WO2022061886A1 - 无人机的控制方法、装置、无人机、控制终端及系统 - Google Patents

无人机的控制方法、装置、无人机、控制终端及系统 Download PDF

Info

Publication number
WO2022061886A1
WO2022061886A1 PCT/CN2020/118400 CN2020118400W WO2022061886A1 WO 2022061886 A1 WO2022061886 A1 WO 2022061886A1 CN 2020118400 W CN2020118400 W CN 2020118400W WO 2022061886 A1 WO2022061886 A1 WO 2022061886A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
information
uav
control terminal
drone
Prior art date
Application number
PCT/CN2020/118400
Other languages
English (en)
French (fr)
Inventor
艾强
马亚南
刘兴成
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/118400 priority Critical patent/WO2022061886A1/zh
Priority to CN202080008006.7A priority patent/CN113272754A/zh
Publication of WO2022061886A1 publication Critical patent/WO2022061886A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones

Definitions

  • Embodiments of the present invention relate to the technical field of unmanned aerial vehicles, and in particular, to a control method, device, unmanned aerial vehicle, control terminal and system of an unmanned aerial vehicle.
  • drones are becoming more and more popular among the general public, so that drones, a device that can only be flown by professionals, have entered thousands of households, and many users who use drones are lacking. Professional training often occurs in various situations such as bombing and collision, which not only endangers self-interest, but also poses a hidden danger to social security.
  • the common bombing situation is caused by human operation.
  • the pilot who controls the UAV is in a panic, and it is easy to distinguish the UAV. Front and rear.
  • the pilot hurriedly controls the drone to fly, it is easy to increase the probability of unexpected situations such as bombing and collision of the drone.
  • the embodiments of the present invention provide a control method, system, device and system for an unmanned aerial vehicle, so as to solve the problem in the prior art that various bombings are prone to occur because the front, rear, left and right directions of the unmanned aerial vehicle cannot be accurately identified in the prior art. , collisions, etc., which not only endangers their own interests, but also poses hidden dangers to social security.
  • a first aspect of the embodiments of the present invention provides a control method for an unmanned aerial vehicle, including:
  • the direction operation is generated;
  • the UAV is controlled to fly along the target direction.
  • a second aspect of the embodiments of the present invention provides a control device for an unmanned aerial vehicle, including:
  • a processor for running a computer program stored in the memory to achieve:
  • the direction operation is generated;
  • the UAV is controlled to fly along the target direction.
  • a third aspect of the embodiments of the present invention provides an unmanned aerial vehicle, comprising: the control device of the unmanned aerial vehicle described in the second aspect.
  • a control terminal including: the control device of the unmanned aerial vehicle described in the second aspect above.
  • a fifth aspect of the embodiments of the present invention provides a control system for an unmanned aerial vehicle, including: the unmanned aerial vehicle of the third aspect and a control terminal, where the control terminal is used to control the unmanned aerial vehicle.
  • a sixth aspect of the embodiments of the present invention provides a control system for an unmanned aerial vehicle, comprising: the control terminal of the fourth aspect and an unmanned aerial vehicle, where the control terminal is used to control the unmanned aerial vehicle.
  • a computer-readable storage medium is provided, where the storage medium is a computer-readable storage medium, and program instructions are stored in the computer-readable storage medium, and the program instructions are used to implement the above The control method of the UAV described in the first aspect.
  • the attitude information of the drone and the relative direction information of the drone relative to the control terminal are determined by acquiring the first level control instruction, and then the attitude information, the relative direction information and the first level are determined according to the attitude information, the relative direction information and the first level.
  • the control command is used to control the UAV to fly in the operating direction of the rudder relative to the control terminal, thereby effectively realizing the accurate control operation of the UAV based on the relative direction information of the UAV relative to the control terminal.
  • the drone When the drone is in a narrow area and encounters obstacles, it can greatly facilitate the user to control the flight operation of the drone, which not only effectively reduces the probability of bombing the drone, but also greatly reduces the harm to social security and further improves the the practicality of this method.
  • Fig. 1 is the control schematic diagram one of a kind of unmanned aerial vehicle provided in the prior art
  • Fig. 2 is the control schematic diagram two of a kind of unmanned aerial vehicle provided in the prior art
  • FIG. 3 is a schematic flowchart of a method for controlling an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of determining relative direction information of the UAV with respect to a control terminal provided by an embodiment of the present invention
  • FIG. 5 is a schematic diagram of determining a target instruction corresponding to the control instruction according to the attitude information and relative direction information according to an embodiment of the present invention
  • 5a is a schematic diagram of a scene of a method for controlling an unmanned aerial vehicle provided by an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of another method for controlling an unmanned aerial vehicle provided by an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of acquiring target attitude information of the control terminal according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of acquiring target attitude information of the control terminal according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of determining the target posture information in the plurality of preset postures based on the plurality of communication signals provided by an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of another method for controlling an unmanned aerial vehicle provided by an embodiment of the present invention.
  • 11 is a schematic flowchart of determining the relative direction information of the UAV with respect to the control terminal provided by an embodiment of the present invention
  • FIG. 12 is a schematic diagram of establishing a UAV coordinate system and establishing a terminal coordinate system provided by an embodiment of the present invention
  • FIG. 13 is a schematic flowchart of determining relative direction information of the UAV with respect to the control terminal based on the UAV coordinate system and the terminal coordinate system according to an embodiment of the present invention
  • FIG. 14 is a schematic flowchart of determining a target instruction corresponding to the control instruction according to the attitude information and relative direction information according to an embodiment of the present invention
  • 15 is a schematic diagram of a control method of an unmanned aerial vehicle provided by an application embodiment of the present invention.
  • 16 is a schematic diagram of relative direction information provided by an application embodiment of the present invention.
  • 17 is a schematic structural diagram of a control device for an unmanned aerial vehicle provided by an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a control terminal according to an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of a control system for an unmanned aerial vehicle according to an embodiment of the present invention.
  • connection herein includes any direct and indirect means of connection. Therefore, if it is described herein that a first device is connected to a second device, it means that the first device can be directly connected to the second device or indirectly connected to the second device through another device.
  • the UAV 100 when the UAV 100 is normally controlled, according to the yaw direction of the nose of the UAV 100, if the remote controller 101 moves to the left, right, front, When the control is performed later, the direction of the UAV 100 can be used to perform left, right, front, and rear movement operations according to the yaw direction of the nose of the UAV 100 .
  • the user When the drone 100 is near, the user can choose to directly view the position of the nose with the naked eye or calibrate the position of the drone through the scene of the camera, so as to control the drone 100 to move.
  • the yaw direction of the nose of the drone cannot be seen by the naked eye (but the drone 100 can still be seen, but the yaw direction of the nose of the drone 100 cannot be recognized. ), it is impossible to control the UAV 100 by determining the yaw direction of the nose of the UAV 100 with the naked eye.
  • the drone 100 can only be operated and controlled by relying on the scene of the camera and the display of the application app. If the drone 100 is in the middle of two obstacles at this time, in order to safely escape from the above-mentioned dangerous environment, the control of the operator is necessary. Operation requirements are relatively high. When ordinary users operate in this situation, there is a high probability of collision or explosion.
  • the pilot who controls the UAV 100 is in a panic, and it is easy to fail to distinguish the front, rear, left, and right of the UAV 100.
  • the pilot operates hurriedly to control the drone 100 to fly, it is easy to increase the probability of the drone 100 being bombed or collided.
  • the present embodiment provides a control method, device, drone, and control system for the drone. terminal and system. Specifically, the method obtains a first horizontal control command, the first horizontal control command is used to instruct the drone to move horizontally with the yaw direction of the nose as a reference direction, and the first horizontal control command is used by the user to control the rudder of the terminal.
  • the UAV Generate along the target direction; determine the attitude information of the UAV and the relative direction information of the UAV relative to the control terminal; control the UAV to fly along the target direction according to the attitude information, the relative direction information and the first horizontal control command, Specifically, the UAV can be controlled to fly in the operating direction of the rudder relative to the control terminal, thereby effectively realizing the accurate control operation of the UAV based on the relative direction information of the UAV relative to the control terminal.
  • the man-machine When the man-machine is in a narrow area and encounters obstacles, it can greatly facilitate the user to control the flight operation of the UAV, which not only effectively reduces the probability of bombing the aircraft, but also greatly reduces the harm to social security, further The practicality of the method is improved.
  • FIG. 3 is a schematic flowchart of a control method for an unmanned aerial vehicle provided by an embodiment of the present invention; with reference to FIG. 3 , the present embodiment provides a control method for an unmanned aerial vehicle, and the execution body of the method may be an unmanned aerial vehicle.
  • Human-machine control device it can be understood that the control device of the UAV can be implemented as software or a combination of software and hardware.
  • the method can be applied to the UAV, that is, the control device of the UAV. It can be set on the drone, and at this time, the drone can be used as the execution body of the control method.
  • the method can be applied to the control terminal, that is, the control device of the UAV can be set on the control terminal, and at this time, the control terminal can be used as the execution body of the control method.
  • the control method of the UAV may include:
  • Step S301 Obtain a first horizontal control command, the first horizontal control command is used to instruct the drone to move horizontally with the yaw direction of the nose as a reference direction, and the first horizontal control command is used by the user to control the rudder of the terminal along the target direction. operation produces;
  • Step S302 Determine the attitude information of the drone and the relative direction information of the drone relative to the control terminal.
  • Step S303 Control the UAV to fly along the target direction according to the attitude information, the relative direction information and the first horizontal control instruction.
  • Step S301 Obtain a first horizontal control command, the first horizontal control command is used to instruct the drone to move horizontally with the yaw direction of the nose as a reference direction, and the first horizontal control command is used by the user to control the rudder of the terminal along the target direction. operation occurs.
  • the first horizontal control command may be a pitch control command (generated by a pitch joystick) or a roll control command (generated by a roll control bar); the first horizontal control command may refer to an command used to control the UAV information, which can be used in the control command to instruct the control UAV to move horizontally with the yaw direction of the nose.
  • the first horizontal control instruction may not only include the above-mentioned reference direction, but may also include other instruction information for controlling the UAV, such as: target attitude information, target moving speed, preset moving route, etc. , those skilled in the art can set the first level control instruction according to specific application requirements and design requirements, which will not be repeated here.
  • the first horizontal control instruction may be generated by the user through the execution operation input to the control terminal, for example: the control terminal is provided with a rudder rocker, and the user can move the rudder rocker , so that the first horizontal control command including the reference direction can be generated.
  • the rudder may include a mechanical rudder and a virtual rudder, and the direction generated by the rudder may include a horizontal direction and a rolling direction.
  • the first horizontal control instruction is generated by the user operating the rudder of the control terminal. At this time, the reference direction Can be operated in the same direction as the rudder stick.
  • the first horizontal control command can be obtained after analysis and processing based on the position information, attitude information and environment information of the UAV, for example, the position information of the UAV is P, The attitude angle corresponding to the attitude information is (yaw angle yaw, roll angle roll, pitch angle pitch), and the environment information is that there is an obstacle 10 meters ahead on the right side. Then, based on the above-mentioned position information, attitude information and environment information of the UAV, it can be determined that the reference direction used to control the UAV flight is the left direction, the front direction, etc., and then the first horizontal direction can be generated based on the reference direction. Control commands to avoid obstacles and avoid collisions between drones and obstacles.
  • the first horizontal control instruction may be sent by the control terminal to the UAV.
  • the execution operation is input to generate the first horizontal control command, and then the control terminal can actively or passively send the generated first horizontal control command to the drone, so as to control the drone based on the first horizontal control command.
  • the specific implementation manner of acquiring the first level control instruction is not limited to the above-mentioned manner, and those skilled in the art can also use other manners to acquire the first level control instruction, as long as the first level control instruction can be guaranteed The accuracy and reliability of the acquisition is sufficient, and details are not repeated here.
  • Step S302 Determine the attitude information of the drone and the relative direction information of the drone relative to the control terminal.
  • the attitude information of the UAV can be determined.
  • the attitude information of the UAV can be obtained through a first sensor disposed on the UAV, and the first sensor can include at least one of the following: an inertial measurement unit (Inertial Measurement Unit, IMU for short), a compass and a gyroscope combination unit .
  • IMU Inertial Measurement Unit
  • compass compass
  • gyroscope combination unit gyroscope combination unit
  • the relative direction information of the drone relative to the control terminal can also be determined, wherein the relative direction information of the drone relative to the control terminal may specifically refer to the nose of the drone
  • the relative direction information of the yaw direction relative to the yaw direction of the nose of the control terminal Specifically, as shown in FIG.
  • the direction information may include the angle ⁇ formed between the yaw direction D1 of the nose and the yaw direction D2 of the nose, and the relative direction information may refer to the yaw direction D2 of the nose from the yaw direction D1 of the nose to the nose.
  • the resulting direction information may include the angle ⁇ formed between the yaw direction D1 of the nose and the yaw direction D2 of the nose, and the relative direction information may refer to the yaw direction D2 of the nose from the yaw direction D1 of the nose to the nose.
  • the drone can be set with attitudes such as the first compass and the first IMU Sensors, attitude sensors such as a second compass and a second IMU can be set on the control terminal, and then the first compass and the first IMU on the drone and the second compass and the second IMU on the control terminal determine the relative position of the drone.
  • Relative orientation information of the control terminal attitude sensors such as a first global positioning system (Global Position System, GPS for short) and a first IMU can be set on the drone, and attitude sensors such as a second GPS and a second IMU can be set on the control terminal.
  • the first GPS on the aircraft, the first IMU, and the second GPS and the second IMU on the control terminal can determine relative direction information of the drone with respect to the control terminal.
  • the specific implementation manner of determining the attitude information of the UAV and the relative direction information of the UAV relative to the control terminal in this embodiment is not limited to the above exemplified manner, and those skilled in the art can also use other As long as the attitude information of the UAV and the relative direction information of the UAV relative to the control terminal can be determined, Accuracy and reliability are sufficient, and details are not repeated here.
  • Step S303 Control the drone to fly in the operating direction of the rudder relative to the control terminal according to the attitude information, the relative direction information and the first horizontal control instruction.
  • the attitude information of the UAV and the relative direction information of the UAV relative to the control terminal After the attitude information of the UAV and the relative direction information of the UAV relative to the control terminal are obtained, it can be based on the attitude information of the UAV, the relative direction information of the UAV relative to the control terminal and the first horizontal control command. to control the drone to fly in the operating direction of the rudder relative to the control terminal.
  • the attitude information, the relative direction information and the first horizontal control command controlling the drone to fly in the operating direction of the rudder relative to the control terminal may include:
  • Step S3031 According to the attitude information, the relative direction information and the first horizontal control command, generate a second horizontal control command corresponding to the first horizontal control command, the second horizontal control command includes a target direction corresponding to the reference direction, the target The direction is the operating direction of the rudder.
  • the reference direction included in the first horizontal control command is used to control the UAV in the geodetic coordinate system.
  • various situations such as bombing and collision are prone to occur.
  • a second horizontal control command corresponding to the first horizontal control command is generated, the second horizontal control command includes a target direction corresponding to the reference direction, and the target direction is used to control the UAV in the coordinate system of the control terminal.
  • the target attitude in the second horizontal control command is consistent with the attitude information of the drone, that is, when the attitude information of the drone does not need to be adjusted, the relative direction of the drone relative to the control terminal is used.
  • the information includes the included angle ⁇ .
  • the reference direction is the direction corresponding to the included angle ⁇ 1 formed between the yaw direction D2 of the nose of the control terminal and the control terminal. After the reference direction included in the instruction, it is necessary to adjust the reference direction based on the relative direction information (corresponding to the included angle ⁇ ) of the UAV relative to the control terminal to obtain the target direction located in the coordinate system of the control terminal.
  • the direction corresponding to the included angle ⁇ (which is the sum of the included angle ⁇ and the included angle ⁇ 1) is formed between the target direction and the yaw direction D1 of the nose of the UAV, that is, in order to make the target nose of the UAV oriented.
  • the angle ⁇ 1 is formed between the yaw direction and the yaw direction of the nose of the control terminal.
  • the angle that needs to be adjusted for the yaw direction of the nose of the drone is ⁇ , so that the reference in the geodetic coordinate system can be adjusted.
  • the direction is converted into the target direction in the coordinate system of the control terminal, so that it is convenient to control the UAV to fly in the target direction relative to the control terminal.
  • the included angle ⁇ between the target direction and the yaw direction D1 of the nose of the UAV can be other values, for example: the included angle ⁇ is the included angle ⁇ and the included angle ⁇ 1 Those skilled in the art can set the difference according to specific application scenarios and application requirements, which will not be repeated here.
  • the specific implementation manner of the second level control instruction in this embodiment is not limited to the implementation manner defined above, and those skilled in the art can set according to specific application requirements and design requirements, as long as the second level control instruction can be guaranteed The accuracy and reliability of the determination of the control instruction may be sufficient, which will not be repeated here.
  • Step S3032 Control the drone to fly in the target direction relative to the control terminal.
  • the UAV can be controlled based on the second horizontal control instruction. Specifically, the UAV can be controlled to move relative to the control terminal based on the target direction included in the second horizontal control instruction. , which effectively solves the problem in the prior art that when the yaw direction of the nose of the UAV cannot be identified, or the UAV is in a narrow area and encounters obstacles, the flight operation of the UAV cannot be carried out. The problem of accurate control.
  • the drone 500 is communicatively connected with the remote controller 501.
  • the remote controller 501 can send a first horizontal control command to the drone 500, and the first horizontal control command includes the rear direction used to control the drone 500 to move, that is, the first horizontal control command.
  • the horizontal control command is used to control the drone 500 to move backward relative to the remote controller 500 .
  • the attitude information of the UAV 500 and the relative direction information of the UAV 500 relative to the remote controller 501 can be determined, and then the determination is based on the attitude information, the relative direction information and the first horizontal control instruction.
  • the second horizontal control instruction corresponding to the first horizontal control instruction includes a target moving direction corresponding to the rearward direction, and the target moving direction may be a direction inclined by 90° to the left.
  • the drone 500 can be controlled to move relative to the control terminal based on the second horizontal control command.
  • the relative position and relative position between the drone 500 and the remote controller 501 The attitude information is shown in the figure, so that the UAV 500 can move backward relative to the remote control 500, thereby increasing the distance between the UAV 500 and obstacles, and effectively ensuring the flight of the UAV 500 safety and reliability.
  • the attitude information of the UAV and the relative direction information of the UAV relative to the control terminal are determined by acquiring the first horizontal control instruction, and then the attitude information, relative direction information and The first horizontal control command is used to control the drone to fly in the operating direction of the rudder relative to the control terminal, thereby effectively realizing the accurate control operation of the drone based on the relative direction information of the drone relative to the control terminal, especially When the yaw direction of the UAV's nose is in a narrow area and encounters obstacles, it can greatly facilitate the user to control the flight operation of the UAV, which not only effectively reduces the probability of bombing, but also greatly Reducing the harm to social security further improves the practicability of the method.
  • FIG. 6 is a schematic flowchart of another method for controlling an unmanned aerial vehicle provided by an embodiment of the present invention; on the basis of the above-mentioned embodiment, with continued reference to FIG. 6 , when determining the relative direction of the unmanned aerial vehicle relative to the control terminal information, the method in this embodiment may further include:
  • Step S601 Obtain target attitude information of the control terminal.
  • Step S602 Adjust the control terminal based on the target attitude information.
  • the attitude control and adjustment of the control terminal can be performed before determining the relative direction information of the UAV relative to the control terminal.
  • the target attitude information of the terminal device can be obtained, and the target attitude information can include at least one of the following: the yaw direction, pitch angle, and roll angle of the nose of the control terminal.
  • the target attitude information can also include other information, those skilled in the art can adjust the target attitude information according to specific application requirements and application scenarios, which will not be repeated here.
  • the target posture of the control terminal is acquired.
  • Information can include:
  • Step S701 Obtain multiple communication signals for communication and connection between the control terminal of the preset attitude and the drone.
  • Step S702 Determine target posture information from a plurality of preset postures based on the plurality of communication signals.
  • the multiple preset attitudes can be configured for the control terminal located at the same position.
  • the multiple preset attitudes include The preset posture 1 , the preset posture 2 , the preset posture 3 , the preset posture 4 , and the preset posture 5 are used as examples for description. It can be understood that any two postures among the above-mentioned multiple preset postures are different.
  • the signal detection device can be used to obtain the UAV and different preset attitudes
  • the communication signal between the control terminals in the attitude when specifically implemented, can obtain multiple preset communication signals between the control terminal and the UAV under the same preset attitude through the signal detection device, and then use the multiple preset communication signals.
  • the preset communication signal with the best signal quality is selected as the target communication signal between the control terminal and the UAV under the preset attitude. At this time, the number of communication signals is consistent with the number of the preset attitude. .
  • determining target attitude information among multiple preset attitudes may include:
  • Step S7021 Obtain the target signal with the highest signal strength among the plurality of communication signals.
  • Step S7022 Among the plurality of preset attitudes, determine the preset attitude corresponding to the target signal as the target attitude information.
  • the plurality of communication signals include the communication signal a corresponding to the preset attitude 1, the communication signal b corresponding to the preset attitude 2, the communication signal c corresponding to the preset attitude 3, and the communication signal c corresponding to the preset attitude 4.
  • the corresponding communication signal d and the communication signal e corresponding to the preset posture 5 are taken as an example to illustrate. After the above-mentioned multiple communication signals are obtained, the above-mentioned multiple communication signals can be analyzed and compared to obtain the signal with the highest signal strength.
  • the target signal by analyzing and comparing the above-mentioned multiple communication signals, it can be known that the target signal is the communication signal b corresponding to the preset posture 2, that is, the signal strength of the communication signal b is greater than that of other communication signals (communication signal a, communication signal c, Signal strength of communication signal d and communication signal e). Then, among the multiple preset attitudes, the preset attitude 2 corresponding to the communication signal b may be determined as the target attitude information, thereby effectively ensuring the accuracy and reliability of the determination of the target attitude information.
  • the control terminal After acquiring the above target posture information, the control terminal can be adjusted based on the target posture information, that is, the final posture of the control terminal is the target posture information.
  • the target posture information that is, the final posture of the control terminal is the target posture information.
  • the communication quality and efficiency between the UAV and the control terminal are effectively ensured, and the control of the UAV is further improved. Accurate and reliable control.
  • FIG. 10 is a schematic flowchart of another method for controlling an unmanned aerial vehicle provided by an embodiment of the present invention; on the basis of any of the above-mentioned embodiments, continuing to refer to FIG. 10 , before obtaining a control instruction, in this embodiment
  • the method can also include:
  • Step S1001 Obtain an execution operation for switching the control mode of the drone.
  • Step S1002 Adjust the control mode of the UAV to a headless control mode according to the execution operation, and the headless control mode is related to the recorded historical flight direction of the UAV.
  • the UAV can have a normal control mode and a headless control mode.
  • the relative direction information of the UAV relative to the control terminal can be recorded when the UAV takes off. , and take the relative direction information of the UAV relative to the control terminal as the flight direction of the UAV.
  • the corresponding relationship between the flight direction of the drone and the steering direction on the control terminal is as follows: Push the rudder stick of the remote control device forward, and the drone will follow the take-off direction. if the rudder stick is pushed back, it will fly in the opposite direction of the take-off direction; if the joystick is pushed to the right, the drone will fly towards the right side of the control terminal; if the joystick is pushed to the left, the drone will fly towards the left side of the control terminal. fly sideways.
  • the corresponding relationship between the flight direction of the drone and the control direction on the remote control device is as follows: if the rudder joystick of the remote control device is pushed forward, the drone is in the opposite direction of the take-off direction. If the rudder stick is pushed back, it will fly in the direction of the take-off direction; if the rudder stick is pushed to the right, the drone will fly toward the right side of the control terminal; if the stick is pushed to the left, the drone will be toward the left side of the control terminal. to fly.
  • the control terminal may refer to an operating element (which may be a mechanical control, software program control, etc.) for switching the control mode of the drone.
  • the operating element of the input execution operation, the execution operation can be any one of the following: a click operation, a click operation, a slide operation, a toggle operation, and so on.
  • the control mode of the UAV can be adjusted to the headless control mode based on the execution operation, the headless control mode and the recorded history of the UAV It is related to the flight direction, which effectively realizes that the control mode of the UAV can be adjusted at any time based on different application scenarios and application requirements, and further improves the flexibility and reliability of the method.
  • the method in this embodiment may further include: controlling the drone to be in a hovering state.
  • the drone After adjusting the control mode of the drone to the headless control mode, in order to avoid the situation of bombing the drone or colliding with obstacles during the initial period of adjusting the drone to the headless control mode, the drone can be controlled. in hover state. Specifically, after the control mode of the drone is adjusted to the headless control mode and before the control command is obtained, the drone can be controlled to be in a hovering state. Then, the UAV can be controlled based on the obtained control instructions, thereby ensuring the accuracy and reliability of the UAV control.
  • FIG. 11 is a schematic flowchart of determining the relative direction information of the drone relative to the control terminal provided by an embodiment of the present invention; on the basis of any of the above embodiments, with continued reference to FIG. 11 , this embodiment provides a method without The method for determining the relative direction information of the man-machine relative to the control terminal.
  • the determination of the relative direction information of the drone relative to the control terminal in this embodiment may include:
  • Step S1101 Obtain first location information where the drone is located and second location information where the control terminal is located.
  • the first position information of the drone can be obtained through a third sensor disposed on the drone, and the third sensor includes at least one of the following: global positioning System GPS, software radio network SDR.
  • the second location information of the control terminal can be acquired through a fourth sensor disposed on the control terminal, where the fourth sensor includes at least one of the following: global positioning system GPS, software defined radio network SDR.
  • the method executing the method in this embodiment is the control terminal
  • the first position information of the UAV can be converted into the first position information of the UAV. sent to the controlling terminal.
  • the method executing the method in this embodiment is an unmanned aerial vehicle
  • the second position information of the control terminal is acquired through the fourth sensor disposed on the control terminal, the second position information of the control terminal can be sent. to the drone.
  • Step S1102 Establish a coordinate system of the UAV according to the first position information and the attitude information of the UAV.
  • the established UAV coordinate system may be a two-dimensional plane coordinate system or a three-dimensional space coordinate system.
  • the first position information can be used as the coordinate origin, and then the attitude of the UAV can be based on information to establish the UAV coordinate system.
  • the first position information can be used as the coordinate origin, and then the nose direction in the attitude information of the UAV can be used as the X-axis direction , take the vertical direction perpendicular to the direction of the machine head as the Y-axis direction, so that the X2-Y2 two-dimensional plane coordinate system can be established.
  • the first position information can be used as the coordinate origin, and then the direction of the nose in the attitude information of the UAV can be used as the X-axis direction, so that the direction perpendicular to the nose is vertical.
  • the vertical direction of the direction is used as the Y-axis direction
  • the horizontal direction perpendicular to the direction of the machine head is used as the Z-axis, so that an XYZ three-dimensional space coordinate system can be established.
  • the established correspondence between the coordinate system of the UAV and the attitude information of the UAV is not limited to the above-described correspondence, and those skilled in the art can perform any Setting, as long as the accuracy and reliability of establishing the coordinate system of the UAV can be guaranteed, and will not be repeated here.
  • Step S1103 Establish a terminal coordinate system according to the second position information and the target attitude information of the control terminal.
  • the established terminal coordinate system may be a two-dimensional plane coordinate system or a three-dimensional space coordinate system. After acquiring the second position information, the second position information may be used as the origin of the coordinates, and then the control terminal may be established based on the target attitude information of the control terminal. Terminal coordinate system.
  • the second position information can be used as the coordinate origin, and then the direction of the nose in the target attitude information of the control terminal can be used as the X-axis direction, Taking the direction perpendicular to the head direction as the Y-axis direction, the X1-Y1 two-dimensional plane coordinate system can be established.
  • the second position information can be used as the coordinate origin, and then the direction of the nose in the target attitude information of the control terminal is used as the X-axis direction, so as to be perpendicular to the direction of the nose.
  • the vertical direction is taken as the Y-axis direction
  • the horizontal direction perpendicular to the head direction is taken as the Z-axis, so that the XYZ three-dimensional space coordinate system can be established.
  • the established correspondence between the terminal coordinate system and the target attitude information of the control terminal is not limited to the correspondence described above, and those skilled in the art can arbitrarily set according to specific application requirements and design requirements. As long as the accuracy and reliability of establishing the terminal coordinate system can be ensured, details are not repeated here.
  • Step S1104 Based on the coordinate system of the UAV and the coordinate system of the terminal, determine the relative direction information of the UAV with respect to the control terminal.
  • determining the relative direction information of the UAV with respect to the control terminal may include:
  • Step S11041 In the UAV coordinate system, obtain the first coordinate axis corresponding to the nose of the UAV.
  • Step S11042 In the terminal coordinate system, acquire the second coordinate axis corresponding to the nose of the terminal device.
  • Step S11043 Determine the angle information formed between the first coordinate axis and the second coordinate axis.
  • Step S11044 Determine the relative direction information of the drone relative to the control terminal according to the included angle information.
  • the first coordinate axis corresponding to the nose of the UAV can be obtained in the UAV coordinate system.
  • the first coordinate axis may be the X axis or the Y axis; when the UAV coordinate system is a three-dimensional coordinate system, the first coordinate system may be the X axis, the Y axis or the Z axis.
  • the second coordinate axis corresponding to the nose of the terminal device can be obtained in the terminal coordinate system.
  • the second coordinate axis may be the X axis or the Y axis; when the terminal coordinate system is a three-dimensional coordinate system, the second coordinate axis may be the X axis, the Y axis or the Z axis.
  • the first coordinate axis corresponding to the nose of the drone is the X2 axis
  • the second coordinate axis corresponding to the nose of the terminal device is the X1 axis as an example for description.
  • the angle information formed between the first coordinate axis and the second coordinate axis can be determined.
  • the relative direction information of the UAV relative to the control terminal can be determined based on the angle information formed between the first coordinate axis and the second coordinate axis.
  • the angle information formed with the second coordinate axis is determined as the relative direction information of the UAV relative to the control terminal, thereby effectively ensuring the accuracy and reliability of determining the relative direction information of the UAV relative to the control terminal.
  • FIG. 14 is a schematic flowchart of determining a target command corresponding to a control command according to attitude information and relative direction information provided by an embodiment of the present invention; on the basis of any of the above embodiments, this embodiment provides a second
  • the implementation manner of determining the horizontal control command, specifically, in this embodiment, according to the attitude information, the relative direction information and the first horizontal control command, generating the second horizontal control command corresponding to the first horizontal control command may include:
  • Step S1401 Adjust the reference direction according to the attitude information and the relative direction information to obtain a target direction corresponding to the reference direction.
  • Step S1402 Determine the second horizontal control command based on the target direction and the first horizontal control command.
  • the reference direction is the lower left direction; for the above reference direction, if In the coordinate system where the control terminal is located, the reference direction can be the right direction, etc.
  • the direction located in the geodetic coordinate system can be the reference direction, and the direction corresponding to the reference direction is located in the control
  • the direction in the coordinate system where the terminal is located is the target direction.
  • the reference direction can be adjusted based on the attitude information and the relative direction information, so that the target direction corresponding to the reference direction can be obtained.
  • the included angle information corresponding to the relative direction information is obtained, and then the sum value between the reference direction and the included angle information can be determined as the target direction, or the difference between the target direction and the included angle information can also be determined The value is determined as the target direction.
  • the target direction and control instructions can be analyzed and processed to determine the target instruction, thereby effectively ensuring the accuracy of acquiring the second level control instruction and further improving the control of the UAV. accuracy and reliability.
  • this application embodiment provides a control method for an unmanned aerial vehicle.
  • the fuselage and the remote Both can be provided with an attitude sensor for detecting attitude information and a positioning sensor for implementing positioning operations, wherein the attitude sensor may include a compass and a gyroscope, and the positioning sensor may include an SDR communication module or a GPS positioning module.
  • the control method may include the following steps:
  • Step 1 The user clicks the button on the remote control for entering the automatic direction recognition mode (headless control mode), so that the drone can switch between the headless control mode and the normal control mode.
  • headless control mode automatic direction recognition mode
  • Step 2 prompt information is displayed on the display interface of the application program, and the prompt information is used to prompt the user to determine the target posture of the remote controller.
  • Step 3 According to the prompt information, obtain the location of the remote control through the positioning sensor set on the remote control.
  • Step 4 For the location of the remote control, the target attitude of the remote control can be determined from the preset multiple attitude information, and the target attitude is the attitude information corresponding to the strongest communication signal between the remote control and the UAV. , when the remote control is in the target attitude, the yaw direction of the nose of the remote control is facing the UAV.
  • Step 5 Determine the attitude information and position information of the UAV through the attitude sensor and positioning sensor on the UAV.
  • Step 6 Based on the location of the remote control and the target attitude of the remote control, establish a first coordinate system where the remote control is located; based on the location information of the UAV and the attitude information of the UAV, establish a second coordinate system where the UAV is located.
  • Step 7 Determine the relative direction information of the drone relative to the remote controller according to the first coordinate system and the second coordinate system.
  • the above-mentioned first coordinate system and the second coordinate system can be respectively realized by the GPS positioning modules arranged on the UAV and the remote controller; It is realized by the SDR module of the machine and the remote control.
  • the first relative direction information can be obtained through the first coordinate system and the second coordinate system established by the GPS positioning module
  • the second relative direction information can be obtained through the first coordinate system and the second coordinate system established by the SDR positioning module, Since the accuracy of the data obtained by the GPS positioning module is lower than the accuracy of the data obtained by the SDR positioning module, when there is a deviation between the first relative direction information and the second relative direction information, the SDR can be positioned
  • the second relative direction information obtained by the module is determined as relative direction information.
  • fitting processing may be performed on the first relative direction information and the second relative direction information to obtain the final relative direction information.
  • the user can perform an appropriate correction operation on the control direction of the UAV by observing with the naked eye, so as to achieve accurate control of the UAV.
  • Step 8 Acquire a control instruction for controlling the UAV, adjust the control instruction based on the relative direction information, and obtain a target control instruction for controlling the UAV.
  • the acquired target control instruction when the acquired target control instruction includes the moving direction to the left, it may be displayed on the display interface of the remote controller that the aircraft pans to the left on the relative direction information of the remote controller.
  • the attitude information of the UAV and the relative direction information of the UAV relative to the control terminal are determined by acquiring the control instructions, and the determination is made according to the attitude information and the relative direction information.
  • the target command corresponding to the control command, the target command includes the target direction used to control the drone; then the drone can be controlled based on the target command and the target direction corresponding to the target command, thus realizing the user
  • the UAV can be accurately controlled based on the relative direction information of the UAV relative to the control terminal, especially when the UAV is in a narrow area and encounters obstacles, it can greatly facilitate the operator to control the UAV. Controlling the flight operation can effectively reduce the probability of bombing the aircraft, greatly reduce the harm to social security, and further improve the practicability of the method.
  • FIG. 17 is a schematic structural diagram of a control device for an unmanned aerial vehicle provided by an embodiment of the present invention.
  • this embodiment provides a control device for an unmanned aerial vehicle, and the control device can be used to execute the above The control method of the UAV corresponding to FIG. 3 .
  • the control device may include:
  • the processor 11 is used for running the computer program stored in the memory 12 to realize:
  • the first horizontal control command is used to instruct the control drone to move horizontally with the yaw direction of the nose as a reference direction, and the first horizontal control command is generated by the user operating the rudder of the control terminal along the target direction;
  • the UAV is controlled to fly along the target direction.
  • control device of the UAV may further include a communication interface 13, which is used to realize the communication between the control device of the UAV and other devices or a communication network.
  • the processor 11 when controlling the drone to fly in the target direction according to the attitude information, the relative direction information and the first horizontal control instruction, the processor 11 is configured to: according to the attitude information, the relative direction information and the first horizontal control instruction, Generate a second horizontal control command; control the drone to fly in the target direction.
  • the processor 11 before determining the relative direction information of the drone relative to the control terminal, is further configured to: acquire target attitude information of the control terminal; and adjust the control terminal based on the target attitude information.
  • the target attitude information of the control terminal includes at least one of the following: yaw orientation, pitch angle, and roll angle of the nose of the control terminal.
  • the processor 11 when acquiring the target attitude information of the control terminal, is further configured to: acquire multiple communication signals for the communication connection between the control terminal of multiple preset attitudes and the UAV; based on the multiple communication signals, Target pose information is determined in a plurality of preset poses.
  • the processor 11 is further configured to: obtain the target signal with the highest signal strength among the plurality of communication signals; In the preset posture, the preset posture corresponding to the target signal is determined as the target posture information.
  • the processor 11 before acquiring the control instruction, is further configured to: acquire an execution operation for switching the control mode of the UAV; adjust the control mode of the UAV to the headless control mode according to the execution operation,
  • the headless control mode is related to the recorded historical flight direction of the drone.
  • the processor 11 is further configured to: control the drone to be in a hovering state.
  • the processor 11 when determining the relative direction information of the drone with respect to the control terminal, is further configured to: acquire first position information where the drone is located and second position information where the control terminal is located; Position information and the attitude information of the UAV, establish the UAV coordinate system; establish the terminal coordinate system according to the second position information and the target attitude information of the control terminal; determine the UAV based on the UAV coordinate system and the terminal coordinate system Relative orientation information relative to the controlling terminal.
  • the processor 11 when determining the relative direction information of the UAV relative to the control terminal based on the UAV coordinate system and the terminal coordinate system, is configured to: in the UAV coordinate system, obtain the UAV's relative direction information. the first coordinate axis corresponding to the nose; in the terminal coordinate system, obtain the second coordinate axis corresponding to the nose of the terminal device; determine the angle information formed between the first coordinate axis and the second coordinate axis; according to The included angle information determines the relative direction information of the UAV relative to the control terminal.
  • the processor 11 when determining the target instruction corresponding to the control instruction according to the attitude information and the relative direction information, is configured to: adjust the reference direction according to the attitude information and the relative direction information, and obtain the target instruction corresponding to the reference direction. target direction; based on the target direction and the control command, determine the target command.
  • the device is applied to a drone or a control terminal.
  • the apparatus shown in FIG. 17 can execute the method of the embodiment shown in FIG. 3-FIG. 16. For parts not described in detail in this embodiment, reference may be made to the related description of the embodiment shown in FIG. 3-FIG. 16. For the execution process and technical effect of the technical solution, refer to the descriptions in the embodiments shown in FIG. 3 to FIG. 16 , which will not be repeated here.
  • FIG. 18 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present invention; with reference to FIG. 18 , this embodiment provides an unmanned aerial vehicle.
  • the unmanned aerial vehicle may include a fuselage 21 and the above-mentioned FIG.
  • FIG. 19 is a schematic structural diagram of a control terminal provided by an embodiment of the present invention. with reference to FIG. 19 , this embodiment provides a control terminal, which can be used to control a drone, and the control terminal
  • the terminal body 31 and the control device 32 of the drone shown in FIG. 17 may be included, wherein the control device 32 may be provided on the terminal body 31 .
  • control terminal provided by the embodiment shown in FIG. 19 are consistent with the specific implementation principle and implementation effect of the control device for the unmanned aerial vehicle corresponding to FIG. Repeat.
  • FIG. 20 is a schematic structural diagram of a control system for an unmanned aerial vehicle provided by an embodiment of the present invention.
  • this embodiment provides a control system for an unmanned aerial vehicle.
  • the control system may include: The drone 41 and the control terminal 42 shown in 18, the control terminal 42 is used to control the drone 41.
  • FIG. 20 is a schematic structural diagram of a control system for an unmanned aerial vehicle provided by an embodiment of the present invention.
  • this embodiment provides a control system for an unmanned aerial vehicle.
  • the control system may include: The control terminal 42 and the drone 41 shown in 19, the control terminal 42 is used to control the drone 41.
  • an embodiment of the present invention provides a computer-readable storage medium, where the storage medium is a computer-readable storage medium, and program instructions are stored in the computer-readable storage medium, and the program instructions are used for Man-machine control method.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer processor (processor) to perform all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机的控制方法、装置、无人机、控制终端及系统。方法包括:获取第一水平控制指令,第一水平控制指令用于指示控制无人机以机头的偏航朝向作为参考方向水平移动,第一水平控制指令由用户对控制终端的方向舵沿目标方向操作产生(S301);确定无人机的姿态信息、以及无人机相对于控制终端的相对方向信息(S302);根据姿态信息、相对方向信息和第一水平控制指令,控制无人机沿目标方向飞行(S303)。有效地实现了基于无人机相对于控制终端的相对方向信息对无人机进行准确地控制操作,尤其是在无人机处于狭小地带和遇到障碍物时,可以极大地方便用户对无人机的飞行操作进行控制,这样不仅有效地减少了炸机的概率,还能够减少对社会安全的危害。

Description

无人机的控制方法、装置、无人机、控制终端及系统 技术领域
本发明实施例涉及无人机技术领域,尤其涉及一种无人机的控制方法、装置、无人机、控制终端及系统。
背景技术
随着科学技术的飞速发展,无人机在广大人群众中越来越普及,从而使得无人机这一原本由专业人士才能飞行的设备,进入了千家万户,很多使用无人机的用户缺少专业的培养,经常出现各种炸机、碰撞等情况,这样不仅危害了自身利益,更对社会安全造成了隐患。
对于无人机而言,一般常见的炸机情况是人为操作导致的,例如:当无人机附近存在障碍物时,控制无人机的飞手心存慌张,容易分不清无人机的前后左右。这时,若飞手忙乱地操作控制无人机进行飞行,则容易增加无人机出现炸机、碰撞等意外情况发生的概率。
发明内容
本发明实施例提供了一种无人机的控制方法、系统、装置及系统,以解决现有技术中存在的因无法准确地识别出无人机的前后左右的方向,容易出现各种炸机、碰撞等情况,这样不仅危害了自身利益,而且还会对社会安全造成隐患的问题。
本发明实施例的第一方面,提供了一种无人机的控制方法,包括:
获取第一水平控制指令,所述第一水平控制指令用于指示控制无人机以机头的偏航朝向作为参考方向水平移动,所述第一水平控制指令由用户对控制终端的方向舵沿目标方向操作产生;
确定所述无人机的姿态信息、以及所述无人机相对于控制终端的相对方向信息;
根据所述姿态信息、相对方向信息和所述第一水平控制指令,控制所述无人机沿所述目标方向飞行。
本发明实施例的第二方面,提供了一种无人机的控制装置,包括:
存储器,用于存储计算机程序;
处理器,用于运行所述存储器中存储的计算机程序以实现:
获取第一水平控制指令,所述第一水平控制指令用于指示控制无人机以机头的偏航朝向作为参考方向水平移动,所述第一水平控制指令由用户对控制终端的方向舵沿目标方向操作产生;
确定所述无人机的姿态信息、以及所述无人机相对于控制终端的相对方向信息;
根据所述姿态信息、相对方向信息和所述第一水平控制指令,控制所述无人机沿所述目标方向飞行。
本发明实施例的第三方面,提供了一种无人机,包括:上述第二方面所述的无人机的控制装置。
本发明实施例的第四方面,提供了一种控制终端,包括:上述第二方面所述的无人机的控制装置。
本发明实施例的第五方面,提供了一种无人机的控制系统,包括:上述第三方面的无人机和控制终端,所述控制终端用于对所述无人机进行控制。
本发明实施例的第六方面,提供了一种无人机的控制系统,包括:上述第四方面的控制终端和无人机,所述控制终端用于对所述无人机进行控制。
本发明实施例的第七方面,提供了一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现上述第一方面所述的无人机的控制方法。
本发明实施例提供的技术方案,通过获取第一水平控制指令,确定无 人机的姿态信息、以及无人机相对于控制终端的相对方向信息,而后根据姿态信息、相对方向信息和第一水平控制指令来控制无人机相对于控制终端沿方向舵的操作方向飞行,从而有效地实现了基于无人机相对于控制终端的相对方向信息对无人机进行准确地控制操作,尤其是在无人机处于狭小地带和遇到障碍物时,可以极大地方便用户对无人机的飞行操作进行控制,这样不仅有效地减少了炸机的概率,并且还能够大大减少对社会安全的危害,进一步提高了该方法的实用性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中提供的一种无人机的控制示意图一;
图2为现有技术中提供的一种无人机的控制示意图二;
图3为本发明实施例提供的一种无人机的控制方法的流程示意图;
图4为本发明实施例提供的确定所述无人机相对于控制终端的相对方向信息的示意图;
图5为本发明实施例提供的根据所述姿态信息和相对方向信息,确定与所述控制指令相对应的目标指令的示意图;
图5a为本发明实施例提供的一种无人机的控制方法的场景示意图;
图6为本发明实施例提供的另一种无人机的控制方法的流程示意图;
图7为本发明实施例提供的获取所述控制终端的目标姿态信息的流程示意图;
图8为本发明实施例提供的获取所述控制终端的目标姿态信息的示意图;
图9为本发明实施例提供的基于所述多个通信信号,在所述多个预设姿 态中确定所述目标姿态信息的流程示意图;
图10为本发明实施例提供的又一种无人机的控制方法的流程示意图;
图11为本发明实施例提供的确定所述无人机相对于控制终端的相对方向信息的流程示意图;
图12为本发明实施例提供的建立无人机坐标系和建立终端坐标系的示意图;
图13为本发明实施例提供的基于所述无人机坐标系和所述终端坐标系,确定所述无人机相对于所述控制终端的相对方向信息的流程示意图;
图14为本发明实施例提供的根据所述姿态信息和相对方向信息,确定与所述控制指令相对应的目标指令的流程示意图;
图15为本发明应用实施例提供的一种无人机的控制方法的示意图;
图16为本发明应用实施例提供的相对方向信息的示意图;
图17为本发明实施例提供的一种无人机的控制装置的结构示意图;
图18为本发明实施例提供的一种无人机的结构示意图;
图19为本发明实施例提供的一种控制终端的结构示意图;
图20为本发明实施例提供的一种无人机的控制系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
在通篇说明书及权利要求当中所提及的“包括”为一开放式用语,故应 解释成“包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。
此外,“连接”一词在此包含任何直接及间接的连接手段。因此,若文中描述一第一装置连接于一第二装置,则代表所述第一装置可直接连接于所述第二装置,或通过其它装置间接地连接至所述第二装置。
应当理解,本文中使用的术语“及/或、和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了便于理解本申请的技术方案,下面对现有技术进行简要说明:
对于无人机而言,如图1所示,在对无人机100进行正常的控制操作时,可以根据无人机100机头的偏航朝向,若遥控器101往左、右、前、后进行控制时,无人机100的方向都是可以根据无人机100的机头的偏航朝向来进行左、右、前、后的移动操作。当无人机100在近处时,用户可以选择直接肉眼查看机头位置或者通过摄像头的景象来标定自身位置,从而控制无人机100进行移动。当无人机100距离人用户比较远,肉眼已经无法看到机头的偏航朝向时(但是还能看到无人机100,但是只是无法识别无人机100的机头的偏航朝向而已),无法通过肉眼看来确定无人机100的机头的偏航朝向去控制无人机100。这时只能依靠摄像头的景象和应用程序app的显示去操作控制无人机100,如果此时的无人机100正处于两个障碍物中间,为了安全逃离上述危险环境,对操作人员的控制操作要求比较高。而普通群众用户在这种情况下操作时,有很大概率出现撞击或者炸机的情况。例如:当无人机100附近存在障碍物时,控制无人机100的飞手心存慌张,容易分不清无人机100的前后左右。这时,若飞手忙乱地操作,以控制无人机100进行飞行,则容易增加无人机100出现炸机、碰撞等以外情况发生的概率。
举例来说,如图2所示,当发现无人机100的右侧有障碍物时,专业飞手的做法是:先通过位于无人机100上的摄像头来确定无人机100的机头的 偏航朝向,然后判断障碍物与无人机100之间的相对位置,从而可以控制无人机100向左边飞行远离障碍物。但是,对于新手或者技术不够娴熟、又或者紧张情况下不分左右的人员而言,很容易使得无人机100撞向障碍物。
综上可知,由于针对现有的飞行控制操作,根本没有考虑左右不分和慌乱中手忙脚乱的状态下人的操作习惯。因此,利用遥控设备对无人机的很多控制操作都是针对有过一定培训经验的飞手而言的,并没有针对初学者和没有方向感的人。因此,容易出现飞手无法根据摄像头情况正确判断出当前无人机的机头的偏航朝向,或者,虽然飞手可以区分出障碍物与无人机之间的相对方向信息,但是无法判断无人机的机头的偏航朝向,从而容易做出错误的操作而导致无人机出现炸机的情况。
为了避免上述因飞手忙乱地对无人机进行控制而容易导致无人机出现炸机或者碰撞情况的出现,本实施例提供了一种无人机的控制方法、装置、无人机、控制终端及系统。具体的,该方法通过获取第一水平控制指令,第一水平控制指令用于指示控制无人机以机头的偏航朝向作为参考方向水平移动,第一水平控制指令由用户对控制终端的方向舵沿目标方向操作产生;确定无人机的姿态信息、以及无人机相对于控制终端的相对方向信息;根据姿态信息、相对方向信息和第一水平控制指令,控制无人机沿目标方向飞行,具体的,可以控制无人机相对于控制终端沿方向舵的操作方向飞行,从而有效地实现了基于无人机相对于控制终端的相对方向信息对无人机进行准确地控制操作,尤其是在无人机处于狭小地带和遇到障碍物时,可以极大地方便用户对无人机的飞行操作进行控制,这样不仅有效地减少了炸机的概率,并且还能够大大减少对社会安全的危害,进一步提高了该方法的实用性。
下面结合附图,对本发明的一些实施方式作详细说明。在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
图3为本发明实施例提供的一种无人机的控制方法的流程示意图;参考 附图3所示,本实施例提供了一种无人机的控制方法,该方法的执行主体可以为无人机的控制装置,可以理解的是,该无人机的控制装置可以实现为软件、或者软件和硬件的组合,具体应用时,该方法可以应用于无人机上,即无人机的控制装置可以设置在无人机上,此时,无人机可以作为该控制方法的执行主体。或者,该方法可以应用于控制终端上,即无人机的控制装置可以设置于控制终端上,此时,控制终端可以作为该控制方法的执行主体。具体的,该无人机的控制方法可以包括:
步骤S301:获取第一水平控制指令,第一水平控制指令用于指示控制无人机以机头的偏航朝向作为参考方向水平移动,第一水平控制指令由用户对控制终端的方向舵沿目标方向操作产生;
步骤S302:确定无人机的姿态信息、以及无人机相对于控制终端的相对方向信息。
步骤S303:根据姿态信息、相对方向信息和第一水平控制指令,控制无人机沿目标方向飞行。
下面对上述各个步骤进行详细说明:
步骤S301:获取第一水平控制指令,第一水平控制指令用于指示控制无人机以机头的偏航朝向作为参考方向水平移动,第一水平控制指令由用户对控制终端的方向舵沿目标方向操作产生。
其中,第一水平控制指令可以是俯仰控制指令(俯仰操作杆产生),或者横滚控制指令(横滚控制杆产生);第一水平控制指令可以是指用于对无人机进行控制的指令信息,该控制指令中可以用于指示控制无人机以机头的偏航朝向水平移动的参考。可以理解的是,第一水平控制指令中不仅仅可以包括上述的参考方向,还可以包括用于控制无人机的其他指令信息,例如:目标姿态信息、目标移动速度、预设移动路线等等,本领域技术人员可以根据具体的应用需求和设计需求对第一水平控制指令进行设置,在此不再赘述。
另外,本实施例对于第一水平控制指令的具体获取方式不做限定,本领 域技术人员可以根据具体的应用需求和设计需求进行设置,其中,一种可实现的方式为:在该无人机的控制方法的执行主体为控制终端时,第一水平控制指令可以是用户通过对控制终端输入的执行操作所生成的,例如:控制终端上设置有方向舵摇杆,用户可以对方向舵摇杆进行移动,从而可以生成包括有参考方向的第一水平控制指令。此外,方向舵可以包括机械方向舵和虚拟方向舵,并且,通过方向舵所生成的方向可以包括包括水平方向和翻滚方向,具体的,第一水平控制指令由用户操作控制终端的方向舵产生,此时,参考方向可以与方向舵摇杆的操作方向相同。
另一种可实现的方式为:第一水平控制指令可以是基于无人机的位置信息、姿态信息和所处环境信息进行分析处理后所得到的,例如:无人机的位置信息为P,姿态信息所对应的姿态角为(偏航角yaw、横滚角roll、俯仰角pitch),所处环境信息为前方右侧10米处有障碍物。而后则可以基于上述的无人机的位置信息、姿态信息和所处环境信息确定用于控制无人机飞行的参考方向为左侧方向、前侧方向等,而后可以基于参考方向生成第一水平控制指令,以绕开障碍物,避免无人机与障碍物之间发生碰撞。
又一种可实现的方式为:在该无人机的控制方法的执行主体为无人机时,第一水平控制指令可以是控制终端发送至无人机的,具体的,用户可以对控制终端输入执行操作以生成第一水平控制指令,而后控制终端可以主动或者被动地将所生成的第一水平控制指令发送至无人机,以实现基于第一水平控制指令对无人机进行控制。
当然的,获取第一水平控制指令的具体实现方式并不限于上述所例举的方式,本领域技术人员也可以采用其他的方式来获取第一水平控制指令,只要能够保证对第一水平控制指令进行获取的准确可靠性即可,在此不再赘述。
步骤S302:确定无人机的姿态信息、以及无人机相对于控制终端的相对方向信息。
在获取第一水平控制指令之后,可以确定无人机的姿态信息。具体的, 可以通过设置于无人机上的第一传感器获取无人机的姿态信息,第一传感器可以包括以下至少之一:惯性测量单元(Inertial Measurement Unit,简称IMU)、指南针和陀螺仪组合单元。当然的,本领域技术人员也可以采用其他的方式来获取无人机的姿态信息,只要能够保证对无人机的姿态信息进行获取的准确可靠性即可。
另外,在获取到第一水平控制指令之后,还可以确定无人机相对于控制终端的相对方向信息,其中,无人机相对于控制终端的相对方向信息可以具体是指无人机的机头的偏航朝向相对于控制终端的机头的偏航朝向的相对方向信息。具体的,如图4所示,假设无人机400的机头的偏航方向为D1,控制终端401的机头的偏航方向为D2,那么,无人机400相对于控制终端401的相对方向信息可以包括机头的偏航方向D1与机头的偏航方向D2之间所形成的夹角α,相对方向信息可以是指由机头的偏航方向D1指向机头的偏航方向D2所形成的方向信息。
此外,本实施例对于相对方向信息的具体获取方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,例如:无人机上可以设置有第一指南针和第一IMU等姿态传感器,控制终端上可以设置有第二指南针和第二IMU等姿态传感器,而后通过无人机上的第一指南针、第一IMU和控制终端上的第二指南针和第二IMU确定无人机相对于控制终端的相对方向信息。或者,无人机上可以设置有第一全球定位系统(Global Position System,简称GPS)和第一IMU等姿态传感器,控制终端上可以设置有第二GPS和第二IMU等姿态传感器,而后通过无人机上的第一GPS、第一IMU和控制终端上的第二GPS和第二IMU可以确定无人机相对于控制终端的相对方向信息。
当然的,本实施例中的确定无人机的姿态信息、以及无人机相对于控制终端的相对方向信息的具体实现方式并不限于上述所例举的方式,本领域技术人员也可以采用其他的方式来确定无人机的姿态信息、以及无人机相对于 控制终端的相对方向信息,只要能够保证对无人机的姿态信息和以及无人机相对于控制终端的相对方向信息进行确定的准确可靠性即可,在此不再赘述。
步骤S303:根据姿态信息、相对方向信息和第一水平控制指令,控制无人机相对于控制终端沿方向舵的操作方向飞行。
在获取到无人机的姿态信息和无人机相对于控制终端的相对方向信息之后,则可以基于无人机的姿态信息、无人机相对于控制终端的相对方向信息和第一水平控制指令来控制无人机相对于控制终端沿方向舵的操作方向飞行。具体的,根据姿态信息、相对方向信息和第一水平控制指令,控制无人机相对于控制终端沿方向舵的操作方向飞行可以包括:
步骤S3031:根据姿态信息、相对方向信息和第一水平控制指令,生成与第一水平控制指令相对应的第二水平控制指令,第二水平控制指令中包括与参考方向相对应的目标方向,目标方向为方向舵的操作方向。
其中,对于无人机而言,第一水平控制指令中所包括的参考方向用于在在大地坐标系中对无人机进行控制,然而,为了避免因无法准确地识别出无人机的前后左右的方向,容易出现各种炸机、碰撞等情况的出现,在获取到姿态信息、相对方向信息和第一水平控制指令之后,则可以对姿态信息、相对方向信息和第一水平控制指令来生成与第一水平控制指令相对应的第二水平控制指令,第二水平控制指令中包括与参考方向相对应的目标方向,目标方向用于在控制终端的坐标系中对无人机进行控制。
参考附图5所示,在第二水平控制指令中的目标姿态与无人机的姿态信息一致,即无需对无人机的姿态信息进行调整时,以无人机相对于控制终端的相对方向信息包括夹角α,在大地坐标系中,以参考方向为与控制终端的机头的偏航朝向D2之间形成夹角β1所对应的方向为例进行说明:在获取到上述第一水平控制指令中所包括的参考方向之后,则需要基于上述的无人机相对于控制终端的相对方向信息(对应于夹角α)对参考方向进行调整,获得位于控制终端坐标系中的目标方向,该目标方向与无人机的机头的偏航朝 向D1之间形成夹角β(为夹角α与夹角β1的和值)所对应的方向,即为了能够使得无人机的目标机头的偏航朝向与控制终端的机头的偏航朝向之间形成夹角β1,需要控制无人机的机头的偏航朝向调整的角度为β,从而实现了可以将位于大地坐标系中的参考方向转换为控制终端坐标系中的目标方向,从而便于控制无人机相对于控制终端沿目标方向进行飞行。
需要注意的是,在其他的应用场景中,目标方向与无人机的机头的偏航朝向D1之间的夹角β可以为其他值,例如:夹角β为夹角α与夹角β1的差值等等,本领域技术人员可以根据具体的应用场景和应用需求进行设置,在此不再赘述。
当然的,本实施例中对于第二水平控制指令的具体实现方式并不限于上述所限定的实现方式,本领域技术人员可以根据具体的应用需求和设计需求进行设置,只要能够保证对第二水平控制指令进行确定的准确可靠性即可,在此不再赘述。
步骤S3032:控制无人机相对于控制终端沿目标方向飞行。
在获取到第二水平控制指令之后,则可以基于第二水平控制指令对无人机进行控制,具体的,可以基于第二水平控制指令中所包括目标方向控制无人机相对于控制终端进行移动,从而有效地解决了现有技术中在无法识别无人机的机头的偏航朝向、或者无人机处于狭小地带和遇到障碍物的应用场景时,无法对无人机的飞行操作进行准确控制的问题。
举例来说,参考附图5a所示,无人机500通信连接有遥控器501,在检测到无人机500的右侧和上侧存在障碍物时,为了能够避免无人机500与障碍物之间发生碰撞,在T1时刻,遥控器501可以向无人机500发送第一水平控制指令,第一水平控制指令中包括用于控制无人机500进行移动的后侧方向,即该第一水平控制指令用于控制无人机500相对于遥控器500向后进行移动。在获取到第一水平控制指令之后,可以确定无人机500的姿态信息以及无人机500相对于遥控器501的相对方向信息,而后基于姿态信息、相对 方向信息和第一水平控制指令来确定与第一水平控制指令相对应的第二水平控制指令,该第二水平控制指令中包括与后侧方向相对应的目标移动方向,该目标移动方向可以为向左侧倾斜90°角的方向。在获取到第二水平控制指令之后,可以基于第二水平控制指令控制无人机500相对于控制终端进行移动,例如:在T2时刻,无人机500和遥控器501之间的相对位置和相对姿态信息如图所示,从而实现了无人机500可以相对于遥控器500向后进行移动,进而增大了无人机500与障碍物之间的距离,有效地保证了无人机500飞行的安全可靠性。
本实施例提供的无人机的控制方法,通过获取第一水平控制指令,确定无人机的姿态信息、以及无人机相对于控制终端的相对方向信息,而后根据姿态信息、相对方向信息和第一水平控制指令来控制无人机相对于控制终端沿方向舵的操作方向飞行,从而有效地实现了基于无人机相对于控制终端的相对方向信息对无人机进行准确地控制操作,尤其是在无人机机头的偏航朝向处于狭小地带和遇到障碍物时,可以极大地方便用户对无人机的飞行操作进行控制,这样不仅有效地减少了炸机的概率,并且还能够大大减少对社会安全的危害,进一步提高了该方法的实用性。
图6为本发明实施例提供的另一种无人机的控制方法的流程示意图;在上述实施例的基础上,继续参考附图6所示,在确定无人机相对于控制终端的相对方向信息之前,本实施例中的方法还可以包括:
步骤S601:获取控制终端的目标姿态信息。
步骤S602:基于目标姿态信息对控制终端进行调整。
为了能够保证控制终端对无人机进行控制的质量和效率,可以在确定无人机相对于控制终端的相对方向信息之前,对控制终端进行姿态控制和调整。具体的,可以获取终端设备的目标姿态信息,该目标姿态信息可以包括以下至少之一:控制终端的机头的偏航朝向、俯仰角、横滚角,当然的,目标姿态信息还可以包括其他的信息,本领域技术人员可以根据具体的应用需求和应 用场景对目标姿态信息进行调整,在此不再赘述。
另外,本实施例对于目标姿态信息的具体获取方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行装置,较为优选的,参考附图7所示,获取控制终端的目标姿态信息可以包括:
步骤S701:获取多个预设姿态的控制终端与无人机进行通信连接的多个通信信号。
步骤S702:基于多个通信信号,在多个预设姿态中确定目标姿态信息。
为了能够保证控制终端与无人机之间进行通信的质量和效率,可以对于位于同一位置的控制终端配置多个预设姿态,具体的,参考附图8所示,以多个预设姿态包括预设姿态1、预设姿态2、预设姿态3、预设姿态4和预设姿态5为例进行说明,可以理解的是,上述多个预设姿态中的任意两个姿态均不相同。
在配置多个预设姿态之后,则可以获取多个预设姿态的控制终端与无人机进行通信连接的多个通信信号,具体的,可以利用信号检测装置获取到无人机与不同预设姿态下的控制终端之间的通信信号,具体实现时,可以通过信号检测装置获取同一个预设姿态下的控制终端与无人机之间的多个预设通信信号,而后在多个预设通信信号中,选择信号质量最好的预设通信信号作为在该预设姿态下的控制终端与无人机之间的目标通信信号,此时,通信信号的数量与预设姿态的数量相一致。在获取到上述多个通信信号之后,则可以对上述的多个通信信号进行分析处理,以实现基于多个通信信号在多个预设姿态中确定目标姿态信息。具体的,参考附图9所示,基于多个通信信号,在多个预设姿态中确定目标姿态信息可以包括:
步骤S7021:在多个通信信号中,获取信号强度最大的目标信号。
步骤S7022:在多个预设姿态中,将目标信号所对应的预设姿态确定为目标姿态信息。
下面以多个通信信号中包括与预设姿态1相对应的通信信号a、与预设 姿态2相对应的通信信号b、与预设姿态3相对应的通信信号c、与预设姿态4相对应的通信信号d和与预设姿态5相对应的通信信号e为例进行说明,在获取到上述的多个通信信号之后,可以对上述多个通信信号进行分析比较,以获得信号强度最大的目标信号,通过对上述多个通信信号进行分析比较可知,目标信号为与预设姿态2相对应的通信信号b,即通信信号b的信号强度大于其他通信信号(通信信号a、通信信号c、通信信号d和通信信号e)的信号强度。而后,则可以在多个预设姿态中,将通信信号b所对应的预设姿态2确定为目标姿态信息,从而有效地保证了对目标姿态信息进行确定的准确可靠性。
在获取到上述目标姿态信息之后,则可以基于目标姿态信息对控制终端进行调整,即使得控制终端的最终姿态为目标姿态信息。在无人机与上述处于目标姿态信息的控制终端进行通信时,可以有效地保证通信质量和效率。
本实施例中,通过获取控制终端的目标姿态信息,而后基于目标姿态信息对控制终端进行调整,有效地保证了无人机与控制终端之间的通信质量和效率,进一步提高了对无人机进行控制的准确可靠性。
图10为本发明实施例提供的又一种无人机的控制方法的流程示意图;在上述任意一个实施例的基础上,继续参考附图10所示,在获取控制指令之前,本实施例中的方法还可以包括:
步骤S1001:获取用于切换无人机的控制模式的执行操作。
步骤S1002:根据执行操作,将无人机的控制模式调整为无头控制模式,无头控制模式与所记录的无人机的历史飞行方向有关。
其中,对于无人机而言,可以具有普通控制模式和无头控制模式,在无人机的无头控制模式中,可以在无人机起飞时记录无人机相对于控制终端的相对方向信息,并将无人机相对于控制终端的相对方向信息作为无人机的飞行方向。
下面以起飞方向为遥控设备的正前方为例,此时,无人机的飞行方向与 控制终端上的操纵方向对应关系如下:遥控设备的方向舵摇杆前推,则无人机沿着起飞方向的方向飞行;方向舵摇杆后推,则沿着起飞方向的相反方向飞行;摇杆右推,无人机朝向控制终端的右侧进行飞行,摇杆左推,无人机朝向控制终端的左侧进行飞行。
当针对上述的无人机顺时针旋转180度后,无人机的飞行方向与遥控设备上的操纵方向对应关系如下:遥控设备的方向舵摇杆前推,则无人机沿着起飞方向的相反方向飞行,方向舵摇杆后推,则沿着起飞方向的方向飞行;方向舵摇杆右推,无人机朝向控制终端的右侧进行飞行,摇杆左推,无人机朝向控制终端的左侧进行飞行。
为了能够实现对无人机的控制模式进行切换和调整,控制终端上可以是指有用于切换无人机的控制模式的操作件(可以是机械控件、软件程序控件等等),用户可以对上述的操作件输入执行操作,该执行操作可以为以下任意之一:点击操作、点选操作、滑动操作、拨动操作等等。在获取到用于切换无人机的控制模式的执行操作之后,则可以基于根据执行操作将无人机的控制模式调整为无头控制模式,无头控制模式与所记录的无人机的历史飞行方向有关,从而有效地实现了可以基于不同的应用场景和应用需求随时对无人机的控制模式进行调整,进一步提高了该方法使用的灵活可靠性。
在一些实例中,在将无人机的控制模式调整为无头控制模式之后,本实施例中的方法还可以包括:控制无人机处于悬停状态。
在将无人机的控制模式调整为无头控制模式之后,为了避免在将无人机调整为无头控制模式的初始时间段,出现炸机或者碰撞障碍物的情况,则可以控制无人机处于悬停状态。具体的,在将无人机的控制模式调整为无头控制模式之后,且获取控制指令之前,可以控制无人机处于悬停状态。而后可以基于所获取到的控制指令对无人机进行控制,进而保证了对无人机进行控制的准确可靠性。
图11为本发明实施例提供的确定无人机相对于控制终端的相对方向信 息的流程示意图;在上述任意实施例的基础上,继续参考附图11所示,本实施例提供了一种无人机相对于控制终端的相对方向信息的确定方式,具体的,本实施例中的确定无人机相对于控制终端的相对方向信息可以包括:
步骤S1101:获取无人机所在的第一位置信息和控制终端所在的第二位置信息。
具体的,为了能够确定无人机相对于控制终端的相对方向信息,可以通过设置于无人机上的第三传感器获取无人机的第一位置信息,第三传感器包括以下至少之一:全球定位系统GPS、软件无线电网络SDR。相类似的,可以通过设置于控制终端上的第四传感器获取控制终端的第二位置信息,第四传感器包括以下至少之一:全球定位系统GPS、软件无线电网络SDR。
需要注意的是,本实施例中的方法执行主体为控制终端时,通过设置于无人机上的第三传感器获取到无人机的第一位置信息之后,可以将无人机的第一位置信息发送至控制终端。相类似的,在本实施例中的方法执行主体为无人机时,通过设置于控制终端上的第四传感器获取到控制终端的第二位置信息之后,可以将控制终端的第二位置信息发送至无人机。
步骤S1102:根据第一位置信息和无人机的姿态信息,建立无人机坐标系。
其中,所建立的无人机坐标系可以是二维平面坐标系或者三维空间坐标系,在获取到第一位置信息之后,可以以第一位置信息作为坐标原点,而后可以基于无人机的姿态信息建立无人机坐标系。
举例来说,如图12所示,在获取到无人机的第一位置信息之后,可以以第一位置信息作为坐标原点,而后以无人机的姿态信息中的机头方向作为X轴方向,以垂直于机头方向的竖直方向作为Y轴方向,从而可以建立X2-Y2二维平面坐标系。
相类似的,在获取到无人机的第一位置信息之后,可以以第一位置信息作为坐标原点,而后以无人机的姿态信息中的机头方向作为X轴方向,以垂 直于机头方向的竖直方向作为Y轴方向,以垂直于机头方向的水平方向作为Z轴,从而可以建立XYZ三维空间坐标系。
需要注意的是,所建立的无人机坐标系与无人机的姿态信息之间的对应关系并不限于上述所描述的对应关系,本领域技术人员可以根据具体的应用需求和设计需求进行任意设置,只要能够保证对无人机坐标系进行建立的准确可靠性即可,在此不再赘述。
步骤S1103:根据第二位置信息和控制终端的目标姿态信息,建立终端坐标系。
其中,所建立的终端坐标系可以是二维平面坐标系或者三维空间坐标系,在获取到第二位置信息之后,可以以第二位置信息作为坐标原点,而后可以基于控制终端的目标姿态信息建立终端坐标系。
举例来说,如图12所示,在获取到控制终端的第二位置信息之后,可以以第二位置信息作为坐标原点,而后以控制终端的目标姿态信息中的机头方向作为X轴方向,以垂直于机头方向的方向作为Y轴方向,从而可以建立X1-Y1二维平面坐标系。
相类似的,在获取到控制终端的第二位置信息之后,可以以第二位置信息作为坐标原点,而后以控制终端的目标姿态信息中的机头方向作为X轴方向,以垂直于机头方向的竖直方向作为Y轴方向,以垂直于机头方向的水平方向作为Z轴,从而可以建立XYZ三维空间坐标系。
需要注意的是,所建立的终端坐标系与控制终端的目标姿态信息之间的对应关系并不限于上述所描述的对应关系,本领域技术人员可以根据具体的应用需求和设计需求进行任意设置,只要能够保证对终端坐标系进行建立的准确可靠性即可,在此不再赘述。
步骤S1104:基于无人机坐标系和终端坐标系,确定无人机相对于控制终端的相对方向信息。
在获取到无人机坐标系和终端坐标系之后,可以对无人机坐标系和终端 坐标系进行分析处理,以确定无人机相对于控制终端的相对方向信息。具体的,参考附图13所示,基于无人机坐标系和终端坐标系,确定无人机相对于控制终端的相对方向信息可以包括:
步骤S11041:在无人机坐标系中,获取无人机的机头所对应的第一坐标轴。
步骤S11042:在终端坐标系中,获取终端设备的机头所对应的第二坐标轴。
步骤S11043:确定第一坐标轴与第二坐标轴之间所形成的夹角信息。
步骤S11044:根据夹角信息,确定无人机相对于控制终端的相对方向信息。
在建立完无人机坐标系之后,则可以在无人机坐标系中,获取无人机机头所对应的第一坐标轴,具体的,在无人机坐标系为二维坐标系时,第一坐标轴可以为X轴或者Y轴;在无人机坐标系为三维坐标系时,第一坐标系可以为X轴、Y轴或者Z轴。
相类似的,在建立完终端坐标系之后,则可以在终端坐标系中,获取终端设备的机头所对应的第二坐标轴,具体的,在终端坐标系为二维坐标系时,第二坐标轴可以为X轴或者Y轴;在终端坐标系为三维坐标系时,第二坐标轴可以为X轴、Y轴或者Z轴。
具体的,参考附图4和图12所示,以无人机的机头所对应的第一坐标轴为X2轴、终端设备的机头所对应的第二坐标轴为X1轴为例进行说明,在获取到第一坐标轴和第二坐标轴之后,则可以确定第一坐标轴和第二坐标轴之间所形成的夹角信息。而后则可以基于第一坐标轴和第二坐标轴之间所形成的夹角信息来确定无人机相对于控制终端的相对方向信息,其中,一种可实现的方式为,将第一坐标轴与第二坐标轴之间所形成的夹角信息确定为无人机相对于控制终端的相对方向信息,从而有效地保证了对无人机相对于控制终端的相对方向信息进行确定的准确可靠性。
图14为本发明实施例提供的根据姿态信息和相对方向信息,确定与控制指令相对应的目标指令的流程示意图;在上述任意一个实施例的基础上,本实施例提供了一种对第二水平控制指令进行确定的实现方式,具体的,本实施例中的根据姿态信息、相对方向信息和第一水平控制指令,生成与第一水平控制指令相对应的第二水平控制指令可以包括:
步骤S1401:根据姿态信息和相对方向信息对参考方向进行调整,获得与参考方向相对应的目标方向。
步骤S1402:基于目标方向和第一水平控制指令,确定第二水平控制指令。
可以理解的是,对于一个方向信息而言,在不同的坐标系中可以对应有不同的表达方式,例如:在大地坐标系中,参考方向为左下方向;而对于上述的参考方向而言,若在控制终端所在的坐标系中,参考方向可以为右侧方向等等,为了方便对方向进行进行表述,则可以将位于大地坐标系中的方向为参考方向,而将参考方向所对应的位于控制终端所在的坐标系中的方向为目标方向。
具体的,在获取到姿态信息和相对方向信息之后,则可以基于姿态信息和相对方向信息对参考方向进行调整,从而可以获得与参考方向相对应的目标方向。举例来说,获取与相对方向信息相对应的夹角信息,而后可以将参考方向与夹角信息之间的和值确定为目标方向,或者,也可以将目标方向与夹角信息之间的差值确定为目标方向。在获取到目标方向之后,则可以对目标方向和控制指令进行分析处理,以确定目标指令,从而有效地保证了对第二水平控制指令进行获取的精确程度,进一步提高了对无人机进行控制的准确可靠性。
具体应用时,参考附图15-图16所示,本应用实施例提供了一种无人机的控制方法,为了能够实现对无人机进行准确地控制,无人机的机身和遥控器上均可以设置有用于检测姿态信息的姿态传感器和用于实现定位操作的定 位传感器,其中,姿态传感器可以包括指南针和陀螺仪,定位传感器可以包括SDR通信模块或者GPS定位模块。具体的,该控制方法可以包括以下步骤:
步骤1:用户点击遥控器上用于进入自动化方向识别模式(无头控制模式)的按钮,来使得无人机可以在无头控制模式和普通控制模式之间进行切换。
在切换为自动化方向识别模式之后,可以先控制无人机处于悬停状态,即使得无人机停住一段时间,以等待下一步指示。
步骤2:应用程序的显示界面上显示有提示信息,提示信息用于提示用户来确定遥控器的目标姿态。
步骤3:根据提示信息,通过设置于遥控器上的定位传感器获取遥控器所在位置。
步骤4:针对遥控器所在位置,可以在预设的多个姿态信息中,确定遥控器的目标姿态,该目标姿态即为遥控器与无人机之间的通信信号最强所对应的姿态信息,在遥控器处于目标姿态时,遥控器的机头的偏航朝向正对无人机。
步骤5:通过无人机上的姿态传感器和定位传感器来确定无人机的姿态信息和无人机位置信息。
步骤6:基于遥控器所在位置和遥控器的目标姿态,建立遥控器所在的第一坐标系;基于无人机位置信息和无人机的姿态信息,建立无人机所在的第二坐标系。
步骤7:根据第一坐标系和第二坐标系确定无人机相对于遥控器的相对方向信息。
其中,上述的第一坐标系和第二坐标系可以分别通过设置于无人机和遥控器的GPS定位模块来实现;或者,第一坐标系和第二坐标系也可以分别通过设置于无人机和遥控器的SDR模块来实现。那么,通过GPS定位模块所建立的第一坐标系和第二坐标系可以获得第一相对方向信息,通过SDR定位模 块所建立的第一坐标系和第二坐标系可以获得第二相对方向信息,由于通过GPS定位模块所获得的数据精确度要低于通过SDR定位模块所获得的数据精确度,因此,在第一相对方向信息和第二相对方向信息之间存在偏差时,则可以将SDR定位模块所获得的第二相对方向信息确定为相对方向信息。或者,可以对第一相对方向信息和第二相对方向信息进行拟合处理,获得与最终的相对方向信息。或者,在获得的相对方向信息存在偏差时,用户可以自行通过肉眼观察来对无人机的控制方向进行适当的修正操作,以实现对无人机进行准确的控制。
当然的,本领域技术人员还可以采用其他的方式来确定无人机相对于遥控器的相对方向信息,只要能够保证对相对方向信息进行确定的准确可靠性即可,在此不再赘述。
步骤8:获取用于对无人机进行控制的控制指令,基于相对方向信息对控制指令进行调整,获得与无人机进行控制的目标控制指令。
具体的,当获取到的目标控制指令中包括向左侧移动方向时,则可以根据在遥控器的显示界面上显示为飞机在遥控器的相对方向信息上向左进行平移。
本应用实施例提供的无人机的控制方法,通过获取控制指令,而后确定无人机的姿态信息、以及无人机相对于控制终端的相对方向信息,并根据姿态信息和相对方向信息来确定与控制指令相对应的目标指令,目标指令中包括与用于对无人机进行控制的目标方向;而后可以基于目标指令以及目标指令所对应的目标方向对无人机进行控制,从而实现了用户可以基于无人机相对于控制终端的相对方向信息对无人机进行准确地控制操作,尤其是在无人机处于狭小地带和遇到障碍物时,可以极大地方便操作者对无人机的飞行操作进行控制,有效地减少炸机的概率,能够大大减少对社会安全的危害,进一步提高了该方法的实用性。
图17为本发明实施例提供的一种无人机的控制装置的结构示意图; 参考附图17所示,本实施例提供了一种无人机的控制装置,该控制装置可以用于执行上述图3所对应的无人机的控制方法。具体的,该控制装置可以包括:
存储器12,用于存储计算机程序;
处理器11,用于运行存储器12中存储的计算机程序以实现:
获取第一水平控制指令,第一水平控制指令用于指示控制无人机以机头的偏航朝向作为参考方向水平移动,第一水平控制指令由用户对控制终端的方向舵沿目标方向操作产生;
确定无人机的姿态信息、以及无人机相对于控制终端的相对方向信息;
根据姿态信息、相对方向信息和第一水平控制指令,控制无人机沿目标方向飞行。
此外,无人机的控制装置的结构中还可以包括通信接口13,用于实现无人机的控制装置与其他设备或通信网络通信。
在一些实例中,在根据姿态信息、相对方向信息和第一水平控制指令,控制无人机沿目标方向飞行时,处理器11用于:根据姿态信息、相对方向信息和第一水平控制指令,生成第二水平控制指令;控制无人机沿目标方向飞行。
在一些实例中,在确定无人机相对于控制终端的相对方向信息之前,处理器11还用于:获取控制终端的目标姿态信息;基于目标姿态信息对控制终端进行调整。
在一些实例中,控制终端的目标姿态信息包括以下至少之一:控制终端的机头的偏航朝向、俯仰角、横滚角。
在一些实例中,在获取控制终端的目标姿态信息时,处理器11还用于:获取多个预设姿态的控制终端与无人机进行通信连接的多个通信信号;基于多个通信信号,在多个预设姿态中确定目标姿态信息。
在一些实例中,在基于多个通信信号,在多个预设姿态中确定目标姿态 信息时,处理器11还用于:在多个通信信号中,获取信号强度最大的目标信号;在多个预设姿态中,将目标信号所对应的预设姿态确定为目标姿态信息。
在一些实例中,在获取控制指令之前,处理器11还用于:获取用于切换无人机的控制模式的执行操作;根据执行操作,将无人机的控制模式调整为无头控制模式,无头控制模式与所记录的无人机的历史飞行方向有关。
在一些实例中,在将无人机的控制模式调整为无头控制模式之后,处理器11还用于:控制无人机处于悬停状态。
在一些实例中,在确定无人机相对于控制终端的相对方向信息时,处理器11还用于:获取无人机所在的第一位置信息和控制终端所在的第二位置信息;根据第一位置信息和无人机的姿态信息,建立无人机坐标系;根据第二位置信息和控制终端的目标姿态信息,建立终端坐标系;基于无人机坐标系和终端坐标系,确定无人机相对于控制终端的相对方向信息。
在一些实例中,在基于无人机坐标系和终端坐标系,确定无人机相对于控制终端的相对方向信息时,处理器11用于:在无人机坐标系中,获取无人机的机头所对应的第一坐标轴;在终端坐标系中,获取终端设备的机头所对应的第二坐标轴;确定第一坐标轴与第二坐标轴之间所形成的夹角信息;根据夹角信息,确定无人机相对于控制终端的相对方向信息。
在一些实例中,在根据姿态信息和相对方向信息,确定与控制指令相对应的目标指令时,处理器11用于:根据姿态信息和相对方向信息对参考方向进行调整,获得与参考方向相对应的目标方向;基于目标方向和控制指令,确定目标指令。
在一些实例中,装置应用于无人机或者控制终端。
图17所示装置可以执行图3-图16所示实施例的方法,本实施例未详细描述的部分,可参考对图3-图16所示实施例的相关说明。该技术方案的执行过程和技术效果参见图3-图16所示实施例中的描述,在此不再赘述。
图18为本发明实施例提供的一种无人机的结构示意图;参考附图18 所示,本实施例提供了一种无人机,该无人机可以包括机身21和上述图17所示的无人机的控制装置22,其中,控制装置22可以设置于机身21上。
图18所示实施例提供的无人机的具体实现原理和实现效果与图17所对应的无人机的控制装置的具体实现原理和实现效果相一致,具体可参考上述陈述内容,在这里不再赘述。
图19为本发明实施例提供的一种控制终端的结构示意图;参考附图19所示,本实施例提供了一种控制终端,该控制终端可以用于控制无人机,并且,该控制终端可以包括终端本体31和上述图17所示的无人机的控制装置32,其中,控制装置32可以设置于终端本体31上。
图19所示实施例提供的控制终端的具体实现原理和实现效果与图17所对应的无人机的控制装置的具体实现原理和实现效果相一致,具体可参考上述陈述内容,在这里不再赘述。
图20为本发明实施例提供的一种无人机的控制系统的结构示意图,参考附图20所示,本实施例提供了一种无人机的控制系统,该控制系统可以包括:上述图18所示的无人机41和控制终端42,控制终端42用于对无人机41进行控制。
图20为本发明实施例提供的一种无人机的控制系统的结构示意图,参考附图20所示,本实施例提供了一种无人机的控制系统,该控制系统可以包括:上述图19所示的控制终端42和无人机41,控制终端42用于对无人机41进行控制。
另外,本发明实施例提供了一种计算机可读存储介质,存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,程序指令用于实现上述图3-图16的无人机的控制方法。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以 单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是 利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (27)

  1. 一种无人机的控制方法,其特征在于,包括:
    获取第一水平控制指令,所述第一水平控制指令用于指示控制无人机以机头的偏航朝向作为参考方向水平移动,所述第一水平控制指令由用户对控制终端的方向舵沿目标方向操作产生;
    确定所述无人机的姿态信息、以及所述无人机相对于控制终端的相对方向信息;
    根据所述姿态信息、相对方向信息和所述第一水平控制指令,控制所述无人机沿所述目标方向飞行。
  2. 根据权利要求1所述的方法,其特征在于,根据所述姿态信息、相对方向信息和所述第一水平控制指令,控制所述无人机沿所述目标方向飞行,包括:
    根据所述姿态信息、相对方向信息和所述第一水平控制指令,生成第二水平控制指令;
    控制所述无人机沿所述目标方向飞行。
  3. 根据权利要求1所述的方法,其特征在于,在确定所述无人机相对于控制终端的相对方向信息之前,所述方法还包括:
    获取所述控制终端的目标姿态信息;
    基于所述目标姿态信息对所述控制终端进行调整。
  4. 根据权利要求3所述的方法,其特征在于,所述控制终端的目标姿态信息包括以下至少之一:控制终端的机头的偏航朝向、俯仰角、横滚角。
  5. 根据权利要求3所述的方法,其特征在于,所述获取所述控制终端的目标姿态信息,包括:
    获取多个预设姿态的所述控制终端与所述无人机进行通信连接的多个通信信号;
    基于所述多个通信信号,在所述多个预设姿态中确定所述目标姿态信息。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述多个通信信号,在所述多个预设姿态中确定所述目标姿态信息,包括:
    在所述多个通信信号中,获取信号强度最大的目标信号;
    在所述多个预设姿态中,将所述目标信号所对应的预设姿态确定为所述目标姿态信息。
  7. 根据权利要求1-6中任意一项所述的方法,其特征在于,在获取第一水平控制指令之前,所述方法还包括:
    获取用于切换所述无人机的控制模式的执行操作;
    根据所述执行操作,将所述无人机的控制模式调整为无头控制模式,所述无头控制模式与所记录的无人机的历史飞行方向有关。
  8. 根据权利要求7所述的方法,其特征在于,在将所述无人机的控制模式调整为无头控制模式之后,所述方法还包括:
    控制所述无人机处于悬停状态。
  9. 根据权利要求1-6中任意一项所述的方法,其特征在于,确定所述无人机相对于控制终端的相对方向信息,包括:
    获取所述无人机所在的第一位置信息和所述控制终端所在的第二位置信息;
    根据所述第一位置信息和所述无人机的姿态信息,建立无人机坐标系;
    根据所述第二位置信息和所述控制终端的目标姿态信息,建立终端坐标系;
    基于所述无人机坐标系和所述终端坐标系,确定所述无人机相对于所述控制终端的相对方向信息。
  10. 根据权利要求9所述的方法,其特征在于,基于所述无人机坐标系和所述终端坐标系,确定所述无人机相对于所述控制终端的相对方向信息,包括:
    在所述无人机坐标系中,获取所述无人机的机头所对应的第一坐标轴;
    在所述终端坐标系中,获取所述终端设备的机头所对应的第二坐标轴;
    确定所述第一坐标轴与所述第二坐标轴之间所形成的夹角信息;
    根据所述夹角信息,确定所述无人机相对于所述控制终端的相对方向信息。
  11. 根据权利要求1-6中任意一项所述的方法,其特征在于,所述方法应用于所述无人机或者所述控制终端。
  12. 一种无人机的控制装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于运行所述存储器中存储的计算机程序以实现:
    获取第一水平控制指令,所述第一水平控制指令用于指示控制无人机以机头的偏航朝向作为参考方向水平移动,所述第一水平控制指令由用户对控制终端的方向舵沿目标方向操作产生;
    确定所述无人机的姿态信息、以及所述无人机相对于控制终端的相对方向信息;
    根据所述姿态信息、相对方向信息和所述第一水平控制指令,控制所述无人机沿所述目标方向飞行。
  13. 根据权利要求12所述的装置,其特征在于,根据所述姿态信息、相对方向信息和所述第一水平控制指令,控制所述无人机沿所述目标方向飞行,包括:
    根据所述姿态信息、相对方向信息和所述第一水平控制指令,生成第二水平控制指令;
    控制所述无人机沿所述目标方向飞行。
  14. 根据权利要求12所述的装置,其特征在于,在确定所述无人机相对于控制终端的相对方向信息之前,所述处理器还用于:
    获取所述控制终端的目标姿态信息;
    基于所述目标姿态信息对所述控制终端进行调整。
  15. 根据权利要求14所述的装置,其特征在于,所述控制终端的目标姿态信息包括以下至少之一:控制终端的机头的偏航朝向、俯仰角、横滚角。
  16. 根据权利要求14所述的装置,其特征在于,在所述获取所述控制终端的目标姿态信息时,所述处理器还用于:
    获取多个预设姿态的所述控制终端与所述无人机进行通信连接的多个通信信号;
    基于所述多个通信信号,在所述多个预设姿态中确定所述目标姿态信息。
  17. 根据权利要求16所述的装置,其特征在于,在基于所述多个通信信号,在所述多个预设姿态中确定所述目标姿态信息时,所述处理器还用于:
    在所述多个通信信号中,获取信号强度最大的目标信号;
    在所述多个预设姿态中,将所述目标信号所对应的预设姿态确定为所述目标姿态信息。
  18. 根据权利要求12-17中任意一项所述的装置,其特征在于,在获取控制指令之前,所述处理器还用于:
    获取用于切换所述无人机的控制模式的执行操作;
    根据所述执行操作,将所述无人机的控制模式调整为无头控制模式,所述无头控制模式与所记录的无人机的历史飞行方向有关。
  19. 根据权利要求18所述的装置,其特征在于,在将所述无人机的控制模式调整为无头控制模式之后,所述处理器还用于:
    控制所述无人机处于悬停状态。
  20. 根据权利要求12-17中任意一项所述的装置,其特征在于,在确定所述无人机相对于控制终端的相对方向信息时,所述处理器还用于:
    获取所述无人机所在的第一位置信息和所述控制终端所在的第二位置信息;
    根据所述第一位置信息和所述无人机的姿态信息,建立无人机坐标系;
    根据所述第二位置信息和所述控制终端的目标姿态信息,建立终端坐标 系;
    基于所述无人机坐标系和所述终端坐标系,确定所述无人机相对于所述控制终端的相对方向信息。
  21. 根据权利要求20所述的装置,其特征在于,在基于所述无人机坐标系和所述终端坐标系,确定所述无人机相对于所述控制终端的相对方向信息时,所述处理器用于:
    在所述无人机坐标系中,获取所述无人机的机头所对应的第一坐标轴;
    在所述终端坐标系中,获取所述终端设备的机头所对应的第二坐标轴;
    确定所述第一坐标轴与所述第二坐标轴之间所形成的夹角信息;
    根据所述夹角信息,确定所述无人机相对于所述控制终端的相对方向信息。
  22. 根据权利要求12-17中任意一项所述的装置,其特征在于,所述装置应用于所述无人机或者所述控制终端。
  23. 一种无人机,其特征在于,包括:权利要求12-22中任意一项所述的无人机的控制装置。
  24. 一种控制终端,其特征在于,包括:权利要求12-22中任意一项所述的无人机的控制装置。
  25. 一种无人机的控制系统,其特征在于,包括:权利要求23中所述的无人机和控制终端,所述控制终端用于对所述无人机进行控制。
  26. 一种无人机的控制系统,其特征在于,包括:权利要求24中所述的控制终端和无人机,所述控制终端用于对所述无人机进行控制。
  27. 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求1-11中任意一项所述的无人机的控制方法。
PCT/CN2020/118400 2020-09-28 2020-09-28 无人机的控制方法、装置、无人机、控制终端及系统 WO2022061886A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/118400 WO2022061886A1 (zh) 2020-09-28 2020-09-28 无人机的控制方法、装置、无人机、控制终端及系统
CN202080008006.7A CN113272754A (zh) 2020-09-28 2020-09-28 无人机的控制方法、装置、无人机、控制终端及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118400 WO2022061886A1 (zh) 2020-09-28 2020-09-28 无人机的控制方法、装置、无人机、控制终端及系统

Publications (1)

Publication Number Publication Date
WO2022061886A1 true WO2022061886A1 (zh) 2022-03-31

Family

ID=77229173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118400 WO2022061886A1 (zh) 2020-09-28 2020-09-28 无人机的控制方法、装置、无人机、控制终端及系统

Country Status (2)

Country Link
CN (1) CN113272754A (zh)
WO (1) WO2022061886A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000189A1 (zh) * 2022-06-28 2024-01-04 深圳市大疆创新科技有限公司 控制方法、头戴式显示设备、控制系统及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015126447A1 (en) * 2013-08-15 2015-08-27 Traxxas Lp Controllable flight during automated tricks
CN105573334A (zh) * 2016-02-18 2016-05-11 览意科技(上海)有限公司 无人机无头模式的实现方法及其控制系统
CN105739514A (zh) * 2016-03-23 2016-07-06 普宙飞行器科技(深圳)有限公司 无人机的操控方法及无人机系统
CN105992980A (zh) * 2015-05-18 2016-10-05 深圳市大疆创新科技有限公司 基于无头模式的无人机控制方法及设备
CN106802664A (zh) * 2016-12-22 2017-06-06 深圳市元征科技股份有限公司 一种无人机无头模式的飞行控制方法及无人机
CN107223219A (zh) * 2016-09-26 2017-09-29 深圳市大疆创新科技有限公司 控制方法、控制设备和运载系统
CN108475076A (zh) * 2017-04-21 2018-08-31 深圳市大疆创新科技有限公司 天线对准方法和地面控制端
CN109981158A (zh) * 2017-12-28 2019-07-05 北京松果电子有限公司 控制无人机的方法、装置及计算机可读存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054924B (zh) * 2016-07-06 2019-08-30 北京大为远达科技发展有限公司 一种无人机伴飞方法、伴飞装置和伴飞系统
CN106527493B (zh) * 2016-11-29 2020-01-14 深圳市元征科技股份有限公司 一种基于地磁方式的无人机控制方法和无人机
CN108122553B (zh) * 2017-12-20 2020-12-08 深圳市道通智能航空技术有限公司 一种无人机控制方法、装置、遥控设备和无人机系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015126447A1 (en) * 2013-08-15 2015-08-27 Traxxas Lp Controllable flight during automated tricks
CN105992980A (zh) * 2015-05-18 2016-10-05 深圳市大疆创新科技有限公司 基于无头模式的无人机控制方法及设备
CN105573334A (zh) * 2016-02-18 2016-05-11 览意科技(上海)有限公司 无人机无头模式的实现方法及其控制系统
CN105739514A (zh) * 2016-03-23 2016-07-06 普宙飞行器科技(深圳)有限公司 无人机的操控方法及无人机系统
CN107223219A (zh) * 2016-09-26 2017-09-29 深圳市大疆创新科技有限公司 控制方法、控制设备和运载系统
CN106802664A (zh) * 2016-12-22 2017-06-06 深圳市元征科技股份有限公司 一种无人机无头模式的飞行控制方法及无人机
CN108475076A (zh) * 2017-04-21 2018-08-31 深圳市大疆创新科技有限公司 天线对准方法和地面控制端
CN109981158A (zh) * 2017-12-28 2019-07-05 北京松果电子有限公司 控制无人机的方法、装置及计算机可读存储介质

Also Published As

Publication number Publication date
CN113272754A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
US11726498B2 (en) Aerial vehicle touchdown detection
Jung et al. A direct visual servoing‐based framework for the 2016 IROS Autonomous Drone Racing Challenge
US20190250601A1 (en) Aircraft flight user interface
US10218893B2 (en) Image capturing system for shape measurement of structure, method of capturing image of structure for shape measurement of structure, on-board control device, remote control device, program, and storage medium
US20220019248A1 (en) Objective-Based Control Of An Autonomous Unmanned Aerial Vehicle
US10567497B2 (en) Reticle control and network based operation of an unmanned aerial vehicle
CN110362098B (zh) 无人机视觉伺服控制方法、装置以及无人机
JP2022184945A (ja) 航空機のスマート着陸
US20200019189A1 (en) Systems and methods for operating unmanned aerial vehicle
US20180033318A1 (en) Sense and avoid maneuvering
CN110069071A (zh) 无人机导航方法与装置、存储介质、电子设备
WO2019119199A1 (zh) 无人机的控制方法、控制装置、无人机及农业无人机
WO2018107419A1 (zh) 控制方法、装置、设备及可移动平台
EP3771956B1 (en) Systems and methods for generating flight paths for navigating an aircraft
WO2020233607A1 (zh) 一种无人机控制方法与装置、计算机可读存储介质
CN104950902A (zh) 多旋翼飞行器的控制方法及多旋翼飞行器
CN113448343B (zh) 用于设定飞行器的目标飞行路径的方法、系统和可读介质
WO2021078003A1 (zh) 无人载具的避障方法、避障装置及无人载具
KR20210010166A (ko) 군집 비행 시 포메이션 이탈 무인 비행체의 처리 시스템 및 방법
KR101751864B1 (ko) 무인이동체 조종 방법, 이를 구현하기 위한 프로그램이 저장된 기록매체 및 이를 구현하기 위해 매체에 저장된 컴퓨터프로그램
WO2022061886A1 (zh) 无人机的控制方法、装置、无人机、控制终端及系统
KR101887314B1 (ko) 무인 항공기의 원격 제어 장치 및 방법과, 무인 항공기에 부착되는 움직임 제어 장치
US20210181769A1 (en) Movable platform control method, movable platform, terminal device, and system
US20190064797A1 (en) Controller for an unmanned aerial vehicle
WO2022047709A1 (zh) 更新限制区域数据的方法、装置、可移动平台和计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954736

Country of ref document: EP

Kind code of ref document: A1