WO2020042159A1 - 一种云台的转动控制方法、装置及控制设备、移动平台 - Google Patents

一种云台的转动控制方法、装置及控制设备、移动平台 Download PDF

Info

Publication number
WO2020042159A1
WO2020042159A1 PCT/CN2018/103596 CN2018103596W WO2020042159A1 WO 2020042159 A1 WO2020042159 A1 WO 2020042159A1 CN 2018103596 W CN2018103596 W CN 2018103596W WO 2020042159 A1 WO2020042159 A1 WO 2020042159A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
pan
base
attitude angle
mobile platform
Prior art date
Application number
PCT/CN2018/103596
Other languages
English (en)
French (fr)
Inventor
王映知
刘帅
王振动
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/103596 priority Critical patent/WO2020042159A1/zh
Priority to CN201880010737.8A priority patent/CN110300941A/zh
Publication of WO2020042159A1 publication Critical patent/WO2020042159A1/zh
Priority to US17/174,512 priority patent/US20210165388A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2071Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction for panning and rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/044Balancing means for balancing rotational movement of the undercarriage

Definitions

  • FIG. 7 is a schematic structural diagram of a control device according to an embodiment of the present invention.
  • FIG. 1 it is a schematic flow chart of a method for controlling the rotation of a gimbal according to an embodiment of the present invention.
  • the method in the embodiment of the present invention may be executed by a dedicated control device, or may be provided inside a mobile platform.
  • a control device that can be used for data processing to perform.
  • the control device can communicate with the PTZ and mobile platform, and perform rotation control on the PTZ through the acquired sensor data and other information.
  • the attitude angle of the base can be calculated based on the attitude angle of the gimbal and the joint angle of the motor component; Measurement.
  • the two methods can cooperate with each other, and the data sensed by the inertial measurement sensor can be obtained to determine the first sub attitude angle of the base, and calculated and determined based on the attitude angle of the gimbal and the joint angle of the motor component
  • the second sub attitude angle of the base is calculated according to the first sub attitude angle and the second sub attitude angle.
  • the first sub attitude angle and the second sub attitude angle can be obtained by averaging.
  • the pitch axis frame 201 is the attitude angle of the gimbal
  • the pitch axis frame 201 is known from the attitude angle.
  • the roll axis frame is calculated according to the attitude angle of the pitch axis frame 201 and the joint angle of the roll axis frame 202 along the roll axis frame 202 on the Y axis (PITCH axis).
  • the attitude angle of 202, the joint angle used at this time is the joint angle along the PITCH axis, and the pitch angle in the attitude angle can be compensated based on the joint angle of the PITCH axis.
  • the attitude angle of the translation axis frame 203 and the joint angle of the base 200 along the Z axis (YAW axis) of the base 200 is calculated.
  • the joint angle is a joint angle along the YAW axis. Based on the joint angle of the YAW axis, the translation angle in the attitude angle can be further supplemented.
  • the control device when the control device performs rotation control on the gimbal according to the attitude angle of the base and the attitude angle of the gimbal, the control device may control the cloud according to the attitude angle of the base
  • the platform rotates in a translation direction, and after the rotation, the translation angle of the translation angle of the pan-tilt and the attitude angle of the base satisfies a first similar condition; and / or, the control is based on the attitude angle of the base
  • the gimbal rotates in a pitch direction, and after the rotation, the pitch angle of the gimbal angle and the attitude angle of the base satisfies a second similar condition; and / or, based on the attitude angle of the base, controls the The pan / tilt head rotates in a rolling direction, and after the rotation, the panning angle of the pan / tilt angle and the attitude angle of the base satisfies a third similar condition.
  • the rotation of the gimbal may not always be controlled according to the attitude angle of the gimbal and the attitude angle of the base.
  • the control device may also enter a false follow Before the mode, check whether the trigger signal is received.
  • the trigger signal is a trigger signal sent by the mobile platform and used to indicate that the current environment is a strong electromagnetic interference environment. If a trigger signal is received, step S101 is performed to control the PTZ to follow the rotation based on the attitude of the PTZ and the attitude of the base.
  • the following information includes angle information and / or angular velocity information and / or angular acceleration information.
  • the control device may further include a storage device as required.
  • the storage device may include volatile memory (for example, random-access memory (RAM)); the storage device may also include non-volatile memory (for example, flash memory) (flash memory), solid-state drive (SSD), etc .; the storage device may further include a combination of the above types of memories.
  • RAM random-access memory
  • non-volatile memory for example, flash memory
  • SSD solid-state drive
  • the storage device may further include a combination of the above types of memories.
  • These storage devices can be used to store some computer program instructions, so that they can be called by the controller 702 to control the rotation of the gimbal.
  • These storage devices can also be used to store data collected by the load equipment, such as image data collected by the camera device.
  • the controller 702 is configured to obtain attitude data sent by the mobile platform if the trigger signal is not received; and rotate the pan / tilt according to the attitude data sent by the mobile platform. Control so that the gimbal rotates with the mobile platform.
  • the rotation speed threshold is a maximum rotation speed of the gimbal.
  • the frame portion includes at least one of a pan axis frame, a roll axis frame, and a pitch axis frame, and the pan / tilt 804 is used for
  • the PTZ 804 is configured to detect whether the trigger signal is received before entering the pseudo-following mode.
  • the controller 803 is configured to detect the output data of the compass and determine change information of the output data of the compass; if the change information meets a preset condition, determine that the current environment is a strong electromagnetic interference environment
  • the trigger signal is sent by the controller 803 to the PTZ 804 after determining that the current environment is a strong electromagnetic interference environment.
  • the compass is arranged on a mobile platform and determines a moving direction for the mobile platform.
  • the program can be stored in a computer-readable storage medium.
  • the program When executed, the processes of the embodiments of the methods described above may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random, Access Memory, RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Accessories Of Cameras (AREA)
  • Studio Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明实施例提供了一种云台的转动控制方法、装置及控制设备、移动平台,其中,云台包括框架部,框架部用于搭载负载设备,云台通过基座与移动平台连接,方法包括:在接收到触发信号后,进入伪跟随模式,在伪跟随模式下,获取云台的姿态角,并获取基座的姿态角;根据基座的姿态角和云台的姿态角,对云台进行转动控制,以便于云台跟随基座转动。本发明实施例可较好地保证在各种环境下对云台进行控制,在移动平台的传感器受到环境干扰时,特别是移动平台的指南针受到强电磁环境干扰时,也能够实现摄像设备等负载设备跟随移动平台转动。

Description

一种云台的转动控制方法、装置及控制设备、移动平台 技术领域
本发明涉及电子技术领域,尤其涉及一种云台的转动控制方法、装置及控制设备、移动平台。
背景技术
云台是一个支撑设备,云台的特性在于其一方面可以搭载一个外部设备,另一方面还可以固定在其他设备或者位置上。一种典型的云台使用场景为无人机摄像场景,云台的一端可以固定在无人机机壳的合适位置处,另一端则可以搭载各类摄像机,通过控制云台的转动来控制摄像机朝向不同的方向摄影。除了搭载摄像机外,云台还可以搭载其他设备,例如搭载一个探照灯,这样无人机就可以向各个方向照明。
基于云台可以实现多种功能,比较显著即为上述提及的可以控制云台转动以向多个方向拍摄获取所需的图像,还有一些功能也可以借助云台来实现,例如应用于无人机、机器人、自动驾驶汽车等设备上的云台可以用来实现跟随拍摄的功能,即:控制云台转动,使得搭载在云台上的摄像机可以跟随无人机等设备的转动而转动,始终朝向一个固定的方向(例如无人机的行进方向)拍摄正前方的图像。
而如何在各种环境下来控制云台转动以保证相应的跟随功能成为研究的热点。
发明内容
本发明实施例提供了一种云台的转动控制方法、装置及控制设备、移动平台,可以在强电磁干扰等环境下,也能够控制云台转动达到跟随的目的。
一方面,本发明实施例提供了一种云台的转动控制方法,所述云台包括框架部,所述框架部用于搭载负载设备,所述云台通过基座与移动平台连接,所述方法包括:在接收到触发信号后,进入伪跟随模式,在所述伪跟随模式下,获取所述云台的姿态角,并获取所述基座的姿态角;根据所述基座的姿态角和 所述云台的姿态角,对所述云台进行转动控制,以便于所述云台跟随所述基座转动。
另一方面,一种对云台的转动控制装置,所述云台包括框架部,所述框架部用于搭载负载设备,所述云台通过基座与移动平台连接,所述装置包括:
获取模块,用于在接收到触发信号后,进入伪跟随模式,在所述伪跟随模式下,获取所述云台的姿态角,并获取所述基座的姿态角;控制模块,用于根据所述基座的姿态角和所述云台的姿态角,对所述云台进行转动控制,以便于所述云台跟随所述基座转动。
再一方面,本发明实施例还提供了一种控制设备,所述控制设备与云台相连,所述云台包括框架部,所述框架部用于搭载负载设备,所述云台通过基座与移动平台连接,所述控制设备包括通信接口和控制器;
所述通信接口与所述云台相连;
所述控制器,用于在接收到触发信号后,进入伪跟随模式,在所述伪跟随模式下,获取所述云台的姿态角,并获取所述基座的姿态角;根据所述基座的姿态角和所述云台的姿态角,对所述云台进行转动控制,以便于所述云台跟随所述基座转动。
又一方面,本发明实施例还提供了一种移动平台,其特征在于,所述飞行器包括:机体、动力组件、控制器、云台,其中,所述云台包括框架部,所述框架部用于搭载负载设备,所述云台通过基座与所述机体连接;所述动力组件,用于为所述移动平台提供动力;所述控制器,用于控制所述动力组件;并用于触发所述云台进入伪跟随模式;所述云台,用于进入伪跟随模式,在所述伪跟随模式下,获取所述云台的姿态角,并获取所述基座的姿态角;根据所述基座的姿态角和所述云台的姿态角,对所述云台的框架部进行转动控制,以便于跟随所述基座转动。
采用本发明实施例,可以较好地保证在各种环境下对云台进行控制,在控制时可以不需要移动平台提供姿态数据,在移动平台的传感器受到环境干扰时,特别是移动平台的指南针受到强电磁环境干扰时,也能够实现摄像设备等负载设备跟随基座转动。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一种云台的转动控制方法的流程示意图;
图2是本发明实施例的一种云台架构的结构示意图;
图3是本发明实施例的另一种云台架构的结构示意图;
图4是本发明实施例的另一种云台架构的结构示意图;
图5是本发明实施例的再一种云台的转动控制方法的流程示意图
图6是本发明实施例的一种对云台的转动控制装置的结构示意图;
图7是本发明实施例的一种控制设备的结构示意图;
图8是本发明实施例的一种移动平台的结构示意图。
具体实施方式
无人机、自动驾驶汽车等移动平台可以根据任务需求,搭载不同的负载设备,这些负载设备可以直接固定在移动平台上,也可以通过云台搭载在移动平台上的,该云台可以包括一个或者多个框架件构成的框架部,而负载设备则是搭载在框架部中的某一个框架件上。云台通过一个基座与移动平台连接。该基座可以固定在所述移动平台上。该云台可以是一个能够被控制转动方向的装置,负载设备搭载在云台上后,可以通过控制云台的转动来控制负载设备的拍摄方向,从而使得负载设备能够根据用户需求拍摄不同方向上的环境影像。
负载设备可以包括摄像装置,摄像装置由于能够拍摄环境画面,因此本发明实施例中通过在移动平台上搭载摄像装置,一方面可以采集图像完成视频等各种影像的制作,满足用户的摄影需求,另一方面摄像装置采集到的图像也可以作为对无人机、智能机器人等移动平台的运动辅助数据,方便无人机、智能机器人等移动平台基于当前环境的图像进行避障、定位等处理。负载设备还可以包括其他设备,例如照明设备、扬声器等等设备。在本发明实施例中,以常见的摄像装置作为负载设备进行说明。
在本发明实施例中,无人机、智能机器人设备等移动平台上设置有各种传感器以及控制器,这些传感器例如可以是用来检测移动平台的运动姿态的惯性 测量传感器(Inertial measurement unit,IMU)、检测移动平台运动方向的指南针,等等。也可以是其他一些带有惯性测量传感器、指南针等传感器的设备或结构,例如通过云台设置了负载设备的无人驾驶汽车、通过云台设置了负载设备的手持云台等。
诸如无人机、无人驾驶汽车等移动平台,其在运动过程中,在需要摄像装置进行跟随拍摄时,可以通过控制云台的转动来控制摄像装置的拍摄方向。以无人机为例,在一个实施例中,如果需要摄像装置进行跟随拍摄,那么,在无人机悬停并在平移YAW轴上转动(调转机头方向)时,需要控制云台转动,使得摄像装置也跟随机头在YAW轴上转动,以拍摄得到无人机正前方的图像,或者说,无人机的机头在俯仰PITCH轴转动(即机头上下摆动)时,需要控制运动转动,使得摄像装置也跟随机头在PITCH轴上转动,以拍摄得到无人机正前方的图像。
在本发明的一个实施例中,需要控制云台转动以使得摄像装置进行跟随拍摄时,可以基于移动平台中传感器采集到的数据,基于移动平台的传感器采集的数据确定移动平台的姿态角,确定的姿态角包括移动平台在YAW轴上的姿态角度、在PITCH轴上的姿态角度、在横滚ROLL轴上的姿态角度,以便于根据这些姿态角来控制运动转动,达到跟随的目的。
考虑到获取的移动平台的姿态可能存在误差或者干扰,从而导致云台可能基于错误的姿态角度进行跟随转动,例如,在强磁干扰环境下,移动平台的指南针会受到强烈的干扰,从而给出错误的方向数据,导致移动平台在平移轴上的数据为错误的数据。基于此,在本发明的另一个实施例中,由于云台是通过基座与移动平台固定连接的,可以将基座的姿态代替移动平台的姿态,通过云台自身的姿态角以及基座的姿态角,来对云台进行转动控制,达到负载设备跟随拍摄的目的,不需要移动平台的姿态数据,特别是不需要基于会受到干扰的姿态数据,例如受到强磁干扰的指南针数据。
如图1所示,是本发明实施例的一种云台的转动控制方法的流程示意图,本发明实施例的所述方法可以由一个专用的控制设备来执行,也可以由设置在移动平台内部的一个可以用来进行数据处理的控制设备来执行。所述的控制设备能够与云台、移动平台进行通信,通过获取到的传感器数据等信息对云台进行转动控制。
本发明实施例的云台包括框架部,所述框架部用于搭载摄像装置,所述云台通过基座与移动平台连接。控制设备首先在S101中,在接收到触发信号后,进入伪跟随模式,在所述伪跟随模式下,获取所述云台的姿态角,并获取所述基座的姿态角。所述触发信号可以是在检测到移动平台的惯性测量传感器、指南针等传感器收到干扰或者失效无法正确工作时产生的,可以是由移动平台的传感器生成并发送的,也可以是由控制设备生成并发送的,也可以是用户在发现摄像装置不能很好地进行跟随拍摄时,通过用户输入外部指令发送的。触发信号触发进入伪跟随模式,在伪跟随模式下,将基座的姿态代替移动平台的姿态,由控制设备在S101中获取所述云台的姿态角,并获取所述基座的姿态角。
所述云台可以设置第一惯性测量传感器,所述云台的姿态角可以通过第一惯性测量传感器测量获取。而对于基座的姿态角的获取处理,在一个实施例中,所述云台的各个电机组件上还设置有关节角获取组件,所述关节角获取组件用于获取所述电机组件的关节角,进而可以根据所述云台的姿态角和电机组件的关节角获取所述基座的姿态角。在另一种实施例中,所述基座上也可以设置有第二惯性测量传感器,所述基座的姿态角也可以通过第二惯性测量传感器获取。
也就是说,基座姿态角的计算方式包括两种:可以基于云台的姿态角和电机组件的关节角来反算出所述基座的姿态角;另一种是直接基于惯性测量传感器的感测。在一个实施例中,该两种方式可以相互配合,可以获取惯性测量传感器感测的数据以确定基座的第一子姿态角,并基于云台的姿态角和电机组件的关节角来计算确定基座的第二子姿态角,根据第一子姿态角和第二子姿态角来计算得到基座最终的姿态角,例如可以通过求平均值的方式分别求取第一子姿态角和第二子姿态角中平移角、横滚角以及俯仰角的平均值,得到基座的平移角、横滚角以及俯仰角,或者通过第二子姿态角对第一子姿态角进行校正,以便得到一个更为准确的基座的姿态角,在此不作限定。
在得到云台的姿态角和基座的姿态角后,在S102中根据所述基座的姿态角和所述云台的姿态角,对所述云台进行转动控制,以便于所述云台跟随所述基座转动。可以基于云台的姿态角和基座的姿态角来确定一个跟随信息,基于该跟随信息来控制云台转动。在一个实施例中,所述跟随信息可以是一个角度信息,该角度可以表示云台的姿态角和基座的姿态角的差值,基于该差值,控 制转动云台,使得云台在目标转动方向转动所述差值所指示的角度即可。在另一个实施例中,所述跟随信息可以为角速度信息或角加速度信息,只需要控制云台按照该角速度信息或角加速度信息转动即可。
在一个实施例中,所述云台的所述框架部包括三个框架件,如图2所示,所述框架部包括平移轴框架、横滚轴框架以及俯仰轴框架,所述平移轴框架的一端与所述基座转动相连、所述平移轴框架的另一端与所述横滚轴框架的一端转动相连、所述横滚轴框架的另一端与所述俯仰轴框架转动相连,所述摄像装置可以固设在所述俯仰轴框架上。
所述云台的姿态角可以通过设置在俯仰轴框架上的惯性测量传感器的感测数据来计算得到。所述云台的姿态角可以包括:平移角、俯仰角以及横滚角。可以实时或者周期性地检测是否接收到所述移动平台发送的用于表示当前环境为强电磁干扰环境的触发信号,若是,则开始执行所述S101。
控制设备在获取所述云台的姿态角之前、之后或者同时,会获取所述云台的框架部的关节角数据,得到框架部的关节角,框架部的关节角包括俯仰轴框架的关节角、横滚轴框架的关节角以及平移轴框架的关节角。控制设备根据获取到的框架部的关节角和所述云台的姿态角进行计算,得到所述基座的姿态角。也就是说,所述基座的姿态角是通过云台的姿态角和框架部的关节角计算得到的。需要说明的是,姿态角指的是部件在三维空间中的转动角度,例如框架部在三维空间的转动角度,而所述关节角仅用来表示两个转动连接的机构之间的角度,可以为所述框架部的两个框架件之间的转动角度,还可以为平移轴框架与基座之间的转动角度。
在本发明实施例中,所述云台还包括电机组件,通过电机组件的转动来带动上述涉及的平移轴框架、横滚轴框架和俯仰轴框架的转动。框架部的关节角可以通过设置在各个电机组件上的传感器(例如霍尔传感器、电位器、磁编码器或其他合适的传感器)来感测得到。
在一个实施例中,控制设备在根据获取到的框架部的关节角和所述云台的姿态角进行计算,得到所述基座的姿态角具体可以包括:根据云台的姿态角确定三个框架件的姿态角;根据三个框架件的姿态角及其关节角计算得到所述基座的姿态角。
以包括图2所示的框架部的云台为例进行说明,在图2中,三个框架件包 括俯仰轴框架201、横滚轴框架202、平移轴框架203。在俯仰轴框架201、横滚轴框架202之间的电机组件中、横滚轴框架202与平移框架轴203之间的电机组件中、以及平移轴框架203与基座200之间的电机组件中都包括诸如霍尔传感器等传感器来感测关节角。例如,在平移轴框架203的电机位置处设置的霍尔传感器可以感测平移轴框架203相对于基座200转动的关节角,在横滚轴框架202的电机位置处设置的霍尔传感器可以感测横滚轴框架202相对于平移轴框架203转动的关节角,在俯仰轴框架201电机出摄像的霍尔传感器可以感测俯仰轴框架201相对于横滚轴框架202转动的关节角。
由于,所述俯仰轴框架201的姿态角为所述云台的姿态角,在基于图2所示的框架结构推算基座200的关节角时,具体是从姿态角已知的俯仰轴框架201出发,根据所述俯仰轴框架201的姿态角和所述横滚轴框架202的沿着所述横滚轴框架202在Y轴(PITCH轴)上的关节角,计算得到所述横滚轴框架202的姿态角,此时所使用的关节角为沿着PITCH轴的关节角,基于该PITCH轴的关节角能对姿态角中的俯仰角进行补偿。
根据所述横滚轴框架202的姿态角和所述平移轴框架203的沿着所述平移轴框架203的X轴(ROLL轴)上的关节角,计算得到所述平移轴框架203的姿态角,此时所使用的关节角为沿着ROLL轴的关节角,基于该ROLL轴的关节角能进一步地对姿态角中的横滚角进行补偿。
根据所述平移轴框架203的姿态角和所述基座200的沿着基座200的Z轴(YAW轴)上的关节角,计算得到所述基座200的姿态角,此时所使用的关节角为沿着YAW轴的关节角,基于该YAW轴的关节角能够进一步地对姿态角中的平移角进行补充。
在另一种实施例中,通过设置在俯仰轴框架201上的惯性测量传感器可以检测云台在YAW轴、PITCH轴以及ROLL轴上的姿态角,即:平移角、俯仰角和横滚角。云台的姿态角可以对惯性测量传感器的感测数据例如陀螺仪数据进行积分得到。
在一个实施例中,以图2为例来对基于云台的姿态角和关节角确定基座200的姿态角的具体推导过程如下。以此来进一步说明是如何根据三个框架件的姿态角及其关节角计算得到所述基座200的姿态角的。
对云台测量的姿态角和关节角是已知的,从基座200的姿态角(未知待求 取的值)按照平移轴框架203的关节角值joint_angle[frame_out]沿着基座200的Z轴旋转可以得到平移轴框架203的姿态角,平移轴框架203按照横滚轴框架202的关节角值joint_angle[frame_mid]沿着平移轴框架203的X轴旋转可以得到横滚轴框架202的姿态角,横滚轴框架202按照俯仰轴框架201的关节角值joint_angle[frame_inn]沿着横滚轴框架202的Y轴旋转可以得到俯仰轴框架201的姿态角,俯仰轴框架201的姿态角即为云台的姿态角。
将轴角表示转化为四元数,可得到q(joint_angle[frame_out],AXIS_Z),q(joint_angle[frame_mid],AXIS_X),q(joint_angle[frame_inn],AXIS_Y)。其中,为了方便描述,可以进行以下表述转换:
将q(joint_angle[frame_out],AXIS_Z)记作q_out;
将q(joint_angle[frame_mid],AXIS_X)记作q_mid;
将q(joint_angle[frame_inn],AXIS_X)记作q_inn。
进一步地,可以得到q_camera_meas(对云台测量的姿态角的四元数表示)=q_base(基座200的姿态角)*q_out*q_mid*q_inn,因此,已知云台的测量姿态和关节角测量值,可得到基座200姿态,采用如下公式表示:
q_base=q_camera_meas*q_inn -1*q_mid -1*q_out -1
上述提及的计算基座200姿态角的过程即为该计算q_base的表达式。也就是说,是基于平移轴框架203、横滚轴框架202以及俯仰轴框架201的关节角,对云台的姿态角进行修正,算出基座200的姿态角,进而以云台的姿态角和基座200的姿态角,进行后续的云台转动控制。
另外,需要说明的是,两轴云台或者单轴云台也可以进行上述类似的推导来推算基座的姿态,如图3所示,云台只能平移角上转动,基于云台的姿态加上框架件301的关节角,可以对云台的平移角进行补偿,进而得到基座的姿态角,其中,基座平移角为补偿后的姿态角,俯仰角、横滚角与云台的俯仰角、横滚角一致。如图4所示,云台可以在平移角和俯仰角上转动时,基于云台的姿态角加上框架件401的关节角,可以对云台俯仰角进行补偿,进一步地再基于框架件402的关节角,可以对云台的平移角进行补偿,进而得到基座的姿态角,其中,基座的俯仰角、平移角为对云台的俯仰角和平移角进行补偿后的角度,而基座横滚角与云台的横滚角一致。
进一步地,图2、图3至图4仅为举例,云台各个轴的转动所围绕的轴并 不相同。例如,对于某个云台,其横滚轴框架用于固定摄像设备而非如图2所示的固定于俯仰轴框架上,因此,对设置在横滚轴框架和俯仰轴框架之间的电机组件感测得到第一关节角,可以基于第一关节角对横滚轴框架的姿态角中的横滚角进行补偿,进一步地,对设置在俯仰轴框架和平移轴框架之间的电机组件感测得到第二关节角,可以基于第二关节角对横滚轴框架的姿态角中的俯仰角进行补偿,再进一步地,对设置在平移轴框架和基座之间的电机组件感测得到第三关节角,可以基于第三关节角对横滚轴框架的姿态角中的平移角进行补偿,补充后的横滚角、俯仰角以及平移角作为基座的姿态角。
在推算得到了基座的姿态角后,控制设备可以根据所述基座的姿态角和所述云台的姿态角计算跟随信息,并控制所述云台以所述跟随信息转动,以便于所述云台跟随所述基座转动。
在一个实施例中,所述跟随信息可以是一个角度差值,那么在控制云台转动时,直接在云台当前姿态角的基础上,控制云台以相应的角度差值的角度转动即可,基于基座的姿态角的大小和云台的姿态角的大小,可以确定出转动的方向。例如,在平移角上按照平移角差值转动、和/或在俯仰角上基于俯仰角差值转动、和/或在横滚角上基于横滚角差值转动。
在一个实施例中,所述控制设备在根据所述基座的姿态角和所述云台姿态角对所述云台进行转动控制时,可以根据所述基座的姿态角,控制所述云台在平移方向上转动,转动后所述云台的平移角与所述基座的姿态角中的平移角满足第一相似条件;和/或,根据所述基座的姿态角,控制所述云台在俯仰方向上转动,转动后所述云台的俯仰角与所述基座的姿态角中的俯仰角满足第二相似条件;和/或,根据所述基座的姿态角,控制所述云台在横滚方向上转动,转动后所述云台的横滚角与所述基座的姿态角中的横滚角满足第三相似条件。所述的相似条件可以是指相同或者误差在一个较小的误差阈值范围内。例如:控制云台在平移方向上转动后的角度与基座的姿态角的平移角相同或者差值在预设的差值范围内,以满足第一相似条件;控制云台在俯仰方向上转动后的角度与基座的姿态角的俯仰角相同或者差值在预设的差值范围内,以满足第二相似条件;控制云台在横滚方向上转动后的角度与基座的姿态角的横滚角相同或者差值在预设的差值范围内,以满足第三相似条件。
在一个实施例中,所述跟随信息可以是一个速度值,例如角速度值或角加 速度值,仅控制云台按照该速度值的指示,控制云台按照相应的角速度或角加速度转动即可,并不规定转动的角度。在具体实施时,经过多种转动控制方式的比对(例如按照角度控制、按照角度差值控制、按照速度控制等等控制方式),基于跟随的速度值来控制云台转动,由于不强制云台转动指定的角度,可以避免由于无人机等移动平台受到干扰从而给云台执行跟随控制时带来的大范围乱晃的现象。该大范围乱晃是由于无人机因为干扰的缘故可能会持续转动机头方向,如果云台按照角度或者角度差值进行转动以达到跟随的目的,则会导致云台一定需要转动到相应的角度,此时存在这样一种可能:云台还没有跟随转动到无人机机头的角度,机头又再一次转动了一定角度,进而导致云台乱晃的可能。而基于速度值进行跟随转动控制,只需要云台按照一个角速度或者角加速度转动即可,并不强制云台转动到一定角度,从而避免了云台乱晃的问题。
为了简便地完成跟随信息的计算,特别是角速度或者角加速度之类的跟随信息的计算,在一个实施例中,可以将基座姿态经过转换公式转换为欧拉角、云台姿态角经过转换公式转换为欧拉角。基座对应的欧拉角表示为:(euler_base_pitch,euler_base_roll,euler_base_yaw),云台对应的欧拉角表示为:(euler_camera_pitch,euler_camera_roll,euler_camera_yaw)。所述跟随信息则可以根据转换得到的欧拉角计算得到的。
在计算得到了跟随信息后,可以控制所述云台在平移轴上以所述跟随信息(例如,平移角的角速度或者角加速度)转动。当然。也可以控制所述云台在俯仰轴上以所述跟随信息(例如,俯仰角的角速度或者角加速度)转动。也可以控制所述云台在横滚轴上以所述跟随信息(例如,横滚角的角速度或者角加速度)转动。
在一个实施例中,所述根据所述基座的姿态角和所述云台的姿态角计算跟随信息的具体计算方法可以包括:计算所述基座的姿态角与所述云台的姿态角的角度变化值;根据角度变化值计算得到跟随信息。所述的角度变化值为基座的姿态角和云台的姿态角的差值,例如平移角差值、俯仰角差值、横滚角差值中的一个或者多个。可以基于角度变化值和一个预设的跟随时间值来计算角速度或角加速度。预设的跟随时间值可以是一个经验值,或者也可以由用户设置,如果期望控制云台较快地跟随无人机机头,则可以设置较小的跟随时间值。
控制设备在根据角度变化值计算得到跟随信息时可以采用的方式包括:对 所述跟随信息进行修正,得到修正后的跟随信息。在一个实施例中,具体可以基于误差二次曲线计算规则,按照预置的比例系数对角度变化值和转动速度阈值进行计算,得到修正后的跟随信息。以平移角为例,将云台的跟随目标从飞机姿态flight_atti_yaw更换为基座姿态euler_base_yaw,用基座姿态和云台姿态去做差计算跟随角速度。其中,在计算跟随速度的时候,本发明实施例采用了误差二次曲线去计算角速度以减小飞机本身的震动对云台速度的影响。
角度变化值err=euler_base_yaw-camera_yaw;采用误差二次曲线计算跟随信息spd=(K*err/spd_max)^2*spd_max。
其中K是比例系数,K值用来调整跟随快慢,可以根据实际的需要进行调整,K越大跟随速度越快。Spd_max为转动速度阈值,Spd_max是云台实际能够输出的最大转动角速度,可以根据云台的型号或者对云台的实际测试来确定。基于上述跟随信息的计算公式满足一个限制条件,即K*err小于spd_max,因此,在K值在设置时可以设置一个较小的值,或者在通过上述跟随信息的计算公式进行计算时,先检测K*err是否小于spd_max,如果否,则动态调整K值,直到K*err小于spd_max。
可以理解,上述表达式主要是以欧拉角的形式来进行的计算说明,可以理解的是,基于相同的原理,采用矩阵、四元数等其他合适的计算方法也是可以得到跟随信息,本实施例仅为示例性说明,在此不作限定。
进一步地,可以并不是一直都按照云台的姿态角和基座的姿态角来控制云台转动,除了可以检测是否接收到所述移动平台发送干扰信号外,控制设备也可以在在进入伪跟随模式前,检测是否接收到触发信号。在一种实施例中,所述触发信号为所述移动平台发送的用于表示当前环境为强电磁干扰环境的触发信号。如果接收到触发信号,则执行所述S101,以便于基于云台的姿态和基座的姿态来控制云台进行跟随转动。若没有接收到触发信号,表示当前所处环境不为电磁干扰环境,获取所述移动平台发送的姿态数据;根据所述移动平台发送的姿态数据,对所述云台进行转动控制,以便于所述云台跟随所述移动平台转动。在没有接收到触发信号时,则直接接收移动平台的姿态数据,基于移动平台的姿态数据进行跟随处理,达到摄像装置跟随移动平台的目的,此时的移动平台的姿态数据可以是基于惯性测量传感器、全球定位系统(GPS)、视觉传感器以及指南针等多种传感器融合得到的较为准确的姿态数据。在强电 磁干扰环境下,移动平台上设置的指南针会受到干扰,使得对移动平台的运动朝向的检测会不准确,此时,可以产生一个触发信号,以便于触发执行上述的S101~S102,由于强电磁环境对惯性测量传感器基本无影响,因此,直接利用云台的惯性测量传感器等传感器获取到的姿态角与基座的姿态角(该基座的姿态角是直接检测到的或者基于云台的姿态角和关节角计算得到的),也可以达到跟随转动的目的。
在一个实施例中,控制设备也可以自行检测移动平台当前所处环境是否为强电磁干扰环境。只有在检测结果为是时,才开始执行所述S101即S102,以便于跟随基座转动进而达到跟随移动平台转动的目的。而在当前所处环境不为电磁干扰环境时,直接获取所述移动平台发送的姿态数据,根据所述移动平台发送的姿态数据,对所述云台进行转动控制,以便于所述云台跟随所述移动平台转动。
检测当前所处环境是否为强电磁干扰环境可以采用现有的电磁干扰仪器来检测,在一个实施例中,可以对移动平台上的指南针的输出数据进行检测,判断指南针的输出数据的变化信息;若变化信息满足变化条件,则确定当前所处环境为强电磁干扰环境;所述变化信息包括输出数据的变化频率和/或变化幅度。变化频率较高(高于频率阈值),和/或变化幅度较大(高于幅度阈值),则认为移动平台处于强电磁干扰环境中。
移动平台在检测到当前所处环境不为强电磁干扰环境时,会将移动平台的姿态角发送给所述云台;所述云台就可以直接基于移动平台的姿态角对云台的框架部进行转动控制,以便于跟随所述移动平台转动。
在本发明实施例中,在对云台进行跟随移动平台的转动控制时,可以不需要移动平台提供姿态数据,在移动平台的传感器受到环境干扰时,特别是移动平台的指南针受到强电磁环境干扰时,可以较好地保证在各种环境下对云台进行控制,也能够实现摄像设备等负载设备跟随移动平台转动。
再请参见图5,是本发明实施例的另一种云台的转动控制方法的流程示意图,本发明实施例的所述方法是由移动平台和云台之间的相互通信来实现的,所述云台的架构如上述实施例中所示,例如具体为图2的结构。本发明实施例的所述方法包括如下步骤。
S501:移动平台生成触发信号,并将触发信号发送给所述云台。
S502:所述云台在接收到触发信号后,进入伪跟随模式,在所述伪跟随模式下,获取云台的姿态角,并获取所述基座的姿态角;根据所述基座的姿态角和所述云台的姿态角,对云台的框架部进行转动控制,以便于跟随所述基座转动。
在一个实施例中,所述移动平台检测当前所处环境是否为强电磁干扰环境。在检测到当前所处环境为强电磁干扰环境时,触发执行所述S501。否则不会生成触发信号,而是将移动平台的姿态角发送给所述云台,而所述云台基于移动平台的姿态角对云台的框架部进行转动控制,以便于跟随所述移动平台转动。
在一个实施例中,所述检测当前所处环境是否为强电磁干扰环境可以包括:所述移动平台对指南针的输出数据进行检测,判断指南针的输出数据的变化信息;若变化信息满足预设条件,则所述移动平台确定当前所处环境为强电磁干扰环境。检测当前所处环境是否为强电磁干扰环境可以采用现有的电磁干扰仪器来检测,在一个实施例中,可以对移动平台上的指南针的输出数据进行检测,判断指南针的输出数据的变化信息;若变化信息满足变化条件,则确定当前所处环境为强电磁干扰环境;所述变化信息包括输出数据的变化频率和/或变化幅度。变化频率较高(高于频率阈值),和/或变化幅度较大(高于幅度阈值),则认为移动平台处于强电磁干扰环境中。
下面再对本发明实施例的对云台的转动控制装置及控制设备、飞行器进行详细描述。
请参见图6,是本发明实施例的一种云台的转动控制装置的结构示意图,本发明实施例的所述装置可以应用在一个单独的用于对云台进行转动控制的控制设备中,也可以应用在无人机、智能机器人、自动驾驶汽车等移动平台中。所述云台包括框架部,所述框架部用于搭载负载设备,所述云台通过基座与移动平台连接,该云台例如可以是如图2、图3或者图4所示的结构。所述装置包括如下模块。
获取模块601,用于在接收到触发信号后,进入伪跟随模式,在所述伪跟随模式下,获取所述云台的姿态角,并获取所述基座的姿态角;控制模块602,用于根据所述基座的姿态角和所述云台的姿态角,对所述云台进行转动控制,以便于所述云台跟随所述基座转动。
在一个实施例中,所述控制模块602,用于根据所述基座的姿态角和所述云台的姿态角计算跟随信息;并控制所述云台以所述跟随信息转动,以便于所述云台跟随所述基座转动。
在一个实施例中,所述控制模块602,用于计算所述基座的姿态角与所述云台的姿态角的角度变化值;根据角度变化值计算得到跟随信息。
在一个实施例中,所述控制模块602,用于对所述跟随信息进行修正,得到修正后的跟随信息。
在一个实施例中,所述控制模块602,用于基于误差二次曲线计算规则,按照预置的比例系数对角度变化值和转动速度阈值进行计算,得到修正后的跟随信息。
在一个实施例中,所述转动速度阈值为所述云台的最大转动速度。
在一个实施例中,所述跟随信息包括角度信息和/或角速度信息和/或角加速度信息。
在一个实施例中,所述云台还包括电机组件,所述控制模块602,用于获取所述电机组件的关节角数据,得到所述电机组件的关节角;根据所述电机组件的关节角和所述云台的姿态角进行计算,得到所述基座的姿态角。
在一个实施例中,所述控制模块602,用于从设置在所述基座上的传感器来获取所述基座的姿态角。
在一个实施例中,所述框架部包括平移轴框架、横滚轴框架、俯仰轴框架中的至少一个,所述控制模块602,用于根据所述基座的姿态角,控制所述云台在平移方向上转动,转动后所述云台的平移角与所述基座的姿态角中的平移角满足第一相似条件;和/或、根据所述基座的姿态角,控制所述云台在俯仰方向上转动,转动后所述云台的俯仰角与所述基座的姿态角中的俯仰角满足第二相似条件;和/或、根据所述基座的姿态角,控制所述云台在横滚方向上转动,转动后所述云台的横滚角与所述基座的姿态角中的横滚角满足第三相似条件。
在一个实施例中,所述控制模块602,还用于在进入伪跟随模式前,检测是否接收到所述触发信号。
在一个实施例中,所述触发信号为所述移动平台发送的用于表示当前环境为强电磁干扰环境的触发信号。
在一个实施例中,所述控制模块602,还用于若没有接收到触发信号,获取所述移动平台发送的姿态数据;根据所述移动平台发送的姿态数据,对所述云台进行转动控制,以便于所述云台跟随所述移动平台转动。
在本发明实施例中,所述获取模块601和所述控制模块602的具体实现可参考前述实施例的描述,在此不赘述。并且,所述控制模块602中各个功能用途之间的关系可以参考前述实施例中相关方法步骤之间的关系描述。
在本发明实施例中,在对云台进行跟随移动平台的转动控制时,可以不需要移动平台提供姿态数据,在移动平台的传感器受到环境干扰时,特别是移动平台的指南针受到强电磁环境干扰时,可以较好地保证在各种环境下对云台进行控制,也能够实现摄像设备等负载设备跟随移动平台转动。
请参见图7,是本发明实施例的一种控制设备的结构示意图,本发明实施例的所述控制设备为一个单独的用于对云台进行转动控制的设备,该控制设备也可以应用在无人机、智能机器人、自动驾驶汽车等移动平台中。所述云台包括框架部,所述框架部用于搭载负载设备,所述云台通过基座与移动平台连接,该云台例如可以是如图2、图3或者图4所示的结构。
所述控制设备包括通信接口701和控制器702;所述通信接口701与所述云台相连;所述控制器702,用于在接收到触发信号后,进入伪跟随模式,在所述伪跟随模式下,获取所述云台的姿态角,并获取所述基座的姿态角;根据所述基座的姿态角和所述云台的姿态角,对所述云台进行转动控制,以便于所述云台跟随所述基座转动。可以通过所述通信接口向云台发送控制指令以控制云台转动,具体可以是向云台中各个框架件对应的电机组件发送控制指令,以使得电机组件转动从而带动云台的框架件转动。另外,所述通信接口701还可以与移动平台中的相关处理模块相连,用于接收无人机、自动驾驶汽车等移动平台通过该相关处理模块发送的触发信号。
所述控制器702可以是中央控制器702(central processing unit,CPU)。所述控制器702还可以进一步包括硬件芯片。该硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),也可以是可编程逻辑器件(programmable logic device,PLD)等。该PLD可以是现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)等。
所述控制设备还可以根据需要包括存储装置。所述存储装置可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储装置也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),固态硬盘(solid-state drive,SSD)等;存储装置还可以包括上述种类的存储器的组合。这些存储装置可以用来存储一些计算机程序指令,以便于所述控制器702调用,来实现对云台的转动控制。这些存储装置也可以用来存储负载设备采集到的数据,例如摄像装置采集到的图像数据等。
在一个实施例中,所述控制器702,用于根据所述基座的姿态角和所述云台的姿态角计算跟随信息;控制所述云台以所述跟随信息转动,以便于所述云台跟随所述基座转动。
在一个实施例中,所述控制器702,用于计算所述基座的姿态角与所述云台的姿态角的角度变化值;根据角度变化值计算得到跟随信息。
在一个实施例中,所述控制器702,用于对所述跟随信息进行修正,得到修正后的跟随信息。
在一个实施例中,所述控制器702,用于基于误差二次曲线计算规则,按照预置的比例系数对角度变化值和转动速度阈值进行计算,得到修正后的跟随信息。
在一个实施例中,所述转动速度阈值为所述云台的最大转动速度。
在一个实施例中,所述跟随信息包括角度信息和/或角速度信息和/或角加速度信息。
在一个实施例中,所述云台还包括电机组件,所述控制器702,用于获取所述电机组件的关节角数据,得到所述电机组件的关节角;根据所述电机组件的关节角和所述云台的姿态角进行计算,得到所述基座的姿态角。
在一个实施例中,所述控制器702,用于从设置在所述基座上的传感器来获取所述基座的姿态角。
在一个实施例中,所述框架部包括平移轴框架、横滚轴框架、俯仰轴框架中的至少一个,所述控制器702,用于根据所述基座的姿态角,控制所述云台在平移方向上转动,转动后所述云台的平移角与所述基座的姿态角中的平移角满足第一相似条件;和/或
根据所述基座的姿态角,控制所述云台在俯仰方向上转动,转动后所述云台的俯仰角与所述基座的姿态角中的俯仰角满足第二相似条件;和/或
根据所述基座的姿态角,控制所述云台在横滚方向上转动,转动后所述云台的横滚角与所述基座的姿态角中的横滚角满足第三相似条件。
在一个实施例中,所述控制器702,用于在进入伪跟随模式前,检测是否接收到所述触发信号。
在一个实施例中,所述触发信号为所述移动平台发送的用于表示当前环境为强电磁干扰环境的触发信号。
在一个实施例中,所述控制器702,用于若没有接收到所述触发信号,获取所述移动平台发送的姿态数据;根据所述移动平台发送的姿态数据,对所述云台进行转动控制,以便于所述云台跟随所述移动平台转动。
在本发明实施例中,所述控制设备中的控制器702等功能模块的具体实现可参考前述实施例的描述,在此不赘述。同时,所述控制器702所执行的各个功能步骤之间的关系可参考前述实施例中相关方法步骤之间的关系描述。
在本发明实施例中,在对云台进行跟随移动平台的转动控制时,可以不需要移动平台提供姿态数据,在移动平台的传感器受到环境干扰时,特别是移动平台的指南针受到强电磁环境干扰时,可以较好地保证在各种环境下对云台进行控制,也能够实现摄像设备等负载设备跟随移动平台转动。
再请参见图8,是本发明实施例的一种移动平台的结构示意图,该移动平台可以是指智能机器人、飞行器、自动驾驶汽车等。图8是以移动平台为飞行器为例来对本发明实施例进行的示例,该飞行器可以是常见的四旋翼、六旋翼、八旋翼等多旋翼飞行器,当然该飞行器也可以是固定翼飞行器。
该移动平台包括:机体801、动力组件802、控制器803、云台804。其中,其中,所述机体801主要指移动平台的主体结构,例如无人机的机身结构、自动驾驶汽车的车身结构等等。所述动力组件802则主要为移动平台提供动力,例如对于飞行器而言,动力组件802可以是指电子调速器和电机、螺旋桨等结构组成,对于自动驾驶汽车,所述动力组件802则可以为发动机、车轮等等结构组成。所述控制器803例如可以是飞行器的飞行控制器等移动控制装置。
所述云台804包括框架部,所述框架部用于搭载负载设备805,在本发明实施例中,所述负载设备805可以是移动平台的一部分,也可以是一个可拆卸 的外部设备。所述云台804通过基座与所述机体801连接;所述动力组件802,用于为所述移动平台的飞行提供动力;当然,所述移动平台还包括给移动平台供电的供电电源,还可以包括与外部设备通信的无线通信接口等功能结构。当然,所述移动平台还包括提供电源的供电模块,还可以包括与外部设备通信的无线通信接口等功能结构。
所述云台804为一个智能设备,在云台上可以设置处理器,该处理器可以是CPU,该处理器还可以进一步包括硬件芯片。该硬件芯片可以是ASIC,也可以是PLD等。该PLD可以是FPGA,GAL等。
所述移动平台还可以根据需要包括存储装置。所述存储装置可以包括易失性存储器,例如RAM;存储装置也可以包括非易失性存储器,例如flash memory,SSD等;存储装置还可以包括上述种类的存储器的组合。这些存储装置可以用来存储一些计算机程序指令,以便于所述控制器803和/或所述云台804的处理器调用,来实现对云台804的转动控制。这些存储装置也可以用来存储负载设备采集到的数据,例如摄像装置采集到的图像数据等。
在一个实施例中,所述控制器803,用于控制所述动力组件802;并用于触发所述云台804进入伪跟随模式;所述云台804,用于进入伪跟随模式,在所述伪跟随模式下,获取所述云台804的姿态角,并获取所述基座的姿态角;根据所述基座的姿态角和所述云台804的姿态角,对所述云台804的框架部进行转动控制,以便于跟随所述基座转动。
在一个实施例中,所述云台804,用于根据所述基座的姿态角和所述云台的姿态角计算跟随信息;控制所述云台以所述跟随信息转动,以便于所述云台跟随所述基座转动。
在一个实施例中,所述云台804,用于计算所述基座的姿态角与所述云台的姿态角的角度变化值;根据角度变化值计算得到跟随信息。
在一个实施例中,所述云台804,用于对所述跟随信息进行修正,得到修正后的跟随信息。
在一个实施例中,所述云台804,用于基于误差二次曲线计算规则,按照预置的比例系数对角度变化值和转动速度阈值进行计算,得到修正后的跟随信息。
在一个实施例中,所述转动速度阈值为所述云台的最大转动速度。
在一个实施例中,所述跟随信息包括角度信息和/或角速度信息和/或角加速度信息。
在一个实施例中,所述云台还包括电机组件,所述云台804,用于获取所述电机组件的关节角数据,得到所述电机组件的关节角;根据所述电机组件的关节角和所述云台的姿态角进行计算,得到所述基座的姿态角。
在一个实施例中,所述云台804,用于从设置在所述基座上的传感器来获取所述基座的姿态角。
在一个实施例中,所述框架部包括平移轴框架、横滚轴框架、俯仰轴框架中的至少一个,所述云台804,用于
根据所述基座的姿态角,控制所述云台在平移方向上转动,转动后所述云台的平移角与所述基座的姿态角中的平移角满足第一相似条件;和/或
根据所述基座的姿态角,控制所述云台在俯仰方向上转动,转动后所述云台的俯仰角与所述基座的姿态角中的俯仰角满足第二相似条件;和/或
根据所述基座的姿态角,控制所述云台在横滚方向上转动,转动后所述云台的横滚角与所述基座的姿态角中的横滚角满足第三相似条件。
在一个实施例中,所述云台804,用于在进入伪跟随模式前,检测是否接收到所述触发信号。
在一个实施例中,所述触发信号为所述移动平台发送的用于表示当前环境为强电磁干扰环境的触发信号。
在一个实施例中,所述云台804,用于若没有接收到所述触发信号,获取所述移动平台的姿态数据;根据所述移动平台的姿态数据,对所述云台进行转动控制,以便于所述云台跟随所述移动平台转动。
在一个实施例中,所述控制器803,用于生成触发信号,并将触发信号发送给所述云台804,所述触发信号用于触发所述云台804进入伪跟随模式。
在一个实施例中,所述控制器803,用于检测当前所处环境是否为强电磁干扰环境。
在一个实施例中,所述控制器803,用于对指南针的输出数据进行检测,判断指南针的输出数据的变化信息;若变化信息满足预设条件,则确定当前所处环境为强电磁干扰环境;所述触发信号是所述控制器803在确定当前所处环境为强电磁干扰环境后发送给所述云台804的。所述指南针设置在移动平台 上,为所述移动平台确定移动方向。
在一个实施例中,所述变化信息包括所述指南针的输出数据的变化频率和/或变化幅度。
在一个实施例中,所述控制器803,用于在检测到当前所处环境不为强电磁干扰环境时,将移动平台的姿态角发送给所述云台804;所述云台804,用于基于移动平台的姿态角对云台804的框架部进行转动控制,以便于跟随所述移动平台转动。
在本发明实施例中,所述移动平台中的控制器803等功能模块的具体实现可参考前述实施例的描述,在此不赘述。并且,可以理解的是,图8仅为示例,动力组件802、控制器803以及云台804、负载设备805等模块的结构形状、相互之间的位置关系可以有更多的组合形式,本发明实施例并不限定。同时,所述控制器803以及云台804所执行的各个功能步骤之间的关系可参考前述实施例中相关方法步骤之间的关系描述。
在本发明实施例中,在对云台进行跟随移动平台的转动控制时,可以不需要移动平台提供姿态数据,在移动平台的传感器受到环境干扰时,特别是移动平台的指南针受到强电磁环境干扰时,可以较好地保证在各种环境下对云台进行控制,也能够实现摄像设备等负载设备跟随移动平台转动。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (57)

  1. 一种云台的转动控制方法,其特征在于,所述云台包括框架部,所述框架部用于搭载负载设备,所述云台通过基座与移动平台连接,所述方法包括:
    在接收到触发信号后,进入伪跟随模式,在所述伪跟随模式下,获取所述云台的姿态角,并获取所述基座的姿态角;
    根据所述基座的姿态角和所述云台的姿态角,对所述云台进行转动控制,以便于所述云台跟随所述基座转动。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述基座的姿态角和所述云台的姿态角,对所述云台进行转动控制,包括:
    根据所述基座的姿态角和所述云台的姿态角计算跟随信息;
    控制所述云台以所述跟随信息转动,以便于所述云台跟随所述基座转动。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述基座的姿态角和所述云台的姿态角计算跟随信息,包括:
    计算所述基座的姿态角与所述云台的姿态角的角度变化值;
    根据角度变化值计算得到跟随信息。
  4. 如权利要求3所述的方法,其特征在于,所述根据角度变化值计算得到跟随信息,包括:
    对所述跟随信息进行修正,得到修正后的跟随信息。
  5. 如权利要求4所述的方法,其特征在于,所述对所述跟随信息进行修正,得到修正后的跟随信息,包括:
    基于误差二次曲线计算规则,按照预置的比例系数对角度变化值和转动速度阈值进行计算,得到修正后的跟随信息。
  6. 如权利要求5所述的方法,其特征在于,所述转动速度阈值为所述云台的最大转动速度。
  7. 如权利要求2-6任一项所述的方法,其特征在于,所述跟随信息包括角度信息和/或角速度信息和/或角加速度信息。
  8. 如权利要求1所述的方法,其特征在于,所述云台还包括电机组件,所述获取所述基座的姿态角,包括:
    获取所述电机组件的关节角数据,得到所述电机组件的关节角;
    根据所述电机组件的关节角和所述云台的姿态角进行计算,得到所述基座的姿态角。
  9. 如权利要求1所述的方法,其特征在于,所述获取所述基座的姿态角,包括:
    从设置在所述基座上的传感器来获取所述基座的姿态角。
  10. 如权利要求1所述的方法,其特征在于,所述框架部包括平移轴框架、横滚轴框架、俯仰轴框架中的至少一个,所述根据所述基座的姿态角和所述云台的姿态角,对所述云台进行转动控制,包括:
    根据所述基座的姿态角,控制所述云台在平移方向上转动,转动后所述云台的平移角与所述基座的姿态角中的平移角满足第一相似条件;和/或
    根据所述基座的姿态角,控制所述云台在俯仰方向上转动,转动后所述云台的俯仰角与所述基座的姿态角中的俯仰角满足第二相似条件;和/或
    根据所述基座的姿态角,控制所述云台在横滚方向上转动,转动后所述云台的横滚角与所述基座的姿态角中的横滚角满足第三相似条件。
  11. 如权利要求1所述的方法,其特征在于,还包括:
    在进入伪跟随模式前,检测是否接收到所述触发信号。
  12. 如权利要求11所述的方法,其特征在于,所述触发信号为所述移动平台发送的用于表示当前环境为强电磁干扰环境的触发信号。
  13. 如权利要求11所述的方法,其特征在于,还包括:
    若没有接收到所述触发信号,获取所述移动平台发送的姿态数据;
    根据所述移动平台发送的姿态数据,对所述云台进行转动控制,以便于所述云台跟随所述移动平台转动。
  14. 一种云台的控制装置,其特征在于,所述云台包括框架部,所述框架部用于搭载负载设备,所述云台通过基座与移动平台连接,所述装置包括:
    获取模块,用于在接收到触发信号后,进入伪跟随模式,在所述伪跟随模式下,获取所述云台的姿态角,并获取所述基座的姿态角;
    控制模块,用于根据所述基座的姿态角和所述云台的姿态角,对所述云台进行转动控制,以便于所述云台跟随所述基座转动。
  15. 如权利要求14所述的装置,其特征在于,所述控制模块,用于根据所述基座的姿态角和所述云台的姿态角计算跟随信息;并控制所述云台以所述 跟随信息转动,以便于所述云台跟随所述基座转动。
  16. 如权利要求15所述的装置,其特征在于,所述控制模块,用于计算所述基座的姿态角与所述云台的姿态角的角度变化值;根据角度变化值计算得到跟随信息。
  17. 如权利要求16所述的装置,其特征在于,所述控制模块,用于对所述跟随信息进行修正,得到修正后的跟随信息。
  18. 如权利要求17所述的装置,其特征在于,所述控制模块,用于基于误差二次曲线计算规则,按照预置的比例系数对角度变化值和转动速度阈值进行计算,得到修正后的跟随信息。
  19. 如权利要求18所述的装置,其特征在于,所述转动速度阈值为所述云台的最大转动速度。
  20. 如权利要求15-19任一项所述的装置,其特征在于,所述跟随信息包括角度信息和/或角速度信息和/或角加速度信息。
  21. 如权利要求14所述的装置,其特征在于,所述云台还包括电机组件,所述控制模块,用于获取所述电机组件的关节角数据,得到所述电机组件的关节角;根据所述电机组件的关节角和所述云台的姿态角进行计算,得到所述基座的姿态角。
  22. 如权利要求14所述的装置,其特征在于,所述控制模块,用于从设置在所述基座上的传感器来获取所述基座的姿态角。
  23. 如权利要求14所述的装置,其特征在于,所述框架部包括平移轴框架、横滚轴框架、俯仰轴框架中的至少一个,所述控制模块,用于
    根据所述基座的姿态角,控制所述云台在平移方向上转动,转动后所述云台的平移角与所述基座的姿态角中的平移角满足第一相似条件;和/或
    根据所述基座的姿态角,控制所述云台在俯仰方向上转动,转动后所述云台的俯仰角与所述基座的姿态角中的俯仰角满足第二相似条件;和/或
    根据所述基座的姿态角,控制所述云台在横滚方向上转动,转动后所述云台的横滚角与所述基座的姿态角中的横滚角满足第三相似条件。
  24. 如权利要求14所述的装置,其特征在于,所述控制模块,还用于在进入伪跟随模式前,检测是否接收到所述触发信号。
  25. 如权利要求24所述的装置,其特征在于,所述触发信号为所述移动 平台发送的用于表示当前环境为强电磁干扰环境的触发信号。
  26. 如权利要求24所述的装置,其特征在于,所述控制模块,还用于若没有接收到触发信号,获取所述移动平台发送的姿态数据;根据所述移动平台发送的姿态数据,对所述云台进行转动控制,以便于所述云台跟随所述移动平台转动。
  27. 一种控制设备,其特征在于,所述控制设备与云台相连,所述云台包括框架部,所述框架部用于搭载负载设备,所述云台通过基座与移动平台连接,所述控制设备包括通信接口和控制器;
    所述通信接口与所述云台相连;
    所述控制器,用于在接收到触发信号后,进入伪跟随模式,在所述伪跟随模式下,获取所述云台的姿态角,并获取所述基座的姿态角;根据所述基座的姿态角和所述云台的姿态角,对所述云台进行转动控制,以便于所述云台跟随所述基座转动。
  28. 如权利要求27所述的控制设备,其特征在于,所述控制器,用于根据所述基座的姿态角和所述云台的姿态角计算跟随信息;控制所述云台以所述跟随信息转动,以便于所述云台跟随所述基座转动。
  29. 如权利要求28所述的控制设备,其特征在于,所述控制器,用于计算所述基座的姿态角与所述云台的姿态角的角度变化值;根据角度变化值计算得到跟随信息。
  30. 如权利要求29所述的控制设备,其特征在于,所述控制器,用于对所述跟随信息进行修正,得到修正后的跟随信息。
  31. 如权利要求30所述的控制设备,其特征在于,所述控制器,用于基于误差二次曲线计算规则,按照预置的比例系数对角度变化值和转动速度阈值进行计算,得到修正后的跟随信息。
  32. 如权利要求31所述的控制设备,其特征在于,所述转动速度阈值为所述云台的最大转动速度。
  33. 如权利要求28-32任一项所述的装置,其特征在于,所述跟随信息包括角度信息和/或角速度信息和/或角加速度信息。
  34. 如权利要求27所述的控制设备,其特征在于,所述云台还包括电机组件,所述控制器,用于获取所述电机组件的关节角数据,得到所述电机组件 的关节角;根据所述电机组件的关节角和所述云台的姿态角进行计算,得到所述基座的姿态角。
  35. 如权利要求27所述的控制设备,其特征在于,所述控制器,用于从设置在所述基座上的传感器来获取所述基座的姿态角。
  36. 如权利要求27所述的控制设备,其特征在于,所述框架部包括平移轴框架、横滚轴框架、俯仰轴框架中的至少一个,所述控制器,用于
    根据所述基座的姿态角,控制所述云台在平移方向上转动,转动后所述云台的平移角与所述基座的姿态角中的平移角满足第一相似条件;和/或
    根据所述基座的姿态角,控制所述云台在俯仰方向上转动,转动后所述云台的俯仰角与所述基座的姿态角中的俯仰角满足第二相似条件;和/或
    根据所述基座的姿态角,控制所述云台在横滚方向上转动,转动后所述云台的横滚角与所述基座的姿态角中的横滚角满足第三相似条件。
  37. 如权利要求27所述的控制设备,其特征在于,所述控制器,用于在进入伪跟随模式前,检测是否接收到所述触发信号。
  38. 如权利要求37所述的控制设备,其特征在于,所述触发信号为所述移动平台发送的用于表示当前环境为强电磁干扰环境的触发信号。
  39. 如权利要求37所述的控制设备,其特征在于,所述控制器,用于若没有接收到所述触发信号,获取所述移动平台发送的姿态数据;根据所述移动平台发送的姿态数据,对所述云台进行转动控制,以便于所述云台跟随所述移动平台转动。
  40. 一种移动平台,其特征在于,所述移动平台包括:机体、动力组件、控制器、云台,其中,所述云台包括框架部,所述框架部用于搭载负载设备,所述云台通过基座与所述机体连接;
    所述动力组件,用于为所述移动平台提供动力;
    所述控制器,用于控制所述动力组件;并用于触发所述云台进入伪跟随模式;
    所述云台,用于进入伪跟随模式,在所述伪跟随模式下,获取所述云台的姿态角,并获取所述基座的姿态角;根据所述基座的姿态角和所述云台的姿态角,对所述云台的框架部进行转动控制,以便于跟随所述基座转动。
  41. 如权利要求40所述的移动平台,其特征在于,所述云台,用于根据 所述基座的姿态角和所述云台的姿态角计算跟随信息;控制所述云台以所述跟随信息转动,以便于所述云台跟随所述基座转动。
  42. 如权利要求41所述的移动平台,其特征在于,所述云台,用于计算所述基座的姿态角与所述云台的姿态角的角度变化值;根据角度变化值计算得到跟随信息。
  43. 如权利要求42所述的移动平台,其特征在于,所述云台,用于对所述跟随信息进行修正,得到修正后的跟随信息。
  44. 如权利要求43所述的移动平台,其特征在于,所述云台,用于基于误差二次曲线计算规则,按照预置的比例系数对角度变化值和转动速度阈值进行计算,得到修正后的跟随信息。
  45. 如权利要求44所述的移动平台,其特征在于,所述转动速度阈值为所述云台的最大转动速度。
  46. 如权利要求41-45任一项所述的装置,其特征在于,所述跟随信息包括角度信息和/或角速度信息和/或角加速度信息。
  47. 如权利要求40所述的移动平台,其特征在于,所述云台还包括电机组件,所述云台,用于获取所述电机组件的关节角数据,得到所述电机组件的关节角;根据所述电机组件的关节角和所述云台的姿态角进行计算,得到所述基座的姿态角。
  48. 如权利要求40所述的移动平台,其特征在于,所述云台,用于从设置在所述基座上的传感器来获取所述基座的姿态角。
  49. 如权利要求40所述的移动平台,其特征在于,所述框架部包括平移轴框架、横滚轴框架、俯仰轴框架中的至少一个,所述云台,用于
    根据所述基座的姿态角,控制所述云台在平移方向上转动,转动后所述云台的平移角与所述基座的姿态角中的平移角满足第一相似条件;和/或
    根据所述基座的姿态角,控制所述云台在俯仰方向上转动,转动后所述云台的俯仰角与所述基座的姿态角中的俯仰角满足第二相似条件;和/或
    根据所述基座的姿态角,控制所述云台在横滚方向上转动,转动后所述云台的横滚角与所述基座的姿态角中的横滚角满足第三相似条件。
  50. 如权利要求40所述的移动平台,其特征在于,所述云台,用于在进入伪跟随模式前,检测是否接收到所述触发信号。
  51. 如权利要求50所述的移动平台,其特征在于,所述触发信号为所述移动平台发送的用于表示当前环境为强电磁干扰环境的触发信号。
  52. 如权利要求50所述的移动平台,其特征在于,所述云台,用于若没有接收到所述触发信号,获取所述移动平台的姿态数据;根据所述移动平台的姿态数据,对所述云台进行转动控制,以便于所述云台跟随所述移动平台转动。
  53. 如权利要求40所述的方法,其特征在于,所述控制器,用于生成触发信号,并将触发信号发送给所述云台,所述触发信号用于触发所述云台进入伪跟随模式。
  54. 如权利要求40所述的移动平台,其特征在于,
    所述控制器,用于检测当前所处环境是否为强电磁干扰环境。
  55. 如权利要求54所述的移动平台,其特征在于,
    所述控制器,用于对指南针的输出数据进行检测,判断指南针的输出数据的变化信息;若变化信息满足预设条件,则确定当前所处环境为强电磁干扰环境;所述触发信号是所述控制器在确定当前所处环境为强电磁干扰环境后发送给所述云台的。
  56. 如权利要求55所述的移动平台,其特征在于,所述变化信息包括所述指南针的输出数据的变化频率和/或变化幅度。
  57. 如权利要求54所述的移动平台,其特征在于,
    所述控制器,用于在检测到当前所处环境不为强电磁干扰环境时,将移动平台的姿态角发送给所述云台;
    所述云台,用于基于移动平台的姿态角对云台的框架部进行转动控制,以便于跟随所述移动平台转动。
PCT/CN2018/103596 2018-08-31 2018-08-31 一种云台的转动控制方法、装置及控制设备、移动平台 WO2020042159A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/103596 WO2020042159A1 (zh) 2018-08-31 2018-08-31 一种云台的转动控制方法、装置及控制设备、移动平台
CN201880010737.8A CN110300941A (zh) 2018-08-31 2018-08-31 一种云台的转动控制方法、装置及控制设备、移动平台
US17/174,512 US20210165388A1 (en) 2018-08-31 2021-02-12 Gimbal rotation control method and apparatus, control device, and movable platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/103596 WO2020042159A1 (zh) 2018-08-31 2018-08-31 一种云台的转动控制方法、装置及控制设备、移动平台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/174,512 Continuation US20210165388A1 (en) 2018-08-31 2021-02-12 Gimbal rotation control method and apparatus, control device, and movable platform

Publications (1)

Publication Number Publication Date
WO2020042159A1 true WO2020042159A1 (zh) 2020-03-05

Family

ID=68026356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103596 WO2020042159A1 (zh) 2018-08-31 2018-08-31 一种云台的转动控制方法、装置及控制设备、移动平台

Country Status (3)

Country Link
US (1) US20210165388A1 (zh)
CN (1) CN110300941A (zh)
WO (1) WO2020042159A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115183100A (zh) * 2022-07-18 2022-10-14 郑州航空工业管理学院 一种基于深水网箱的视频监控固定装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022040932A1 (zh) * 2020-08-25 2022-03-03 深圳市大疆创新科技有限公司 云台的控制方法、云台及存储介质
JP7264931B2 (ja) * 2021-03-25 2023-04-25 キヤノンプレシジョン株式会社 ジンバル及びそれを有するシステム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106910A (ja) * 2004-09-30 2006-04-20 Toshiba Corp ジンバル装置
CN102913766A (zh) * 2012-10-24 2013-02-06 天津大学 定向照明手腕灯及其控制方法
US20160150134A1 (en) * 2014-11-25 2016-05-26 JVC Kenwood Corporation Gimbal device and control method of gimbal device
CN105739544A (zh) * 2016-03-24 2016-07-06 北京臻迪机器人有限公司 云台航向跟随方法及装置
CN106428596A (zh) * 2016-10-28 2017-02-22 中国电力科学研究院 一种配网巡检无人机整体结构及其无人机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940007163B1 (ko) * 1991-07-09 1994-08-06 삼성전자 주식회사 캠코더의 피사체 자동추적장치
EP3722902B1 (en) * 2015-07-10 2021-09-15 SZ DJI Technology Co., Ltd. Systems and methods for gimbal simulation
CN107003678B (zh) * 2016-12-15 2019-08-20 深圳市大疆创新科技有限公司 控制方法、装置、设备及可移动平台
CN108253966B (zh) * 2016-12-28 2021-08-06 昊翔电能运动科技(昆山)有限公司 无人机飞行三维模拟显示方法
CN107219863B (zh) * 2017-06-16 2020-04-10 中国科学院长春光学精密机械与物理研究所 稳定云台转动的控制方法及控制系统及稳定云台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106910A (ja) * 2004-09-30 2006-04-20 Toshiba Corp ジンバル装置
CN102913766A (zh) * 2012-10-24 2013-02-06 天津大学 定向照明手腕灯及其控制方法
US20160150134A1 (en) * 2014-11-25 2016-05-26 JVC Kenwood Corporation Gimbal device and control method of gimbal device
CN105739544A (zh) * 2016-03-24 2016-07-06 北京臻迪机器人有限公司 云台航向跟随方法及装置
CN106428596A (zh) * 2016-10-28 2017-02-22 中国电力科学研究院 一种配网巡检无人机整体结构及其无人机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115183100A (zh) * 2022-07-18 2022-10-14 郑州航空工业管理学院 一种基于深水网箱的视频监控固定装置
CN115183100B (zh) * 2022-07-18 2023-09-29 郑州航空工业管理学院 一种基于深水网箱的视频监控固定装置

Also Published As

Publication number Publication date
CN110300941A (zh) 2019-10-01
US20210165388A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US11724805B2 (en) Control method, control device, and carrier system
US10447912B2 (en) Systems, methods, and devices for setting camera parameters
US20200346753A1 (en) Uav control method, device and uav
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
US9765926B2 (en) Systems and methods for payload stabilization
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
KR20180051996A (ko) 무인 비행 장치 및 이를 이용한 피사체 촬영 방법
JP2017065467A (ja) 無人機およびその制御方法
US11076082B2 (en) Systems and methods for digital video stabilization
US20220155800A1 (en) Method and apparatus for yaw fusion and aircraft
US20210165388A1 (en) Gimbal rotation control method and apparatus, control device, and movable platform
CN110377058B (zh) 一种飞行器的偏航角修正方法、装置及飞行器
WO2021052334A1 (zh) 一种无人飞行器的返航方法、装置及无人飞行器
WO2021217371A1 (zh) 可移动平台的控制方法和装置
WO2020019260A1 (zh) 磁传感器校准方法、控制终端以及可移动平台
WO2019227287A1 (zh) 无人机的数据处理方法和设备
WO2020062089A1 (zh) 磁传感器校准方法以及可移动平台
US20210229810A1 (en) Information processing device, flight control method, and flight control system
WO2020019175A1 (zh) 图像处理方法和设备、摄像装置以及无人机
JP6910785B2 (ja) 移動撮像装置およびその制御方法、ならびに撮像装置およびその制御方法、無人機、プログラム、記憶媒体
WO2020237429A1 (zh) 遥控设备的控制方法和遥控设备
WO2020062255A1 (zh) 拍摄控制方法和无人机
WO2022134036A1 (zh) 可移动平台及其控制方法、装置
WO2018103192A1 (zh) 一种无人机姿态保持方法及装置
WO2020150974A1 (zh) 拍摄控制方法、可移动平台与存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931541

Country of ref document: EP

Kind code of ref document: A1