WO2019205152A1 - 云台的控制方法和云台 - Google Patents

云台的控制方法和云台 Download PDF

Info

Publication number
WO2019205152A1
WO2019205152A1 PCT/CN2018/085123 CN2018085123W WO2019205152A1 WO 2019205152 A1 WO2019205152 A1 WO 2019205152A1 CN 2018085123 W CN2018085123 W CN 2018085123W WO 2019205152 A1 WO2019205152 A1 WO 2019205152A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular velocity
axis motor
yaw
angle
roll
Prior art date
Application number
PCT/CN2018/085123
Other languages
English (en)
French (fr)
Inventor
苏铁
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880031267.3A priority Critical patent/CN110637266A/zh
Priority to PCT/CN2018/085123 priority patent/WO2019205152A1/zh
Publication of WO2019205152A1 publication Critical patent/WO2019205152A1/zh
Priority to US17/031,858 priority patent/US20210107146A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1607Calculation of inertia, jacobian matrixes and inverses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/043Allowing translations
    • F16M11/048Allowing translations adapted to forward-backward translation movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2042Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction constituted of several dependent joints
    • F16M11/205Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • F16M2200/042Balancing means for balancing rotational movement of the head for panning movement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/006Apparatus mounted on flying objects
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40269Naturally compliant robot arm

Definitions

  • Embodiments of the present invention relate to the field of cloud platform technology, and in particular, to a cloud platform control method and a cloud platform.
  • the gimbal can carry a load, wherein the stabilizing gimbal can stabilize the posture of the load carried thereon, that is, the load is kept in a stationary state during the movement.
  • the stabilization pan/tilt can control the movement of the load. Taking the load as the imaging device as an example, after the imaging device is mounted on the stabilization pan/tilt, the stabilization pan/tilt can stabilize the shooting direction of the camera to ensure that the camera captures a smooth picture during the movement.
  • the gyroscope is also set in the stabilization gimbal, and the gyroscope is used for sensing. Increasing the angular velocity of the gimbal in the above three directions, the angular velocity can be used to accurately control the rotation of the stabilization gimbal. However, the gyroscope is easily affected by the rotation of the earth. Therefore, the angular velocity sensed by the gyroscope will drift, which causes the posture of the stabilization gimbal to drift, which causes the captured image to drift and affect the quality of the shooting.
  • an acceleration sensor is additionally provided in the stabilization pan/tilt, and the acceleration sensor can sense the acceleration of the stabilization pan/tilt in the pitch direction and the roll direction, and then the drift of the stabilization pan/tilt in the pitch and roll directions can be eliminated. .
  • the drift of the stabilized gimbal in the yaw direction can be eliminated by increasing the compass installed on the gimbal.
  • the compass needs to be able to accurately eliminate the above drift without magnetic field interference. If the working environment of the stabilized gimbal is complicated, there may be interference of the magnetic field, which will make the drift in the yaw direction not be eliminated, resulting in shooting. The picture is unstable and affects the quality of the shot.
  • the embodiment of the invention provides a control method and a pan/tilt head for removing the attitude of the gimbal in the yaw direction caused by the detection error of the gyroscope, so that the image taken by the camera mounted on the gimbal is stable. Improve the quality of shooting.
  • an embodiment of the present invention provides a method for controlling a pan/tilt, including:
  • the yaw angle of the pan/tilt is adjusted according to the angular velocity offset.
  • an embodiment of the present invention provides a pan/tilt head, including: a controller, a gyroscope, a pitch axis motor, a roll axis motor, a yaw axis motor, the controller and the gyroscope, and the pitch axis
  • the motor, the roll motor and the yaw axis motor are communicatively connected.
  • the controller is configured to acquire a first angular velocity detected by the gyroscope, the first angular velocity is an angular velocity in a yaw direction, obtain an angular velocity of the pitch axis motor in the gimbal, an angular velocity of the roll axis motor, An angular velocity of a yaw axis motor for controlling a pitch angle of the pan/tilt, the roll axis motor for controlling a roll angle of the pan/tilt, the yaw axis motor for controlling a yaw angle of the pan/tilt; obtaining an angular velocity of the gyroscope in a yaw direction according to the first angular velocity, an angular velocity of the pitch axis motor, an angular velocity of a roll axis motor, and an angular velocity of a yaw axis motor Offset; adjusting the yaw angle of the pan/tilt according to the angular velocity
  • an embodiment of the present invention provides a control device for a cloud platform, including: a memory and a processor, where the memory is coupled to the processor;
  • a memory for storing program instructions
  • a processor configured to invoke a program instruction in the memory to execute the control method of the pan/tilt described in the first aspect.
  • an embodiment of the present invention provides a computer readable storage medium, where the computer readable storage medium stores a computer program, where the computer program includes at least one piece of code executable by a computer to control execution by the computer.
  • an embodiment of the present invention provides a computer program, when the computer program is executed by a computer, for performing the control method of the pan/tilt described in the first aspect.
  • the program may be stored in whole or in part on a storage medium packaged with the processor, or may be stored partially or entirely on a storage medium not packaged with the processor.
  • the storage medium is, for example, a memory.
  • the first angular velocity detected by the gyroscope in the gimbal is obtained, the first angular velocity is an angular velocity in the yaw direction, and the angular velocity of the pitch axis motor and the angular velocity of the roll axis motor are also obtained.
  • the angular velocity of the yaw axis motor is further obtained according to the four angular velocities, and an angular velocity offset of the gyro in the yaw direction is obtained, and the yaw angle of the pan/tilt is adjusted according to the angular velocity offset. Therefore, the attitude shift of the gimbal in the yaw direction caused by the detection error of the gyroscope can be eliminated, and the image captured by the camera mounted on the gimbal is stabilized, and the photographing quality is improved.
  • FIG. 1 is a schematic structural diagram of a cloud platform according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a working principle of a cloud platform according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for controlling a pan/tilt according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a control device for a pan/tilt head according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a cloud platform according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method, an apparatus, and a pan/tilt for controlling a pan/tilt.
  • the cloud platform involved may be a stable cloud platform, and the stabilization cloud platform may be applied to a mobile platform, such as a drone.
  • FIG. 1 is a schematic structural diagram of a cloud platform according to an embodiment of the present invention. As shown in FIG.
  • the pan/tilt head may include, but is not limited to, the following: a three-axis motor (including a pitch axis motor 1, a roll axis motor 2, and a yaw axis motor 3), a yaw shaft
  • the load is taken as a camera in FIG. 1 as an example.
  • the pitch axis motor 1 is mounted on the pitch shaft arm 7,
  • the roll axis motor 2 is mounted on the roll axis arm 8
  • the yaw shaft motor 3 is mounted on the yaw shaft arm 5.
  • the pan/tilt can also include a pan/tilt base (not shown in FIG. 1), the pan/tilt base can be mounted above the yaw axis motor 3, and the gimbal base can be equipped with a gyroscope to assist the pan/tilt head.
  • the working principle of the gimbal can be as shown in Fig. 2.
  • the gimbal uses the inertial measurement component as the feedback device, and the motor acts as the output component to form a closed-loop control system.
  • the control quantity of the control system is the attitude of the gimbal, that is, given a The target attitude, through the feedback control, realizes the measurement attitude of the gimbal to reach the target attitude.
  • the core sensor of the PTZ is a gyroscope, which can obtain its own posture by using the data detected by the gyroscope to ensure its stability in space.
  • pan/tilt head may include all or part of the above components.
  • FIG. 3 is a flowchart of a method for controlling a gimbal according to an embodiment of the present invention. As shown in FIG. 3, the method in this embodiment may include:
  • the gyroscope can be installed at the base of the pan/tilt head of the pan/tilt. Due to the rotation of the gimbal, the gyroscope will also rotate with the gimbal, so that the gyroscope can sense the angular velocity.
  • the gyroscope can detect the angular velocity in the yaw direction, referred to herein as the first angular velocity.
  • the gyroscope can also detect the angular velocity in the pitch direction and the angular velocity in the roll direction.
  • the embodiment can obtain the first angular velocity detected by the gyroscope.
  • the rotation of the pitch axis motor in the pan/tilt can control the pitch angle of the pan/tilt head
  • the rotation of the roll axis motor in the pan/tilt can control the roll angle of the pan/tilt head
  • the rotation of the yaw axis motor in the gimbal can be Controlling the yaw angle of the gimbal.
  • the angular velocity of the pitch axis electromechanical in the gimbal, the angular velocity of the roll axis motor, and the angular velocity of the yaw axis motor can be controlled.
  • the angle of rotation of the yaw axis motor obtains the angular velocity of the pitch axis motor, the angular velocity of the roll axis motor, and the angular velocity of the yaw axis motor.
  • the angular velocity of the pitch axis motor is obtained; according to the angle of rotation of the roll axis motor, the angular velocity of the roll axis motor is obtained; and according to the angle of rotation of the yaw axis motor, the yaw axis motor is obtained.
  • Angular velocity is obtained according to the angle of rotation of the pitch axis motor.
  • the angle of the pitch axis motor rotation, the angle of the roll axis motor rotation, and the angle of the yaw axis motor rotation may be separately differentiated to obtain the angular speed and the roll axis motor of the pitch axis motor.
  • the angular velocity, the angular velocity of the yaw axis motor may be separately differentiated to obtain the angular speed and the roll axis motor of the pitch axis motor.
  • the angular velocity, the angular velocity of the yaw axis motor is differentially processed to obtain the angular velocity of the pitch axis motor; the angle of the roll axis motor rotation is differentially processed to obtain the angular velocity of the roll axis motor; and the angle of the yaw axis motor is rotated. Differential processing to obtain the angular velocity of the yaw axis motor.
  • the angle of rotation of the motor can be sensed by the motor angle sensor, so that the angle of rotation of the pitch axis motor sensed by the motor angle sensor, the angle of rotation of the roll axis motor, The angle at which the yaw axis motor rotates.
  • the angle of the pitch axis motor rotation, the angle of the roll axis motor rotation, and the angle of the yaw axis motor rotation are sensed by three motor angle sensors, that is, one motor angle sensor senses the angle of the pitch axis motor rotation, and the other
  • the motor angle sensor senses the angle at which the roll axis motor rotates, and another motor angle sensor senses the angle at which the yaw axis motor rotates.
  • the motor angle sensor may be a Hall sensor, or the motor angle sensor may be a potentiometer.
  • the embodiment After obtaining the first angular velocity, the angular velocity of the pitch axis motor, the angular velocity of the roll axis motor, and the angular velocity of the yaw axis motor, the embodiment can obtain the angular velocity deviation of the gyroscope in the yaw direction according to the above four angular velocities. Transfer amount.
  • the yaw angle of the pan tilt is adjusted according to the angular velocity shift amount. Since the angular velocity sensed by the gyroscope is shifted in the prior art, the attitude of the pan/tilt head is shifted, and the present invention can pass the angular velocity of the pitch axis motor, the angular velocity of the roller motor, and the angular velocity of the yaw axis motor.
  • the angular velocity offset of the gyroscope in the yaw direction at the current first angular velocity can be accurately detected, and the drift of the attitude of the gimbal in the yaw direction is due to the existence of the angular velocity offset, and therefore the angular velocity is offset according to the angular velocity
  • the shifting amount is used to adjust the yaw angle of the gimbal, which can eliminate the drift of the attitude of the gimbal in the yaw direction.
  • the actual angular velocity of the gimbal in the yaw direction may be obtained according to the angular velocity offset and the first angular velocity, and then according to the actual situation of the gimbal in the yaw direction.
  • An angular velocity, the actual yaw angle of the pan/tilt is obtained; and then the yaw angle of the pan/tilt is adjusted according to the target yaw angle of the pan/tilt and the actual yaw angle.
  • the angular velocity detected by the gyroscope in the yaw direction deviates from the actual angular velocity of the gimbal in the yaw direction
  • the angular velocity offset obtained by the above S303 can represent the deviation. Therefore, according to the angular velocity offset and the first angular velocity detected by the gyroscope, the actual angular velocity of the gimbal in the yaw direction can be obtained. According to the actual angular velocity, the actual yaw angle of the gimbal can be obtained. For example, the actual angular velocity can be integrated to obtain the actual yaw angle.
  • the yaw angle of the gimbal is adjusted.
  • the actual yaw angle and the target yaw angle can be determined.
  • the difference between the angles and the angle difference between the gimbal and the yaw direction for example, the yaw axis motor can be controlled to rotate the gimbal in the yaw direction, which ultimately makes the actual yaw of the gimbal The angle is equal to the target yaw angle.
  • the control method of the pan/tilt obtains the first angular velocity detected by the gyroscope in the gimbal, the first angular velocity is the angular velocity in the yaw direction, and the angular velocity and the horizontal axis of the pitch axis motor in the gimbal are also acquired.
  • An angular velocity of the roller motor, an angular velocity of the yaw axis motor, and an angular velocity offset of the gyroscope in a yaw direction according to the four angular velocities, and the pan/tilt is adjusted according to the angular velocity offset Yaw angle. Therefore, the attitude shift of the gimbal in the yaw direction caused by the detection error of the gyroscope can be eliminated, and the image captured by the camera mounted on the gimbal is stabilized, and the photographing quality is improved.
  • the picture taken by the camera mounted on the pan/tilt is stable regardless of whether the pan/tilt is in the lock mode or the follow mode, and the shooting quality is improved.
  • the attitude of the pan/tilt remains static.
  • a possible implementation manner of the foregoing S303 is: first obtaining a second angular velocity according to the angular velocity of the pitch axis motor, the angular velocity of the roll axis motor, and the angular velocity of the yaw axis motor, the second The angular velocity maps the angular velocity of the yaw axis motor to the angular velocity in the yaw direction. And according to the first angular velocity and the second angular velocity, an angular velocity offset of the gyroscope in a yaw direction is obtained.
  • the angular velocity of the yaw axis motor is mapped to the yaw direction to obtain a second angular velocity, for example, the second angular velocity may be
  • the angular velocity of the yaw axis motor is mapped to the Z-axis angular velocity on the gyroscope.
  • the angular velocity offset of the gyroscope in the yaw direction is obtained, for example, the second angular velocity is subtracted from the first angular velocity, and the obtained value is taken as the angular velocity offset.
  • the angular velocity of the yaw axis motor can be mapped to the yaw direction by a preset matrix to obtain a second angular velocity.
  • the second angular velocity can be obtained according to the preset matrix, the angular velocity of the pitch axis motor, the angular velocity of the roll axis motor, and the angular velocity of the yaw axis motor, that is, the angular velocity of the yaw axis motor is mapped to the angular velocity in the yaw direction.
  • the angular velocity of the pitch axis motor, the angular velocity of the roll axis motor, and the angular velocity of the yaw axis motor may be composed of a 3*1 matrix, and the 3*1 matrix refers to a matrix of 3 rows and 1 column.
  • the second angular velocity is then obtained by multiplying the preset matrix by the 3*1 matrix.
  • the preset matrix is related to an angle of rotation of the pitch axis motor and an angle of rotation of the roll axis motor, so before the second angular velocity is obtained, the angle and the roll axis of the pitch axis motor are rotated according to the embodiment.
  • the angle of rotation of the motor determines the preset matrix.
  • the preset matrix includes Where ⁇ is the angle at which the pitch axis motor rotates, The angle at which the roll motor rotates.
  • the 3*1 matrix composed of the angular velocity of the pitch axis motor, the angular velocity of the roll axis motor, and the angular velocity of the yaw axis motor is, for example:
  • A is the angular velocity of the pitch axis motor
  • B is the angular velocity of the roll axis motor
  • C is the angular velocity of the yaw axis motor
  • This embodiment will be in the above preset matrix Multiply The value obtained by this is taken as the above second angular velocity.
  • the preset matrix is in other implementations, a row vector in the preset matrix, the preset matrix may also include other row vectors, for example, including Also includes
  • the preset matrix can be, for example:
  • the preset matrix may also be versus Multiply
  • the value obtained is taken as the third angular velocity.
  • the third angular velocity is an angular velocity of the pitch axis motor mapped to an angular velocity in the pitch direction
  • the third angular velocity may be an angular velocity of the pitch axis motor mapped to the Y-axis angular velocity on the gyroscope; and then according to the third angle a velocity and an angular velocity in the pitch direction detected by the gyroscope to obtain an angular velocity offset of the gyroscope in a pitch direction; adjusting the cloud according to an angular velocity offset of the gyroscope in a pitch direction
  • the pitch angle of the station For the specific implementation process, refer to the above description about the yaw angle, and details are not described herein again.
  • the preset matrix may also be Multiply The value obtained is taken as the fourth angular velocity.
  • the fourth angular velocity is an angular velocity of the roll axis motor mapped to an angular velocity in a roll direction
  • the fourth angular velocity may be an angular velocity of the roll axis motor mapped to an X-axis angular velocity on the gyroscope.
  • this embodiment can pass the preset matrix
  • the angular velocity offsets of the gyroscope in the pitch direction, the roll direction, and the yaw direction are respectively obtained, thereby adjusting the pitch angle, the roll angle, and the yaw angle of the gimbal.
  • FIG. 4 is a schematic structural diagram of a control device of a pan/tilt head according to an embodiment of the present invention.
  • the control device 400 of the pan/tilt head in this embodiment may include: a memory 401 and a processor 402, and a memory 401 and a processor. 402 coupled.
  • a memory 401 configured to store program instructions
  • the processor 402 is configured to invoke program instructions in the memory 401 to execute the solutions of the foregoing embodiments.
  • control device of the pan/tilt in this embodiment may be used to perform the technical solutions in the foregoing method embodiments, and the implementation principles and technical effects are similar, and details are not described herein again.
  • FIG. 5 is a schematic structural diagram of a pan/tilt head according to an embodiment of the present invention.
  • the pan/tilt head 500 of the present embodiment may include: a controller 501, a gyroscope 502, a pitch axis motor 503, and a roll axis motor 504. And a yaw axis motor 505, the controller being communicatively coupled to the gyroscope, the pitch axis motor, the roll axis motor, and the yaw axis motor.
  • the controller 501 is configured to acquire a first angular velocity detected by the gyro 502, the first angular velocity is an angular velocity in a yaw direction, and obtain an angular velocity of the pitch axis motor 503 and a roll axis motor 504.
  • the axle motor 505 is configured to control the yaw angle of the pan/tilt head 500; and obtains according to the first angular velocity, the angular velocity of the pitch axis motor 503, the angular velocity of the roll axis motor 504, and the angular velocity of the yaw axis motor 505.
  • the angular velocity offset of the gyroscope 502 in the yaw direction; the yaw angle of the pan-tilt 500 is adjusted according to the angular velocity offset.
  • controller 501 is specifically configured to:
  • An angular velocity offset of the gyroscope 502 in the yaw direction is obtained according to the first angular velocity and the second angular velocity.
  • controller 501 is specifically configured to:
  • the second angular velocity is obtained according to a preset matrix, and an angular velocity of the pitch axis motor 503, an angular velocity of the roll axis motor 504, and an angular velocity of the yaw axis motor 505.
  • controller 501 is specifically configured to:
  • the second angular velocity is obtained by multiplying the preset matrix by a 3*1 matrix composed of the angular velocity of the pitch axis motor 503, the angular velocity of the roll axis motor 504, and the angular velocity of the yaw axis motor 505.
  • the controller 501 is also configured to 3* by combining the preset matrix with the angular velocity of the pitch axis motor 503, the angular velocity of the roll axis motor 504, and the angular velocity of the yaw axis motor 505. 1 matrix multiplication, before the second angular velocity is obtained, the preset matrix is determined according to the angle at which the pitch axis motor 503 rotates and the angle at which the roll axis motor 504 rotates.
  • controller 501 is specifically configured to:
  • is the angle at which the pitch axis motor 503 rotates
  • the angle at which the roll axis motor 504 rotates A is the angular velocity of the pitch axis motor 503
  • B is the angular velocity of the roll axis motor 504
  • C is the angular velocity of the yaw axis motor 505.
  • controller 501 is further configured to:
  • the third angular velocity being an angular velocity of the pitch axis motor 503 mapped to an angular velocity in the pitch direction;
  • the pitch angle of the pan/tilt head 500 is adjusted according to the angular velocity shift amount of the gyroscope 502 in the pitch direction.
  • the controller 501 can adjust the pitch angle of the pan/tilt head 500 by controlling the rotation of the pitch axis motor 503.
  • controller 501 is further configured to:
  • the fourth angular velocity being an angular velocity of the roll axis motor 504 mapped to an angular velocity in the roll direction;
  • the roll angle of the pan/tilt head 500 is adjusted in accordance with the angular velocity shift amount of the gyroscope 502 in the roll direction.
  • the controller 501 can adjust the roll angle of the pan/tilt head 500 by controlling the rotation of the roll axis motor 504.
  • controller 501 is specifically configured to:
  • the yaw angle of the pan/tilt head 500 is adjusted according to the target yaw angle of the pan/tilt head 500 and the actual yaw angle.
  • the controller 501 adjusts the yaw angle of the pan/tilt head 500 by controlling the rotation of the yaw axis motor 505.
  • controller 501 is specifically configured to:
  • the angular velocity of the pitch axis motor 503, the angular velocity of the roll axis motor 504, and the yaw axis motor 505 are obtained based on the angle of rotation of the pitch axis motor 503, the angle at which the roll axis motor 504 rotates, and the angle at which the yaw axis motor 505 rotates. Angular velocity.
  • controller 501 is specifically configured to:
  • the angle at which the pitch axis motor 503 rotates, the angle at which the roll axis motor 504 rotates, and the angle at which the yaw axis motor 505 rotates are separately differentiated, and the angular velocity of the pitch axis motor 503, the angular velocity of the roll axis motor 504, and the offset are obtained.
  • the pan/tilt head 500 further includes: a motor angle sensor 506, the controller 501 being communicatively coupled to the motor angle sensor 506;
  • the controller 501 is further configured to acquire an angle of the pitch axis motor rotation sensed by the motor angle sensor 506, an angle of rotation of the roll axis motor, and an angle of rotation of the yaw axis motor.
  • the number of motor angle sensors 506 is three.
  • the motor angle sensor 506 is a Hall sensor or a potentiometer.
  • the cloud platform of this embodiment may be used to implement the technical solutions in the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, and the like, which can store program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Mathematical Physics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

一种云台的控制方法和云台,该方法包括:获取云台中陀螺仪检测到的第一角速度,第一角速度为偏航方向上的角速度(S301);获取云台中俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,俯仰轴电机用于控制云台的俯仰角,横滚轴电机用于控制云台的横滚角,偏航轴电机用于控制云台的偏航角(S302);根据第一角速度、俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得陀螺仪在偏航方向上的角速度偏移量(S303);根据角速度偏移量,调整云台的偏航角(S304)。该方法可以消除陀螺仪的检测误差带来的云台在偏航方向上的姿态漂移,使得云台搭载的拍摄装置拍摄出的画面稳定,提高了拍摄质量。

Description

云台的控制方法和云台 技术领域
本发明实施例涉及云台技术领域,尤其涉及一种云台的控制方法和云台。
背景技术
云台可以搭载载荷,其中,增稳云台可以稳定搭载在其上的载荷的姿态,也就是使载荷在运动中保持其姿态处于静止状态。另外,增稳云台可以控制载荷的移动。以载荷为拍摄装置为例,拍摄装置搭载在增稳云台上后,增稳云台可以稳定拍摄装置的拍摄方向,以保证拍摄装置在移动的过程中拍摄出平稳的画面。
增稳云台的支撑臂上设置有三个电机,分别控制增稳云台在俯仰,横滚,偏航三个方向的旋转,另外增稳云台中还设置有陀螺仪,陀螺仪用于感测增稳云台在上述三个方向的角速度,角速度可以用于准确地控制增稳云台的旋转。但是,陀螺仪容易受地球转动的影响,因此陀螺仪感测到的角速度会产生飘移,使得增稳云台的姿态产生飘移,从而会使得拍摄的画面出现飘移,影响拍摄质量。所以增稳云台中另设有加速度传感器,加速度传感器可以感测增稳云台在上述俯仰方向和横滚方向上的加速度,然后据此可以消除增稳云台在俯仰和横滚方向上的飘移。另外增稳云台在偏航方向上的飘移可以通过增稳云台上安装的指南针来消除。
但是指南针需要在无磁场干扰的情况下才能准确消除上述飘移,如果增稳云台的工作环境复杂,有可能存在磁场的干扰,这会使得偏航方向上的飘移得不到消除,造成拍摄出的画面不稳定,影响拍摄质量。
发明内容
本发明实施例提供一种云台的控制方法和云台,用于消除陀螺仪的检测误差带来的云台在偏航方向上的姿态飘移,使得云台搭载的拍摄装置拍摄出的画面稳定,提高拍摄质量。
第一方面,本发明实施例提供一种云台的控制方法,包括:
获取云台中陀螺仪检测到的第一角速度,所述第一角速度为偏航方向上的角速度;
获取所述云台中俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,所述俯仰轴电机用于控制所述云台的俯仰角,所述横滚轴电机用于控制所述云台的横滚角,所述偏航轴电机用于控制所述云台的偏航角;
根据所述第一角速度、所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得所述陀螺仪在偏航方向上的角速度偏移量;
根据所述角速度偏移量,调整所述云台的偏航角。
第二方面,本发明实施例提供一种云台,包括:控制器、陀螺仪、俯仰轴电机、横滚轴电机、偏航轴电机,所述控制器与所述陀螺仪、所述俯仰轴电机、所述横滚轴电机和偏航轴电机通信连接。
所述控制器,用于获取所述陀螺仪检测到的第一角速度,所述第一角速度为偏航方向上的角速度;获取所述云台中俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,所述俯仰轴电机用于控制所述云台的俯仰角,所述横滚轴电机用于控制所述云台的横滚角,所述偏航轴电机用于控制所述云台的偏航角;根据所述第一角速度、所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得所述陀螺仪在偏航方向上的角速度偏移量;根据所述角速度偏移量,调整所述云台的偏航角。
第三方面,本发明实施例提供一种云台的控制装置,包括:存储器和处理器,存储器与处理器耦合;
存储器,用于存储程序指令;
处理器,用于调用存储器中的程序指令执行上述第一方面所述的云台的控制方法。
第四方面,本发明实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序包含至少一段代码,该至少一段代码可由计算机执行,以控制所述计算机执行上述第一方面所述的云台的控制方法。
第五方面,本发明实施例提供一种计算机程序,当所述计算机程序被计算机执行时,用于执行上述第一方面所述的云台的控制方法。
所述程序可以全部或者部分存储在与处理器封装在一起的存储介质上, 也可以部分或者全部存储在不与处理器封装在一起的存储介质上。存储介质例如为存储器。
综上所述,通过获取云台中陀螺仪检测到的第一角速度,所述第一角速度为偏航方向上的角速度,还获取所述云台中俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,再根据所述四个角速度,获得所述陀螺仪在偏航方向上的角速度偏移量,根据所述角速度偏移量,调整所述云台的偏航角。从而可以消除陀螺仪的检测误差带来的云台在偏航方向上的姿态飘移,使得云台搭载的拍摄装置拍摄出的画面稳定,提高了拍摄质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的云台的示意性架构图;
图2为本发明一实施例提供的云台的工作原理的示意图;
图3为本发明一实施例提供的云台的控制方法的流程图;
图4为本发明一实施例提供的云台的控制装置的结构示意图;
图5为本发明一实施例提供的云台的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了云台的控制方法、装置和云台。其中,涉及的云台可以是增稳云台,增稳云台可以应用于可移动平台上,例如无人机等。图1为本发明一实施例提供的云台的示意性架构图。如图1所示,云台可以包括但不限于如下:三轴电机(包括俯仰(pitch)轴电机1、横滚(roll)轴电机2和偏 航(yaw)轴电机3)、yaw轴轴臂5,载荷固定装置6(包含惯性测量元件)、pitch轴轴臂7、roll轴轴臂8、载荷9。其中,图1中以载荷为摄像机为例示出。其中,pitch轴电机1安装在pitch轴轴臂7上,roll轴电机2安装在roll轴轴臂8上,yaw轴电机3安装在yaw轴轴臂5上。另外,云台还可以包括云台基座(图1中未示出),云台基座可以安装在yaw轴电机3的上方,而且云台基座可以加装陀螺仪来辅助云台的智能跟随。其中,云台的工作原理可以如图2所示,云台通过惯性测量元件作为反馈器件,电机作为输出元件,形成闭环控制系统,此控制系统的控制量是云台的姿态,即给定一个目标姿态,通过反馈控制实现云台的测量姿态达到目标姿态。其中,云台的核心传感器是陀螺仪,利用陀螺仪检测到的数据进行积分运算,便能获取得到自身的姿态,从而保证其在空间保持稳定。
应理解,上述云台中各部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。需要说明的是,云台可以包括上述全部部件或部分部件。
图3为本发明一实施例提供的云台的控制方法的流程图,如图3所示,本实施例的方法可以包括:
S301、获取云台中陀螺仪检测到的第一角速度,所述第一角速度为偏航方向上的角速度。
本实施例中,陀螺仪可以安装在云台的云台基座处。由于云台的转动,该陀螺仪也会随着云台而转动,从而陀螺仪可以感测到角速度。陀螺仪可以检测到偏航方向上的角速度,此处称为第一角速度。可选地,陀螺仪还可以检测到俯仰方向上的角速度和横滚方向上的角速度。
相应地,本实施例可以获取该陀螺仪检测到的第一角速度。
S302、获取所述云台中俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,所述俯仰轴电机用于控制所述云台的俯仰角,所述横滚轴电机用于控制所述云台的横滚角,所述偏航轴电机用于控制所述云台的偏航角。
其中,云台中的俯仰轴电机的转动可以控制所述云台的俯仰角,云台中的横滚轴电机的转动可以控制所述云台的横滚角,云台中的偏航轴电机的转动可以控制所述云台的偏航角。本实施例还可以控制云台中俯仰轴机电的角 速度、横滚轴电机的角速度、偏航轴电机的角速度。
在一些实施例中,可以先获取俯仰轴电机转动的角度、横滚轴电机转动的角度、偏航轴电机转动的角度,然后分别根据俯仰轴电机转动的角度、横滚轴电机转动的角度、偏航轴电机转动的角度,获得俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度。也就是,根据俯仰轴电机转动的角度,获得俯仰轴电机的角速度;根据横滚轴电机转动的角度,获得横滚轴电机的角速度;根据偏航轴电机转动的角度,获得偏航轴电机的角速度。
在一种实现方式中,可以是分别对俯仰轴电机转动的角度、横滚轴电机转动的角度、偏航轴电机转动的角度做微分处理,获得所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度。也就是,对俯仰轴电机转动的角度做微分处理,获得俯仰轴电机的角速度;对横滚轴电机转动的角度做微分处理,获得横滚轴电机的角速度;对偏航轴电机转动的角度做微分处理,获得偏航轴电机的角速度。
在一种实现方式中,电机转动的角度可以由电机角度传感器感测的,因此,可以获取电机角度传感器感测到的所述俯仰轴电机转动的角度、所述横滚轴电机转动的角度、所述偏航轴电机转动的角度。例如:通过三个电机角度传感器感测俯仰轴电机转动的角度、横滚轴电机转动的角度、偏航轴电机转动的角度,也就是一个电机角度传感器感测俯仰轴电机转动的角度,另一个电机角度传感器感测横滚轴电机转动的角度,再一个电机角度传感器感测偏航轴电机转动的角度。可选地,上述的电机角度传感器可以是霍尔传感器,或者,上述的电机角度传感器可以是电位器。
S303、根据所述第一角速度、所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得所述陀螺仪在偏航方向上的角速度偏移量。
在获得第一角速度、所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度之后,本实施例可以根据上述四个角速度,获得陀螺仪在偏航方向上的角速度偏移量。
S304、根据所述角速度偏移量,调整所述云台的偏航角。
在通过上述方式获得陀螺仪在偏航方向上的角速度偏移量之后,根据该角速度偏移量,调整云台的偏航角。由于现有技术中因为陀螺仪感测到的角 速度有偏移,所以造成云台的姿态发生飘移,而本发明可以通过俯仰轴电机的角速度、滚轴电机的角速度、偏航轴电机的角速度,可以准确检测出陀螺仪在当前第一角速度下的在偏航方向上的角速度偏移量,而且云台在偏航方向上姿态的飘移是因为该角速度偏移量的存在,因此根据该角速度偏移量来调整云台的偏航角,可消除云台在偏航方向上姿态发生的飘移。
在一些实施例中,可以是先根据所述角速度偏移量和所述第一角速度,获得所述云台在偏航方向上的实际角速度,再根据所述云台在偏航方向上的实际角速度,获得所述云台的实际偏航角;然后根据所述云台的目标偏航角和实际偏航角,调整所述云台的偏航角。
其中,陀螺仪检测的在偏航方向上的角速度(即第一角速度)与云台在偏航方向上的实际角速度有偏差,而本实施例通过上述S303获得的角速度偏移量可以表征这个偏差,所以根据该角速度偏移量和陀螺仪检测到的第一角速度,可以获得云台在偏航方向上的实际角速度。再根据该实际角速度就可获得云台的实际偏航角,例如可以对该实际角速度做积分处理,获得该实际偏航角。然后根据云台的目标偏航角和实际偏航角,调整云台的偏航角,例如:根据云台的目标偏航角和实际偏航角,可以确定实际偏航角与目标偏航角之间的角度差,并将云台朝偏航方向转动这个角度差,例如:可以控制偏航轴电机转动以使云台朝偏航方向转动这个角度差,最终可使得云台的实际偏航角等于目标偏航角。
本实施例提供的云台的控制方法,通过获取云台中陀螺仪检测到的第一角速度,所述第一角速度为偏航方向上的角速度,还获取所述云台中俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,再根据所述四个角速度,获得所述陀螺仪在偏航方向上的角速度偏移量,根据所述角速度偏移量,调整所述云台的偏航角。从而可以消除陀螺仪的检测误差带来的云台在偏航方向上的姿态飘移,使得云台搭载的拍摄装置拍摄出的画面稳定,提高了拍摄质量。
通过本实施例的方案,无论在云台处于锁定模式还是跟随模式,云台搭载的拍摄装置拍摄出的画面稳定,提高了拍摄质量。尤其是在云台处于锁定模式下,云台的姿态保持静止,采用本实施例的方案,可以使得云台搭载的拍摄装置拍摄的静止物体时,拍摄获得每一帧的画面都是相同的,各帧画面 之间没有飘移。
在一些实施例中,上述S303的一种可能的实现方式为:先根据所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得第二角速度,所述第二角速度为所述偏航轴电机的角速度映射到所述偏航方向上的角速度。再根据所述第一角速度和所述第二角速度,获得所述陀螺仪在偏航方向上的角速度偏移量。
具体地,先根据俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,将偏航轴电机的角速度映射到偏航方向上,获得第二角速度,例如第二角速度可以为偏航轴电机的角速度映射到陀螺仪上Z轴角速度。然后再根据第一角速度和第二角速度,获得陀螺仪在偏航方向上的角速度偏移量,例如:将第二角速度减去第一角速度,获得的值作为该角速度偏移量。
在一些实施例中,可以通过预设矩阵将偏航轴电机的角速度映射到偏航方向上以获得第二角速度。具体地,可以根据预设矩阵,以及俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得第二角速度,即偏航轴电机的角速度映射到偏航方向上的角速度。
可选地,可以是将俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度组成3*1矩阵,该3*1矩阵就指3行1列的矩阵。然后通过将预设矩阵与该3*1矩阵相乘,获得所述第二角速度。
可选地,该预设矩阵与俯仰轴电机转动的角度和横滚轴电机转动的角度有关,所以本实施例在获得第二角速度之前,还根据所述俯仰轴电机转动的角度和横滚轴电机转动的角度,确定所述预设矩阵。
在一些实施例中,预设矩阵包括
Figure PCTCN2018085123-appb-000001
其中,θ为所述俯仰轴电机转动的角度,
Figure PCTCN2018085123-appb-000002
为所述横滚轴电机转动的角度。另外,所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度组成的3*1矩阵例如为:
Figure PCTCN2018085123-appb-000003
其中,A为所述俯仰轴电机的角速度、B为所述横滚轴电机的角速度、C为所述偏航轴电机的角速度。
本实施例将上述预设矩阵中的
Figure PCTCN2018085123-appb-000004
相乘,获得
Figure PCTCN2018085123-appb-000005
并将此获得的值作为上述第二角速度。
需要说明的是,在一些实现方式中,预设矩阵为
Figure PCTCN2018085123-appb-000006
在另一些实现方式中,
Figure PCTCN2018085123-appb-000007
中预设矩阵中的一个行向量,该预设矩阵还可以包括其它的行向量,例如还包括
Figure PCTCN2018085123-appb-000008
还包括
Figure PCTCN2018085123-appb-000009
该预设矩阵例如可以为:
Figure PCTCN2018085123-appb-000010
在一些实施例,还可以将所述预设矩阵中的
Figure PCTCN2018085123-appb-000011
Figure PCTCN2018085123-appb-000012
相乘获得
Figure PCTCN2018085123-appb-000013
并将此获得的值作为第三角速度。
其中,所述第三角速度为所述俯仰轴电机的角速度映射到俯仰方向上的角速度,例如第三角速度可以为俯仰轴电机的角速度映射到陀螺仪上Y轴角速度;然后再根据所述第三角速度和所述陀螺仪检测到的在俯仰方向上的角速度,获得所述陀螺仪在俯仰方向上的角速度偏移量;根据所述陀螺仪在俯仰方向上的角速度偏移量,调整所述云台的俯仰角。其中,具体实现过程可以参见上述有关偏航角的描述,此处不再赘述。
在一些实施例中,还可以将所述预设矩阵中的
Figure PCTCN2018085123-appb-000014
相乘获得
Figure PCTCN2018085123-appb-000015
并将此获得的值作为第四角速度。
其中,所述第四角速度为所述横滚轴电机的角速度映射到横滚方向上的角速度,例如第四角速度可以为横滚轴电机的角速度映射到陀螺仪上X轴角速度。然后根据所述第四角速度和所述陀螺仪检测到的在横滚方向上的角速度,获得所述陀螺仪在横滚方向上的角速度偏移量;根据所述陀螺仪在横滚方向上的角速度偏移量,调整所述云台的横滚角。其中,具体实现过程可以参见上述有关偏航角的描述,此处不再赘述。
因此,本实施例可以通过预设矩阵
Figure PCTCN2018085123-appb-000016
来获得陀螺仪分别在俯仰方向、横滚方向、偏航方向上的角速度偏移量,进而调整云台 的俯仰角、横滚角和偏航角。
图4为本发明一实施例提供的云台的控制装置的结构示意图,如图4所示,本实施例的云台的控制装置400可以包括:存储器401和处理器402,存储器401与处理器402耦合。
存储器401,用于存储程序指令;
处理器402,用于调用存储器401中的程序指令执行上述各实施例的方案。
本实施例的云台的控制装置,可以用于执行上述各方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
图5为本发明一实施例提供的云台的结构示意图,如图5所示,本实施例的云台500可以包括:控制器501、陀螺仪502、俯仰轴电机503、横滚轴电机504和偏航轴电机505,所述控制器与所述陀螺仪、所述俯仰轴电机、所述横滚轴电机和偏航轴电机通信连接。
所述控制器501,用于获取所述陀螺仪502检测到的第一角速度,所述第一角速度为偏航方向上的角速度;获取所述俯仰轴电机503的角速度、横滚轴电机504的角速度和偏航轴电机505的角速度,所述俯仰轴电机503用于控制所述云台500的俯仰角,所述横滚轴电机504用于控制所述云台的横滚角,所述偏航轴电机505用于控制所述云台500的偏航角;根据所述第一角速度、所述俯仰轴电机503的角速度、横滚轴电机504的角速度、偏航轴电机505的角速度,获得所述陀螺仪502在偏航方向上的角速度偏移量;根据所述角速度偏移量,调整所述云台500的偏航角。
在一些实施例中,所述控制器501,具体用于:
根据所述俯仰轴电机503的角速度、横滚轴电机504的角速度、偏航轴电机505的角速度,获得第二角速度,所述第二角速度为所述偏航轴电机505的角速度映射到所述偏航方向上的角速度;
根据所述第一角速度和所述第二角速度,获得所述陀螺仪502在偏航方向上的角速度偏移量。
在一些实施例中,所述控制器501,具体用于:
根据预设矩阵,以及所述俯仰轴电机503的角速度、横滚轴电机504的角速度、偏航轴电机505的角速度,获得所述第二角速度。
在一些实施例中,所述控制器501,具体用于:
通过将所述预设矩阵与所述俯仰轴电机503的角速度、横滚轴电机504的角速度、偏航轴电机505的角速度组成的3*1矩阵相乘,获得所述第二角速度。
在一些实施例中,所述控制器501,还在通过将所述预设矩阵与所述俯仰轴电机503的角速度、横滚轴电机504的角速度、偏航轴电机505的角速度组成的3*1矩阵相乘,获得所述第二角速度之前,根据所述俯仰轴电机503转动的角度和横滚轴电机504转动的角度,确定所述预设矩阵。
在一些实施例中,所述控制器501,具体用于:
将所述预设矩阵中的
Figure PCTCN2018085123-appb-000017
Figure PCTCN2018085123-appb-000018
相乘获得的值,作为所述第二角速度;
其中,θ为所述俯仰轴电机503转动的角度,
Figure PCTCN2018085123-appb-000019
为所述横滚轴电机504转动的角度,A为所述俯仰轴电机503的角速度、B为所述横滚轴电机504的角速度、C为所述偏航轴电机505的角速度。
在一些实施例中,所述控制器501,还用于:
将所述预设矩阵中的
Figure PCTCN2018085123-appb-000020
Figure PCTCN2018085123-appb-000021
相乘获得的值,作为第三角速度,所述第三角速度为所述俯仰轴电机503的角速度映射到俯仰方向上的角速度;
根据所述第三角速度和所述陀螺仪502检测到的在俯仰方向上的角速度,获得所述陀螺仪502在俯仰方向上的角速度偏移量;
根据所述陀螺仪502在俯仰方向上的角速度偏移量,调整所述云台500的俯仰角。
其中,控制器501可以通过控制俯仰轴电机503的转动来调整云台500的俯仰角。
在一些实施例中,所述控制器501,还用于:
将所述预设矩阵中的
Figure PCTCN2018085123-appb-000022
相乘获得的值,作为第四角速度,所述第四角速度为所述横滚轴电机504的角速度映射到横滚方向上的角速度;
根据所述第四角速度和所述陀螺仪502检测到的在横滚方向上的角速度, 获得所述陀螺仪502在横滚方向上的角速度偏移量;
根据所述陀螺仪502在横滚方向上的角速度偏移量,调整所述云台500的横滚角。
其中,控制器501可以通过控制横滚轴电机504的转动来调整云台500的横滚角。
在一些实施例中,所述控制器501,具体用于:
根据所述角速度偏移量和所述第一角速度,获得所述云台500在偏航方向上的实际角速度;
根据所述云台500在偏航方向上的实际角速度,获得所述云台500的实际偏航角;
根据所述云台500的目标偏航角和实际偏航角,调整所述云台500的偏航角。其中,控制器501通过控制偏航轴电机505的转动来调整云台500的偏航角。
在一些实施例中,所述控制器501,具体用于:
分别根据俯仰轴电机503转动的角度、横滚轴电机504转动的角度、偏航轴电机505转动的角度,获得俯仰轴电机503的角速度、横滚轴电机504的角速度、偏航轴电机505的角速度。
在一些实施例中,所述控制器501,具体用于:
分别对俯仰轴电机503转动的角度、横滚轴电机504转动的角度、偏航轴电机505转动的角度做微分处理,获得所述俯仰轴电机503的角速度、横滚轴电机504的角速度、偏航轴电机505的角速度。
在一些实施例中,所述云台500还包括:电机角度传感器506,所述控制器501与所述电机角度传感器506通信连接;
所述控制器501,还用于获取电机角度传感器506感测到的所述俯仰轴电机转动的角度、所述横滚轴电机转动的角度、所述偏航轴电机转动的角度。
可选地,电机角度传感器506的个数为三个。
在一些实施例中,所述电机角度传感器506为霍尔传感器或电位器。
本实施例的云台,可以用于执行上述各方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (26)

  1. 一种云台的控制方法,其特征在于,包括:
    获取云台中陀螺仪检测到的第一角速度,所述第一角速度为偏航方向上的角速度;
    获取所述云台中俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,所述俯仰轴电机用于控制所述云台的俯仰角,所述横滚轴电机用于控制所述云台的横滚角,所述偏航轴电机用于控制所述云台的偏航角;
    根据所述第一角速度、所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得所述陀螺仪在偏航方向上的角速度偏移量;
    根据所述角速度偏移量,调整所述云台的偏航角。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一角速度、所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得所述陀螺仪在偏航方向上的角速度偏移量,包括:
    根据所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得第二角速度,所述第二角速度为所述偏航轴电机的角速度映射到所述偏航方向上的角速度;
    根据所述第一角速度和所述第二角速度,获得所述陀螺仪在偏航方向上的角速度偏移量。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得第二角速度,包括:
    根据预设矩阵,以及所述俯仰轴电机的角速度、横滚轴电机的角速度和偏航轴电机的角速度,获得所述第二角速度。
  4. 根据权利要求3所述的方法,其特征在于,所述根据预设矩阵,以及所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得所述第二角速度,包括:
    通过将所述预设矩阵与所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度组成的3*1矩阵相乘,获得所述第二角速度。
  5. 根据权利要求4所述的方法,其特征在于,所述通过将所述预设矩阵与所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度组 成的3*1矩阵相乘,获得所述第二角速度之前,还包括:
    根据所述俯仰轴电机转动的角度和横滚轴电机转动的角度,确定所述预设矩阵。
  6. 根据权利要求5所述的方法,其特征在于,所述通过将所述预设矩阵与所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度组成的3*1矩阵相乘,获得所述第二角速度,包括:
    将所述预设矩阵中的
    Figure PCTCN2018085123-appb-100001
    Figure PCTCN2018085123-appb-100002
    相乘获得的值,作为所述第二角速度;
    其中,θ为所述俯仰轴电机转动的角度,
    Figure PCTCN2018085123-appb-100003
    为所述横滚轴电机转动的角度,A为所述俯仰轴电机的角速度、B为所述横滚轴电机的角速度、C为所述偏航轴电机的角速度。
  7. 根据权利要求6所述的方法,其特征在于,还包括:
    将所述预设矩阵中的
    Figure PCTCN2018085123-appb-100004
    Figure PCTCN2018085123-appb-100005
    相乘获得的值,作为第三角速度,所述第三角速度为所述俯仰轴电机的角速度映射到俯仰方向上的角速度;
    根据所述第三角速度和所述陀螺仪检测到的在俯仰方向上的角速度,获得所述陀螺仪在俯仰方向上的角速度偏移量;
    根据所述陀螺仪在俯仰方向上的角速度偏移量,调整所述云台的俯仰角。
  8. 根据权利要求6或7所述的方法,其特征在于,还包括:
    将所述预设矩阵中的
    Figure PCTCN2018085123-appb-100006
    Figure PCTCN2018085123-appb-100007
    相乘获得的值,作为第四角速度,所述第四角速度为所述横滚轴电机的角速度映射到横滚方向上的角速度;
    根据所述第四角速度和所述陀螺仪检测到的在横滚方向上的角速度,获得所述陀螺仪在横滚方向上的角速度偏移量;
    根据所述陀螺仪在横滚方向上的角速度偏移量,调整所述云台的横滚角。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述根据所述角速度偏移量,调整所述云台的偏航角,包括:
    根据所述角速度偏移量和所述第一角速度,获得所述云台在偏航方向上 的实际角速度;
    根据所述云台在偏航方向上的实际角速度,获得所述云台的实际偏航角;
    根据所述云台的目标偏航角和实际偏航角,调整所述云台的偏航角。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述获取所述云台中俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,包括:
    分别根据俯仰轴电机转动的角度、横滚轴电机转动的角度、偏航轴电机转动的角度,获得俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度。
  11. 根据权利要求10所述的方法,其特征在于,所述分别根据俯仰轴电机转动的角度、横滚轴电机转动的角度、偏航轴电机转动的角度,获得俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,包括:
    分别对俯仰轴电机转动的角度、横滚轴电机转动的角度、偏航轴电机转动的角度做微分处理,获得所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度。
  12. 根据权利要求10或11所述的方法,其特征在于,还包括:
    获取电机角度传感器感测到的所述俯仰轴电机转动的角度、所述横滚轴电机转动的角度、所述偏航轴电机转动的角度。
  13. 根据权利要求12所述的方法,其特征在于,所述电机角度传感器为霍尔传感器或电位器。
  14. 一种云台,其特征在于,包括:控制器、陀螺仪、俯仰轴电机、横滚轴电机、偏航轴电机,所述控制器与所述陀螺仪、所述俯仰轴电机、所述横滚轴电机和偏航轴电机通信连接;
    所述控制器,用于获取所述陀螺仪检测到的第一角速度,所述第一角速度为偏航方向上的角速度;获取所述云台中俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,所述俯仰轴电机用于控制所述云台的俯仰角,所述横滚轴电机用于控制所述云台的横滚角,所述偏航轴电机用于控制所述云台的偏航角;根据所述第一角速度、所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得所述陀螺仪在偏航方向上的角速度偏移量;根据所述角速度偏移量,调整所述云台的偏航角。
  15. 根据权利要求14所述的云台,其特征在于,所述控制器,具体用于:
    根据所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得第二角速度,所述第二角速度为所述偏航轴电机的角速度映射到所述偏航方向上的角速度;
    根据所述第一角速度和所述第二角速度,获得所述陀螺仪在偏航方向上的角速度偏移量。
  16. 根据权利要求15所述的云台,其特征在于,所述控制器,具体用于:
    根据预设矩阵,以及所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度,获得所述第二角速度。
  17. 根据权利要求16所述的云台,其特征在于,所述控制器,具体用于:
    通过将所述预设矩阵与所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度组成的3*1矩阵相乘,获得所述第二角速度。
  18. 根据权利要求17所述的云台,其特征在于,所述控制器,还在通过将所述预设矩阵与所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度组成的3*1矩阵相乘,获得所述第二角速度之前,根据所述俯仰轴电机转动的角度和横滚轴电机转动的角度,确定所述预设矩阵。
  19. 根据权利要求18所述的云台,其特征在于,所述控制器,具体用于:
    将所述预设矩阵中的
    Figure PCTCN2018085123-appb-100008
    Figure PCTCN2018085123-appb-100009
    相乘获得的值,作为所述第二角速度;
    其中,θ为所述俯仰轴电机转动的角度,
    Figure PCTCN2018085123-appb-100010
    为所述横滚轴电机转动的角度,A为所述俯仰轴电机的角速度、B为所述横滚轴电机的角速度、C为所述偏航轴电机的角速度。
  20. 根据权利要求19所述的云台,其特征在于,所述控制器,还用于:
    将所述预设矩阵中的
    Figure PCTCN2018085123-appb-100011
    Figure PCTCN2018085123-appb-100012
    相乘获得的值,作为第三角速度,所述第三角速度为所述俯仰轴电机的角速度映射到俯仰方向上的角速度;
    根据所述第三角速度和所述陀螺仪检测到的在俯仰方向上的角速度,获得所述陀螺仪在俯仰方向上的角速度偏移量;
    根据所述陀螺仪在俯仰方向上的角速度偏移量,调整所述云台的俯仰角。
  21. 根据权利要求19或20所述的云台,其特征在于,所述控制器,还用于:
    将所述预设矩阵中的
    Figure PCTCN2018085123-appb-100013
    Figure PCTCN2018085123-appb-100014
    相乘获得的值,作为第四角速度,所述第四角速度为所述横滚轴电机的角速度映射到横滚方向上的角速度;
    根据所述第四角速度和所述陀螺仪检测到的在横滚方向上的角速度,获得所述陀螺仪在横滚方向上的角速度偏移量;
    根据所述陀螺仪在横滚方向上的角速度偏移量,调整所述云台的横滚角。
  22. 根据权利要求14-21任一项所述的云台,其特征在于,所述控制器,具体用于:
    根据所述角速度偏移量和所述第一角速度,获得所述云台在偏航方向上的实际角速度;
    根据所述云台在偏航方向上的实际角速度,获得所述云台的实际偏航角;
    根据所述云台的目标偏航角和实际偏航角,调整所述云台的偏航角。
  23. 根据权利要求14-22任一项所述的云台,其特征在于,所述控制器,具体用于:
    分别根据俯仰轴电机转动的角度、横滚轴电机转动的角度、偏航轴电机转动的角度,获得俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度。
  24. 根据权利要求23所述的云台,其特征在于,所述控制器,具体用于:
    分别对俯仰轴电机转动的角度、横滚轴电机转动的角度、偏航轴电机转动的角度做微分处理,获得所述俯仰轴电机的角速度、横滚轴电机的角速度、偏航轴电机的角速度。
  25. 根据权利要求23或24所述的云台,其特征在于,所述云台还包括:电机角度传感器,所述控制器与所述电机角度传感器通信连接;
    所述控制器,还用于获取电机角度传感器感测到的所述俯仰轴电机转动的角度、所述横滚轴电机转动的角度、所述偏航轴电机转动的角度。
  26. 根据权利要求25所述的云台,其特征在于,所述电机角度传感器为霍尔传感器或电位器。
PCT/CN2018/085123 2018-04-28 2018-04-28 云台的控制方法和云台 WO2019205152A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880031267.3A CN110637266A (zh) 2018-04-28 2018-04-28 云台的控制方法和云台
PCT/CN2018/085123 WO2019205152A1 (zh) 2018-04-28 2018-04-28 云台的控制方法和云台
US17/031,858 US20210107146A1 (en) 2018-04-28 2020-09-24 Gimbal control method and gimbal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085123 WO2019205152A1 (zh) 2018-04-28 2018-04-28 云台的控制方法和云台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/031,858 Continuation US20210107146A1 (en) 2018-04-28 2020-09-24 Gimbal control method and gimbal

Publications (1)

Publication Number Publication Date
WO2019205152A1 true WO2019205152A1 (zh) 2019-10-31

Family

ID=68293678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085123 WO2019205152A1 (zh) 2018-04-28 2018-04-28 云台的控制方法和云台

Country Status (3)

Country Link
US (1) US20210107146A1 (zh)
CN (1) CN110637266A (zh)
WO (1) WO2019205152A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135124A (zh) * 2020-09-24 2020-12-25 苏州科达科技股份有限公司 云台位置校准检测方法、装置以及系统
CN114020004B (zh) * 2022-01-06 2022-03-11 普宙科技(深圳)有限公司 飞行器双轴跟踪云台解耦控制方法、系统、存储介质
CN116025818B (zh) * 2023-02-14 2024-10-11 桂林智神信息技术股份有限公司 云台及其自动调平方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692225A (zh) * 2011-03-24 2012-09-26 北京理工大学 一种用于低成本小型无人机的姿态航向参考系统
CN104656684A (zh) * 2015-01-20 2015-05-27 桂林飞宇电子科技有限公司 一种用单一imu传感器实现三轴无刷电机增稳云台控制的方法
CN105378429A (zh) * 2013-05-15 2016-03-02 菲力尔系统公司 自动罗盘校准系统及相应的方法
US20160381271A1 (en) * 2015-06-25 2016-12-29 DelTron Intelligence Technology Limited Handheld camera stabilizer with integration of smart device
CN106873641A (zh) * 2017-03-20 2017-06-20 普宙飞行器科技(深圳)有限公司 三轴微型云台及其控制方法
CN106953553A (zh) * 2017-03-12 2017-07-14 纳恩博(北京)科技有限公司 一种云台、及云台电机的控制方法和装置
CN107074348A (zh) * 2016-12-30 2017-08-18 深圳市大疆创新科技有限公司 控制方法、装置、设备及无人飞行器
CN107111322A (zh) * 2016-12-12 2017-08-29 深圳市大疆创新科技有限公司 云台及其操作方法、控制方法,及使用其的可移动设备
CN107247459A (zh) * 2017-07-24 2017-10-13 桂林航天工业学院 抗干扰飞行控制方法及装置
CN107807680A (zh) * 2017-09-21 2018-03-16 中国科学院长春光学精密机械与物理研究所 一种云台漂移补偿方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008096A (ja) * 2010-06-28 2012-01-12 Seiko Epson Corp バイアス推定方法、姿勢推定方法、バイアス推定装置及び姿勢推定装置
WO2016000193A1 (zh) * 2014-06-30 2016-01-07 深圳市大疆创新科技有限公司 一种云台参数调整方法、装置及云台设备
US20180106425A1 (en) * 2015-04-07 2018-04-19 Garrett W. Brown Balancing support interface for payload stabilizers
CN110254734A (zh) * 2015-05-27 2019-09-20 高途乐公司 使用稳定用常平架的常平架系统
WO2017041302A1 (en) * 2015-09-11 2017-03-16 SZ DJI Technology Co., Ltd. Stabilizing platform
EP3411620A4 (en) * 2016-02-01 2019-01-23 SZ DJI Technology Co., Ltd. SYSTEMS AND METHODS FOR PAYLOAD STABILIZATION
CN113311878B (zh) * 2016-05-31 2024-09-10 深圳市大疆灵眸科技有限公司 用于自适应云台的方法和系统
WO2018023492A1 (zh) * 2016-08-03 2018-02-08 深圳市大疆灵眸科技有限公司 一种云台控制方法及系统
CN106681369B (zh) * 2016-12-01 2019-10-08 广州亿航智能技术有限公司 一种云台姿态控制方法及系统
CN108427407B (zh) * 2017-02-13 2021-03-05 昊翔电能运动科技(昆山)有限公司 云台控制方法、云台控制系统及云台设备
WO2018191987A1 (zh) * 2017-04-21 2018-10-25 深圳市大疆创新科技有限公司 云台及云台控制方法
WO2018191988A1 (en) * 2017-04-21 2018-10-25 Sz Dji Osmo Technology Co., Ltd. Methods and apparatuses for stabilizing a payload
CN107491099A (zh) * 2017-08-30 2017-12-19 浙江华飞智能科技有限公司 一种基于视觉和陀螺仪的云台控制方法及装置
CN108521814B (zh) * 2017-09-12 2021-10-15 深圳市大疆灵眸科技有限公司 云台的控制方法、控制器和云台
WO2019056381A1 (zh) * 2017-09-25 2019-03-28 深圳市大疆灵眸科技有限公司 云台的控制方法、云台控制器及云台
WO2019084709A1 (zh) * 2017-10-30 2019-05-09 深圳市大疆创新科技有限公司 控制云台的方法、云台、控制系统和可移动设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692225A (zh) * 2011-03-24 2012-09-26 北京理工大学 一种用于低成本小型无人机的姿态航向参考系统
CN105378429A (zh) * 2013-05-15 2016-03-02 菲力尔系统公司 自动罗盘校准系统及相应的方法
CN104656684A (zh) * 2015-01-20 2015-05-27 桂林飞宇电子科技有限公司 一种用单一imu传感器实现三轴无刷电机增稳云台控制的方法
US20160381271A1 (en) * 2015-06-25 2016-12-29 DelTron Intelligence Technology Limited Handheld camera stabilizer with integration of smart device
CN107111322A (zh) * 2016-12-12 2017-08-29 深圳市大疆创新科技有限公司 云台及其操作方法、控制方法,及使用其的可移动设备
CN107074348A (zh) * 2016-12-30 2017-08-18 深圳市大疆创新科技有限公司 控制方法、装置、设备及无人飞行器
CN106953553A (zh) * 2017-03-12 2017-07-14 纳恩博(北京)科技有限公司 一种云台、及云台电机的控制方法和装置
CN106873641A (zh) * 2017-03-20 2017-06-20 普宙飞行器科技(深圳)有限公司 三轴微型云台及其控制方法
CN107247459A (zh) * 2017-07-24 2017-10-13 桂林航天工业学院 抗干扰飞行控制方法及装置
CN107807680A (zh) * 2017-09-21 2018-03-16 中国科学院长春光学精密机械与物理研究所 一种云台漂移补偿方法

Also Published As

Publication number Publication date
US20210107146A1 (en) 2021-04-15
CN110637266A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
CN109000612B (zh) 设备的角度估算方法、装置、摄像组件及飞行器
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
US20200213518A1 (en) Method for controlling gimbal, gimbal controller, and gimbal
WO2018120059A1 (zh) 用于云台的控制方法、控制系统、云台和无人飞行器
US8844148B2 (en) Direction determining method and apparatus using a triaxial electronic compass
US20210107146A1 (en) Gimbal control method and gimbal
CN107807680B (zh) 一种云台漂移补偿方法
WO2021027638A1 (zh) 一种偏航角的融合方法、装置及飞行器
JP2015204633A (ja) 安定化した一続きの画像を提供するビデオカメラが設けられた回転翼無人機
WO2018191964A1 (zh) 云台的控制方法以及云台
WO2019227384A1 (zh) 一种云台控制方法及云台
WO2020227998A1 (zh) 图像增稳控制方法、拍摄设备和可移动平台
WO2018191957A1 (zh) 一种云台姿态估计方法、装置以及相应的云台
CN111722452B (zh) 一种红外产品的防抖稳像方法、装置、设备及存储介质
WO2018191971A1 (zh) 一种云台的控制方法以及云台
JP4775296B2 (ja) 撮像空間安定化装置及び被写体追尾装置
WO2018024239A1 (zh) 混合式图像稳定系统
US10458793B2 (en) Measuring camera to body alignment for an imager mounted within a structural body
WO2023010318A1 (zh) 云台控制方法、装置、云台和存储介质
CN109040573B (zh) 抖动校正方法和抖动校正设备
CN115373429A (zh) 云台控制方法、装置、计算机设备和存储介质
CN113301249B (zh) 全景视频处理方法、装置、计算机设备和存储介质
JP2020020878A (ja) 移動体、合焦制御方法、プログラム、及び記録媒体
JP7455558B2 (ja) 撮像装置とその空間安定化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915798

Country of ref document: EP

Kind code of ref document: A1