WO2020019110A1 - 移动平台的辅助移动方法、移动装置及移动平台 - Google Patents

移动平台的辅助移动方法、移动装置及移动平台 Download PDF

Info

Publication number
WO2020019110A1
WO2020019110A1 PCT/CN2018/096635 CN2018096635W WO2020019110A1 WO 2020019110 A1 WO2020019110 A1 WO 2020019110A1 CN 2018096635 W CN2018096635 W CN 2018096635W WO 2020019110 A1 WO2020019110 A1 WO 2020019110A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile platform
movement
trajectory
instruction
obstacle
Prior art date
Application number
PCT/CN2018/096635
Other languages
English (en)
French (fr)
Inventor
张立天
刘坤
钱杰
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880036951.0A priority Critical patent/CN110709792A/zh
Priority to PCT/CN2018/096635 priority patent/WO2020019110A1/zh
Publication of WO2020019110A1 publication Critical patent/WO2020019110A1/zh
Priority to US17/124,399 priority patent/US20210103300A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/102Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/12Target-seeking control

Definitions

  • the present application relates to the field of auxiliary control technology, and in particular, to an auxiliary moving method of a mobile platform, a mobile device, and a mobile platform.
  • An existing mobile platform tracking strategy is to track an object with obvious characteristics as a target object. Usually during the tracking of a certain characteristic part of the target object (such as a human face), if an obstacle is encountered, the mobile platform may directly hit the obstacle or perform a braking operation in front of the obstacle, which cannot achieve effective obstacle avoidance. , Which in turn can easily lead to the loss of target tracking, which will affect the reliability of tracking.
  • a certain characteristic part of the target object such as a human face
  • the embodiments of the present invention provide a mobile platform assisted moving method, a mobile device, and a mobile platform, which can ensure that the mobile platform can effectively track a target object, ensure the safe movement of the mobile platform, and extend the moving distance of the mobile platform.
  • a first aspect of an embodiment of the present invention is to provide a mobile platform-assisted moving method, including:
  • an obstacle avoidance assistance instruction is generated in a range where the distance from the obstacle is less than a predetermined distance
  • the movement trajectory of the mobile platform is controlled based on the tracking instruction and the obstacle avoidance assistance instruction, wherein the tracking instruction is used to instruct the mobile platform to track the target object.
  • a second aspect of the embodiments of the present invention is to provide a mobile device, including:
  • the memory is used to store program code
  • the processor calls the program code, and when the program code is executed, is used to perform the following operations:
  • an obstacle avoidance assistance instruction is generated in a range where the distance from the obstacle is less than a predetermined distance
  • the movement trajectory of the mobile platform is controlled based on the tracking instruction and the obstacle avoidance assistance instruction, wherein the tracking instruction is used to instruct the mobile platform to track the target object.
  • a third aspect of the embodiments of the present invention is to provide a mobile platform, including:
  • a power system mounted on the fuselage and configured to provide power to the mobile platform
  • an obstacle avoidance assistance instruction is generated when the distance between the mobile platform and the obstacle is less than a predetermined distance, and the mobile platform is controlled based on the tracking instruction and the obstacle avoidance assistance instruction.
  • the movement allows the mobile platform to effectively track the target object, while ensuring the safe movement of the mobile platform, avoiding the situation in the prior art that the mobile platform is about to hit an obstacle and the decision is taken immediately, and the mobile platform can be extended Moving distance.
  • FIG. 1 is a flowchart of a method for assisting movement of a mobile platform according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a scenario for generating an obstacle avoidance assistance instruction according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a scenario for generating another obstacle avoidance assistance instruction according to an embodiment of the present invention.
  • FIGS. 4a-4c are side views of a mobile platform moving provided by an embodiment of the present invention.
  • FIG. 5 is a schematic top view of a mobile platform according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for generating an obstacle avoidance assistance instruction according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a method for generating a moving track according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a speed change of the mobile platform in any of four directions: left, right, up, and down according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of generating another obstacle avoidance assistance instruction according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of an execution method of step 103 according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of multiple movement trajectories provided by an embodiment of the present invention.
  • FIG. 12 is a flowchart of an execution method of step 103 according to another embodiment of the present invention.
  • FIG. 13 is a structural diagram of a mobile device according to an embodiment of the present invention.
  • a component when a component is called “fixed to” another component, it may be directly on another component or a centered component may exist. When a component is considered to be “connected” to another component, it can be directly connected to another component or a centered component may exist at the same time.
  • An embodiment of the present invention provides a mobile platform assisted movement method, which is used to generate an obstacle avoidance assistance instruction when the distance between the mobile platform and an obstacle is less than a predetermined distance when the mobile platform is in a tracking mode, and based on the avoidance Obstacle assistance instructions and tracking instructions to control the movement of the mobile platform, so that the mobile platform can effectively track the target object, while ensuring the safe movement of the mobile platform, avoiding taking the mobile platform immediately when it is predicted to hit an obstacle in the prior art
  • the situation of stopping the decision can extend the moving distance of the mobile platform.
  • the tracking mode refers to a process in which the mobile platform follows the movement of the target object without a user operation during the movement of the target object.
  • the tracking instruction refers to a control instruction that controls the mobile platform to follow the target object, wherein the control instruction may be a speed instruction or an acceleration instruction, and the tracking instruction is used to instruct the mobile platform to track the target object.
  • the mobile platform can obtain the current position of the mobile platform and the current position of the target object, and run a preset target tracking algorithm according to the current position of the mobile platform and the current position of the target object to obtain the tracking that controls the mobile platform to follow the target object's movement instruction. Further, the mobile platform may also filter and smooth the instructions output by the target tracking algorithm to obtain tracking instructions.
  • the mobile platform stores map information of the current environment.
  • the mobile platform detects that the distance between the current position and the obstacle is less than a predetermined distance, or predicts that it will hit the obstacle within a predetermined time at the current speed.
  • the mobile platform begins to execute the operating.
  • the map information of the current environment stored on the mobile platform may be downloaded from a server or obtained based on detection data of a sensor on the mobile platform.
  • the sensor may include a vision sensor (for example, a binocular camera, a monocular camera) and / or a distance sensor (for example, a TOF camera, a lidar).
  • the map information may be obtained by the drone based on the detection data of the sensors during the same flight or in different flights, where the drones are adjacent to each other. The flight between takeoff and landing is considered a flight.
  • the assistive obstacle avoidance mode of the mobile platform may be triggered based on an instruction input by a user.
  • the user ’s operation interface for controlling a mobile platform is provided with physical keys or virtual keys, or the operation interface is provided with an option for assisting obstacle avoidance mode.
  • the user detects that the physical button or virtual key or assisting obstacle avoidance mode When operating the option, make sure to enter the auxiliary obstacle avoidance mode of the mobile platform.
  • the mobile platform when the mobile platform turns on the auxiliary obstacle avoidance mode, it can also be detected when the distance between the current position and the obstacle is less than a predetermined distance, or when it is predicted that the obstacle will be hit by the current speed within a predetermined time, or when the obstacle is detected.
  • the distance between the current position and the obstacle is less than a predetermined distance, and the mobile platform is automatically turned on by default when the current speed direction of the mobile platform faces the obstacle.
  • the user may choose to disable the function of automatically enabling the auxiliary obstacle avoidance mode by default.
  • the auxiliary obstacle avoidance instruction is always generated during the movement of the mobile platform, but the movement of the mobile platform is controlled based on the auxiliary obstacle avoidance instruction only under certain conditions.
  • the mobile platform determines the target direction of the mobile platform based on the tracking instruction, generates at least one predicted trajectory that bypasses the obstacle and can move toward the target direction, determines the target predicted trajectory from the at least one predicted trajectory, and based on The target prediction trajectory and tracking instruction generate obstacle avoidance assistance instructions that enable the mobile platform to move along the target prediction trajectory, and control the movement of the mobile platform based on the obstacle avoidance assistance instructions and tracking instructions.
  • the target direction is the same as the speed direction of the mobile platform corresponding to the tracking instruction.
  • the mobile platform predicts the target direction of the mobile platform within a certain time window in the future based on the tracking instruction.
  • the target direction is the same as the predicted speed direction of the mobile platform. It is understandable that when the tracking instruction is changed, the obstacle avoidance assistance instruction may be changed along with it.
  • the speed direction of the mobile platform corresponding to the instructions mentioned in this article refers to the movement direction of the mobile platform when the mobile platform is stationary based on the instruction when it is stationary.
  • the mobile platform generates multiple obstacle avoidance assistance instructions based on the tracking instructions based on specific rules; the mobile platform is based on the current state of motion, and at least one of the following instructions: tracking instructions, assistance currently used to control the movement of the mobile platform Obstacle avoidance instructions and various alternative obstacle avoidance assistance instructions generated for a certain time window in the future to predict the movement trajectory of the mobile platform under different instructions or instruction combinations in a certain time window in the future.
  • Multiple movement trajectories are used as alternative movement trajectories, a target movement trajectory is determined from the multiple alternative movement trajectories according to predetermined conditions, and movement is controlled within a certain time window in the future according to obstacle avoidance assistance instructions corresponding to the target movement trajectory. The movement of the platform.
  • the instruction corresponding to the target movement trajectory may not have obstacle avoidance assistance instructions, so it must be in the future.
  • the time window only the movement of the mobile platform is controlled based on the tracking instructions, and the obstacle avoidance assistance instructions generated are not used to control the mobile platform.
  • the mobile platform uses tracking instructions as predictive tracking instructions within a certain time window in the future.
  • the mobile platform predicts the movement trajectory of the target object within a certain future time window, and predicts the tracking instruction within a certain future time window according to the tracking instruction of the mobile platform and the predicted trajectory of the target object within a certain future time window.
  • the mobile platform can obtain at least one of the following moving trajectories according to the current motion state prediction:
  • the first possible implementation method :
  • At least one movement trajectory will be obtained as an alternative movement trajectory.
  • the mobile platform no matter how the auxiliary obstacle avoidance instruction is triggered, the mobile platform generates the obstacle avoidance assistance instruction within a range where the mobile platform is less than a predetermined distance from the obstacle.
  • the obstacle avoidance assistance instruction when the obstacle avoidance assistance instruction is used to control the movement of the mobile platform, the obstacle avoidance assistance instruction can increase the velocity component of the mobile platform in a first direction, wherein the first Direction refers to one of the directions perpendicular to the direction of the moving platform towards the obstacle.
  • the direction of the mobile platform toward the obstacle may be the direction where the shortest connection between the mobile platform and the obstacle is located, or the direction where the connection between a certain point on the mobile platform and a certain point of the obstacle is located. Make restrictions. Taking FIG.
  • the direction of the mobile platform facing the obstacle can be defined as the mobile platform facing the obstacle in the horizontal direction.
  • the direction of movement, or the linear direction of the moving platform toward the obstacle is not limited to the definition shown in Figs. 4a and 4b.
  • the obstacle avoidance assistance instruction can increase the speed component of the mobile platform in the first direction, which means that the speed direction of the mobile platform corresponding to the obstacle avoidance assistance instruction is the first direction, or that the mobile platform is based on the
  • the component of the speed of the moving platform in the first direction increases.
  • the mobile platform adds the control of the obstacle avoidance assistance command it will change the original movement trajectory (that is, the movement trajectory of the mobile platform only under the control of the tracking instruction).
  • FIG. 5 is a schematic plan view of a mobile platform according to an embodiment of the present invention.
  • the direction x is the direction in which the mobile platform faces the obstacle
  • the direction y is the speed direction and direction in which the obstacle avoidance assistance instruction is applied.
  • There is an angle between y and direction x and the velocity in direction y can be decomposed to obtain a velocity component perpendicular to direction x, that is, the velocity component in direction g in FIG. 5.
  • the moving platform changes under the action of the velocity component in direction g.
  • the current trajectory is the direction in which the mobile platform faces the obstacle
  • the direction y is the speed direction and direction in which the obstacle avoidance assistance instruction is applied.
  • There is an angle between y and direction x and the velocity in direction y can be decomposed to obtain a velocity component perpendicular to direction x, that is, the velocity component in direction g in FIG. 5.
  • the moving platform changes under the action of the velocity component in direction g.
  • the current trajectory is the direction
  • the angle between the speed in the direction y and the speed in the direction x is greater than 90 degrees as an example, and the speed in the direction y can be decomposed into a speed component perpendicular to the direction x and a speed component opposite to the direction x.
  • the velocity component perpendicular to the direction x can change the moving trajectory of the mobile platform, and the velocity component opposite to the direction x direction can reduce or cancel the velocity component of the mobile platform toward the obstacle caused by the tracking instruction (that is, the velocity in the direction x). Component) to achieve obstacle avoidance or allow the mobile platform to move for an additional period of time before a collision.
  • FIG. 5 is only an illustration, and is not the only limitation to the present invention.
  • the direction of action of the obstacle avoidance assistance instruction on the mobile platform is perpendicular to the direction of action of the tracking instruction on the mobile platform.
  • the tracking instruction is used to instruct the mobile platform to track a target object, wherein the direction of the tracking instruction on the mobile platform is as shown in FIG. 4c
  • the direction of action of the auxiliary obstacle avoidance instruction on the mobile platform may be perpendicular to the direction of action of the tracking instruction on the mobile platform.
  • the action directions of the multiple auxiliary obstacle avoidance instructions on the mobile platform may be distributed in a plane perpendicular to the action direction of the tracking instructions on the mobile platform.
  • the direction of action of the obstacle avoidance assistance instruction on the mobile platform may be perpendicular to the direction of action of the tracking instruction on the mobile platform, or between the direction of action of the tracking instruction on the mobile platform At a certain angle.
  • the included angle may be 30 degrees, 100 degrees, or the like, and is not specifically limited by the embodiment of the present invention.
  • the speed of action of the obstacle avoidance assistance instruction on the mobile platform may be proportional to the speed of the tracking instruction on the mobile platform, that is, the greater the speed of the tracking instruction on the mobile platform, The speed of the obstacle avoidance assistance instruction on the mobile platform is also greater.
  • the area other than the obstacle in the area within the angle of view (FOV) of the visual sensor is set as an open area, and the area other than the FOV of the visual sensor is set.
  • the mobile platform can determine the open area and unknown area in the map of the current environment, and the open area determined at the previous time, and update the area of the unknown area of the map of the current environment that overlaps with the open area at the previous time as the open area, and then The mobile platform moves in the updated open area, which can improve the security of the mobile platform and effectively avoid obstacles.
  • FIG. 1 is a flowchart of a method for assisting movement provided by an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step 101 In the tracking mode, an obstacle avoidance assistance instruction is generated within a range where the distance from the obstacle is less than a predetermined distance.
  • the mobile platform involved in this embodiment may be a device that can be moved by a power system configured by itself, and the mobile platform may be a device with a certain processing capability such as a drone or a car.
  • FIG. 2 is a schematic diagram of an obstacle avoidance assistance instruction generation scenario provided in an embodiment of the present invention.
  • FIG. 2 includes a mobile platform 10 and an obstacle 20, where the mobile platform 10 includes a processor 11 and a detection device 12.
  • the detecting device 12 detects that the distance between the mobile platform 10 and the obstacle 20 is less than a predetermined distance
  • the triggering processor 11 generates an obstacle avoidance assistance instruction.
  • the distance between the mobile platform 10 and the obstacle 20 may be specifically the moving distance h1 before the collision between the mobile platform 10 and the obstacle 20, or the linear distance between the mobile platform 10 and the collision point on the obstacle 20 h2, or the vertical distance h3 between the mobile platform 10 and the obstacle 20 in the horizontal direction.
  • one or more obstacle avoidance assistance instructions are generated.
  • the processing method of the processor 11 includes the following two methods:
  • the processor 11 determines whether to generate an obstacle avoidance assistance instruction according to the tracking instruction. For example, when the processor 11 determines that the tracking instruction causes a collision risk between the mobile platform 10 and the obstacle 20, it generates an avoidance instruction. Obstacle assistance instruction to change the movement trajectory of the mobile platform 10 through the obstacle avoidance assistance instruction. If it is determined that the tracking instruction will not cause a collision, no auxiliary obstacle avoidance instruction is generated.
  • the processor 11 when the detection device 12 detects that the distance between the mobile platform 10 and the obstacle 20 is less than a predetermined distance, the processor 11 directly generates an obstacle avoidance assistance instruction without detecting whether the tracking instruction will Cause a collision.
  • FIG. 2 is only a scenario for generating obstacle avoidance assistance instructions provided by the embodiment of the present invention, but not all scenarios.
  • the obstacle avoidance assistance instructions may be generated in other scenarios in other possible embodiments.
  • FIG. 3 is a schematic diagram of another obstacle avoidance assistance instruction generation scenario provided by an embodiment of the present invention.
  • the mobile platform 40 generates obstacle avoidance assistance instructions at time t1, t2, ... tn.
  • the adjacent times in t1, t2, ... tn may be equally spaced or non-equally spaced, that is, the settings for t1, t2, ... tn may be arbitrary.
  • Step 102 Control the movement trajectory of the mobile platform based on the tracking instruction and the obstacle avoidance assistance instruction.
  • Controlling the movement trajectory of the mobile platform based on the tracking instruction and the obstacle avoidance assistance instruction in this embodiment includes: using the tracking instruction and obstacle avoidance assistance instruction as inputs to a preset model, and obtaining the movement trajectory of the mobile platform through the preset model prediction, further Yes, and then select a movement track from the obtained movement tracks, so that the mobile platform moves along the movement track.
  • the trajectory direction and the effect of the current obstacle avoidance assistance instruction are screened from one or more movement trajectories obtained from the prediction.
  • the obtained movement trajectory (hereinafter referred to as the current movement trajectory) has a trajectory with the same trajectory direction.
  • the movement trajectory obtained by the current obstacle avoidance assistance instruction is on the upper side of the body, it is filtered from the predicted one or more movement trajectories Obtaining the movement trajectory located on the upper side of the body, of course, this is only an illustration and not a limitation.
  • the selected movement trajectory is further filtered to obtain a movement trajectory whose movable distance is longer than a preset distance (for example, 2m) longer than the movable distance of the current movement trajectory of the mobile platform as an alternative movement trajectory.
  • Distance refers to the distance that the mobile platform can move before a collision occurs.
  • the current platform ’s mobile control does not include obstacle avoidance assistance instructions, it is directly obtained from the one or more mobile trajectories obtained by the prediction above to obtain a mobile distance that is longer than the preset distance of the mobile platform's current mobile trajectory by a preset distance.
  • the movement track is used as an alternative movement track.
  • the moving trajectory with the lowest energy consumption is determined as the best candidate moving trajectory.
  • the best candidate moving trajectory is empty.
  • the mobile platform When the obstacle avoidance assistance instruction is included in the current movement control of the mobile platform, if the best candidate movement trajectory is empty, and the mobile platform has a movable distance of the movement trajectory when the obstacle avoidance assistance instruction is not available, it is more than the current obstacle avoidance assistance instruction The movable distance of the moving trajectory under the action is longer than the preset distance, then the mobile platform is controlled to move along the moving trajectory without the obstacle avoidance assistance instruction, otherwise the mobile platform still moves along the current moving trajectory. If the best candidate movement trajectory is not empty, and the movable distance of the movement trajectory of the mobile platform without the obstacle avoidance assistance instruction is longer than the optimal candidate movement trajectory, the mobile platform is controlled to have no obstacle avoidance assistance instruction When the moving trajectory moves, otherwise control the mobile platform to move along the best candidate moving trajectory.
  • the movable distance of the current movement trajectory is better than the best candidate movement trajectory. If the movable distance is long, the mobile platform is controlled to move along the current moving trajectory. If the best candidate movement trajectory is not empty and the movable distance of the current movement trajectory is shorter than that of the best candidate movement trajectory, the mobile platform is controlled to move along the best candidate movement trajectory.
  • an obstacle avoidance assistance instruction is generated, and the movement trajectory of the mobile platform is controlled based on the tracking instruction and the obstacle avoidance assistance instruction, so that in the tracking mode , Can also realize the active obstacle avoidance of the mobile platform, so that the mobile platform can avoid obstacles under the combined action of tracking instructions and obstacle avoidance assistance instructions, or when unable to bypass obstacles, can move for a longer period of time, instead of The braking operation is performed as soon as an obstacle is encountered, which improves the mobile platform's security and user experience.
  • FIG. 1 is further optimized and expanded by using specific embodiments.
  • FIG. 6 is a flowchart of a method for generating an obstacle avoidance assistance instruction according to an embodiment of the present invention. As shown in FIG. 6, based on the foregoing embodiment, a method for generating an obstacle avoidance assistance instruction may include the following steps:
  • Step 601 In the tracking mode, in a range where the distance from the obstacle is less than a predetermined distance, based on the tracking instruction and the information of the obstacle, determine a movement trajectory of the mobile platform that can bypass the obstacle.
  • the information of the obstacle involved in this embodiment includes, but is not limited to, information such as the position, size, and shape of the obstacle.
  • the obstacle information can be obtained from a pre-stored map, or the obstacle information can be calculated based on a preset image detection algorithm by taking an image of the obstacle. For example, the obstacle can be obtained by detecting the edge detection algorithm first.
  • the edge of the obstacle image is further determined based on the coordinates of a point located on the edge of the obstacle image to determine the coordinates of a point outside the obstacle image. Based on the coordinates of a point outside the obstacle image and the current position of the mobile platform, a You can bypass the movement of obstacles. Similarly, multiple movement trajectories can be obtained that can bypass obstacles.
  • this is only an illustration and not a limitation of the present invention.
  • FIG. 7 is a schematic diagram of a method for generating a moving trajectory provided by an embodiment of the present invention.
  • E, F, G are points located on the edge of the obstacle determined based on point P, where E is on the left side of point P, F is on the upper side of point P, and G is on the right side of point P, then based on the point E, F, G can determine one or more points outside the obstacle 71.
  • H, I, K, and the current position of the mobile platform 71 three movement trajectories that can bypass the obstacle 71 can be determined.
  • this is only an illustration and not a limitation of the present invention.
  • Step 602 Generate an obstacle avoidance assistance instruction based on the moving trajectory and the tracking instruction.
  • a method for generating an obstacle avoidance assistance instruction includes the following methods:
  • the tracking instruction After the user selects the target movement trajectory, according to the tracking instruction, it is determined that obstacle avoidance assistance instructions need to be added to obtain the target movement trajectory.
  • the tracking instruction is used to control the mobile platform to move 50 degrees southeast of the current movement direction. It is moving toward the southeast 30 degrees of the current moving direction, then determine the obstacle avoidance assistance instruction so that the mobile platform changes from moving to the southeast 50 degrees of the current moving direction to moving to the southeast 30 degrees of the current moving direction.
  • the tracking instruction is used to control the mobile platform to move 50 degrees southeast of the current movement direction. It is moving toward the southeast 30 degrees of the current moving direction, then determine the obstacle avoidance assistance instruction so that the mobile platform changes from moving to the southeast 50 degrees of the current moving direction to moving to the southeast 30 degrees of the current moving direction.
  • an obstacle avoidance assistance instruction that needs to be added to obtain each movement trajectory is determined, wherein the obstacle avoidance assistance instruction generation method is the same as the previous one This possible method is similar and will not be repeated here.
  • FIG. 6 is only an implementable solution for generating obstacle avoidance assistance instructions, and is not the only limitation on the method for generating obstacle avoidance assistance instructions. In fact, in actual scenarios, one or Multiple obstacle avoidance assistance instructions.
  • the action directions of the obstacle avoidance assistance instruction can be divided into four directions, which are left, right, up, and down of the body. .
  • the obstacle avoidance assistance instruction may be specifically a speed instruction toward that direction.
  • FIG. 8 is a mobile platform provided by an embodiment of the present invention in any of four directions: left, right, up, and down.
  • the speed change diagram is shown in Figure 8.
  • the speed of the mobile platform in the direction shown in Figure 8 increases from zero to the speed Vmax within the time length t 0 , and at time t 1
  • the speed Vmax is kept constant during the length, and it is reduced from the speed Vmax to zero again during the time period t 2 .
  • a set of Vmax, t 0, t 1, and t 2 corresponds to an obstacle avoidance assistance instruction.
  • the corresponding value in this direction can be obtained by changing the value of any one or more of Vmax, t 0, t 1, and t 2
  • Multiple obstacle avoidance assistance instructions to obtain multiple movement trajectories in that direction.
  • the method for generating obstacle avoidance assistance instructions in other directions is similar to this and will not be repeated here.
  • the action direction of the obstacle avoidance assistance instruction may not be limited to the four directions of the left, right, up, and down of the body, but may be freely set according to needs.
  • a movement trajectory that the mobile platform can bypass the obstacle is determined, and based on these trajectories and Tracking instructions to generate corresponding obstacle avoidance assistance instructions, so that the mobile platform can bypass obstacles under the help of obstacle avoidance assistance instructions, thereby achieving auxiliary obstacle avoidance in tracking mode and improving the mobile platform's movement process.
  • another embodiment of the present invention provides a method for generating an obstacle avoidance assistance instruction, including: within a range of a distance from an obstacle less than a predetermined distance, based on the The tracking instruction generates one or more of the obstacle avoidance assistance instructions.
  • the mobile platform can obtain the current position of the mobile platform and the current position of the target object, and run a preset target tracking algorithm according to the current position of the mobile platform and the current position of the target object to control the mobile platform to follow the target Object movement tracking instruction.
  • the mobile platform may generate one or more obstacle avoidance assistance instructions according to the tracking, wherein the size and / or direction of the assistance obstacle avoidance instruction may be determined according to the tracking instruction.
  • the mobile platform obtains a tracking instruction T, and the auxiliary obstacle avoidance instructions A1, A2, A3, and A4 can be determined according to the tracking instruction T.
  • the directions of the auxiliary obstacle avoidance instructions A1, A2, A3, and A4 are perpendicular to the direction of the tracking instruction, that is, the directions of the auxiliary obstacle avoidance instructions A1, A2, A3, and A4 to the mobile platform and the tracking instruction to move
  • the action direction of the platform is vertical. It can be understood that the included angle between the directions of the auxiliary obstacle avoidance instructions A1, A2, A3, and A4 and the direction of the tracking instruction may be other angles, which are not specifically limited herein.
  • the size of the auxiliary obstacle avoidance instructions A1, A2, A3, and A4 is in a preset proportional relationship with the size of the tracking instruction.
  • the auxiliary obstacle avoidance instructions A1, A2, A3 are correspondingly It becomes larger.
  • the tracking instruction is small, the auxiliary obstacle avoidance instructions A1, A2, and A3 become smaller accordingly.
  • FIG. 10 is a flowchart of a method for performing step 103 provided by an embodiment of the present invention.
  • step 101 when it is detected that the distance between the mobile platform and the obstacle is within a predetermined distance range, one or more are generated. Obstacle avoidance assistance instructions. The specific method of generating obstacle avoidance assistance instructions is similar to the above description, and will not be repeated here.
  • step 103 can be extended to the following steps:
  • the movement state of the mobile platform corresponding to the tracking instruction may be used as the initial state of the trajectory prediction model according to the preset trajectory prediction model, and the tracking instruction and obstacle avoidance assistance instruction may be used as the input of the trajectory prediction model.
  • Predicting to obtain the moving trajectory corresponding to each obstacle avoidance assistance instruction that is, predicting one or more moving trajectories of the mobile platform.
  • the movement state of the mobile platform corresponding to the tracking instruction may be used as the initial state of the trajectory prediction model, and the tracking The instruction and the current obstacle avoidance assistance instruction are used as inputs of the trajectory prediction model, and the current movement trajectory of the mobile platform is obtained based on the prediction of the trajectory prediction model.
  • the movement state of the mobile platform corresponding to the tracking instruction is used as the initial state of the trajectory prediction model, and the tracking instruction is used as the input of the trajectory prediction model, and the prediction is based on the trajectory prediction model. Get the current trajectory of the mobile platform.
  • the mobile platform determines a target moving trajectory from the predicted candidate moving trajectories. For example, based on the map information of the current environment stored by the mobile platform, the mobile platform determines a target movement trajectory from one or more candidate movement trajectories of the mobile platform obtained from the prediction according to at least one of the following selection conditions, and according to the target movement The trajectory controls the movement of the mobile platform:
  • FIG. 11 is a schematic diagram of multiple movement trajectories provided by an embodiment of the present invention, as shown in FIG. 11.
  • a user-operable interface is provided, so that the user can select a movement trajectory of the mobile platform from a plurality of displayed movement trajectories.
  • the mobile platform is controlled to move based on the movement track selected by the user.
  • a movement trajectory may be selected from one or more movement trajectories obtained above based on a preset trajectory selection strategy, so that the mobile platform moves along the movement trajectory. For example, when considering the energy factor and the moving distance factor, a moving trajectory with a movable distance greater than the first preset threshold and the minimum energy consumption (including the energy consumed by the obstacle avoidance assistance instruction and / or the energy consumed by the mobile platform movement) can be selected. , Control the mobile platform to move along the movement track.
  • a movement trajectory that consumes less energy than the second preset threshold and has the largest movable distance may also obtain from one or more movement trajectories obtained from the prediction above, a movable distance greater than the first preset threshold and / Or move the trajectory that consumes energy less than the second preset threshold, and then control the movement of the mobile platform based on the obtained trajectory of the trajectory whose movable distance is greater than or equal to the movable distance of the current trajectory of the mobile platform, for example, considering When the energy is optimally configured, you can select a moving trajectory that has a movable distance greater than or equal to the current moving trajectory of the mobile platform and consumes the least energy, and control the mobile platform to move based on the moving trajectory, or, when considering interactivity, also
  • the predicted movement trajectory can display the movement trajectory whose movable distance is greater than or equal to the movable distance of the current movement trajectory of the mobile platform, and control the movement of the mobile platform according to the movement trajectory selected by the user.
  • the movement is controlled.
  • the platform performs a braking operation to prevent a collision.
  • the mobile platform may perform path planning based on map information of the current environment to obtain the moving trajectory. For example, a mobile platform can use a rapid expanding random tree (RRT) path planning algorithm to search a path close to the current moving trajectory in a map of the current environment, and smooth the path to obtain a moving trajectory.
  • RRT rapid expanding random tree
  • one or more movement trajectories of the mobile platform are obtained based on one or more obstacle avoidance assistance instructions and tracking instructions generated, and the movement of the mobile platform is controlled based on one of the one or more movement trajectories, Improved mobile platform obstacle avoidance flexibility in tracking mode.
  • FIG. 12 is a flowchart of a method for performing step 103 provided by another embodiment of the present invention.
  • step 103 may be extended as follows: step:
  • Step 1201 Based on the current first tracking instruction, predict a possible second tracking instruction within a preset time length after the first tracking instruction.
  • the tracking instruction includes a current first tracking instruction and a second tracking instruction obtained by prediction based on the first tracking instruction.
  • the second tracking instruction may be obtained by inputting the first tracking instruction into a preset instruction prediction model and outputting the instruction prediction model.
  • the preset time length after the first tracking instruction may be within a certain time window in the foregoing section.
  • the instruction prediction model may be established and obtained by using any method provided in the prior art, which is not specifically limited in this embodiment. .
  • Step 1202 Control the movement trajectory of the mobile platform based on the second tracking instruction and the obstacle avoidance assistance instruction.
  • the movement state of the mobile platform corresponding to the first tracking instruction may be used as the initial state of the trajectory prediction model according to a preset trajectory prediction model, and the second tracking instruction and obstacle avoidance assistance instruction may be used.
  • the trajectory prediction model predict the movement trajectory corresponding to each obstacle avoidance assistance instruction, that is, the above content can be exemplarily expressed as a prediction of a mobile platform based on the first tracking instruction, the second tracking instruction, and the obstacle avoidance assistance instruction. Or multiple trajectories.
  • the movement state of the mobile platform corresponding to the first tracking instruction may also be used as the initial state of the trajectory prediction model.
  • the second tracking instruction and the current obstacle avoidance assistance instruction as inputs to the trajectory prediction model, the current trajectory of the mobile platform is obtained based on the prediction of the trajectory prediction model.
  • the movement state of the mobile platform corresponding to the first tracking instruction is used as the initial state of the trajectory prediction model, and the second tracking instruction is used as the input of the trajectory prediction model.
  • the trajectory prediction model predicts the current trajectory of the mobile platform.
  • the mobile platform determines a target moving trajectory from the predicted candidate moving trajectories. For example, based on the map information of the current environment stored by the mobile platform, the mobile platform determines a target movement trajectory from one or more candidate movement trajectories of the mobile platform obtained from the prediction according to at least one of the following selection conditions, and according to the target movement The trajectory controls the movement of the mobile platform:
  • one or more movement trajectories obtained by prediction may be displayed first, and reference is continued to FIG. 11, which is a schematic diagram of multiple movement trajectories provided by an embodiment of the present invention, as shown in FIG. 11.
  • FIG. 11 is a schematic diagram of multiple movement trajectories provided by an embodiment of the present invention, as shown in FIG. 11.
  • a user-operable interface is provided, so that the user can select a movement trajectory of the mobile platform from a plurality of displayed movement trajectories.
  • the mobile platform is controlled to move based on the movement track selected by the user.
  • a movement trajectory may be selected from the one or more movement trajectories obtained above, so that the mobile platform moves along the movement trajectory.
  • the second tracking instruction that is possible within a preset time length after the first tracking instruction is predicted, and the movement is predicted to be obtained according to the first tracking instruction, the second tracking instruction, and the obstacle avoidance assistance instruction.
  • One or more movement trajectories of the platform, and the movement of the mobile platform is controlled according to one of the one or more movement trajectories obtained by prediction, so that the generated movement trajectory is more reliable, and will not be caused by a preset time after the first tracking instruction.
  • Other tracking instructions within the length so that the currently generated movement trajectory loses the obstacle avoidance function.
  • one or more obstacle avoidance assistance instructions are obtained based on the tracking instruction first, and then based on the obtained one or more obstacle avoidance instructions.
  • the auxiliary instructions and the tracking instructions predict the movement trajectory of the mobile platform. Therefore, this embodiment is more flexible in generating obstacle avoidance auxiliary instructions.
  • FIG. 13 is a structural diagram of the mobile device according to an embodiment of the present invention.
  • the mobile device 1300 includes a memory 1301 and a processor 1302, where a program is stored in the memory 1302
  • the code the processor 1302 calls the program code in the memory.
  • the processor 1302 executes the following operations: In the tracking mode, the distance to the obstacle is detected; the distance from the obstacle is less than the predetermined distance , Generating obstacle avoidance assistance instructions; controlling the movement trajectory of the mobile platform based on the tracking instructions and the obstacle avoidance assistance instructions, wherein the tracking instructions are used to instruct the mobile platform to track the target object.
  • the obstacle avoidance assistance instruction generated by the processor 1302 is used to increase a speed component of the mobile platform in a first direction, wherein the first direction is perpendicular to the mobile platform toward the obstacle The direction of things.
  • the obstacle avoidance assistance instruction generated by the processor 1302 is used to reduce or offset a velocity component of the mobile platform toward the obstacle caused by the tracking instruction.
  • the action direction of the obstacle avoidance assistance instruction generated by the processor 1302 on the mobile platform is perpendicular to the action direction of the tracking instruction on the mobile platform.
  • the processor 1302 when generating the obstacle avoidance assistance instruction, performs the following operations:
  • the obstacle avoidance assistance instruction is generated.
  • processor 1302 when the processor 1302 calls the program code, it also performs the following operations:
  • the processor 1302 when generating the obstacle avoidance assistance instruction, performs the following operations:
  • one or more of the obstacle avoidance assistance instructions are generated.
  • the processor 1302 controls the movement trajectory of the mobile platform based on the tracking instruction and the obstacle avoidance assistance instruction, the processor 1302 performs the following operations:
  • controlling the mobile platform Based on one of the one or more movement trajectories, controlling the mobile platform to move.
  • processor 1302 when the processor 1302 calls the program code, it also performs the following operations:
  • the one or more movement trajectories are sent to a ground station for display.
  • processor 1302 when the processor 1302 calls the program code, it also performs the following operations:
  • the mobile platform is controlled to move.
  • the processor 1302 controls the movement of the mobile platform based on one of the one or more movement trajectories, the processor 1302 performs the following operations:
  • the processor 1302 controls the movement of the mobile platform based on one of the one or more movement trajectories, the processor 1302 performs the following operations:
  • the processor 1302 controls the movement of the mobile platform based on one of the one or more movement trajectories, the processor 1302 performs the following operations:
  • processor 1302 when the processor 1302 calls the program code, it also performs the following operations:
  • the processor 1302 controls a movement of the mobile platform based on a movement trajectory based on a movable distance in the movement trajectory greater than or equal to the movable distance of the current movement trajectory of the mobile platform, the following operations are performed:
  • processor 1302 when the processor 1302 calls the program code, it also performs the following operations:
  • processor 1302 when the processor 1302 calls the program code, it also performs the following operations:
  • the processor 1302 controls the mobile platform to perform a braking operation, it also performs the following operations:
  • Path planning is performed based on map information of the current environment to obtain the moving trajectory.
  • the mobile device provided by this embodiment can execute the assisted movement method of the mobile platform provided by the foregoing embodiments, and the execution manner and beneficial effects thereof are similar, and will not be repeated here.
  • An embodiment of the present invention further provides a mobile platform.
  • the mobile platform includes:
  • a power system mounted on the fuselage and configured to provide power to the mobile platform
  • the mobile platform may further include a sensor installed on the fuselage for detecting and obtaining map information of an environment in which the mobile platform is located.
  • the sensors include a vision sensor and / or a distance sensor.
  • the mobile platform further includes:
  • a communication device is installed on the fuselage and is used for information interaction with a ground station.
  • the mobile platform includes at least one of the following: a drone and a car.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above integrated unit implemented in the form of a software functional unit may be stored in a computer-readable storage medium.
  • the software functional unit is stored in a storage medium and includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device) or a processor to execute the methods described in the embodiments of the present invention. Some steps.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memory (ROM), random access memory (RAM), magnetic disks or compact discs, and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

本发明实施例提供一种移动平台的辅助移动方法、移动装置及移动平台,其中该方法包括在跟踪模式中,在与障碍物的距离小于预定距离的范围内,生成避障辅助指令;基于跟踪指令和避障辅助指令控制移动平台的移动轨迹,其中,跟踪指令用于指示移动平台对目标对象进行跟踪。本发明实施例能够确保移动平台有效对目标对象进行跟踪的同时,保障移动平台的安全移动,延长移动平台的移动距离。

Description

移动平台的辅助移动方法、移动装置及移动平台 技术领域
本申请涉及辅助控制技术领域,尤其涉及移动平台的辅助移动方法、移动装置及移动平台。
背景技术
随着无人机越来越普及,更多的人加入了无人机航拍的行列。现有的移动平台跟踪策略为把一个具有特征明显的物体作为目标对象进行跟踪。通常在对目标对象的某个特征部位(如人脸)进行跟踪的过程中,如果遇到障碍物,移动平台可能会直接撞上障碍物或者在障碍物面前执行刹车操作,无法实现有效避障,进而容易造成目标对象跟踪丢失,因此会影响跟踪的可靠性。
发明内容
本发明实施例提供移动平台的辅助移动方法、移动装置及移动平台,可确保移动平台有效对目标对象进行跟踪的同时,保障移动平台的安全移动,延长移动平台的移动距离。
本发明实施例的第一方面是提供一种移动平台的辅助移动方法,包括:
在跟踪模式中,在与障碍物的距离小于预定距离的范围内,生成避障辅助指令;
基于跟踪指令和所述避障辅助指令控制移动平台的移动轨迹,其中,所述跟踪指令用于指示移动平台对目标对象进行跟踪。
本发明实施例的第二方面是提供一种移动装置,包括:
存储器和处理器;
所述存储器用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
在跟踪模式中,在与障碍物的距离小于预定距离的范围内,生成避障辅助指令;
基于跟踪指令和所述避障辅助指令控制移动平台的移动轨迹,其中,所述 跟踪指令用于指示移动平台对目标对象进行跟踪。
本发明实施例的第三方面是提供一种移动平台,包括:
机身;
动力系统,安装在所述机身,用于为所述移动平台提供动力;
以及上述第二方面提供的移动装置。
本发明实施例,在移动平台处于跟踪模式中时,在移动平台与障碍物的距离小于预定距离的范围内,生成避障辅助指令,并基于跟踪指令和该避障辅助指令来控制移动平台的移动,使得移动平台有效对目标对象进行跟踪的同时,保障移动平台的安全移动,避免了现有技术中预测到移动平台即将撞上障碍物时立即采取刹住的决策的情况,可以延长移动平台的移动距离。
附图说明
图1是本发明实施例提供的移动平台的辅助移动方法的流程图;
图2是本发明实施例提供的一种避障辅助指令的生成场景示意图;
图3是本发明实施例提供的另一种避障辅助指令的生成场景示意图;
图4a-4c是本发明实施例提供的移动平台移动的侧视图;
图5为本发明实施例提供的一种移动平台的俯视示意图;
图6是本发明实施例提供的避障辅助指令的生成方法流程图;
图7是本发明实施例提供的一种移动轨迹的生成方法示意图;
图8是本发明实施例提供的移动平台在左、右、上、下四个方向中任意一个方向上的速度变化示意图;
图9是本发明实施例提供的另一种避障辅助指令的生成场景示意图;
图10是本发明实施例提供的步骤103的执行方法流程图;
图11是本发明实施例提供的多个移动轨迹的示意图;
图12是本发明另一实施例提供的步骤103的执行方法流程图;
图13是本发明实施例提供的移动装置的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的 实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种移动平台的辅助移动方法,用于在移动平台处于跟踪模式中时,在移动平台与障碍物的距离小于预定距离的范围内,生成避障辅助指令,并基于该避障辅助指令和跟踪指令来控制移动平台的移动,使得移动平台有效对目标对象进行跟踪的同时,保障移动平台的安全移动,避免了现有技术中预测到移动平台即将撞上障碍物时立即采取刹住的决策的情况,可以延长移动平台的移动距离。
本发明实施例中,跟踪模式指的是目标对象在移动过程中,移动平台在没有用户操作的情况下,跟随目标对象移动的过程。
本发明实施例中,跟踪指令指的是控制移动平台跟随目标对象移动的控制指令,其中,所述控制指令可以为速度指令或者加速度指令,跟踪指令用于指示移动平台对目标对象进行跟踪。示例性的,移动平台可以获取移动平台当前的位置和目标对象当前的位置,根据移动平台当前的位置和目标对象当前的位置运行预设的目标跟踪算法,得到控制移动平台跟随目标对象移动的跟踪指令。进一步的,移动平台还可以对上述目标跟踪算法输出的指令进行滤波平滑,得到跟踪指令。
本发明实施例中,生成避障辅助指令的触发方式有多种。
在一些实施例中,移动平台存储有当前环境的地图信息,当移动平台检测到当前位置与障碍物的距离小于预定距离时,或者预测到以当前的速度在预定时间内会撞上障碍物时,或者检测到当前位置与障碍物的距离小于预定距离, 且移动平台的当前速度方向朝向障碍物时,或者在开启了移动平台的辅助避障模式之后,移动平台开始执行生成避障辅助指令的操作。
其中,移动平台所存储的当前环境的地图信息可以是从服务器上下载的,或者是基于移动平台上的传感器的探测数据所获取的。其中,该传感器可以包括视觉传感器(例如双目相机、单目相机)和/或距离传感器(例如TOF相机、激光雷达)。例如,在移动平台为无人机的实施例中,该地图信息可以是无人机基于传感器在同一次飞行或者在不同次飞行中的探测数据所获取的,其中,以无人机在相邻的起飞和降落之间的飞行作为一次飞行。
其中,移动平台开启辅助避障模式可以是基于用户输入的指令触发的。例如,用户用于控制移动平台的操作界面上设置有物理按键或者虚拟按键,或者该操作界面上设置有辅助避障模式的选项,当检测到用户对该物理按键或虚拟按键或辅助避障模式的选项的操作时,确定进入移动平台的辅助避障模式。
可选的,移动平台开启辅助避障模式也可以是在检测到当前位置与障碍物的距离小于预定距离时,或者预测到以当前的速度在预定时间内会撞上障碍物时,或者检测到当前位置与障碍物的距离小于预定距离,且移动平台的当前速度方向朝向障碍物时默认自动开启的。在一些实施例中,用户可以选择关闭该默认自动开启辅助避障模式的功能。
在一些实施例中,辅助避障指令在移动平台的移动中一直产生,但仅在某些条件下才基于该辅助避障指令来控制移动平台的移动。
本发明实施例中,生成避障辅助指令的方法有多种。
在一些实施例中,移动平台基于跟踪指令确定移动平台的目标方向,生成至少一个绕过该障碍物且能够朝向该目标方向移动的预测轨迹,从该至少一个预测轨迹中确定目标预测轨迹,基于该目标预测轨迹和跟踪指令生成能够使得移动平台能够沿着该目标预测轨迹移动的避障辅助指令,并基于该避障辅助指令和跟踪指令控制移动平台的移动。
其中,可选的,目标方向与跟踪指令对应的移动平台的速度方向相同。或者,移动平台基于跟踪指令预测未来一定时间窗口内移动平台的目标方向。可选的,目标方向与预测的移动平台的速度方向相同。可以理解的是,当跟踪指令改变时,避障辅助指令可能会随之一起改变。
需要说明的是,本文中提到的指令对应的移动平台的速度方向,指的是移 动平台在静止的情况下基于该指令控制移动时移动平台的移动方向。
在一些实施例中,移动平台基于特定规则根据跟踪指令来生成多种避障辅助指令;移动平台基于当前的运动状态,以及以下至少一项指令:跟踪指令、当前用于控制移动平台移动的辅助避障指令、生成的用于未来一定时间窗口内的多种备选避障辅助指令,来分别预测在未来一定时间窗口内移动平台在不同的指令或者指令组合作用下的移动轨迹,该预测的多种移动轨迹作为备选移动轨迹,根据预定条件从该多种备选移动轨迹中确定出一条目标移动轨迹,并根据该目标移动轨迹所对应的避障辅助指令在未来一定时间窗口内控制移动平台的运动。
需要说明的是,在一些场景下,例如基于跟踪指令不会导致移动平台在一定时间内撞上障碍物的场景中,该目标移动轨迹对应的指令中可能没有避障辅助指令,那么在未来一定时间窗口内,仅仅基于跟踪指令控制移动平台的移动,生成的避障辅助指令没有被用于控制移动平台。
其中,移动平台预测在未来一定时间窗口内的跟踪指令的方法有多种。例如,移动平台将跟踪指令作为在未来一定时间窗口内的预测跟踪指令。又例如,移动平台预测目标对象在未来一定时间窗口内的移动轨迹,根据移动平台的跟踪指令和预测的目标对象在未来一定时间窗口内的移动轨迹,预测在未来一定时间窗口内的跟踪指令。
其中,移动平台生成备选移动轨迹的方法有多种,可选的,移动平台根据当前的运动状态预测得到以下至少一项移动轨迹:
其中,第一种可能的实现方式:
1、在未来一定时间窗口内,基于跟踪指令的控制,移动平台的移动轨迹;
2、在未来一定时间窗口内,基于当前用于控制移动平台移动的辅助避障指令和跟踪指令的控制,移动平台的移动轨迹;
3、在未来一定时间窗口内,基于生成的多种备选避障辅助指令的每一种指令和跟踪指令的控制,移动平台的移动轨迹;
其中,第二种可能的实现方式:
1、在未来一定时间窗口内,基于预测的在未来一定时间窗口内跟踪指令的控制,移动平台的移动轨迹;
2、在未来一定时间窗口内,基于当前用于控制移动平台移动的辅助避障 指令和预测的在未来一定时间窗口内跟踪指令的控制,移动平台的移动轨迹;
3、在未来一定时间窗口内,基于生成多种备选避障辅助指令的每一种指令和预测的用户在未来一定时间窗口内输入的操控指令的控制,移动平台的移动轨迹。
将得到至少一项移动轨迹作为备选移动轨迹,其中,所述第二种可能的实现方式中的预测原理请参见本文后述部分。
在一些实施例中,不管辅助避障指令的触发方式是何种方式,在移动平台与障碍物小于预定距离的范围内,移动平台是有生成避障辅助指令的。而且,在被采用的避障辅助指令中,该避障辅助指令被用于控制移动平台的移动时,该避障辅助指令能够增加移动平台沿第一方向上的速度分量,其中,该第一方向指的是垂直于移动平台朝向障碍物的方向的其中一个方向。其中,移动平台朝向障碍物的方向可以是移动平台与障碍物的最短连线所在的方向,或者是移动平台上的某一个点与障碍物的某一个点的连线所在的方向,在此不做限制。以图4a和图4b是本发明实施例提供的移动平台移动的侧视图为例,如图4a和图4b所示,移动平台朝向障碍物的方向可以定义为移动平台在水平方向上朝向障碍物移动的方向,或者移动平台向障碍物移动的直线方向,但不局限于图4a和图4b所示的定义方式。
其中,避障辅助指令能够增加移动平台沿第一方向上的速度分量,指的是避障辅助指令所对应的移动平台的速度方向为该第一方向,或者,指的是在移动平台在基于跟踪指令的控制下移动时,当增加该避障辅助指令后,移动平台的速度在第一方向上的分量增加。移动平台在增加避障辅助指令的控制后,将改变原有的移动轨迹(也即移动平台仅仅在跟踪指令控制下的移动轨迹)。以第二种情况为例:
示例的,图5为本发明实施例提供的一种移动平台的俯视示意图,如图5所示,方向x为移动平台朝向障碍物的方向,方向y为避障辅助指令施加的速度方向,方向y与方向x之间呈角度,且方向y上的速度可以分解获得垂直于方向x的速度分量,即图5中方向g上的速度分量,移动平台在方向g上的速度分量的作用下改变当前的移动轨迹。本实施例以方向y上的速度与方向x上的速度之间的角度大于90度为例,且方向y上的速度可以分解为垂直于方向x的速度分量和与方向x方向相反的速度分量,其中,垂直于方向x的速度 分量可以改变移动平台的移动轨迹,与方向x方向相反的速度分量可以减小或抵消跟踪指令造成的移动平台朝向障碍物的速度分量(即方向x上的速度分量),从而达到避障或者让移动平台在碰撞前多移动一段时间的目的。当然图5仅为示例说明,而不是对本发明的唯一限定。
在一些实施例中,避障辅助指令对所述移动平台的作用方向垂直于所述跟踪指令对所述移动平台的作用方向。以图4c是本发明实施例提供的移动平台移动的侧视图为例,跟踪指令用于指示移动平台对目标对象进行跟踪,其中,所述跟踪指令对移动平台的作用方向为如图4c所示的方向,辅助避障指令对移动平台的作用方向可以与所述跟踪指令对移动平台的作用方向垂直。进一步地,若生成多个辅助避障指令时,多个辅助避障指令对移动平台的作用方向可以分布在一个与跟踪指令对移动平台的作用方向垂直的一个平面内。
需要说明的是,避障辅助指令对所述移动平台的作用方向可以垂直于所述跟踪指令对所述移动平台的作用方向,也可以与所述跟踪指令对所述移动平台的作用方向之间呈一定夹角。该夹角可以为30度或者100度等,具体不受本发明实施例的限定。
在一些实施例中,避障辅助指令对所述移动平台的作用速度可以和所述跟踪指令对所述移动平台的作用速度成正比例关系,即跟踪指令对所述移动平台的作用速度越大,避障辅助指令对所述移动平台的作用速度也越大。
在一些实施例中,移动平台在移动过程中,将视觉传感器的视场角(angle of view,FOV)以内的区域中除障碍物以外的区域设置为空旷区域,将视觉传感器的FOV以外的区域设置为未知区域。移动平台可以确定当前环境的地图中的空旷区域和未知区域,以及上一时刻确定的空旷区域,将当前环境的地图的未知区域中与上一时刻的空旷区域重叠的区域更新为空旷区域,进而移动平台在更新后的空旷区域中移动,可提高移动平台的安全性,有效实现避障。
下面对本发明实施例中的辅助移动方法进行举例描述。
本发明实施例提供一种辅助移动方法。图1是本发明实施例提供的辅助移动方法的流程图,如图1所示,该方法包括如下步骤:
步骤101、在跟踪模式中,在与障碍物的距离小于预定距离的范围内,生成避障辅助指令。
其中,本实施例涉及的移动平台可以为依靠自身配置的动力系统能够移动 的设备,其中,所述移动平台可以是诸如无人机、汽车等具有一定处理能力的设备。
示例的,图2是本发明实施例提供的一种避障辅助指令的生成场景示意图,图2中包括移动平台10和障碍物20,其中,移动平台10包括处理器11和检测设备12,当检测设备12检测到移动平台10与障碍物20之间的距离小于预定距离时,触发处理器11生成避障辅助指令。其中,移动平台10与障碍物20之间的距离可以被具体为移动平台10与障碍物20发生碰撞前的移动距离h1,或者,移动平台10与其在障碍物20上碰撞点之间的直线距离h2,或者,移动平台10与障碍物20在水平方向上的垂直距离h3。当移动平台10与障碍物20之间的距离小于预定距离时,生成一个或多个避障辅助指令。
进一步的,在生成避障辅助指令时,处理器11的处理方法包括如下两种:
在一种可能的处理方法中,处理器11根据跟踪指令确定是否生成避障辅助指令,比如,当处理器11判断跟踪指令使得移动平台10与障碍物20之间存在碰撞危险时,则生成避障辅助指令,以通过避障辅助指令改变移动平台10的移动轨迹。若判断跟踪指令不会导致碰撞时,则不生成辅助避障指令。
在另一种可能的处理方法中,当检测设备12检测到移动平台10与障碍物20之间的距离小于预定距离时,处理器11直接生成避障辅助指令,而不检测跟踪指令会不会导致碰撞。
当然图2仅为本发明实施例提供的一种避障辅助指令的生成场景,而不是全部场景,实际上,在其他可能的实施例中避障辅助指令也可以在其他场景中生成。比如,图3是本发明实施例提供的另一种避障辅助指令的生成场景示意图,在该场景中,移动平台40在时刻t1、t2……tn,生成避障辅助指令。其中,t1、t2……tn中相邻时刻间可以是等间隔的也可以是非等间隔的,即对于t1、t2……tn的设定可以是任意的。
步骤102、基于跟踪指令和所述避障辅助指令控制移动平台的移动轨迹。
本实施例中基于跟踪指令和所述避障辅助指令控制移动平台的移动轨迹包括:将跟踪指令和避障辅助指令作为预设模型的输入,通过预设模型预测获得移动平台的移动轨迹,进一步的,再从获得的移动轨迹中选择一个移动轨迹,使得移动平台沿该条移动轨迹移动。
下面通过一个示例来说明如何从获得的移动轨迹中选择一个移动轨迹来 控制移动平台移动:
示例的,在移动平台当前的移动控制中包括避障辅助指令(以下简称当前避障辅助指令)时,从上述预测获得的一个或多个移动轨迹中筛选获得轨迹方向与当前避障辅助指令作用得到的移动轨迹(以下简称当前移动轨迹)的轨迹方向相同的移动轨迹,比如,当前避障辅助指令作用得到的移动轨迹在机体的上侧,则从预测获得的一个或多个移动轨迹中筛选获得位于机体上侧的移动轨迹,当然这里仅为示例说明而不是唯一限定。进一步的,再对筛选出的移动轨迹做进一步筛选,获得可移动距离比移动平台当前移动轨迹的可移动距离长预置距离(例如2m)以上的移动轨迹作为备选移动轨迹,其中,可移动距离是指移动平台发生碰撞前可的移动的距离。
在移动平台当前的移动控制中不包括避障辅助指令时,直接从上述预测获得的一个或多个移动轨迹中筛选获得可移动距离比移动平台当前移动轨迹的可移动距离长预置距离以上的移动轨迹作为备选移动轨迹。
进一步的,在获得备选移动轨迹后,先从备选移动轨迹中筛选出可移动距离最长的移动轨迹,以及可移动距离比最长可移动距离短1.5m以下的移动轨迹,再从筛选出的移动轨迹中,确定出消耗能量最小的移动轨迹作为最佳候选移动轨迹,当没有符合上述条件的移动轨迹时,则确定最佳候选移动轨迹为空。
在移动平台当前的移动控制中包括避障辅助指令时,若最佳候选移动轨迹为空,且移动平台在没有避障辅助指令作用时的移动轨迹的可移动距离,比当前在避障辅助指令作用下的移动轨迹的可移动距离长预置距离以上,则控制移动平台沿没有避障辅助指令作用时的移动轨迹移动,否则移动平台仍沿当前的移动轨迹移动。若最佳候选移动轨迹不为空,且移动平台在没有避障辅助指令作用时的移动轨迹的可移动距离比最佳候选移动轨迹可移动距离长,则控制移动平台沿没有避障辅助指令作用时的移动轨迹移动,否则控制移动平台沿最佳候选移动轨迹移动。
在移动平台当前的移动控制中不包括避障辅助指令时,若最佳候选移动轨迹为空,或者,最佳候选移动轨迹不为空,但当前移动轨迹的可移动距离比最佳候选移动轨迹的可移动距离长,则控制移动平台沿当前移动轨迹移动。若最佳候选移动轨迹不为空,且当前移动轨迹的可移动距离比最佳候选移动轨迹的可移动距离短,则控制移动平台沿最佳候选移动轨迹移动。
当然本领域技术人员应该了解的是上述举例仅是为清楚所做的示例说明而不是对本发明的唯一限定。
本实施例,通过在跟踪模式中,当与障碍物的距离小于预定距离的范围内,生成避障辅助指令,基于跟踪指令和避障辅助指令控制移动平台的移动轨迹,从而使得在跟踪模式中,也可以实现移动平台的主动避障,使得移动平台能够在跟踪指令和避障辅助指令的共同作用下,绕开障碍物,或者在无法绕开障碍物时,能够多移动一段时间,而不是一遇到障碍物就执行刹车操作,提高了移动平台移动的安全性和用户体验。
下面通过具体的实施例对图1实施例进行进一步的优化和扩展。
图6是本发明实施例提供的避障辅助指令的生成方法流程图,如图6所示,在上述实施例的基础上,避障辅助指令的生成方法可以包括如下步骤:
步骤601、在跟踪模式中,在与障碍物的距离小于预定距离的范围内,基于跟踪指令和所述障碍物的信息,确定移动平台可绕开所述障碍物的移动轨迹。
本实施例涉及的障碍物的信息包括但不局限于障碍物的位置、尺寸和形状等信息。其中,障碍物的信息可以从预先存储的地图上获得,也可以通过拍摄障碍物的图像,基于预设的图像检测算法,计算获得障碍物的信息,比如,可以先通过边缘检测算法检测获得障碍物图像的边缘,进一步的再基于位于障碍物图像边缘上的点的坐标,确定障碍物图像外的一点的坐标,基于障碍物图像外的一点的坐标以及移动平台当前的位置,即可获得一个可绕开障碍物的移动轨迹。与此相似的可以获得可绕开障碍物的多个移动轨迹。当然这里仅为示例说明而不是对本发明的唯一限定。
示例的,图7是本发明实施例提供的一种移动轨迹的生成方法示意图,如图7所示,假设在跟踪指令的作用下,移动平台70将与障碍物71上的P点发生碰撞,其中,E、F、G为基于点P确定的位于障碍物边缘上的点,其中,E位于点P的左侧,F位于点P的上侧,G位于点P的右侧,那么基于点E、F、G即可确定位于障碍物71外部的一个或多个点,假设,基于点E确定的点位H,基于点F确定的点位I,基于点G确定的点位K,则基于H、I、K,以及移动平台71当前的位置,即可确定三条可绕开障碍物71的移动轨迹。当然这里仅 为示例说明而不是对本发明的唯一限定。
步骤602、基于所述移动轨迹和跟踪指令,生成避障辅助指令。
本实施例中,基于所述移动轨迹和跟踪指令,生成避障辅助指令方法包括如下几种:
在一种可能的方法中,在获得可绕开障碍物的一个或多个移动轨迹后,对该些移动轨迹和/或移动平台当前的移动轨迹进行显示,并在显示界面上提供移动轨迹的可选择操作。在用户选择出目标移动轨迹后,根据跟踪指令,确定出获得目标移动轨迹需要增加的避障辅助指令,比如跟踪指令用于控制移动平台向位于当前移动方向的东南50度方向移动,目标移动轨迹是朝当前移动方向的东南30度方向移动,则确定避障辅助指令,以使移动平台由向当前移动方向的东南50度方向移动改变为向当前移动方向的东南30度方向移动,当然这里仅为示例说明而不是对本发明的唯一限定。
在另一种可能的方法中,针对每个可绕开障碍物的移动轨迹,根据跟踪指令确定出获得每个移动轨迹需要增加的避障辅助指令,其中避障辅助指令的生成方法与前一种可能的方法类似,在这里不再赘述。
当然图6实施例仅是一种生成避障辅助指令的可实现方案,而不是对避障辅助指令生成方法的唯一限定,实际上,在实际场景中,还可以直接根据跟踪指令,生成一个或多个避障辅助指令。
下面以一个实施例为例进行说明,在确定跟踪指令所对应的移动方向后,基于该方向,避障辅助指令的作用方向可以分为四个方向,分别是机体的左、右、上、下。在各个方向上,避障辅助指令可以被具体为朝向该方向的速度指令,具体的,图8是本发明实施例提供的移动平台在左、右、上、下四个方向中任意一个方向上的速度变化示意图,如图8所示,在避障辅助指令的作用下,移动平台在图8所示方向上的速度在t 0时间长度内,由零增大到速度Vmax,在t 1时间长度内保持速度Vmax不变,在t 2时间长度内重新由速度Vmax降低到零。一组Vmax、t 0、t 1、和t 2对应一个避障辅助指令,通过改变Vmax、t 0、t 1、和t 2中任意一个或多个参数的取值即可获得该方向上对应的多个避障辅助指令,进而获得该方向上的多个移动轨迹。其他方向上的避障辅助指令的生成方法与此类似,在这里不再赘述。
当然本领域技术人员应该了解的是,避障辅助指令的作用方向可以不局限 于机体的左、右、上、下四个方向,而是可以根据需要自由设定。
本实施例,通过在跟踪模式中,在与障碍物的距离小于预定距离的范围内,基于跟踪指令和障碍物的信息,确定移动平台可绕开障碍物的移动轨迹,在基于该些轨迹和跟踪指令,生成对应的避障辅助指令,使得移动平台能够在避障辅助指令的作用下,能够绕开障碍物,从而实现了,在跟踪模式下的辅助避障,提高了移动平台在移动过程中的安全性和用户体验。
与图6所示的避障辅助指令的生成方法相对地,本发明另一实施例提供一种避障辅助指令的生成方法,包括:在与障碍物的距离小于预定距离的范围内,基于所述跟踪指令,生成一个或多个所述避障辅助指令。
具体地,如前所述,移动平台可以获取移动平台当前的位置和目标对象当前的位置,根据移动平台当前的位置和目标对象当前的位置运行预设的目标跟踪算法,得到控制移动平台跟随目标对象移动的跟踪指令。移动平台在获取到跟踪指令之后,可以根据所述跟踪生成一个或多个避障辅助指令,其中,可以根据跟踪指令确定辅助避障指令的大小和/或方向。
如图9所示,移动平台得到跟踪指令T,可以根据跟踪指令T确定辅助避障指令A1、A2、A3和A4。在某些情况中,所述辅助避障指令A1、A2、A3和A4的方向与跟踪指令的方向垂直,即辅助避障指令A1、A2、A3和A4对移动平台的方向与跟踪指令对移动平台的作用方向垂直。可以理解的是,所述辅助避障指令A1、A2、A3和A4的方向与跟踪指令的方向之间的夹角可以为其他角度,在这里不作具体的限定。在某些情况中,所述辅助避障指令A1、A2、A3和A4的大小与跟踪指令的大小成预设比例关系,当跟踪指令的大时,辅助避障指令A1、A2、A3相应地变大,当跟踪指令的小时,辅助避障指令A1、A2、A3相应地变小。
图10是本发明实施例提供的步骤103的执行方法流程图,在图10实施例中,在步骤101中,当检测到移动平台与障碍物的距离在预定距离范围内时,生成一个或多个避障辅助指令,其中,避障辅助指令的具体生成方法与上述说明类似,在这里不再赘述,如图10所示,在图1实施例的基础上,步骤103可扩展为如下步骤:
1001、基于所述跟踪指令和所述避障辅助指令,预测所述移动平台的一个或多个移动轨迹;
具体的,在获得跟踪指令后,可以根据预设的轨迹预测模型,将跟踪指令对应的移动平台的移动状态作为轨迹预测模型的初始状态,将跟踪指令和避障辅助指令作为轨迹预测模型的输入,预测获得每个避障辅助指令对应的移动轨迹,即预测移动平台的一个或多个移动轨迹。
可选的,若移动平台当前的移动过程中就包括避障辅助指令(以下简称当前避障辅助指令),则可以将跟踪指令对应的移动平台的移动状态作为轨迹预测模型的初始状态,将跟踪指令和当前避障辅助指令作为轨迹预测模型的输入,基于轨迹预测模型预测获得移动平台当前的移动轨迹。或者在移动平台当前的移动过程中不包括避障辅助指令时,将跟踪指令对应的移动平台的移动状态作为轨迹预测模型的初始状态,将跟踪指令作为轨迹预测模型的输入,基于轨迹预测模型预测获得移动平台当前的移动轨迹。
1002、基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动。
移动平台从预测获得的备选移动轨迹中确定出一条目标移动轨迹的方法有多种。例如,基于移动平台所存储的当前环境的地图信息,移动平台根据以下挑选条件中的至少一项从预测获得的移动平台的一个或多个备选移动轨迹中确定目标移动轨迹,并根据目标移动轨迹控制移动平台的移动:
在一种可能的实现方式中,可以先对预测获得的一个或多个移动轨迹进行显示,其中,图11是本发明实施例提供的多个移动轨迹的示意图,如图11所示。在这种实现方式中提供用户可操作界面,使得用户可以从显示出的多个移动轨迹中选择出移动平台的移动轨迹。并在检测到用户的选择操作时,基于用户选择的移动轨迹,控制移动平台移动。
在另一种可能的实现方式中,可以基于预设的轨迹选择策略,从上述获得的一个或多个移动轨迹中选择一条移动轨迹,使得移动平台沿该移动轨迹移动。比如,在考虑能量因素和移动距离因素时,可以选择可移动距离大于第一预设阈值,消耗能量(包括避障辅助指令消耗的能量和/或移动平台移动所消耗的能量)最小的移动轨迹,控制移动平台沿该移动轨迹移动。或者还可以选择消耗能量小于第二预设阈值,可移动距离最大的移动轨迹,又或者还可以先从上述预测获得的一个或多个移动轨迹中,获取可移动距离大于第一预设阈值 和/或消耗能量小于第二预设阈值的移动轨迹,再基于获取到的移动轨迹中可移动距离大于或等于移动平台当前移动轨迹的可移动距离的移动轨迹,控制移动平台移动,比如,在考虑能量的最优化配置时,可以选择可移动距离大于或等于移动平台当前移动轨迹,且消耗能量最小的移动轨迹进行显示,并基于该移动轨迹控制移动平台移动,或者,在考虑互动性时,还可以对预测获得的移动轨迹中可移动距离大于或等于移动平台当前移动轨迹的可移动距离的移动轨迹进行显示,并根据用户选择的移动轨迹控制移动平台移动。
进一步的,若上述获取到的可移动距离大于第一预设阈值和/或消耗能量小于第二预设阈值的移动轨迹的可移动距离均小于移动平台当前移动轨迹的可移动距离,则控制移动平台执行刹车操作,以免发生碰撞。
进一步的,若上述获取到的可移动距离大于第一预设阈值和/或消耗能量小于第二预设阈值的移动轨迹的可移动距离均小于移动平台当前移动轨迹的可移动距离,则控制移动平台执行刹车操作之后,移动平台可以基于当前环境的地图信息进行路径规划,得到所述移动轨迹。例如,移动平台可以使用快速扩展随机树(rapidly exploring random tree,RRT)路径规划算法在当前环境的地图中搜索一条与当前的移动轨迹接近的路径,并对该路径进行平滑,得到移动轨迹。
本实施例中基于生成的一个或多个避障辅助指令以及跟踪指令预测获得移动平台的一个或多个移动轨迹,基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动,提高了在跟踪模式中移动平台避障的灵活性。
图12是本发明另一实施例提供的步骤103的执行方法流程图,在图12实施例中,如图12所示,在图1或图10实施例的基础上,步骤103可扩展为如下步骤:
步骤1201、基于当前的第一跟踪指令,预测在第一跟踪指令之后的预设时间长度内可能的第二跟踪指令。
本实施例中,跟踪指令包括当前的第一跟踪指令和基于第一跟踪指令预测获得的第二跟踪指令。其中,第二跟踪指令可以通过将第一跟踪指令输入预设的指令预测模型,由指令预测模型输出得到。其中,在第一跟踪指令之后的预设时间长度可以为前述部分中的在未来一定时间窗口内,指令预测模型可以采 用现有技术提供的任意一种方法建立获得,本实施例不做具体限定。
步骤1202、基于所述第二跟踪指令和所述避障辅助指令控制移动平台的移动轨迹。
具体的,在获得第二跟踪指令后,可以根据预设的轨迹预测模型,将第一跟踪指令对应的移动平台的移动状态作为轨迹预测模型的初始状态,将第二跟踪指令和避障辅助指令作为轨迹预测模型的输入,预测获得每个避障辅助指令对应的移动轨迹,即上述内容可示例性的表述为基于第一跟踪指令、第二跟踪指令和避障辅助指令,预测移动平台的一个或多个移动轨迹。
可选的,若移动平台当前的移动过程中就包括避障辅助指令(以下简称当前避障辅助指令),则还可以将第一跟踪指令对应的移动平台的移动状态作为轨迹预测模型的初始状态,将第二跟踪指令和当前避障辅助指令作为轨迹预测模型的输入,基于轨迹预测模型预测获得移动平台当前的移动轨迹。或者在移动平台当前的移动过程中不包括避障辅助指令时,将第一跟踪指令对应的移动平台的移动状态作为轨迹预测模型的初始状态,将第二跟踪指令作为轨迹预测模型的输入,基于轨迹预测模型预测获得移动平台当前的移动轨迹。
移动平台从预测获得的备选移动轨迹中确定出一条目标移动轨迹的方法有多种。例如,基于移动平台所存储的当前环境的地图信息,移动平台根据以下挑选条件中的至少一项从预测获得的移动平台的一个或多个备选移动轨迹中确定目标移动轨迹,并根据目标移动轨迹控制移动平台的移动:
在一种可能的实现方式中,可以先对预测获得的一个或多个移动轨迹进行显示,其中,继续参考图11,图11是本发明实施例提供的多个移动轨迹的示意图,如图11所示。在这种实现方式中提供用户可操作界面,使得用户可以从显示出的多个移动轨迹中选择出移动平台的移动轨迹。并在检测到用户的选择操作时,基于用户选择的移动轨迹,控制移动平台移动。
在另一种可能的实现方式中,可以基于如前所述的预设的轨迹选择策略,从上述获得的一个或多个移动轨迹中选择一条移动轨迹,使得移动平台沿该移动轨迹移动。其中,具体解释和原理请参见前述部分,此处不再赘述。本实施例通过,基于第一跟踪指令,预测在第一跟踪指令之后的预设时间长度内可能的第二跟踪指令,根据第一跟踪指令、第二跟踪指令和避障辅助指令,预测获得移动平台的一条或多条移动轨迹,根据预测获得的一条或多条移动轨迹中的 一个控制移动平台移动,使得生成的移动轨迹可靠性更高,不会因为在第一跟踪指令之后的预设时间长度内的其他跟踪指令,而使得当前生成的移动轨迹失去避障作用,另外,由于本实施例中先基于跟踪指令获得一个或多个避障辅助指令,再基于获得的一个或多个避障辅助指令,以及跟踪指令预测获得移动平台的移动轨迹,因此,本实施例在避障辅助指令的生成上更加灵活。
本发明实施例提供一种移动装置,图13是本发明实施例提供的移动装置的结构图,如图13所示,移动装置1300包括存储器1301和处理器1302,其中,存储器1302中存储有程序代码,处理器1302调用存储器中的程序代码,当程序代码被执行时,处理器1302执行如下操作:在跟踪模式中,检测与障碍物的距离;在与障碍物的距离小于预定距离的范围内,生成避障辅助指令;基于跟踪指令和所述避障辅助指令控制移动平台的移动轨迹,其中,所述跟踪指令用于指示移动平台对目标对象进行跟踪。
可选的,所述处理器1302生成的所述避障辅助指令用于增加所述移动平台沿第一方向上的速度分量,其中,所述第一方向垂直于所述移动平台朝向所述障碍物的方向。
可选的,所述处理器1302生成的所述避障辅助指令用于减小或抵消所述跟踪指令造成的所述移动平台朝向所述障碍物的速度分量。
可选的,所述处理器1302生成的所述避障辅助指令对所述移动平台的作用方向垂直于所述跟踪指令对所述移动平台的作用方向。
可选的,所述处理器1302在生成避障辅助指令时,执行如下操作:
在与障碍物的距离小于预定距离的范围内,基于所述跟踪指令和所述障碍物的信息,确定所述移动平台可绕开所述障碍物的移动轨迹;
基于所述移动轨迹和所述跟踪指令,生成所述避障辅助指令。
可选的,所述处理器1302调用所述程序代码时,还执行如下操作:
将所述移动平台当前的移动轨迹,和/或所述移动平台可绕开所述障碍物的移动轨迹发送到地面站进行显示。
可选的,所述处理器1302在生成避障辅助指令时,执行如下操作:
在与障碍物的距离小于预定距离的范围内,基于所述跟踪指令,生成一个或多个所述避障辅助指令。
可选的,所述处理器1302在基于跟踪指令和所述避障辅助指令控制移动平台的移动轨迹时,执行如下操作:
基于所述跟踪指令和所述避障辅助指令,预测所述移动平台的一个或多个移动轨迹;
基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动。
可选的,所述处理器1302调用所述程序代码时,还执行如下操作:
将所述一个或多个移动轨迹发送至地面站进行显示。
可选的,所述处理器1302调用所述程序代码时,还执行如下操作:
获取用户对所述一个或多个移动轨迹的选择操作;
基于用户选择的移动轨迹,控制所述移动平台移动。
可选的,所述处理器1302在基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动时,执行如下操作:
基于所述一个或多个移动轨迹中可移动距离大于第一预设阈值,消耗能量最小的移动轨迹,控制所述移动平台移动。
可选的,所述处理器1302在基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动时,执行如下操作:
基于所述一个或多个移动轨迹中消耗能量小于第二预设阈值,可移动距离最大的移动轨迹,控制所述移动平台移动。
可选的,所述处理器1302在基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动时,执行如下操作:
从所述一个或多个移动轨迹中,获取可移动距离大于第一预设阈值和/或消耗能量小于第二预设阈值的移动轨迹;
基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹,控制所述移动平台移动。
可选的,所述处理器1302调用所述程序代码时,还执行如下操作:
将所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹发送到地面站进行显示。
可选的,所述处理器1302在基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹,控制所述移动平台移动时,执行如下操作:
基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹,且消耗能量最小的移动轨迹,控制所述移动平台移动。
可选的,所述处理器1302调用所述程序代码时,还执行如下操作:
将所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹,且消耗能量最小的移动轨迹发送至地面站进行显示。
可选的,所述处理器1302调用所述程序代码时,还执行如下操作:
在所述移动轨迹的可移动距离均小于所述移动平台当前移动轨迹的可移动距离时,控制所述移动平台执行刹车操作。
可选的,所述处理器1302控制所述移动平台执行刹车操作之后,还执行如下操作:
基于当前环境的地图信息进行路径规划,得到所述移动轨迹。
本实施例提供的移动装置能够执行前述实施例提供的移动平台的辅助移动方法,其执行方式和有益效果类似,在这里不再赘述。
本发明实施例还提供一种移动平台,该移动平台包括:
机身;
动力系统,安装在所述机身,用于为所述移动平台提供动力;
以及上述实施例提供的移动装置。
可选地,该移动平台还可以包括传感器,安装在所述机身,用于探测获得所述移动平台所处环境的地图信息。
可选地,所述传感器包括视觉传感器和/或距离传感器。
可选地,所述移动平台还包括:
通信设备,安装在所述机身,用于与地面站进行信息交互。
可选地,所述移动平台至少包括如下的一种:无人机、汽车。
本实施例提供的移动平台其执行方式和有益效果与前述实施例提供的移动装置类似,在这里不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特 征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (41)

  1. 一种移动平台的辅助移动方法,其特征在于,包括:
    在跟踪模式中,在与障碍物的距离小于预定距离的范围内,生成避障辅助指令;
    基于跟踪指令和所述避障辅助指令控制移动平台的移动轨迹,其中,所述跟踪指令用于指示移动平台对目标对象进行跟踪。
  2. 根据权利要求1所述的方法,其特征在于,
    所述避障辅助指令用于增加所述移动平台沿第一方向上的速度分量,其中,所述第一方向垂直于所述移动平台朝向所述障碍物的方向。
  3. 根据权利要求2所述的方法,其特征在于,
    所述避障辅助指令用于减小或抵消所述跟踪指令造成的所述移动平台朝向所述障碍物的速度分量。
  4. 根据权利要求1所述的方法,其特征在于,所述避障辅助指令对所述移动平台的作用方向垂直于所述跟踪指令对所述移动平台的作用方向。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述在与障碍物的距离小于预定距离的范围内,生成避障辅助指令,包括:
    在与障碍物的距离小于预定距离的范围内,基于所述跟踪指令和所述障碍物的信息,确定所述移动平台可绕开所述障碍物的移动轨迹;
    基于所述移动轨迹和所述跟踪指令,生成所述避障辅助指令。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    显示所述移动平台当前的移动轨迹,和/或所述移动平台可绕开所述障碍物的移动轨迹。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述在与障碍物的距离小于预定距离的范围内,生成避障辅助指令,包括:
    在与障碍物的距离小于预定距离的范围内,基于所述跟踪指令,生成一个或多个所述避障辅助指令。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述基于跟踪指令和所述避障辅助指令控制移动平台的移动轨迹,包括:
    基于所述跟踪指令和所述避障辅助指令,预测所述移动平台的一个或多个移动轨迹;
    基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    显示所述一个或多个移动轨迹。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    获取用户对所述一个或多个移动轨迹的选择操作;
    基于用户选择的移动轨迹,控制所述移动平台移动。
  11. 根据权利要求8所述的方法,其特征在于,所述基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动,包括:
    基于所述一个或多个移动轨迹中可移动距离大于第一预设阈值,消耗能量最小的移动轨迹,控制所述移动平台移动。
  12. 根据权利要求8所述的方法,其特征在于,所述基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动,包括:
    基于所述一个或多个移动轨迹中消耗能量小于第二预设阈值,可移动距离最大的移动轨迹,控制所述移动平台移动。
  13. 根据权利要求8所述的方法,其特征在于,所述基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动,包括:
    从所述一个或多个移动轨迹中,获取可移动距离大于第一预设阈值和/或消耗能量小于第二预设阈值的移动轨迹;
    基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹,控制所述移动平台移动。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    显示所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹。
  15. 根据权利要求13所述的方法,其特征在于,所述基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹,控制所述移动平台移动,包括:
    基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹,且消耗能量最小的移动轨迹,控制所述移动平台移动。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    显示所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹, 且消耗能量最小的移动轨迹。
  17. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    若所述移动轨迹的可移动距离均小于所述移动平台当前移动轨迹的可移动距离,控制所述移动平台执行刹车操作。
  18. 根据权利要求17所述的方法,其特征在于,所述控制所述移动平台执行刹车操作之后,还包括:
    基于当前环境的地图信息进行路径规划,得到所述移动轨迹。
  19. 一种移动装置,其特征在于,包括存储器和处理器;
    所述存储器用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    在跟踪模式中,在与障碍物的距离小于预定距离的范围内,生成避障辅助指令;
    基于跟踪指令和所述避障辅助指令控制移动平台的移动轨迹,其中,所述跟踪指令用于指示移动平台对目标对象进行跟踪。
  20. 根权利要求19所述的装置,其特征在于,所述避障辅助指令用于增加所述移动平台沿第一方向上的速度分量,其中,所述第一方向垂直于所述移动平台朝向所述障碍物的方向。
  21. 根据权利要求20所述的装置,其特征在于,所述避障辅助指令用于减小或抵消所述跟踪指令造成的所述移动平台朝向所述障碍物的速度分量。
  22. 根据权利要求19所述的装置,其特征在于,所述避障辅助指令对所述移动平台的作用方向垂直于所述跟踪指令对所述移动平台的作用方向。
  23. 根据权利要求19-22任一项所述的装置,其特征在于,所述处理器在生成避障辅助指令时,执行如下操作:
    在与障碍物的距离小于预定距离的范围内,基于所述跟踪指令和所述障碍物的信息,确定所述移动平台可绕开所述障碍物的移动轨迹;
    基于所述移动轨迹和所述跟踪指令,生成所述避障辅助指令。
  24. 根据权利要求23所述的装置,其特征在于,所述处理器调用所述程序代码时,还执行如下操作:
    将所述移动平台当前的移动轨迹,和/或所述移动平台可绕开所述障碍物 的移动轨迹发送到地面站进行显示。
  25. 根据权利要求19-22任一项所述的装置,其特征在于,所述处理器在生成避障辅助指令时,执行如下操作:
    在与障碍物的距离小于预定距离的范围内,基于所述跟踪指令,生成一个或多个所述避障辅助指令。
  26. 根据权利要求19-25任一项所述的装置,其特征在于,所述处理器在基于跟踪指令和所述避障辅助指令控制移动平台的移动轨迹时,执行如下操作:
    基于所述跟踪指令和所述避障辅助指令,预测所述移动平台的一个或多个移动轨迹;
    基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动。
  27. 根据权利要求26所述的装置,其特征在于,所述处理器调用所述程序代码时,还执行如下操作:
    将所述一个或多个移动轨迹发送至地面站进行显示。
  28. 根据权利要求26所述的装置,其特征在于,所述处理器调用所述程序代码时,还执行如下操作:
    获取用户对所述一个或多个移动轨迹的选择操作;
    基于用户选择的移动轨迹,控制所述移动平台移动。
  29. 根据权利要求26所述的装置,其特征在于,所述处理器在基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动时,执行如下操作:
    基于所述一个或多个移动轨迹中可移动距离大于第一预设阈值,消耗能量最小的移动轨迹,控制所述移动平台移动。
  30. 根据权利要求26所述的装置,其特征在于,所述处理器在基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动时,执行如下操作:
    基于所述一个或多个移动轨迹中消耗能量小于第二预设阈值,可移动距离最大的移动轨迹,控制所述移动平台移动。
  31. 根据权利要求26所述的装置,其特征在于,所述处理器在基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动时,执行如下操作:
    从所述一个或多个移动轨迹中,获取可移动距离大于第一预设阈值和/或消耗能量小于第二预设阈值的移动轨迹;
    基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹,控制所述移动平台移动。
  32. 根据权利要求31所述的装置,其特征在于,所述处理器调用所述程序代码时,还执行如下操作:
    将所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹发送到地面站进行显示。
  33. 根据权利要求31所述的装置,其特征在于,所述处理器在基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹,控制所述移动平台移动时,执行如下操作:
    基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹,且消耗能量最小的移动轨迹,控制所述移动平台移动。
  34. 根据权利要求33所述的装置,其特征在于,所述处理器调用所述程序代码时,还执行如下操作:
    将所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹,且消耗能量最小的移动轨迹发送至地面站进行显示。
  35. 根据权利要求31所述的装置,其特征在于,所述处理器调用所述程序代码时,还执行如下操作:
    在所述移动轨迹的可移动距离均小于所述移动平台当前移动轨迹的可移动距离时,控制所述移动平台执行刹车操作。
  36. 根据权利要求35所述的装置,其特征在于,所述处理器控制所述移动平台执行刹车操作之后,还执行如下操作:
    基于当前环境的地图信息进行路径规划,得到所述移动轨迹。
  37. 一种移动平台,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于为所述移动平台提供动力;
    以及如权利要求19-36中任一项所述的移动装置。
  38. 根据权利要求37所述的移动平台,其特征在于,所述移动平台还包括:
    传感器,安装在所述机身,用于探测获得所述移动平台所处环境的地图信息。
  39. 根据权利要求38所述的移动平台,其特征在于,所述传感器包括视觉传感器和/或距离传感器。
  40. 根据权利要求37所述的移动平台,其特征在于,所述移动平台还包括:
    通信设备,安装在所述机身,用于与地面站进行信息交互。
  41. 根据权利要求37所述的移动平台,其特征在于,所述移动平台至少包括如下的一种:无人机、汽车。
PCT/CN2018/096635 2018-07-23 2018-07-23 移动平台的辅助移动方法、移动装置及移动平台 WO2020019110A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880036951.0A CN110709792A (zh) 2018-07-23 2018-07-23 移动平台的辅助移动方法、移动装置及移动平台
PCT/CN2018/096635 WO2020019110A1 (zh) 2018-07-23 2018-07-23 移动平台的辅助移动方法、移动装置及移动平台
US17/124,399 US20210103300A1 (en) 2018-07-23 2020-12-16 Auxiliary moving methods of mobile platform, mobile devices, and mobile platforms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/096635 WO2020019110A1 (zh) 2018-07-23 2018-07-23 移动平台的辅助移动方法、移动装置及移动平台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/124,399 Continuation US20210103300A1 (en) 2018-07-23 2020-12-16 Auxiliary moving methods of mobile platform, mobile devices, and mobile platforms

Publications (1)

Publication Number Publication Date
WO2020019110A1 true WO2020019110A1 (zh) 2020-01-30

Family

ID=69180858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096635 WO2020019110A1 (zh) 2018-07-23 2018-07-23 移动平台的辅助移动方法、移动装置及移动平台

Country Status (3)

Country Link
US (1) US20210103300A1 (zh)
CN (1) CN110709792A (zh)
WO (1) WO2020019110A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112639656A (zh) * 2020-04-24 2021-04-09 深圳市大疆创新科技有限公司 移动控制方法、移动装置及移动平台
CN111833381A (zh) * 2020-06-24 2020-10-27 鹏城实验室 一种无人机目标跟踪轨迹生成方法、无人机及存储介质
WO2022036500A1 (zh) * 2020-08-17 2022-02-24 深圳市大疆创新科技有限公司 无人飞行器的飞行辅助方法、设备、芯片、系统及介质
CN113848869B (zh) * 2021-10-20 2023-03-07 北京三快在线科技有限公司 一种无人设备控制方法、装置、存储介质及电子设备
US20230244249A1 (en) * 2022-02-01 2023-08-03 Lockheed Martin Corporation Collision prevention flight control mode
CN116165902B (zh) * 2023-04-25 2023-06-30 北京航空航天大学 一种量测不完备下的航天器抗干扰安全避障控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103227A (ja) * 2013-11-28 2015-06-04 トヨタ自動車株式会社 自律移動体
CN104932524A (zh) * 2015-05-27 2015-09-23 深圳市高巨创新科技开发有限公司 一种无人飞行器及全向蔽障的方法
CN107003678A (zh) * 2016-12-15 2017-08-01 深圳市大疆创新科技有限公司 控制方法、装置、设备及可移动平台
CN107223219A (zh) * 2016-09-26 2017-09-29 深圳市大疆创新科技有限公司 控制方法、控制设备和运载系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2339802T3 (es) * 2006-12-22 2010-05-25 Saab Ab Dispositivo en un vehiculo en vuelo y un procedimiento para prevenir colisiones.
CN105955298B (zh) * 2016-06-03 2018-09-07 腾讯科技(深圳)有限公司 一种飞行器的自动避障方法及装置
CN106774301B (zh) * 2016-10-25 2020-04-24 纳恩博(北京)科技有限公司 一种避障跟随方法和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103227A (ja) * 2013-11-28 2015-06-04 トヨタ自動車株式会社 自律移動体
CN104932524A (zh) * 2015-05-27 2015-09-23 深圳市高巨创新科技开发有限公司 一种无人飞行器及全向蔽障的方法
CN107223219A (zh) * 2016-09-26 2017-09-29 深圳市大疆创新科技有限公司 控制方法、控制设备和运载系统
CN107003678A (zh) * 2016-12-15 2017-08-01 深圳市大疆创新科技有限公司 控制方法、装置、设备及可移动平台

Also Published As

Publication number Publication date
CN110709792A (zh) 2020-01-17
US20210103300A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2020019110A1 (zh) 移动平台的辅助移动方法、移动装置及移动平台
US11726498B2 (en) Aerial vehicle touchdown detection
JP7465615B2 (ja) 航空機のスマート着陸
US11048277B1 (en) Objective-based control of an autonomous unmanned aerial vehicle
US20190250601A1 (en) Aircraft flight user interface
US20210138654A1 (en) Robot and method for controlling the same
US10156849B1 (en) Human supervision of an automated driving system
US11269328B2 (en) Method for entering mobile robot into moving walkway and mobile robot thereof
WO2021212462A1 (zh) 移动控制方法、移动装置及移动平台
WO2019111608A1 (ja) 制御装置、無人システム、制御方法及びプログラム
US12011837B2 (en) Intent based control of a robotic device
WO2019144298A1 (zh) 辅助移动方法、移动装置及可移动平台
WO2021078003A1 (zh) 无人载具的避障方法、避障装置及无人载具
Xu et al. Monocular vision based autonomous landing of quadrotor through deep reinforcement learning
KR20210047434A (ko) 로봇 청소기 및 그의 동작 방법
CN112401747A (zh) 通过人工智能避开卡住情况的机器人清洁器及其操作方法
KR20190104264A (ko) 차량에 탑재되는 인공 지능 장치 및 그 방법
Guevara et al. Vision-based self-contained target following robot using bayesian data fusion
WO2020129312A1 (ja) 案内ロボット制御装置、及び、それを用いた案内システム、並びに、案内ロボット制御方法
KR20210044662A (ko) 로봇 및 로봇의 제어 방법
WO2020129310A1 (ja) 案内ロボット制御装置、及び、それを用いた案内システム、並びに、案内ロボット制御方法
KR20210056019A (ko) 인공 지능 장치 및 그의 동작 방법
WO2021177043A1 (ja) 情報処理装置、情報処理方法、およびプログラム
Zhao et al. Autonomous Navigation of the UAV through Deep Reinforcement Learning with Sensor Perception Enhancement
WO2024087522A1 (zh) 自动驾驶决策规划及自动驾驶车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927923

Country of ref document: EP

Kind code of ref document: A1