 degrees it can be seen that in a short time, the probability of the UAV rotating from 170 degrees counterclockwise to -170 degrees is greater than the unmanned aircraft rotating from 170 degrees clockwise to -170 degrees.
  • the probability of the direction in order to obtain a stable and continuous motion direction, and to facilitate filtering of the filter to ensure the filtering effect, in the present embodiment, the current moment indicates the angle of the motion direction and the latter moment indicates the motion direction.
  • the replacement angle is calculated, and the replacement angle is used instead of the angle indicating the direction of the movement at the next moment.
  • the calculation method of the replacement angle may be: 1) calculating from the previous moment The direction of motion of the human aircraft to the central arc angle corresponding to the first inferior arc of the direction of movement of the unmanned aerial vehicle at a later time; 2) the angle of the direction of motion and the angle of the center of the circle are obtained according to the previous moment.
  • the angle ⁇ 1 indicating the moving direction of the UAV is 170 degrees
  • the angle ⁇ 2 indicating the moving direction of the UAV is -170 degrees
  • the movement of the UAV from the previous time t1 The first inferior arc corresponding to the direction of motion of the unmanned aerial vehicle at the next time t2 is as indicated by the arrow 9, and the central angle corresponding to the first inferior arc 9 is 20 degrees, and 20 degrees is added on the basis of ⁇ 1, that is, 170 degrees.
  • the angle is 190 degrees, and 190 degrees is used instead of -170 degrees, that is, after rotating from the positive direction of the Y coordinate of the world coordinate system in the counterclockwise direction to the negative direction of the Y axis, if it continues to rotate in the counterclockwise direction, it will be at an angle greater than 180 degrees. To indicate the angle of movement of the UAV.
  • Step S203 replacing the angle indicating the moving direction at the subsequent time with the replacement angle, so that the time indicating the moving direction is continuous at each time.
  • the time t2 indicates that the angle of the moving direction is -170 degrees, and 190 degrees is used instead of -170 degrees.
  • the direction of the moving speed of the unmanned aerial vehicle is 170 degrees.
  • the direction of the speed of the unmanned aerial vehicle is 190 degrees.
  • the direction of the UAV's moving speed is 170 degrees.
  • the direction of the UAV's moving speed is -170 degrees, avoiding the step of the moving speed direction, making the previous one
  • the angle of the direction of movement of the UAV is continuous.
  • the angle indicating the direction of motion can also be processed according to the method described in this embodiment, so that the respective moments indicate that the angle of the direction of motion is continuous.
  • Step S204 Perform filtering processing on the angle indicating the moving direction to obtain a moving direction of the UAV in the world coordinate system.
  • the embodiment adopts a preset filter to the above steps.
  • the obtained moments indicate the angle of the direction of movement of the UAV to perform filtering processing to filter out noise interference in the angle indicating the direction of motion at each moment, and the preset filter may be a Kalman filter.
  • the angle value of the filter output is greater than 360 degrees
  • the angle value may be taken as 360 degrees, and the residual value is used to represent the angle value, so that the angle of the filter output is The degree is stable, and a stable angle value indicating the direction of movement of the UAV is obtained.
  • the current orientation of the UAV is maintained unchanged.
  • the absolute value of the difference between the angle values of the two times before and after the output of the filter is less than or equal to the threshold, the orientation of the UAV is maintained unchanged at a later time.
  • the current moment indicates that the absolute value of the difference between the moving direction of the unmanned aerial vehicle and the angle indicating the moving direction at a later time is greater than a preset value
  • calculating the moving direction of the unmanned aerial vehicle from the previous moment to the latter The central angle corresponding to the first inferior arc of the moving direction of the unmanned aerial vehicle, determining the replacement angle according to the angle of the moving direction and the central angle corresponding to the inferior arc at the previous moment, and replacing the latter moment with the replacement angle
  • the angle of the moving direction realizes the continuous processing of the angle indicating the moving direction at each moment, avoiding the step indicating the direction of the movement of the unmanned aircraft in a short time, and additionally indicating the time by using the preset filter.
  • the filtering process of the moving direction of the human aircraft can filter out the noise interference in the angle indicating the moving direction at each moment, and improve the detection precision of the moving direction of the UAV.
  • FIG. 10 is a flowchart of a method for controlling an unmanned aerial vehicle according to another embodiment of the present invention. As shown in FIG. 10, on the basis of the embodiment shown in FIG. 3, the method in this embodiment may include:
  • Step S301 determining a moving direction of the unmanned aerial vehicle.
  • Step S301 is the same as step S101. The specific method is not described here.
  • Step S302 Determine, according to the moving direction of the unmanned aerial vehicle, a rotation direction of the unmanned aerial vehicle from a current detecting direction of the detecting device to a moving direction of the unmanned aerial vehicle.
  • the flight controller can control the orientation of the unmanned aerial vehicle according to the moving direction of the unmanned aerial vehicle, and the detection direction of the unmanned aerial vehicle detecting device and the unmanned person before the flight controller adjusts the orientation of the unmanned aerial vehicle.
  • the direction of motion of the aircraft is inconsistent.
  • the detecting direction 61 of the detecting device on the unmanned aerial vehicle is consistent with the moving direction 62 of the unmanned aerial vehicle, or the detecting direction 61 of the detecting device on the unmanned aerial vehicle and the unmanned aerial vehicle
  • the angle between the directions of motion 62 is less than a. Assuming that the moving direction 62 of the UAV does not change for a short time, according to FIG.
  • the flight controller can control the orientation of the UAV, so that the detecting direction 61 of the detecting device is rotated clockwise to the movement of the UAV.
  • Direction 62 can also control the orientation of the UAV so that the detection direction 61 of the detecting device is counterclockwise Turn to the direction of motion 62 of the unmanned aerial vehicle. The following method of the present embodiment will describe how to determine the direction of the UAV in a clockwise or counterclockwise direction so that the detection direction 61 of the UAV's detection device coincides with the UAV movement direction 62.
  • Step S303 controlling the UAV to rotate according to the rotation direction.
  • the flight controller After determining that the UAV rotates from the current detecting direction of the detecting device to the rotating direction of the moving direction of the UAV, the flight controller controls the UAV to rotate according to the rotating direction.
  • determining the rotation direction of the UAV from the current detecting direction of the detecting device to the moving direction of the UAV may be implemented by the following steps 41-43:
  • Step 41 Determine, according to the moving direction of the UAV and the current detecting direction of the detecting device, that the UAV rotates from a current detecting direction of the detecting device to a second inferior arc corresponding to the moving direction.
  • 60 denotes a quadrotor unmanned aerial vehicle
  • 63 denotes a detecting device provided on the nose of the unmanned aerial vehicle 60
  • 61 denotes a detecting direction of the detecting device 63
  • 62 denotes a moving direction of the unmanned aerial vehicle
  • 15 denotes no
  • the photographing apparatus mounted on the human aircraft 60 is mounted on the unmanned aerial vehicle 60 through a pan/tilt (not shown). This embodiment does not limit the position of the photographing apparatus 15 with respect to the body of the unmanned aerial vehicle 60, and the photographing apparatus 15 It may be provided on the upper side of the fuselage of the unmanned aerial vehicle 60 or on the lower side of the fuselage of the unmanned aerial vehicle 60.
  • the center of the fuselage of the unmanned aerial vehicle 60 is taken as the coordinate origin o, the east is the Y-axis forward direction, and the north is the X-axis forward direction to establish the coordinate system as shown in FIG. 11, and at a certain time t3, the target photographed by the photographing device 15
  • the object 20 is directly in front of the unmanned aerial vehicle 60, and the detecting direction 61 of the detecting device coincides with the photographing direction of the photographing device 15.
  • the flight controller of the unmanned aerial vehicle 60 adjusts the shooting direction of the photographing device 15 by controlling the attitude of the pan/tilt head. Specifically, the flight controller controls the photographing direction of the photographing device 15 to control the photographing direction of the photographing device 15 by the Yaw axis of the pan/tilt head by controlling the heading angle of the pan/tilt head. Rotation of the axis of rotation, because the shooting device and the pan/tilt are connected by a transmission line, the shooting direction of the photographing device 15 cannot be infinitely rotated with the Yaw axis of the gimbal as the axis of rotation. Alternatively, the limit of the Yaw axis of the gimbal is limited.
  • the position angle is +360 degrees and -360 degrees, that is, the shooting direction of the photographing device 15 can only be rotated one turn counterclockwise or one turn clockwise with the Yaw axis of the gimbal as the rotation axis. It is assumed that the rotation in the counterclockwise direction from the positive X-axis direction is the negative direction, and the rotation in the clockwise direction from the positive X-axis direction is the positive direction, as shown in FIG.
  • the Yaw axis of the pan/tilt is a straight line passing through the origin o, perpendicular to the XoY plane, and the photographing direction of the photographing device 15 can be rotated counterclockwise from the X-axis direction, that is, the 0-degree direction, back to the X-axis.
  • the forward direction is -360 degrees, and it can also be rotated clockwise from the X-axis forward direction, that is, the 0-degree direction, back to the X-axis positive direction, that is, +360 degrees.
  • the detecting direction 61 of the detecting device is in the same direction as the X-axis
  • the moving direction 62 of the UAV is in the same direction as the Y-axis
  • the UAV 60 is controlled to rotate from the detecting direction 61 of the detecting device to the UAV.
  • the second inferior arc is distinguished from the first inferior arc 9 in the above embodiment.
  • inferior arc refers to an arc having a central angle of less than 180 degrees; the other is rotated in a counterclockwise direction, that is, from the detection device.
  • the direction 61 is rotated to the direction of the superior arc 65 of the direction of motion 62 of the unmanned aerial vehicle, which is an arc of a circle having a central angle greater than 180 degrees.
  • Step 42 When the UAV is turned to the moving direction from a current detecting direction of the detecting device in a direction indicated by the second inferior arc, determining a photographing device on the head of the UAV An angle of rotation of the photographing direction with respect to the detecting direction of the detecting device, wherein the rotation of the photographing direction with respect to the detecting direction is a rotation axis of the Yaw axis of the pan.
  • the photographing direction of the photographing device 15 changes, and it is assumed that the target object 20 starts moving in the counterclockwise direction at time t3, and the target object 20 moves to the time t4.
  • the pan-tilt control photographing apparatus 15 is rotated in the counterclockwise direction to the -330 degree direction as shown in Fig. 12, and 66 represents the time t4.
  • the photographing direction of the photographing device at this time, the photographing direction 66 of the photographing device 15 is the rotation axis with the Yaw axis of the pan head, and the angle of rotation with respect to the detecting direction 61 of the detecting device 63 is -330 degrees.
  • the pan/tilt control camera 15 continues to rotate 60 degrees in the counterclockwise direction, the pan/tilt will reach the limit angle -360 of its Yaw axis. If the UAV is turned from the detection direction 61 of the detection device to the direction of motion 62 in the direction indicated by the inferior arc 64, the gimbal will be accelerated to the limit angle -360 of its Yaw axis. Therefore, when determining the rotation direction of the UAV from the detecting direction 61 of the detecting device to the moving direction 62 of the UAV, it is necessary to consider the detecting direction of the photographing device on the head of the UAV relative to the detecting device. An angle of rotation of the direction, wherein the rotation of the photographing direction relative to the detecting direction is rotated by the Yaw axis of the pan/tilt Moving axis.
  • the mechanical angle of the gimbal refers to the rotation angle of the Yaw axis of the gimbal relative to the reference direction, which is the detection direction of the detection device when the detection direction of the detection device of the UAV and the shooting direction of the imaging device are the same.
  • the detection direction of the detecting device 63 and the shooting direction of the photographing device 15 are both X-axis positive directions, and the X-axis forward direction can be used as a reference direction.
  • the photographing device 15 has a Yaw axis.
  • the rotation angle of the rotation axis with respect to the reference direction, that is, the X-axis positive direction is -330 degrees
  • the mechanical angle of the pan/tilt is -330 degrees.
  • the mechanical angle of the gimbal is represented by ⁇ 1
  • the rotation angle of the UAV from the current detection direction of the detecting device to the moving direction in the direction indicated by the inferior arc is represented by ⁇ 2
  • is larger than the PTZ
  • the limit angle of the Yaw axis indicates the process of the UAV moving from the current detection direction of the detecting device to the moving direction along the direction indicated by the inferior arc, accelerating the limit angle of the gimbal reaching its Yaw axis, and After the unmanned aerial vehicle is turned to the moving direction from the current detecting direction of the detecting device in the direction indicated by the inferior arc, the photographing direction of the photographing device is the axis of rotation of the pan head, relative to the detecting device The angle of rotation of the detection direction will be greater than the limit angle of the Yaw axis.
  • Step 43 Determine a rotation direction of the UAV according to the angle of the rotation.
  • the rotating direction of the UAV includes at least one of: a direction indicated by the second inferior arc, and a direction indicated by a superior arc corresponding to the second inferior arc.
  • the shooting direction of the photographing device on the head of the UAV is rotated relative to the detecting direction of the detecting device is greater than the Yaw axis of the pan/tilt
  • the limit angle determines that the direction of rotation of the UAV is the direction indicated by the superior arc.
  • the mechanical angle ⁇ 1 of the pan/tilt is -330 degrees
  • the rotation angle ⁇ 2 of the unmanned aerial vehicle from the detecting direction 61 of the detecting device to the moving direction 62 in the direction indicated by the inferior arc 64 is +90 degrees
  • the UAV is along the inferior arc 64
  • the photographing direction of the photographing device is rotated with respect to the detecting direction of the detecting device 63 with the Yaw axis of the pan head as the rotation axis.
  • the flight controller should control the unmanned aerial vehicle 60 to be turned from the detecting direction 61 of the detecting device to the moving direction 62 in the direction indicated by the superior arc 65, along which the unmanned aerial vehicle 60
  • the direction indicated by the superior arc 65 from the detecting direction 61 of the detecting device to the moving direction 62 is -270 degrees,
  • 60, 60 is less than 360
  • the photographing direction of the photographing device is rotated by the Yaw axis of the pan/tilt head.
  • the shooting direction of the photographing device on the pan/tilt of the UAV is rotated relative to the detecting direction of the detecting device by an angle less than or equal to the pan/tilt head.
  • the limit angle of the Yaw axis determines that the direction of rotation of the UAV is the direction indicated by the second inferior arc. The specific principle will not be described here.
  • the rotational speed of the UAV may also be determined according to the moving direction of the UAV and the current detecting direction of the detecting device.
  • a Proportion-Integral-Derivative (PID) controller can be implemented.
  • the input of the PID controller is the moving direction of the UAV and the current detecting direction of the detecting device.
  • the output is the rotating direction and the rotating speed of the UAV, and the desired angle is the moving direction of the UAV.
  • the current angle is the current detection direction of the detection device.
  • the unmanned aerial vehicle rotates from the current detecting direction of the detecting device to the inferior arc corresponding to the moving direction, and if the unmanned aerial vehicle is in the direction indicated by the inferior arc, the detecting is performed.
  • the Yaw axis of the pan head is taken as the rotation axis, and the shooting direction of the photographing device is rotated relative to the detecting direction of the detecting device by an angle greater than the limiting angle of the Yaw axis of the pan/tilt head.
  • the direction of rotation is the direction indicated by the superior arc; if the unmanned aerial vehicle is turned from the current detection direction of the detection device to the direction of motion along the direction indicated by the inferior arc, the Yaw axis of the gimbal is taken as the rotation axis, and the shooting direction of the shooting device is taken.
  • the angle of rotation relative to the detecting direction of the detecting device is less than or equal to the limiting angle of the Yaw axis of the pan/tilt, and then the direction of rotation of the unmanned aerial vehicle is determined to be the direction indicated by the inferior arc, that is, the direction of rotation of the unmanned aerial vehicle is clarified, thereby avoiding
  • the PTZ reaches its Yaw axis, that is, the limit angle of the yaw direction, ensuring that the angle of the PTZ in the yaw direction is always at Yaw. Avoid pan/tilt and shooting equipment malfunctions within the range of the axis limit angle.
  • FIG. 15 is a flowchart of a control method according to another embodiment of the present invention. As shown in FIG. 15, on the basis of the embodiment shown in FIG. 3, the method in this embodiment may include:
  • Step S401 Control the UAV to move in a PTZ coordinate system.
  • the ground control device such as the remote controller can control the movement of the unmanned aerial vehicle, and the flight controller of the unmanned aerial vehicle can also independently control the movement of the unmanned aerial vehicle.
  • the ground control device or the flight controller The UAV can be controlled to move in the PTZ coordinate system.
  • the pan-tilt coordinate system is the origin of the center coordinate of the fuselage in which the drone is flying, and the positive direction of the X-axis is the direction of the target body of the unmanned aerial vehicle flying toward the target object, and the pan-tilt coordinate system is the left-hand coordinate.
  • the coordinate system of the PTZ coordinate system is shown in Figure 1.
  • the coordinate origin of the PTZ coordinate system is o
  • the positive direction of the X axis is the direction indicated by the arrow 1
  • the positive direction of the Y axis is the direction indicated by the arrow 3.
  • the Z axis The positive direction is the direction indicated by arrow 5.
  • the flight controller may control the X-axis direction movement of the UAV in the PTZ coordinate system; or, control the The human aircraft moves in the Y-axis direction in the gimbal coordinate system; or, controls the movement of the UAV in the Z-axis direction in the PTZ coordinate system; or, controls the UAV in the PTZ coordinate system to Z The shaft rotates for the axis.
  • a ground control device such as a remote control controls the unmanned aerial vehicle to move in the pan-tilt coordinate system
  • the operator of the remote controller controls the movement of the unmanned aerial vehicle in the pan-tilt coordinate system by manipulating the joystick on the remote controller, the joystick of the remote controller
  • the bottom is provided with a sensor for detecting the amount of the lever generated by the remote controller when the user operates the joystick, and the wireless transmitting module of the remote controller measures the amount of the lever
  • the flight controller sent to the unmanned aerial vehicle the flight controller controls the unmanned aerial vehicle motion according to the amount of the control rod.
  • the flight controller can be used to perform at least one of the following operations:
  • Step S402 determining a moving direction of the unmanned aerial vehicle.
  • Step S402 is consistent with step S101, and the specific method is not described herein again.
  • Step S403 Control the orientation of the UAV according to the moving direction of the UAV, so that the detecting device disposed on the UAV can detect an obstacle in the moving direction.
  • Step S403 is the same as step S102. The specific method is not described here.
  • the ground control device is used to control the movement of the unmanned aerial vehicle in the gimbal coordinate system
  • the flight controller is used to control the movement of the unmanned aerial vehicle in the gimbal coordinate system, and the X-axis of the unmanned aerial vehicle along the gimbal coordinate system is controlled.
  • Embodiments of the present invention provide a control method. On the basis of the embodiment shown in FIG. 3, the method in this embodiment may further include:
  • the attitude of the pan/tilt on the unmanned aerial vehicle is controlled such that the photographing device on the pan/tilt tracks the shooting of the target object.
  • the UAV After the flight controller determines the direction of movement of the UAV, the UAV can make exploration
  • the detection direction of the measuring device is consistent with the moving direction.
  • the flight controller can also control the PTZ of the UAV, so that the shooting device on the PTZ is always aimed at the target object, that is, the target object is tracked and shot, and the target object is moved.
  • the flight controller adjusts the pan/tilt to rotate the shooting device, the target object is always in the shooting picture, so that the UAV can detect the obstacle in the moving direction on the one hand, and can track the target object on the other hand. It improves the operational safety of the UAV and reduces the professional requirements for users.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores program instructions, and the program may include some or all of the steps of the control method in the corresponding embodiment of FIG. 3-15.
  • FIG. 16 is a structural diagram of a control device according to an embodiment of the present invention.
  • the control device 160 includes one or more processors 161 that work separately or in cooperation.
  • the processor 161 is configured to: determine motion of the movable platform. Direction; controlling the orientation of the movable platform according to the moving direction of the movable platform, so that the detecting device disposed on the movable platform can detect an obstacle in the moving direction.
  • the movable platform in the embodiment of the present invention may be any movable object configured with a detecting device for detecting an obstacle, and the following will be schematically illustrated with the unmanned aerial vehicle as a movable platform, when the movable platform is an unmanned aerial vehicle Specifically, the processor 161 can determine the direction of movement of the UAV by the following two methods:
  • the first type determining the moving direction of the unmanned aerial vehicle according to the displacement of the unmanned aerial vehicle.
  • the displacement of the direction and the displacement of the Y-axis direction determine the direction of motion of the UAV in the world coordinate system.
  • Second determining the direction of motion of the UAV based on the speed of movement of the UAV.
  • the direction of motion of the UAV in the world coordinate system is determined according to a ratio of the speed of the UAV in the X-axis direction in the world coordinate system to the speed in the Y-axis direction.
  • control device provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 3, and details are not described herein again.
  • the orientation of the movable platform is controlled according to the moving direction of the movable platform, so that the detecting device can detect the obstacle in the moving direction, and avoid the detecting direction and the movable direction of the detecting device.
  • the detecting device cannot detect the collision of the obstacle in the moving direction of the movable platform, thereby improving the operational safety of the movable platform.
  • Embodiments of the present invention provide a control device.
  • the control device 160 further includes a filter 162 communicatively coupled to the processor 161, the processor 161 according to the velocity of the UAV in the X-axis direction and the velocity of the Y-axis in the world coordinate system.
  • the ratio is determined when determining the direction of motion of the UAV in the world coordinate system: determining an indication according to a ratio of a velocity of the UAV in the X-axis direction in the world coordinate system to a velocity in the Y-axis direction
  • the angle of the moving direction is used; the filter 162 is configured to filter the angle indicating the moving direction to obtain the moving direction of the UAV in the world coordinate system.
  • the processor 161 is further configured to: calculate a difference between an angle indicating the moving direction at a previous time and an angle indicating the moving direction at a later time a value; comparing an absolute value indicating a difference between an angle of the moving direction and an angle indicating the moving direction at a later time, and a preset value; if the previous time indicates an angle of the moving direction and a subsequent time indication
  • the processor 161 is further configured to: determine a replacement angle; and replace the angle indicating the motion direction with the replacement angle as the replacement angle, so that the angle of the movement is replaced by the replacement angle
  • Each time indicates that the angle of the moving direction is continuous; the angle indicating the moving direction is an angle of the moving direction with respect to the reference direction.
  • the method is specifically configured to: determine a first inferior arc corresponding to a moving direction of the unmanned aerial vehicle from a moving moment of the unmanned aerial vehicle at a previous moment; The previous moment indicates the angle of the moving direction and the central angle corresponding to the first inferior arc, and the replacement angle is determined.
  • control device provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 8 and are not described herein again.
  • the current moment indicates that the absolute value of the difference between the moving direction of the unmanned aerial vehicle and the angle indicating the moving direction at a later time is greater than a preset value
  • calculating the moving direction of the unmanned aerial vehicle from the previous moment to the latter The central angle corresponding to the inferior arc of the moving direction of the unmanned aerial vehicle, determining the replacement angle according to the angle of the moving direction and the central angle corresponding to the inferior arc at the previous moment, and replacing the latter moment with the replacement angle
  • the angle realizes the continuous processing of the angle indicating the direction of the movement at each moment, avoiding the step indicating the direction of the movement of the unmanned aircraft in a short time, and in addition, using the preset filter to indicate the unmanned aerial vehicle at each moment.
  • the filtering process of the angle of the moving direction can filter out the noise interference in the angle indicating the moving direction at each moment, and improve the detection precision of the moving direction of the UAV.
  • Embodiments of the present invention provide a control device. Based on the technical solution provided by the embodiment shown in FIG. 16, the processor 161 can control the detection direction of the detecting device to be consistent with the moving direction of the UAV.
  • the processor 161 controls the orientation of the UAV, it is specifically configured to: determine a rotation direction of the UAV from a current detecting direction of the detecting device to a moving direction of the UAV, according to the rotating direction Controlling the rotation of the unmanned aerial vehicle.
  • the processor 161 determines, when the UAV is rotated from the current detecting direction of the detecting device to the rotating direction of the moving direction of the UAV, specifically: according to the moving direction of the UAV, the current detecting device a direction of detection, determining that the UAV is rotated from a current detection direction of the detection device to a second inferior arc corresponding to the direction of motion; when the UAV is in the direction indicated by the second inferior arc from the detection
  • the current detection direction of the device is turned to the moving direction, determining a moving angle of a shooting direction of the shooting device on the head of the UAV with respect to a detecting direction of the detecting device, wherein the shooting direction is relatively
  • the rotation in the detecting direction is the rotation axis of the Yaw axis of the pan/tilt; the rotation direction of the UAV is determined according to the angle of rotation, and the rotation direction of the UAV includes at least one of the following : the direction indicated by the second inferior arc, the direction indicated by the superior arc
  • the processor 161 determines the rotation direction of the UAV according to the angle of the rotation Specifically, the method is: comparing an angle of the rotation with a limit angle of a Yaw axis of the pan/tilt; if the angle of the rotation is greater than a limit angle of a Yaw axis of the pan/tilt, the processor determines the The direction of rotation of the UAV is the direction indicated by the superior arc; if the angle of the rotation is less than or equal to the limit angle of the Yaw axis of the PTZ, the processor determines that the direction of rotation of the UAV is The second inferior arc indicates the direction.
  • the processor 161 is further configured to determine a rotational speed of the UAV according to a moving direction of the UAV and a current detecting direction of the detecting device.
  • the detecting device includes at least one of the following: a radar, an ultrasonic detecting device, a TOF ranging detecting device, a visual detecting device, and a laser detecting device.
  • control device provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 10, and details are not described herein again.
  • the unmanned aerial vehicle rotates from the current detecting direction of the detecting device to the inferior arc corresponding to the moving direction, and if the unmanned aerial vehicle is in the direction indicated by the inferior arc, the detecting is performed.
  • the shooting direction of the shooting device is the rotation axis of the pan/tilt head, and the rotation angle of the detecting device relative to the detection direction of the detecting device is greater than the limiting angle of the Yaw axis of the gimbal.
  • the direction of rotation of the UAV Determining the direction of rotation of the UAV as the direction indicated by the superior arc; if the UAV is moving from the current detection direction of the detection device to the direction of motion along the direction indicated by the inferior arc, the shooting direction of the imaging device is the Yaw axis of the PTZ
  • the angle of rotation relative to the detecting direction of the detecting device is less than or equal to the limiting angle of the Yaw axis of the pan/tilt
  • the direction of rotation of the unmanned aerial vehicle is determined to be the direction indicated by the inferior arc, that is, the rotation of the unmanned aerial vehicle is determined Direction, avoiding the unloading of the UAV from the current detection direction of the detection device to the direction of movement of the UAV I.e., the axis of which stop angle Yaw yaw direction to ensure that the head yaw angle of the direction of rotation is always in the range Yaw-axis limit angle, and the photographing head to avoid device failure.
  • Embodiments of the present invention provide a control device.
  • the processor 161 is further configured to: control the UAV to move in a PTZ coordinate system, and the PTZ coordinate system is a machine of the UAV
  • the center of the body is the coordinate origin, and the positive direction of the X-axis is the direction of the center of the body of the unmanned aerial vehicle pointing to the target object to be photographed, and the pan-tilt coordinate system is a left-handed coordinate system.
  • the control device 160 further includes: a communication interface 163 communicatively coupled to the processor 161, the communication interface 163 is configured to receive a control lever amount of the control device, and transmit the control lever amount of the control device to the processor 161; the processor 161 is configured according to The amount of control rod of the control device controls the movement of the unmanned aerial vehicle in the pan-tilt coordinate system.
  • the processor 161 is configured to: when the UAV is controlled to move in the PTZ coordinate system, at least one of: controlling the X-axis direction movement of the UAV in the PTZ coordinate system; and controlling the UAV to The Y-axis direction movement in the pan-tilt coordinate system; controlling the Z-axis direction movement of the UAV in the PTZ coordinate system; controlling the UAV to rotate in the PTZ coordinate system with the Z-axis as the axis.
  • the communication interface 163 is specifically configured to receive at least one of: a control lever amount of a pitch lever or a tilt button of the control device; a control lever amount of a roll bar or a roll button of the control device; a throttle lever or a throttle button of the control device; The amount of joystick; the amount of joystick that controls the heading of the equipment or the heading button.
  • the processor 161 is specifically configured to: at least one of: controlling an X-axis direction movement of the UAV in a PTZ coordinate system according to a control lever amount of a pitch lever or a tilt button of the control device; Controlling the amount of the control bar of the roll bar or the roll button to control the movement of the UAV in the Y-axis direction of the PTZ coordinate system; controlling the UAV according to the amount of the throttle stick of the control device or the throttle lever of the throttle button Movement in the Z-axis direction in the PTZ coordinate system; controlling the UAV to rotate in the PTZ coordinate system with the Z-axis as an axis according to the amount of the control rod of the head of the control device or the heading button.
  • the processor 161 is further configured to: control a posture of the pan/tilt on the unmanned aerial vehicle, so that the photographing device on the pan/tilt performs tracking shooting on the target object.
  • the ground control device is used to control the movement of the unmanned aerial vehicle in the gimbal coordinate system
  • the flight controller is used to control the movement of the unmanned aerial vehicle in the gimbal coordinate system, and the X-axis of the unmanned aerial vehicle along the gimbal coordinate system is controlled.
  • the embodiment of the present invention provides a movable platform.
  • the movable platform in the embodiment of the present invention may be any movable object configured with a detecting device for detecting an obstacle.
  • the unmanned aerial vehicle is illustrated as a movable platform.
  • FIG. 17 is a structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention. As shown in FIG. 17, the unmanned aerial vehicle 100 includes: a fuselage, a power system, and a control device 118.
  • the power system includes at least one of: a motor 107, a propeller 106, and an electronic governor 117, the power system is mounted on the airframe for providing power; the detecting device 21 is mounted on the body, and the A control device communication connection for detecting an object in front of the UAV; a control device 118 communicatively coupled to the power system for controlling the UAV flight; wherein the control device 118 includes an inertial measurement unit and a gyroscope.
  • the inertial measurement unit and the gyroscope are configured to detect an acceleration, a pitch angle, a roll angle, a heading angle, and the like of the drone.
  • the unmanned aerial vehicle 100 further includes: a sensing system 108, a communication system 110, a supporting device 102, and a photographing device 104.
  • the supporting device 102 may specifically be a pan/tilt
  • the communication system 110 may specifically include receiving
  • the receiver is configured to receive a wireless signal transmitted by the antenna 114 of the ground station 112, and 116 represents an electromagnetic wave generated during communication between the receiver and the antenna 114.
  • the orientation of the movable platform is controlled according to the moving direction of the movable platform, so that the detecting device can detect the obstacle in the moving direction, and avoid the detecting direction and the movable direction of the detecting device.
  • the detecting device cannot detect the collision of the obstacle in the moving direction of the movable platform, thereby improving the operational safety of the movable platform.
  • FIG. 18 is a structural diagram of a control apparatus according to an embodiment of the present invention.
  • the control apparatus 180 includes: a determining module 181 and a control module 182, wherein the determining module 181 is configured to determine a moving direction of the movable platform;
  • the module 182 is configured to control the orientation of the movable platform according to the moving direction of the movable platform,
  • the detecting device disposed on the movable platform is capable of detecting an obstacle in the moving direction.
  • the detecting device includes at least one of the following: a radar, an ultrasonic detecting device, a TOF ranging detecting device, a visual detecting device, and a laser detecting device.
  • the movable platform in the embodiment of the present invention may be any movable object configured with a detecting device for detecting an obstacle, and the following will be schematically illustrated with the unmanned aerial vehicle as a movable platform, when the movable platform is an unmanned aerial vehicle Time:
  • the determining module 181 is specifically configured to determine a moving direction of the unmanned aerial vehicle according to the displacement of the unmanned aerial vehicle. Alternatively, the determining module 181 is specifically configured to determine a moving direction of the unmanned aerial vehicle according to a moving speed of the unmanned aerial vehicle.
  • the determining module 181 determines the moving direction of the unmanned aerial vehicle according to the displacement of the unmanned aerial vehicle, determining the unmanned aerial vehicle in the world coordinate system according to the displacement of the unmanned aerial vehicle in the world coordinate system Direction of movement.
  • the moving direction of the UAV in the world coordinate system is determined according to the displacement of the UAV in the X-axis direction in the world coordinate system and the displacement in the Y-axis direction.
  • the determining module 181 determines the moving direction of the unmanned aerial vehicle according to the moving speed of the unmanned aerial vehicle, determining the speed in the X-axis direction and the speed in the Y-axis direction of the UAV in the world coordinate system.
  • the moving direction of the UAV in the world coordinate system is determined according to a ratio of a speed of the UAV in the X coordinate direction in the world coordinate system to a speed in the Y axis direction.
  • the orientation of the movable platform is controlled according to the moving direction of the movable platform, so that the detecting device can detect the obstacle in the moving direction, and avoid the detecting direction and the movable direction of the detecting device.
  • the detecting device cannot detect the collision of the obstacle in the moving direction of the movable platform, thereby improving the operational safety of the movable platform.
  • FIG. 19 is a structural diagram of a control apparatus according to another embodiment of the present invention.
  • the determining module 181 is specifically used according to the unmanned aerial vehicle.
  • X in the world coordinate system The ratio of the speed in the axial direction to the speed in the Y-axis direction determines an angle indicating the direction of motion;
  • the control device 180 further includes: a filtering module 183 and a replacement module 184 for performing an angle indicating the direction of motion
  • the filtering process obtains the moving direction of the UAV in the world coordinate system.
  • the determining module 181 is further configured to determine a replacement angle; the replacing module 184 is configured to replace the angle indicating the moving direction at the subsequent time with the replacement angle, so that each time indicates that the angle of the moving direction is continuous;
  • An angle indicating the direction of motion is an angle of the direction of motion with respect to a reference direction.
  • the determining module 181 determines the achievable manner of the replacement angle, comprising: determining a first inferior arc corresponding to the moving direction of the unmanned aerial vehicle from the moving moment of the unmanned aerial vehicle at a previous moment; according to the previous moment indication The angle of the moving direction and the central angle corresponding to the first inferior arc determine the replacement angle.
  • the detection direction of the detecting device may be controlled to be consistent with the moving direction of the unmanned aerial vehicle.
  • the determining module 181 determines a rotational direction of the UAV from a current detecting direction of the detecting device to a moving direction of the UAV; and the control module 182 controls the UAV to rotate according to the rotating direction.
  • the determining module 181 determines an achievable manner in which the unmanned aerial vehicle rotates from a current detecting direction of the detecting device to a rotating direction of the moving direction of the unmanned aerial vehicle, including:
  • the direction of rotation of the row machine includes at least one of the following:
  • the determining module 181 determines that the direction of rotation of the UAV is the direction indicated by the superior arc; if the angle of the rotation If the limit angle is less than or equal to the Yaw axis of the pan-tilt, the determining module 181 determines that the rotating direction of the UAV is the direction indicated by the second inferior arc.
  • the rotation of the camera on the gimbal in the yaw direction is based on the Yaw axis of the gimbal, and the rotation of the detection direction of the UAV detection device in the yaw direction is also rotated by the Yaw axis of the gimbal. Axis.
  • the determining module 181 is further configured to determine a rotational speed of the unmanned aerial vehicle according to a moving direction of the unmanned aerial vehicle and a current detecting direction of the detecting device.
  • the control module 182 is further configured to control the UAV to move in a PTZ coordinate system, wherein the PTZ coordinate system is a coordinate origin of a body center of the UAV, and an X-axis positive direction is the UAV The center of the fuselage points to the direction of the captured target object, and the pan-tilt coordinate system is the left-handed coordinate system.
  • the control device 180 further includes: a receiving module 185, configured to receive a control lever amount of the control device; and the control module 182 is specifically configured to control the unmanned according to the control lever amount of the control device The aircraft moves in the gimbal coordinate system.
  • the control module 182 is specifically configured to use at least one of the following:
  • the UAV is controlled to rotate in the PTZ coordinate system with the Z axis as an axis.
  • the receiving module 185 is specifically configured to use at least one of the following:
  • control module 182 is specifically configured to use at least one of the following:
  • the UAV is controlled to rotate in the PTZ coordinate system with the Z axis as an axis according to the amount of the control rod of the heading or heading button of the control device.
  • control module 182 is further configured to control a posture of the pan/tilt on the unmanned aerial vehicle, so that the photographing device on the pan/tilt tracks the shooting of the target object.
  • the preset filter is used to filter the angle indicating the moving direction of the UAV at each moment, and the noise interference in the angle indicating the moving direction at each moment can be filtered out, and the detection precision of the UAV moving direction is improved. Defining the direction of rotation of the UAV, avoiding the limit angle of the PTZ to its Yaw axis in the yaw direction during the process of the UAV moving from the current direction to the direction of movement of the UAV, ensuring the PTZ The angle of rotation in the direction is always within the limit angle of the Yaw axis, avoiding malfunction of the pan/tilt and shooting equipment.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or hard.
  • the form is implemented in the form of a software functional unit.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种控制方法、装置、设备及可移动平台,该方法包括:确定可移动平台(100)的运动方向;按照可移动平台(100)的运动方向,控制可移动平台(100)的朝向,以使配置在可移动平台(100)上的探测设备(21)能够探测到运动方向上的障碍物。通过可移动平台(100)的运动方向来控制可移动平台(100)的朝向,保证探测设备(21)可以探测到运动方向上的障碍物,避免当探测设备(21)的探测方向与可移动平台(100)的运动方向不一致时,探测设备(21)无法探测到可移动平台(100)运动方向上的障碍物,从而提高了可移动平台(100)的操作安全性。

Description

控制方法、装置、设备及可移动平台 技术领域
本发明实施例涉及控制领域,尤其涉及一种可移动平台的控制方法、装置、设备及可移动平台。
背景技术
目前可移动平台,例如无人飞行器、遥控拍摄车的机头设置有探测设备如雷达、双目避障系统、超声波系统等,用于探测可移动平台周围的障碍物,避免可移动平台在运动时碰撞到前方的障碍物。
在可移动平台在对拍摄对象进行拍摄时,可移动平台的控制器会控制云台转动,以使拍摄设备能够时刻跟踪拍摄的目标物体,或者从不同角度拍摄目标物体,从而导致可移动平台的运动方向和拍摄设备的拍摄方向不同,当可移动平台的机头指向拍摄的目标物体时,可能导致设置在机头上的探测设备的探测方向和可移动平台的运动方向不一致,而可移动平台只能检测到机头方向的障碍物,无法检测到其左右或后侧的障碍物,当可移动平台的机头对准目标物体,同时向左、向后、或向后运动时,很容易导致可移动平台撞向其左右或后侧的障碍物。目前缺乏有效的避障控制方法,可能会降低了可移动平台的操作安全性。
发明内容
本发明实施例提供一种控制方法、装置、设备及可移动平台,以提高可移动平台的操作安全性。
本发明实施例的一个方面是提供一种控制方法,包括:
确定可移动平台的运动方向;
按照所述可移动平台的运动方向,控制所述可移动平台的朝向,以使配置在所述可移动平台上的探测设备能够探测到所述运动方向上的障碍物。
本发明实施例的另一个方面是提供一种控制装置,包括:
确定模块,用于确定可移动平台的运动方向;
控制模块,用于按照所述可移动平台的运动方向,控制所述可移动平台的朝向,以使配置在所述可移动平台上的探测设备能够探测到所述运动方向上的障碍物。
本发明实施例的另一个方面是提供一种控制设备,包括:一个或多个处理器,单独或协同工作,所述处理器用于:
确定可移动平台的运动方向;
按照所述可移动平台的运动方向,控制所述可移动平台的朝向,以使配置在所述可移动平台上的探测设备能够探测到所述运动方向上的障碍物。
本发明实施例的另一个方面是提供一种可移动平台,包括:
机身;
动力系统,安装在所述机身,用于提供运行动力;
探测设备,安装在所述机身,用于探测所述可移动平台前方的障碍物;
以及如前一方面所述的控制设备,用于控制所述可移动平台的朝向。
本发明实施例提供的控制方法、装置、设备及可移动平台,通过确定可移动平台的运动方向,按照可移动平台的运动方向来控制可移动平台的朝向,保证探测设备可以探测到运动方向上的障碍物,避免当探测设备的探测方向与可移动平台的运动方向不一致时,探测设备无法探测到可移动平台运动方向上的障碍物可能发生的碰撞,从而提高了可移动平台的操作安全性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的无人飞行器和拍摄的目标物体的示意图;
图2为本发明实施例提供的无人飞行器和拍摄的目标物体的示意图;
图3为本发明实施例提供的控制方法的流程图;
图4为本发明实施例提供的世界坐标系的XoY平面的示意图;
图5为本发明实施例提供的世界坐标系的XoY平面的示意图;
图6为本发明实施例提供的调整无人飞行器的朝向的示意图;
图7为本发明实施例提供的调整无人飞行器的朝向的示意图;
图8为本发明另一实施例提供的控制方法的流程图;
图9为本发明另一实施例提供的无人飞行器的运动方向的示意图;
图10为本发明另一实施例提供的控制方法的流程图;
图11为本发明另一实施例提供的调整无人飞行器的朝向的示意图;
图12为本发明另一实施例提供的调整无人飞行器的朝向的示意图;
图13为本发明另一实施例提供的调整无人飞行器的朝向的示意图;
图14为本发明另一实施例提供的调整无人飞行器的朝向的示意图;
图15为本发明另一实施例提供的控制方法的流程图;
图16为本发明实施例提供的控制设备的结构图;
图17为本发明实施例提供的无人飞行器的结构图;
图18为本发明实施例提供的控制装置的结构图;
图19为本发明另一实施例提供的控制装置的结构图。
附图标记:
1-云台坐标系的X轴正方向     2-云台坐标系的X轴负方向
3-云台坐标系的Y轴正方向     4-云台坐标系的Y轴负方向
5-云台坐标系的Z轴正方向     6-云台坐标系的Z轴负方向
9-第一劣弧   11-螺旋桨      12-机身      13-探测设备
14-云台      15-拍摄设备    16-拍摄镜头17-光轴方向
20-目标物体     60-无人飞行器        61-探测设备的探测方向
62-无人飞行器的运动方向       63-探测设备
64-第二劣弧    65-优弧    66-拍摄设备的拍摄方向
67-转动角度    68-转动角度     160-控制设备
161-处理器      162-滤波器      163-通讯接口
100-无人飞行器   21-探测设备
107-电机    106-螺旋桨      117-电子调速器
118-控制设备   108-传感系统    110-通信系统
102-支撑设备     104-拍摄设备    112-地面站
114-天线         116-电磁波    180-控制装置
181-确定模块    182-控制模块    183-滤波模块
184-替换模块    185-接收模块
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
其中,本发明的实施例中的可移动平台可以为任何配置有用于探测障碍物的探测设备的可移动物体,其中可移动平台可以具体为无人飞行器、遥控拍摄车等,下面以无人飞行器作为可移动平台进行示意性说明,所以下文中所有的无人飞行器都可以用可移动平台进行替换,本发明的实施例并不将可移动平台限定在无人飞行器,本领域人员可以选用其他类型的可移动平台。
在无人飞行器航拍时,无人飞行器和拍摄的目标物体的示意图可如图1所示,11表示无人飞行器的螺旋桨,12表示无人飞行器的机身,13表示探测设备,探测设备可以设置在无人飞行器的前方,具体可以设置在无人飞行器的机头,14表示无人飞行器上的云台,15表示无人飞行器搭载 的拍摄设备,拍摄设备15通过云台14与无人飞行器的机身连接,16表示拍摄设备的拍摄镜头,17表示拍摄镜头16的光轴方向,光轴方向17指向拍摄的目标物体20,用于表示拍摄设备16的拍摄方向,20表示拍摄镜头16拍摄的目标物体。其中,探测设备13用于感测无人飞行器周围的障碍物,探测设备13包括如下至少一种:雷达、超声波探测设备、TOF测距探测设备、视觉探测设备、激光探测设备。无人飞行器内的飞行控制器可以控制云台14转动,拍摄设备15随着云台14的转动而转动,具体的,飞行控制器可控制云台14的姿态角,姿态角包括俯仰角(英文:pitch angle)、横滚角(英文:roll angle)、航向角(英文:yaw angle),飞行控制器通过控制云台14的姿态角来控制拍摄设备的姿态角,以使拍摄设备能够对准拍摄的目标物体20。
为了达到较好的拍摄效果,需要从多个不同的角度对目标物体20进行拍摄,一种可实现的方式是:保持无人飞行器机身的中心指向拍摄的目标物体20,如图1所示,o表示无人飞行器机身的中心,1表示无人飞行器机身的中心指向目标物体20的方向,拍摄镜头16的光轴方向17对准拍摄的目标物体20,控制无人飞行器在云台坐标系下运动,云台坐标系是指以无人飞行器机身的中心o为坐标原点的左手坐标系,云台坐标系的X轴正方向为无人飞行器机身的中心指向目标物体20的方向即箭头1所示的方向,Y轴正方向为箭头3指示的方向,Z轴正方向为箭头5指示的方向,另外,拍摄设备15的中心o1在云台坐标系的Y轴上。
在目标物体20不动的情况下,若控制无人飞行器沿着箭头1指示的方向运动,以目标物体20为参照物,相当于推近了拍摄镜头16;若控制无人飞行器沿着箭头2指示的方向运动,以目标物体20为参照物,相当于推远了拍摄镜头16;若控制无人飞行器沿着箭头3指示的方向运动,以目标物体20为参照物,相当于向右横移了拍摄镜头16;若控制无人飞行器沿着箭头4指示的方向运动,以目标物体20为参照物,相当于向左横移了拍摄镜头16。因此,通过控制无人飞行器沿着箭头1、2、3、4指示的方向运动时,可从多个不同的角度对目标物体20进行拍摄,达到了较好的拍摄效果。但是,由于探测设备13设置在无人飞行器的前方,即探测设备设置在无人飞行器的机头上,使得探测设备13只能探测到无人飞 行器前方的障碍物,即只能检测到箭头1指示的方向上的障碍物,无法检测到无人飞行器后方、以及左右的障碍物,即控制无人飞行器沿着箭头2指示的方向运动时,探测设备13无法检测到无人飞行器后方的障碍物,当控制无人飞行器沿着箭头3指示的方向运动时,探测设备13无法检测到无人飞行器右侧的障碍物,当控制无人飞行器沿着箭头4指示的方向运动时,探测设备13无法检测到无人飞行器左侧的障碍物,导致无人飞行器很容易撞向探测设备探测范围之外的障碍物。
在目标物体20移动的情况下,无人飞行器可以智能跟随目标物体20,智能跟随模式包括:普通尾随模式、平行模式、锁定模式,本实施例以平行模式为例。在平行模式下,无人飞行器将会在目标物体20的一侧跟随运动,并且保持与目标物体20的相对位置,如图2所示,假设目标物体20从位置A运动到位置B,为了保持与目标物体20的相对位置,无人飞行器从位置C运动到位置D,且从位置A到位置B的方向和从位置C到位置D的方向平行,即无人飞行器始终跟随在目标物体20的一侧。但是,无人飞行器在从位置C运动到位置D的过程中,探测设备13的探测方向21和无人飞行器的运动方向即从位置C到位置D的方向不一致,因此,无人飞行器在从位置C运动到位置D的过程中,探测设备13只能检测到探测方向21上的障碍物,而无法探测到无人飞行器的运动方向即从位置C到位置D的方向上的障碍物,导致无人飞行器在平行跟随的模式下很容易撞向其运动方向上的障碍物。
为了解决上述问题,本发明实施例提供一种控制方法。图3为本发明实施例提供的控制方法的流程图。如图3所示,本实施例中的方法,可以包括:
步骤S101、确定可移动平台的运动方向。
本发明的实施例中的可移动平台可以为任何配置有用于探测障碍物的探测设备的可移动物体,以下将以无人飞行器作为可移动平台进行示意性说明,当可移动平台为无人飞行器时,本实施例的执行主体可以是无人飞行器的飞行控制器,飞行控制器可以获取无人飞行器配置的传感器系统输出的数据,用于检测无人飞行器的位置、加速度、角加速度、速度、俯 仰角、横滚角及航向角等,其中传感器系统可以包括运动传感器和/或视觉传感器,运动传感器包括陀螺仪、加速度计、惯性测量单元、全球定位系统(Global Positioning System,简称GPS),飞行控制器可以利用传感器系统来确定无人飞行器的运动方向。
当无人飞行器在航拍时,飞行控制器可根据传感器系统确定出无人飞行器的运动方向,具体的,飞行控制器确定无人飞行器的运动方向的可实现方式包括如下两种:
第一种:根据所述无人飞行器的位移,确定所述无人飞行器的运动方向。
本实施例采用世界坐标系来确定无人飞行器相对于地面的位置,假设无人飞行器飞行高度已知,在该飞行高度可确定一个与地面平行的平面,如图4所示,在该平面内,以朝北方向为世界坐标系的X轴正方向,以朝东方向为世界坐标系的Y轴正方向,垂直于XoY平面向上的方向为世界坐标系的Z轴正方向,无人飞行器的位置变化即为无人飞行器的位移,假设无人飞行器在世界坐标系的XoY平面内从位置E移动到位置F,具体的,从位置E到位置F的位置变化即为无人飞行器的位移,位移是一个既有方向又有大小的矢量,具体的,位移大小是从位置E到位置F的距离,位移方向是从位置E指向位置F的方向。
本实施例可根据所述无人飞行器在世界坐标系中的位移,确定所述无人飞行器在世界坐标系中的运动方向。具体的,如图4所示,假设无人飞行器在前一时刻t1时刻位于E,下一时刻t2时刻位于F,E点在X轴方向上的坐标是x1,在Y轴方向上的坐标是y1,F点在X轴方向上的坐标是x2,在Y轴方向上的坐标是y2,无人飞行器从位置E运动到位置F的过程中,无人飞行器在X轴方向的位移是从x1到x2的位置变化,且无人飞行器在X轴方向的位移大小为(x2-x1),无人飞行器在Y轴方向的位移是从y1到y2的位置变化,且无人飞行器在Y轴方向的位移大小为(y2-y1),本实施例可将从位置E指向位置F的方向确定为t1时刻无人飞行器的运动方向,和/或,t2时刻无人飞行器的运动方向,由于无人飞行器的运动方向是变化的,因此,t2时刻之后,或t1时刻之前,无人飞行器的运动方向可能与从位置E指向位置F的方向不同。
如图4所示,假设从位置E指向位置F的方向与Y轴正方向的夹角为θ,具体的,根据无人飞行器在X轴方向的位移大小(x2-x1),以及无人飞行器在Y轴方向的位移大小(y2-y1),可确定从位置E指向位置F的方向与Y轴正方向的夹角θ,θ、(x2-x1)、(y2-y1)之间的关系可根据公式(1)确定:
tanθ=(x2-x1)/(y2-y1)      (1)
θ的大小可根据公式(2)确定:
θ=arctan[(x2-x1)/(y2-y1)]      (2)
夹角θ即为无人飞行器从位置E运动到位置F的过程中,无人飞行器的运动方向和世界坐标系Y轴正方向的夹角,因此,可用夹角θ来表示无人飞行器的运动方向。
第二种:根据所述无人飞行器的运动速度,确定所述无人飞行器的运动方向。
无人飞行器的运动速度也是一个既有方向又有大小的矢量,在本实施例中,无人飞行器的运动速度可以是实时变化的矢量,如图5所示,OE表示前一时刻t1时刻无人飞行器的运动速度,OF表示下一时刻t2时刻无人飞行器的运动速度,在t1时刻,无人飞行器的运动速度OE在世界坐标系的X轴上的分量为x1,在Y轴上的分量为y1;在t2时刻,无人飞行器的运动速度OF在世界坐标系的X轴上的分量为x2,在Y轴上的分量为y2。
在本实施例中,还可以根据无人飞行器的运动速度在世界坐标系的X轴上的分量和在Y轴上的分量的比值,确定无人飞行器的运动方向。在瞬时时刻,可以合理假设无人飞行器的运动方向与无人飞行器的速度方向一致。
在t1时刻,无人飞行器的运动速度OE和Y轴正方向的夹角θ1可用于表示无人飞行器在t1时刻的运动方向,夹角θ1可根据公式(3)或公式(4)确定:
tanθ1=x1/y1      (3)
θ1=arctan(x1/y1)    (4)
在t2时刻,无人飞行器的运动速度OF和Y轴正方向的夹角θ2可用于表示无人飞行器在t2时刻的运动方向,夹角θ2可根据公式(5)或公式(6) 确定:
tanθ2=x2/y2      (5)
θ2=arctan(x2/y2)       (6)
可见,t1时刻和t2时刻,无人飞行器的运动方向并不相同,同理,其他不同时刻,无人飞行器的运动方向可以不同。
步骤S102、按照所述可移动平台的运动方向,控制所述可移动平台的朝向,以使配置在所述可移动平台上的探测设备能够探测到所述运动方向上的障碍物。
根据上述步骤确定无人飞行器的运动方向后,按照无人飞行器的运动方向,控制所述无人飞行器的朝向,如图2所示,无人飞行器的运动方向为从C指向D的方向,探测设备的探测方向始终为箭头21指示的方向,两者不一致,因此,飞行控制器可以根据无人飞行器的运动方向,控制无人飞行器的朝向,以使无人飞行器机头上设置的探测设备的探测方向和无人飞行器的运动方向一致,即无人飞行器的运动方向决定无人飞行器的朝向,当探测设备的探测方向和无人飞行器的运动方向不一致时,飞行控制器可调整无人飞行器的朝向,以使无人飞行器机头上设置的探测设备的探测方向和无人飞行器的运动方向一致,从而使得探测设备13能够探测到运动方向CD上的障碍物。另外,在调整无人飞行器的朝向时,拍摄设备15的拍摄方向即光轴方向17始终对准拍摄的目标物体20,实现对目标物体20的跟随拍摄。
另外,如图6所示,60表示一个四旋翼无人飞行器,63表示无人飞行器60机头上设置的探测设备,61表示探测设备的探测方向,62表示无人飞行器的运动方向,调整无人飞行器的朝向之前,探测设备的探测方向与无人飞行器的运动方向不一致,此时,飞行控制器可控制无人飞行器的朝向,并对无人飞行器朝向的调整,调整无人飞行器的朝向之后,探测设备的探测方向61与无人飞行器的运动方向62一致。
此外,在其他实施例中,探测设备63不仅可以探测到箭头61所示方向上的障碍物,如图7所示,探测设备63还可以探测到以箭头61所示方向为中心、α角度范围内的障碍物,在这种情况下,调整无人飞行器的朝向后,探测设备的探测方向61可以与无人飞行器的运动方向62不完全一 致,只要探测设备的探测方向61与无人飞行器的运动方向62之间的夹角小于α,即可保证探测设备63能够探测到运动方向62上的障碍物。
本实施例通过确定无人飞行器的运动方向,按照无人飞行器的运动方向来控制无人飞行器的朝向,保证探测设备可以探测到运动方向上的障碍物,避免当探测设备的探测方向与无人飞行器的运动方向不一致时,探测设备无法探测到无人飞行器运动方向上的障碍物可能发生的碰撞,从而提高了无人飞行器的飞行安全性。
本发明实施例提供一种控制方法。图8为本发明另一实施例提供的控制方法的流程图。如图8所示,在图3所示实施例的基础上,根据所述无人飞行器在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定所述无人飞行器在世界坐标系中的运动方向,可以包括:
步骤S201、根据所述无人飞行器在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定指示所述运动方向的角度。
如图5所示,在t1时刻,指示所述运动方向的角度是运动方向相对于参考方向的角度,其中图5中以Y轴正方向为参考方向,则无人飞行器的运动速度OE和Y轴正方向的夹角θ1表示无人飞行器在t1时刻的运动方向,在t2时刻,无人飞行器的运动速度OF和Y轴正方向的夹角θ2表示无人飞行器在t2时刻的运动方向,若从世界坐标系的Y轴正方向按照逆时针方向旋转到速度方向表示正向,从世界坐标系的Y轴正方向按照顺时针方向旋转到速度方向表示负向,则夹角θ1是负的角度,夹角θ2是正的角度,从世界坐标系的Y轴正方向按照逆时针方向旋转到Y轴负方向时,表示无人飞行器运动方向的夹角的范围是0度至正180度,从世界坐标系的Y轴正方向按照顺时针方向旋转到Y轴负方向时,表示无人飞行器运动方向的夹角的范围是0度至负180度。可见,表示无人飞行器运动方向的夹角的范围是正180度至负180度,其中参考方向选用Y轴正方向只是示意性说明书,本领域技术人员可以选定其他方向为参考方向,例如可以选定X轴正方向为参考方向,在这里不做具体限定。
在本实施例中,无人飞行器上的传感器系统检测到的无人飞行器的运动速度是不断变化的,即不同时刻,检测到的无人飞行器的运动速度不同, 根据图5所示实施例的方法,可以确定出每一时刻,无人飞行器的运动方向,即根据无人飞行器在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定出表示运动方向的角度。
步骤S202、若前一时刻指示所述运动方向的角度与后一时刻指示所述运动方向的角度之差的绝对值大于预设值,则确定替换角度。
由于无人飞行器的运动速度是不断变化的,则无人飞行器上的惯性测量单元、陀螺仪和/或GPS检测到的无人飞行器的运动速度也是不断变化的,当无人飞行器处于悬停状态或以较小的速度飞行时,无人飞行器的运动速度的方向可能会变化较快,如图9所示,前一时刻t1,表示无人飞行器运动方向的角度θ1是170度,下一时刻t2,表示无人飞行器的运动方向的角度θ2是-170度,比较170度和-170度,说明无人飞行器的运动方向在短时间内发生了较大的变化即发生了阶跃,导致前一时刻t1和下一时刻t2,表示无人飞行器运动方向的角度不连续。
本实施例可根据前一时刻指示所述运动方向的角度与后一时刻指示所述运动方向的角度的差值,对各时刻指示所述运动方向的角度进行连续处理,例如,前一时刻t1,表示无人飞行器的运动方向的角度θ1是170度,下一时刻t2,表示无人飞行器的运动方向的角度θ2是-170度,两个角度之差的绝对值值是340度,如果预设值是180度,则340度大于了预设值,此时需要确定出下一时刻t2,表示无人飞行器的运动方向的角度θ2的替换角度,用替换角度来代替t2时刻表示无人飞行器的运动方向的角度θ2。
如图9可知,无人飞行器从170度沿着逆时针的方向转动到-170度方向只需转动20度,而无人飞行器从170度沿着顺时针的方向转动到-170度方向则需要转动340度,可见,在短时间内,无人飞行器从170度沿着逆时针的方向转动到-170度方向的概率要大于无人飞行器从170度沿着顺时针的方向转动到-170度方向的概率,为了得到稳定和连续的运动方向,同时为了方便滤波器进行滤波,保证滤波效果,在本实施例中,当前一时刻指示所述运动方向的角度与后一时刻指示所述运动方向的角度之差的绝对值大于预设值时,计算替换角度,用替换角度来代替后一时刻指示所述运动方向的角度,替换角度的计算方法可以是:1)计算从前一时刻无 人飞行器的运动方向到后一时刻无人飞行器的运动方向的第一劣弧对应的圆心角;2)根据前一时刻指示所述运动方向的角度和该圆心角得到替换角度。
例如,前一时刻t1,表示无人飞行器的运动方向的角度θ1是170度,下一时刻t2,表示无人飞行器的运动方向的角度θ2是-170度,从前一时刻t1无人飞行器的运动方向到下一时刻t2无人飞行器的运动方向对应的第一劣弧如箭头9所示,第一劣弧9对应的圆心角为20度,在θ1即170度的基础上加20度得到替换角度190度,用190度来代替-170度,即从世界坐标系的Y轴正方向按照逆时针方向旋转到Y轴负方向之后,若继续按照逆时针方向旋转,将按照大于180度的角度来表示无人飞行器的运动方向的角度。
步骤S203、将所述后一时刻指示所述运动方向的角度替换为所述替换角度,以使各时刻指示所述运动方向的角度连续。
如图9所示,t2时刻指示所述运动方向的角度为-170度,则用190度来代替-170度,则前一时刻t1,无人飞行器的运动速度的方向是170度,下一时刻t2,无人飞行器的运动速度的方向是190度。相比于前一时刻t1,无人飞行器的运动速度的方向是170度,下一时刻t2,无人飞行器的运动速度的方向是-170度,避免了运动速度方向的阶跃,使得前一时刻t1和下一时刻t2,表示无人飞行器运动方向的角度连续。同理,其他时刻,指示所述运动方向的角度也可以根据本实施例所述的方法处理,以使各个时刻指示所述运动方向的角度连续。
步骤S204、对指示所述运动方向的角度进行滤波处理,得到所述无人飞行器在世界坐标系中的运动方向。
由于无人飞行器上的传感器系统受外界的干扰,导致传感器系统感测到的无人飞行器的运动速度存在较大的噪声干扰,为了消除噪声干扰,本实施例采用预设的滤波器对上述步骤获得的各时刻指示无人飞行器运动方向的角度进行滤波处理,以滤除各时刻指示该运动方向的角度中的噪声干扰,该预设的滤波器可以是卡尔曼滤波器。
另外,在其他实施例中,若滤波器输出的角度值大于360度,还可以对该角度值取360度的余,用余值来表示该角度值,使得滤波器输出的角 度值稳定,进而得到稳定的指示无人飞行器运动方向的角度值。
此外,在其他实施例中,若无人飞行器的运动速度小于或等于阈值,则保持无人飞行器当前的朝向不变。或者,若滤波器输出的前后两个时刻的角度值之差的绝对值小于或等于阈值,则保持后一时刻无人飞行器的朝向不变。本实施例中,当前一时刻指示无人飞行器运动方向的角度与后一时刻指示该运动方向的角度之差的绝对值大于预设值时,计算从前一时刻无人飞行器的运动方向到后一时刻无人飞行器的运动方向的第一劣弧对应的圆心角,根据前一时刻指示所述运动方向的角度和该劣弧对应的圆心角,确定替换角度,并用替换角度代替后一时刻指示该运动方向的角度,实现了对各时刻指示该运动方向的角度的连续处理,避免指示无人飞行器运动方向的角度在短时间内出现阶跃,另外,采用预设的滤波器对各时刻指示无人飞行器运动方向的角度进行滤波处理,可以滤除各时刻指示该运动方向的角度中的噪声干扰,提高了无人飞行器运动方向的检测精度。
本发明实施例提供一种控制方法。图10为本发明另一实施例提供的无人飞行器的控制方法的流程图。如图10所示,在图3所示实施例的基础上,本实施例中的方法,可以包括:
步骤S301、确定无人飞行器的运动方向。
步骤S301与步骤S101一致,具体方法此处不再赘述。
步骤S302、按照所述无人飞行器的运动方向,确定所述无人飞行器从探测设备当前的探测方向转动到所述无人飞行器的运动方向的转动方向。
如图6或图7可知,飞行控制器可根据无人飞行器的运动方向,控制无人飞行器的朝向,飞行控制器调整无人飞行器的朝向之前,无人飞行器的探测设备的探测方向与无人飞行器的运动方向不一致,调整无人飞行器的朝向之后,无人飞行器上探测设备的探测方向61与无人飞行器的运动方向62一致,或者无人飞行器上探测设备的探测方向61与无人飞行器的运动方向62之间的夹角小于α。假设无人飞行器的运动方向62在短时间内不变,则根据图6可知,飞行控制器可以控制无人飞行器的朝向,使探测设备的探测方向61按照顺时针方向转动到无人飞行器的运动方向62,也可以控制无人飞行器的朝向,使探测设备的探测方向61按照逆时针方 向转动到无人飞行器的运动方向62。本实施例的下述方法将介绍如何确定按照顺时针方向,或者逆时针方向,控制无人飞行器的朝向,使无人飞行器的探测设备的探测方向61与无人飞行器的运动方向62一致。
步骤S303、按照所述转动方向,控制所述无人飞行器转动。
确定所述无人飞行器从探测设备当前的探测方向转动到所述无人飞行器的运动方向的转动方向后,飞行控制器将按照该转动方向,控制该无人飞行器转动。
在本实施例中,确定所述无人飞行器从探测设备当前的探测方向转动到所述无人飞行器的运动方向的转动方向可通过如下步骤41-43实现:
步骤41、根据所述无人飞行器的运动方向、所述探测设备当前的探测方向,确定所述无人飞行器从所述探测设备当前的探测方向转动到所述运动方向对应的第二劣弧。
如图11所示,60表示一个四旋翼无人飞行器,63表示无人飞行器60机头上设置的探测设备,61表示探测设备63的探测方向,62表示无人飞行器的运动方向,15表示无人飞行器60上搭载的拍摄设备,拍摄设备15通过云台(未示出)搭载在无人飞行器60上,本实施例不限定拍摄设备15相对于无人飞行器60机身的位置,拍摄设备15可以设置在无人飞行器60的机身上侧,也可以设置在无人飞行器60的机身下侧。
以无人飞行器60的机身中心为坐标原点o、向东为Y轴正向,向北为X轴正向建立如图11所示的坐标系,某一时刻t3,拍摄设备15拍摄的目标物体20在无人飞行器60的正前方,探测设备的探测方向61与拍摄设备15的拍摄方向一致。
无人飞行器60的飞行控制器通过控制云台的姿态来调整拍摄设备15的拍摄方向,具体的,飞行控制器通过控制云台的航向角,控制拍摄设备15的拍摄方向以云台的Yaw轴为转动轴线进行转动,由于拍摄设备和云台之间通过传输线连接,使得拍摄设备15的拍摄方向并不能以云台的Yaw轴为转动轴线无限转动,可选的,云台的Yaw轴的限位角为+360度和-360度,即拍摄设备15的拍摄方向只能以云台的Yaw轴为转动轴线逆时针转动一圈或者顺时针转动一圈。假设从X轴正向开始沿着逆时针方向转动为负方向,从X轴正向开始沿着顺时针方向转动为正方向,在图11所示的 坐标系中,云台的Yaw轴为过原点o,垂直于XoY平面的直线,则拍摄设备15的拍摄方向可以从X轴正向即0度方向沿着逆时针方向转一圈回到X轴正向即-360度,也可以从X轴正向即0度方向沿着顺时针方向转一圈回到X轴正向即+360度。
如图11所示,探测设备的探测方向61与X轴正向一致,无人飞行器的运动方向62与Y轴正向一致,控制无人飞行器60从探测设备的探测方向61转动到无人飞行器的运动方向62的转动方向有两种:一种是按照顺时针方向转动,即从探测设备的探测方向61转动到无人飞行器的运动方向62的第二劣弧64的方向,此处的第二劣弧是为了和上述实施例中的第一劣弧9区别开来,所谓劣弧是指圆心角小于180度的圆弧;另一种是按照逆时针方向转动,即从探测设备的探测方向61转动到无人飞行器的运动方向62的优弧65的方向,所谓优弧是指圆心角大于180度的圆弧。
步骤42、当所述无人飞行器沿所述第二劣弧指示的方向从所述探测设备当前的探测方向转到所述运动方向时,确定所述无人飞行器的云台上的拍摄设备的拍摄方向相对于所述探测设备的探测方向转动的角度,其中所述拍摄方向相对于所述探测方向的转动是以云台的Yaw轴为转动轴线。
在本实施例中,当目标物体20的位置发生变化时,拍摄设备15的拍摄方向跟着变化,假设目标物体20在时刻t3开始沿着逆时针方向开始移动,到t4时刻,目标物体20移动到了如图12所示的位置,在目标物体20沿着逆时针方向移动的过程中,云台控制拍摄设备15沿着逆时针方向转动到了如图12所示的-330度方向,66表示t4时刻拍摄设备的拍摄方向,此时,拍摄设备15的拍摄方向66以所述云台的Yaw轴为转动轴线,相对于探测设备63的探测方向61转动的角度为-330度。
另外,如图12所示,若云台控制拍摄设备15沿着逆时针方向继续转动60度时云台将到达其Yaw轴的限位角-360。若无人飞行器沿劣弧64指示的方向从探测设备的探测方向61转到运动方向62时,将加速云台到达其Yaw轴的限位角-360。因此,确定无人飞行器从探测设备的探测方向61转动到无人飞行器的运动方向62的转动方向时,需要考虑无人飞行器的云台上的拍摄设备的拍摄方向相对于所述探测设备的探测方向转动的角度,其中所述拍摄方向相对于所述探测方向的转动是以云台的Yaw轴为转 动轴线。
云台的机械角度是指以云台的Yaw轴为转动轴线相对于参考方向的旋转角度,该参考方向是无人飞行器的探测设备的探测方向和拍摄设备的拍摄方向一致时探测设备的探测方向,如图11所示,探测设备63的探测方向和拍摄设备15的拍摄方向均为X轴正向,则X轴正向可作为参考方向,如图12所示,拍摄设备15以Yaw轴为转动轴线相对于参考方向即X轴正向的旋转角度为-330度,即此时云台的机械角度为-330度。
假设云台的机械角度用β1表示,无人飞行器沿劣弧指示的方向从所述探测设备当前的探测方向转到所述运动方向的转动角度用β2表示,若|β1-β2|大于云台Yaw轴的限位角,则表示无人飞行器沿劣弧指示的方向从所述探测设备当前的探测方向转到所述运动方向的过程,加速了云台到达其Yaw轴的限位角,且无人飞行器沿劣弧指示的方向从所述探测设备当前的探测方向转到所述运动方向之后,拍摄设备的拍摄方向以所述云台的Yaw轴为转动轴线,相对于所述探测设备的探测方向的转动角度将大于Yaw轴的限位角。若|β1-β2|小于云台Yaw轴的限位角,则表示无人飞行器沿劣弧指示的方向从探测设备当前的探测方向转到所述运动方向的过程,减缓了云台到达其Yaw轴的限位角,且无人飞行器沿劣弧指示的方向从探测设备当前的探测方向转到所述运动方向之后,拍摄设备的拍摄方向以所述云台的Yaw轴为转动轴线,相对于所述探测设备的探测方向转动的角度将小于Yaw轴的限位角。
步骤43、根据所述转动的角度,确定所述无人飞行器的转动方向。
在本实施例中,所述无人飞行器的转动方向包括如下至少一种:所述第二劣弧指示的方向,与所述第二劣弧对应的优弧指示的方向。
具体的,若以所述云台的Yaw轴为转动轴线,无人飞行器的云台上的拍摄设备的拍摄方向相对于所述探测设备的探测方向转动的角度大于所述云台的Yaw轴的限位角,则确定所述无人飞行器的转动方向为所述优弧指示的方向。
如图12所示,云台的机械角度β1为-330度,无人飞行器沿劣弧64指示的方向从探测设备的探测方向61转到运动方向62的转动角度β2为+90度,则|β1-β2|=|-330-90|=420,420大于360,且无人飞行器沿劣弧64 指示的方向从探测设备的探测方向61转到运动方向62后,如图13所示,拍摄设备的拍摄方向以所述云台的Yaw轴为转动轴线,相对于探测设备63的探测方向的转动角度为(-330-90)度=-420度,如图13所示的67,-420度超出了云台的Yaw轴的限位角-360度。
因此,在如图12所示的情况下,飞行控制器应该控制无人飞行器60沿优弧65指示的方向从所述探测设备的探测方向61转到所述运动方向62,无人飞行器60沿优弧65指示的方向从探测设备的探测方向61转到所述运动方向62的转动角度β2为-270度,|β1-β2|=|-330-(-270)|=60,60小于360,且无人飞行器60沿优弧65指示的方向从探测设备的探测方向61转到所述运动方向62后,如图14所示,拍摄设备的拍摄方向以所述云台的Yaw轴为转动轴线,相对于探测设备63的探测方向的转动角度为[-330-(-270)]度=-60度,如图14所示的68,没有超出云台的Yaw轴的限位角-360度。
同理,若以所述云台的Yaw轴为转动轴线,所述无人飞行器的云台上的拍摄设备的拍摄方向相对于所述探测设备的探测方向转动的角度小于或等于所述云台的Yaw轴的限位角,则确定所述无人飞行器的转动方向为所述第二劣弧指示的方向。具体原理此处不再赘述。
另外,在其他实施例中,还可以根据所述无人飞行器的运动方向、所述探测设备当前的探测方向,确定所述无人飞行器的转动速度。
根据前述方法确定无人飞行器的运动方向、所述探测设备当前的探测方向、以及无人飞行器的转动方向之后,采用比例-积分-导数(Proportion-Integral-Derivative,简称PID)控制器即可实现对无人飞行器朝向的控制,PID控制器的输入是无人飞行器的运动方向和探测设备当前的探测方向,输出是无人飞行器的转动方向和转动速度,期望角度是无人飞行器的运动方向,当前角度是探测设备当前的探测方向。
本实施例根据无人飞行器的运动方向、探测设备当前的探测方向,确定无人飞行器从探测设备当前的探测方向转动到运动方向对应的劣弧,若无人飞行器沿劣弧指示的方向从探测设备当前的探测方向转到运动方向后,以所述云台的Yaw轴为转动轴线,拍摄设备的拍摄方向相对于探测设备的探测方向转动的角度大于云台的Yaw轴的限位角,则确定无人飞行器 的转动方向为优弧指示的方向;若无人飞行器沿劣弧指示的方向从探测设备当前的探测方向转到运动方向时,以所述云台的Yaw轴为转动轴线,拍摄设备的拍摄方向相对于探测设备的探测方向转动的角度小于或等于云台的Yaw轴的限位角,则确定无人飞行器的转动方向为劣弧指示的方向,即明确了无人飞行器的转动方向,避免了无人飞行器从探测设备当前的探测方向转到无人飞行器的运动方向的过程中,云台到达其Yaw轴即偏航方向的限位角,保证云台在偏航方向转动的角度始终位于Yaw轴限位角的范围内,避免云台和拍摄设备出现故障。
本发明实施例提供一种控制方法。图15为本发明另一实施例提供的控制方法的流程图。如图15所示,在图3所示实施例的基础上,本实施例中的方法,可以包括:
步骤S401、控制所述无人飞行器在云台坐标系中运动。
在上述实施例的基础上,地面控制设备例如遥控器可以控制无人飞行器运动,无人飞行器的飞行控制器也可以自主控制无人飞行器运动,在本实施例中,地面控制设备或者飞行控制器可以控制无人飞行器在云台坐标系中运动。所述云台坐标系以无人机飞行的机身中心坐标原点,X轴正方向为所述无人机飞行的机身中心指向拍摄的目标物体的方向,所述云台坐标系为左手坐标系,云台坐标系具体如图1所示的坐标系,云台坐标系的坐标原点为o,X轴正方向为箭头1指示的方向,Y轴正方向为箭头3指示的方向,Z轴正方向为箭头5指示的方向。
当无人飞行器的飞行控制器自主控制无人飞行器在云台坐标系中运动时,飞行控制器可控制所述无人飞行器在云台坐标系中的X轴方向运动;或者,控制所述无人飞行器在云台坐标系中的Y轴方向运动;或者,控制所述无人飞行器在云台坐标系中的Z轴方向运动;或者,控制所述无人飞行器在云台坐标系中以Z轴为轴线旋转。
当地面控制设备例如遥控器控制无人飞行器在云台坐标系中运动时,遥控器的操作者通过操控遥控器上的摇杆控制无人飞行器在云台坐标系中运动,遥控器的摇杆底部设置有传感器,该传感器用于检测用户操作该摇杆时该遥控器产生的控制杆量,该遥控器的无线发送模块将该控制杆量 发送给无人飞行器的飞行控制器,飞行控制器根据控制杆量控制无人飞行器运动,具体的,飞行控制器可用于执行如下至少一种操作:
接收控制设备的俯仰杆或俯仰按键的控制杆量,并控制所述无人飞行器在云台坐标系中的X轴方向运动;
接收控制设备的横滚杆或横滚按键的控制杆量,并控制所述无人飞行器在云台坐标系中的Y轴方向运动;
接收控制设备的油门杆或油门按键的控制杆量,并控制所述无人飞行器在云台坐标系中的Z轴方向运动;
接收控制设备的航向杆或航向按键的控制杆量,并控制所述无人飞行器在云台坐标系中以Z轴为轴线旋转。
步骤S402、确定无人飞行器的运动方向。
步骤S402与步骤S101一致,具体方法此处不再赘述。
步骤S403、按照所述无人飞行器的运动方向,控制所述无人飞行器的朝向,以使配置在所述无人飞行器上的探测设备能够探测到所述运动方向上的障碍物。
步骤S403与步骤S102一致,具体方法此处不再赘述。
本实施例通过地面控制设备控制无人飞行器在云台坐标系中运动,或者通过飞行控制器自主控制无人飞行器在云台坐标系中运动,控制无人飞行器沿着云台坐标系的X轴正向运动时,相当于推近了拍摄镜头;控制无人飞行器沿着云台坐标系的X轴负向运动时,相当于推远了拍摄镜头;控制无人飞行器沿着云台坐标系的Y轴正向运动时,相当于向右横移了拍摄镜头;控制无人飞行器沿着云台坐标系的Y轴负向运动时,相当于向左横移了拍摄镜头,实现了从多个不同的角度对目标物体进行拍摄,达到了较好的拍摄效果。
本发明实施例提供一种控制方法。在图3所示实施例的基础上,本实施例中的方法,可以还包括:
控制所述无人飞行器上的云台的姿态,以使所述云台上的拍摄设备对目标物体跟踪拍摄。
飞行控制器在确定了无人飞行器的运动方向后,无人飞行器可以使探 测设备的探测方向与运动方向保持一致,另外飞行控制器还可以控制无人飞行器的云台,使云台上的拍摄设备始终对准目标物体,即对目标物体进行跟踪拍摄,当目标物体运动时,飞行控制器会调整云台以使拍摄设备转动,始终保持目标物体在拍摄画面中,这样一方面可以使无人飞行器探测到运动方向上的障碍物,另一方面可以对目标物体跟踪拍摄,提高了无人飞行器的操作安全性,另外降低了对用户的专业性要求。
本发明实施例还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序执行时可包括如图3-15对应实施例中的控制方法的部分或全部步骤。
本发明实施例提供一种控制设备。图16为本发明实施例提供的控制设备的结构图,如图16所示,控制设备160包括一个或多个处理器161,单独或协同工作,处理器161用于:确定可移动平台的运动方向;按照所述可移动平台的运动方向,控制所述可移动平台的朝向,以使配置在所述可移动平台上的探测设备能够探测到所述运动方向上的障碍物。
本发明的实施例中的可移动平台可以为任何配置有用于探测障碍物的探测设备的可移动物体,以下将以无人飞行器作为可移动平台进行示意性说明,当可移动平台为无人飞行器时,具体的,处理器161可通过如下两种方式确定无人飞行器的运动方向:
第一种:根据所述无人飞行器的位移,确定所述无人飞行器的运动方向。
所述处理器根据所述无人飞行器在世界坐标系中的位移,确定所述无人飞行器在世界坐标系中的运动方向;具体的,根据所述无人飞行器在世界坐标系中的X轴方向的位移和Y轴方向的位移,确定所述无人飞行器在世界坐标系中的运动方向。
第二种:根据所述无人飞行器的运动速度,确定所述无人飞行器的运动方向。
所述处理器根据所述无人飞行器在世界坐标系中的X轴方向的速度和Y轴方向的速度,确定所述无人飞行器在世界坐标系中的运动方向;具体 的,根据所述无人飞行器在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定所述无人飞行器在世界坐标系中的运动方向。
本发明实施例提供的控制设备的具体原理和实现方式均与图3所示实施例类似,此处不再赘述。
本实施例通过确定可移动平台的运动方向,按照可移动平台的运动方向来控制可移动平台的朝向,保证探测设备可以探测到运动方向上的障碍物,避免当探测设备的探测方向与可移动平台的运动方向不一致时,探测设备无法探测到可移动平台运动方向上的障碍物可能发生的碰撞,从而提高了可移动平台的操作安全性。
本发明实施例提供一种控制设备。如图16所示,控制设备160还包括:与处理器161通讯连接的滤波器162,处理器161根据所述无人飞行器在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定所述无人飞行器在世界坐标系中的运动方向时具体用于:根据所述无人飞行器在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定指示所述运动方向的角度;滤波器162用于对指示所述运动方向的角度进行滤波处理,得到所述无人飞行器在世界坐标系中的运动方向。
进一步地,滤波器162对指示所述运动方向的角度进行滤波处理之前,处理器161还用于:计算前一时刻指示所述运动方向的角度与后一时刻指示所述运动方向的角度的差值;比较前一时刻指示所述运动方向的角度与后一时刻指示所述运动方向的角度之差的绝对值和预设值;若前一时刻指示所述运动方向的角度与后一时刻指示所述运动方向的角度之差的绝对值大于预设值,则处理器161还用于:确定替换角度;将所述后一时刻指示所述运动方向的角度替换为所述替换角度,以使各时刻指示所述运动方向的角度连续;所述指示所述运动方向的角度是所述运动方向相对于参考方向的角度。
可选的,所述处理器161确定替换角度时具体用于:确定从前一时刻所述无人飞行器的运动方向转动到后一时刻所述无人飞行器的运动方向对应的第一劣弧;根据前一时刻指示所述运动方向的角度和所述第一劣弧对应的圆心角,确定所述替换角度。
本发明实施例提供的控制设备的具体原理和实现方式均与图8所示实施例类似,此处不再赘述。
本实施例中,当前一时刻指示无人飞行器运动方向的角度与后一时刻指示该运动方向的角度之差的绝对值大于预设值时,计算从前一时刻无人飞行器的运动方向到后一时刻无人飞行器的运动方向的劣弧对应的圆心角,根据前一时刻指示所述运动方向的角度和该劣弧对应的圆心角,确定替换角度,并用替换角度代替后一时刻指示该运动方向的角度,实现了对各时刻指示该运动方向的角度的连续处理,避免指示无人飞行器运动方向的角度在短时间内出现阶跃,另外,采用预设的滤波器对各时刻指示无人飞行器运动方向的角度进行滤波处理,可以滤除各时刻指示该运动方向的角度中的噪声干扰,提高了无人飞行器运动方向的检测精度。
本发明实施例提供一种控制设备。在图16所示实施例提供的技术方案的基础上,处理器161可以控制探测设备的探测方向和无人飞行器的运动方向一致。
另外,处理器161控制所述无人飞行器的朝向时具体用于:确定所述无人飞行器从探测设备当前的探测方向转动到所述无人飞行器的运动方向的转动方向,按照所述转动方向,控制所述无人飞行器转动。
具体的,处理器161确定无人飞行器从探测设备当前的探测方向转动到所述无人飞行器的运动方向的转动方向时具体用于:根据所述无人飞行器的运动方向、所述探测设备当前的探测方向,确定无人飞行器从所述探测设备当前的探测方向转动到所述运动方向对应的第二劣弧;当所述无人飞行器沿所述第二劣弧指示的方向从所述探测设备当前的探测方向转到所述运动方向时,确定所述无人飞行器的云台上的拍摄设备的拍摄方向相对于所述探测设备的探测方向转的动角度,其中,所述拍摄方向相对于所述探测方向的转动是以所述云台的Yaw轴为转动轴线;根据所述转动的角度,确定所述无人飞行器的转动方向,所述无人飞行器的转动方向包括如下至少一种:所述第二劣弧指示的方向,与所述第二劣弧对应的优弧指示的方向。
处理器161根据所述转动的角度,确定所述无人飞行器的转动方向时 具体用于:比较所述转动的角度和所述云台的Yaw轴的限位角;若所述转动的角度大于所述云台的Yaw轴的限位角,则所述处理器确定所述无人飞行器的转动方向为所述优弧指示的方向;若所述转动的角度小于或等于所述云台Yaw轴的限位角,则所述处理器确定所述无人飞行器的转动方向为所述第二劣弧指示的方向。
此外,在其他实施例中,处理器161还用于:根据所述无人飞行器的运动方向、所述探测设备当前的探测方向,确定所述无人飞行器的转动速度。所述探测设备包括如下至少一种:雷达、超声波探测设备、TOF测距探测设备、视觉探测设备、激光探测设备。
本发明实施例提供的控制设备的具体原理和实现方式均与图10所示实施例类似,此处不再赘述。
本实施例根据无人飞行器的运动方向、探测设备当前的探测方向,确定无人飞行器从探测设备当前的探测方向转动到运动方向对应的劣弧,若无人飞行器沿劣弧指示的方向从探测设备当前的探测方向转到运动方向后,拍摄设备的拍摄方向以所述云台的Yaw轴为转动轴线,相对于探测设备的探测方向转动的角度大于云台的Yaw轴的限位角,则确定无人飞行器的转动方向为优弧指示的方向;若无人飞行器沿劣弧指示的方向从探测设备当前的探测方向转到运动方向时,拍摄设备的拍摄方向以所述云台的Yaw轴为转动轴线,相对于探测设备的探测方向转动的角度小于或等于云台的Yaw轴的限位角,则确定无人飞行器的转动方向为劣弧指示的方向,即明确了无人飞行器的转动方向,避免了无人飞行器从探测设备当前的探测方向转到无人飞行器的运动方向的过程中云台到达其Yaw轴即偏航方向的限位角,保证云台在偏航方向的转动角度始终位于Yaw轴限位角的范围内,避免云台和拍摄设备出现故障。
本发明实施例提供一种控制设备。在图16所示实施例提供的技术方案的基础上,处理器161还用于:控制所述无人飞行器在云台坐标系中运动,所述云台坐标系以所述无人飞行器的机身中心为坐标原点,X轴正方向为所述无人飞行器的机身中心指向拍摄的目标物体的方向,所述云台坐标系为左手坐标系。
控制设备160还包括:与处理器161通讯连接的通讯接口163,通讯接口163用于接收控制设备的控制杆量,并将所述控制设备的控制杆量传输给处理器161;处理器161根据所述控制设备的控制杆量,控制所述无人飞行器在云台坐标系中运动。
处理器161控制所述无人飞行器在云台坐标系中运动时具体用于如下至少一种:控制所述无人飞行器在云台坐标系中的X轴方向运动;控制所述无人飞行器在云台坐标系中的Y轴方向运动;控制所述无人飞行器在云台坐标系中的Z轴方向运动;控制所述无人飞行器在云台坐标系中以Z轴为轴线旋转。
此外,通讯接口163具体用于接收如下至少一种:控制设备的俯仰杆或俯仰按键的控制杆量;控制设备的横滚杆或横滚按键的控制杆量;控制设备的油门杆或油门按键的控制杆量;控制设备的航向杆或航向按键的控制杆量。相应的,处理器161具体用于如下至少一种:根据控制设备的俯仰杆或俯仰按键的控制杆量,控制所述无人飞行器在云台坐标系中的X轴方向运动;根据控制设备的横滚杆或横滚按键的控制杆量,控制所述无人飞行器在云台坐标系中的Y轴方向运动;根据控制设备的油门杆或油门按键的控制杆量,控制所述无人飞行器在云台坐标系中的Z轴方向运动;根据控制设备的航向杆或航向按键的控制杆量,控制所述无人飞行器在云台坐标系中以Z轴为轴线旋转。
另外,处理器161还用于:控制所述无人飞行器上的云台的姿态,以使所述云台上的拍摄设备对目标物体跟踪拍摄。
本发明实施例提供的飞行控制设备的具体原理和实现方式均与图15所示实施例类似,此处不再赘述。
本实施例通过地面控制设备控制无人飞行器在云台坐标系中运动,或者通过飞行控制器自主控制无人飞行器在云台坐标系中运动,控制无人飞行器沿着云台坐标系的X轴正向运动时,相当于推近了拍摄镜头;控制无人飞行器沿着云台坐标系的X轴负向运动时,相当于推远了拍摄镜头;控制无人飞行器沿着云台坐标系的Y轴正向运动时,相当于向右横移了拍摄镜头;控制无人飞行器沿着云台坐标系的Y轴负向运动时,相当于向左横移了拍摄镜头,实现了从多个不同的角度对目标物体进行拍摄,达到了较 好的拍摄效果。
本发明实施例提供一种可移动平台,本发明的实施例中的可移动平台可以为任何配置有用于探测障碍物的探测设备的可移动物体,以下将以无人飞行器作为可移动平台进行示意性说明,当可移动平台为无人飞行器时,图17为本发明实施例提供的无人飞行器的结构图,如图17所示,无人飞行器100包括:机身、动力系统和控制设备118,所述动力系统包括如下至少一种:电机107、螺旋桨106和电子调速器117,动力系统安装在所述机身,用于提供动力;探测设备21安装在所述机身,与所述控制设备通信连接,用于探测无人飞行器前方的物体;控制设备118与所述动力系统通讯连接,用于控制所述无人飞行器飞行;其中,控制设备118包括惯性测量单元及陀螺仪。所述惯性测量单元及所述陀螺仪用于检测所述无人机的加速度、俯仰角、横滚角及航向角等。
另外,如图17所示,无人飞行器100还包括:传感系统108、通信系统110、支撑设备102、拍摄设备104,其中,支撑设备102具体可以是云台,通信系统110具体可以包括接收机,接收机用于接收地面站112的天线114发送的无线信号,116表示接收机和天线114通信过程中产生的电磁波。
本发明实施例提供的控制设备的具体原理和实现方式均与上述实施例类似,此处不再赘述。
本实施例通过确定可移动平台的运动方向,按照可移动平台的运动方向来控制可移动平台的朝向,保证探测设备可以探测到运动方向上的障碍物,避免当探测设备的探测方向与可移动平台的运动方向不一致时,探测设备无法探测到可移动平台运动方向上的障碍物可能发生的碰撞,从而提高了可移动平台的操作安全性。
本发明实施例提供一种控制装置。图18为本发明实施例提供的控制装置的结构图,如图18所示,控制装置180包括:确定模块181和控制模块182,其中,确定模块181用于确定可移动平台的运动方向;控制模块182用于按照所述可移动平台的运动方向,控制所述可移动平台的朝向, 以使配置在所述可移动平台上的探测设备能够探测到所述运动方向上的障碍物。所述探测设备包括如下至少一种:雷达、超声波探测设备、TOF测距探测设备、视觉探测设备、激光探测设备。
本发明的实施例中的可移动平台可以为任何配置有用于探测障碍物的探测设备的可移动物体,以下将以无人飞行器作为可移动平台进行示意性说明,当可移动平台为无人飞行器时:
具体的,确定模块181具体用于根据所述无人飞行器的位移,确定所述无人飞行器的运动方向。或者,确定模块181具体用于根据所述无人飞行器的运动速度,确定所述无人飞行器的运动方向。
当确定模块181根据所述无人飞行器的位移,确定所述无人飞行器的运动方向时,根据所述无人飞行器在世界坐标系中的位移,确定所述无人飞行器在世界坐标系中的运动方向。可选的,根据所述无人飞行器在世界坐标系中的X轴方向的位移和Y轴方向的位移,确定所述无人飞行器在世界坐标系中的运动方向。
当确定模块181根据所述无人飞行器的运动速度,确定所述无人飞行器的运动方向时,根据所述无人飞行器在世界坐标系中的X轴方向的速度和Y轴方向的速度,确定所述无人飞行器在世界坐标系中的运动方向。可选的,根据所述无人飞行器在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定所述无人飞行器在世界坐标系中的运动方向。
本发明实施例提供的控制装置的具体原理和实现方式均与上述实施例类似,此处不再赘述。
本实施例通过确定可移动平台的运动方向,按照可移动平台的运动方向来控制可移动平台的朝向,保证探测设备可以探测到运动方向上的障碍物,避免当探测设备的探测方向与可移动平台的运动方向不一致时,探测设备无法探测到可移动平台运动方向上的障碍物可能发生的碰撞,从而提高了可移动平台的操作安全性。
本发明实施例提供一种控制装置。图19为本发明另一实施例提供的控制装置的结构图,如图19所示,在图18所示实施例提供的技术方案的基础上,确定模块181具体用于根据所述无人飞行器在世界坐标系中的X 轴方向的速度和Y轴方向的速度的比值,确定指示所述运动方向的角度;控制装置180还包括:滤波模块183和替换模块184,滤波模块183用于对指示所述运动方向的角度进行滤波处理,得到所述无人飞行器在世界坐标系中的运动方向。
在滤波模块183对指示所述运动方向的角度进行滤波处理之前,若前一时刻指示所述运动方向的角度与后一时刻指示所述运动方向的角度之差的绝对值大于预设值,则确定模块181还用于确定替换角度;替换模块184用于将所述后一时刻指示所述运动方向的角度替换为所述替换角度,以使各时刻指示所述运动方向的角度连续;所述指示所述运动方向的角度是所述运动方向相对于参考方向的角度。
确定模块181确定替换角度的可实现方式包括:确定从前一时刻所述无人飞行器的运动方向转动到后一时刻所述无人飞行器的运动方向对应的第一劣弧;根据前一时刻指示所述运动方向的角度和所述第一劣弧对应的圆心角,确定所述替换角度。
另外,控制模块182按照所述无人飞行器的运动方向,控制所述无人飞行器的朝向时,具体可以控制所述探测设备的探测方向与所述无人飞行器的运动方向一致。
或者,确定模块181确定所述无人飞行器从探测设备当前的探测方向转动到所述无人飞行器的运动方向的转动方向;控制模块182按照所述转动方向,控制所述无人飞行器转动。
确定模块181确定所述无人飞行器从探测设备当前的探测方向转动到所述无人飞行器的运动方向的转动方向的可实现方式包括:
根据所述无人飞行器的运动方向、所述探测设备当前的探测方向,确定无人飞行器从所述探测设备当前的探测方向转动到所述运动方向对应的第二劣弧;
当所述无人飞行器沿所述第二劣弧指示的方向从所述探测设备当前的探测方向转到所述运动方向时,确定所述无人飞行器的云台上的拍摄设备的拍摄方向相对于所述探测设备的探测方向转动的角度;其中,所述拍摄方向相对于所述探测方向的转动是以所述云台的Yaw轴为转动轴线;
根据所述转动的角度,确定所述无人飞行器的转动方向,所述无人飞 行器的转动方向包括如下至少一种:
所述第二劣弧指示的方向,与所述第二劣弧对应的优弧指示的方向。
具体的,若所述转动的角度大于所述云台的Yaw轴的限位角,则确定模块181确定所述无人飞行器的转动方向为所述优弧指示的方向;若所述转动的角度小于或等于所述云台Yaw轴的限位角,则确定模块181确定所述无人飞行器的转动方向为所述第二劣弧指示的方向。
其中,云台上的拍摄设备在偏航方向上的旋转是以云台的Yaw轴为旋转轴线,无人飞行器的探测设备的探测方向在偏航方向的旋转也是以云台的Yaw轴为旋转轴线。
此外,确定模块181还用于根据所述无人飞行器的运动方向、所述探测设备当前的探测方向,确定所述无人飞行器的转动速度。
控制模块182还用于控制所述无人飞行器在云台坐标系中运动,所述云台坐标系以所述无人飞行器的机身中心为坐标原点,X轴正方向为所述无人飞行器的机身中心指向拍摄的目标物体的方向,所述云台坐标系为左手坐标系。如图19所示,控制装置180还包括:接收模块185,接收模块185用于接收控制设备的控制杆量;控制模块182具体用于根据所述控制设备的控制杆量,控制所述无人飞行器在云台坐标系中运动。控制模块182具体用于如下至少一种:
控制所述无人飞行器在云台坐标系中的X轴方向运动;
控制所述无人飞行器在云台坐标系中的Y轴方向运动;
控制所述无人飞行器在云台坐标系中的Z轴方向运动;
控制所述无人飞行器在云台坐标系中以Z轴为轴线旋转。
接收模块185具体用于如下至少一种:
接收控制设备的俯仰杆或俯仰按键的控制杆量;
接收控制设备的横滚杆或横滚按键的控制杆量;
接收控制设备的油门杆或油门按键的控制杆量;
接收控制设备的航向杆或航向按键的控制杆量;
相应的,控制模块182具体用于如下至少一种:
根据所述控制设备的俯仰杆或俯仰按键的控制杆量,控制所述无人飞行器在云台坐标系中的X轴方向运动;
根据所述控制设备的横滚杆或横滚按键的控制杆量,控制所述无人飞行器在云台坐标系中的Y轴方向运动;
根据所述控制设备的油门杆或油门按键的控制杆量,控制所述无人飞行器在云台坐标系中的Z轴方向运动;
根据所述控制设备的航向杆或航向按键的控制杆量,控制所述无人飞行器在云台坐标系中以Z轴为轴线旋转。
此外,控制模块182还用于控制所述无人飞行器上的云台的姿态,以使所述云台上的拍摄设备对目标物体跟踪拍摄。
本发明实施例提供的控制装置的具体原理和实现方式均与上述实施例类似,此处不再赘述。
本实施例采用预设的滤波器对各时刻指示无人飞行器运动方向的角度进行滤波处理,可以滤除各时刻指示该运动方向的角度中的噪声干扰,提高了无人飞行器运动方向的检测精度;明确了无人飞行器的转动方向,避免了无人飞行器从当前的朝向转到无人飞行器的运动方向的过程中云台到达其Yaw轴即在偏航方向上的限位角,保证云台在方向转过的角度始终位于Yaw轴的限位角的范围内,避免云台和拍摄设备出现故障。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬 件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (68)

  1. 一种控制方法,其特征在于,包括:
    确定可移动平台的运动方向;
    按照所述可移动平台的运动方向,控制所述可移动平台的朝向,以使配置在所述可移动平台上的探测设备能够探测到所述运动方向上的障碍物。
  2. 根据权利要求1所述的方法,其特征在于,所述确定可移动平台的运动方向,包括:
    根据所述可移动平台的位移,确定所述可移动平台的运动方向。
  3. 根据权利要求1所述的方法,其特征在于,所述确定可移动平台的运动方向,包括:
    根据所述可移动平台的运动速度,确定所述可移动平台的运动方向。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述可移动平台的位移,确定所述可移动平台的运动方向,包括:
    根据所述可移动平台在世界坐标系中的位移,确定所述可移动平台在世界坐标系中的运动方向。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述可移动平台在世界坐标系中的位移,确定所述可移动平台在世界坐标系中的运动方向,包括:
    根据所述可移动平台在世界坐标系中的X轴方向的位移和Y轴方向的位移,确定所述可移动平台在世界坐标系中的运动方向。
  6. 根据权利要求3所述的方法,其特征在于,所述根据所述可移动平台的运动速度,确定所述可移动平台的运动方向,包括:
    根据所述可移动平台在世界坐标系中的X轴方向的速度和Y轴方向的速度,确定所述可移动平台在世界坐标系中的运动方向。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述可移动平台在世界坐标系中的X轴方向的速度和Y轴方向的速度,确定所述可移动平台在世界坐标系中的运动方向,包括:
    根据所述可移动平台在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定所述可移动平台在世界坐标系中的运动方向。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述可移动平台在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定所述可移动平台在世界坐标系中的运动方向,包括:
    根据所述可移动平台在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定指示所述运动方向的角度;
    对指示所述运动方向的角度进行滤波处理,得到所述可移动平台在世界坐标系中的运动方向。
  9. 根据权利要求8所述的方法,其特征在于,所述指示所述运动方向的角度是所述运动方向相对于参考方向的角度;
    所述对指示所述运动方向的角度进行滤波处理之前,还包括:
    若前一时刻指示所述运动方向的角度与后一时刻指示所述运动方向的角度之差的绝对值大于预设值,则确定替换角度;
    将所述后一时刻指示所述运动方向的角度替换为所述替换角度,以使各时刻指示所述运动方向的角度连续。
  10. 根据权利要求9所述的方法,其特征在于,所述确定替换角度,包括:
    确定从前一时刻所述可移动平台的运动方向转动到后一时刻所述可移动平台的运动方向对应的第一劣弧;
    根据前一时刻指示所述运动方向的角度和所述第一劣弧对应的圆心角,确定所述替换角度。
  11. 根据权利要求1所述的方法,其特征在于,所述控制所述可移动平台的朝向,包括:
    控制所述探测设备的探测方向与所述可移动平台的运动方向一致。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述控制所述可移动平台的朝向包括:
    确定所述可移动平台从所述探测设备当前的探测方向转动到所述可移动平台的运动方向的转动方向,按照所述转动方向,控制所述可移动平台转动。
  13. 根据权利要求12所述的方法,其特征在于,所述确定可移动平台从所述探测设备当前的探测方向转动到所述可移动平台的运动方向的 转动方向包括:
    根据所述可移动平台的运动方向、所述探测设备当前的探测方向,确定所述可移动平台从所述探测设备当前的探测方向转动到所述运动方向对应的第二劣弧;
    当所述可移动平台沿所述第二劣弧指示的方向从所述探测设备当前的探测方向转到所述运动方向时,确定所述可移动平台的云台上的拍摄设备的拍摄方向相对于所述探测设备的探测方向转动的角度;其中,所述拍摄方向相对于所述探测方向的转动是以所述云台的Yaw轴为转动轴线;
    根据所述转动的角度,确定所述可移动平台的转动方向,所述可移动平台的转动方向包括如下至少一种:
    所述第二劣弧指示的方向,与所述第二劣弧对应的优弧指示的方向。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述转动的角度,确定所述可移动平台的转动方向,包括:
    若所述转动的角度大于所述云台的Yaw轴的限位角,则确定所述可移动平台的转动方向为所述优弧指示的方向;
    若所述转动的角度小于或等于所述云台Yaw轴的限位角,则确定所述可移动平台的转动方向为所述第二劣弧指示的方向。
  15. 根据权利要求13所述的方法,其特征在于,还包括:
    根据所述可移动平台的运动方向、所述探测设备当前的探测方向,确定所述可移动平台的转动速度。
  16. 根据权利要求1所述的方法,其特征在于,所述探测设备包括如下至少一种:
    雷达、超声波探测设备、TOF测距探测设备、视觉探测设备、激光探测设备。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,还包括:
    控制所述可移动平台在云台坐标系中运动,所述云台坐标系以所述可移动平台的机身中心为坐标原点,X轴正方向为所述可移动平台的机身中心指向拍摄的目标物体的方向,所述云台坐标系为左手坐标系。
  18. 根据权利要求17所述的方法,其特征在于,所述控制所述可移动平台在云台坐标系中运动,包括:
    接收控制设备的控制杆量,控制所述可移动平台在云台坐标系中运动。
  19. 根据权利要求18所述的方法,其特征在于,所述控制所述可移动平台在云台坐标系中运动,包括如下至少一种:
    控制所述可移动平台在云台坐标系中的X轴方向运动;
    控制所述可移动平台在云台坐标系中的Y轴方向运动;
    控制所述可移动平台在云台坐标系中的Z轴方向运动;
    控制所述可移动平台在云台坐标系中以Z轴为轴线旋转。
  20. 根据权利要求18或19所述的方法,其特征在于,所述接收外部设备的控制杆量,控制所述可移动平台在云台坐标系中运动包括如下至少一种:
    接收控制设备的俯仰杆或俯仰按键的控制杆量,控制所述可移动平台在云台坐标系中的X轴方向运动;
    接收控制设备的横滚杆或横滚按键的控制杆量,控制所述可移动平台在云台坐标系中的Y轴方向运动;
    接收控制设备的油门杆或油门按键的控制杆量,控制所述可移动平台在云台坐标系中的Z轴方向运动;
    接收控制设备的航向杆或航向按键的控制杆量,控制所述可移动平台在云台坐标系中以Z轴为轴线旋转。
  21. 根据权利要求1-20任一项所述的方法,其特征在于,还包括:
    控制所述可移动平台上的云台的姿态,以使所述云台上的拍摄设备对目标物体跟踪拍摄。
  22. 根据权利要求1-21任一项所述的方法,其特征在于,
    所述可移动平台包括无人飞行器。
  23. 一种控制装置,其特征在于,包括:
    确定模块,用于确定可移动平台的运动方向;
    控制模块,用于按照所述可移动平台的运动方向,控制所述可移动平台的朝向,以使配置在所述可移动平台上的探测设备能够探测到所述运动方向上的障碍物。
  24. 根据权利要求23所述的控制装置,其特征在于,所述确定模块具体用于根据所述可移动平台的位移,确定所述可移动平台的运动方向。
  25. 根据权利要求23所述的控制装置,其特征在于,所述确定模块具体用于根据所述可移动平台的运动速度,确定所述可移动平台的运动方向。
  26. 根据权利要求24所述的控制装置,其特征在于,所述确定模块具体用于根据所述可移动平台在世界坐标系中的位移,确定所述可移动平台在世界坐标系中的运动方向。
  27. 根据权利要求26所述的控制装置,其特征在于,所述确定模块具体用于根据所述可移动平台在世界坐标系中的X轴方向的位移和Y轴方向的位移,确定所述可移动平台在世界坐标系中的运动方向。
  28. 根据权利要求25所述的控制装置,其特征在于,所述确定模块具体用于根据所述可移动平台在世界坐标系中的X轴方向的速度和Y轴方向的速度,确定所述可移动平台在世界坐标系中的运动方向。
  29. 根据权利要求28所述的控制装置,其特征在于,所述确定模块具体用于根据所述可移动平台在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定所述可移动平台在世界坐标系中的运动方向。
  30. 根据权利要求29所述的控制装置,其特征在于,所述确定模块具体用于根据所述可移动平台在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定指示所述运动方向的角度;
    所述控制装置还包括:
    滤波模块,用于对指示所述运动方向的角度进行滤波处理,得到所述可移动平台在世界坐标系中的运动方向。
  31. 根据权利要求30所述的控制装置,其特征在于,所述指示所述运动方向的角度是所述运动方向相对于参考方向的角度;
    所述滤波模块对指示所述运动方向的角度进行滤波处理之前,若前一时刻指示所述运动方向的角度与后一时刻指示所述运动方向的角度之差的绝对值大于预设值,则所述确定模块还用于确定替换角度;
    所述控制装置还包括:
    替换模块,用于将所述后一时刻指示所述运动方向的角度替换为所述替换角度,以使各时刻指示所述运动方向的角度连续。
  32. 根据权利要求31所述的控制装置,其特征在于,所述确定模块 具体用于确定从前一时刻所述可移动平台的运动方向转动到后一时刻所述可移动平台的运动方向对应的第一劣弧;根据前一时刻指示所述运动方向的角度和所述第一劣弧对应的圆心角,确定所述替换角度。
  33. 根据权利要求23所述的控制装置,其特征在于,所述控制模块具体用于控制所述探测设备的探测方向与所述可移动平台的运动方向一致。
  34. 根据权利要求23-33任一项所述的控制装置,其特征在于,所述确定模块具体用于确定所述可移动平台从所述探测设备当前的探测方向转动到所述可移动平台的运动方向的转动方向;
    所述控制模块具体用于按照所述转动方向,控制所述可移动平台转动。
  35. 根据权利要求34所述的控制装置,其特征在于,所述确定模块具体用于:
    根据所述可移动平台的运动方向、所述探测设备当前的探测方向,确定所述可移动平台从所述探测设备当前的探测方向转动到所述运动方向对应的第二劣弧;
    当所述可移动平台沿所述第二劣弧指示的方向从所述探测设备当前的探测方向转到所述运动方向时,确定所述可移动平台的云台上的拍摄设备的拍摄方向相对于所述探测设备的探测方向转动的角度;其中,所述拍摄方向相对于所述探测方向的转动是以所述云台的Yaw轴为转动轴线;
    根据所述转动的角度,确定所述可移动平台的转动方向,所述可移动平台的转动方向包括如下至少一种:
    所述第二劣弧指示的方向,与所述第二劣弧对应的优弧指示的方向。
  36. 根据权利要求35所述的控制装置,其特征在于,若所述转动的角度大于所述云台的Yaw轴的限位角,则所述确定模块确定所述可移动平台的转动方向为所述优弧指示的方向;
    若所述转动的角度小于或等于所述云台Yaw轴的限位角,则所述确定模块确定所述可移动平台的转动方向为所述第二劣弧指示的方向。
  37. 根据权利要求35所述的控制装置,其特征在于,所述确定模块还用于根据所述可移动平台的运动方向、所述探测设备当前的探测方向,确定所述可移动平台的转动速度。
  38. 根据权利要求23所述的控制装置,其特征在于,所述探测设备包括如下至少一种:
    雷达、超声波探测设备、TOF测距探测设备、视觉探测设备、激光探测设备。
  39. 根据权利要求23-38任一项所述的控制装置,其特征在于,所述控制模块还用于控制所述可移动平台在云台坐标系中运动,所述云台坐标系以所述可移动平台的机身中心为坐标原点,X轴正方向为所述可移动平台的机身中心指向拍摄的目标物体的方向,所述云台坐标系为左手坐标系。
  40. 根据权利要求39所述的控制装置,其特征在于,还包括:
    接收模块,用于接收控制设备的控制杆量;
    所述控制模块具体用于根据所述控制设备的控制杆量,控制所述可移动平台在云台坐标系中运动。
  41. 根据权利要求40所述的控制装置,其特征在于,所述控制模块具体用于如下至少一种:
    控制所述可移动平台在云台坐标系中的X轴方向运动;
    控制所述可移动平台在云台坐标系中的Y轴方向运动;
    控制所述可移动平台在云台坐标系中的Z轴方向运动;
    控制所述可移动平台在云台坐标系中以Z轴为轴线旋转。
  42. 根据权利要求40或41所述的控制装置,其特征在于,所述接收模块具体用于如下至少一种:
    接收控制设备的俯仰杆或俯仰按键的控制杆量;
    接收控制设备的横滚杆或横滚按键的控制杆量;
    接收控制设备的油门杆或油门按键的控制杆量;
    接收控制设备的航向杆或航向按键的控制杆量;
    所述控制模块具体用于如下至少一种:
    根据所述控制设备的俯仰杆或俯仰按键的控制杆量,控制所述可移动平台在云台坐标系中的X轴方向运动;
    根据所述控制设备的横滚杆或横滚按键的控制杆量,控制所述可移动平台在云台坐标系中的Y轴方向运动;
    根据所述控制设备的油门杆或油门按键的控制杆量,控制所述可移动 平台在云台坐标系中的Z轴方向运动;
    根据所述控制设备的航向杆或航向按键的控制杆量,控制所述可移动平台在云台坐标系中以Z轴为轴线旋转。
  43. 根据权利要求23-42任一项所述的控制装置,其特征在于,所述控制模块还用于控制所述可移动平台上的云台的姿态,以使所述云台上的拍摄设备对目标物体跟踪拍摄。
  44. 根据权利要求23-43任一项所述的控制装置,其特征在于,
    所述可移动平台包括无人飞行器。
  45. 一种控制设备,其特征在于,包括:一个或多个处理器,单独或协同工作,所述处理器用于:
    确定可移动平台的运动方向;
    按照所述可移动平台的运动方向,控制所述可移动平台的朝向,以使配置在所述可移动平台上的探测设备能够探测到所述运动方向上的障碍物。
  46. 根据权利要求45所述的控制设备,其特征在于,所述处理器确定可移动平台的运动方向时具体用于:
    根据所述可移动平台的位移,确定所述可移动平台的运动方向。
  47. 根据权利要求45所述的控制设备,其特征在于,所述处理器确定可移动平台的运动方向时具体用于:
    根据所述可移动平台的运动速度,确定所述可移动平台的运动方向。
  48. 根据权利要求46所述的控制设备,其特征在于,所述处理器根据所述可移动平台的位移,确定所述可移动平台的运动方向时具体用于:
    根据所述可移动平台在世界坐标系中的位移,确定所述可移动平台在世界坐标系中的运动方向。
  49. 根据权利要求48所述的控制设备,其特征在于,所述处理器根据所述可移动平台在世界坐标系中的位移,确定所述可移动平台在世界坐标系中的运动方向时具体用于:
    根据所述可移动平台在世界坐标系中的X轴方向的位移和Y轴方向的位移,确定所述可移动平台在世界坐标系中的运动方向。
  50. 根据权利要求47所述的控制设备,其特征在于,所述处理器根 据所述可移动平台的运动速度,确定所述可移动平台的运动方向时具体用于:
    根据所述可移动平台在世界坐标系中的X轴方向的速度和Y轴方向的速度,确定所述可移动平台在世界坐标系中的运动方向。
  51. 根据权利要求50所述的控制设备,其特征在于,所述处理器根据所述可移动平台在世界坐标系中的X轴方向的速度和Y轴方向的速度,确定所述可移动平台在世界坐标系中的运动方向时具体用于:
    根据所述可移动平台在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定所述可移动平台在世界坐标系中的运动方向。
  52. 根据权利要求51所述的控制设备,其特征在于,还包括:
    与所述处理器通讯连接的滤波器;
    所述处理器根据所述可移动平台在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定所述可移动平台在世界坐标系中的运动方向时具体用于:根据所述可移动平台在世界坐标系中的X轴方向的速度和Y轴方向的速度的比值,确定指示所述运动方向的角度;
    所述滤波器用于对指示所述运动方向的角度进行滤波处理,得到所述可移动平台在世界坐标系中的运动方向。
  53. 根据权利要求52所述的控制设备,其特征在于,所述指示所述运动方向的角度是所述运动方向相对于参考方向的角度;
    所述滤波器对指示所述运动方向的角度进行滤波处理之前,所述处理器还用于:
    计算前一时刻指示所述运动方向的角度与后一时刻指示所述运动方向的角度的差值;
    比较前一时刻指示所述运动方向的角度与后一时刻指示所述运动方向的角度之差的绝对值和预设值;
    若前一时刻指示所述运动方向的角度与后一时刻指示所述运动方向的角度之差的绝对值大于预设值,则所述处理器还用于:确定替换角度;将所述后一时刻指示所述运动方向的角度替换为所述替换角度,以使各时刻指示所述运动方向的角度连续。
  54. 根据权利要求53所述的控制设备,其特征在于,所述处理器确 定替换角度时具体用于:
    确定从前一时刻所述可移动平台的运动方向转动到后一时刻所述可移动平台的运动方向对应的第一劣弧;
    根据前一时刻指示所述运动方向的角度和所述第一劣弧对应的圆心角,确定所述替换角度。
  55. 根据权利要求45所述的控制设备,其特征在于,所述处理器控制所述可移动平台的朝向时具体用于:
    控制所述探测设备的探测方向与所述可移动平台的运动方向一致。
  56. 根据权利要求45-55任一项所述的控制设备,其特征在于,所述处理器控制所述可移动平台的朝向时具体用于:
    确定所述可移动平台从所述探测设备当前的探测方向转动到所述可移动平台的运动方向的转动方向,按照所述转动方向,控制所述可移动平台转动。
  57. 根据权利要求56所述的控制设备,其特征在于,所述处理器确定可移动平台从所述探测设备当前的探测方向转动到所述可移动平台的运动方向的转动方向时具体用于:
    根据所述可移动平台的运动方向、所述探测设备当前的探测方向,确定所述可移动平台从所述探测设备当前的探测方向转动到所述运动方向对应的第二劣弧;
    当所述可移动平台沿所述第二劣弧指示的方向从所述探测设备当前的探测方向转到所述运动方向时,确定所述可移动平台的云台上的拍摄设备的拍摄方向相对于所述探测设备的探测方向转动的角度;其中,所述拍摄方向相对于所述探测方向的转动是以所述云台的Yaw轴为转动轴线;
    根据所述转动的角度,确定所述可移动平台的转动方向,所述可移动平台的转动方向包括如下至少一种:
    所述第二劣弧指示的方向,与所述第二劣弧对应的优弧指示的方向。
  58. 根据权利要求57所述的控制设备,其特征在于,所述处理器根据所述转动角度,确定所述可移动平台的转动方向时具体用于:
    比较所述转动的角度和所述云台的Yaw轴的限位角;
    若所述转动的角度大于所述云台的Yaw轴的限位角,则所述处理器确 定所述可移动平台的转动方向为所述优弧指示的方向;
    若所述转动的角度小于或等于所述云台Yaw轴的限位角,则所述处理器确定所述可移动平台的转动方向为所述第二劣弧指示的方向。
  59. 根据权利要求58所述的控制设备,其特征在于,所述处理器还用于:
    根据所述可移动平台的运动方向、所述探测设备当前的探测方向,确定所述可移动平台的转动速度。
  60. 根据权利要求45所述的控制设备,其特征在于,所述探测设备包括如下至少一种:
    雷达、超声波探测设备、TOF测距探测设备、视觉探测设备、激光探测设备。
  61. 根据权利要求45-60任一项所述的控制设备,其特征在于,所述处理器还用于:
    控制所述可移动平台在云台坐标系中运动,所述云台坐标系以所述可移动平台的机身中心为坐标原点,X轴正方向为所述可移动平台的机身中心指向拍摄的目标物体的方向,所述云台坐标系为左手坐标系。
  62. 根据权利要求61所述的控制设备,其特征在于,还包括:
    与所述处理器通讯连接的通讯接口,所述通讯接口用于接收控制设备的控制杆量,并将所述控制设备的控制杆量传输给所述处理器;
    所述处理器根据所述控制设备的控制杆量,控制所述可移动平台在云台坐标系中运动。
  63. 根据权利要求62所述的控制设备,其特征在于,所述处理器控制所述可移动平台在云台坐标系中运动时具体用于如下至少一种:
    控制所述可移动平台在云台坐标系中的X轴方向运动;
    控制所述可移动平台在云台坐标系中的Y轴方向运动;
    控制所述可移动平台在云台坐标系中的Z轴方向运动;
    控制所述可移动平台在云台坐标系中以Z轴为轴线旋转。
  64. 根据权利要求62或63所述的控制设备,其特征在于,所述通讯接口具体用于接收如下至少一种:
    控制设备的俯仰杆或俯仰按键的控制杆量;
    控制设备的横滚杆或横滚按键的控制杆量;
    控制设备的油门杆或油门按键的控制杆量;
    控制设备的航向杆或航向按键的控制杆量;
    所述处理器具体用于如下至少一种:
    根据控制设备的俯仰杆或俯仰按键的控制杆量,控制所述可移动平台在云台坐标系中的X轴方向运动;
    根据控制设备的横滚杆或横滚按键的控制杆量,控制所述可移动平台在云台坐标系中的Y轴方向运动;
    根据控制设备的油门杆或油门按键的控制杆量,控制所述可移动平台在云台坐标系中的Z轴方向运动;
    根据控制设备的航向杆或航向按键的控制杆量,控制所述可移动平台在云台坐标系中以Z轴为轴线旋转。
  65. 根据权利要求45-64任一项所述的控制设备,其特征在于,所述处理器还用于:
    控制所述可移动平台上的云台的姿态,以使所述云台上的拍摄设备对目标物体跟踪拍摄。
  66. 根据权利要求45-65任一项所述的控制设备,其特征在于,
    所述可移动平台包括无人飞行器。
  67. 一种可移动平台,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于提供运行动力;
    探测设备,安装在所述机身,用于探测所述可移动平台前方的障碍物;
    以及如权利要求45-66任一项所述的控制设备,用于控制所述可移动平台的朝向。
  68. 根据权利要求67所述的可移动平台,其特征在于,
    所述可移动平台包括无人飞行器。
PCT/CN2016/110059 2016-12-15 2016-12-15 控制方法、装置、设备及可移动平台 WO2018107419A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/110059 WO2018107419A1 (zh) 2016-12-15 2016-12-15 控制方法、装置、设备及可移动平台
CN201680003397.7A CN107003678B (zh) 2016-12-15 2016-12-15 控制方法、装置、设备及可移动平台
US16/292,897 US20190196474A1 (en) 2016-12-15 2019-03-05 Control method, control apparatus, control device, and movable platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/110059 WO2018107419A1 (zh) 2016-12-15 2016-12-15 控制方法、装置、设备及可移动平台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/292,897 Continuation US20190196474A1 (en) 2016-12-15 2019-03-05 Control method, control apparatus, control device, and movable platform

Publications (1)

Publication Number Publication Date
WO2018107419A1 true WO2018107419A1 (zh) 2018-06-21

Family

ID=59431685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110059 WO2018107419A1 (zh) 2016-12-15 2016-12-15 控制方法、装置、设备及可移动平台

Country Status (3)

Country Link
US (1) US20190196474A1 (zh)
CN (1) CN107003678B (zh)
WO (1) WO2018107419A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110891862B (zh) * 2017-08-10 2023-07-11 深圳零零无限科技有限公司 飞行系统中用于避障的系统和方法
CN108521777B (zh) * 2017-11-22 2022-06-03 深圳市大疆创新科技有限公司 云台的控制方法、云台以及无人飞行器
CN110268357A (zh) * 2018-01-19 2019-09-20 深圳市大疆创新科技有限公司 一种限位角度校准方法及终端设备
US10705220B2 (en) * 2018-04-19 2020-07-07 Faraday & Future Inc. System and method for ground and free-space detection
CN109481943B (zh) * 2018-05-28 2020-07-07 王丽芸 自动退让的四轴飞行器玩具及其控制方法
CN108803641B (zh) * 2018-06-08 2022-08-05 深圳臻迪信息技术有限公司 飞行控制方法及飞行器
WO2020019110A1 (zh) * 2018-07-23 2020-01-30 深圳市大疆创新科技有限公司 移动平台的辅助移动方法、移动装置及移动平台
CN109062251A (zh) * 2018-08-23 2018-12-21 拓攻(南京)机器人有限公司 无人机避障方法、装置、设备及存储介质
WO2020042159A1 (zh) * 2018-08-31 2020-03-05 深圳市大疆创新科技有限公司 一种云台的转动控制方法、装置及控制设备、移动平台
CN109828274B (zh) * 2019-01-07 2022-03-04 深圳市道通智能航空技术股份有限公司 调整机载雷达的主探测方向的方法、装置和无人机
CN111665827A (zh) * 2019-03-07 2020-09-15 北京奇虎科技有限公司 一种信息处理方法、控制设备和被控设备
CN110597296A (zh) * 2019-10-21 2019-12-20 深圳市道通智能航空技术有限公司 一种无人机的飞行控制方法、装置、无人机和存储介质
WO2022000137A1 (zh) * 2020-06-28 2022-01-06 深圳市大疆创新科技有限公司 可移动平台系统及其控制方法和装置
KR20220058279A (ko) * 2020-10-30 2022-05-09 한화디펜스 주식회사 무인 추종 차량
CN113960581B (zh) * 2021-10-26 2024-06-04 众芯汉创(北京)科技有限公司 一种应用于变电站并结合雷达的无人机目标探测系统
CN114664072B (zh) * 2022-03-18 2023-09-01 广州极飞科技股份有限公司 遥控链路管理系统、方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853562A (zh) * 2009-04-03 2010-10-06 玴荣科技股份有限公司 手势控制的遥控器控制方法
CN103342165A (zh) * 2013-06-25 2013-10-09 深圳市大疆创新科技有限公司 飞行器的控制装置、控制系统及控制方法
CN105303807A (zh) * 2015-11-25 2016-02-03 深圳市大疆创新科技有限公司 遥控器、可移动平台及其控制方法和系统以及无人飞行器
US20160353048A1 (en) * 2010-12-06 2016-12-01 Hitachi Maxell, Ltd. Operation controlling apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102267562B1 (ko) * 2015-04-16 2021-06-22 한국전자통신연구원 무인자동주차 기능 지원을 위한 장애물 및 주차구획 인식 장치 및 그 방법
CN205787918U (zh) * 2016-05-26 2016-12-07 江苏数字鹰科技发展有限公司 一种自动判断无人机运动方向的探测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853562A (zh) * 2009-04-03 2010-10-06 玴荣科技股份有限公司 手势控制的遥控器控制方法
US20160353048A1 (en) * 2010-12-06 2016-12-01 Hitachi Maxell, Ltd. Operation controlling apparatus
CN103342165A (zh) * 2013-06-25 2013-10-09 深圳市大疆创新科技有限公司 飞行器的控制装置、控制系统及控制方法
CN105912014A (zh) * 2013-06-25 2016-08-31 深圳市大疆创新科技有限公司 飞行器的控制系统及控制方法
CN105303807A (zh) * 2015-11-25 2016-02-03 深圳市大疆创新科技有限公司 遥控器、可移动平台及其控制方法和系统以及无人飞行器

Also Published As

Publication number Publication date
CN107003678B (zh) 2019-08-20
CN107003678A (zh) 2017-08-01
US20190196474A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2018107419A1 (zh) 控制方法、装置、设备及可移动平台
US11797009B2 (en) Unmanned aerial image capture platform
US11423792B2 (en) System and method for obstacle avoidance in aerial systems
WO2018058320A1 (zh) 无人机控制方法及装置
CN111562796B (zh) 控制方法、控制设备和运载系统
WO2018098678A1 (zh) 飞行器的控制方法、装置和设备以及飞行器
JP6933656B2 (ja) 飛行デバイスの動き制御のための方法、システムおよびコンピュータ可読媒体
WO2018209702A1 (zh) 无人机的控制方法、无人机以及机器可读存储介质
WO2018120132A1 (zh) 控制方法、装置、设备及无人飞行器
WO2018098784A1 (zh) 无人机的控制方法、装置、设备和无人机的控制系统
WO2018094626A1 (zh) 无人飞行器的避障控制方法及无人飞行器
WO2017181513A1 (zh) 无人机的飞行控制方法和装置
CN110471442A (zh) 一种目标观察方法、相关设备及系统
WO2021098453A1 (zh) 目标跟踪方法及无人飞行器
NO339419B1 (en) Path-Based Flight Maneuvering System
WO2020087349A1 (zh) 无人机及其云台控制方法
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
WO2019128275A1 (zh) 一种拍摄控制方法、装置及飞行器
WO2022193081A1 (zh) 无人机的控制方法、装置及无人机
WO2021238743A1 (zh) 一种无人机飞行控制方法、装置及无人机
JP6910785B2 (ja) 移動撮像装置およびその制御方法、ならびに撮像装置およびその制御方法、無人機、プログラム、記憶媒体
CN110291013B (zh) 云台的控制方法、云台及无人飞行器
WO2018214015A1 (zh) 一种航向修正方法、设备及飞行器
JP2022095408A (ja) 処理システム、飛行体、処理方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924186

Country of ref document: EP

Kind code of ref document: A1