WO2019144298A1 - 辅助移动方法、移动装置及可移动平台 - Google Patents

辅助移动方法、移动装置及可移动平台 Download PDF

Info

Publication number
WO2019144298A1
WO2019144298A1 PCT/CN2018/073883 CN2018073883W WO2019144298A1 WO 2019144298 A1 WO2019144298 A1 WO 2019144298A1 CN 2018073883 W CN2018073883 W CN 2018073883W WO 2019144298 A1 WO2019144298 A1 WO 2019144298A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile platform
movement
movement trajectory
obstacle
instruction
Prior art date
Application number
PCT/CN2018/073883
Other languages
English (en)
French (fr)
Inventor
张立天
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to US17/260,922 priority Critical patent/US20210311505A1/en
Priority to PCT/CN2018/073883 priority patent/WO2019144298A1/zh
Priority to CN201880032203.5A priority patent/CN110622084A/zh
Publication of WO2019144298A1 publication Critical patent/WO2019144298A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D45/04Landing aids; Safety measures to prevent collision with earth's surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present application relates to the field of assisted control technologies, and in particular, to an assisted mobile method, a mobile device, and a mobile platform.
  • the existing assisted driving technology generally performs the braking operation automatically when the drone encounters an obstacle, and even in some scenes where braking is not required, the braking is performed, and the user's driving experience is poor.
  • the embodiment of the invention provides an auxiliary mobile method, a mobile device and a mobile platform for improving user experience.
  • a first aspect of the embodiments of the present invention provides a method for assisting movement, including:
  • the obstacle avoidance assisting instruction is generated within a range that the distance from the obstacle is less than a predetermined distance
  • the movement trajectory of the mobile platform is controlled based on the manipulation command input by the user and the obstacle avoidance assistance command.
  • a second aspect of the embodiments of the present invention provides a mobile device, including:
  • the memory is for storing program code
  • the processor calls the program code to perform the following operations when the program code is executed:
  • the obstacle avoidance assisting instruction is generated within a range in which the distance between the mobile platform and the obstacle is less than a predetermined distance
  • the movement trajectory of the mobile platform is controlled based on the manipulation command input by the user and the obstacle avoidance assistance command.
  • a third aspect of the embodiments of the present invention provides a mobile platform, including:
  • a power system mounted to the fuselage for powering the mobile platform
  • the obstacle avoidance assisting instruction when the mobile platform is in the user manipulation mode, is generated within a range where the distance between the mobile platform and the obstacle is less than a predetermined distance, and based on the obstacle avoidance assisting instruction and the operation instruction input by the user. Controlling the movement of the mobile platform, so that the user can control the movement of the mobile platform without considering obstacle avoidance, and ensure the safe flight of the mobile platform, avoiding the prior art that the mobile platform is predicted to be immediately stopped when it hits an obstacle.
  • the decision-making situation can extend the flight distance of the mobile platform.
  • FIG. 1 is a flowchart of an auxiliary mobility method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a scenario for generating an obstacle avoidance assistance instruction according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another generation scenario of an obstacle avoidance assistance instruction according to an embodiment of the present invention.
  • 4a and 4b are side views showing movement of a mobile platform according to an embodiment of the present invention.
  • FIG. 5 is a schematic top view of a mobile platform according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for generating an obstacle avoidance assistance instruction according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a method for generating a mobile track according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of speed changes of a mobile platform in any one of three directions of left, right, and upper directions according to an embodiment of the present invention
  • FIG. 9 is a flowchart of a method for executing step 102 according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of multiple movement trajectories provided by an embodiment of the present invention.
  • FIG. 11 is a structural diagram of a mobile device according to an embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • the embodiment of the invention provides an auxiliary movement method for generating an obstacle avoidance auxiliary instruction within a range in which the distance between the mobile platform and the obstacle is less than a predetermined distance when the mobile platform is in the user manipulation mode, and based on the obstacle avoidance assistance
  • the instruction and the operation instruction input by the user control the movement of the mobile platform, so that the user can control the movement of the mobile platform without considering obstacle avoidance, and ensure the safe flight of the mobile platform, thereby avoiding the prediction that the mobile platform is about to hit in the prior art.
  • the decision of the brake is taken to extend the flight distance of the mobile platform.
  • the mobile platform stores map information of the current environment, when the mobile platform detects that the distance between the current location and the obstacle is less than a predetermined distance, or predicts that the obstacle will be hit at the current speed within a predetermined time. Or detecting that the distance between the current location and the obstacle is less than the predetermined distance, and the current speed direction of the mobile platform is toward the obstacle, or after the auxiliary obstacle avoidance mode of the mobile platform is turned on, the mobile platform starts to execute the obstacle avoidance assisting instruction. operating.
  • the map information of the current environment stored by the mobile platform may be downloaded from a server or acquired based on the probe data of the sensor on the mobile platform.
  • the sensor may include a visual sensor (eg, a binocular camera, a monocular camera) and/or a distance sensor (eg, a TOF camera, a lidar).
  • the map information may be acquired by the unmanned aerial vehicle based on the detected data of the sensor in the same flight or in different flights, wherein the unmanned aerial vehicle is adjacent The flight between takeoff and landing is a flight.
  • the mobile platform turning on the auxiliary obstacle avoidance mode may be triggered based on an instruction input by the user.
  • the user interface for controlling the mobile platform is provided with a physical button or a virtual button, or the operation interface is provided with an option for assisting the obstacle avoidance mode, when detecting the user's physical button or virtual button or assisted obstacle avoidance mode.
  • the assisted obstacle avoidance mode entering the mobile platform is determined.
  • the mobile platform turning on the auxiliary obstacle avoidance mode may also be when detecting that the distance between the current location and the obstacle is less than a predetermined distance, or predicting that the obstacle will be hit at the current speed within a predetermined time, or detecting The distance between the current position and the obstacle is less than the predetermined distance, and the current speed direction of the mobile platform is automatically turned on by default when facing the obstacle.
  • the user may choose to turn off the function of the default automatic turn-on assisted obstacle avoidance mode.
  • the assisted obstacle avoidance instruction is always generated during movement of the mobile platform, but the movement of the mobile platform is controlled based on the auxiliary obstacle avoidance command only under certain conditions.
  • the mobile platform determines a target direction of the mobile platform based on a manipulation instruction currently input by the user, generates at least one predicted trajectory that bypasses the obstacle and is movable toward the target direction, and determines a target from the at least one predicted trajectory. Predicting a trajectory, generating an obstacle avoidance assisting instruction capable of causing the mobile platform to move along the target predicted trajectory based on the target predicted trajectory and a manipulation command input by the user, and controlling the mobile platform based on the obstacle avoidance assisting instruction and the manipulation instruction input by the user mobile.
  • the target direction is the same as the speed direction of the mobile platform corresponding to the currently input manipulation command.
  • the mobile platform predicts a manipulation command input by the user in a certain time window based on a manipulation instruction currently input by the user, and determines a target direction of the mobile platform based on the predicted manipulation instruction.
  • the target direction is the same as the speed direction of the mobile platform corresponding to the predicted manipulation command. It can be understood that when the manipulation command input by the user is changed, the obstacle avoidance assist instruction may change together.
  • the speed direction of the mobile platform corresponding to the instruction mentioned herein refers to the moving direction of the mobile platform when the mobile platform controls the movement based on the instruction when the mobile platform is stationary.
  • the mobile platform predicts a manipulation instruction input by the user in a certain time window according to a manipulation instruction input by the user, and generates a plurality of obstacle avoidance assistance instructions according to a manipulation instruction input by the user based on a specific rule; the mobile platform is based on the current The state of motion, and at least one of the following instructions: a manipulation command currently input by the user, an auxiliary obstacle avoidance instruction currently used to control movement of the mobile platform, a manipulation instruction for predicting a user input in a certain time window in the future, and a generated for future use
  • a plurality of alternative obstacle avoidance assistance instructions in the time window respectively predicting movement trajectories of the mobile platform under different instruction or combination of instructions in a certain time window in the future, and the predicted plurality of movement trajectories are used as alternative movement trajectories,
  • a target movement trajectory is determined from the plurality of alternative movement trajectories according to a predetermined condition, and the movement of the mobile platform is controlled in a future time window according to the
  • the manipulation command based on the user input does not cause the mobile platform to hit the obstacle in a certain period of time, and the instruction corresponding to the target movement track may not have the obstacle avoidance auxiliary instruction, then In a certain time window in the future, the movement of the mobile platform is controlled based only on the manipulation command input by the user, and the generated obstacle avoidance assistance instruction is not used to control the mobile platform.
  • the mobile platform uses the currently input manipulation command as a predicted manipulation command input in a certain time window in the future.
  • the user inputs a manipulation command through a joystick on the remote controller, and the amount of the user input includes a roll amount, a pitch pitch, a yaw amount, and a throttle amount (thr). ).
  • the physical model of the remote control rocker is established by the Kalman filter, which can be added to the rocker spring, resistance and the like. The user's force on the amount of the lever on the remote control rocker is input as input to the physical model, and the prediction of each amount of the future remote controller is output.
  • the mobile platform predicts at least one of the following moving tracks according to the current motion state:
  • At least one moving trajectory will be obtained as an alternative moving trajectory.
  • the mobile platform has an obstacle avoidance assisting instruction generated within a range in which the mobile platform and the obstacle are less than a predetermined distance.
  • the obstacle avoidance assist command can increase the speed component of the mobile platform in the first direction, wherein the first Direction refers to one of the directions perpendicular to the direction of the moving platform toward the obstacle.
  • the direction of the mobile platform facing the obstacle may be the direction in which the shortest connection between the mobile platform and the obstacle is located, or the direction in which the connection point of a certain point on the mobile platform and the obstacle is located.
  • make restrictions. 4a and 4b are side views of the movement of the mobile platform provided by the embodiment of the present invention. As shown in FIG. 4a and FIG. 4b, the direction of the mobile platform toward the obstacle may be defined as the moving platform facing the obstacle in the horizontal direction. The direction of movement, or the direction in which the moving platform moves toward the obstacle, but is not limited to the definition shown in Figures 4a and 4b.
  • the obstacle avoidance assist command can increase the speed component of the mobile platform in the first direction, and refers to the speed direction of the mobile platform corresponding to the obstacle avoidance assist command as the first direction, or refers to the mobile platform based on
  • the component of the speed of the mobile platform in the first direction increases.
  • the control of the obstacle avoidance auxiliary command it will change the original moving track (that is, the moving track of the mobile platform only under the control of the user input control command).
  • FIG. 5 is a schematic top view of a mobile platform according to an embodiment of the present invention.
  • the direction x is a direction in which the mobile platform faces the obstacle
  • the direction y is a speed direction applied by the obstacle avoidance assist command.
  • y is at an angle to the direction x, and the velocity in the direction y can be decomposed to obtain a velocity component perpendicular to the direction x, that is, the velocity component in the direction g in Fig. 5, and the moving platform changes under the action of the velocity component in the direction g Current movement trajectory.
  • the angle between the velocity in the direction y and the velocity in the direction x is greater than 90 degrees, and the velocity in the direction y can be decomposed into a velocity component perpendicular to the direction x and a velocity component opposite to the direction x.
  • the velocity component perpendicular to the direction x can change the movement trajectory of the moving platform, and the velocity component opposite to the direction x direction can reduce or offset the velocity component of the moving platform toward the obstacle caused by the user manipulation command (ie, in the direction x The speed component), so as to achieve obstacle avoidance or to move the mobile platform for a period of time before the collision.
  • Figure 5 is merely illustrative and is not a limitation of the invention.
  • auxiliary moving method in the embodiment of the present invention is described below by way of example.
  • FIG. 1 is a flowchart of an auxiliary moving method according to an embodiment of the present invention. As shown in FIG. 1 , the method includes the following steps:
  • Step 101 In the user manipulation mode, the obstacle avoidance assistance instruction is generated within a range that the distance from the obstacle is less than a predetermined distance.
  • the user manipulation mode referred to in this embodiment refers to a manipulation mode in which the user controls the movement trajectory and/or the movement state of the mobile platform by using a handheld remote controller or other manipulation device.
  • the mobile platform involved in this embodiment may be a device that has certain processing capabilities, such as a drone, a car, and the like, and can be manipulated by the operating device.
  • FIG. 2 is a schematic diagram of a scenario for generating an obstacle avoidance assisting instruction according to an embodiment of the present invention.
  • FIG. 2 includes a mobile platform 10 and an obstacle 20, wherein the mobile platform 10 includes a processor 11 and a detecting device 12, when When the detecting device 12 detects that the distance between the mobile platform 10 and the obstacle 20 is less than the predetermined distance, the trigger processor 11 generates an obstacle avoidance assisting instruction.
  • the distance between the mobile platform 10 and the obstacle 20 may be specifically a moving distance h1 before the collision between the mobile platform 10 and the obstacle 20, or a linear distance between the moving platform 10 and its collision point on the obstacle 20. H2, or a vertical distance h3 between the mobile platform 10 and the obstacle 20 in the horizontal direction.
  • one or more obstacle avoidance assistance commands are generated.
  • the processing method of the processor 11 includes the following two types:
  • the processor 11 determines whether to generate an obstacle avoidance assistance instruction according to a manipulation instruction input by the user, for example, when the processor 11 determines that the manipulation instruction input by the user causes a collision between the mobile platform 10 and the obstacle 20 In case of danger, an obstacle avoidance assist command is generated to change the movement trajectory of the mobile platform 10 by the obstacle avoidance assist command. If it is judged that the manipulation command input by the user does not cause a collision, the auxiliary obstacle avoidance instruction is not generated.
  • the processor 11 when the detecting device 12 detects that the distance between the mobile platform 10 and the obstacle 20 is less than a predetermined distance, the processor 11 directly generates an obstacle avoidance assisting instruction without detecting a manipulation command input by the user. Will it cause a collision?
  • FIG. 2 is only a scenario for generating obstacle avoidance assistance instructions provided by the embodiment of the present invention, and not all scenarios.
  • the obstacle avoidance assistance command may also be generated in other scenarios.
  • FIG. 3 is a schematic diagram of a scenario for generating an obstacle avoidance assist command according to an embodiment of the present invention.
  • the mobile platform 40 generates an obstacle avoidance assist command at times t1, t2, ... tn.
  • the adjacent times in t1, t2, ... tn may be equally spaced or non-equal intervals, that is, the settings for t1, t2, ... tn may be arbitrary.
  • Step 102 Control a movement trajectory of the mobile platform based on a manipulation instruction input by the user and the obstacle avoidance assistance instruction.
  • the manipulation command involved in the embodiment includes at least one of the following amounts: a roll amount, a pitch pitch, a yaw amount, and a throttle amount (thr).
  • controlling the movement trajectory of the mobile platform based on the manipulation instruction input by the user and the obstacle avoidance assistance instruction comprises: using the manipulation instruction input by the user and the obstacle avoidance assistance instruction as input of the preset model, and obtaining the movement by using the preset model prediction.
  • the movement track of the platform and further, selects a movement track from the obtained movement track, so that the moving platform moves along the movement track of the piece.
  • the path direction and the current obstacle avoidance assisting instruction are screened and selected from one or more moving trajectories obtained by the above prediction.
  • the obtained moving trajectory (hereinafter referred to as the current moving trajectory) has the same moving trajectory in the trajectory direction.
  • the moving trajectory obtained by the current obstacle avoiding assist command is on the upper side of the body
  • the one or more moving trajectories obtained from the prediction are filtered.
  • the selected moving track is further filtered to obtain a moving track having a movable distance longer than a movable distance of the current moving track of the mobile platform (for example, 2 m) as an alternative moving track, wherein the movable track is movable Distance is the distance that the mobile platform can move before it collides.
  • the one or more movement trajectories obtained from the above prediction are directly selected to obtain a movable distance longer than a preset distance of the movable distance of the current moving trajectory of the mobile platform.
  • the moving track is used as an alternative moving track.
  • the moving track with the longest movable distance and the moving track with the movable distance shorter than the longest movable distance of 1.5 m or less are selected from the candidate moving track, and then filtered.
  • the movement trajectory with the smallest energy consumption is determined as the best candidate movement trajectory, and when there is no movement trajectory meeting the above condition, it is determined that the optimal candidate movement trajectory is empty.
  • the obstacle avoidance assist command is included in the current movement control of the mobile platform, if the best candidate movement trajectory is empty, and the movable platform moves the distance of the movement trajectory without the obstacle avoidance assist command, it is more than the current obstacle avoidance assist command. If the movable distance of the moving track under the action is longer than the preset distance, the movement platform is controlled to move along the movement track without the obstacle avoidance assistance command, otherwise the mobile platform still moves along the current movement track. If the best candidate movement trajectory is not empty, and the movable path of the moving platform without the obstacle avoidance assist command is longer than the best candidate moving track movable distance, then the control mobile platform has no obstacle avoidance auxiliary command The movement trajectory moves, otherwise the mobile platform is controlled to move along the best candidate movement trajectory.
  • the movable distance of the current moving trajectory is better than the best candidate moving trajectory.
  • the long movable distance controls the mobile platform to move along the current movement trajectory. If the best candidate moving track is not empty, and the movable distance of the current moving track is shorter than the movable distance of the best candidate moving track, then the mobile platform is controlled to move along the best candidate moving track.
  • the obstacle avoidance assisting instruction when the distance between the mobile platform and the obstacle is less than the predetermined distance in the user manipulation mode, the obstacle avoidance assisting instruction is generated, and the movement track of the mobile platform is controlled based on the manipulation command input by the user and the obstacle avoidance assisting instruction. Therefore, in the user control mode, the active obstacle avoidance of the mobile platform can also be realized, so that the mobile platform can bypass the obstacle under the action of the user-entered manipulation command and the obstacle avoidance auxiliary instruction, or can not bypass the obstacle.
  • you are in the object you can move for a while, instead of performing the braking operation when you encounter obstacles, which improves the security and user experience of mobile platform movement.
  • Fig. 1 The embodiment of Fig. 1 is further optimized and extended by the specific embodiments below.
  • FIG. 6 is a flowchart of a method for generating an obstacle avoidance assisting instruction according to an embodiment of the present invention. As shown in FIG. 6, the method for generating an obstacle avoidance assisting instruction may include the following steps:
  • Step 601 In the user manipulation mode, in a range where the distance from the obstacle is less than a predetermined distance, based on the manipulation instruction input by the user and the information of the obstacle, determine a movement trajectory of the obstacle platform that can bypass the obstacle.
  • the information of the obstacle involved in the embodiment includes, but is not limited to, information such as the position, size, and shape of the obstacle.
  • the information of the obstacle may be obtained from a pre-stored map, or the image of the obstacle may be photographed, and the information of the obstacle may be calculated based on a preset image detection algorithm.
  • the edge detection algorithm may first detect the obstacle.
  • the edge of the object image is further determined based on the coordinates of the point located on the edge of the obstacle image, and the coordinates of a point outside the obstacle image are determined. Based on the coordinates of the point outside the obstacle image and the current position of the mobile platform, a The movement trajectory of the obstacle can be bypassed. Similarly, a plurality of movement trajectories that can bypass the obstacle can be obtained.
  • this is merely an illustration and not a limitation of the invention.
  • FIG. 7 is a schematic diagram of a method for generating a moving trajectory according to an embodiment of the present invention. As shown in FIG. 7, it is assumed that the mobile platform 70 and the point P on the obstacle 71 are under the action of the manipulation command input by the user.
  • E, F, G are points located on the edge of the obstacle determined based on the point P, where E is located on the left side of the point P, F is located on the upper side of the point P, and G is located on the right side of the point P, Then one or more points located outside the obstacle 71 can be determined based on the points E, F, G, assuming that the point H determined based on the point E, the point I determined based on the point F, the point determined based on the point G K, based on H, I, K, and the current position of the mobile platform 71, the movement trajectories of the three obstacles 71 can be determined.
  • this is merely an illustration and not a limitation of the invention.
  • Step 602 Generate an obstacle avoidance assistance instruction based on the movement trajectory and the manipulation instruction.
  • the method for generating an obstacle avoidance assistance instruction includes the following:
  • the obstacle avoidance assistance instruction that needs to be added to obtain the target movement trajectory is determined, for example, the manipulation instruction input by the user is used to control the mobile platform to the southeast 50 degrees in the current moving direction.
  • the target movement trajectory moves in the direction of 30 degrees southeast of the current moving direction
  • the obstacle avoidance assist command is determined to change the moving platform from the southeast direction of the current moving direction by 50 degrees to 30 degrees southeast of the current moving direction.
  • the direction of movement is of course only illustrative and not a limitation of the invention.
  • FIG. 6 is only an implementable method for generating an obstacle avoidance auxiliary instruction, and is not a unique limitation of the obstacle avoidance auxiliary instruction generating method.
  • the user may directly input the manipulation instruction according to the user. Generate one or more obstacle avoidance aids.
  • the action direction of the obstacle avoidance assisting instruction can be divided into three directions, namely, the left and right sides of the body. on.
  • the obstacle avoidance assistance command may be specifically a speed command directed to the direction.
  • FIG. 8 is a speed of the mobile platform in any one of the left, right, and upper directions provided by the embodiment of the present invention.
  • a set of Vmax, t 0, t 1 , and t 2 corresponds to an obstacle avoidance assist command , and the corresponding direction can be obtained by changing the value of any one or more of Vmax, t 0, t 1 , and t 2 .
  • direction of action of the obstacle avoidance assistance command may not be limited to the left, right, and upper directions of the body, but may be freely set as needed.
  • determining the movement trajectory of the mobile platform that can bypass the obstacle based on The trajectories and the manipulation commands input by the user generate corresponding obstacle avoidance auxiliary commands, so that the mobile platform can bypass the obstacles under the action of the obstacle avoidance auxiliary commands, thereby realizing the auxiliary obstacle avoidance in the user manipulation mode.
  • FIG. 9 is a flowchart of a method for executing step 102 according to an embodiment of the present invention.
  • step 101 when it is detected that the distance between the mobile platform and the obstacle is within a predetermined distance, the user directly inputs according to the user.
  • the manipulation command generates one or more obstacle avoidance assistance commands, wherein the specific generation method of the obstacle avoidance assistance command is similar to the above-mentioned example description of the model 230 drone as an example, and is not described herein again.
  • step 102 can be extended to the following steps:
  • Step 901 Predict a second manipulation instruction that may be input by the user within a preset time length after inputting the first manipulation instruction, based on the first manipulation instruction currently input by the user.
  • the manipulation command input by the user includes a first manipulation instruction currently input by the user and a second manipulation instruction obtained based on the prediction of the first manipulation instruction.
  • the second manipulation instruction may be obtained by inputting the first manipulation instruction into the preset instruction prediction model and outputting the instruction preset model.
  • the instruction prediction model can be obtained by using any method provided by the prior art, and is not specifically limited in this embodiment.
  • Step 902 Control a movement trajectory of the mobile platform based on the second manipulation instruction and the obstacle avoidance assistance instruction.
  • the model may be predicted according to the preset trajectory, and the movement state of the mobile platform corresponding to the first manipulation instruction is used as an initial state of the trajectory prediction model, and the second manipulation instruction and the obstacle avoidance auxiliary instruction are As an input of the trajectory prediction model, the motion trajectory corresponding to each obstacle avoidance assisting instruction is obtained, that is, the above content can be exemplarily expressed as one of predicting a mobile platform based on the first steering command, the second steering command, and the obstacle avoidance assisting instruction. Or multiple moving tracks.
  • the moving state of the mobile platform corresponding to the first manipulation instruction may also be used as an initial state of the trajectory prediction model.
  • the second manipulation instruction and the current obstacle avoidance assistance instruction are used as input of the trajectory prediction model, and the current movement trajectory of the mobile platform is obtained based on the trajectory prediction model prediction.
  • the movement state of the mobile platform corresponding to the first manipulation instruction is used as the initial state of the trajectory prediction model, and the second manipulation instruction is used as the input of the trajectory prediction model, based on The trajectory prediction model predicts the current trajectory of the mobile platform.
  • the mobile platform determines a target moving trajectory from the candidate moving trajectories obtained by the prediction. For example, based on the map information of the current environment stored by the mobile platform, the mobile platform determines the target movement trajectory from one or more candidate movement trajectories of the predicted mobile platform according to at least one of the following selection conditions, and moves according to the target The trajectory controls the movement of the mobile platform:
  • FIG. 10 is a schematic diagram of multiple moving trajectories provided by the embodiment of the present invention, as shown in FIG.
  • a user operable interface is provided such that the user can select a movement trajectory of the mobile platform from among the plurality of displayed movement trajectories. And when the user's selection operation is detected, the movement of the mobile platform is controlled based on the movement trajectory selected by the user.
  • a movement trajectory may be selected from one or more movement trajectories obtained above based on a preset trajectory selection strategy, so that the mobile platform moves along the movement trajectory. For example, when considering the energy factor and the moving distance factor, the moving distance may be selected to be greater than the first preset threshold, and the energy consumption (including the energy consumed by the obstacle avoidance assist command and/or the energy consumed by the mobile platform movement) is minimized. , controlling the mobile platform to move along the movement track.
  • the mobile trajectory whose energy consumption is less than the second preset threshold value and the maximum movable distance may be selected, or the movable distance may be obtained from the one or more moving trajectories obtained by the foregoing prediction, and the movable distance is greater than the first preset threshold value.
  • the movement trajectory whose energy consumption is less than the second preset threshold controls the movement of the mobile platform based on the movement trajectory of the movable distance in the obtained movement trajectory that is greater than or equal to the movable distance of the current movement trajectory of the mobile platform, for example, considering When the energy is optimally configured, a moving track having a movable distance greater than or equal to the current moving track of the mobile platform and having the least energy consumption may be selected for display, and the mobile platform is controlled to move based on the moving track, or, when considering the interaction, The moving trajectory of the movable trajectory in the predicted moving trajectory greater than or equal to the movable distance of the current moving trajectory of the mobile platform may be displayed, and the mobile platform movement is controlled according to the moving trajectory selected by the user.
  • the mobile is controlled.
  • the platform performs braking operations to avoid collisions.
  • the embodiment of FIG. 9 is only an implementation method of the step 102 provided by the embodiment of the present invention, instead of the implementation method of the step 102.
  • the first manipulation instruction and the obstacle avoidance assistance input by the user may be directly input as an input.
  • the exemplary expression can be used to control the movement trajectory of the mobile platform based on the first manipulation instruction and the obstacle avoidance assistance instruction currently input by the user.
  • the embodiment based on the first manipulation instruction currently input by the user, predicting a second manipulation instruction that may be input by the user within a preset time length after inputting the first manipulation instruction, according to the first manipulation instruction, the second manipulation instruction, and the avoidance
  • the obstacle assisting instruction predicts obtaining one or more moving tracks of the mobile platform, and controls the movement of the mobile platform according to one of the one or more moving tracks obtained by the prediction, so that the generated moving track is more reliable and is not input by the user.
  • the other control commands are input within a preset time length after the first manipulation command, so that the currently generated movement trajectory loses the obstacle avoidance function.
  • one or more obstacle avoidance assistance is first obtained based on the manipulation command input by the user.
  • the instruction further predicts the movement trajectory of the mobile platform based on the obtained one or more obstacle avoidance assistance commands and the manipulation command input by the user. Therefore, the embodiment is more flexible in the generation of the obstacle avoidance assistance instruction.
  • FIG. 11 is a structural diagram of a mobile device according to an embodiment of the present invention.
  • the control device 80 includes a memory 81 and a processor 82, wherein the memory 81 stores a program.
  • the processor 82 calls the program code in the memory.
  • the processor 82 performs the following operations: in the user manipulation mode, the obstacle is generated within a range in which the distance between the mobile platform and the obstacle is less than a predetermined distance.
  • the auxiliary command controls the movement trajectory of the mobile platform based on the manipulation command input by the user and the obstacle avoidance assistance command.
  • the obstacle avoidance assistance instruction generated by the processor 82 is configured to increase a velocity component of the mobile platform in a first direction, wherein the first direction is perpendicular to the mobile platform toward the obstacle The direction of the object.
  • the obstacle avoidance assisting instruction generated by the processor 82 is configured to reduce or cancel a speed component of the moving platform facing the obstacle caused by the manipulation command.
  • the processor 82 when the processor 82 generates the obstacle avoidance auxiliary instruction, the following operations may be performed:
  • the user manipulation mode in a range where the distance between the mobile platform and the obstacle is less than a predetermined distance, determining, according to the manipulation instruction input by the user and the information of the obstacle, determining a movement trajectory of the obstacle platform by the mobile platform; The movement trajectory and the manipulation command generate an obstacle avoidance assistance command.
  • processor 82 calls the program code
  • the following operations may also be performed:
  • the current movement trajectory of the mobile platform, and/or the movement trajectory of the mobile platform that can bypass the obstacle is transmitted to the ground station for display.
  • the processor 82 when the processor 82 generates the obstacle avoidance auxiliary instruction, the following operations may be performed:
  • one or more obstacle avoidance assistance commands are generated based on a manipulation command input by the user within a range in which the distance between the mobile platform and the obstacle is less than a predetermined distance.
  • the processor 82 controls the movement trajectory of the mobile platform based on the manipulation instruction input by the user and the obstacle avoidance assistance instruction, the following operations may be performed:
  • the movement trajectory of the mobile platform is controlled based on the first manipulation instruction currently input by the user and the obstacle avoidance assistance instruction.
  • the processor 82 controls the movement trajectory of the mobile platform based on the manipulation instruction input by the user and the obstacle avoidance assistance instruction, the following operations may be performed:
  • the processor 82 controls the movement trajectory of the mobile platform based on the second manipulation instruction and the obstacle avoidance assistance instruction, the following operations may be performed:
  • processor 82 calls the program code
  • the following operations may also be performed:
  • the one or more movement trajectories are sent to a ground station for display.
  • processor 82 calls the program code
  • the following operations may also be performed:
  • the processor 82 controls the movement of the mobile platform based on one of the one or more movement trajectories, the following operations may be performed:
  • the processor 82 controls the movement of the mobile platform based on one of the one or more movement trajectories, the following operations may be performed:
  • the processor 82 controls the movement of the mobile platform based on one of the one or more movement trajectories, the following operations may be performed:
  • processor 82 calls the program code
  • the following operations may also be performed:
  • a movement trajectory of the movable path in which the movable distance is greater than or equal to the movable distance of the current movement trajectory of the mobile platform is transmitted to the ground station for display.
  • the processor 82 may perform the following operations when controlling the movement of the mobile platform based on a movement trajectory of a movable distance that is greater than or equal to a movable distance of the current movement trajectory of the mobile platform in the movement trajectory:
  • the mobile platform movement is controlled based on a movement trajectory in the movement trajectory that is greater than or equal to a current movement trajectory of the mobile platform and consumes the least energy.
  • processor 82 calls the program code
  • the following operations may also be performed:
  • a moving track in which the movable distance in the moving track is greater than or equal to the current moving track of the moving platform and the minimum energy consumption is transmitted to the ground station for display.
  • processor 82 calls the program code, the following operations are also performed:
  • the mobile device provided in this embodiment is capable of performing the auxiliary mobile method provided by the foregoing embodiment, and the execution manner and the beneficial effects are similar, and details are not described herein again.
  • An embodiment of the present invention further provides a mobile platform, where the mobile platform includes:
  • a power system mounted to the fuselage for powering the mobile platform
  • the mobile platform may further include a sensor installed on the air body for detecting map information of an environment in which the mobile platform is located.
  • the senor comprises a visual sensor and/or a distance sensor.
  • the mobile platform further includes:
  • a communication device is mounted to the body for information interaction with a ground station.
  • the mobile platform includes at least one of the following: a drone, a car.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明实施例提供一种辅助移动方法、移动装置及可移动平台,其中该方法包括在用户操控模式中,在与障碍物的距离小于预定距离的范围内,生成避障辅助指令;基于用户输入的操控指令和所述避障辅助指令控制移动平台的移动轨迹。本发明实施例能够提高用户的驾驶体验。

Description

辅助移动方法、移动装置及可移动平台 技术领域
本申请涉及辅助控制技术领域,尤其涉及一种辅助移动方法、移动装置及可移动平台。
背景技术
随着无人机越来越普及,更多的人加入了无人机航拍的行列。但是对于之前从未使用过无人机的用户来说,操作是个问题,稍有不慎容易造成坠毁撞击。因此,对于这些用户来说需要一些辅助驾驶技术来帮助用户进行避障。
现有的辅助驾驶技术一般是在无人机一遇到障碍物时就自动执行刹车操作,即使是在一些不需要执行刹车的场景中,也会执行刹车,用户的驾驶体验较差。
发明内容
本发明实施例提供一种辅助移动方法、移动装置及可移动平台,用以提高用户体验。
本发明实施例的第一方面是提供一种辅助移动方法,包括:
在用户操控模式中,在与障碍物的距离小于预定距离的范围内,生成避障辅助指令;
基于用户输入的操控指令和所述避障辅助指令控制移动平台的移动轨迹。
本发明实施例的第二方面是提供一种移动装置,包括:
存储器和处理器;
所述存储器用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
在用户操控模式中,在移动平台与障碍物的距离小于预定距离的范围内,生成避障辅助指令;
基于用户输入的操控指令和所述避障辅助指令控制移动平台的移动轨迹。
本发明实施例的第三方面是提供一种移动平台,包括:
机身;
动力系统,安装在所述机身,用于为所述移动平台提供动力;
以及上述第二方面提供的移动装置。
本发明实施例,在移动平台处于用户操控模式中时,在移动平台与障碍物的距离小于预定距离的范围内,生成避障辅助指令,并基于该避障辅助指令和用户输入的操作指令来控制移动平台的移动,使得用户可以不需要考虑避障来控制移动平台的移动的同时,保障移动平台的安全飞行,避免了现有技术中预测到移动平台即将撞上障碍物时立即采取刹住的决策的情况,可以延长移动平台的飞行距离。
附图说明
图1是本发明实施例提供的辅助移动方法的流程图;
图2是本发明实施例提供的一种避障辅助指令的生成场景示意图;
图3是本发明实施例提供的另一种避障辅助指令的生成场景示意图;
图4a和图4b是本发明实施例提供的移动平台移动的侧视图;
图5为本发明实施例提供的一种移动平台的俯视示意图;
图6是本发明实施例提供的避障辅助指令的生成方法流程图;
图7是本发明实施例提供的一种移动轨迹的生成方法示意图;
图8是本发明实施例提供的移动平台在左、右、上三个方向中任意一个方向上的速度变化示意图;
图9是本发明实施例提供的步骤102的执行方法流程图;
图10是本发明实施例提供的多个移动轨迹的示意图;
图11是本发明实施例提供的移动装置的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种辅助移动方法,用于在移动平台处于用户操控模式中时,在移动平台与障碍物的距离小于预定距离的范围内,生成避障辅助指令,并基于该避障辅助指令和用户输入的操作指令来控制移动平台的移动,便于用户可以不需要考虑避障来控制移动平台的移动的同时,保障移动平台的安全飞行,避免了现有技术中预测到移动平台即将撞上障碍物时立即采取刹住的决策的情况,可以延长移动平台的飞行距离。
本发明实施例中,生成避障辅助指令的触发方式有多种。
在一些实施例中,移动平台存储有当前环境的地图信息,当移动平台检测到当前位置与障碍物的距离小于预定距离时,或者预测到以当前的速度在预定时间内会撞上障碍物时,或者检测到当前位置与障碍物的距离小于预定距离,且移动平台的当前速度方向朝向障碍物时,或者在开启了移动平台的辅助避障模式之后,移动平台开始执行生成避障辅助指令的操作。
其中,移动平台所存储的当前环境的地图信息可以是从服务器上下载的,或者是基于移动平台上的传感器的探测数据所获取的。其中,该传感器可以包括视觉传感器(例如双目相机、单目相机)和/或距离传感器(例如TOF相机、激光雷达)。例如,在移动平台为无人飞行器的实施例中,该地图信息可以是无人飞行器基于传感器在同一次飞行或者在不同次飞行中的探测数据所获取的,其中,以无人飞行器在相邻的起飞和降落之间的飞行作为一次飞行。
其中,移动平台开启辅助避障模式可以是基于用户输入的指令触发的。例如,用户用于控制移动平台的操作界面上设置有物理按键或者虚拟按键,或者该操作界面上设置有辅助避障模式的选项,当检测到用户对该物理按键或虚拟按键或辅助避障模式的选项的操作时,确定进入移动平台的辅助避障模式。
可选的,移动平台开启辅助避障模式也可以是在检测到当前位置与障碍物的距离小于预定距离时,或者预测到以当前的速度在预定时间内会撞上障碍物时,或者检测到当前位置与障碍物的距离小于预定距离,且移动平台的当前速度方向朝向障碍物时默认自动开启的。在一些实施例中,用户可以选择关闭该默认自动开启辅助避障模式的功能。
在一些实施例中,辅助避障指令在移动平台的移动中一直产生,但仅在某些条件下才基于该辅助避障指令来控制移动平台的移动。
本发明实施例中,生成避障辅助指令的方法有多种。
在一些实施例中,移动平台基于用户当前输入的操控指令确定移动平台的目标方向,生成至少一个绕过该障碍物且能够朝向该目标方向移动的预测轨迹,从该至少一个预测轨迹中确定目标预测轨迹,基于该目标预测轨迹和用户输入的操控指令生成能够使得移动平台能够沿着该目标预测轨迹移动的避障辅助指令,并基于该避障辅助指令和用户输入的操控指令控制移动平台的移动。
其中,可选的,目标方向与用户当前输入的操控指令对应的移动平台的速度方向相同。或者,移动平台基于用户当前输入的操控指令预测未来一定时间窗口内的用户输入的操控指令,并基于该预测的操控指令确定移动平台的目标方向。可选的,目标方向与预测的操控指令对应的移动平台的速度方向相同。可以理解的是,当用户输入的操控指令改变时,避障辅助指令可能会随之一起改变。
需要说明的是,本文中提到的指令对应的移动平台的速度方向,指的是移动平台在静止的情况下基于该指令控制移动时移动平台的移动方向。
在一些实施例中,移动平台根据用户输入的操控指令来预测未来一定时间窗口内用户输入的操控指令,以及基于特定规则根据用户输入的操控指令来生成多种避障辅助指令;移动平台基于当前的运动状态,以及以下 至少一项指令:用户当前输入的操控指令、当前用于控制移动平台移动的辅助避障指令、预测用户在未来一定时间窗口内输入的操控指令、生成的用于未来一定时间窗口内的多种备选避障辅助指令,来分别预测在未来一定时间窗口内移动平台在不同的指令或者指令组合作用下的移动轨迹,该预测的多种移动轨迹作为备选移动轨迹,根据预定条件从该多种备选移动轨迹中确定出一条目标移动轨迹,并根据该目标移动轨迹所对应的避障辅助指令在未来一定时间窗口内控制移动平台的运动。
需要说明的是,在一些场景下,例如基于用户输入的操控指令不会导致移动平台在一定时间内撞上障碍物的场景中,该目标移动轨迹对应的指令中可能没有避障辅助指令,那么在未来一定时间窗口内,仅仅基于用户输入的操控指令控制移动平台的移动,生成的避障辅助指令没有被用于控制移动平台。
其中,移动平台预测用户在未来一定时间窗口内输入的操控指令的方法有多种。例如,移动平台将当前输入的操控指令作为在未来一定时间窗口内输入的预测操控指令。又例如,用户通过遥控器上的摇杆来输入操控指令,用户输入的杆量包括横滚杆量(roll)、俯仰杆量(pitch)、偏航杆量(yaw)、油门杆量(thr)。通过卡尔曼滤波器建立遥控器摇杆的物理模型,该物理模型可以加入摇杆弹簧、阻力等等因素。将用户对遥控器摇杆上在各杆量上的力作为输入输入到该物理模型中,输出对未来遥控器的各杆量预测。
其中,移动平台生成备选移动轨迹的方法有多种,可选的,移动平台根据当前的运动状态预测得到以下至少一项移动轨迹:
1、在未来一定时间窗口内,基于预测的用户在未来一定时间窗口内输入的操控指令的控制,移动平台的移动轨迹;
2、在未来一定时间窗口内,基于当前用于控制移动平台移动的辅助避障指令和预测的用户在未来一定时间窗口内输入的操控指令的控制,移动平台的移动轨迹;
3、在未来一定时间窗口内,基于生成的用于该未来一定时间窗口内的多种备选避障辅助指令的每一种指令和预测的用户在未来一定时间窗口内输入的操控指令的控制,移动平台的移动轨迹。
将得到至少一项移动轨迹作为备选移动轨迹。
在一些实施例中,不管辅助避障指令的触发方式是何种方式,在移动平台与障碍物小于预定距离的范围内,移动平台是有生成避障辅助指令的。而且,在被采用的避障辅助指令中,该避障辅助指令被用于控制移动平台的移动时,该避障辅助指令能够增加移动平台沿第一方向上的速度分量,其中,该第一方向指的是垂直于移动平台朝向障碍物的方向的其中一个方向。
其中,移动平台朝向障碍物的方向可以是移动平台与障碍物的最短连线所在的方向,或者是移动平台上的某一个点与障碍物的某一个点的连线所在的方向,在此不做限制。以图4a和图4b是本发明实施例提供的移动平台移动的侧视图为例,如图4a和图4b所示,移动平台朝向障碍物的方向可以定义为移动平台在水平方向上朝向障碍物移动的方向,或者移动平台向障碍物移动的直线方向,但不局限于图4a和图4b所示的定义方式。
其中,避障辅助指令能够增加移动平台沿第一方向上的速度分量,指的是避障辅助指令所对应的移动平台的速度方向为该第一方向,或者,指的是在移动平台在基于用户输入的操控指令的控制下移动时,当增加该避障辅助指令后,移动平台的速度在第一方向上的分量增加。移动平台在增加避障辅助指令的控制后,将改变原有的移动轨迹(也即移动平台仅仅在用户输入的操控指令控制下的移动轨迹)。以第二种情况为例:
示例的,图5为本发明实施例提供的一种移动平台的俯视示意图,如图5所示,方向x为移动平台朝向障碍物的方向,方向y为避障辅助指令施加的速度方向,方向y与方向x之间呈角度,且方向y上的速度可以分解获得垂直于方向x的速度分量,即图5中方向g上的速度分量,移动平台在方向g上的速度分量的作用下改变当前的移动轨迹。本实施例以方向y上的速度与方向x上的速度之间的角度大于90度为例,且方向y上的速度可以分解为垂直于方向x的速度分量和与方向x方向相反的速度分量,其中,垂直于方向x的速度分量可以改变移动平台的移动轨迹,与方向x方向相反的速度分量可以减小或抵消用户操控指令造成的移动平台朝向障碍物的速度分量(即方向x上的速度分量),从而达到避障或者让移动平台在碰撞前多移动一段时间的目的。当然图5仅为示例说明,而不是对本发明的唯一限定。
下面对本发明实施例中的辅助移动方法进行举例描述。
本发明实施例提供一种辅助移动方法。图1是本发明实施例提供的辅助移动方法的流程图,如图1所示,该方法包括如下步骤:
步骤101、在用户操控模式中,在与障碍物的距离小于预定距离的范围内,生成避障辅助指令。
本实施例涉及的用户操控模式是指用户通过手持遥控器或其他操控设备控制移动平台的移动轨迹和/或移动状态的操控模式。其中,本实施例涉及的移动平台可以是诸如无人机、汽车等具有一定处理能力,且可通过操控设备进行操控的设备。
示例的,图2是本发明实施例提供的一种避障辅助指令的生成场景示意图,图2中包括移动平台10和障碍物20,其中,移动平台10包括处理器11和检测设备12,当检测设备12检测到移动平台10与障碍物20之间的距离小于预定距离时,触发处理器11生成避障辅助指令。其中,移动平台10与障碍物20之间的距离可以被具体为移动平台10与障碍物20发生碰撞前的移动距离h1,或者,移动平台10与其在障碍物20上碰撞点之间的直线距离h2,或者,移动平台10与障碍物20在水平方向上的垂直距离h3。当移动平台10与障碍物20之间的距离小于预定距离时,生成一个或多个避障辅助指令。
进一步的,在生成避障辅助指令时,处理器11的处理方法包括如下两种:
在一种可能的处理方法中,处理器11根据用户输入的操控指令确定是否生成避障辅助指令,比如,当处理器11判断用户输入的操控指令使得移动平台10与障碍物20之间存在碰撞危险时,则生成避障辅助指令,以通过避障辅助指令改变移动平台10的移动轨迹。若判断用户输入的操控指令不会导致碰撞时,则不生成辅助避障指令。
在另一种可能的处理方法中,当检测设备12检测到移动平台10与障碍物20之间的距离小于预定距离时,处理器11直接生成避障辅助指令,而不检测用户输入的操控指令会不会导致碰撞。
当然图2仅为本发明实施例提供的一种避障辅助指令的生成场景,而不是全部场景,实际上,在其他可能的实施例中避障辅助指令也可以在其他场景中生成。比如,图3是本发明实施例提供的另一种避障辅助指令的生成场景示意图,在该场景中,移动平台40在时刻t1、t2……tn,生成避障辅助 指令。其中,t1、t2……tn中相邻时刻间可以是等间隔的也可以是非等间隔的,即对于t1、t2……tn的设定可以是任意的。
步骤102、基于用户输入的操控指令和所述避障辅助指令控制移动平台的移动轨迹。
本实施例中涉及的操控指令包括如下杆量中的至少一种:横滚杆量(roll)、俯仰杆量(pitch)、偏航杆量(yaw)、油门杆量(thr)。
本实施例中基于用户输入的操控指令和所述避障辅助指令控制移动平台的移动轨迹包括:将用户输入的操控指令和避障辅助指令作为预设模型的输入,通过预设模型预测获得移动平台的移动轨迹,进一步的,再从获得的移动轨迹中选择一个移动轨迹,使得移动平台沿该条移动轨迹移动。
下面通过一个示例来说明如何从获得的移动轨迹中选择一个移动轨迹来控制移动平台移动:
示例的,在移动平台当前的移动控制中包括避障辅助指令(以下简称当前避障辅助指令)时,从上述预测获得的一个或多个移动轨迹中筛选获得轨迹方向与当前避障辅助指令作用得到的移动轨迹(以下简称当前移动轨迹)的轨迹方向相同的移动轨迹,比如,当前避障辅助指令作用得到的移动轨迹在机体的上侧,则从预测获得的一个或多个移动轨迹中筛选获得位于机体上侧的移动轨迹,当然这里仅为示例说明而不是唯一限定。进一步的,再对筛选出的移动轨迹做进一步筛选,获得可移动距离比移动平台当前移动轨迹的可移动距离长预置距离(例如2m)以上的移动轨迹作为备选移动轨迹,其中,可移动距离是指移动平台发生碰撞前可的移动的距离。
在移动平台当前的移动控制中不包括避障辅助指令时,直接从上述预测获得的一个或多个移动轨迹中筛选获得可移动距离比移动平台当前移动轨迹的可移动距离长预置距离以上的移动轨迹作为备选移动轨迹。
进一步的,在获得备选移动轨迹后,先从备选移动轨迹中筛选出可移动距离最长的移动轨迹,以及可移动距离比最长可移动距离短1.5m以下的移动轨迹,再从筛选出的移动轨迹中,确定出消耗能量最小的移动轨迹作为最佳候选移动轨迹,当没有符合上述条件的移动轨迹时,则确定最佳候选移动轨迹为空。
在移动平台当前的移动控制中包括避障辅助指令时,若最佳候选移动轨 迹为空,且移动平台在没有避障辅助指令作用时的移动轨迹的可移动距离,比当前在避障辅助指令作用下的移动轨迹的可移动距离长预置距离以上,则控制移动平台沿没有避障辅助指令作用时的移动轨迹移动,否则移动平台仍沿当前的移动轨迹移动。若最佳候选移动轨迹不为空,且移动平台在没有避障辅助指令作用时的移动轨迹的可移动距离比最佳候选移动轨迹可移动距离长,则控制移动平台沿没有避障辅助指令作用时的移动轨迹移动,否则控制移动平台沿最佳候选移动轨迹移动。
在移动平台当前的移动控制中不包括避障辅助指令时,若最佳候选移动轨迹为空,或者,最佳候选移动轨迹不为空,但当前移动轨迹的可移动距离比最佳候选移动轨迹的可移动距离长,则控制移动平台沿当前移动轨迹移动。若最佳候选移动轨迹不为空,且当前移动轨迹的可移动距离比最佳候选移动轨迹的可移动距离短,则控制移动平台沿最佳候选移动轨迹移动。
当然本领域技术人员应该了解的是上述举例仅是为清楚所做的示例说明而不是对本发明的唯一限定。
本实施例,通过在用户操控模式中,当移动平台与障碍物的距离小于预定距离的范围内时,生成避障辅助指令,基于用户输入的操控指令和避障辅助指令控制移动平台的移动轨迹,从而使得在用户操控模式中,也可以实现移动平台的主动避障,使得移动平台能够在用户输入的操控指令和避障辅助指令的共同作用下,绕开障碍物,或者在无法绕开障碍物时,能够多移动一段时间,而不是一遇到障碍物就执行刹车操作,提高了移动平台移动的安全性和用户体验。
下面通过具体的实施例对图1实施例进行进一步的优化和扩展。
图6是本发明实施例提供的避障辅助指令的生成方法流程图,如图6所示,在上述实施例的基础上,避障辅助指令的生成方法可以包括如下步骤:
步骤601、在用户操控模式中,在与障碍物的距离小于预定距离的范围内,基于用户输入的操控指令和所述障碍物的信息,确定移动平台可绕开所述障碍物的移动轨迹。
本实施例涉及的障碍物的信息包括但不局限于障碍物的位置、尺寸和 形状等信息。其中,障碍物的信息可以从预先存储的地图上获得,也可以通过拍摄障碍物的图像,基于预设的图像检测算法,计算获得障碍物的信息,比如,可以先通过边缘检测算法检测获得障碍物图像的边缘,进一步的再基于位于障碍物图像边缘上的点的坐标,确定障碍物图像外的一点的坐标,基于障碍物图像外的一点的坐标以及移动平台当前的位置,即可获得一个可绕开障碍物的移动轨迹。与此相似的可以获得可绕开障碍物的多个移动轨迹。当然这里仅为示例说明而不是对本发明的唯一限定。
示例的,图7是本发明实施例提供的一种移动轨迹的生成方法示意图,如图7所示,假设在用户输入的操控指令的作用下,移动平台70将与障碍物71上的P点发生碰撞,其中,E、F、G为基于点P确定的位于障碍物边缘上的点,其中,E位于点P的左侧,F位于点P的上侧,G位于点P的右侧,那么基于点E、F、G即可确定位于障碍物71外部的一个或多个点,假设,基于点E确定的点位H,基于点F确定的点位I,基于点G确定的点位K,则基于H、I、K,以及移动平台71当前的位置,即可确定三条可绕开障碍物71的移动轨迹。当然这里仅为示例说明而不是对本发明的唯一限定。
步骤602、基于所述移动轨迹和所述操控指令,生成避障辅助指令。
本实施例中,基于所述移动轨迹和所述操控指令,生成避障辅助指令方法包括如下几种:
在一种可能的方法中,在获得可绕开障碍物的一个或多个移动轨迹后,对该些移动轨迹和/或移动平台当前的移动轨迹进行显示,并在显示界面上提供移动轨迹的可选择操作。在用户选择出目标移动轨迹后,根据用户输入的操控指令,确定出获得目标移动轨迹需要增加的避障辅助指令,比如用户输入的操控指令用于控制移动平台向位于当前移动方向的东南50度方向移动,目标移动轨迹是朝当前移动方向的东南30度方向移动,则确定避障辅助指令,以使移动平台由向当前移动方向的东南50度方向移动改变为向当前移动方向的东南30度方向移动,当然这里仅为示例说明而不是对本发明的唯一限定。
在另一种可能的方法中,针对每个可绕开障碍物的移动轨迹,根据用户输入的操控指令确定出获得每个移动轨迹需要增加的避障辅助指令,其 中避障辅助指令的生成方法与前一种可能的方法类似,在这里不再赘述。
当然图6实施例仅是一种生成避障辅助指令的可实现方案,而不是对避障辅助指令生成方法的唯一限定,实际上,在实际场景中,还可以直接根据用户输入的操控指令,生成一个或多个避障辅助指令。
下面以一个实施例为例进行说明,在确定用户输入的操控指令所对应的移动方向后,基于该方向,避障辅助指令的作用方向可以分为三个方向,分别是机体的左、右、上。在各个方向上,避障辅助指令可以被具体为朝向该方向的速度指令,具体的,图8是本发明实施例提供的移动平台在左、右、上三个方向中任意一个方向上的速度变化示意图,如图8所示,在避障辅助指令的作用下,移动平台在图8所示方向上的速度在t 0时间长度内,由零增大到速度Vmax,在t 1时间长度内保持速度Vmax不变,在t 2时间长度内重新由速度Vmax降低到零。一组Vmax、t 0、t 1、和t 2对应一个避障辅助指令,通过改变Vmax、t 0、t 1、和t 2中任意一个或多个参数的取值即可获得该方向上对应的多个避障辅助指令,进而获得该方向上的多个移动轨迹。其他方向上的避障辅助指令的生成方法与此类似,在这里不再赘述。
当然本领域技术人员应该了解的是,避障辅助指令的作用方向可以不局限于机体的左、右、上三个方向,而是可以根据需要自由设定。
本实施例,通过在用户操控模式中,在与障碍物的距离小于预定距离的范围内,基于用户输入的操控指令和障碍物的信息,确定移动平台可绕开障碍物的移动轨迹,在基于该些轨迹和用户输入的操控指令,生成对应的避障辅助指令,使得移动平台能够在避障辅助指令的作用下,能够绕开障碍物,从而实现了,在用户操控模式下的辅助避障,提高了移动平台在移动过程中的安全性和用户体验。
图9是本发明实施例提供的步骤102的执行方法流程图,在图9实施例中,在步骤101中,当检测到移动平台与障碍物的距离在预定距离范围内时,直接根据用户输入的操控指令,生成一个或多个避障辅助指令,其中,避障辅助指令的具体生成方法与上述以型号230的无人机为例所做的示例说明类似,在这里不再赘述,如图9所示,在图1实施例的基础上,步骤102可扩展为如下步骤:
步骤901、基于用户当前输入的第一操控指令,预测用户在输入所述第一操控指令之后的预设时间长度内可能输入的第二操控指令。
本实施例中,用户输入的操控指令包括用户当前输入的第一操控指令和基于第一操控指令预测获得的第二操控指令。其中,第二操控指令可以通过将第一操控指令输入预设的指令预测模型,由指令预设模型输出得到。指令预测模型可以采用现有技术提供的任意一种方法建立获得,本实施例不做具体限定。
步骤902、基于所述第二操控指令和所述避障辅助指令控制移动平台的移动轨迹。
具体的,在获得第二操控指令后,可以根据预设的轨迹预测模型,将第一操控指令对应的移动平台的移动状态作为轨迹预测模型的初始状态,将第二操控指令和避障辅助指令作为轨迹预测模型的输入,预测获得每个避障辅助指令对应的移动轨迹,即上述内容可示例性的表述为基于第一操控指令、第二操控指令和避障辅助指令,预测移动平台的一个或多个移动轨迹。
可选的,若移动平台当前的移动过程中就包括避障辅助指令(以下简称当前避障辅助指令),则还可以将第一操控指令对应的移动平台的移动状态作为轨迹预测模型的初始状态,将第二操控指令和当前避障辅助指令作为轨迹预测模型的输入,基于轨迹预测模型预测获得移动平台当前的移动轨迹。或者在移动平台当前的移动过程中不包括避障辅助指令时,将第一操控指令对应的移动平台的移动状态作为轨迹预测模型的初始状态,将第二操控指令作为轨迹预测模型的输入,基于轨迹预测模型预测获得移动平台当前的移动轨迹。
移动平台从预测获得的备选移动轨迹中确定出一条目标移动轨迹的方法有多种。例如,基于移动平台所存储的当前环境的地图信息,移动平台根据以下挑选条件中的至少一项从预测获得的移动平台的一个或多个备选移动轨迹中确定目标移动轨迹,并根据目标移动轨迹控制移动平台的移动:
在一种可能的实现方式中,可以先对预测获得的一个或多个移动轨迹进行显示,其中,图10是本发明实施例提供的多个移动轨迹的示意图,如图10所示。在这种实现方式中提供用户可操作界面,使得用户可以从显示出的多个移动轨迹中选择出移动平台的移动轨迹。并在检测到用户的选择操作时, 基于用户选择的移动轨迹,控制移动平台移动。
在另一种可能的实现方式中,可以基于预设的轨迹选择策略,从上述获得的一个或多个移动轨迹中选择一条移动轨迹,使得移动平台沿该移动轨迹移动。比如,在考虑能量因素和移动距离因素时,可以选择可移动距离大于第一预设阈值,消耗能量(包括避障辅助指令消耗的能量和/或移动平台移动所消耗的能量)最小的移动轨迹,控制移动平台沿该移动轨迹移动。或者还可以选择消耗能量小于第二预设阈值,可移动距离最大的移动轨迹,又或者还可以先从上述预测获得的一个或多个移动轨迹中,获取可移动距离大于第一预设阈值和/或消耗能量小于第二预设阈值的移动轨迹,再基于获取到的移动轨迹中可移动距离大于或等于移动平台当前移动轨迹的可移动距离的移动轨迹,控制移动平台移动,比如,在考虑能量的最优化配置时,可以选择可移动距离大于或等于移动平台当前移动轨迹,且消耗能量最小的移动轨迹进行显示,并基于该移动轨迹控制移动平台移动,或者,在考虑互动性时,还可以对预测获得的移动轨迹中可移动距离大于或等于移动平台当前移动轨迹的可移动距离的移动轨迹进行显示,并根据用户选择的移动轨迹控制移动平台移动。
进一步的,若上述获取到的可移动距离大于第一预设阈值和/或消耗能量小于第二预设阈值的移动轨迹的可移动距离均小于移动平台当前移动轨迹的可移动距离,则控制移动平台执行刹车操作,以免发生碰撞。
当然图9实施例仅为本发明实施例提供的一种步骤102的实现方法,而不是步骤102的全部实现方法,实际上,也可以直接将用户输入的第一操控指令和避障辅助作为输入,根据预设模型生成移动平台的一个或多个移动轨迹,再根据与图9实施例类似的方法从生成的一个或多个移动轨迹中选择一个移动轨迹,控制移动平台沿该条移动轨迹移动,即可示例性的表述为基于用户当前输入的第一操控指令和避障辅助指令控制移动平台的移动轨迹。
本实施例通过,基于用户当前输入的第一操控指令,预测用户在输入第一操控指令之后的预设时间长度内可能输入的第二操控指令,根据第一操控指令、第二操控指令和避障辅助指令,预测获得移动平台的一条或多条移动轨迹,根据预测获得的一条或多条移动轨迹中的一个控制移动平台 移动,使得生成的移动轨迹可靠性更高,不会因为用户在输入第一操控指令之后的预设时间长度内输入其他操控指令,而使得当前生成的移动轨迹失去避障作用,另外,由于本实施例中先基于用户输入的操控指令获得一个或多个避障辅助指令,再基于获得的一个或多个避障辅助指令,以及用户输入的操控指令预测获得移动平台的移动轨迹,因此,本实施例在避障辅助指令的生成上更加灵活。
本发明实施例提供一种移动装置,图11是本发明实施例提供的移动装置的结构图,如图11所示,控制设备80包括存储器81和处理器82,其中,存储器81中存储有程序代码,处理器82调用存储器中的程序代码,当程序代码被执行时,处理器82执行如下操作:在用户操控模式中,在移动平台与障碍物的距离小于预定距离的范围内,生成避障辅助指令,基于用户输入的操控指令和所述避障辅助指令控制移动平台的移动轨迹。
可选地,所述处理器82生成的所述避障辅助指令用于增加所述移动平台沿第一方向上的速度分量,其中,所述第一方向垂直于所述移动平台朝向所述障碍物的方向。
可选地,所述处理器82生成的所述避障辅助指令用于减小或抵消所述操控指令造成的所述移动平台朝向所述障碍物的速度分量。
可选地,所述处理器82在生成避障辅助指令时,可以执行如下操作:
在用户操控模式中,在移动平台与障碍物的距离小于预定距离的范围内,基于用户输入的操控指令和所述障碍物的信息,确定移动平台可绕开所述障碍物的移动轨迹;基于所述移动轨迹和所述操控指令,生成避障辅助指令。
可选地,所述处理器82调用所述程序代码时,还可以执行如下操作:
将所述移动平台当前的移动轨迹,和/或所述移动平台可绕开所述障碍物的移动轨迹发送到地面站进行显示。
可选地,所述处理器82在生成避障辅助指令时,可以执行如下操作:
在用户操控模式中,在移动平台与障碍物的距离小于预定距离的范围内,基于用户输入的操控指令,生成一个或多个避障辅助指令。
可选地,所述处理器82在基于用户输入的操控指令和所述避障辅助 指令控制移动平台的移动轨迹时,可以执行如下操作:
基于用户当前输入的第一操控指令和所述避障辅助指令控制移动平台的移动轨迹。
可选地,所述处理器82在基于用户输入的操控指令和所述避障辅助指令控制移动平台的移动轨迹时,可以执行如下操作:
基于用户当前输入的第一操控指令,预测用户在输入所述第一操控指令之后的预设时间长度内可能输入的第二操控指令;基于所述第二操控指令和所述避障辅助指令控制移动平台的移动轨迹。
可选地,所述处理器82在基于所述第二操控指令和所述避障辅助指令控制移动平台的移动轨迹时,可以执行如下操作:
基于所述第一操控指令、所述第二操控指令和所述避障辅助指令,预测所述移动平台的一个或多个移动轨迹;基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动。
可选地,所述处理器82调用所述程序代码时,还可以执行如下操作:
将所述一个或多个移动轨迹发送至地面站进行显示。
可选地,所述处理器82调用所述程序代码时,还可以执行如下操作:
获取用户对所述一个或多个移动轨迹的选择操作;基于用户选择的移动轨迹,控制所述移动平台移动。
可选地,所述处理器82在基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动时,可以执行如下操作:
基于所述一个或多个移动轨迹中可移动距离大于第一预设阈值,消耗能量最小的移动轨迹,控制所述移动平台移动。
可选地,所述处理器82在基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动时,可以执行如下操作:
基于所述一个或多个移动轨迹中消耗能量小于第二预设阈值,可移动距离最大的移动轨迹,控制所述移动平台移动。
可选地,所述处理器82在基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动时,可以执行如下操作:
从所述一个或多个移动轨迹中,获取可移动距离大于第一预设阈值和/或消耗能量小于第二预设阈值的移动轨迹;基于所述移动轨迹中可移动 距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹,控制所述移动平台移动。
可选地,所述处理器82调用所述程序代码时,还可以执行如下操作:
将所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹发送到地面站进行显示。
可选地,所述处理器82在基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹,控制所述移动平台移动时,可以执行如下操作:
基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹,且消耗能量最小的移动轨迹,控制所述移动平台移动。
可选地,所述处理器82调用所述程序代码时,还可以执行如下操作:
将所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹,且消耗能量最小的移动轨迹发送至地面站进行显示。
可选地,所述处理器82调用所述程序代码时,还执行如下操作:
在所述移动轨迹的可移动距离均小于所述移动平台当前移动轨迹的可移动距离时,控制所述移动平台执行刹车操作。
本实施例提供的移动装置能够执行前述实施例提供的辅助移动方法,其执行方式和有益效果类似,在这里不再赘述。
本发明实施例还提供一种移动平台,该移动平台包括:
机身;
动力系统,安装在所述机身,用于为所述移动平台提供动力;
以及上述实施例提供的移动装置。
可选地,该移动平台还可以包括传感器,安装在所述机身,用于探测获得所述移动平台所处环境的地图信息。
可选地,所述传感器包括视觉传感器和/或距离传感器。
可选地,所述移动平台还包括:
通信设备,安装在所述机身,用于与地面站进行信息交互。
可选地,所述移动平台至少包括如下的一种:无人机、汽车。
本实施例提供的移动平台其执行方式和有益效果与前述实施例提供 的移动装置类似,在这里不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的 普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (41)

  1. 一种辅助移动方法,其特征在于,包括:
    在用户操控模式中,在与障碍物的距离小于预定距离的范围内,生成避障辅助指令;
    基于用户输入的操控指令和所述避障辅助指令控制移动平台的移动轨迹。
  2. 根据权利要求1所述的辅助移动方法,其特征在于,
    所述避障辅助指令用于增加所述移动平台沿第一方向上的速度分量,其中,所述第一方向垂直于所述移动平台朝向所述障碍物的方向。
  3. 根据权利要求2所述的辅助移动方法,其特征在于,
    所述避障辅助指令用于减小或抵消所述操控指令造成的所述移动平台朝向所述障碍物的速度分量。
  4. 根据权利要求2或3所述的方法,其特征在于,所述在用户操控模式中,在与障碍物的距离小于预定距离的范围内,生成避障辅助指令,包括:
    在用户操控模式中,在与障碍物的距离小于预定距离的范围内,基于用户输入的操控指令和所述障碍物的信息,确定移动平台可绕开所述障碍物的移动轨迹;
    基于所述移动轨迹和所述操控指令,生成避障辅助指令。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    显示所述移动平台当前的移动轨迹,和/或所述移动平台可绕开所述障碍物的移动轨迹。
  6. 根据权利要求2或3所述的方法,其特征在于,所述在用户操控模式中,在与障碍物的距离小于预定距离的范围内,生成避障辅助指令,包括:
    在用户操控模式中,在与障碍物的距离小于预定距离的范围内,基于用户输入的操控指令,生成一个或多个避障辅助指令。
  7. 根据权利要求1所述的方法,其特征在于,所述基于用户输入的操控指令和所述避障辅助指令控制移动平台的移动轨迹,包括:
    基于用户当前输入的第一操控指令和所述避障辅助指令控制移动平 台的移动轨迹。
  8. 根据权利要求1所述的方法,其特征在于,所述基于用户输入的操控指令和所述避障辅助指令控制移动平台的移动轨迹,包括:
    基于用户当前输入的第一操控指令,预测用户在输入所述第一操控指令之后的预设时间长度内可能输入的第二操控指令;
    基于所述第二操控指令和所述避障辅助指令控制移动平台的移动轨迹。
  9. 根据权利要求8所述的方法,其特征在于,所述基于所述第二操控指令和所述避障辅助指令控制移动平台的移动轨迹,包括:
    基于所述第一操控指令、所述第二操控指令和所述避障辅助指令,预测所述移动平台的一个或多个移动轨迹;
    基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    显示所述一个或多个移动轨迹。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    获取用户对所述一个或多个移动轨迹的选择操作;
    基于用户选择的移动轨迹,控制所述移动平台移动。
  12. 根据权利要求9所述的方法,其特征在于,所述基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动,包括:
    基于所述一个或多个移动轨迹中可移动距离大于第一预设阈值,消耗能量最小的移动轨迹,控制所述移动平台移动。
  13. 根据权利要求9所述的方法,其特征在于,所述基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动,包括:
    基于所述一个或多个移动轨迹中消耗能量小于第二预设阈值,可移动距离最大的移动轨迹,控制所述移动平台移动。
  14. 根据权利要求9所述的方法,其特征在于,所述基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动,包括:
    从所述一个或多个移动轨迹中,获取可移动距离大于第一预设阈值和/或消耗能量小于第二预设阈值的移动轨迹;
    基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动 轨迹的可移动距离的移动轨迹,控制所述移动平台移动。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    显示所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹。
  16. 根据权利要求14所述的方法,其特征在于,所述基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹,控制所述移动平台移动,包括:
    基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹,且消耗能量最小的移动轨迹,控制所述移动平台移动。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    显示所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹,且消耗能量最小的移动轨迹。
  18. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    若所述移动轨迹的可移动距离均小于所述移动平台当前移动轨迹的可移动距离,控制所述移动平台执行刹车操作。
  19. 一种移动装置,其特征在于,包括存储器和处理器;
    所述存储器用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    在用户操控模式中,在移动平台与障碍物的距离小于预定距离的范围内,生成避障辅助指令;
    基于用户输入的操控指令和所述避障辅助指令控制移动平台的移动轨迹。
  20. 根权利要求19所述的移动装置,其特征在于,所述处理器生成的所述避障辅助指令用于增加所述移动平台沿第一方向上的速度分量,其中,所述第一方向垂直于所述移动平台朝向所述障碍物的方向。
  21. 根据权利要求20所述的移动装置,其特征在于,所述处理器生成的所述避障辅助指令用于减小或抵消所述操控指令造成的所述移动平台朝向所述障碍物的速度分量。
  22. 根据权利要求20或21所述的移动装置,其特征在于,所述处理 器在生成避障辅助指令时,执行如下操作:
    在用户操控模式中,在移动平台与障碍物的距离小于预定距离的范围内,基于用户输入的操控指令和所述障碍物的信息,确定移动平台可绕开所述障碍物的移动轨迹;
    基于所述移动轨迹和所述操控指令,生成避障辅助指令。
  23. 根据权利要求22所述的移动装置,其特征在于,所述处理器调用所述程序代码时,还执行如下操作:
    将所述移动平台当前的移动轨迹,和/或所述移动平台可绕开所述障碍物的移动轨迹发送到地面站进行显示。
  24. 根据权利要求20或21所述的移动装置,其特征在于,所述处理器在生成避障辅助指令时,执行如下操作:
    在用户操控模式中,在移动平台与障碍物的距离小于预定距离的范围内,基于用户输入的操控指令,生成一个或多个避障辅助指令。
  25. 根据权利要求19所述的移动装置,其特征在于,所述处理器在基于用户输入的操控指令和所述避障辅助指令控制移动平台的移动轨迹时,执行如下操作:
    基于用户当前输入的第一操控指令和所述避障辅助指令控制移动平台的移动轨迹。
  26. 根据权利要求19所述的移动装置,其特征在于,所述处理器在基于用户输入的操控指令和所述避障辅助指令控制移动平台的移动轨迹时,执行如下操作:
    基于用户当前输入的第一操控指令,预测用户在输入所述第一操控指令之后的预设时间长度内可能输入的第二操控指令;
    基于所述第二操控指令和所述避障辅助指令控制移动平台的移动轨迹。
  27. 根据权利要求26所述的移动装置,其特征在于,所述处理器在基于所述第二操控指令和所述避障辅助指令控制移动平台的移动轨迹时,执行如下操作:
    基于所述第一操控指令、所述第二操控指令和所述避障辅助指令,预测所述移动平台的一个或多个移动轨迹;
    基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动。
  28. 根据权利要求27所述的移动装置,其特征在于,所述处理器调用所述程序代码时,还执行如下操作:
    将所述一个或多个移动轨迹发送至地面站进行显示。
  29. 根据权利要求28所述的移动装置,其特征在于,所述处理器调用所述程序代码时,还执行如下操作:
    获取用户对所述一个或多个移动轨迹的选择操作;
    基于用户选择的移动轨迹,控制所述移动平台移动。
  30. 根据权利要求27所述的移动装置,其特征在于,所述处理器在基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动时,执行如下操作:
    基于所述一个或多个移动轨迹中可移动距离大于第一预设阈值,消耗能量最小的移动轨迹,控制所述移动平台移动。
  31. 根据权利要求27所述的移动装置,其特征在于,所述处理器在基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动时,执行如下操作:
    基于所述一个或多个移动轨迹中消耗能量小于第二预设阈值,可移动距离最大的移动轨迹,控制所述移动平台移动。
  32. 根据权利要求27所述的移动装置,其特征在于,所述处理器在基于所述一个或多个移动轨迹中的一个,控制所述移动平台移动时,执行如下操作:
    从所述一个或多个移动轨迹中,获取可移动距离大于第一预设阈值和/或消耗能量小于第二预设阈值的移动轨迹;
    基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹,控制所述移动平台移动。
  33. 根据权利要求32所述的移动装置,其特征在于,所述处理器调用所述程序代码时,还执行如下操作:
    将所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹发送到地面站进行显示。
  34. 根据权利要求32所述的移动装置,其特征在于,所述处理器在 基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹的可移动距离的移动轨迹,控制所述移动平台移动时,执行如下操作:
    基于所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹,且消耗能量最小的移动轨迹,控制所述移动平台移动。
  35. 根据权利要求34所述的移动装置,其特征在于,所述处理器调用所述程序代码时,还执行如下操作:
    将所述移动轨迹中可移动距离大于或等于所述移动平台当前移动轨迹,且消耗能量最小的移动轨迹发送至地面站进行显示。
  36. 根据权利要求32所述的移动装置,其特征在于,所述处理器调用所述程序代码时,还执行如下操作:
    在所述移动轨迹的可移动距离均小于所述移动平台当前移动轨迹的可移动距离时,控制所述移动平台执行刹车操作。
  37. 一种移动平台,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于为所述移动平台提供动力;
    以及如权利要求19-36中任一项所述的移动装置。
  38. 根据权利要求37所述的移动平台,其特征在于,所述移动平台还包括:
    传感器,安装在所述机身,用于探测获得所述移动平台所处环境的地图信息。
  39. 根据权利要求38所述的移动平台,其特征在于,所述传感器包括视觉传感器和/或距离传感器。
  40. 根据权利要求37所述的移动平台,其特征在于,所述移动平台还包括:
    通信设备,安装在所述机身,用于与地面站进行信息交互。
  41. 根据权利要求37所述的移动平台,其特征在于,所述移动平台至少包括如下的一种:无人机、汽车。
PCT/CN2018/073883 2018-01-23 2018-01-23 辅助移动方法、移动装置及可移动平台 WO2019144298A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/260,922 US20210311505A1 (en) 2018-01-23 2018-01-23 Assisted movement method and device, and movable platform
PCT/CN2018/073883 WO2019144298A1 (zh) 2018-01-23 2018-01-23 辅助移动方法、移动装置及可移动平台
CN201880032203.5A CN110622084A (zh) 2018-01-23 2018-01-23 辅助移动方法、移动装置及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/073883 WO2019144298A1 (zh) 2018-01-23 2018-01-23 辅助移动方法、移动装置及可移动平台

Publications (1)

Publication Number Publication Date
WO2019144298A1 true WO2019144298A1 (zh) 2019-08-01

Family

ID=67395240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073883 WO2019144298A1 (zh) 2018-01-23 2018-01-23 辅助移动方法、移动装置及可移动平台

Country Status (3)

Country Link
US (1) US20210311505A1 (zh)
CN (1) CN110622084A (zh)
WO (1) WO2019144298A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111862565A (zh) * 2020-06-29 2020-10-30 广州小鹏车联网科技有限公司 一种车辆远程控制方法、系统及车辆
CN112639656A (zh) * 2020-04-24 2021-04-09 深圳市大疆创新科技有限公司 移动控制方法、移动装置及移动平台

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114596491A (zh) * 2022-03-03 2022-06-07 北京新科汇智科技发展有限公司 一种无人机的诱导方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707724A (zh) * 2012-06-05 2012-10-03 清华大学 一种无人机的视觉定位与避障方法及系统
CN103135550A (zh) * 2013-01-31 2013-06-05 南京航空航天大学 用于电力巡线的无人机多重避障控制方法
CN103386975A (zh) * 2013-08-02 2013-11-13 重庆市科学技术研究院 一种基于机器视觉的车辆避障方法及系统
CN104808682A (zh) * 2015-03-10 2015-07-29 成都市优艾维机器人科技有限公司 小型旋翼无人机自主避障飞行控制系统及控制方法
CN104977938A (zh) * 2015-07-06 2015-10-14 杨珊珊 一种定维度飞行的多旋翼飞行器及飞行控制方法
CN105159297A (zh) * 2015-09-11 2015-12-16 南方电网科学研究院有限责任公司 输电线路无人机巡检避障系统与方法
CN106339691A (zh) * 2016-09-07 2017-01-18 四川天辰智创科技有限公司 对物体进行标注的方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4192680B2 (ja) * 2003-05-28 2008-12-10 アイシン精機株式会社 移動体周辺監視装置
US7228232B2 (en) * 2005-01-24 2007-06-05 International Business Machines Corporation Navigating a UAV with obstacle avoidance algorithms
CN102591358B (zh) * 2012-03-12 2015-07-08 北京航空航天大学 一种多无人机的动态编队控制方法
US9031779B2 (en) * 2012-05-30 2015-05-12 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for hazard detection and sharing
US10055694B2 (en) * 2012-08-07 2018-08-21 Hitachi, Ltd. Use-assisting tool for autonomous mobile device, operation management center, operation system, and autonomous mobile device
DE102012214829A1 (de) * 2012-08-21 2014-02-27 Robert Bosch Gmbh Verfahren und Vorrichtung zum Darstellen einer Ausweichtrajektorie zur Kollisionsvermeidung für ein Fahrzeug
KR101362744B1 (ko) * 2012-10-23 2014-02-14 현대오트론 주식회사 주차 조향 보조 방법 및 이를 실행하는 장치
WO2016008026A1 (en) * 2014-07-16 2016-01-21 Her Majesty The Queen Of Canada, As Represented By The Minister Of National Defence Obstacle avoidance system for stabilized aerial vehicle and method of controlling same
CA3237917A1 (en) * 2014-08-22 2016-02-25 Climate Llc Methods for agronomic and agricultural monitoring using unmanned aerial systems
WO2016033796A1 (en) * 2014-09-05 2016-03-10 SZ DJI Technology Co., Ltd. Context-based flight mode selection
CN113628500A (zh) * 2014-09-30 2021-11-09 深圳市大疆创新科技有限公司 用于支持模拟移动的系统和方法
CN104750947A (zh) * 2015-04-21 2015-07-01 中国航空工业集团公司沈阳飞机设计研究所 一种无人机航线库设计方法及该航线库的验证方法
US10019907B2 (en) * 2015-09-11 2018-07-10 Qualcomm Incorporated Unmanned aerial vehicle obstacle detection and avoidance
CN106610664A (zh) * 2015-10-22 2017-05-03 沈阳新松机器人自动化股份有限公司 运动避障装置及控制方法
US20170140657A1 (en) * 2015-11-09 2017-05-18 Black Swift Technologies LLC Augmented reality to display flight data and locate and control an aerial vehicle in real time
CN106289290A (zh) * 2016-07-21 2017-01-04 触景无限科技(北京)有限公司 一种路径导航系统及方法
CN106131790B (zh) * 2016-08-18 2021-01-15 联想(北京)有限公司 移动装置的控制方法和移动装置
CN106740436A (zh) * 2016-12-28 2017-05-31 深圳市赛格导航科技股份有限公司 一种汽车辅助驾驶方法、装置及汽车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707724A (zh) * 2012-06-05 2012-10-03 清华大学 一种无人机的视觉定位与避障方法及系统
CN103135550A (zh) * 2013-01-31 2013-06-05 南京航空航天大学 用于电力巡线的无人机多重避障控制方法
CN103386975A (zh) * 2013-08-02 2013-11-13 重庆市科学技术研究院 一种基于机器视觉的车辆避障方法及系统
CN104808682A (zh) * 2015-03-10 2015-07-29 成都市优艾维机器人科技有限公司 小型旋翼无人机自主避障飞行控制系统及控制方法
CN104977938A (zh) * 2015-07-06 2015-10-14 杨珊珊 一种定维度飞行的多旋翼飞行器及飞行控制方法
CN105159297A (zh) * 2015-09-11 2015-12-16 南方电网科学研究院有限责任公司 输电线路无人机巡检避障系统与方法
CN106339691A (zh) * 2016-09-07 2017-01-18 四川天辰智创科技有限公司 对物体进行标注的方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112639656A (zh) * 2020-04-24 2021-04-09 深圳市大疆创新科技有限公司 移动控制方法、移动装置及移动平台
WO2021212462A1 (zh) * 2020-04-24 2021-10-28 深圳市大疆创新科技有限公司 移动控制方法、移动装置及移动平台
CN111862565A (zh) * 2020-06-29 2020-10-30 广州小鹏车联网科技有限公司 一种车辆远程控制方法、系统及车辆

Also Published As

Publication number Publication date
CN110622084A (zh) 2019-12-27
US20210311505A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2020019110A1 (zh) 移动平台的辅助移动方法、移动装置及移动平台
EP3646128B1 (en) Human supervision of an automated driving system
JP2024088679A (ja) 航空機のスマート着陸
US11269328B2 (en) Method for entering mobile robot into moving walkway and mobile robot thereof
WO2021212462A1 (zh) 移动控制方法、移动装置及移动平台
WO2019144298A1 (zh) 辅助移动方法、移动装置及可移动平台
JP5768273B2 (ja) 歩行者の軌跡を予測して自己の回避行動を決定するロボット
US20140018994A1 (en) Drive-Control Systems for Vehicles Such as Personal-Transportation Vehicles
US11768490B2 (en) System and methods for controlling state transitions using a vehicle controller
KR20180074404A (ko) 공항용 로봇 및 그의 동작 방법
WO2020129311A1 (ja) 案内ロボット制御装置、及び、それを用いた案内システム、並びに、案内ロボット制御方法
US20210137438A1 (en) Control system for mobile robots
WO2020129312A1 (ja) 案内ロボット制御装置、及び、それを用いた案内システム、並びに、案内ロボット制御方法
US20220413503A1 (en) Information processing device, information processing method, and information processing program
CN112447059A (zh) 用于使用遥操作命令来管理运输装置车队的系统和方法
WO2020129310A1 (ja) 案内ロボット制御装置、及び、それを用いた案内システム、並びに、案内ロボット制御方法
Lin et al. Design and experimental study of a shared-controlled omnidirectional mobile platform
WO2022061886A1 (zh) 无人机的控制方法、装置、无人机、控制终端及系统
US20220297821A1 (en) Control device, control method, unmanned aircraft, information processing device, information processing method, and program
WO2021200254A1 (ja) 移動体の制御方法、移動体の制御装置、移動体、およびプログラム
Wopereis et al. Bilateral human-robot control for semi-autonomous UAV navigation
CN113692560A (zh) 可移动平台的控制方法、装置、可移动平台及存储介质
Zhao et al. Autonomous Navigation of the UAV through Deep Reinforcement Learning with Sensor Perception Enhancement
US20220096290A1 (en) System and method to control multiple inputs provided to a powered wheelchair
JP6599817B2 (ja) 演算装置、演算方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902450

Country of ref document: EP

Kind code of ref document: A1