WO2018120132A1 - 控制方法、装置、设备及无人飞行器 - Google Patents

控制方法、装置、设备及无人飞行器 Download PDF

Info

Publication number
WO2018120132A1
WO2018120132A1 PCT/CN2016/113762 CN2016113762W WO2018120132A1 WO 2018120132 A1 WO2018120132 A1 WO 2018120132A1 CN 2016113762 W CN2016113762 W CN 2016113762W WO 2018120132 A1 WO2018120132 A1 WO 2018120132A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
pan
tilt
yaw
attitude
Prior art date
Application number
PCT/CN2016/113762
Other languages
English (en)
French (fr)
Inventor
林灿龙
商志猛
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/113762 priority Critical patent/WO2018120132A1/zh
Priority to CN201680003301.7A priority patent/CN107074348B/zh
Publication of WO2018120132A1 publication Critical patent/WO2018120132A1/zh
Priority to US16/457,305 priority patent/US11216013B2/en
Priority to US17/646,768 priority patent/US11703886B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • G05D1/085Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability to ensure coordination between different movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls

Definitions

  • Embodiments of the present invention relate to the field of drones, and in particular, to a control method, apparatus, device, and unmanned aerial vehicle.
  • the unmanned aerial vehicle is equipped with a pan/tilt head, and a shooting device such as a camera or a camera is fixed on the pan/tilt head.
  • a shooting device such as a camera or a camera is fixed on the pan/tilt head.
  • the attitude of the gimbal (such as the yaw angle or the roll angle) is adjusted following the change of the attitude of the unmanned aerial vehicle.
  • the ground control terminal sends a control command to the unmanned aerial vehicle, the control command indicating the unmanned aerial vehicle.
  • Adjusting its flight attitude (such as the yaw angle)
  • the UAV adjusts the attitude of the fuselage according to the control command
  • the attitude of the gimbal is adjusted following the change of the attitude of the UAV, so that the control mode of the gimbal is not Flexible
  • the posture adjustment of the PTZ has a large lag compared to the attitude adjustment of the UAV body.
  • the PTZ may still be under inertia. Will continue to adjust its posture, resulting in a certain overshoot of the PTZ, resulting in shaking of the shooting equipment, resulting in jitter of the shooting picture, reducing the picture quality.
  • Embodiments of the present invention provide a control method, apparatus, device, and an unmanned aerial vehicle to improve stability of a photographing picture of a photographing apparatus and flexibility of a pan/tilt control mode.
  • An aspect of an embodiment of the present invention provides a control method, including:
  • Another aspect of the embodiments of the present invention provides a control method, including:
  • the attitude parameter includes at least one of a yaw parameter and a roll parameter.
  • control apparatus including:
  • An acquisition module configured to acquire a posture parameter of the cloud platform on the unmanned aerial vehicle
  • a control module configured to adjust an attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the pan/tilt.
  • control apparatus including:
  • a receiving module configured to receive an attitude control instruction sent by the control terminal
  • control module configured to adjust a posture parameter of the pan/tilt on the unmanned aerial vehicle according to the attitude control instruction
  • the attitude parameter includes at least one of a yaw parameter and a roll parameter.
  • Another aspect of an embodiment of the present invention is to provide a control device including one or more processors that work separately or in cooperation, the one or more processors being used to:
  • control device including: a communication interface, one or more processors, working alone or in cooperation, and the communication interface is in communication with the processor;
  • the communication interface is configured to receive an attitude control instruction sent by the control terminal;
  • the one or more processors are configured to: adjust an attitude parameter of the pan/tilt on the unmanned aerial vehicle according to the attitude control instruction;
  • the attitude parameter includes at least one of a yaw parameter and a roll parameter.
  • a power system mounted to the fuselage for providing flight power
  • a cloud platform installed in the body for fixing a photographing device
  • the control method, the device, the device and the unmanned aerial vehicle provided by the embodiment obtain the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the gimbal, and adjust the attitude parameter of the unmanned aerial vehicle, that is, the attitude parameter of the unmanned aerial vehicle. Passively follow changes in the attitude parameters of the gimbal, so that the control mode of the gimbal is simpler and more direct, enriching the control mode of the gimbal and improving the cloud.
  • FIG. 1 is a flowchart of a control method according to an embodiment of the present invention
  • 2A is a schematic diagram of an unmanned aerial vehicle and a captured target object according to an embodiment of the present invention
  • 2B is a schematic diagram of an unmanned aerial vehicle and a captured target object according to an embodiment of the present invention
  • 2C is a schematic diagram of an unmanned aerial vehicle and a target object photographed according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an unmanned aerial vehicle and a target object photographed according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a control method according to another embodiment of the present invention.
  • 6A is a schematic diagram of an unmanned aerial vehicle and a target object photographed according to an embodiment of the present invention
  • 6B is a schematic diagram of an unmanned aerial vehicle and a photographed target object according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a control method according to another embodiment of the present invention.
  • FIG. 8 is a flowchart of a control method according to another embodiment of the present invention.
  • FIG. 9 is a flowchart of a control method according to another embodiment of the present invention.
  • FIG. 10 is a structural diagram of a control apparatus according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram of a control device according to another embodiment of the present invention.
  • FIG. 12 is a structural diagram of a control device according to another embodiment of the present invention.
  • FIG. 13 is a structural diagram of a control device according to another embodiment of the present invention.
  • FIG. 14 is a structural diagram of a control device according to an embodiment of the present invention.
  • FIG. 15 is a structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • FIG. 1 is a flowchart of a control method according to an embodiment of the present invention. As shown in FIG. 1, the control method in this embodiment may include:
  • Step S101 Acquire a posture parameter of the pan/tilt on the unmanned aerial vehicle.
  • the photographing device 15 is connected to the body of the UAV through the pan/tilt head 14, 16 denotes a photographing lens of the photographing device, 17 denotes the optical axis direction of the photographing lens 16, and the optical axis direction 17 points to the photographed target object 20 for indicating The photographing direction of the photographing device 16 and 20 indicate the target object photographed by the photographing lens 16.
  • the pan/tilt head 14 may be a three-axis pan/tilt head, that is, the pan/tilt head 14 may be rotated by the Yaw axis, the Pitch axis, and the Yaw axis of the pan/tilt, respectively.
  • Fig. 2A 1 indicates the Roll axis of the pan/tilt head
  • 2 indicates the Pitch axis of the pan/tilt head
  • 3 indicates the Yaw axis of the pan/tilt.
  • the pitch angle of the gimbal changes
  • the yaw angle of the gimbal changes.
  • the photographing device 15 rotates following the rotation of the pan-tilt 14 so that the photographing device 15 can be taken from different photographing directions and The target angle 20 is photographed at the shooting angle.
  • the execution body of the embodiment may be a flight controller of an unmanned aerial vehicle, or may be another control unit having processing capability.
  • the attitude parameters of the pan/tilt include yaw parameters, pitch parameters, and roll parameters.
  • the yaw parameter may be a yaw angle of the gimbal or a yaw rotation speed of the gimbal
  • the pitch parameter may be a pitch angle of the gimbal or a pitch rotation of the gimbal Speed
  • the roll parameter can be the roll angle of the gimbal or the roll rotation speed of the gimbal.
  • one or more of the rotated attitude angles may be transmitted to the flight controller of the unmanned aerial vehicle, the unmanned aerial vehicle.
  • the flight controller can also actively acquire the attitude angle after the pan/tilt is rotated, such as one or more of a yaw angle, a pitch angle, and a roll angle.
  • the pan/tilt transmits its rotational speed in the rotational direction to the flight controller of the unmanned aerial vehicle during the rotation process.
  • the pan/tilt head 14 rotates with the Yaw axis as the rotation axis, that is, the pan/tilt head rotates in the yaw direction.
  • the flight controller sent to the unmanned aerial vehicle may also transmit the angular velocity of the pan-tilt 14 rotating with the Yaw axis as the rotation axis to the flight controller, and the angular position of the pan-tilt 14 rotating with the Pitch or Roll axis as the rotation axis is sent to Flight controller.
  • Step S102 Adjust an attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the pan/tilt.
  • the attitude parameter of the UAV includes one or more of a yaw parameter, a pitch parameter, and a roll parameter, wherein the yaw parameter may be a yaw angle of the unmanned aerial vehicle, or The yaw rotation speed of the unmanned aerial vehicle; the pitch parameter may be the pitch angle of the unmanned aerial vehicle or the pitch rotation speed of the unmanned aerial vehicle; the roll parameter may be the roll angle of the unmanned aerial vehicle or the unmanned aerial vehicle Rolling speed.
  • the flight controller of the UAV can adjust the attitude parameters of the UAV according to the attitude parameters of the PTZ 14.
  • o represents the center of the unmanned aircraft fuselage, wherein the center may be the center of mass of the unmanned aerial vehicle, and the direction of the center o pointing to the unmanned aerial vehicle head 10 is the body coordinate corresponding to the unmanned aerial vehicle.
  • the X axis of the system as indicated by the arrow 4; the direction of the center of the unmanned aircraft body 12 to the right of the unmanned aircraft body 12 is the Y axis of the body coordinate system, as indicated by the arrow 5; the center o points to the underside of the UAV body 12
  • the direction is the Z axis of the body coordinate system, as indicated by arrow 6.
  • the X-axis, Y-axis, and Z-axis of the body coordinate system follow the right-hand rule.
  • the X axis of the body coordinate system is the Roll axis of the unmanned aerial vehicle
  • the Y axis of the body coordinate system is the Pitch axis of the unmanned aerial vehicle
  • the Z axis of the body coordinate system is the Yaw axis of the unmanned aerial vehicle.
  • the achievable manners for the flight controller to adjust the attitude parameters of the UAV according to the attitude parameters of the PTZ 14 include the following:
  • One or more of the yaw parameter, the pitch parameter, and the roll parameter of the UAV are controlled according to one or more of the yaw parameter, the pitch parameter, and the roll parameter of the gimbal.
  • the flight controller adjusts the yaw parameter of the unmanned aerial vehicle according to the yaw parameter of the pan-tilt 14; adjusts the pitch parameter of the unmanned aerial vehicle according to the pitch parameter of the pan-tilt 14; and adjusts the unmanned aerial vehicle according to the roll-to-roll parameter of the pan-tilt 14 Rolling parameters.
  • the flight controller can control the unmanned aerial vehicle to rotate following the rotation of the gimbal, that is, the fuselage of the unmanned aerial vehicle is also controlled by the drone.
  • the Yaw axis of the aircraft rotates about the axis of rotation.
  • the angular velocity of the UAV rotating with the Yaw axis of the UAV is adjusted, or when the PTZ is the Yaw axis of the PTZ
  • the yaw angle of the UAV is adjusted in real time according to the yaw angle of the gimbal.
  • the pan/tilt is rotated by the Roller axis or the Pitch axis of the pan/tilt head, correspondingly, the body of the unmanned aerial vehicle is also rotated by the Roller axis or the Pitch axis of the UAV.
  • the body of the unmanned aerial vehicle is controlled while rotating the Roller axis and the Pitch axis of the UAV.
  • the axis rotates.
  • the body of the unmanned aerial vehicle when the pan/tilt is rotated by the Roll axis and the Pitch axis of the pan/tilt, the body of the unmanned aerial vehicle is controlled to rotate only by the Roll axis of the UAV. Or control the body of the UAV to rotate only with the Pitch axis of the UAV as the axis of rotation.
  • the specific control mode can be controlled by a person skilled in the art, and is not specifically limited herein.
  • the unmanned aerial vehicle is further provided with a tripod 13.
  • the tripod 13 can serve as a buffer for the UAV to land safely.
  • the tripod 13 The length may be greater than the distance of the camera 15 from the bottom of the UAV body to prevent damage to the gimbal and/or the camera from touching the ground. Since the stand 13 of some unmanned aerial vehicles is fixed, when the unmanned aerial vehicle performs aerial photography, when the pan/tilt head rotates with one or more of the Roller axis, the Pitch axis and the Yaw axis of the pan/tilt.
  • the flight controller may adjust the yaw of the unmanned aerial vehicle according to the yaw parameters of the pan-tilt 14.
  • the parameter for example, when the pan/tilt is rotated by the Yaw axis of the pan/tilt, the flight controller controls the unmanned aerial vehicle to also rotate with the Yaw axis of the unmanned aerial vehicle as the rotation axis, and the tripod 13 rotates with the unmanned aerial vehicle. Rotating, the tripod of the UAV can be moved out of the shooting range of the photographing device 15, so that the photographing device 15 can be prevented from photographing the tripod 13, as shown in FIG.
  • the flight controller controls the unmanned aerial vehicle in the body coordinate system.
  • the shaft (as indicated by arrow 6), that is, the Yaw axis is the axis of rotation Rotating, in FIG. 2A and FIG. 2B, the attitude of the pan/tilt head 14 and the photographing device 15 is unchanged, and the tripod 13 follows the unmanned aerial vehicle during the rotation of the unmanned aerial vehicle with the Z-axis of the body coordinate system as the rotational axis.
  • the body rotates together and rotates outside the shooting range 18 of the photographing device 15.
  • the flight controller controls the unmanned aerial vehicle to rotate with the Pitch axis of the unmanned aerial vehicle as the rotation axis, and the stand 13 rotates with the rotation of the unmanned aerial vehicle. Therefore, the photographing device 15 can be prevented from photographing the stand 13.
  • the pitch angle of the pan/tilt is ⁇ 1
  • the stand 13 is in the shooting range 18 of the photographing device 15, and in this case, the flight controller can also adjust the pitch angle according to the pan head to ⁇ 1.
  • the pitch angle of the human aircraft as shown in FIG.
  • the flight controller can also control the unmanned aerial vehicle to rotate in the pitch direction according to the angular velocity of the gimbal rotating on the Pitch axis of the gimbal, so that the unmanned aerial vehicle's tripod 13 can also be photographed.
  • the shooting area of the device 15 is outside the range 18.
  • the yaw parameter and the pitch parameter in the UAV can be adjusted according to the attitude parameter of the gimbal, so that the stand of the UAV is not in the shooting picture of the shooting device.
  • the UAV will automatically adjust the attitude parameters of the UAV according to the attitude parameters of the PTZ, ensuring that the UAV's tripod is not in the shooting picture, and the user does not need to manually adjust the posture of the UAV. It simplifies the operation process and reduces the professional requirements for users.
  • the third type is the third type.
  • 60 denotes a quadrotor unmanned aerial vehicle
  • 63 denotes a nose of the unmanned aerial vehicle 60
  • arrow 61 denotes the current orientation of the nose 63
  • 15 denotes a photographing apparatus mounted on the unmanned aerial vehicle 60
  • the photographing apparatus 15 It is mounted on the unmanned aerial vehicle 60 by a pan/tilt (not shown)
  • 66 denotes the current photographing direction of the photographing apparatus
  • 20 denotes a photographed target object
  • the photographing apparatus 15 follows the photographing target object 20.
  • This embodiment does not limit the position of the photographing device 15 relative to the body of the unmanned aerial vehicle 60, and shoots
  • the device 15 may be disposed on the upper side of the fuselage of the unmanned aerial vehicle 60 or on the lower side of the fuselage of the unmanned aerial vehicle 60.
  • the center of the fuselage of the unmanned aerial vehicle 60 is point o, and the X-axis passing point o of the body coordinate system corresponding to the unmanned aerial vehicle 60 points to the nose 63 of the unmanned aerial vehicle 60, and the Y-axis of the body coordinate system passes.
  • Point o points to the right side of the fuselage of the unmanned aerial vehicle 60.
  • the Z axis (not shown) of the body coordinate system points to point below the fuselage of the UAV 60, and the X, Y and Z axes of the body coordinate system follow the right hand. The rules.
  • the X axis of the body coordinate system is the Roll axis of the UAV 60
  • the Y axis of the body coordinate system is the Pitch axis of the UAV 60
  • the Z axis of the body coordinate system is the Yaw axis of the UAV 60.
  • the pan/tilt cannot be rotated infinitely with one or more axes of the PTZ's Roll axis, Pitch axis, and Yaw axis as the axis of rotation, that is, the PTZ is a Roll-Royce Roll.
  • the PTZ has a limit angle with the Roll axis of the PTZ as the rotation axis.
  • the PTZ rotates with the Pitch axis of the PTZ, the PTZ has the Pitch axis of the PTZ.
  • the limit angle of the axis when the pan-tilt is rotated by the Yaw axis of the gimbal, the gimbal has a limit angle rotated by the Yaw axis of the pan-tilt, and the Yaw axis of the pan-tilt is rotated as the axis of rotation.
  • the limit angle is described in detail.
  • the limit angle of the Yaw axis of the pan/tilt is referred to as the limit angle of the Yaw axis of the pan/tilt.
  • the limit angle of the Yaw axis of the gimbal is the maximum angle at which the gimbal can rotate in the yaw direction relative to the head direction when the pan-tilt is rotated by the Yaw axis of the gimbal.
  • the limit angle of the Yaw axis of the pan/tilt can be +360 degrees and -360 degrees, that is, the shooting direction of the shooting device 15 disposed on the pan/tilt can only be in the Yaw axis of the pan/tilt in the yaw direction. Rotate the axis one turn counterclockwise or one turn clockwise.
  • the photographing direction of the photographing device 15 can be from the X-axis direction, that is, the 0-degree direction. Rotate counterclockwise back to the X-axis forward direction -360 degrees, or turn clockwise from the X-axis forward or 0-degree direction back to the X-axis positive direction +360 degrees.
  • the photographing direction of the photographing device 15 is rotated from the X-axis forward direction, that is, the 0-degree direction, in the clockwise direction as indicated by the arc 64.
  • the flight controller can obtain the yaw parameters of the gimbal in real time, or the gimbal can The yaw parameter is sent to the flight controller in real time, wherein the yaw parameter may be at least one of a yaw angle or a yaw speed, and the flight controller may control the unmanned aerial vehicle 60 according to the yaw parameter also along the clockwise direction
  • the direction is rotated in the direction indicated by the arc 64 to avoid a limit of +360 degrees when the pan/tilt is rotated by the Yaw axis of the pan/tilt.
  • the shooting direction of the photographing device 15 is rotated from the X-axis forward direction, that is, the 0-degree direction, in the counterclockwise direction as indicated by the arc 65.
  • the controller may acquire the yaw parameter of the pan/tilt in real time, or the pan/tilt may transmit the yaw parameter to the flight controller in real time, wherein the yaw parameter may be at least one of a yaw angle or a yaw speed, the flight controller According to the yaw parameter, the unmanned aerial vehicle 60 can also be rotated in the counterclockwise direction as indicated by the arc 65 to prevent the gimbal from appearing at a limit of -360 degrees when the Yaw axis is rotated.
  • the control method provided by the embodiment can ensure the attitude parameter of the unmanned aerial vehicle by adjusting the attitude parameter of the gimbal on the unmanned aerial vehicle, and can adjust the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the gimbal, thereby ensuring one of the yaw, pitch and roll of the gimbal.
  • the pan/tilt will not be limited during the rotation.
  • the attitude parameters of the unmanned aerial vehicle can be adjusted through the attitude parameters of the gimbal, so that the tripod of the UAV will not be captured. The user does not need to manually adjust the posture of the unmanned aerial vehicle to move the tripod of the unmanned aerial vehicle out of the shooting picture, which simplifies the operation process and reduces the professional requirements for the user.
  • FIG. 4 is a flowchart of a control method according to another embodiment of the present invention. As shown in FIG. 4, on the basis of the embodiment shown in FIG. 1, the method in this embodiment may include:
  • Step S401 Acquire a yaw parameter of the cloud platform on the unmanned aerial vehicle.
  • the ground control terminal such as a remote controller
  • the control terminal can include a remote controller, wherein the remote controller generates Controlling the amount of the lever and transmitting the amount of the lever to the flight controller or the control unit that separately controls the rotation of the pan/tilt, and the flight controller or the control component receives the amount of the joystick sent by the remote controller, and controls the pan/tilt to the pan/tilt
  • the Yaw axis rotates for the axis of rotation.
  • the control component can transmit the yaw parameter of the pan/tilt to the flight controller in real time, and the yaw parameter can be a partial of the gimbal Navigation
  • the angle can also be the yaw rotation speed of the gimbal.
  • the photographing device can also track and shoot the target object.
  • the pan/tilt head rotates in the yaw direction.
  • the flight controller or the control component that individually controls the rotation of the gimbal can The yaw parameter of the gimbal is obtained in real time, wherein the yaw parameter may be at least one of a yaw angle or a yaw speed.
  • Step S402 adjusting a yaw parameter of the unmanned aerial vehicle according to a yaw parameter of the pan/tilt.
  • the yaw parameters of the UAV are adjusted according to the yaw parameters of the PTZ. Specifically, the flight controller controls the UAV according to the yaw parameters of the PTZ. Rotating in the navigation direction, that is, controlling the UAV to rotate with the Yaw axis of the UAV as the rotation axis, so that the UAV rotates in the yaw direction following the rotation of the PTZ.
  • the rotation direction of the UAV is consistent with the rotation direction of the gimbal, and the flight controller is adjusted according to the yaw angle of the gimbal.
  • the yaw angle of the human aircraft so that the yaw angle of the UAV and the yaw angle of the gimbal are consistent.
  • the flight controller may also adjust the yaw rotation speed of the UAV according to the yaw rotation speed of the gimbal to maintain the yaw rotation speed of the UAV and the yaw rotation speed of the PTZ. Consistent.
  • the control method provided by the embodiment obtains the yaw parameter of the cloud platform on the unmanned aerial vehicle, and adjusts the yaw parameter of the unmanned aerial vehicle according to the yaw parameter of the cloud platform, that is, the yaw parameter of the unmanned aerial vehicle passively follows the pan-tilt
  • the change of the yaw parameter changes, so that the rotation of the gimbal in the yaw direction is not limited by the yaw parameters of the UAV, and the rotation of the gimbal in the yaw direction does not occur.
  • the yaw parameter of the gimbal compared with the change of the yaw parameter of the gimbal passively following the yaw parameter of the unmanned aerial vehicle, it avoids the yaw of the gimbal under inertia when the UAV stops rotating with the Yaw axis of the fuselage. Overshoot occurs in the direction, so that the pan/tilt can rotate and stop rotating more smoothly in the yaw direction, ensuring the stability of the shooting device on the gimbal and improving the stability of the shooting picture of the shooting device.
  • FIG. 5 is a flowchart of a control method according to another embodiment of the present invention. As shown in FIG. 5, on the basis of the embodiment shown in FIG. 1, the method in this embodiment may include:
  • Step S501 Acquire a pitch parameter of the pan/tilt on the unmanned aerial vehicle.
  • the ground control terminal such as a remote controller
  • the ground control terminal can be used to adjust the pitch parameter of the pan/tilt.
  • the remote controller when the user manipulates the pitch lever or the tilt button of the remote controller, the remote controller generates the lever amount and sends the lever amount.
  • the flight control unit or the control unit that individually controls the rotation of the gimbal, the flight controller or the control unit receives the amount of the control rod sent by the remote controller, and controls the pan/tilt to rotate with the Pitch axis of the pan/tilt as the rotation axis.
  • the control component can transmit the pitch parameter of the pan/tilt to the flight controller in real time, and the yaw parameter of the gimbal can be a gimbal
  • the pitch angle can also be the pitch rotation speed of the gimbal.
  • the photographing device can also track and shoot the target object.
  • the pan/tilt rotates in the pitch direction.
  • the flight controller or the control unit that individually controls the pan/tilt rotation can be real-time.
  • the pitch parameter of the pan/tilt is obtained, wherein the pitch parameter may be at least one of a pitch angle or a pitch speed. As shown in Fig.
  • 6A 1 indicates the Roll axis of the pan/tilt head
  • 2 indicates the Pitch axis representing the pan/tilt head
  • 3 indicates the Yaw axis of the pan/tilt head
  • 10 indicates the nose of the unmanned aerial vehicle
  • 11 indicates the propeller of the unmanned aerial vehicle
  • 12 indicates The fuselage of the unmanned aerial vehicle
  • 14 indicates the pan/tilt on the unmanned aerial vehicle
  • 15 indicates the photographing equipment carried by the unmanned aerial vehicle
  • the photographing device 15 is connected to the fuselage of the unmanned aerial vehicle through the pan/tilt head 14
  • 16 indicates the photographing lens of the photographing device.
  • 17 denotes the optical axis direction of the photographing lens
  • the optical axis direction 17 points to the photographed target object 20 for indicating the photographing direction of the photographing device
  • 20 denotes the target object photographed by the photographing lens 16.
  • Step S502 Adjust a pitch parameter of the unmanned aerial vehicle according to a pitch parameter of the pan/tilt.
  • the flight controller controls the pitch parameters of the unmanned aerial vehicle according to the pitch parameter of the pan/tilt. Specifically, the flight controller controls the unmanned aerial vehicle to the Pitch of the unmanned aerial vehicle according to the pitch parameter of the pan/tilt.
  • the shaft rotates for the axis of rotation such that the UAV rotates in the pitch direction following the rotation of the gimbal.
  • the gimbal rotates clockwise with the Pitch axis of the gimbal as the axis of rotation, as indicated by the arrow 7.
  • the flight controller can control the UAV to clockwise with the Pitch axis of the UAV as the axis of rotation.
  • Rotating, the clockwise direction may specifically be the direction of the arrow 8 as shown in FIG. 6B.
  • the flight controller adjusts without The pitch angle ⁇ 2 of the human aircraft changes in accordance with the change of the pitch angle ⁇ 1 of the gimbal, and the pitch of the unmanned aerial vehicle
  • the angle ⁇ 2 is consistent with the pitch angle ⁇ 1 of the gimbal, and the limit is prevented when the pan/tilt is rotated by the Pitch axis of the pan/tilt.
  • the pitch angle of the unmanned aerial vehicle may be inconsistent with the pitch angle of the gimbal.
  • the specific control mode may be selected by a person skilled in the art according to requirements, and is not specifically limited herein.
  • the flight controller may also adjust the pitch rotation speed of the UAV according to the pitch rotation speed of the pan/tilt to keep the pitch rotation speed of the UAV and the pitch rotation speed of the gimbal.
  • the control method provided by the embodiment obtains the pitch parameter of the unmanned aerial vehicle by adjusting the pitch parameter of the gimbal on the unmanned aerial vehicle, and adjusts the pitch parameter of the unmanned aerial vehicle according to the pitch parameter of the unmanned aerial vehicle, that is, the pitch parameter of the unmanned aerial vehicle passively follows the change of the pitch parameter of the gimbal
  • the change makes the rotation of the gimbal in the pitch direction not restricted by the pitch parameters of the UAV, and the rotation of the gimbal in the pitch direction does not limit.
  • the problem of overshoot that may occur in the pitch direction of the gimbal under inertia is avoided, so that the pan/tilt can be in the pitch direction. Rotate and stop the rotation more smoothly, ensuring the smoothness of the shooting equipment on the gimbal, and improving the stability of the shooting picture of the shooting device.
  • FIG. 7 is a flowchart of a control method according to another embodiment of the present invention. As shown in FIG. 7, on the basis of the embodiment shown in FIG. 1, the method in this embodiment may include:
  • Step S701 Receive an attitude control command sent by the control terminal, and adjust an attitude parameter of the pan/tilt according to the attitude control instruction.
  • the ground control terminal for example, the remote controller
  • the remote controller can be used to adjust the attitude parameter of the pan/tilt.
  • the remote controller sends an attitude control command to the flight controller or the control component that individually controls the pan/tilt rotation, and the attitude control command is used.
  • the attitude parameter of the gimbal includes one or more of a yaw parameter, a pitch parameter, and a roll parameter.
  • the flight controller or the control unit that individually controls the pan/tilt rotation receives the attitude control command sent by the remote controller, and then adjusts the attitude parameter of the pan/tilt according to the attitude control command.
  • the attitude control instruction includes at least one of: an angle instruction for adjusting a posture parameter of the pan/tilt; and an angular velocity instruction for adjusting a posture parameter of the pan/tilt.
  • the attitude control command sent by the control terminal to the flight controller or the control component that separately controls the pan/tilt rotation may be a pitch control command for adjusting a pitch parameter of the pan/tilt head, or a roll control for adjusting a roll parameter of the pan/tilt head.
  • the command may also be a yaw control command that adjusts the yaw parameter of the gimbal.
  • the flight controller or the control unit that separately controls the pan/tilt rotation adjusts the attitude parameter of the pan/tilt according to the attitude control command, including at least one of the following:
  • the first type receiving a pitch control command sent by the control terminal, and adjusting a pitch parameter of the pan/tilt.
  • the remote controller When the user manipulates the pitch lever or the tilt button of the remote controller, the remote controller generates a lever amount, which includes angle information for adjusting the pitch angle of the pan/tilt, or is used to adjust the PTZ axis of the pan/tilt head as the rotation axis Rotating pitch rotation speed.
  • the remote controller sends the lever amount to the flight controller or a control component that individually controls the pan/tilt rotation, and the flight controller or the control component adjusts the pitch angle of the pan/tilt according to the angle information included by the control lever amount, or according to the
  • the joystick amount includes a pitch rotation speed, and the control pan/tilt rotates with the Pitch axis of the pan/tilt as the rotation axis.
  • the second type receiving a roll control command sent by the control terminal, and adjusting a roll parameter of the pan/tilt.
  • the remote controller When the user controls the scroll bar or the scroll button of the remote controller, the remote controller generates a lever amount, which includes angle information for adjusting the roll angle of the gimbal, or a Roll axis for controlling the pan/tilt to the pan/tilt The roll rotation speed for the rotation axis.
  • the remote controller sends the lever amount to the flight controller or a control component that individually controls the pan/tilt rotation, and the flight controller or the control component adjusts the roll angle of the pan/tilt according to the angle information included in the control lever amount, or
  • the amount of the control rod includes a roll rotation speed, and the control pan/tilt rotates with the Roll axis of the pan/tilt as the rotation axis.
  • the third type receiving the yaw control command sent by the control terminal, and adjusting the yaw parameter of the pan/tilt.
  • the remote controller When the user manipulates the yaw lever or yaw button of the remote controller, the remote controller generates a lever amount, which includes angle information for adjusting the yaw angle of the gimbal, or is used to adjust the Yaw axis of the gimbal to the pan/tilt The yaw rate of rotation for the axis of rotation.
  • the remote controller sends the lever amount to the flight controller or a control component that separately controls the rotation of the pan/tilt, and the flight controller or the control component adjusts the yaw angle of the pan/tilt according to the angle information included by the control lever amount, or
  • the lever amount includes a yaw rotation speed, and the control head rotates with the Yaw axis of the pan head as a rotation axis.
  • the remote controller has two modes of operation, one mode of operation for adjusting attitude parameters of the pan/tilt, such as pitch parameters, roll parameters, and yaw parameters of the pan/tilt; another mode of operation is used for adjustment
  • the attitude parameters of the unmanned aerial vehicle such as the pitch parameters of the unmanned aerial vehicle, the roll parameters, and the yaw parameters.
  • the remote controller is provided with a mode switching button or a button, and the user changes the operation mode of the remote controller by pressing a mode switching button or a button.
  • the current operating mode of the remote controller is used to adjust the attitude parameter of the pan/tilt.
  • the remote controller When the user manipulates the yaw lever or the yaw button of the remote controller, the remote controller generates a lever amount and sends the lever amount to the flight controller.
  • the flight controller adjusts the yaw parameter of the gimbal according to the amount of the control rod. If the user presses the mode switching button or the button, the operation mode of the remote controller is switched to the posture parameter for controlling the unmanned aerial vehicle.
  • the flight controller will adjust the yaw parameter of the unmanned aerial vehicle according to the amount of the control lever; the user again manipulates the pitch lever or the tilt button, and the remote controller generates the lever amount again, and the control is performed
  • the amount of the rod is sent to the flight controller, and the flight controller adjusts the pitch parameter of the unmanned aerial vehicle according to the amount of the control rod; the user again controls the roll bar or the roll button, and the remote controller generates the amount of the control lever again, and the amount of the control lever is Sended to the flight controller, the flight controller will adjust the roll parameters of the UAV based on the amount of the joystick.
  • Step S702 Acquire a posture parameter of the cloud platform on the unmanned aerial vehicle.
  • Step S702 is the same as step S101, and the specific method is not described herein again.
  • Step S703 adjusting the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the pan/tilt.
  • Step S703 is the same as step S102. The specific method is not described here.
  • Step S704 controlling the posture of the pan/tilt to enable the photographing device on the pan/tilt to perform tracking shooting on the target object.
  • the flight controller can also control the PTZ of the UAV, so that the shooting device on the PTZ is always aimed at the target object, that is, the target object is tracked and shot, and when the target object moves, the flight controller adjusts the PTZ to Rotating the shooting device to keep the target object in the shooting picture, the PTZ can send its own attitude parameters to the flight controller, and the flight controller can control the attitude of the UAV according to the attitude parameters of the PTZ, so that the UAV It can automatically adjust its posture, so that the tripod of the UAV aircraft is not in the shooting picture, and the PTZ can not be restricted during the rotation process, so the user can eliminate the need for the UAV.
  • the gesture operation simplifies the control process and reduces the professional requirements for the user.
  • the attitude control command is sent to the unmanned aerial vehicle through the ground control terminal, and the flight controller in the unmanned aerial vehicle or the control component that separately controls the pan/tilt rotation directly adjusts the attitude of the pan/tilt according to the attitude control command.
  • the parameters enable the control terminal to directly adjust the attitude parameters of the pan/tilt (such as one or more of the yaw parameter, the pitch parameter and the roll parameter), enriching the control mode of the gimbal and avoiding the attitude adjustment of the gimbal Compared with the lag of the attitude adjustment of the unmanned aircraft body, the phenomenon that the camera photographed by the shooting device does not “follow the hand” is avoided; in addition, in this way, the attitude of the gimbal no longer follows the unmanned aircraft body.
  • the attitude parameters of the pan/tilt such as one or more of the yaw parameter, the pitch parameter and the roll parameter
  • FIG. 8 is a flowchart of a control method according to another embodiment of the present invention. As shown in FIG. 8, the method in this embodiment may include:
  • Step S801 Receive an attitude control instruction sent by the control terminal.
  • the attitude control instruction includes at least one of the following:
  • Step S802 adjusting an attitude parameter of the pan/tilt on the unmanned aerial vehicle according to the attitude control instruction.
  • the attitude parameter includes at least one of a yaw parameter and a roll parameter.
  • the attitude parameter further includes a pitch parameter.
  • the yaw parameter is at least one of a yaw angle and a yaw rotation speed.
  • the pitch parameter is at least one of a pitch angle and a pitch rotation speed.
  • the roll parameter is at least one of a pitch angle and a roll speed.
  • the attitude control command sent by the control terminal is received, and the attitude parameter of the pan/tilt on the unmanned aerial vehicle is adjusted according to the attitude control instruction, including at least one of the following:
  • the pitch control command includes: a lever amount generated by operating a pitch lever or a tilt button of the control terminal.
  • the roll control command includes: a control lever amount generated by operating a roll bar or a roll button of the control terminal.
  • the yaw control command includes: a lever amount generated by operating a yaw lever or a yaw button of the control terminal.
  • the attitude control command is sent to the unmanned aerial vehicle through the ground control terminal, and the flight controller in the unmanned aerial vehicle or the control component that separately controls the pan/tilt rotation directly adjusts the attitude of the pan/tilt according to the attitude control command.
  • the parameters enable the control terminal to directly adjust the attitude parameters of the pan/tilt (such as one or more of the yaw parameter, the pitch parameter and the roll parameter), enriching the control mode of the gimbal.
  • FIG. 9 is a flowchart of a control method according to another embodiment of the present invention. As shown in FIG. 9, on the basis of the embodiment shown in FIG. 8, the method in this embodiment may include:
  • Step S901 Receive an attitude control instruction sent by the control terminal.
  • Step S902 adjusting the attitude parameter of the pan/tilt on the unmanned aerial vehicle according to the attitude control instruction.
  • Step S903 Acquire an attitude parameter of the PTZ, and adjust an attitude parameter of the UAV according to the attitude parameter of the PTZ.
  • one or more of the yaw parameter, the pitch parameter and the roll parameter of the UAV are adjusted according to one or more of a yaw parameter, a pitch parameter and a roll parameter of the pan/tilt.
  • the attitude parameter of the UAV is adjusted according to the attitude parameter of the PTZ, so that the tripod of the UAV is outside the shooting range of the shooting device on the PTZ.
  • the unmanned aerial vehicle may be adjusted according to the attitude parameter of the pan/tilt
  • the attitude parameter is such that the pan/tilt does not limit when it is rotated.
  • the attitude parameter of the unmanned aerial vehicle is obtained by the provided control method, and the attitude parameter of the unmanned aerial vehicle is adjusted according to the attitude parameter of the gimbal, thereby ensuring one of the yaw, pitch and roll of the gimbal.
  • the pan/tilt will not be limited during the rotation.
  • the attitude parameters of the unmanned aerial vehicle can be adjusted through the attitude parameters of the gimbal, so that the tripod of the UAV will not be captured. The user does not need to manually adjust the posture of the unmanned aerial vehicle to move the tripod of the unmanned aerial vehicle out of the shooting picture, which simplifies the operation process and reduces the professional requirements for the user.
  • the acquiring the attitude parameter of the cloud platform may be: acquiring the yaw parameter of the cloud platform; and correspondingly, adjusting the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the cloud platform, Specifically, the yaw parameter of the unmanned aerial vehicle may be adjusted according to the yaw parameter of the pan/tilt. Specifically, according to the yaw parameter of the pan/tilt, the unmanned aerial vehicle is controlled to rotate in a yaw direction thereof.
  • adjusting the yaw angle of the UAV according to the yaw angle of the PTZ to make the yaw angle of the UAV and the The yaw angle of the gimbal is the same.
  • the control method provided by the embodiment obtains the yaw parameter of the unmanned aerial vehicle and controls the yaw parameter of the unmanned aerial vehicle according to the yaw parameter of the gimbal, that is, the yaw parameter of the unmanned aerial vehicle passively follows the pan/tilt
  • the change of the yaw parameter changes, so that the rotation of the gimbal in the yaw direction is not restricted by the yaw parameters of the UAV, and the rotation of the gimbal in the yaw direction will not be limited, and according to the yaw of the gimbal
  • the parameters adjust the yaw parameters of the UAV and control the UAV to rotate in the yaw direction, so that the UAV's tripod is not in the shooting picture, and the user does not need to manually control the yaw parameters of the UAV, simplifying the control.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores program instructions, and the program execution may include the corresponding embodiment in FIG. 1-7 or 8-9. Control some or all of the steps of the method.
  • FIG. 10 is a structural diagram of a control apparatus according to an embodiment of the present invention.
  • the control apparatus 70 includes an acquisition module 71 and a control module 72.
  • the obtaining module 71 is configured to acquire the attitude parameter of the cloud platform on the unmanned aerial vehicle;
  • the control module 72 is configured to adjust the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the cloud platform.
  • the posture parameter includes one or more of a yaw parameter, a pitch parameter, and a roll parameter.
  • control module 72 is specifically configured to adjust one of a yaw parameter, a pitch parameter, and a roll parameter of the UAV according to one or more of a yaw parameter, a pitch parameter, and a roll parameter of the PTZ. Or a variety.
  • control module 72 is further configured to adjust the attitude parameter of the UAV according to the attitude parameter of the PTZ to enable the shooting of the UAV's tripod on the PTZ. Outside the scope.
  • control module 72 is further configured to adjust the attitude parameter of the UAV according to the attitude parameter of the PTZ, so that the PTZ does not limit when rotating.
  • control device provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 1 and are not described herein again.
  • the control device provided by the embodiment obtains the attitude parameter of the cloud platform on the unmanned aerial vehicle, and adjusts the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the cloud platform, that is, the attitude parameter of the unmanned aerial vehicle passively follows the attitude parameter of the cloud platform.
  • Embodiments of the present invention provide a control apparatus.
  • the obtaining module 71 is specifically configured to acquire the yaw parameter of the cloud platform on the unmanned aerial vehicle;
  • the control module 72 is specifically configured to adjust a yaw parameter of the unmanned aerial vehicle according to a yaw parameter of the pan/tilt.
  • the control module 72 is specifically configured to control the rotation of the UAV in its yaw direction according to the yaw parameter of the PTZ, so that the UAV rotates following the PTZ.
  • the yaw parameter is at least one of a yaw angle and a yaw rotation speed.
  • the control module 72 may adjust the yaw angle of the unmanned aerial vehicle according to the yaw angle of the pan/tilt to make the yaw angle of the unmanned aerial vehicle and the yaw angle of the gimbal coincide.
  • control device provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 4, and details are not described herein again.
  • the control device obtains the yaw parameter of the unmanned aerial vehicle and adjusts the yaw parameter of the unmanned aerial vehicle according to the yaw parameter of the gimbal, that is, the yaw parameter of the unmanned aerial vehicle passively follows the pan-tilt
  • the change of the yaw parameter changes, so that the rotation of the gimbal in the yaw direction is not restricted by the yaw parameters of the UAV, and the rotation of the gimbal in the yaw direction will not be limited, and according to the yaw of the gimbal
  • the parameters adjust the yaw parameters of the UAV and control the UAV to rotate in the yaw direction, so that the UAV's tripod is not in the shooting picture, the user does not need to manually adjust the yaw parameters of the UAV, simplifying the control.
  • Embodiments of the present invention provide a control apparatus.
  • the obtaining module 71 is specifically configured to acquire the pitch parameter of the pan/tilt on the unmanned aerial vehicle; the control module 72 is specifically configured to adjust the none according to the pitch parameter of the pan/tilt.
  • the pitch parameter is at least one of a pitch angle and a pitch rotation speed.
  • control device provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 5, and details are not described herein again.
  • the control device provided by the embodiment adjusts the pitch parameter of the unmanned aerial vehicle according to the pitch parameter of the gimbal by acquiring the pitch parameter of the pan/tilt on the unmanned aerial vehicle, that is, the pitch parameter of the unmanned aerial vehicle passively follows the change of the pitch parameter of the gimbal.
  • the change makes the rotation of the gimbal in the pitch direction not restricted by the pitch parameters of the UAV, and the rotation of the gimbal in the pitch direction does not limit.
  • Embodiments of the present invention provide a control apparatus.
  • the control device 70 further includes: a receiving module 73, the receiving module 73 is configured to receive the attitude control command sent by the control terminal; and the control module 72 further uses Adjusting the attitude parameter of the pan/tilt according to the attitude control command.
  • the attitude control command includes at least one of: an angle command for adjusting a posture parameter of the pan/tilt; and an angular velocity command for adjusting a posture parameter of the pan/tilt.
  • the receiving module 73 is specifically configured to receive at least one of the following instructions: the pitch control command, the roll control command, and the yaw control command sent by the control terminal; and correspondingly, the control module 72 is specifically configured to: at least one of the following:
  • the yaw parameter of the pan/tilt is adjusted according to a yaw control command sent by the control terminal.
  • the pitch control command includes: a lever amount generated by operating a pitch lever or a tilt button of the control terminal.
  • the roll control command includes: a control lever amount generated by operating a roll bar or a roll button of the control terminal.
  • the yaw control command includes: a lever amount generated by operating a yaw lever or a yaw button of the control terminal.
  • control module 72 is further configured to control the posture of the pan/tilt to enable the photographing device on the pan/tilt to perform tracking shooting on the target object.
  • control device provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 7, and are not described herein again.
  • the control device provided in this embodiment sends an attitude control command by acquiring the control terminal of the ground, and directly adjusts the attitude parameter of the pan/tilt according to the attitude control command, so that the control terminal can directly adjust the attitude parameter of the pan/tilt (eg, yaw parameter, pitch)
  • attitude parameter of the pan/tilt eg, yaw parameter, pitch
  • One or more of the parameters and roll parameters enrich the control mode of the gimbal.
  • FIG. 12 is a structural diagram of a control device according to another embodiment of the present invention.
  • the control device 80 includes a receiving module 81 and a control module 82.
  • the receiving module 81 is configured to receive a posture control command sent by the control terminal.
  • the control module 82 is configured to adjust the attitude parameter of the pan/tilt on the unmanned aerial vehicle according to the attitude control instruction; the attitude parameter includes at least one of a yaw parameter and a roll parameter. Additionally, in other embodiments, the attitude parameter further includes a pitch parameter.
  • the yaw parameter is at least one of a yaw angle and a yaw rotation speed
  • the pitch parameter is at least one of a pitch angle and a pitch rotation speed
  • the roll parameter is at least It includes one of a pitch angle and a roll speed.
  • the attitude control command includes at least one of: an angle command for adjusting a posture parameter of the pan/tilt; an angular velocity command for adjusting a posture parameter of the pan/tilt.
  • the receiving module 81 is specifically configured to receive at least one of the following commands: the pitch control command, the roll control command, and the yaw control command; and correspondingly, the control module 82 is specifically configured to: at least one of: sending according to the control terminal a pitch control command, adjusting a pitch parameter of the pan/tilt; adjusting a roll parameter of the pan/tilt according to a roll control command sent by the control terminal; adjusting a pitch of the pan/tilt according to a yaw control command sent by the control terminal Navigation parameters.
  • the pitch control command includes: a lever amount generated by operating a pitch lever or a tilt button of the control terminal.
  • the roll control command includes: a control lever amount generated by operating a roll bar or a roll button of the control terminal.
  • the yaw control command includes: a lever amount generated by operating a yaw lever or a yaw button of the control terminal.
  • control device provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 8 and are not described herein again.
  • the control device provided in this embodiment sends an attitude control command by acquiring the control terminal of the ground, and directly adjusts the attitude parameter of the pan/tilt according to the attitude control command, so that the control terminal can directly adjust the attitude parameter of the pan/tilt (eg, yaw parameter, pitch)
  • the control terminal can directly adjust the attitude parameter of the pan/tilt (eg, yaw parameter, pitch)
  • the attitude parameter of the pan/tilt eg, yaw parameter, pitch
  • One or more of the parameters and roll parameters enrich the control mode of the gimbal. Avoiding the attitude adjustment of the gimbal compared to unmanned flight
  • the hysteresis of the posture adjustment of the fuselage avoids the phenomenon of “not following hands” on the picture taken by the shooting device; in addition, in this way, the posture of the gimbal no longer follows the change of the posture of the unmanned aircraft body.
  • Embodiments of the present invention provide a control apparatus.
  • the control device 80 further includes: an acquisition module 83, the acquisition module 83 is configured to acquire the posture parameter of the pan/tilt; and the control module 82 is specifically used. Adjusting the attitude parameter of the UAV according to the attitude parameter of the pan/tilt.
  • control module 82 is specifically configured to adjust the yaw parameter, the pitch parameter, and the roll parameter of the UAV according to one or more of a yaw parameter, a pitch parameter, and a roll parameter of the PTZ. One or more.
  • control module 82 is specifically configured to adjust the attitude parameter of the UAV according to the attitude parameter of the PTZ to make the shooting range of the UAV's tripod on the PTZ. Outside.
  • control module 82 is specifically configured to adjust the attitude parameter of the UAV according to the attitude parameter of the PTZ, so that the PTZ does not limit when rotating.
  • the obtaining module 83 is specifically configured to acquire the yaw parameter of the cloud platform.
  • the control module 82 is specifically configured to adjust the yaw parameter of the unmanned aerial vehicle according to the yaw parameter of the pan/tilt.
  • the control module 82 is specifically configured to control the rotation of the UAV in its yaw direction according to the yaw parameter of the PTZ, so that the UAV rotates following the PTZ.
  • control module 82 is specifically configured to adjust a yaw angle of the unmanned aerial vehicle according to a yaw angle of the pan/tilt, so that a yaw angle of the unmanned aerial vehicle and a yaw angle of the gimbal are consistent. .
  • control device provided by the embodiment of the present invention are similar to those of the embodiment shown in FIG. 1 and FIG. 4, and details are not described herein again.
  • FIG. 14 is a structural diagram of a control device according to an embodiment of the present invention, where the control device may be a flight controller, or may have other Processing device of the capability, as shown in FIG. 14, the control device 90 includes one or more processors 91, which work alone or in cooperation, and one or more processors 91 are used to acquire the attitude parameters of the pan/tilt on the UAV; The attitude parameter of the pan/tilt adjusts the attitude parameter of the unmanned aerial vehicle.
  • the posture parameter includes one or more of a yaw parameter, a pitch parameter, and a roll parameter.
  • the processor 91 when the processor 91 adjusts the posture parameter of the UAV according to the attitude parameter of the PTZ, the processor 91 is specifically configured to: according to one or more of a yaw parameter, a pitch parameter, and a roll parameter of the PTZ Adjust one or more of the yaw parameter, pitch parameter, and roll parameter of the UAV.
  • the processor 91 when the processor 91 adjusts the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the pan/tilt, the processor 91 is specifically configured to: adjust the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the pan/tilt , so that the tripod of the UAV is outside the shooting range of the shooting device on the gimbal.
  • the processor 91 when the processor 91 adjusts the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the pan/tilt, the processor 91 is specifically configured to: adjust the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the cloud platform. So that the pan/tilt does not limit when it is rotating.
  • control device provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 1 and are not described herein again.
  • the control device provided by the embodiment obtains the attitude parameter of the cloud platform on the unmanned aerial vehicle, and adjusts the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the cloud platform, that is, the attitude parameter of the unmanned aerial vehicle passively follows the attitude parameter of the cloud platform.
  • Embodiments of the present invention provide a control device.
  • the control device may be specifically a flight controller.
  • the utility model is specifically configured to: acquire the cloud platform on the unmanned aerial vehicle Yaw parameter
  • the processor 91 is configured to adjust the yaw parameter of the UAV according to the yaw parameter of the PTZ when the attitude parameter of the UAV is adjusted according to the attitude parameter of the PTZ.
  • the method is specifically configured to: control the unmanned aerial vehicle to be biased according to the yaw parameter of the pan/tilt Rotation in the direction of the air to cause the UAV to follow the gimbal.
  • the yaw parameter is at least one of a yaw angle and a yaw rotation speed.
  • the processor 91 can adjust the yaw angle of the UAV according to the yaw angle of the pan/tilt to make the yaw angle of the UAV and the yaw angle of the PTZ coincide.
  • control device provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 4, and details are not described herein again.
  • the control device adjusts the yaw parameter of the unmanned aerial vehicle by the yaw parameter of the unmanned aerial vehicle, and adjusts the yaw parameter of the unmanned aerial vehicle according to the yaw parameter of the unmanned aerial vehicle, that is, the yaw parameter of the unmanned aerial vehicle passively follows the pan-tilt
  • the change of the yaw parameter changes, so that the rotation of the gimbal in the yaw direction is not restricted by the yaw parameters of the UAV, and the rotation of the gimbal in the yaw direction will not be limited, and according to the yaw of the gimbal
  • the parameters adjust the yaw parameters of the UAV and control the UAV to rotate in the yaw direction, so that the UAV's tripod is not in the shooting picture, the user does not need to manually adjust the yaw parameters of the UAV, simplifying the control.
  • Embodiments of the present invention provide a control device.
  • the control device may be specifically a flight controller.
  • the utility model is specifically configured to: acquire the cloud platform on the unmanned aerial vehicle
  • the pitch parameter of the unmanned aerial vehicle is adjusted according to the attitude parameter of the pan-tilt according to the attitude parameter of the pan-tilt.
  • the pitch parameter of the unmanned aerial vehicle is adjusted according to the pitch parameter of the pan-tilt.
  • the pitch parameter is at least one of a pitch angle and a pitch rotation speed.
  • control device provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 5, and details are not described herein again.
  • Embodiments of the present invention provide a control device.
  • the control device is specifically a flight controller.
  • the control device 90 further includes: a communication interface 92 communicatively coupled to the processor 91, and the communication interface 92 is configured to receive the control terminal.
  • the transmitted attitude control command; the processor 91 adjusts the attitude parameter of the pan/tilt according to the attitude control command.
  • the attitude control command includes at least one of: an angle command for adjusting a posture parameter of the pan/tilt; and an angular velocity command for adjusting a posture parameter of the pan/tilt.
  • the communication interface 92 is specifically configured to receive at least one of the following instructions: the pitch control command, the roll control command, and the yaw control command sent by the control terminal; and correspondingly, the processor 91 is specifically configured to: at least one of the following:
  • the yaw parameter of the pan/tilt is adjusted according to a yaw control command sent by the control terminal.
  • the pitch control command includes: a lever amount generated by operating a pitch lever or a tilt button of the control terminal.
  • the roll control command includes: a control lever amount generated by operating a roll bar or a roll button of the control terminal.
  • the yaw control command includes: a lever amount generated by operating a yaw lever or a yaw button of the control terminal.
  • the processor 91 is further configured to control the posture of the pan/tilt to enable the photographing device on the pan/tilt to perform tracking shooting on the target object.
  • control device provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 7, and details are not described herein again.
  • Embodiments of the present invention provide a control device.
  • the control device may be a flight controller.
  • FIG. 14 is a structural diagram of a control device according to an embodiment of the present invention.
  • the control device 90 includes one or more processors 91 and a communication interface 92, one or more.
  • the processor 91 is operated separately or in cooperation, and the processor 91 and the communication interface 92 are communicatively connected; the communication interface 92 is configured to receive the attitude control command sent by the control terminal; and the one or more processors 91 are configured to: adjust according to the attitude control instruction
  • the attitude parameter further includes a pitch parameter.
  • the yaw parameter is at least one of a yaw angle and a yaw rotation speed;
  • the pitch parameter is at least one of a pitch angle and a pitch rotation speed;
  • the roll parameter includes at least a pitch angle and a horizontal One of the rolling speeds.
  • the attitude control command includes at least one of: an angle command for adjusting a posture parameter of the pan/tilt; an angular velocity command for adjusting a posture parameter of the pan/tilt.
  • the communication interface 92 is specifically configured to receive at least one of the following commands: the pitch control command, the roll control command, and the yaw control command; and correspondingly, the processor 91 is specifically configured to: at least one of: sending according to the control terminal a pitch control command, adjusting a pitch parameter of the pan/tilt; adjusting a roll parameter of the pan/tilt according to a roll control command sent by the control terminal; adjusting a pitch of the pan/tilt according to a yaw control command sent by the control terminal Navigation parameters.
  • the pitch control command includes: a lever amount generated by operating a pitch lever or a tilt button of the control terminal.
  • the roll control command includes: a control lever amount generated by operating a roll bar or a roll button of the control terminal.
  • the yaw control command includes: a lever amount generated by operating a yaw lever or a yaw button of the control terminal.
  • control device provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 7, and details are not described herein again.
  • the control device provided by the embodiment sends an attitude control command by acquiring the control terminal of the ground, and directly adjusts the attitude parameter of the pan/tilt according to the attitude control instruction, so that the control terminal can directly adjust the attitude parameter of the pan/tilt (eg, yaw parameter, pitch)
  • attitude parameter of the pan/tilt eg, yaw parameter, pitch
  • One or more of the parameters and roll parameters enrich the control mode of the gimbal.
  • Embodiments of the present invention provide a control device.
  • the control device may be specifically a flight controller.
  • the processor 91 is further configured to acquire the attitude parameter of the pan/tilt, and adjust the posture according to the attitude parameter of the pan/tilt.
  • the attitude parameters of the unmanned aerial vehicle may be specifically a flight controller.
  • the method when the processor 91 adjusts the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the pan/tilt, the method is specifically configured to: according to one of a yaw parameter, a pitch parameter, and a roll parameter of the gimbal or A plurality of adjustments of one or more of a yaw parameter, a pitch parameter, and a roll parameter of the UAV.
  • the processor 91 when the processor 91 adjusts the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the pan/tilt, the processor 91 is specifically configured to: adjust the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the pan/tilt , so that the tripod of the UAV is outside the shooting range of the shooting device on the gimbal.
  • the processor 91 when the processor 91 adjusts the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the pan/tilt, the processor 91 is specifically configured to: adjust the attitude parameter of the unmanned aerial vehicle according to the attitude parameter of the cloud platform. So that the pan/tilt does not limit when it is rotating.
  • the processor 91 is configured to: obtain the yaw parameter of the pan/tilt when acquiring the posture parameter of the pan/tilt; correspondingly, the processor 91 adjusts the unmanned aerial vehicle according to the attitude parameter of the pan/tilt
  • the attitude parameter is specifically used to: adjust the yaw parameter of the unmanned aerial vehicle according to the yaw parameter of the pan/tilt.
  • the method is specifically configured to: control, according to the yaw parameter of the pan/tilt, the yaw of the unmanned aerial vehicle Rotation in the direction to cause the UAV to follow the gimbal.
  • the processor 91 is specifically configured to adjust a yaw angle of the unmanned aerial vehicle according to a yaw angle of the pan/tilt, so that a yaw angle of the unmanned aerial vehicle and a yaw angle of the gimbal are consistent. .
  • control device provided by the embodiment of the present invention are similar to those of the embodiment shown in FIG. 1 and FIG. 4, and details are not described herein again.
  • the embodiment of the invention provides a control terminal.
  • the control terminal is used to adjust the attitude parameter of the pan/tilt or the attitude parameter of the unmanned aerial vehicle.
  • the control terminal has two operation modes, one of which is used to adjust the attitude parameters of the gimbal (pTZ control mode), such as the pitch parameter, the roll parameter, and the yaw parameter of the pan/tilt; the other operation mode is used for Adjust the attitude parameters of the UAV (aircraft control mode), such as the pitch parameters, roll parameters, and yaw parameters of the UAV.
  • the control terminal is provided with a mode switching button or a button, and the user changes or switches the operation mode of the control terminal by pressing the mode switching button or the button.
  • the control unit that individually controls the pan/tilt rotation transmits an attitude control command to cause the flight controller or the control unit that individually controls the pan/tilt rotation to adjust the attitude parameter of the pan/tilt according to the attitude control command.
  • the attitude control command includes at least one of: an angle command for adjusting a posture parameter of the pan/tilt; an angular velocity command for adjusting a posture parameter of the pan/tilt.
  • the attitude control command may be one or more of a pitch control command, a roll control command, and a yaw control command; if the control terminal sends a pitch control command to a flight controller or a control component that individually controls the pan/tilt rotation, the flight control a control unit that individually controls the rotation of the gimbal to adjust the pitch parameter of the pan/tilt; if the control terminal sends a roll control command to the flight controller or the control unit that individually controls the pan/tilt rotation, the flight controller or the separate control pan/tilt
  • the rotating control component adjusts the roll parameter of the pan/tilt; if the control terminal sends a yaw control command to the flight controller or the control component that individually controls the pan/tilt rotation, the flight controller or the control component that individually controls the pan/tilt rotation adjusts The yaw parameter of the gimbal.
  • the attitude control command is sent to the flight controller to cause the flight controller to adjust the attitude parameter of the unmanned aerial vehicle according to the attitude control command.
  • the attitude control command includes at least one of: an angle command for adjusting an attitude parameter of the unmanned aerial vehicle; and an angular velocity command for adjusting an attitude parameter of the unmanned aerial vehicle.
  • the attitude control command may be one or more of a pitch control command, a roll control command, and a yaw control command; if the control terminal sends a pitch control command to the flight controller, the flight controller adjusts the pitch of the unmanned aerial vehicle a parameter; if the control terminal sends a roll control command to the flight controller, the flight controller adjusts a roll parameter of the unmanned aerial vehicle; if the control terminal sends a yaw control command to the flight controller, the flight controller adjusts the Yaw parameters for unmanned aerial vehicles.
  • the pitch control command includes a lever amount generated by operating a pitch lever or a tilt button of the control terminal.
  • the roll control command includes a lever amount that is generated by operating a roll bar or a roll button of the control terminal.
  • the yaw control command includes a lever amount that is generated by operating a yaw lever or a yaw button of the control terminal.
  • control terminals may include, but are not limited to, remote controls, smart phones/mobile phones, tablets, personal digital assistants (PDAs), laptop computers, desktop computers, media content players, video game stations/systems, virtual reality systems, Augmented reality systems, wearable devices (for example, Watches, glasses, gloves, headwear (eg, hats, helmets, virtual reality headsets, augmented reality headsets, head mounted devices (HMD), headbands), pendants, armbands, leg loops, shoes, vests), A gesture recognition device, a microphone, any electronic device capable of providing or rendering image data, or a combination thereof.
  • PDAs personal digital assistants
  • laptop computers desktop computers
  • media content players for example, Watches, glasses, gloves, headwear (eg, hats, helmets, virtual reality headsets, augmented reality headsets, head mounted devices (HMD), headbands), pendants, armbands, leg loops, shoes, vests)
  • HMD head mounted devices
  • a gesture recognition device for example, Watches, glasses,
  • the control terminal provided by the embodiment sends a posture control command to the unmanned aerial vehicle, and the flight controller of the unmanned aerial vehicle or the control component that individually controls the rotation of the pan/tilt adjusts the attitude parameter of the pan/tilt according to the attitude control command, so that the control terminal can Directly adjusting the attitude parameters of the gimbal, the flight controller adjusts the attitude parameters of the unmanned aerial vehicle according to the attitude parameters of the unmanned aerial vehicle, and improves the timeliness of the control terminal to control the gimbal. And flexibility.
  • Embodiments of the present invention provide an unmanned aerial vehicle.
  • 15 is a structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • the unmanned aerial vehicle 100 includes: a fuselage, a power system, and a control device 118.
  • the power system includes at least one of the following: a motor 107.
  • a propeller 106 and an electronic governor 117, the power system is mounted to the fuselage for providing flight power; and the control device 118 is the control device of any of the embodiments of FIG.
  • the control device 118 may specifically be a flight controller.
  • the unmanned aerial vehicle 100 further includes: a sensing system 108, a communication system 110, a supporting device 102, and a photographing device 104, wherein the sensing system is configured to detect the speed, acceleration, and The attitude parameter (pitch angle, roll angle, yaw angle, etc.) or the attitude parameter of the pan/tilt (pitch angle, roll angle, yaw angle, etc.), etc.
  • the support device 102 may specifically be a pan/tilt
  • the communication system 110 may specifically Including a receiver and/or a transmitter for receiving a wireless signal transmitted by an antenna 114 of the ground station 112, and the communication system 110 can also transmit a wireless signal (such as image information, status information of the unmanned aerial vehicle, etc.) to the ground station, 116 denotes electromagnetic waves generated during communication between the communication system 110 and the antenna 114.
  • control device 118 The specific principles and implementations of the control device 118 provided by the embodiment of the present invention are similar to the control device in the foregoing embodiment of FIG. 14 and will not be further described herein.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely Schematically, for example, the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be Ignore, or not execute.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明实施例提供一种控制方法、装置、设备及无人飞行器,该方法包括:获取无人飞行器(12)上云台(14)的姿态参数;按照云台(14)的姿态参数调整无人飞行器(12)的姿态参数。本发明实施例通过无人飞行器(12)的姿态参数被动跟随云台(14)的姿态参数的变化而变化,丰富了云台(14)的控制方式,提高了云台(14)控制方式的灵活性,使得云台(14)的姿态调整相比于无人飞行器(12)机身的姿态调整,不存在滞后;同时避免了在惯性作用下云台(14)可能会产生的超调的问题,这样云台(14)可以更加平稳地转动和停止转动,保证云台(14)上的拍摄设备(15)的平稳,提高了拍摄设备(15)的拍摄画面的稳定性。

Description

控制方法、装置、设备及无人飞行器 技术领域
本发明实施例涉及无人机领域,尤其涉及一种控制方法、装置、设备及无人飞行器。
背景技术
无人飞行器安装有云台,云台上固定有拍摄设备如相机、摄像机等,通过调整云台的姿态例如俯仰角和航偏角,拍摄设备可处于不同的姿态,并且拍摄设备在不同姿态下可拍摄到不同视角的图像或视频。
目前,云台的姿态(例如偏航角或横滚角)是跟随着无人飞行器的姿态变化而调整的,具体的,地面控制终端向无人飞行器发送控制指令,该控制指令指示无人飞行器调整其飞行姿态(例如航偏角),无人飞行器根据控制指令调整机身的姿态后,云台的姿态是跟随着无人飞行器的姿态变化而调整的,这样一方面云台的控制方式不灵活,另一方面使得云台的姿态调整相比于无人飞行器机身的姿态调整存在较大的滞后,另外,当无人飞行器的机身停止姿态调整时,在惯性作用下云台可能还会继续调整其姿态,导致云台出现一定的超调,从而导致拍摄设备产生晃动,造成了拍摄画面的抖动,降低了画面质量。
发明内容
本发明实施例提供一种控制方法、装置、设备及无人飞行器,以提高拍摄设备的拍摄画面的稳定性和云台控制方式的灵活性。
本发明实施例的一个方面是提供一种控制方法,包括:
获取无人飞行器上云台的姿态参数;
按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
本发明实施例的另一个方面是提供一种控制方法,包括:
接收控制终端发送的姿态控制指令;
根据所述姿态控制指令调整无人飞行器上的云台的姿态参数;
所述姿态参数至少包括偏航参数、横滚参数中的一种。
本发明实施例的另一个方面是提供一种控制装置,包括:
获取模块,用于获取无人飞行器上云台的姿态参数;
控制模块,用于按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
本发明实施例的另一个方面是提供一种控制装置,包括:
接收模块,用于接收控制终端发送的姿态控制指令;
控制模块,用于根据所述姿态控制指令调整无人飞行器上的云台的姿态参数;
所述姿态参数至少包括偏航参数、横滚参数中的一种。
本发明实施例的另一个方面是提供一种控制设备,包括一个或多个处理器,单独或协同工作,所述一个或多个处理器用于:
获取无人飞行器上云台的姿态参数;
按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
本发明实施例的另一个方面是提供一种控制设备,包括:通讯接口、一个或多个处理器,单独或协同工作,所述通讯接口和所述处理器通讯连接;
所述通讯接口用于接收控制终端发送的姿态控制指令;
所述一个或多个处理器用于:根据所述姿态控制指令调整无人飞行器上的云台的姿态参数;
所述姿态参数至少包括偏航参数、横滚参数中的一种。
本发明实施例的另一个方面是提供一种无人飞行器,包括:
机身;
动力系统,安装在所述机身,用于提供飞行动力;
云台,安装在所述机身,用于固定拍摄设备;
以及所述的控制设备。
本实施例提供的控制方法、装置、设备及无人飞行器,通过获取无人飞行器上云台的姿态参数,并按照云台的姿态参数调整无人飞行器的姿态参数,即无人飞行器的姿态参数被动跟随云台的姿态参数的变化而变化,这样云台的控制方式更加简便和直接,丰富了云台的控制方式,提高了云 台控制方式的灵活性,同时使得云台的姿态调整相比于无人飞行器机身的姿态调整,不存在滞后;另外避免了云台的姿态跟随着无人飞行器的姿态变化而调整时,在惯性作用下云台可能产生的超调的问题,这样云台可以更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的控制方法的流程图;
图2A为本发明实施例提供的无人飞行器和拍摄的目标物体的示意图;
图2B为本发明实施例提供的无人飞行器和拍摄的目标物体的示意图;
图2C为本发明实施例提供的无人飞行器和拍摄的目标物体的示意图;
图3为本发明实施例提供的无人飞行器和拍摄的目标物体的示意图;
图4为本发明另一实施例提供的控制方法的流程图;
图5为本发明另一实施例提供的控制方法的流程图;
图6A为本发明实施例提供的无人飞行器和拍摄的目标物体的示意图;
图6B为本发明实施例提供的无人飞行器和拍摄的目标物体的示意图;
图7为本发明另一实施例提供的控制方法的流程图;
图8为本发明另一实施例提供的控制方法的流程图;
图9为本发明另一实施例提供的控制方法的流程图;
图10为本发明实施例提供的控制装置的结构图;
图11为本发明另一实施例提供的控制装置的结构图;
图12为本发明另一实施例提供的控制装置的结构图;
图13为本发明另一实施例提供的控制装置的结构图;
图14为本发明实施例提供的控制设备的结构图;
图15为本发明实施例提供的无人飞行器的结构图。
附图标记:
1-Roll轴        2-Pitch轴             3-Yaw轴
11-螺旋桨        12-无人飞行器   13-脚架
14-云台          15-拍摄设备   16-拍摄镜头   18-拍摄范围
17-光轴方向       20-目标物体          60-无人飞行器
61-机头朝向      63-机头             64-顺时针方向弧线
65-逆时针方向弧线     66-拍摄设备的拍摄方向
70-控制装置   71-获取模块   72-控制模块  73-接收模块
80-控制装置   81-接收模块   82-控制模块  83-获取模块
90-控制设备   91-处理器    92-通讯接口
100-无人飞行器   107-电机    106-螺旋桨
117-电子调速器  118-控制设备   108-传感系统
110-通信系统    102-支撑设备     104-拍摄设备
112-地面站      114-天线         116-电磁波
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的 情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种控制方法。图1为本发明实施例提供的控制方法的流程图。如图1所示,本实施例中的控制方法,可以包括:
步骤S101、获取无人飞行器上云台的姿态参数。
如图2A所示,10表示无人飞行器的机头,11表示无人飞行器的螺旋桨,12表示无人飞行器的机身,14表示无人飞行器上的云台,15表示无人飞行器搭载的拍摄设备,拍摄设备15通过云台14与无人飞行器的机身连接,16表示拍摄设备的拍摄镜头,17表示拍摄镜头16的光轴方向,光轴方向17指向拍摄的目标物体20,用于表示拍摄设备16的拍摄方向,20表示拍摄镜头16拍摄的目标物体。
在本实施例中,云台14可以是三轴云台,即云台14可以分别以云台的Yaw轴、Pitch轴、Yaw轴为轴线转动。如图2A所示,1表示云台的Roll轴,2表示表示云台的Pitch轴,3表示云台的Yaw轴,云台以Roll轴为转动轴线转动时,云台的横滚角发生变化,云台以Pitch轴为转动轴线转动时,云台的俯仰角发生变化,云台以Yaw轴为转动轴线转动时,云台的偏航角发生变化。当云台14以云台的Yaw轴、Pitch轴、Yaw轴中的一个或多个为轴线转动时,拍摄设备15跟随云台14的转动而转动,使得拍摄设备15可以从不同的拍摄方向和拍摄角度对目标物体20进行拍摄。
本实施例的执行主体可以是无人飞行器的飞行控制器,也可以是其他有处理能力的控制单元,在本实施例中,云台的姿态参数包括偏航参数、俯仰参数和横滚参数中的一种或多种,其中,偏航参数可以是云台的偏航角,也可以是云台的偏航转动速度;俯仰参数可以是云台的俯仰角,也可以是云台的俯仰转动速度;横滚参数可以是云台的横滚角,也可以是云台的横滚转动速度。
在本实施例中,云台发生转动后,可将其转动后的姿态角例如偏航角、俯仰角和横滚角中的一个或多个发送给无人飞行器的飞行控制器,无人飞行器的飞行控制器也可以主动地获取云台转动后的姿态角,例如偏航角、俯仰角和横滚角中的一个或多个。或者,云台在转动过程中,将其在转动方向上的转动速度发送给无人飞行器的飞行控制器,例如,云台14以Yaw轴为转动轴线转动,即云台在偏航方向上转动时,云台可以将其偏航角实 时发送给无人飞行器的飞行控制器,也可以将云台14以Yaw轴为转动轴线转动的角速度发送给飞行控制器,另外,云台14以Pitch或Roll轴为转动轴线转动的角速度发送给飞行控制器。
步骤S102、按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
在无人飞行器飞行时,无人飞行器的姿态参数包括偏航参数、俯仰参数和横滚参数中的一种或多种,其中,偏航参数可以是无人飞行器的偏航角,也可以是无人飞行器的偏航转动速度;俯仰参数可以是无人飞行器的俯仰角,也可以是无人飞行器的俯仰转动速度;横滚参数可以是无人飞行器的横滚角,也可以是无人飞行器的横滚转动速度。在本实施例中,无人飞行器的飞行控制器可根据云台14的姿态参数调整无人飞行器的姿态参数。
如图2A所示,o表示无人飞行器机身的中心,其中所述中心可以为无人机飞行器的质心,则过中心o指向无人飞行器机头10的方向是无人飞行器对应的机体坐标系的X轴,如箭头4所示;过中心o指向无人飞行器机身12右侧的方向是机体坐标系的Y轴,如箭头5所示;过中心o指向无人飞行器机身12下方的方向是机体坐标系的Z轴,如箭头6所示。具体的,机体坐标系的X轴、Y轴和Z轴遵循右手定则。其中,机体坐标系的X轴为无人飞行器的Roll轴,机体坐标系的Y轴为无人飞行器的Pitch轴,机体坐标系的Z轴为无人飞行器的Yaw轴。
飞行控制器根据云台14的姿态参数调整无人飞行器的姿态参数的可实现方式包括如下几种:
第一种:
按照云台的偏航参数、俯仰参数和横滚参数中的一种或多种控制无人飞行器的偏航参数、俯仰参数和横滚参数中的一种或多种。
具体的,飞行控制器根据云台14的偏航参数调整无人飞行器的偏航参数;根据云台14的俯仰参数调整无人飞行器的俯仰参数;根据云台14的横滚参数调整无人飞行器的横滚参数。
例如,当云台以云台的Yaw轴为转动轴线转动时,飞行控制器可控制无人飞行器跟随云台的转动而转动,即控制无人飞行器的机身也以无人机 飞行器的Yaw轴为转动轴线转动。可选的,根据云台以云台的Yaw轴为转动轴线转动的角速度,调整无人飞行器以无人机飞行器的Yaw轴为转动轴线转动的角速度,或者当云台以云台的Yaw轴为转动轴线转动时,根据云台的偏航角实时调整无人飞行器的偏航角。同理,当云台以云台的Roll轴或Pitch轴为转动轴线转动时,相应的,控制无人飞行器的机身也以无人飞行器的Roll轴或Pitch轴为转动轴线转动。
另外,在其他实施例中,当云台同时以云台的Roll轴和Pitch轴为转动轴线转动时,相应的,控制无人飞行器的机身同时以无人飞行器的Roll轴和Pitch轴为转动轴线转动。
此外,在其他实施例中,当云台同时以云台的Roll轴和Pitch轴为转动轴线转动时,相应的,控制无人飞行器的机身只以无人飞行器的Roll轴为转动轴线转动,或者控制无人飞行器的机身只以无人飞行器的Pitch轴为转动轴线转动。其中,具体的控制方式,本领域技术人员可以控制需要进行选取,在这里不做具体的限定。
第二种:
按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使无人飞行器的脚架在云台上的拍摄设备的拍摄范围之外。
在其他实施例中,如图2A所示,无人飞行器还设置有脚架13,当无人飞行器着陆时,脚架13可起到缓冲的作用,以使无人飞行器安全着陆,脚架13的长度可能大于拍摄设备15距离无人飞行器机身底部的距离,避免云台和/或拍摄设备碰触到地面而损坏。由于某些无人飞行器的脚架13是固定不动的,在无人飞行器进行航拍时,当云台以云台的Roll轴、Pitch轴、Yaw轴中的一个或多个轴为转动轴线转动时,脚架13可能会处于拍摄设备15的拍摄范围18内,这样可能导致拍摄设备15拍摄到脚架13,因此,飞行控制器可根据云台14的偏航参数调整无人飞行器的偏航参数,例如,当云台以云台的Yaw轴为转动轴线转动时,飞行控制器控制无人飞行器也以无人飞行器的Yaw轴为转动轴线转动,脚架13随着无人飞行器的转动而转动,这样可以将无人飞行器的脚架移出拍摄设备15的拍摄范围,从而可避免拍摄设备15拍摄到脚架13,如图2B所示,飞行控制器控制无人飞行器以机体坐标系的Z轴(如箭头6所示)即Yaw轴为转动轴线 转动,在图2A和图2B中,云台14以及拍摄设备15的姿态不变,在无人飞行器以机体坐标系的Z轴为转动轴线转动的过程中,脚架13跟随着无人飞行器的机身一起转动,并转动到拍摄设备15的拍摄范围18之外。
再如,当云台以云台的Pitch轴为转动轴线转动时,飞行控制器控制无人飞行器也以无人飞行器的Pitch轴为转动轴线转动,脚架13随着无人飞行器的转动而转动,从而可避免拍摄设备15拍摄到脚架13。如图2A所示,若云台的俯仰角为θ1,脚架13处于拍摄设备15的拍摄范围18内,在这种情况下,飞行控制器还可以根据云台的俯仰角为θ1,调整无人飞行器的俯仰角,如图2C所示,根据云台的俯仰角θ1,来控制无人飞行器的俯仰角,以使得无人飞行器的俯仰角为θ2,控制无人飞行器抬起机头后,无人飞行器的脚架随着无人飞行器的机头而抬高,这样脚架13处于拍摄设备15的拍摄范围18之外,从而避免了拍摄设备15拍摄到脚架13。在某些实施例中,飞行控制器还可以根据云台以云台的Pitch轴为轴线转动的角速度控制无人飞行器在其俯仰方向上转动,这样也可以使无人飞行器的脚架13处于拍摄设备15的拍摄范围18以外。
另外,可以根据云台的姿态参数,同时调整无人飞行器中的偏航参数和俯仰参数,以使无人飞行器的脚架不在拍摄设备的拍摄画面中。
这样,在拍摄过程中,无人飞行器会自动根据云台的姿态参数调整无人飞行器的姿态参数,保证无人飞行器的脚架不在拍摄画面中,用户无需手动地对无人飞行器的姿态进行调节,简化了操作流程,降低了对用户的专业要求。
第三种:
按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使所述云台在转动时不发生限位。
如图3所示,60表示一个四旋翼无人飞行器,63表示无人飞行器60的机头,箭头61表示机头63当前的朝向,15表示无人飞行器60上搭载的拍摄设备,拍摄设备15通过云台(未示出)搭载在无人飞行器60上,66表示拍摄设备15当前的拍摄方向,20表示拍摄的目标物体,拍摄设备15跟随拍摄目标物体20。
本实施例不限定拍摄设备15相对于无人飞行器60机身的位置,拍摄 设备15可以设置在无人飞行器60的机身上侧,也可以设置在无人飞行器60的机身下侧。
如图3所示,无人飞行器60的机身中心为点o,无人飞行器60对应的机体坐标系的X轴过点o指向无人飞行器60的机头63,机体坐标系的Y轴过点o指向无人飞行器60的机身右侧,机体坐标系的Z轴(未示出)过点o指向无人飞行器60机身下方,机体坐标系的X轴、Y轴和Z轴遵循右手定则。其中,机体坐标系的X轴为无人飞行器60的Roll轴,机体坐标系的Y轴为无人飞行器60的Pitch轴,机体坐标系的Z轴为无人飞行器60的Yaw轴。
由于拍摄设备和云台之间通过传输线连接,使得云台并不能以云台的Roll轴、Pitch轴、Yaw轴中的一个或多个轴为转动轴线无限转动,即云台以云台的Roll轴为转动轴线转动时,云台存在以云台的Roll轴为转动轴线的限位角,当云台以云台的Pitch轴为转动轴线转动时,云台存在以云台的Pitch轴为转动轴线的限位角,当云台以云台的Yaw轴为转动轴线转动时,云台存在以云台的Yaw轴为转动轴线转动的限位角,下面以云台的Yaw轴为转动轴线转动的限位角为例进行详述,下面将以云台的Yaw轴为转动轴线转动的限位角简称为云台的Yaw轴的限位角来进行示意性说明。
云台的Yaw轴的限位角是云台以云台的Yaw轴为转动轴线转动时,云台在其偏航方向上相对于机头方向可以转动的最大角度。可选的,云台的Yaw轴的限位角可以为+360度和-360度,即配置在云台上的拍摄设备15的拍摄方向在偏航方向上只能以云台的Yaw轴为转动轴线逆时针转动一圈或者顺时针转动一圈。假设从X轴正向开始沿着逆时针方向转动为负方向,从X轴正向开始沿着顺时针方向转动为正方向,则拍摄设备15的拍摄方向可以从X轴正向即0度方向沿着逆时针方向转一圈回到X轴正向即-360度,也可以从X轴正向即0度方向沿着顺时针方向转一圈回到X轴正向即+360度。
在本实施例中,若云台以云台的Yaw轴为转动轴线转动,带动拍摄设备15的拍摄方向从X轴正向即0度方向沿着顺时针方向如弧线64所示的方向转动时,飞行控制器可以实时地获取云台的偏航参数,或者云台可以 实时地将偏航参数发送给飞行控制器,其中偏航参数可以为偏航角或者偏航速度中至少一种,飞行控制器可根据所述偏航参数控制无人飞行器60同样沿着顺时针方向如弧线64所示的方向转动,避免云台以云台的Yaw轴为转动轴线转动时出现+360度的限位。
同理,若云台以云台的Yaw轴为转动轴线转动,带动拍摄设备15的拍摄方向从X轴正向即0度方向沿着逆时针方向如弧线65所示的方向转动时,飞行控制器可以实时地获取云台的偏航参数,或者云台可以实时地将偏航参数发送给飞行控制器,其中偏航参数可以为偏航角或者偏航速度中至少一种,飞行控制器可根据所述偏航参数控制无人飞行器60同样沿着逆时针方向如弧线65所示的方向转动,避免云台以Yaw轴为转动轴线转动时出现-360度的限位。
本实施例提供的控制方法,通过获取无人飞行器上云台的姿态参数,并按照云台的姿态参数调整无人飞行器的姿态参数,可以保证云台在偏航、俯仰、横滚中的一个或多个方向上转动时,云台都不会在转动的过程中发生限位,另外可以通过云台的姿态参数调整无人飞行器的姿态参数,使得无人飞行器的脚架不会拍摄画面中,用户无需手动地去调整无人飞行器的姿态去将无人飞行器的脚架移出拍摄画面,简化了操作流程,降低了对用户的专业要求。
本发明实施例提供一种控制方法。图4为本发明另一实施例提供的控制方法的流程图。如图4所示,在图1所示实施例的基础上,本实施例中的方法,可以包括:
步骤S401、获取无人飞行器上云台的偏航参数。
在本实施例中,地面的控制终端例如遥控器可用于调整云台的偏航参数,例如,用户操控控制终端的偏航杆或偏航按键时,控制终端可以包括遥控器,其中遥控器产生控制杆量,并将该控制杆量发送给飞行控制器或单独控制云台转动的控制部件,飞行控制器或该控制部件接收到遥控器发送的控制杆量后,控制云台以云台的Yaw轴为转动轴线转动。在该控制部件控制云台以云台的Yaw轴为转动轴线转动的过程中,该控制部件可将云台的偏航参数实时的发送给飞行控制器,该偏航参数可以是云台的偏航 角,也可以是云台的偏航转动速度。
另外,在其他实施例中,拍摄设备还可以对目标物体跟踪拍摄,在跟踪拍摄过程中,云台在其偏航方向上转动,此时,飞行控制器或单独控制云台转动的控制部件可以实时地获取云台的偏航参数,其中偏航参数可以为偏航角或者偏航速度中至少一种。
步骤S402、按照所述云台的偏航参数调整所述无人飞行器的偏航参数。
飞行控制器获取到云台的偏航参数后,按照云台的偏航参数调整无人飞行器的偏航参数,具体的,飞行控制器按照云台的偏航参数,控制无人飞行器在其偏航方向上转动,即控制无人飞行器以无人飞行器的Yaw轴为转动轴线转动,使得无人飞行器在偏航方向跟随云台的转动而转动。
可选的,无人飞行器和云台在以各自的Yaw轴为转动轴线转动的过程中,无人飞行器的转动方向和云台的转动方向一致,飞行控制器按照云台的偏航角调整无人飞行器的偏航角,以使无人飞行器的偏航角和云台的偏航角一致。或者,在其他实施例中,飞行控制器也可以按照云台的偏航转动速度调整无人飞行器的偏航转动速度,以使无人飞行器的偏航转动速度和云台的偏航转动速度保持一致。
本实施例提供的控制方法,通过获取无人飞行器上云台的偏航参数,按照云台的偏航参数调整无人飞行器的偏航参数,即无人飞行器的偏航参数被动跟随云台的偏航参数的变化而变化,使得云台在偏航方向的转动不受无人飞行器的偏航参数的限制,云台在偏航方向的转动不会发生限位。另外,相比于云台的偏航参数被动跟随无人飞行器的偏航参数的变化而变化,避免了当无人飞行器以机身的Yaw轴停止转动时,在惯性作用下云台在偏航方向上出现超调的现象,这样云台在偏航方向上可以更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
本发明实施例提供一种控制方法。图5为本发明另一实施例提供的控制方法的流程图。如图5所示,在图1所示实施例的基础上,本实施例中的方法,可以包括:
步骤S501、获取无人飞行器上云台的俯仰参数。
在本实施例中,地面的控制终端例如遥控器可用于调整云台的俯仰参数,例如,用户操控遥控器的俯仰杆或俯仰按键时,遥控器产生控制杆量,并将该控制杆量发送给飞行控制器或单独控制云台转动的控制部件,飞行控制器或该控制部件接收到遥控器发送的控制杆量后,控制云台以云台的Pitch轴为转动轴线转动。
在该控制部件控制云台以云台的Pitch轴为转动轴线转动的过程中,该控制部件可将云台的俯仰参数实时的发送给飞行控制器,该云台的偏航参数可以是云台的俯仰角,也可以是云台的俯仰转动速度。
另外,在其他实施例中,拍摄设备还可以对目标物体跟踪拍摄,在跟踪拍摄过程中,云台在其俯仰方向上转动,此时,飞行控制器或单独控制云台转动的控制部件可以实时地获取云台的俯仰参数,其中俯仰参数可以为俯仰角或者俯仰速度中至少一种。如图6A所示,1表示云台的Roll轴,2表示表示云台的Pitch轴,3表示云台的Yaw轴,10表示无人飞行器的机头,11表示无人飞行器的螺旋桨,12表示无人飞行器的机身,14表示无人飞行器上的云台,15表示无人飞行器搭载的拍摄设备,拍摄设备15通过云台14与无人飞行器的机身连接,16表示拍摄设备的拍摄镜头,17表示拍摄镜头16的光轴方向,光轴方向17指向拍摄的目标物体20,用于表示拍摄设备16的拍摄方向,20表示拍摄镜头16拍摄的目标物体。
步骤S502、按照所述云台的俯仰参数调整所述无人飞行器的俯仰参数。
飞行控制器接收到云台的俯仰参数后,按照云台的俯仰参数,控制无人飞行器的俯仰参数,具体的,飞行控制器按照云台的俯仰参数,控制无人飞行器以无人飞行器的Pitch轴为转动轴线转动,使得无人飞行器在俯仰方向上跟随云台的转动而转动。如图6A所示,云台以云台的Pitch轴为转动轴线顺时针转动,如箭头7所示,具体的,飞行控制器可控制无人飞行器以无人飞行器的Pitch轴为转动轴线顺时针转动,该顺时针方向具体可以是如图6B所示的箭头8的方向,如图6B所示,控制无人飞行器以无人飞行器的Pitch轴为转动轴线顺时针转动时,飞行控制器调整无人飞行器的俯仰角θ2跟随云台的俯仰角θ1的变化而变化,且无人飞行器的俯仰 角θ2和云台的俯仰角θ1一致,避免云台以云台的Pitch轴为转动轴线转动时出现限位。其中,在某些实施例中,无人飞行器的俯仰角可以和云台的俯仰角不一致,其具体的控制方式,本领域技术人员可以根据需要选取,在这里不做具体的限定。
在其他实施例中,飞行控制器还可以按照云台的俯仰转动速度调整无人飞行器的俯仰转动速度,以使无人飞行器的俯仰转动速度和云台的俯仰转动速度保持一致。
本实施例提供的控制方法,通过获取无人飞行器上云台的俯仰参数,按照云台的俯仰参数调整无人飞行器的俯仰参数,即无人飞行器的俯仰参数被动跟随云台的俯仰参数的变化而变化,使得云台在俯仰方向的转动不受无人飞行器的俯仰参数的限制,云台在俯仰方向的转动不会发生限位。另外,相比于云台的俯仰参数被动跟随无人飞行器的俯仰参数的变化而变化,避免在惯性作用下云台在俯仰方向上可能产生的超调的问题,这样云台可以在俯仰方向上更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
本发明实施例提供一种控制方法。图7为本发明另一实施例提供的控制方法的流程图。如图7所示,在图1所示实施例的基础上,本实施例中的方法,可以包括:
步骤S701、接收控制终端发送的姿态控制指令,根据所述姿态控制指令调整所述云台的姿态参数。
在本实施例中,地面的控制终端例如遥控器可用于调整云台的姿态参数,具体的,遥控器向飞行控制器或单独控制云台转动的控制部件发送姿态控制指令,该姿态控制指令用于调整云台的姿态参数,云台的姿态参数包括偏航参数、俯仰参数和横滚参数中的一种或多种。飞行控制器或单独控制云台转动的控制部件接收到遥控器发送的该姿态控制指令后,根据该姿态控制指令调整云台的姿态参数。
在本实施例中,所述姿态控制指令包括如下至少一种:用于调整所述云台的姿态参数的角度指令;用于调整所述云台的姿态参数的角速度指令。
具体的,控制终端向飞行控制器或单独控制云台转动的控制部件发送的姿态控制指令可以是调整云台的俯仰参数的俯仰控制指令,也可以是调整云台的横滚参数的横滚控制指令,还可以是调整云台的偏航参数的偏航控制指令。相应的,飞行控制器或单独控制云台转动的控制部件接收到遥控器发送的该姿态控制指令后,根据该姿态控制指令调整云台的姿态参数,包括如下至少一种:
第一种:接收控制终端发送的俯仰控制指令,调整所述云台的俯仰参数。
用户操控遥控器的俯仰杆或俯仰按键时,遥控器产生控制杆量,该控制杆量包括用于调整云台俯仰角的角度信息,或者用于调整云台以云台的Pitch轴为转动轴线转动的俯仰转动速度。遥控器将该控制杆量发送给飞行控制器或单独控制云台转动的控制部件,飞行控制器或该控制部件按照该控制杆量包括的角度信息,调整云台的俯仰角,或者,按照该控制杆量包括的俯仰转动速度,控制云台以云台的Pitch轴为转动轴线转动。
第二种:接收控制终端发送的横滚控制指令,调整所述云台的横滚参数。
用户操控遥控器的横滚杆或横滚按键时,遥控器产生控制杆量,该控制杆量包括用于调整云台横滚角的角度信息,或者用于控制云台以云台的Roll轴为转动轴线转动的横滚转动速度。遥控器将该控制杆量发送给飞行控制器或单独控制云台转动的控制部件,飞行控制器或该控制部件按照该控制杆量包括的角度信息,调整云台的横滚角,或者,按照该控制杆量包括的横滚转动速度,控制云台以云台的Roll轴为转动轴线转动。
第三种:接收控制终端发送的偏航控制指令,调整所述云台的偏航参数。
用户操控遥控器的偏航杆或偏航按键时,遥控器产生控制杆量,该控制杆量包括用于调整云台偏航角的角度信息,或者用于调整云台以云台的Yaw轴为转动轴线转动的偏航转动速度。遥控器将该控制杆量发送给飞行控制器或单独控制云台转动的控制部件,飞行控制器或该控制部件按照该控制杆量包括的角度信息,调整云台的偏航角,或者,按照该控制杆量包括的偏航转动速度,控制云台以云台的Yaw轴为转动轴线转动。
在其他实施例中,遥控器具有两种操作模式,一种操作模式用于调整云台的姿态参数,例如云台的俯仰参数、横滚参数、偏航参数;另一种操作模式用于调整无人飞行器的姿态参数,例如无人飞行器的俯仰参数、横滚参数、偏航参数。可选的,遥控器设置有模式切换按钮或按键,用户通过按压模式切换按钮或按键,改变遥控器的操作模式。
例如,遥控器当前的操作模式用于调整云台的姿态参数,当用户操控遥控器的偏航杆或偏航按键时,遥控器产生控制杆量,并将该控制杆量发送给飞行控制器,飞行控制器根据该控制杆量调整云台的偏航参数。若用户按压模式切换按钮或按键后,遥控器的操作模式切换为用于控制无人飞行器的姿态参数,此时,用户再次操控偏航杆或偏航按键,遥控器再次产生控制杆量,并将该控制杆量发送给飞行控制器,飞行控制器将根据该控制杆量调整无人飞行器的偏航参数;用户再次操控俯仰杆或俯仰按键,遥控器再次产生控制杆量,并将该控制杆量发送给飞行控制器,飞行控制器将根据该控制杆量调整无人飞行器的俯仰参数;用户再次操控横滚杆或横滚按键,遥控器再次产生控制杆量,并将该控制杆量发送给飞行控制器,飞行控制器将根据该控制杆量调整无人飞行器的横滚参数。
步骤S702、获取无人飞行器上云台的姿态参数。
其中,步骤S702与步骤S101一致,具体方法此处不再赘述。
步骤S703、按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
其中,步骤S703与步骤S102一致,具体方法此处不再赘述。
步骤S704、控制所述云台的姿态,以使所述云台上的拍摄设备对目标物体进行跟踪拍摄。
此外,飞行控制器还可以控制无人飞行器的云台,使云台上的拍摄设备始终对准目标物体,即对目标物体进行跟踪拍摄,当目标物体运动时,飞行控制器会调整云台以使拍摄设备转动,始终保持目标物体在拍摄画面中,云台可以将自己的姿态参数发送给飞行控制器,飞行控制器可以根据云台的姿态参数来控制无人飞行器的姿态,这样无人飞行器就可以自动调节自身的姿态,使无人机飞行器的脚架不在拍摄画面中,也可以使云台在转动的过程中不发生限位,这样用户可以不用再去对无人飞行器的 姿态进行操作,简化了控制流程,降低了对用户的专业性要求。
本实施例提供的控制方法,通过地面的控制终端向无人飞行器发送姿态控制指令,无人飞行器中的飞行控制器或单独控制云台转动的控制部件根据该姿态控制指令直接调整云台的姿态参数,使得控制终端能够直接调整云台的姿态参数(例如偏航参数、俯仰参数和横滚参数中的一种或多种),丰富了云台的控制方式,同时避免了云台的姿态调整相比于无人飞行器机身的姿态调整存在的滞后,避免了拍摄设备拍摄出的画面出现“不跟手”的现象;另外,通过这样方式,云台的姿态不再跟随无人飞行器机身的姿态的变化而变化,避免云台在惯性作用下可能产生的超调的问题,这样云台可以更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
本发明实施例提供一种控制方法。图8为本发明另一实施例提供的控制方法的流程图。如图8所示,本实施例中的方法,可以包括:
步骤S801、接收控制终端发送的姿态控制指令。
所述姿态控制指令包括如下至少一种:
用于调整所述云台的姿态参数的角度指令;
用于调整所述云台的姿态参数的角速度指令。
步骤S802、根据所述姿态控制指令调整无人飞行器上的云台的姿态参数。
所述姿态参数至少包括偏航参数、横滚参数中的一种。
在其他实施例中,所述姿态参数还包括俯仰参数。
所述偏航参数是至少包括偏航角、偏航转动速度中的一种。
所述俯仰参数是至少包括俯仰角、俯仰转动速度中的一种。
所述横滚参数是至少包括俯仰角、横滚转动速度中的一种。
在本实施例中,接收控制终端发送的姿态控制指令,根据所述姿态控制指令调整无人飞行器上的云台的姿态参数,包括如下至少一种:
接收控制终端发送的俯仰控制指令,调整所述云台的俯仰参数;
接收控制终端发送的横滚控制指令,调整所述云台的横滚参数;
接收控制终端发送的偏航控制指令,调整所述云台的偏航参数。
其中,所述俯仰控制指令,包括:对控制终端的俯仰杆或俯仰按键进行操作而产生的控制杆量。所述横滚控制指令,包括:对控制终端的横滚杆或横滚按键进行操作而产生的控制杆量。所述偏航控制指令,包括:对控制终端的偏航杆或偏航按键进行操作而产生的控制杆量。
本发明实施例提供的控制方法的具体原理和实现方式均与图7所示实施例类似,此处不再赘述。
本实施例提供的控制方法,通过地面的控制终端向无人飞行器发送姿态控制指令,无人飞行器中的飞行控制器或单独控制云台转动的控制部件根据该姿态控制指令直接调整云台的姿态参数,使得控制终端能够直接调整云台的姿态参数(例如偏航参数、俯仰参数和横滚参数中的一种或多种),丰富了云台的控制方式。避免了云台的姿态调整相比于无人飞行器机身的姿态调整存在的滞后,同时避免了拍摄设备拍摄出的画面出现“不跟手”的现象;另外,通过这样方式,云台的姿态不再跟随无人飞行器机身的姿态的变化而变化,避免云台在惯性作用下可能产生的超调的问题,这样云台可以更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
本发明实施例提供一种控制方法。图9为本发明另一实施例提供的控制方法的流程图。如图9所示,在图8所示实施例的基础上,本实施例中的方法,可以包括:
步骤S901、接收控制终端发送的姿态控制指令。
步骤S902、根据所述姿态控制指令调整无人飞行器上的云台的姿态参数。
步骤S903、获取所述云台的姿态参数,按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
具体的,按照云台的偏航参数、俯仰参数和横滚参数中的一种或多种调整无人飞行器的偏航参数、俯仰参数和横滚参数中的一种或多种。
另外,可选的,按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使无人飞行器的脚架在云台上的拍摄设备的拍摄范围之外。
此外,可选的,还可以按照所述云台的姿态参数调整所述无人飞行器 的姿态参数,以使所述云台在转动时不发生限位。
本实施例通过提供的控制方法,获取无人飞行器上云台的姿态参数,并按照云台的姿态参数调整无人飞行器的姿态参数,可以保证云台在偏航、俯仰、横滚中的一个或多个方向上转动时,云台都不会在转动的过程中发生限位,另外可以通过云台的姿态参数调整无人飞行器的姿态参数,使得无人飞行器的脚架不会拍摄画面中,用户无需手动地去调整无人飞行器的姿态去将无人飞行器的脚架移出拍摄画面,简化了操作流程,降低了对用户的专业要求。
在某些实施例中,获取所述云台的姿态参数,具体可以是获取所述云台的偏航参数;相应的,按照所述云台的姿态参数调整所述无人飞行器的姿态参数,具体可以是按照所述云台的偏航参数调整所述无人飞行器的偏航参数,具体的,按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的转动,以使无人飞行器跟随云台转动,可选的,按照所述云台的偏航角,调整所述无人飞行器的偏航角,以使所述无人飞行器的偏航角和所述云台的偏航角一致。
本发明实施例提供的控制方法的具体原理和实现方式均与图1、图4所示实施例类似,此处不再赘述。
本实施例提供的控制方法,通过获取无人飞行器上云台的偏航参数,按照云台的偏航参数控制无人飞行器的偏航参数,即无人飞行器的偏航参数被动跟随云台的偏航参数的变化而变化,使得云台在偏航方向的转动不受无人飞行器的偏航参数的限制,云台在偏航方向的转动不会发生限位,同时根据云台的偏航参数调整无人飞行器的偏航参数,控制无人飞行器在偏航方向上转动,可以使无人飞行器的脚架不在拍摄画面内,用户无需手动去控制无人飞行器的偏航参数,简化了控制流程。另外,相比于云台的偏航参数被动跟随无人飞行器的偏航参数的变化而变化,避免在惯性作用下云台在偏航方向上可能产生的超调的问题,这样云台可以更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
本发明实施例还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序执行时可包括如图1-7或8-9对应实施例中的 控制方法的部分或全部步骤。
本发明实施例提供一种控制装置。图10为本发明实施例提供的控制装置的结构图,如图10所示,控制装置70包括获取模块71、控制模块72。获取模块71用于获取无人飞行器上云台的姿态参数;控制模块72用于按照所述云台的姿态参数调整所述无人飞行器的姿态参数。其中,所述姿态参数包括偏航参数、俯仰参数和横滚参数中的一种或多种。
可选的,控制模块72具体用于按照云台的偏航参数、俯仰参数和横滚参数中的一种或多种调整无人飞行器的偏航参数、俯仰参数和横滚参数中的一种或多种。
另外,在其他实施例中,控制模块72还具体用于按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使无人飞行器的脚架在云台上的拍摄设备的拍摄范围之外。
此外,在其他实施例中,控制模块72还具体用于按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使所述云台在转动时不发生限位。
本发明实施例提供的控制装置的具体原理和实现方式均与图1所示实施例类似,此处不再赘述。
本实施例提供的控制装置,通过获取无人飞行器上云台的姿态参数,并按照云台的姿态参数调整无人飞行器的姿态参数,即无人飞行器的姿态参数被动跟随云台的姿态参数的变化而变化,这样云台的控制方式更加简便和直接,丰富了云台的控制方式,提高了云台控制方式的灵活性,同时使得云台的姿态调整相比于无人飞行器机身的姿态调整,不存在滞后;另外避免了云台的姿态跟随着无人飞行器的姿态变化而调整时,在惯性作用下云台可能产生的超调的问题,这样云台可以更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
本发明实施例提供一种控制装置。在图10所示实施例提供的技术方案的基础上,获取模块71具体用于获取无人飞行器上云台的偏航参数; 控制模块72具体用于按照所述云台的偏航参数调整所述无人飞行器的偏航参数。可选的,控制模块72具体用于按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的转动,以使无人飞行器跟随云台转动。所述偏航参数是至少包括偏航角、偏航转动速度中的一种。控制模块72可按照所述云台的偏航角,调整所述无人飞行器的偏航角,以使所述无人飞行器的偏航角和所述云台的偏航角一致。
本发明实施例提供的控制装置的具体原理和实现方式均与图4所示实施例类似,此处不再赘述。
本实施例提供的控制装置,通过获取无人飞行器上云台的偏航参数,按照云台的偏航参数调整无人飞行器的偏航参数,即无人飞行器的偏航参数被动跟随云台的偏航参数的变化而变化,使得云台在偏航方向的转动不受无人飞行器的偏航参数的限制,云台在偏航方向的转动不会发生限位,同时根据云台的偏航参数调整无人飞行器的偏航参数,控制无人飞行器在偏航方向上转动,可以使无人飞行器的脚架不在拍摄画面内,用户无需手动去调整无人飞行器的偏航参数,简化了控制流程。另外,相比于云台的偏航参数被动跟随无人飞行器的偏航参数的变化而变化,避免在惯性作用下云台在偏航方向上可能产生的超调的问题,这样云台可以更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
本发明实施例提供一种控制装置。在图10所示实施例提供的技术方案的基础上,获取模块71具体用于获取无人飞行器上云台的俯仰参数;控制模块72具体用于按照所述云台的俯仰参数调整所述无人飞行器的俯仰参数。所述俯仰参数是至少包括俯仰角、俯仰转动速度中的一种。
本发明实施例提供的控制装置的具体原理和实现方式均与图5所示实施例类似,此处不再赘述。
本实施例提供的控制装置,通过获取无人飞行器上云台的俯仰参数,按照云台的俯仰参数调整无人飞行器的俯仰参数,即无人飞行器的俯仰参数被动跟随云台的俯仰参数的变化而变化,使得云台在俯仰方向的转动不受无人飞行器的俯仰参数的限制,云台在俯仰方向的转动不会发生限位。 另外,相比于云台的俯仰参数被动跟随无人飞行器的俯仰参数的变化而变化,避免了当无人飞行器以机身的Pitch轴停止转动时,在惯性作用下云台在俯仰方向上出现超调的现象,这样云台可以更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
本发明实施例提供一种控制装置。在图10所示实施例提供的技术方案的基础上,如图11所示,控制装置70还包括:接收模块73,接收模块73用于接收控制终端发送的姿态控制指令;控制模块72还用于根据所述姿态控制指令调整所述云台的姿态参数。其中,所述姿态控制指令包括如下至少一种:用于调整所述云台的姿态参数的角度指令;用于调整所述云台的姿态参数的角速度指令。
可选的,接收模块73具体用于接收控制终端发送的如下至少一种指令:俯仰控制指令、横滚控制指令、偏航控制指令;相应的,控制模块72具体用于如下至少一种:
根据控制终端发送的俯仰控制指令,调整所述云台的俯仰参数;
根据控制终端发送的横滚控制指令,调整所述云台的横滚参数;
根据控制终端发送的偏航控制指令,调整所述云台的偏航参数。
具体的,所述俯仰控制指令,包括:对控制终端的俯仰杆或俯仰按键进行操作而产生的控制杆量。所述横滚控制指令,包括:对控制终端的横滚杆或横滚按键进行操作而产生的控制杆量。所述偏航控制指令,包括:对控制终端的偏航杆或偏航按键进行操作而产生的控制杆量。
此外,控制模块72还用于控制所述云台的姿态,以使所述云台上的拍摄设备对目标物体进行跟踪拍摄。
本发明实施例提供的控制装置的具体原理和实现方式均与图7所示实施例类似,此处不再赘述。
本实施例提供的控制装置,通过获取地面的控制终端发送姿态控制指令,根据该姿态控制指令直接调整云台的姿态参数,使得控制终端能够直接调整云台的姿态参数(例如偏航参数、俯仰参数和横滚参数中的一种或多种),丰富了云台的控制方式。避免了云台的姿态调整相比于无人飞行器机身的姿态调整存在的滞后,避免了拍摄设备拍摄出的画面出现“不跟 手”的现象;另外,通过这样方式,云台的姿态不再跟随无人飞行器机身的姿态的变化而变化,避免云台在惯性作用下可能产生的超调的问题,这样云台可以更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
本发明实施例提供一种控制装置。图12为本发明另一实施例提供的控制装置的结构图,如图12所示,控制装置80包括接收模块81、控制模块82,其中,接收模块81用于接收控制终端发送的姿态控制指令;控制模块82用于根据所述姿态控制指令调整无人飞行器上的云台的姿态参数;所述姿态参数至少包括偏航参数、横滚参数中的一种。另外,在其他实施例中,所述姿态参数还包括俯仰参数。可选的,所述偏航参数是至少包括偏航角、偏航转动速度中的一种;所述俯仰参数是至少包括俯仰角、俯仰转动速度中的一种;所述横滚参数是至少包括俯仰角、横滚转动速度中的一种。所述姿态控制指令包括如下至少一种:用于调整所述云台的姿态参数的角度指令;用于调整所述云台的姿态参数的角速度指令。
接收模块81具体用于接收控制终端发送的如下至少一种指令:俯仰控制指令、横滚控制指令、偏航控制指令;相应的,控制模块82具体用于如下至少一种:根据控制终端发送的俯仰控制指令,调整所述云台的俯仰参数;根据控制终端发送的横滚控制指令,调整所述云台的横滚参数;根据控制终端发送的偏航控制指令,调整所述云台的偏航参数。其中,所述俯仰控制指令,包括:对控制终端的俯仰杆或俯仰按键进行操作而产生的控制杆量。所述横滚控制指令,包括:对控制终端的横滚杆或横滚按键进行操作而产生的控制杆量。所述偏航控制指令,包括:对控制终端的偏航杆或偏航按键进行操作而产生的控制杆量。
本发明实施例提供的控制装置的具体原理和实现方式均与图8所示实施例类似,此处不再赘述。
本实施例提供的控制装置,通过获取地面的控制终端发送姿态控制指令,根据该姿态控制指令直接调整云台的姿态参数,使得控制终端能够直接调整云台的姿态参数(例如偏航参数、俯仰参数和横滚参数中的一种或多种),丰富了云台的控制方式。避免了云台的姿态调整相比于无人飞行 器机身的姿态调整存在的滞后,避免了拍摄设备拍摄出的画面出现“不跟手”的现象;另外,通过这样方式,云台的姿态不再跟随无人飞行器机身的姿态的变化而变化,避免云台在惯性作用下可能产生的超调的问题,这样云台可以更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
本发明实施例提供一种控制装置。在图12所示实施例提供的技术方案的基础上,如图13所示,控制装置80还包括:获取模块83,获取模块83用于获取所述云台的姿态参数;控制模块82具体用于按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
在一些实施例中,控制模块82具体用于按照云台的偏航参数、俯仰参数和横滚参数中的一种或多种调整无人飞行器的偏航参数、俯仰参数和横滚参数中的一种或多种。
另外,在其他实施例中,控制模块82具体用于按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使无人飞行器的脚架在云台上的拍摄设备的拍摄范围之外。
此外,在其他实施例中,控制模块82具体用于按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使所述云台在转动时不发生限位。
可选的,获取模块83具体用于获取所述云台的偏航参数;相应的,控制模块82具体用于按照所述云台的偏航参数调整所述无人飞行器的偏航参数。具体的,控制模块82具体用于按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的转动,以使无人飞行器跟随云台转动。例如,控制模块82具体用于按照所述云台的偏航角,调整所述无人飞行器的偏航角,以使所述无人飞行器的偏航角和所述云台的偏航角一致。
本发明实施例提供的控制装置的具体原理和实现方式均与图1、图4所示实施例类似,此处不再赘述。
本发明实施例提供一种控制设备。图14为本发明实施例提供的控制设备的结构图,该控制设备具体可以是飞行控制器,也可以是其他具有处 理能力的处理设备,如图14所示,控制设备90包括一个或多个处理器91,单独或协同工作,一个或多个处理器91用于获取无人飞行器上云台的姿态参数;按照所述云台的姿态参数调整所述无人飞行器的姿态参数。其中,所述姿态参数包括偏航参数、俯仰参数和横滚参数中的一种或多种。
可选的,处理器91按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:按照云台的偏航参数、俯仰参数和横滚参数中的一种或多种调整无人飞行器的偏航参数、俯仰参数和横滚参数中的一种或多种。
另外,在其他实施例中,处理器91按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使无人飞行器的脚架在云台上的拍摄设备的拍摄范围之外。
此外,在其他实施例中,处理器91按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使所述云台在转动时不发生限位。
本发明实施例提供的控制设备的具体原理和实现方式均与图1所示实施例类似,此处不再赘述。
本实施例提供的控制设备,通过获取无人飞行器上云台的姿态参数,并按照云台的姿态参数调整无人飞行器的姿态参数,即无人飞行器的姿态参数被动跟随云台的姿态参数的变化而变化,这样云台的控制方式更加简便和直接,丰富了云台的控制方式,提高了云台控制方式的灵活性,同时使得云台的姿态调整相比于无人飞行器机身的姿态调整,不存在滞后;另外避免了云台的姿态跟随着无人飞行器的姿态变化而调整时,在惯性作用下云台可能产生的超调的问题,这样云台可以更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
本发明实施例提供一种控制设备。该控制设备具体可以是飞行控制器,在图14所示实施例提供的技术方案的基础上,处理器91获取无人飞行器上云台的姿态参数时具体用于:获取无人飞行器上云台的偏航参数; 处理器91按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:按照所述云台的偏航参数调整所述无人飞行器的偏航参数。可选的,处理器91按照所述云台的偏航参数调整所述无人飞行器的偏航参数时具体用于:按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的转动,以使无人飞行器跟随云台转动。所述偏航参数是至少包括偏航角、偏航转动速度中的一种。处理器91可按照所述云台的偏航角,调整所述无人飞行器的偏航角,以使所述无人飞行器的偏航角和所述云台的偏航角一致。
本发明实施例提供的控制设备的具体原理和实现方式均与图4所示实施例类似,此处不再赘述。
本实施例提供的控制设备,通过获取无人飞行器上云台的偏航参数,按照云台的偏航参数调整无人飞行器的偏航参数,即无人飞行器的偏航参数被动跟随云台的偏航参数的变化而变化,使得云台在偏航方向的转动不受无人飞行器的偏航参数的限制,云台在偏航方向的转动不会发生限位,同时根据云台的偏航参数调整无人飞行器的偏航参数,控制无人飞行器在偏航方向上转动,可以使无人飞行器的脚架不在拍摄画面内,用户无需手动去调整无人飞行器的偏航参数,简化了控制流程。另外,相比于云台的偏航参数被动跟随无人飞行器的偏航参数的变化而变化,避免了当无人飞行器以机身的Yaw轴停止转动时,在惯性作用下云台在偏航方向上可能产生的超调的问题,这样云台可以在更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
本发明实施例提供一种控制设备。该控制设备具体可以是飞行控制器,在图14所示实施例提供的技术方案的基础上,处理器91获取无人飞行器上云台的姿态参数时具体用于:获取无人飞行器上云台的俯仰参数;处理器91按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:按照所述云台的俯仰参数调整所述无人飞行器的俯仰参数。所述俯仰参数是至少包括俯仰角、俯仰转动速度中的一种。
本发明实施例提供的控制设备的具体原理和实现方式均与图5所示实施例类似,此处不再赘述。
本发明实施例提供一种控制设备。该控制设备具体可以是飞行控制器,在图14所示实施例提供的技术方案的基础上,控制设备90还包括:与处理器91通讯连接的通讯接口92,通讯接口92用于接收控制终端发送的姿态控制指令;处理器91根据所述姿态控制指令调整所述云台的姿态参数。其中,所述姿态控制指令包括如下至少一种:用于调整所述云台的姿态参数的角度指令;用于调整所述云台的姿态参数的角速度指令。
可选的,通讯接口92具体用于接收控制终端发送的如下至少一种指令:俯仰控制指令、横滚控制指令、偏航控制指令;相应的,处理器91具体用于如下至少一种:
根据控制终端发送的俯仰控制指令,调整所述云台的俯仰参数;
根据控制终端发送的横滚控制指令,调整所述云台的横滚参数;
根据控制终端发送的偏航控制指令,调整所述云台的偏航参数。
具体的,所述俯仰控制指令,包括:对控制终端的俯仰杆或俯仰按键进行操作而产生的控制杆量。所述横滚控制指令,包括:对控制终端的横滚杆或横滚按键进行操作而产生的控制杆量。所述偏航控制指令,包括:对控制终端的偏航杆或偏航按键进行操作而产生的控制杆量。
此外,处理器91还用于控制所述云台的姿态,以使所述云台上的拍摄设备对目标物体进行跟踪拍摄。
本发明实施例提供的控制设备的具体原理和实现方式均与图7所示实施例类似,此处不再赘述。
本发明实施例提供一种控制设备。该控制设备具体可以是飞行控制器,图14为本发明实施例提供的控制设备的结构图,如图14所示,控制设备90包括一个或多个处理器91、通讯接口92,一个或多个处理器91单独或协同工作,处理器91和通讯接口92通讯连接;通讯接口92用于接收控制终端发送的姿态控制指令;一个或多个处理器91用于:根据所述姿态控制指令调整无人飞行器上的云台的姿态参数;所述姿态参数至少包括偏航参数、横滚参数中的一种。
另外,在其他实施例中,所述姿态参数还包括俯仰参数。可选的,所 述偏航参数是至少包括偏航角、偏航转动速度中的一种;所述俯仰参数是至少包括俯仰角、俯仰转动速度中的一种;所述横滚参数是至少包括俯仰角、横滚转动速度中的一种。所述姿态控制指令包括如下至少一种:用于调整所述云台的姿态参数的角度指令;用于调整所述云台的姿态参数的角速度指令。
通讯接口92具体用于接收控制终端发送的如下至少一种指令:俯仰控制指令、横滚控制指令、偏航控制指令;相应的,处理器91具体用于如下至少一种:根据控制终端发送的俯仰控制指令,调整所述云台的俯仰参数;根据控制终端发送的横滚控制指令,调整所述云台的横滚参数;根据控制终端发送的偏航控制指令,调整所述云台的偏航参数。其中,所述俯仰控制指令,包括:对控制终端的俯仰杆或俯仰按键进行操作而产生的控制杆量。所述横滚控制指令,包括:对控制终端的横滚杆或横滚按键进行操作而产生的控制杆量。所述偏航控制指令,包括:对控制终端的偏航杆或偏航按键进行操作而产生的控制杆量。
本发明实施例提供的控制设备的具体原理和实现方式均与图7所示实施例类似,此处不再赘述。
本实施例提供的控制设备,通过获取地面的控制终端发送姿态控制指令,根据该姿态控制指令直接调整云台的姿态参数,使得控制终端能够直接调整云台的姿态参数(例如偏航参数、俯仰参数和横滚参数中的一种或多种),丰富了云台的控制方式。避免了云台的姿态调整相比于无人飞行器机身的姿态调整存在的滞后,避免了拍摄设备拍摄出的画面出现“不跟手”的现象;另外,通过这样方式,云台的姿态不再跟随无人飞行器机身的姿态的变化而变化,避免云台在惯性作用下可能产生的超调的问题,这样云台可以更加平稳地转动和停止转动,保证云台上的拍摄设备的平稳,提高了拍摄设备的拍摄画面的稳定性。
本发明实施例提供一种控制设备。该控制设备具体可以是飞行控制器,在图14所示实施例提供的技术方案的基础上,处理器91还用于获取所述云台的姿态参数,按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
在一些实施例中,处理器91按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:按照云台的偏航参数、俯仰参数和横滚参数中的一种或多种调整无人飞行器的偏航参数、俯仰参数和横滚参数中的一种或多种。
另外,在其他实施例中,处理器91按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使无人飞行器的脚架在云台上的拍摄设备的拍摄范围之外。
此外,在其他实施例中,处理器91按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使所述云台在转动时不发生限位。
可选的,处理器91获取所述云台的姿态参数时具体用于:获取所述云台的偏航参数;相应的,处理器91按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:按照所述云台的偏航参数调整所述无人飞行器的偏航参数。具体的,处理器91按照所述云台的偏航参数调整所述无人飞行器的偏航参数时具体用于:按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的转动,以使无人飞行器跟随云台转动。例如,处理器91具体用于按照所述云台的偏航角,调整所述无人飞行器的偏航角,以使所述无人飞行器的偏航角和所述云台的偏航角一致。
本发明实施例提供的控制设备的具体原理和实现方式均与图1、图4所示实施例类似,此处不再赘述。
本发明实施例提供一种控制终端。该控制终端用于调整云台的姿态参数或无人飞行器的姿态参数。该控制终端具有两种操作模式,一种操作模式用于调整云台的姿态参数(云台控制模式),例如云台的俯仰参数、横滚参数、偏航参数;另一种操作模式用于调整无人飞行器的姿态参数(飞行器控制模式),例如无人飞行器的俯仰参数、横滚参数、偏航参数。可选的,控制终端设置有模式切换按钮或按键,用户通过按压模式切换按钮或按键,改变或切换控制终端的操作模式。
当控制终端的操作模式用于调整云台的姿态参数时,向飞行控制器或 单独控制云台转动的控制部件发送姿态控制指令,以使飞行控制器或单独控制云台转动的控制部件根据所述姿态控制指令调整所述云台的姿态参数。所述姿态控制指令包括如下至少一种:用于调整所述云台的姿态参数的角度指令;用于调整所述云台的姿态参数的角速度指令。
姿态控制指令可以是俯仰控制指令、横滚控制指令、偏航控制指令中的一种或多种;若控制终端向飞行控制器或单独控制云台转动的控制部件发送俯仰控制指令,则飞行控制器或单独控制云台转动的控制部件调整所述云台的俯仰参数;若控制终端向飞行控制器或单独控制云台转动的控制部件发送横滚控制指令,则飞行控制器或单独控制云台转动的控制部件调整所述云台的横滚参数;若控制终端向飞行控制器或单独控制云台转动的控制部件发送偏航控制指令,则飞行控制器或单独控制云台转动的控制部件调整所述云台的偏航参数。
当遥控器的操作模式用于调整无人飞行器的姿态参数时,向飞行控制器发送姿态控制指令,以使飞行控制器根据所述姿态控制指令调整所述无人飞行器的姿态参数。所述姿态控制指令包括如下至少一种:用于调整所述无人飞行器的姿态参数的角度指令;用于调整所述无人飞行器的姿态参数的角速度指令。
姿态控制指令可以是俯仰控制指令、横滚控制指令、偏航控制指令中的一种或多种;若控制终端向飞行控制器发送俯仰控制指令,则飞行控制器调整所述无人飞行器的俯仰参数;若控制终端向飞行控制器发送横滚控制指令,则飞行控制器调整所述无人飞行器的横滚参数;若控制终端向飞行控制器发送偏航控制指令,则飞行控制器调整所述无人飞行器的偏航参数。
其中,俯仰控制指令包括对控制终端的俯仰杆或俯仰按键进行操作而产生的控制杆量。横滚控制指令包括对控制终端的横滚杆或横滚按键进行操作而产生的控制杆量。偏航控制指令包括对控制终端的偏航杆或偏航按键进行操作而产生的控制杆量。
控制终端的实例可以包括但不限于:遥控器、智能电话/手机、平板电脑、个人数字助理(PDA)、膝上计算机、台式计算机、媒体内容播放器、视频游戏站/系统、虚拟现实系统、增强现实系统、可穿戴式装置(例如, 手表、眼镜、手套、头饰(例如,帽子、头盔、虚拟现实头戴耳机、增强现实头戴耳机、头装式装置(HMD)、头带)、挂件、臂章、腿环、鞋子、马甲)、手势识别装置、麦克风、能够提供或渲染图像数据的任意电子装置或者及其组合电子装置。
本实施例提供的控制终端,通过向无人飞行器发送姿态控制指令,无人飞行器的飞行控制器或单独控制云台转动的控制部件根据该姿态控制指令调整云台的姿态参数,使得控制终端能够直接调整云台的姿态参数,相比于控制终端先调整无人飞行器的姿态参数,飞行控制器根据无人飞行器的姿态参数再调整云台的姿态参数,提高了控制终端控制云台的及时性和灵活性。
本发明实施例提供一种无人飞行器。图15为本发明实施例提供的无人飞行器的结构图,如图15所示,无人飞行器100包括:机身、动力系统和控制设备118,所述动力系统包括如下至少一种:电机107、螺旋桨106和电子调速器117,动力系统安装在所述机身,用于提供飞行动力;控制设备118为图14中实施例中任一项所述的控制设备。本实施例中,控制设备118具体可以是飞行控制器。
另外,如图15所示,无人飞行器100还包括:传感系统108、通信系统110、支撑设备102、拍摄设备104,其中,传感系统用于检测所述无人飞行器的速度、加速度、姿态参数(俯仰角、横滚角、偏航角等)或者云台的姿态参数(俯仰角、横滚角、偏航角等)等,支撑设备102具体可以是云台,通信系统110具体可以包括接收机和/或发射机,接收机用于接收地面站112的天线114发送的无线信号,通信系统110也可以向地面站发送无线信号(例如图像信息、无人飞行器的状态信息等),116表示通信系统110和天线114通信过程中产生的电磁波。
本发明实施例提供的控制设备118的具体原理和实现方式均与上述图14中实施例的控制设备类似,此处不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是 示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (97)

  1. 一种控制方法,其特征在于,包括:
    获取无人飞行器上云台的姿态参数;
    按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
  2. 根据权利要求1所述的方法,其特征在于,所述姿态参数包括偏航参数、俯仰参数和横滚参数中的一种或多种。
  3. 根据权利要求2所述的方法,其特征在于,所述按照所述云台的姿态参数调整所述无人飞行器的姿态参数,包括:
    按照云台的偏航参数、俯仰参数和横滚参数中的一种或多种调整无人飞行器的偏航参数、俯仰参数和横滚参数中的一种或多种。
  4. 根据权利要求2-3任一项所述的方法,其特征在于,
    所述偏航参数是至少包括偏航角、偏航转动速度中的一种;
    所述俯仰参数是至少包括俯仰角、俯仰转动速度中的一种;
    所述横滚参数是至少包括俯仰角、横滚转动速度中的一种。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述按照所述云台的姿态参数调整所述无人飞行器的姿态参数,包括:
    按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使无人飞行器的脚架在云台上的拍摄设备的拍摄范围之外。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述按照所述云台的姿态参数调整所述无人飞行器的姿态参数,包括:
    按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使所述云台在转动时不发生限位。
  7. 根据权利要求2-6任一项所述的方法,其特征在于,所述获取无人飞行器上云台的姿态参数,包括:
    获取无人飞行器上云台的偏航参数;
    所述按照所述云台的姿态参数调整所述无人飞行器的姿态参数,包括:
    按照所述云台的偏航参数调整所述无人飞行器的偏航参数。
  8. 根据权利要求7所述的方法,其特征在于,所述按照所述云台的偏航参数调整所述无人飞行器的偏航参数,包括:
    按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的转动,以使无人飞行器跟随云台转动。
  9. 根据权利要求8所述的方法,其特征在于,所述按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的转动,包括:
    按照所述云台的偏航角,调整所述无人飞行器的偏航角,以使所述无人飞行器的偏航角和所述云台的偏航角一致。
  10. 根据权利要求2-9任一项所述的方法,其特征在于,所述获取无人飞行器上云台的姿态参数,包括:
    获取无人飞行器上云台的俯仰参数;
    所述按照所述云台的姿态参数调整所述无人飞行器的姿态参数,包括:
    按照所述云台的俯仰参数调整所述无人飞行器的俯仰参数。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,还包括:
    接收控制终端发送的姿态控制指令,根据所述姿态控制指令调整所述云台的姿态参数。
  12. 根据权利要求11所述的方法,其特征在于,所述姿态控制指令包括如下至少一种:
    用于调整所述云台的姿态参数的角度指令;
    用于调整所述云台的姿态参数的角速度指令。
  13. 根据权利要求11或12所述的方法,其特征在于,所述接收控制终端发送的姿态控制指令,根据所述姿态控制指令调整所述云台的姿态参数,包括如下至少一种:
    接收控制终端发送的俯仰控制指令,调整所述云台的俯仰参数;
    接收控制终端发送的横滚控制指令,调整所述云台的横滚参数;
    接收控制终端发送的偏航控制指令,调整所述云台的偏航参数。
  14. 根据权利要求13所述的方法,其特征在于,所述俯仰控制指令包括:
    对控制终端的俯仰杆或俯仰按键进行操作而产生的控制杆量。
  15. 根据权利要求13所述的方法,其特征在于,所述横滚控制指令包括:
    对控制终端的横滚杆或横滚按键进行操作而产生的控制杆量。
  16. 根据权利要求13所述的方法,其特征在于,所述偏航控制指令包括:
    对控制终端的偏航杆或偏航按键进行操作而产生的控制杆量。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,还包括:
    调整所述云台的姿态参数,以使所述云台上的拍摄设备对目标物体进行跟踪拍摄。
  18. 一种控制方法,其特征在于,包括:
    接收控制终端发送的姿态控制指令;
    根据所述姿态控制指令调整无人飞行器上的云台的姿态参数;
    所述姿态参数至少包括偏航参数、横滚参数中的一种。
  19. 根据权利要求18所述的方法,其特征在于,所述姿态参数还包括俯仰参数。
  20. 根据权利要求19所述的方法,其特征在于,
    所述偏航参数是至少包括偏航角、偏航转动速度中的一种;
    所述俯仰参数是至少包括俯仰角、俯仰转动速度中的一种;
    所述横滚参数是至少包括俯仰角、横滚转动速度中的一种。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,所述姿态控制指令包括如下至少一种:
    用于调整所述云台的姿态参数的角度指令;
    用于调整所述云台的姿态参数的角速度指令。
  22. 根据权利要求20或21所述的方法,其特征在于,所述接收控制终端发送的姿态控制指令,根据所述姿态控制指令调整无人飞行器上的云台的姿态参数,包括如下至少一种:
    接收控制终端发送的俯仰控制指令,调整所述云台的俯仰参数;
    接收控制终端发送的横滚控制指令,调整所述云台的横滚参数;
    接收控制终端发送的偏航控制指令,调整所述云台的偏航参数。
  23. 根据权利要求22所述的方法,其特征在于,所述俯仰控制指令,包括:
    对控制终端的俯仰杆或俯仰按键进行操作而产生的控制杆量。
  24. 根据权利要求22所述的方法,其特征在于,所述横滚控制指令,包括:
    对控制终端的横滚杆或横滚按键进行操作而产生的控制杆量。
  25. 根据权利要求22所述的方法,其特征在于,所述偏航控制指令,包括:
    对控制终端的偏航杆或偏航按键进行操作而产生的控制杆量。
  26. 根据权利要求18-25任一项所述的方法,其特征在于,还包括:
    获取所述云台的姿态参数,按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
  27. 根据权利要求26所述的方法,其特征在于,所述按照所述云台的姿态参数调整所述无人飞行器的姿态参数,包括:
    按照云台的偏航参数、俯仰参数和横滚参数中的一种或多种调整无人飞行器的偏航参数、俯仰参数和横滚参数中的一种或多种。
  28. 根据权利要求26或27所述的方法,其特征在于,所述按照所述云台的姿态参数调整所述无人飞行器的姿态参数,包括:
    按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使无人飞行器的脚架在云台上的拍摄设备的拍摄范围之外。
  29. 根据权利要求26-28任一项所述的方法,其特征在于,所述按照所述云台的姿态参数调整所述无人飞行器的姿态参数,包括:
    按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使所述云台在转动时不发生限位。
  30. 根据权利要求26所述的方法,其特征在于,
    所述获取所述云台的姿态参数,包括:
    获取所述云台的偏航参数;
    所述按照所述云台的姿态参数调整所述无人飞行器的姿态参数,包括:
    按照所述云台的偏航参数调整所述无人飞行器的偏航参数。
  31. 根据权利要求30所述的方法,其特征在于,所述按照所述云台的偏航参数调整所述无人飞行器的偏航参数,包括:
    按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的 转动,以使无人飞行器跟随云台转动。
  32. 根据权利要求31所述的方法,其特征在于,所述按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的转动,包括:
    按照所述云台的偏航角,调整所述无人飞行器的偏航角,以使所述无人飞行器的偏航角和所述云台的偏航角一致。
  33. 一种控制装置,其特征在于,包括:
    获取模块,用于获取无人飞行器上云台的姿态参数;
    控制模块,用于按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
  34. 根据权利要求33所述的控制装置,其特征在于,所述姿态参数包括偏航参数、俯仰参数和横滚参数中的一种或多种。
  35. 根据权利要求34所述的控制装置,其特征在于,所述控制模块具体用于按照云台的偏航参数、俯仰参数和横滚参数中的一种或多种调整无人飞行器的偏航参数、俯仰参数和横滚参数中的一种或多种。
  36. 根据权利要求34或35所述的方法,其特征在于,
    所述偏航参数是至少包括偏航角、偏航转动速度中的一种;
    所述俯仰参数是至少包括俯仰角、俯仰转动速度中的一种;
    所述横滚参数是至少包括俯仰角、横滚转动速度中的一种。
  37. 根据权利要求33-36任一项所述的控制装置,其特征在于,所述控制模块具体用于按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使无人飞行器的脚架在云台上的拍摄设备的拍摄范围之外。
  38. 根据权利要求33-37任一项所述的控制装置,其特征在于,所述控制模块具体用于按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使所述云台在转动时不发生限位。
  39. 根据权利要求33-38任一项所述的控制装置,其特征在于,所述获取模块具体用于获取无人飞行器上云台的偏航参数;
    所述控制模块具体用于按照所述云台的偏航参数调整所述无人飞行器的偏航参数。
  40. 根据权利要求39所述的控制装置,其特征在于,所述控制模块具体用于按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向 上的转动,以使无人飞行器跟随云台转动。
  41. 根据权利要求40所述的控制装置,其特征在于,所述控制模块具体用于按照所述云台的偏航角,调整所述无人飞行器的偏航角,以使所述无人飞行器的偏航角和所述云台的偏航角一致。
  42. 根据权利要求34-41任一项所述的控制装置,其特征在于,所述获取模块具体用于获取无人飞行器上云台的俯仰参数;
    所述控制模块具体用于按照所述云台的俯仰参数调整所述无人飞行器的俯仰参数。
  43. 根据权利要求33-42任一项所述的控制装置,其特征在于,还包括:
    接收模块,用于接收控制终端发送的姿态控制指令;
    所述控制模块还用于根据所述姿态控制指令调整所述云台的姿态参数。
  44. 根据权利要求43所述的控制装置,其特征在于,所述姿态控制指令包括如下至少一种:
    用于调整所述云台的姿态参数的角度指令;
    用于调整所述云台的姿态参数的角速度指令。
  45. 根据权利要求43或44所述的控制装置,其特征在于,所述接收模块具体用于接收控制终端发送的如下至少一种指令:
    俯仰控制指令、横滚控制指令、偏航控制指令;
    所述控制模块具体用于如下至少一种:
    根据控制终端发送的俯仰控制指令,调整所述云台的俯仰参数;
    根据控制终端发送的横滚控制指令,调整所述云台的横滚参数;
    根据控制终端发送的偏航控制指令,调整所述云台的偏航参数。
  46. 根据权利要求45所述的控制装置,其特征在于,所述俯仰控制指令,包括:
    对控制终端的俯仰杆或俯仰按键进行操作而产生的控制杆量。
  47. 根据权利要求45所述的控制装置,其特征在于,所述横滚控制指令,包括:
    对控制终端的横滚杆或横滚按键进行操作而产生的控制杆量。
  48. 根据权利要求45所述的控制装置,其特征在于,所述偏航控制指令,包括:
    对控制终端的偏航杆或偏航按键进行操作而产生的控制杆量。
  49. 根据权利要求33-48任一项所述的控制装置,其特征在于,所述控制模块还用于控制所述云台的姿态,以使所述云台上的拍摄设备对目标物体进行跟踪拍摄。
  50. 一种控制装置,其特征在于,包括:
    接收模块,用于接收控制终端发送的姿态控制指令;
    控制模块,用于根据所述姿态调整指令调整无人飞行器上的云台的姿态参数;
    所述姿态参数至少包括偏航参数、横滚参数中的一种。
  51. 根据权利要求50所述的控制装置,其特征在于,所述姿态参数还包括俯仰参数。
  52. 根据权利要求51所述的控制装置,其特征在于,
    所述偏航参数是至少包括偏航角、偏航转动速度中的一种;
    所述俯仰参数是至少包括俯仰角、俯仰转动速度中的一种;
    所述横滚参数是至少包括俯仰角、横滚转动速度中的一种。
  53. 根据权利要求50-52任一项所述的控制装置,其特征在于,所述姿态控制指令包括如下至少一种:
    用于调整所述云台的姿态参数的角度指令;
    用于调整所述云台的姿态参数的角速度指令。
  54. 根据权利要求52或53所述的控制装置,其特征在于,所述接收模块具体用于接收控制终端发送的如下至少一种指令:
    俯仰控制指令、横滚控制指令、偏航控制指令;
    所述控制模块具体用于如下至少一种:
    根据控制终端发送的俯仰控制指令,调整所述云台的俯仰参数;
    根据控制终端发送的横滚控制指令,调整所述云台的横滚参数;
    根据控制终端发送的偏航控制指令,调整所述云台的偏航参数。
  55. 根据权利要求54所述的控制装置,其特征在于,所述俯仰控制指令,包括:
    对控制终端的俯仰杆或俯仰按键进行操作而产生的控制杆量。
  56. 根据权利要求54所述的控制装置,其特征在于,所述横滚控制指令,包括:
    对控制终端的横滚杆或横滚按键进行操作而产生的控制杆量。
  57. 根据权利要求54所述的控制装置,其特征在于,所述偏航控制指令,包括:
    对控制终端的偏航杆或偏航按键进行操作而产生的控制杆量。
  58. 根据权利要求50-57任一项所述的控制装置,其特征在于,还包括:
    获取模块,用于获取所述云台的姿态参数;
    所述控制模块具体用于按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
  59. 根据权利要求58所述的控制装置,其特征在于,所述控制模块具体用于按照云台的偏航参数、俯仰参数和横滚参数中的一种或多种调整无人飞行器的偏航参数、俯仰参数和横滚参数中的一种或多种。
  60. 根据权利要求58或59所述的控制装置,其特征在于,所述控制模块具体用于按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使无人飞行器的脚架在云台上的拍摄设备的拍摄范围之外。
  61. 根据权利要求58-60任一项所述的控制装置,其特征在于,所述控制模块具体用于按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使所述云台在转动时不发生限位。
  62. 根据权利要求58所述的控制装置,其特征在于,所述获取模块具体用于获取所述云台的偏航参数;
    所述控制模块具体用于按照所述云台的偏航参数调整所述无人飞行器的偏航参数。
  63. 根据权利要求62所述的控制装置,其特征在于,所述控制模块具体用于按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的转动,以使无人飞行器跟随云台转动。
  64. 根据权利要求63所述的控制装置,其特征在于,所述控制模块具体用于按照所述云台的偏航角,调整所述无人飞行器的偏航角,以使所 述无人飞行器的偏航角和所述云台的偏航角一致。
  65. 一种控制设备,其特征在于,包括一个或多个处理器,单独或协同工作,所述一个或多个处理器用于:
    获取无人飞行器上云台的姿态参数;
    按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
  66. 根据权利要求65所述的控制设备,其特征在于,所述姿态参数包括偏航参数、俯仰参数和横滚参数中的一种或多种。
  67. 根据权利要求66所述的控制设备,其特征在于,所述处理器按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:
    按照云台的偏航参数、俯仰参数和横滚参数中的一种或多种调整无人飞行器的偏航参数、俯仰参数和横滚参数中的一种或多种。
  68. 根据权利要求66或67所述的控制设备,其特征在于,
    所述偏航参数是至少包括偏航角、偏航转动速度中的一种;
    所述俯仰参数是至少包括俯仰角、俯仰转动速度中的一种;
    所述横滚参数是至少包括俯仰角、横滚转动速度中的一种。
  69. 根据权利要求65-68任一项所述的控制设备,其特征在于,所述处理器按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:
    按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使无人飞行器的脚架在云台上的拍摄设备的拍摄范围之外。
  70. 根据权利要求65-69任一项所述的控制设备,其特征在于,所述处理器按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:
    按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使所述云台在转动时不发生限位。
  71. 根据权利要求66-70任一项所述的控制设备,其特征在于,所述处理器获取无人飞行器上云台的姿态参数时具体用于:
    获取无人飞行器上云台的偏航参数;
    所述处理器按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:
    按照所述云台的偏航参数调整所述无人飞行器的偏航参数。
  72. 根据权利要求71所述的控制设备,其特征在于,所述处理器按照所述云台的偏航参数调整所述无人飞行器的偏航参数时具体用于:
    按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的转动,以使无人飞行器跟随云台转动。
  73. 根据权利要求72所述的控制设备,其特征在于,所述处理器按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的转动时具体用于:
    按照所述云台的偏航角,调整所述无人飞行器的偏航角,以使所述无人飞行器的偏航角和所述云台的偏航角一致。
  74. 根据权利要求66-73任一项所述的控制设备,其特征在于,所述处理器获取无人飞行器上云台的姿态参数时具体用于:
    获取无人飞行器上云台的俯仰参数;
    所述处理器按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:
    按照所述云台的俯仰参数调整所述无人飞行器的俯仰参数。
  75. 根据权利要求65-74任一项所述的控制设备,其特征在于,还包括:
    与所述处理器通讯连接的通讯接口,所述通讯接口用于接收控制终端发送的姿态控制指令;
    所述处理器根据所述姿态控制指令调整所述云台的姿态参数。
  76. 根据权利要求75所述的控制设备,其特征在于,所述姿态控制指令包括如下至少一种:
    用于调整所述云台的姿态参数的角度指令;
    用于调整所述云台的姿态参数的角速度指令。
  77. 根据权利要求75或76所述的控制设备,其特征在于,所述通讯接口具体用于接收控制终端发送的如下至少一种指令:
    俯仰控制指令、横滚控制指令、偏航控制指令;
    所述处理器具体用于如下至少一种:
    根据控制终端发送的俯仰控制指令,调整所述云台的俯仰参数;
    根据控制终端发送的横滚控制指令,调整所述云台的横滚参数;
    根据控制终端发送的偏航控制指令,调整所述云台的偏航参数。
  78. 根据权利要求77所述的控制设备,其特征在于,所述俯仰控制指令,包括:
    对控制终端的俯仰杆或俯仰按键进行操作而产生的控制杆量。
  79. 根据权利要求77所述的控制设备,其特征在于,所述横滚控制指令,包括:
    对控制终端的横滚杆或横滚按键进行操作而产生的控制杆量。
  80. 根据权利要求77所述的控制设备,其特征在于,所述偏航控制指令,包括:
    对控制终端的偏航杆或偏航按键进行操作而产生的控制杆量。
  81. 根据权利要求66-80任一项所述的控制设备,其特征在于,所述处理器还用于:
    控制所述云台的姿态,以使所述云台上的拍摄设备对目标物体进行跟踪拍摄。
  82. 一种控制设备,其特征在于,包括:通讯接口、一个或多个处理器,单独或协同工作,所述通讯接口和所述处理器通讯连接;
    所述通讯接口用于接收控制终端发送的姿态控制指令;
    所述一个或多个处理器用于:根据所述姿态控制指令调整无人飞行器上的云台的姿态参数;
    所述姿态参数至少包括偏航参数、横滚参数中的一种。
  83. 根据权利要求82所述的控制设备,其特征在于,所述姿态参数还包括俯仰参数。
  84. 根据权利要求83所述的控制设备,其特征在于,
    所述偏航参数是至少包括偏航角、偏航转动速度中的一种;
    所述俯仰参数是至少包括俯仰角、俯仰转动速度中的一种;
    所述横滚参数是至少包括俯仰角、横滚转动速度中的一种。
  85. 根据权利要求82-84任一项所述的控制设备,其特征在于,所述姿态控制指令包括如下至少一种:
    用于调整所述云台的姿态参数的角度指令;
    用于调整所述云台的姿态参数的角速度指令。
  86. 根据权利要求84或85所述的控制设备,其特征在于,所述通讯接口具体用于接收控制终端发送的如下至少一种指令:
    俯仰控制指令、横滚控制指令、偏航控制指令;
    所述处理器具体用于如下至少一种:
    根据控制终端发送的俯仰控制指令,调整所述云台的俯仰参数;
    根据控制终端发送的横滚控制指令,调整所述云台的横滚参数;
    根据控制终端发送的偏航控制指令,调整所述云台的偏航参数。
  87. 根据权利要求86所述的控制设备,其特征在于,所述俯仰控制指令,包括:
    对控制终端的俯仰杆或俯仰按键进行操作而产生的控制杆量。
  88. 根据权利要求86所述的控制设备,其特征在于,所述横滚控制指令,包括:
    对控制终端的横滚杆或横滚按键进行操作而产生的控制杆量。
  89. 根据权利要求86所述的控制设备,其特征在于,所述偏航控制指令,包括:
    对控制终端的偏航杆或偏航按键进行操作而产生的控制杆量。
  90. 根据权利要求82-89任一项所述的控制设备,其特征在于,所述处理器还用于:
    获取所述云台的姿态参数,按照所述云台的姿态参数调整所述无人飞行器的姿态参数。
  91. 根据权利要求90所述的控制设备,其特征在于,所述处理器按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:
    按照云台的偏航参数、俯仰参数和横滚参数中的一种或多种调整无人飞行器的偏航参数、俯仰参数和横滚参数中的一种或多种。
  92. 根据权利要求90或91所述的控制设备,其特征在于,所述处理器按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:
    按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使无人飞行器的脚架在云台上的拍摄设备的拍摄范围之外。
  93. 根据权利要求90-92任一项所述的控制设备,其特征在于,所述 处理器按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:
    按照所述云台的姿态参数调整所述无人飞行器的姿态参数,以使所述云台在转动时不发生限位。
  94. 根据权利要求90所述的控制设备,其特征在于,所述处理器获取所述云台的姿态参数时具体用于:
    获取所述云台的偏航参数;
    所述处理器按照所述云台的姿态参数调整所述无人飞行器的姿态参数时具体用于:
    按照所述云台的偏航参数调整所述无人飞行器的偏航参数。
  95. 根据权利要求94所述的控制设备,其特征在于,所述处理器按照所述云台的偏航参数调整所述无人飞行器的偏航参数时具体用于:
    按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的转动,以使无人飞行器跟随云台转动。
  96. 根据权利要求95所述的控制设备,其特征在于,所述处理器按照所述云台的偏航参数,控制所述无人飞行器在其偏航方向上的转动时具体用于:
    按照所述云台的偏航角,调整所述无人飞行器的偏航角,以使所述无人飞行器的偏航角和所述云台的偏航角一致。
  97. 一种无人飞行器,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于提供飞行动力;
    云台,安装在所述机身,用于固定拍摄设备;
    以及如权利要求65-81任一项所述的控制设备,或者如权利要求82-96任一项所述的飞行控制设备。
PCT/CN2016/113762 2016-12-30 2016-12-30 控制方法、装置、设备及无人飞行器 WO2018120132A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/113762 WO2018120132A1 (zh) 2016-12-30 2016-12-30 控制方法、装置、设备及无人飞行器
CN201680003301.7A CN107074348B (zh) 2016-12-30 2016-12-30 控制方法、装置、设备及无人飞行器
US16/457,305 US11216013B2 (en) 2016-12-30 2019-06-28 Control method, apparatus, and device, and UAV
US17/646,768 US11703886B2 (en) 2016-12-30 2022-01-03 Control method, apparatus, and device, and UAV

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113762 WO2018120132A1 (zh) 2016-12-30 2016-12-30 控制方法、装置、设备及无人飞行器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/457,305 Continuation US11216013B2 (en) 2016-12-30 2019-06-28 Control method, apparatus, and device, and UAV

Publications (1)

Publication Number Publication Date
WO2018120132A1 true WO2018120132A1 (zh) 2018-07-05

Family

ID=59623738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113762 WO2018120132A1 (zh) 2016-12-30 2016-12-30 控制方法、装置、设备及无人飞行器

Country Status (3)

Country Link
US (2) US11216013B2 (zh)
CN (1) CN107074348B (zh)
WO (1) WO2018120132A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10979685B1 (en) 2017-04-28 2021-04-13 Apple Inc. Focusing for virtual and augmented reality systems
CN110574375B (zh) 2017-04-28 2023-06-02 苹果公司 视频流水线
US10861142B2 (en) * 2017-07-21 2020-12-08 Apple Inc. Gaze direction-based adaptive pre-filtering of video data
TWI657011B (zh) * 2017-11-30 2019-04-21 財團法人工業技術研究院 無人機、無人機控制系統及控制方法
CN109074087A (zh) * 2017-12-25 2018-12-21 深圳市大疆创新科技有限公司 偏航姿态控制方法、无人机、计算机可读存储介质
CN108780324B (zh) * 2017-12-27 2022-01-25 深圳市大疆创新科技有限公司 无人机、无人机控制方法和装置
CN108323191B (zh) * 2018-02-11 2021-10-22 深圳市大疆创新科技有限公司 云台及其控制方法、无人机
CN108327874B (zh) * 2018-02-11 2020-03-10 河海大学常州校区 一种多功能水下航行器及其控制方法
CN110262540A (zh) * 2018-03-12 2019-09-20 杭州海康机器人技术有限公司 对飞行器进行飞行控制的方法和装置
WO2019205152A1 (zh) * 2018-04-28 2019-10-31 深圳市大疆创新科技有限公司 云台的控制方法和云台
CN108549399B (zh) * 2018-05-23 2020-08-21 深圳市道通智能航空技术有限公司 飞行器偏航角修正方法、装置及飞行器
CN110831860A (zh) * 2018-06-29 2020-02-21 深圳市大疆创新科技有限公司 云台的控制方法、云台、飞行器和计算机可读存储介质
CN110709797A (zh) * 2018-06-29 2020-01-17 深圳市大疆创新科技有限公司 可移动平台的操控方法、装置及可移动平台
WO2020019105A1 (zh) * 2018-07-23 2020-01-30 深圳市大疆创新科技有限公司 无人机控制方法和无人机
EP3828661A4 (en) * 2018-07-23 2021-07-07 SZ DJI Technology Co., Ltd. METHOD OF CONTROLLING GIMBAL AND UNMANNED AIRCRAFT, GIMBAL AND UNMANNED AIRCRAFT
WO2020019350A1 (zh) * 2018-07-27 2020-01-30 深圳市大疆创新科技有限公司 无人机控制方法、装置及无人机
CN109062235A (zh) * 2018-08-24 2018-12-21 天津远度科技有限公司 飞行控制方法、装置及无人机
WO2020087349A1 (zh) * 2018-10-31 2020-05-07 深圳市道通智能航空技术有限公司 无人机及其云台控制方法
CN109466766A (zh) * 2018-11-28 2019-03-15 中电科(德阳广汉)特种飞机系统工程有限公司 一种自转旋翼机及侦查系统
CN114967737A (zh) * 2019-07-12 2022-08-30 深圳市道通智能航空技术股份有限公司 一种飞行器控制方法及飞行器
US11874676B2 (en) * 2019-11-22 2024-01-16 JAR Scientific, LLC Cooperative unmanned autonomous aerial vehicles for power grid inspection and management
CN112292650A (zh) * 2019-11-28 2021-01-29 深圳市大疆创新科技有限公司 一种云台控制方法、控制装置及控制系统
CN112585936B (zh) * 2019-12-19 2022-07-12 维克多哈苏有限公司 控制方法、拍摄装置、镜头、可移动平台和计算机可读介质
CN111252260B (zh) * 2020-03-02 2023-04-28 北京中勘迈普科技有限公司 面向无人机的倾斜摄影测量相机搭载装置
CN111352410A (zh) * 2020-04-26 2020-06-30 重庆市亿飞智联科技有限公司 飞行控制方法、装置、存储介质、自动驾驶仪及无人机
WO2021217408A1 (zh) * 2020-04-28 2021-11-04 深圳市大疆创新科技有限公司 无人机系统及其控制方法和装置
WO2022000137A1 (zh) * 2020-06-28 2022-01-06 深圳市大疆创新科技有限公司 可移动平台系统及其控制方法和装置
CN112180962A (zh) * 2020-09-30 2021-01-05 苏州臻迪智能科技有限公司 无人机的飞行控制方法及装置、电子设备、存储介质
CN112068599A (zh) * 2020-10-06 2020-12-11 陈千 以四通道实现fpv自由拍摄同时自稳飞行无人机控制方法
CN112327946A (zh) * 2020-11-09 2021-02-05 国网山东省电力公司威海供电公司 一种基于最优姿态路径的云台控制方法及其系统
CN113978724B (zh) * 2021-12-24 2022-03-11 普宙科技(深圳)有限公司 一种飞行器跟随云台控制方法及系统
WO2024040466A1 (zh) * 2022-08-24 2024-02-29 深圳市大疆创新科技有限公司 飞行控制方法、装置、无人机及存储介质
CN117055599B (zh) * 2023-08-31 2024-05-14 北京航翊科技有限公司 无人机飞行控制方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103034247A (zh) * 2012-12-04 2013-04-10 浙江天地人科技有限公司 远程监控系统的控制方法和控制装置
CN104571126A (zh) * 2014-12-23 2015-04-29 河南四维远见信息技术有限公司 一种无人飞行器遥感装置及无人飞行器遥感方法
CN105857595A (zh) * 2016-04-23 2016-08-17 北京工业大学 一种基于云台的小型飞行器系统
CN106155105A (zh) * 2015-04-08 2016-11-23 优利科技有限公司 控制云台的装置及云台系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202814399U (zh) * 2012-09-27 2013-03-20 王桥生 一种可用于立体影像航拍装置系统
KR101662032B1 (ko) * 2015-04-28 2016-10-10 주식회사 유브이코어 조종사의 시선 방향과 동기화 된 uav 항공 영상 촬영 시스템
US10059459B2 (en) * 2015-05-28 2018-08-28 Kespry Inc. Unmanned aerial vehicle recovery system
US9632509B1 (en) * 2015-11-10 2017-04-25 Dronomy Ltd. Operating a UAV with a narrow obstacle-sensor field-of-view
CN105472252B (zh) * 2015-12-31 2018-12-21 天津远度科技有限公司 一种无人机获取图像的系统及方法
CN205327401U (zh) * 2016-01-12 2016-06-22 童欣 一种手机辅助飞行装置
CN105480413B (zh) * 2016-02-03 2019-01-22 英华达(上海)科技有限公司 无人旋翼机及控制无人旋翼机的飞行方法
US20170254473A1 (en) * 2016-03-07 2017-09-07 Cloud Cap Technology, Inc. Gimbals
US9753461B1 (en) * 2016-04-07 2017-09-05 Google Inc. Autonomous aerial cable inspection system
US10274924B2 (en) * 2016-06-30 2019-04-30 Sharp Laboratories Of America, Inc. System and method for docking an actively stabilized platform
CN106245524A (zh) * 2016-08-30 2016-12-21 上海法赫桥梁隧道养护工程技术有限公司 一种用于桥梁检测的无人机系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103034247A (zh) * 2012-12-04 2013-04-10 浙江天地人科技有限公司 远程监控系统的控制方法和控制装置
CN104571126A (zh) * 2014-12-23 2015-04-29 河南四维远见信息技术有限公司 一种无人飞行器遥感装置及无人飞行器遥感方法
CN106155105A (zh) * 2015-04-08 2016-11-23 优利科技有限公司 控制云台的装置及云台系统
CN105857595A (zh) * 2016-04-23 2016-08-17 北京工业大学 一种基于云台的小型飞行器系统

Also Published As

Publication number Publication date
US20220129011A1 (en) 2022-04-28
US20190324478A1 (en) 2019-10-24
US11703886B2 (en) 2023-07-18
US11216013B2 (en) 2022-01-04
CN107074348B (zh) 2021-06-15
CN107074348A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2018120132A1 (zh) 控制方法、装置、设备及无人飞行器
US11644832B2 (en) User interaction paradigms for a flying digital assistant
US11151773B2 (en) Method and apparatus for adjusting viewing angle in virtual environment, and readable storage medium
CN108476288B (zh) 拍摄控制方法及装置
WO2019242553A1 (zh) 控制拍摄装置的拍摄角度的方法、控制装置及可穿戴设备
US11303814B2 (en) Systems and methods for controlling a field of view
WO2018107419A1 (zh) 控制方法、装置、设备及可移动平台
WO2015013979A1 (zh) 遥控方法及终端
WO2019126958A1 (zh) 偏航姿态控制方法、无人机、计算机可读存储介质
US20210112194A1 (en) Method and device for taking group photo
WO2021098453A1 (zh) 目标跟踪方法及无人飞行器
US20200404179A1 (en) Motion trajectory determination and time-lapse photography methods, device, and machine-readable storage medium
WO2019100249A1 (zh) 云台的控制方法、云台以及无人飞行器
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
CN109076101B (zh) 云台控制方法、设备及计算机可读存储介质
CN111650967A (zh) 一种用于影视拍摄的无人机及云台操控系统
CN106973261A (zh) 以第三方视角观察无人机的设备、系统和方法
KR20180122566A (ko) 무인 비행유닛을 이용한 항공영상 촬영 시스템
WO2018214015A1 (zh) 一种航向修正方法、设备及飞行器
WO2022141122A1 (zh) 无人机的控制方法、无人机及存储介质
WO2022109860A1 (zh) 跟踪目标对象的方法和云台
WO2022061934A1 (zh) 图像处理方法、装置、系统、平台及计算机可读存储介质
WO2018010472A1 (zh) 控制无人机云台转动的智能显示设备及其控制系统
WO2018010473A1 (zh) 基于智能显示设备的无人机云台转动控制方法
CN108319295B (zh) 避障控制方法、设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925843

Country of ref document: EP

Kind code of ref document: A1