WO2019084709A1 - 控制云台的方法、云台、控制系统和可移动设备 - Google Patents

控制云台的方法、云台、控制系统和可移动设备 Download PDF

Info

Publication number
WO2019084709A1
WO2019084709A1 PCT/CN2017/108267 CN2017108267W WO2019084709A1 WO 2019084709 A1 WO2019084709 A1 WO 2019084709A1 CN 2017108267 W CN2017108267 W CN 2017108267W WO 2019084709 A1 WO2019084709 A1 WO 2019084709A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
pan
angular velocity
tilt
imu
Prior art date
Application number
PCT/CN2017/108267
Other languages
English (en)
French (fr)
Inventor
苏铁
潘立忠
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/108267 priority Critical patent/WO2019084709A1/zh
Priority to CN201780014299.8A priority patent/CN108700249B/zh
Publication of WO2019084709A1 publication Critical patent/WO2019084709A1/zh
Priority to US16/860,592 priority patent/US20200256506A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/043Allowing translations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/128Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction for panning and rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2071Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction for panning and rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/044Balancing means for balancing rotational movement of the undercarriage

Definitions

  • the present invention relates to the field of pan/tilt, and more particularly to a method of controlling a pan/tilt, a pan/tilt, a control system, and a mobile device.
  • the gimbal achieves stable support to the camera through the rotation of three axes, that is, the rotation of the yaw axis, the roll axis, and the pitch axis.
  • the Roll axis of the pan/tilt has a software angle limit, which is generally about ⁇ 30°. If the software limit is not added, let the pan/tilt rotate more than 30° around the Roll axis. For example, if it reaches 45° or more, the pan/tilt will be swayed. It caused the camera to continue shooting. Therefore, the current pan/tilt does not have the function of controlling the Roll axis to rotate within 360 degrees by the remote controller.
  • the embodiment of the invention provides a method for controlling a cloud platform, a cloud platform, a control system and a movable device, which can control the Roll axis of the pan/tilt to rotate within a range of 360 degrees using a remote controller.
  • a method for controlling a pan/tilt head comprising a first inertial measurement unit IMU and a second IMU, wherein the first IMU is fixedly coupled to a pan axis arm of the pan/tilt head, The second IMU is fixedly connected to the pitch axis arm of the pan/tilt; the method includes: Obtaining a control signal of the remote controller of the pan/tilt; acquiring measurement data of the first IMU and measurement data of the second IMU; according to a control signal of the remote controller, and measurement data of the first IMU The measurement data of the second IMU controls the roll axis of the pan/tilt to rotate within a range of 360 degrees.
  • a pan/tilt head including: a rotating shaft mechanism, the rotating shaft mechanism includes: a translational shaft arm and a translational shaft motor for rotating the translation axis; a roll axis arm and a roll axis motor, For rotating the roll axis; pitch axis arm and pitch axis motor for rotating the pitch axis; first inertial measurement unit IMU fixedly connected with the translation axis arm; second IMU, and a pitch axis arm fixedly connected; a controller, configured to acquire a control signal of the remote controller of the pan/tilt; acquire measurement data of the first IMU and measurement data of the second IMU; according to the control of the remote controller The signal, and the measurement data of the first IMU and the measurement data of the second IMU, control the roll axis of the pan/tilt to rotate within a range of 360 degrees.
  • a control system comprising: a memory for storing computer executable instructions; a processor for accessing the memory, and executing the computer executable instructions to perform the method of the first aspect above The operation in .
  • a mobile device comprising: the cloud platform of the second aspect; or the control system of the above third aspect.
  • a computer storage medium having stored therein program code, the program code being operative to indicate a method of performing the first aspect described above.
  • the technical solution of the embodiment of the present invention is that the IMU is fixedly connected to the tilting axis arm of the pan/tilt, and the IMU is fixedly connected to the pan axis arm of the pan/tilt, so that no matter how large the roll axis of the pan/tilt is rotated,
  • the rotation angle of each axis of the gimbal can be determined based on the measurement data of the IMU described above, so that the rotation of the gimbal can be accurately controlled, and thus the roll axis of the gimbal can be controlled to rotate within 360 degrees using the remote controller.
  • FIG. 1 is a schematic diagram of a cloud platform to which the technical solution of the embodiment of the present invention is applied.
  • FIG. 2 is a schematic flowchart of a method for controlling a cloud platform according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of a pan/tilt control according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a cloud platform according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a control system in accordance with an embodiment of the present invention.
  • Figure 6 is a schematic illustration of a mobile device in accordance with an embodiment of the present invention.
  • the size of the sequence numbers of the processes does not imply a sequence of executions, and the order of execution of the processes should be determined by its function and internal logic, and should not be construed as an embodiment of the present invention.
  • the implementation process constitutes any limitation.
  • a component when a component is “fixedly connected” or “connected” to another component, or when one component is “fixed” to another component, it may be directly on another component, or There can be a centered component.
  • the technical solution of the embodiment of the present invention can be applied to various cloud platforms, for example, a handheld cloud platform, but the embodiment of the present invention is not limited thereto.
  • the PTZ can also be set up on a removable device.
  • the mobile device may be a drone, an unmanned boat, an autonomous vehicle or a robot, etc., but the embodiment of the present invention is not limited thereto.
  • FIG. 1 is a schematic diagram of a cloud platform to which the technical solution of the embodiment of the present invention is applied.
  • the pan/tilt head may include a translating shaft arm 101, a translating shaft motor 102, a roll axis arm 103, a roll axis motor 104, a pitch axis arm 105, and a pitch axis motor 106.
  • each motor can be controlled by a corresponding electric control
  • the translational shaft arm 101 and the translational axis motor 102 constitute a translational shaft rotation mechanism for rotating the translational shaft
  • the roll axis arm 103 The roll axis motor 104 constitutes a roll axis rotating mechanism for rotating the roll axis
  • the pitch axis arm 105 and the pitch axis motor 106 constitute a pitch axis rotating shaft mechanism for rotating the pitch axis.
  • the pan/tilt may further include a base 107 and a camera fixing mechanism 108.
  • the camera fixing mechanism 108 is used to fix the camera 109.
  • the pan/tilt may also include a controller (not shown in Figure 1) for controlling the attitude of the gimbal.
  • the controller may be disposed in the camera fixing mechanism 108 or in another position of the pan/tilt head, which is not limited in this embodiment of the present invention.
  • an inertial measurement unit is provided in the camera fixing mechanism 108 for measuring the attitude of the gimbal.
  • the controller can control the rotation of the rotating shaft of the gimbal according to the measurement data of the IMU to achieve the target posture.
  • the roll axis rotation reaches 45° or more, the rotation of each axis cannot be determined only by the measurement data of the IMU in the camera fixing mechanism 108. Therefore, the roll axis of the pan/tilt cannot be controlled in the 360 degree range by using the remote controller. Rotate inside.
  • an IMU is newly added, and the IMU is fixedly connected to the pan axis arm 101 of the pan/tilt head, for example, may be disposed on the roll axis ESC of the pan/tilt head.
  • the actual spatial position of the gimbal can be determined, so that the rolling axis of the gimbal can be controlled to rotate within 360 degrees by using the remote controller.
  • FIG. 2 shows a schematic flow chart of a method 200 of controlling a pan/tilt in accordance with an embodiment of the present invention.
  • the method 200 can be performed by a gimbal, for example, by a controller or control system in the pan/tilt.
  • the remote control of the gimbal gives a control signal from which the target spatial position of the gimbal (ie, the desired spatial position) can be determined.
  • the target pitch axis angular velocity, the target roll axis angular velocity, and the target translation axis angular velocity may be determined according to the control signal of the remote controller; and the target pitch axis angular velocity, the target roll axis angular velocity, and The target translation axis angular velocity is integrated to obtain a target spatial position of the pan/tilt.
  • the remote control can control the roll axis over a 360 degree range of rotation. That is, in the embodiment of the present invention, it is not necessary to limit the range of rotation of the roll axis.
  • the pan/tilt may provide a roll 360 degree mode (Roll_360 mode), and the roll 360 degree mode indicates that the remote controller can control the roll axis of the pan/tilt at 360 Rotate within the range.
  • Roll_360 mode a roll 360 degree mode
  • the pan/tilt can be set to work in a 360 degree mode, and then controlled by a remote controller.
  • the first IMU is added. Flattening the first IMU and the pan/tilt
  • the shift shaft arm is fixedly connected. Taking the pan/tilt head shown in FIG. 1 as an example, the first IMU is fixedly connected to the panning axis arm 101 of the pan/tilt head. For example, the first IMU may be disposed on the roll axis ESC of the pan/tilt, but the embodiment of the present invention is not limited thereto.
  • the second IMU is fixedly coupled to the pitch axis arm of the pan/tilt. Taking the pan/tilt head shown in FIG. 1 as an example, the second IMU is fixedly connected to the pitch axis arm 105 of the pan/tilt head. For example, the second IMU may be disposed in the camera fixing mechanism 108 or in the camera 109, but the embodiment of the present invention is not limited thereto.
  • the measurement data of the first IMU may include a translation axis angular velocity of the pan/tilt
  • the measurement data of the second IMU may include a pitch axis angular velocity and a roll axis angular velocity of the pan/tilt. That is to say, the angular velocity of the pan axis of the pan/tilt can be acquired by the first IMU, and the pitch axis angular velocity and the roll axis angular velocity of the pan/tilt are acquired by the second IMU.
  • the first IMU may include a gyroscope to obtain a translational axis angular velocity through the gyroscope.
  • the first IMU may also include other measurement units, which are not limited by the embodiments of the present invention.
  • the second IMU may include a gyroscope that acquires the pitch axis angular velocity and the roll axis angular velocity through the gyroscope.
  • the second IMU may also include other measurement units, which are not limited by the embodiments of the present invention.
  • the pitch axis angular velocity, the roll axis angular velocity, and the translation axis angular velocity of the gimbal can be obtained, and the spatial position of the gimbal can be obtained according to each angular velocity.
  • Control according to a control signal of the remote controller, and measurement data of the first IMU and measurement data of the second IMU, to rotate the roll axis of the pan/tilt within a range of 360 degrees.
  • the rotation angle of each axis can be obtained. In this way, regardless of the angle at which the roll axis rotates, the rotation angle of each axis can be determined, so that the roll axis of the pan/tilt can be controlled to rotate at any angle using the remote controller.
  • the actual spatial position of the pan/tilt may be determined according to the pitch axis angular velocity, the roll axis angular velocity, and the translation axis angular velocity.
  • the pitch axis angular velocity and the roll axis may be respectively The angular velocity and the angular velocity of the translation axis are integrated to obtain the rotation angle of each axis, thereby determining the actual spatial position of the gimbal.
  • the individual angular velocities may be calibrated prior to integrating the individual angular velocities and then integrated.
  • the angular velocity obtained by the IMU needs to be calibrated before being integrated.
  • the translation axis angular velocity can be calibrated according to the drift value of the translation axis to obtain the translation axis calibration angular velocity; the pitch axis angular velocity is calibrated according to the pitch axis drift value, and the pitch axis calibration angular velocity is obtained; according to the roll axis
  • the drift value is calibrated to the roll axis angular velocity to obtain a roll axis calibration angular velocity; and the pitch axis calibration angular velocity, the roll axis calibration angular velocity, and the translation axis calibration angular velocity are respectively integrated to obtain the cloud The actual spatial location of the station.
  • the drift value of the specific axis may be corrected according to the joint angle of the specific axis acquired by the motor angle measuring unit of the specific axis, wherein the specific axis is a translation axis of the pan/tilt head, Pitch axis or roll axis.
  • the drift of a particular axis can also change over time.
  • the drift value needs to be corrected.
  • the correction of the drift value of a particular axis can take advantage of the measurement data of the corresponding motor angle measuring unit.
  • the motor angle measuring unit (such as a Hall device) can measure the joint angle of the corresponding axis, and the drift value can be corrected based on the data of the motor angle measuring unit.
  • the specific axis may be determined according to the joint angle of the specific axis currently measured by the motor angle measurement unit of the specific axis and the joint angle of the specific axis measured last time, and the measurement frequency. a reference angular velocity; determining a drift value correction amount of the specific axis according to the reference angular velocity of the specific axis and the calibration angular velocity of the specific axis; and performing a drift value of the specific axis according to the drift value correction amount of the specific axis Corrected.
  • Omega_bias+ (omega_refrence-Omega_calibrate)*bias_calibrate_coefficient.
  • omega_raw indicates the original angular velocity measured by the IMU
  • omega_bias indicates the drift value
  • omega_calibrate indicates the calibration angular velocity
  • omega_refrence indicates the reference angular velocity
  • joint_angle indicates the joint angle currently measured by the motor angle measuring unit
  • joint_angle_last table The joint angle measured last time of the motor angle measuring unit
  • freq represents the measuring frequency of the motor angle measuring unit
  • bias_calibrate_coefficient represents the drift value correction coefficient.
  • the drift value correction amount omega_bias+ can be used to correct the drift value omega_bias.
  • omega_bias is a real-time score of (omega_refrence-Omega_calibrate)*bias_calibrate_coefficient.
  • the corrected drift value omega_bias can be used for the next calibration, which is to determine the next calibration angular velocity omega_calibrate.
  • the axes of the gimbal can be controlled to rotate within a range of 360 degrees, so that the actual spatial position of the gimbal reaches the target space. position.
  • the motor control signal may be determined according to the difference between the target spatial position and the actual spatial position; and the panning axis motor, the pitch axis motor, and the roll axis motor of the pan/tilt are controlled according to the motor control signal,
  • the translational axis, the pitch axis, and the roll axis of the pan/tilt are rotated within a range of 360 degrees such that the spatial position of the pan/tilt head changes to the target spatial position.
  • the angle at which each axis needs to be rotated can be obtained, thereby generating a motor control signal, controlling the motors of the respective axes, and rotating the respective axial target space positions.
  • the generation of the control signal can be further achieved in conjunction with the difference between the target angular velocity and the actual angular velocity.
  • the target angular velocity of each axis is obtained from the difference between the target spatial position and the actual spatial position, and the motor control signals of the respective axes are generated from the difference between the target angular velocity and the actual angular velocity.
  • FIG. 3 is a flow chart showing the control of the pan/tilt in accordance with one embodiment of the present invention. It should be understood that FIG. 3 is only an example and should not be construed as limiting the embodiments of the present invention.
  • the angular velocity measured by the IMU (for example, the first IMU and the second IMU described above) minus the drift value obtains a calibrated angular velocity (actual angular velocity); the integrated angular velocity is integrated to obtain the actual spatial position of the gimbal;
  • the target space position of the gimbal can be obtained by the control signal of the remote controller; the target angular velocity is output according to the difference between the target spatial position and the actual spatial position; and the motor control signal (target current) is output according to the difference between the target angular velocity and the actual angular velocity;
  • the motor is controlled according to the motor control signal, so that the rotation axis of the pan/tilt is rotated within 360 degrees, so that the gimbal reaches the target space position.
  • the technical solution of the embodiment of the invention is that the IMU is fixedly connected to the tilting axis arm of the pan/tilt, and the IMU is fixedly connected to the pan axis arm of the pan/tilt, so that the roll axis of the pan/tilt rotates at most At a large angle, the rotation angle of each axis of the gimbal can be determined based on the measurement data of the IMU described above, so that the rotation of the gimbal can be accurately controlled, and thus the roll axis of the gimbal can be controlled to rotate within 360 degrees using the remote controller.
  • pan/tilt in the embodiment of the present invention is described in detail above, and the pan/tilt, the control system, and the mobile device according to the embodiment of the present invention will be described below. It should be understood that the pan/tilt, the control system, and the mobile device of the embodiments of the present invention may perform the foregoing various methods of the embodiments of the present invention, that is, the specific working processes of the following various products, and may refer to the corresponding processes in the foregoing method embodiments.
  • FIG. 4 shows a schematic block diagram of a pan/tilt head 400 of an embodiment of the present invention.
  • pan/tilt head 400 in FIG. 4 may specifically adopt the structure of the pan/tilt head shown in FIG. 1 or may adopt other structures, which is not limited by the embodiment of the present invention.
  • the platform 400 includes a spindle mechanism 410, a first IMU 420, a second IMU 430, and a controller 440.
  • the hinge mechanism 410 may include: a translation axis shaft arm and a translation axis motor for performing rotation of the translation axis; a roll axis arm and a roll axis motor for rotating the roll axis; the pitch axis arm and the pitch axis Motor for rotating the pitch axis.
  • the first IMU 420 is fixedly coupled to the translational shaft arm.
  • the second IMU 430 is fixedly coupled to the pitch axis arm.
  • the controller 440 is configured to acquire a control signal of the remote controller of the pan/tilt; acquire measurement data of the first IMU and measurement data of the second IMU; according to a control signal of the remote controller, and the first The measurement data of the IMU and the measurement data of the second IMU control the roll axis of the pan/tilt to rotate within a range of 360 degrees.
  • the pan/tilt head of the embodiment of the invention is fixedly connected to the IMU on the tilting axis arm, and is also fixedly connected to the IMU on the panning axis arm, so that no matter how large the roll axis of the pan/tilt is rotated, the IMU can be
  • the measurement data determines the rotation angle of each axis of the gimbal, so that the rotation of the gimbal can be accurately controlled, and thus the roll axis of the gimbal can be controlled to rotate within 360 degrees using the remote controller.
  • the controller 440 is specifically configured to: determine, according to a control signal of the remote controller, a target spatial location of the pan/tilt; according to the measurement data of the first IMU Determining, by the measurement data of the second IMU, the actual spatial position of the pan/tilt; and controlling the roll axis of the pan/tilt to rotate within a range of 360 degrees according to the target spatial location and the actual spatial location
  • the measurement data of the first IMU includes a translation axis angular velocity of the pan/tilt
  • the measurement data of the second IMU includes a pitch axis angular velocity and a roll of the pan/tilt head.
  • the shaft angular velocity; the controller 440 is specifically configured to: determine an actual spatial position of the pan/tilt according to the pitch axis angular velocity, the roll axis angular velocity, and the translation axis angular velocity.
  • the controller 440 is specifically configured to:
  • the pitch axis calibration angular velocity, the roll axis calibration angular velocity, and the translation axis calibration angular velocity are respectively integrated to obtain an actual spatial position of the pan/tilt.
  • the controller 440 is further configured to:
  • the controller 440 is specifically configured to:
  • the drift value of the specific axis is corrected according to the drift value correction amount of the specific axis.
  • the controller 440 is further configured to:
  • the pan/tilt is set to work in a roll 360 degree mode, and the roll 360 degree mode indicates that the remote controller can control the roll axis of the pan/tilt to rotate within a range of 360 degrees.
  • the controller 440 is specifically configured to:
  • the angular velocity of the shift axis is integrated to obtain the target spatial position of the pan/tilt.
  • the controller 440 is specifically configured to:
  • the first IMU 420 is disposed on a roll axis ESC of the pan/tilt
  • the second IMU 430 is disposed in a camera fixing mechanism of the pan/tilt head.
  • the first IMU 420 and the second IMU 430 each include a gyroscope.
  • controller 440 is not limited in the embodiment of the present invention.
  • controller 440 may also be a processor, a chip, a motherboard, or the like, which is not limited in this embodiment of the present invention.
  • FIG. 5 shows a schematic block diagram of a control system 500 in accordance with one embodiment of the present invention.
  • control system 500 can include a processor 510 and a memory 520.
  • control system 500 may also include components that are generally included in other computer systems, such as a communication interface, etc., which is not limited by the embodiment of the present invention.
  • Memory 520 is for storing computer executable instructions.
  • the memory 520 may be various kinds of memories, for example, may include a high speed random access memory (RAM), and may also include a non-volatile memory, such as at least one disk memory, which is implemented by the present invention. This example is not limited to this.
  • RAM high speed random access memory
  • non-volatile memory such as at least one disk memory
  • the processor 510 is configured to access the memory 520 and execute the computer executable instructions to perform the operations in the methods of the various embodiments of the present invention described above.
  • the processor 510 may include a microprocessor, a field-programmable gate array (FPGA), a central processing unit (CPU), a graphics processing unit (GPU), etc., and is implemented by the present invention. This example is not limited to this.
  • Embodiments of the present invention also provide a mobile device, which may include the pan/tilt or control system of the various embodiments of the present invention described above.
  • FIG. 6 is a schematic illustration of a removable device 600 in accordance with one embodiment of the present invention.
  • the removable device 600 includes a pan/tilt 610 and a camera 620.
  • the camera 620 can be connected to the mobile device 600 through the pan/tilt 610.
  • the drone may further include a power system 630, a sensing system 640, and a communication system 650 and an image processing device 660. It should be understood that the description of the mobile device in FIG. 6 as a drone is for illustrative purposes only.
  • Power system 630 can include an electronic governor (referred to as an ESC), one or more propellers, and one or more electric machines corresponding to one or more propellers.
  • the motor and the propeller are disposed on the corresponding arm; the electronic governor is configured to receive a driving signal generated by the flight controller, and provide a driving current to the motor according to the driving signal to control the rotation speed and/or steering of the motor.
  • the motor is used to drive the propeller to rotate, thereby powering the drone's flight, which enables the drone to achieve one or more degrees of freedom of motion.
  • the drone can be rotated about one or more axes of rotation.
  • the above-described rotating shaft may include a roll axis, a pan axis, and a pitch axis.
  • the motor can be a DC motor or an AC motor.
  • the motor can be a brushless motor or a brush motor.
  • the sensing system 640 is used to measure the attitude information of the drone, that is, the position information and state information of the drone in the space, for example, three-dimensional position, three-dimensional angle, three-dimensional speed, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system may include, for example, at least one of a gyroscope, an electronic compass, an inertial measurement unit, a vision sensor, a Global Positioning System (GPS), and a barometer.
  • GPS Global Positioning System
  • the flight controller is used to control the flight of the drone. For example, the flight of the drone can be controlled based on the attitude information measured by the sensing system. It should be understood that the flight controller may control the drone in accordance with pre-programmed program instructions, or may control the drone in response to one or more control commands from the maneuvering device.
  • Communication system 650 is capable of communicating with wireless terminal 690 via a terminal device 680 having communication system 670.
  • Communication system 650 and communication system 670 can include a plurality of transmitters, receivers, and/or transceivers for wireless communication.
  • the wireless communication herein may be one-way communication, for example, only the drone may transmit data to the terminal device 680.
  • the wireless communication may be two-way communication, and the data may be transmitted from the drone to the terminal device 680 or from the terminal device 680 to the drone.
  • the terminal device 680 can provide control data for one or more drones, pan/tilt 610, and camera 620, and can receive information transmitted by the drone, pan/tilt 610, and camera 620.
  • the control data provided by the terminal device 680 can be used to control one or more drones, pan/tilt The status of 610 and camera 620.
  • a cloud station 610 and a camera 620 include communication modules for communicating with the terminal device 680.
  • pan/tilt 610 included in the mobile device shown in FIG. 6 can be referred to the description of the various embodiments described above, and is not described herein again for brevity.
  • the mobile device 600 may also include other components not shown in FIG. 6, which are not limited by the embodiments of the present invention.
  • the pan/tilt, the control system, and the mobile device according to the embodiments of the present invention may correspond to an execution body of the method for controlling the gimbal of the embodiment of the present invention, and the above and other operations of each module in the pan/tilt, the control system, and the movable device
  • the functions and/or functions are respectively omitted in order to implement the corresponding processes of the foregoing various methods, and are not described herein for brevity.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores program code, and the program code can be used to indicate a method for controlling the pan/tilt in the embodiment of the invention.
  • the term "and/or” is merely an association relationship describing an associated object, indicating that there may be three relationships.
  • a and/or B may indicate that A exists separately, and A and B exist simultaneously, and B cases exist alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are only for example, the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some Features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种控制云台(610)的方法、云台(610)、控制系统和可移动设备,云台(610)包括第一IMU(420)和第二IMU(430),其中,第一IMU(420)与云台(610)的平移轴轴臂(101)固定连接,第二IMU(430)与云台(610)的俯仰轴轴臂(105)固定连接。方法包括:获取云台(610)的遥控器的控制信号;获取第一IMU(420)的测量数据和第二IMU(430)的测量数据;根据遥控器的控制信号,以及第一IMU(420)的测量数据和第二IMU(430)的测量数据,控制云台(610)的横滚轴在360度范围内进行旋转,能够使用遥控器控制云台(610)的横滚轴在360度范围内进行旋转。

Description

控制云台的方法、云台、控制系统和可移动设备
版权申明
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
技术领域
本发明涉及云台领域,并且更具体地,涉及一种控制云台的方法、云台、控制系统和可移动设备。
背景技术
云台通过三个轴的旋转,即,平移(yaw)轴、横滚(roll)轴和俯仰(pitch)轴的旋转,实现对摄像机的稳定支撑。
通常云台的Roll轴都有软件角度限位,一般为±30°左右,如果不加软件限位,让云台绕Roll轴旋转超过30°,例如达到45°以上,云台就会乱摆起来,导致摄像机无法继续拍摄。因此,目前的云台不具备遥控器控制Roll轴在360度范围内进行旋转的功能。
若想使用云台拍摄一些天旋地转的创意镜头,比如拍摄一场赛车追逐戏,摄影师希望能拍摄到各个角度的镜头,并且各个角度的镜头可以一镜到底,中间无中断等,或者,摄影师希望能拍摄一些天地转换过程的镜头,这需要使用遥控器控制云台的Roll轴在360度范围内进行旋转。因此,如何使用遥控器控制云台的Roll轴在360度范围内进行旋转成为一个亟待解决的技术问题。
发明内容
本发明实施例提供了一种控制云台的方法、云台、控制系统和可移动设备,能够使用遥控器控制云台的Roll轴在360度范围内进行旋转。
第一方面,提供了一种控制云台的方法,所述云台包括第一惯性测量单元IMU和第二IMU,其中,所述第一IMU与所述云台的平移轴轴臂固定连接,所述第二IMU与所述云台的俯仰轴轴臂固定连接;所述方法包括: 获取所述云台的遥控器的控制信号;获取所述第一IMU的测量数据和所述第二IMU的测量数据;根据所述遥控器的控制信号,以及所述第一IMU的测量数据和所述第二IMU的测量数据,控制所述云台的横滚轴在360度范围内进行旋转。
第二方面,提供了一种云台,包括:转轴机构,所述转轴机构包括:平移轴轴臂和平移轴电机,用于进行平移轴的旋转;横滚轴轴臂和横滚轴电机,用于进行横滚轴的旋转;俯仰轴轴臂和俯仰轴电机,用于进行俯仰轴的旋转;第一惯性测量单元IMU,与所述平移轴轴臂固定连接;第二IMU,与所述俯仰轴轴臂固定连接;控制器,用于获取所述云台的遥控器的控制信号;获取所述第一IMU的测量数据和所述第二IMU的测量数据;根据所述遥控器的控制信号,以及所述第一IMU的测量数据和所述第二IMU的测量数据,控制所述云台的横滚轴在360度范围内进行旋转。
第三方面,提供了一种控制系统,包括:存储器,用于存储计算机可执行指令;处理器,用于访问所述存储器,并执行所述计算机可执行指令,以进行上述第一方面的方法中的操作。
第四方面,提供了一种可移动设备,包括:上述第二方面的云台;或者,上述第三方面的控制系统。
第五方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码可以用于指示执行上述第一方面的方法。
本发明实施例的技术方案,除了在云台的俯仰轴轴臂上固定连接IMU,还在云台的平移轴轴臂上固定连接IMU,这样,无论云台的横滚轴旋转到多大角度,都能够根据上述IMU的测量数据确定云台的各个轴的旋转角度,从而能够准确控制云台的旋转,因而能够使用遥控器控制云台的横滚轴在360度范围内进行旋转。
附图说明
图1是应用本发明实施例的技术方案的一种云台的示意图。
图2是本发明实施例的控制云台的方法的示意性流程图。
图3是本发明实施例的云台控制流程图。
图4是本发明实施例的云台的示意性框图。
图5是本发明实施例的控制系统的示意性框图。
图6是本发明实施例的可移动设备的示意图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。
应理解,本文中的具体的例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
还应理解,本发明实施例中的公式只是一种示例,而非限制本发明实施例的范围,各公式可以进行变形,这些变形也应属于本发明保护的范围。
还应理解,在本发明的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
还应理解,本说明书中描述的各种实施方式,既可以单独实施,也可以组合实施,本发明实施例对此并不限定。
需要说明的是,本发明实施例中当一组件与另一组件“固定连接”或“连接”,或者,一组件“固定于”另一组件时,它可以直接在另一组件上,或者也可以存在居中的组件。
除非另有说明,本发明实施例所使用的所有技术和科学术语与本发明的技术领域的技术人员通常理解的含义相同。本申请中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请的范围。本申请所使用的术语“和/或”包括一个或多个相关的所列项的任意的和所有的组合。
本发明实施例的技术方案可以应用于各种云台,例如,手持云台,但本发明实施例对此并不限定。例如,云台也可以设置在可移动设备上。该可移动设备可以是无人机、无人驾驶船、自动驾驶车辆或机器人等,但本发明实施例对此并不限定。
图1是应用本发明实施例的技术方案的一种云台的示意图。
如图1所示,云台可以包括平移轴轴臂101、平移轴电机102,横滚轴轴臂103、横滚轴电机104、俯仰轴轴臂105和俯仰轴电机106。它们构成云台的转轴机构,其中,每个电机可由相应的电调控制,平移轴轴臂101和平移轴电机102构成平移轴转轴机构,用于进行平移轴的旋转;横滚轴轴臂103和横滚轴电机104构成横滚轴转轴机构,用于进行横滚轴的旋转;俯仰轴轴臂105和俯仰轴电机106构成俯仰轴转轴机构,用于进行俯仰轴的旋转。 另外,云台还可以包括基座107和摄像机固定机构108。摄像机固定机构108用于固定摄像机109。在一些可能的设计中,云台还可以包括控制器(图1中未示出),用于控制云台的姿态。该控制器可以设置于摄像机固定机构108内,也可以设置于云台的其他位置,本发明实施例对此并不限定。
在一些可能的设计中,摄像机固定机构108内设置有惯性测量单元(Inertial MeasurementUnit,IMU),用于测量云台的姿态。控制器可以根据IMU的测量数据控制云台的旋转轴旋转,以达到目标姿态。然而,在横滚轴旋转达到45°以上时,仅通过摄像机固定机构108内的IMU的测量数据无法确定各个轴的旋转情况,因此,不能使用遥控器控制云台的横滚轴在360度范围内进行旋转。
鉴于此,在本发明实施例中,新增一个IMU,该IMU与云台的平移轴轴臂101固定连接,例如,可以设置于云台的横滚轴电调上。根据这两个IMU的测量数据可以确定云台的实际空间位置,从而可以实现使用遥控器控制云台的横滚轴在360度范围内进行旋转。下面对本发明实施例的技术方案进行详细描述。
图2示出了本发明一个实施例的控制云台的方法200的示意性流程图。该方法200可以由云台执行,例如,可以由云台中的控制器或控制系统执行。
210,获取云台的遥控器的控制信号。
云台的遥控器给出控制信号,可以根据该控制信号确定云台的目标空间位置(即期望的空间位置)。可选地,可以先根据所述遥控器的控制信号,确定目标俯仰轴角速度、目标横滚轴角速度和目标平移轴角速度;再分别对所述目标俯仰轴角速度、所述目标横滚轴角速度和所述目标平移轴角速度进行积分,得到所述云台的目标空间位置。
在本发明实施例中,遥控器可以在360度的旋转范围内控制横滚轴。也就是说,在本发明实施例中,不需要对横滚轴旋转范围进行限制。
可选地,在本发明一个实施例中,云台可以提供横滚360度模式(Roll_360模式),所述横滚360度模式表示所述遥控器能够控制所述云台的横滚轴在360度范围内进行旋转。在这种情况下,可以先设置所述云台工作在横滚360度模式,再通过遥控器进行控制。
220,获取第一IMU的测量数据和第二IMU的测量数据。
在本发明实施例中,增加第一IMU。所述第一IMU与所述云台的平 移轴轴臂固定连接。以图1所示云台为例,第一IMU与云台的平移轴轴臂101固定连接。例如,第一IMU可以设置于云台的横滚轴电调上,但本发明实施例对此并不限定。第二IMU与所述云台的俯仰轴轴臂固定连接。以图1所示云台为例,第二IMU与云台的俯仰轴轴臂105固定连接。例如,第二IMU可以设置于摄像机固定机构108内或者设置在摄像机109内,但本发明实施例对此并不限定。
可选地,所述第一IMU的测量数据可以包括所述云台的平移轴角速度,所述第二IMU的测量数据可以包括所述云台的俯仰轴角速度和横滚轴角速度。也就是说,可以通过第一IMU获取所述云台的平移轴角速度,通过第二IMU获取所述云台的俯仰轴角速度和横滚轴角速度。
可选地,第一IMU可以包括陀螺仪,通过陀螺仪获取平移轴角速度。第一IMU也可以包括其他测量单元,本发明实施例对此并不限定。
可选地,第二IMU可以包括陀螺仪,通过陀螺仪获取俯仰轴角速度和横滚轴角速度。第二IMU也可以包括其他测量单元,本发明实施例对此并不限定。
通过第一IMU和第二IMU,可以得到云台的俯仰轴角速度、横滚轴角速度和平移轴角速度,根据各个角速度,可以得到云台的空间位置。
230,根据所述遥控器的控制信号,以及所述第一IMU的测量数据和所述第二IMU的测量数据,控制所述云台的横滚轴在360度范围内进行旋转。
在本发明实施例中,根据新增的第一IMU的测量数据,以及第二IMU的测量数据,可以得到各个轴的旋转角度。这样,无论横滚轴旋转多大角度,都可以确定每个轴的旋转角度,从而可以实现使用遥控器控制云台的横滚轴进行任意角度的旋转。
可选地,在本发明一个实施例中,可以根据所述遥控器的控制信号,确定所述云台的目标空间位置;根据所述第一IMU的测量数据和所述第二IMU的测量数据,确定所述云台的实际空间位置;根据所述目标空间位置和所述实际空间位置,控制所述云台的横滚轴在360度范围内进行旋转。
可选地,在本发明一个实施例中,可以根据所述俯仰轴角速度、所述横滚轴角速度和所述平移轴角速度,确定所述云台的实际空间位置。
可选地,在本发明一个实施例中,可以分别对俯仰轴角速度、横滚轴 角速度和平移轴角速度进行积分,得到各个轴的旋转角度,从而确定云台的实际空间位置。
可选地,在本发明另一个实施例中,在对各个角速度进行积分前,可以先对各个角速度进行校准,然后再进行积分。
具体而言,IMU的输出数据可能会存在漂移,在这种情况下,需要先对IMU获取的各个角速度进行校准,然后再进行积分。例如,可以根据平移轴的漂移值对所述平移轴角速度进行校准,得到平移轴校准角速度;根据俯仰轴的漂移值对所述俯仰轴角速度进行校准,得到俯仰轴校准角速度;根据横滚轴的漂移值对所述横滚轴角速度进行校准,得到横滚轴校准角速度;再分别对所述俯仰轴校准角速度、所述横滚轴校准角速度和所述平移轴校准角速度进行积分,得到所述云台的实际空间位置。
可选地,还可以根据特定轴的电机角度测量单元获取的所述特定轴的关节角度,对所述特定轴的漂移值进行修正,其中,所述特定轴为所述云台的平移轴、俯仰轴或横滚轴。
具体而言,特定轴的漂移值(bias)也可以随着时间的变化而发生变化,在这种情况下,还需要对漂移值进行修正。对特定轴的漂移值的修正可以利用相应电机角度测量单元的测量数据。电机角度测量单元(例如霍尔器件等),可以测量相应轴的关节角度,以电机角度测量单元的数据为基准,可以对上述漂移值进行修正。
可选地,可以根据所述特定轴的电机角度测量单元当前测得的所述特定轴的关节角度与上一次测得的所述特定轴的关节角度,以及测量频率,确定所述特定轴的参考角速度;根据所述特定轴的参考角速度和所述特定轴的校准角速度,确定所述特定轴的漂移值修正量;根据所述特定轴的漂移值修正量对所述特定轴的漂移值进行修正。
例如,可以根据以下公式确定特定轴的漂移值修正量omega_bias+,omega_calibrate=omega_raw–omega_bias;
omega_refrence=(joint_angle-joint_angle_last)*freq;
omega_bias+=(omega_refrence-Omega_calibrate)*bias_calibrate_coefficient。
其中,omega_raw表示IMU测得的原始角速度,omega_bias表示漂移值,omega_calibrate表示校准角速度,omega_refrence表示参考角速度,joint_angle表示电机角度测量单元当前测得的关节角度,joint_angle_last表 示电机角度测量单元上一次测得的关节角度,freq表示电机角度测量单元的测量频率,bias_calibrate_coefficient表示漂移值修正系数。
漂移值修正量omega_bias+可以用于修正漂移值omega_bias。也就是说,omega_bias为(omega_refrence-Omega_calibrate)*bias_calibrate_coefficient的实时积分。修正后的漂移值omega_bias可用于下一次校准,即确定下一次的校准角速度omega_calibrate。
根据由遥控器的控制信号得到的目标空间位置和由IMU的测量数据得到的实际空间位置,可以控制云台的各个轴在360度范围内进行旋转,以使云台的实际空间位置到达目标空间位置。
具体地,可以根据所述目标空间位置和所述实际空间位置的差别,确定电机控制信号;根据所述电机控制信号,控制所述云台的平移轴电机、俯仰轴电机和横滚轴电机,以使所述云台的平移轴、俯仰轴和横滚轴在360度范围内进行旋转,使得所述云台的空间位置向所述目标空间位置变化。
由目标空间位置和实际空间位置的差别,可以得到各个轴需要旋转的角度,从而生成电机控制信号,控制各个轴的电机,使各个轴向目标空间位置旋转。
可选地,控制信号的生成还可以进一步结合目标角速度和实际角速度的差别而实现。例如,由目标空间位置和实际空间位置的差别得到各个轴的目标角速度,再由目标角速度和实际角速度的差别生成各个轴的电机控制信号。
图3示出了本发明一个实施例的云台控制流程图。应理解,图3仅仅是一种示例,不应理解为对本发明实施例的限定。
如图3所示,IMU(例如,上述第一IMU和第二IMU)测得的角速度减去漂移值得到校准角速度(实际角速度);对校准角速度积分后得到云台的实际空间位置;另一方面,由遥控器的控制信号可得到云台的目标空间位置;根据目标空间位置和实际空间位置的差别输出目标角速度;在根据目标角速度和实际角速度的差别输出电机控制信号(目标电流);电调根据电机控制信号控制电机,使云台的旋转轴在360度范围内进行旋转,以使云台达到目标空间位置。
本发明实施例的技术方案,除了在云台的俯仰轴轴臂上固定连接IMU,还在云台的平移轴轴臂上固定连接IMU,这样,无论云台的横滚轴旋转到多 大角度,都能够根据上述IMU的测量数据确定云台的各个轴的旋转角度,从而能够准确控制云台的旋转,因而能够使用遥控器控制云台的横滚轴在360度范围内进行旋转。
上文详细描述了本发明实施例的控制云台的方法,下面将描述本发明实施例的云台、控制系统和可移动设备。应理解,本发明实施例的云台、控制系统和可移动设备可以执行前述本发明实施例的各种方法,即以下各种产品的具体工作过程,可以参考前述方法实施例中的对应过程。
图4示出了本发明实施例的云台400的示意性框图。
应理解,图4中的云台400具体可以采用图1所示的云台的结构,也可以采用其他的结构,本发明实施例对此并不限定。
如图4所示,云台400包括:转轴机构410,第一IMU 420,第二IMU430和控制器440。
转轴机构410可以包括:平移轴轴臂和平移轴电机,用于进行平移轴的旋转;横滚轴轴臂和横滚轴电机,用于进行横滚轴的旋转;俯仰轴轴臂和俯仰轴电机,用于进行俯仰轴的旋转。
第一IMU 420与所述平移轴轴臂固定连接。
第二IMU430与所述俯仰轴轴臂固定连接。
控制器440用于获取所述云台的遥控器的控制信号;获取所述第一IMU的测量数据和所述第二IMU的测量数据;根据所述遥控器的控制信号,以及所述第一IMU的测量数据和所述第二IMU的测量数据,控制所述云台的横滚轴在360度范围内进行旋转。
本发明实施例的云台,除了在俯仰轴轴臂上固定连接IMU,还在平移轴轴臂上固定连接IMU,这样,无论云台的横滚轴旋转到多大角度,都能够根据上述IMU的测量数据确定云台的各个轴的旋转角度,从而能够准确控制云台的旋转,因而能够使用遥控器控制云台的横滚轴在360度范围内进行旋转。
可选地,在本发明一个实施例中,所述控制器440具体用于:根据所述遥控器的控制信号,确定所述云台的目标空间位置;根据所述第一IMU的测量数据和所述第二IMU的测量数据,确定所述云台的实际空间位置;以及,根据所述目标空间位置和所述实际空间位置,控制所述云台的横滚轴在360度范围内进行旋转
可选地,在本发明一个实施例中,所述第一IMU的测量数据包括所述云台的平移轴角速度,所述第二IMU的测量数据包括所述云台的俯仰轴角速度和横滚轴角速度;所述控制器440具体用于:根据所述俯仰轴角速度、所述横滚轴角速度和所述平移轴角速度,确定所述云台的实际空间位置。
可选地,在本发明一个实施例中,所述控制器440具体用于:
根据平移轴的漂移值对所述平移轴角速度进行校准,得到平移轴校准角速度;
根据俯仰轴的漂移值对所述俯仰轴角速度进行校准,得到俯仰轴校准角速度;
根据横滚轴的漂移值对所述横滚轴角速度进行校准,得到横滚轴校准角速度;
分别对所述俯仰轴校准角速度、所述横滚轴校准角速度和所述平移轴校准角速度进行积分,得到所述云台的实际空间位置。
可选地,在本发明一个实施例中,所述控制器440还用于:
根据特定轴的电机角度测量单元获取的所述特定轴的关节角度,对所述特定轴的漂移值进行修正,其中,所述特定轴为所述云台的平移轴、俯仰轴或横滚轴。
可选地,在本发明一个实施例中,所述控制器440具体用于:
根据所述特定轴的电机角度测量单元当前测得的所述特定轴的关节角度与上一次测得的所述特定轴的关节角度,以及测量频率,确定所述特定轴的参考角速度;
根据所述特定轴的参考角速度和所述特定轴的校准角速度,确定所述特定轴的漂移值修正量;
根据所述特定轴的漂移值修正量对所述特定轴的漂移值进行修正。
可选地,在本发明一个实施例中,所述控制器440还用于:
设置所述云台工作在横滚360度模式,所述横滚360度模式表示所述遥控器能够控制所述云台的横滚轴在360度范围内进行旋转。
可选地,在本发明一个实施例中,所述控制器440具体用于:
根据所述遥控器的控制信号,确定目标俯仰轴角速度、目标横滚轴角速度和目标平移轴角速度
分别对所述目标俯仰轴角速度、所述目标横滚轴角速度和所述目标平 移轴角速度进行积分,得到所述云台的目标空间位置。
可选地,在本发明一个实施例中,所述控制器440具体用于:
根据所述目标空间位置和所述实际空间位置的差别,确定电机控制信号;
根据所述电机控制信号,控制所述平移轴电机、所述俯仰轴电机和所述横滚轴电机,以使所述云台的平移轴、俯仰轴和横滚轴在360度范围内进行旋转,使得所述云台的空间位置向所述目标空间位置变化。
可选地,在本发明一个实施例中,所述第一IMU 420设置于所述云台的横滚轴电调上,所述第二IMU 430设置于所述云台的相机固定机构内。
可选地,在本发明一个实施例中,所述第一IMU 420和所述第二IMU430均包括陀螺仪。
应理解,本发明实施例对控制器440的具体实现形式不做限定。另外,控制器440也可以成为处理器、芯片或主板等,本发明实施例对此也不限定。
图5示出了本发明一个实施例的控制系统500的示意性框图。
如图5所示,该控制系统500可以包括处理器510和存储器520。
应理解,控制系统500中还可以包括其他计算机系统中通常所包括的部件,例如,通信接口等,本发明实施例对此并不限定。
存储器520用于存储计算机可执行指令。
存储器520可以是各种种类的存储器,例如可以包括高速随机存取存储器(Random Access Memory,RAM),还可以包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器,本发明实施例对此并不限定。
处理器510用于访问该存储器520,并执行该计算机可执行指令,以进行上述本发明各种实施例的方法中的操作。
处理器510可以包括微处理器,现场可编程门阵列(Field-Programmable Gate Array,FPGA),中央处理器(Central Processing unit,CPU),图形处理器(Graphics Processing Unit,GPU)等,本发明实施例对此并不限定。
本发明实施例还提供了一种可移动设备,该可移动设备可以包括上述本发明各种实施例的云台或者控制系统。
图6是本发明一个实施例的可移动设备600的示意图。如图6所 示,可移动设备600包括云台610和相机620。相机620可以通过云台610连接到可移动设备600上。
以无人机为例,无人机还可以包括动力系统630、传感系统640和通信系统650和图像处理设备660。应理解,图6中将可移动设备描述为无人机仅仅是为了描述方面。
动力系统630可以包括电子调速器(简称为电调)、一个或多个螺旋桨以及与一个或多个螺旋桨相对应的一个或多个电机。电机和螺旋桨设置在对应的机臂上;电子调速器用于接收飞行控制器产生的驱动信号,并根据驱动信号提供驱动电流给电机,以控制电机的转速和/或转向。电机用于驱动螺旋桨旋转,从而为无人机的飞行提供动力,该动力使得无人机能够实现一个或多个自由度的运动。在某些实施例中,无人机可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、平移轴和俯仰轴。应理解,电机可以是直流电机,也可以交流电机。另外,电机可以是无刷电机,也可以有刷电机。
传感系统640用于测量无人机的姿态信息,即无人机在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统例如可以包括陀螺仪、电子罗盘、惯性测量单元、视觉传感器、全球定位系统(Global Positioning System,GPS)和气压计等传感器中的至少一种。飞行控制器用于控制无人机的飞行,例如,可以根据传感系统测量的姿态信息控制无人机的飞行。应理解,飞行控制器可以按照预先编好的程序指令对无人机进行控制,也可以通过响应来自操纵设备的一个或多个控制指令对无人机进行控制。
通信系统650能够与一个具有通信系统670的终端设备680通过无线信号690进行通信。通信系统650和通信系统670可以包括多个用于无线通信的发射机、接收机和/或收发机。这里的无线通信可以是单向通信,例如,只能是无人机向终端设备680发送数据。或者无线通信可以是双向通信,数据即可以从无人机发送给终端设备680,也可以由终端设备680发送给无人机。
可选地,终端设备680能够提供针对于一个或多个无人机、云台610和相机620的控制数据,并能接收无人机、云台610和相机620发送的信息。终端设备680提供的控制数据能够用于控制一个或多个无人机、云台 610和相机620的状态。可选地,云台610和相机620中包括用于与终端设备680进行通信的通信模块。
图6所示出的可移动设备包括的云台610可以参照前述各种实施例的描述,为了简洁,在此不再赘述。
应理解,上述对于可移动设备600的各组成部件的划分和命名仅仅是示例性的,并不应理解为对本发明实施例的限制。
还应理解,可移动设备600还可以包括图6中未示出的其他部件,本发明实施例对此并不限定。
本发明实施例的云台、控制系统和可移动设备可对应于本发明实施例的控制云台的方法的执行主体,并且云台、控制系统和可移动设备中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码可以用于指示执行上述本发明实施例的控制云台的方法。
应理解,在本发明实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅 仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种控制云台的方法,其特征在于,所述云台包括第一惯性测量单元IMU和第二IMU,其中,所述第一IMU与所述云台的平移轴轴臂固定连接,所述第二IMU与所述云台的俯仰轴轴臂固定连接;
    所述方法包括:
    获取所述云台的遥控器的控制信号;
    获取所述第一IMU的测量数据和所述第二IMU的测量数据;
    根据所述遥控器的控制信号,以及所述第一IMU的测量数据和所述第二IMU的测量数据,控制所述云台的横滚轴在360度范围内进行旋转。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述遥控器的控制信号,以及所述第一IMU的测量数据和所述第二IMU的测量数据,控制所述云台的横滚轴在360度范围内进行旋转,包括:
    根据所述遥控器的控制信号,确定所述云台的目标空间位置;
    根据所述第一IMU的测量数据和所述第二IMU的测量数据,确定所述云台的实际空间位置;
    根据所述目标空间位置和所述实际空间位置,控制所述云台的横滚轴在360度范围内进行旋转。
  3. 根据权利要求2所述的方法,其特征在于,所述第一IMU的测量数据包括所述云台的平移轴角速度,所述第二IMU的测量数据包括所述云台的俯仰轴角速度和横滚轴角速度;
    所述根据所述第一IMU的测量数据和所述第二IMU的测量数据,确定所述云台的实际空间位置,包括:
    根据所述俯仰轴角速度、所述横滚轴角速度和所述平移轴角速度,确定所述云台的实际空间位置。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述俯仰轴角速度、所述横滚轴角速度和所述平移轴角速度,确定所述云台的实际空间位置,包括:
    根据平移轴的漂移值对所述平移轴角速度进行校准,得到平移轴校准角速度;
    根据俯仰轴的漂移值对所述俯仰轴角速度进行校准,得到俯仰轴校准角速度;
    根据横滚轴的漂移值对所述横滚轴角速度进行校准,得到横滚轴校准角速度;
    分别对所述俯仰轴校准角速度、所述横滚轴校准角速度和所述平移轴校准角速度进行积分,得到所述云台的实际空间位置。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    根据特定轴的电机角度测量单元获取的所述特定轴的关节角度,对所述特定轴的漂移值进行修正,其中,所述特定轴为所述云台的平移轴、俯仰轴或横滚轴。
  6. 根据权利要求5所述的方法,其特征在于,所述对所述特定轴的漂移值进行修正,包括:
    根据所述特定轴的电机角度测量单元当前测得的所述特定轴的关节角度与上一次测得的所述特定轴的关节角度,以及测量频率,确定所述特定轴的参考角速度;
    根据所述特定轴的参考角速度和所述特定轴的校准角速度,确定所述特定轴的漂移值修正量;
    根据所述特定轴的漂移值修正量对所述特定轴的漂移值进行修正。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,在所述获取所述云台的遥控器的控制信号之前,所述方法还包括:
    设置所述云台工作在横滚360度模式,所述横滚360度模式表示所述遥控器能够控制所述云台的横滚轴在360度范围内进行旋转。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,所述根据所述遥控器的控制信号,确定所述云台的目标空间位置,包括:
    根据所述遥控器的控制信号,确定目标俯仰轴角速度、目标横滚轴角速度和目标平移轴角速度;
    分别对所述目标俯仰轴角速度、所述目标横滚轴角速度和所述目标平移轴角速度进行积分,得到所述云台的目标空间位置。
  9. 根据权利要求2至8中任一项所述的方法,其特征在于,所述根据所述目标空间位置和所述实际空间位置,控制所述云台的横滚轴在360度范围内进行旋转,包括:
    根据所述目标空间位置和所述实际空间位置的差别,确定电机控制信号;
    根据所述电机控制信号,控制所述云台的平移轴电机、俯仰轴电机和横 滚轴电机,以使所述云台的平移轴、俯仰轴和横滚轴在360度范围内进行旋转,使得所述云台的空间位置向所述目标空间位置变化。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一IMU设置于所述云台的横滚轴电调上,所述第二IMU设置于所述云台的相机固定机构内。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一IMU和所述第二IMU均包括陀螺仪。
  12. 一种云台,其特征在于,包括:
    转轴机构,所述转轴机构包括:平移轴轴臂和平移轴电机,用于进行平移轴的旋转;横滚轴轴臂和横滚轴电机,用于进行横滚轴的旋转;俯仰轴轴臂和俯仰轴电机,用于进行俯仰轴的旋转;
    第一惯性测量单元IMU,与所述平移轴轴臂固定连接;
    第二IMU,与所述俯仰轴轴臂固定连接;
    控制器,用于获取所述云台的遥控器的控制信号;获取所述第一IMU的测量数据和所述第二IMU的测量数据;根据所述遥控器的控制信号,以及所述第一IMU的测量数据和所述第二IMU的测量数据,控制所述云台的横滚轴在360度范围内进行旋转。
  13. 根据权利要求12所述的云台,其特征在于,所述控制器具体用于:
    根据所述遥控器的控制信号,确定所述云台的目标空间位置;根据所述第一IMU的测量数据和所述第二IMU的测量数据,确定所述云台的实际空间位置;以及,根据所述目标空间位置和所述实际空间位置,控制所述云台的横滚轴在360度范围内进行旋转。
  14. 根据权利要求13所述的云台,其特征在于,所述第一IMU的测量数据包括所述云台的平移轴角速度,所述第二IMU的测量数据包括所述云台的俯仰轴角速度和横滚轴角速度;
    所述控制器具体用于:根据所述俯仰轴角速度、所述横滚轴角速度和所述平移轴角速度,确定所述云台的实际空间位置。
  15. 根据权利要求14所述的云台,其特征在于,所述控制器具体用于:
    根据平移轴的漂移值对所述平移轴角速度进行校准,得到平移轴校准角速度;
    根据俯仰轴的漂移值对所述俯仰轴角速度进行校准,得到俯仰轴校准角 速度;
    根据横滚轴的漂移值对所述横滚轴角速度进行校准,得到横滚轴校准角速度;
    分别对所述俯仰轴校准角速度、所述横滚轴校准角速度和所述平移轴校准角速度进行积分,得到所述云台的实际空间位置。
  16. 根据权利要求15所述的云台,其特征在于,所述控制器还用于:
    根据特定轴的电机角度测量单元获取的所述特定轴的关节角度,对所述特定轴的漂移值进行修正,其中,所述特定轴为所述云台的平移轴、俯仰轴或横滚轴。
  17. 根据权利要求16所述的云台,其特征在于,所述控制器具体用于:
    根据所述特定轴的电机角度测量单元当前测得的所述特定轴的关节角度与上一次测得的所述特定轴的关节角度,以及测量频率,确定所述特定轴的参考角速度;
    根据所述特定轴的参考角速度和所述特定轴的校准角速度,确定所述特定轴的漂移值修正量;
    根据所述特定轴的漂移值修正量对所述特定轴的漂移值进行修正。
  18. 根据权利要求12至17中任一项所述的云台,其特征在于,所述控制器还用于:
    设置所述云台工作在横滚360度模式,所述横滚360度模式表示所述遥控器能够控制所述云台的横滚轴在360度范围内进行旋转。
  19. 根据权利要求13至18中任一项所述的云台,其特征在于,所述控制器具体用于:
    根据所述遥控器的控制信号,确定目标俯仰轴角速度、目标横滚轴角速度和目标平移轴角速度
    分别对所述目标俯仰轴角速度、所述目标横滚轴角速度和所述目标平移轴角速度进行积分,得到所述云台的目标空间位置。
  20. 根据权利要求13至19中任一项所述的云台,其特征在于,所述控制器具体用于:
    根据所述目标空间位置和所述实际空间位置的差别,确定电机控制信号;
    根据所述电机控制信号,控制所述平移轴电机、所述俯仰轴电机和所述横滚轴电机,以使所述云台的平移轴、俯仰轴和横滚轴在360度范围内进行 旋转,使得所述云台的空间位置向所述目标空间位置变化。
  21. 根据权利要求12至20中任一项所述的云台,其特征在于,所述第一IMU设置于所述云台的横滚轴电调上,所述第二IMU设置于所述云台的相机固定机构内。
  22. 根据权利要求12至21中任一项所述的云台,其特征在于,所述第一IMU和所述第二IMU均包括陀螺仪。
  23. 一种控制系统,其特征在于,包括:
    存储器,用于存储计算机可执行指令;
    处理器,用于访问所述存储器,并执行所述计算机可执行指令,以进行根据权利要求1至11中任一项所述的方法中的操作。
  24. 一种可移动设备,其特征在于,包括:
    根据权利要求12至22中任一项所述的云台;或者,
    根据权利要求23所述的控制系统。
PCT/CN2017/108267 2017-10-30 2017-10-30 控制云台的方法、云台、控制系统和可移动设备 WO2019084709A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/108267 WO2019084709A1 (zh) 2017-10-30 2017-10-30 控制云台的方法、云台、控制系统和可移动设备
CN201780014299.8A CN108700249B (zh) 2017-10-30 2017-10-30 控制云台的方法、云台、控制系统和可移动设备
US16/860,592 US20200256506A1 (en) 2017-10-30 2020-04-28 Method for controlling gimbal, gimbal, control system, and movable device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/108267 WO2019084709A1 (zh) 2017-10-30 2017-10-30 控制云台的方法、云台、控制系统和可移动设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/860,592 Continuation US20200256506A1 (en) 2017-10-30 2020-04-28 Method for controlling gimbal, gimbal, control system, and movable device

Publications (1)

Publication Number Publication Date
WO2019084709A1 true WO2019084709A1 (zh) 2019-05-09

Family

ID=63844179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108267 WO2019084709A1 (zh) 2017-10-30 2017-10-30 控制云台的方法、云台、控制系统和可移动设备

Country Status (3)

Country Link
US (1) US20200256506A1 (zh)
CN (1) CN108700249B (zh)
WO (1) WO2019084709A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113423643A (zh) * 2019-12-31 2021-09-21 深圳市大疆创新科技有限公司 云台的控制方法和云台

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019205152A1 (zh) * 2018-04-28 2019-10-31 深圳市大疆创新科技有限公司 云台的控制方法和云台
EP3822534A4 (en) * 2018-11-15 2021-07-28 SZ DJI Technology Co., Ltd. METHOD OF CONTROLLING A HANDHOLD GIMBAL AND HANDHOLD GIMBAL
CN110553669B (zh) * 2019-09-30 2022-03-29 睿魔智能科技(深圳)有限公司 云台校准方法及校准系统
CN111142580B (zh) * 2020-01-10 2020-12-29 上海摩象网络科技有限公司 云台、云台控制方法、控制装置及计算机存储介质
GB202014590D0 (en) * 2020-09-16 2020-10-28 Stanley Works Israel Laser tool and system
CN115562369B (zh) * 2022-09-22 2024-09-03 北京富吉瑞光电科技股份有限公司 云台的控制方法及装置、存储介质和处理器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110153250A1 (en) * 2009-12-17 2011-06-23 Raytheon Company Cooperative Calibration of Heading Sensors
CN105045018A (zh) * 2015-07-30 2015-11-11 极翼机器人(上海)有限公司 云台
CN105676880A (zh) * 2016-01-13 2016-06-15 零度智控(北京)智能科技有限公司 一种云台摄像装置的控制方法及系统
CN205534911U (zh) * 2016-01-26 2016-08-31 深圳市大疆创新科技有限公司 电调系统及具有该电调系统的云台
CN205560201U (zh) * 2016-01-26 2016-09-07 深圳市大疆创新科技有限公司 云台及使用该云台的拍摄设备和无人飞行器
CN106155105A (zh) * 2015-04-08 2016-11-23 优利科技有限公司 控制云台的装置及云台系统
CN106953553A (zh) * 2017-03-12 2017-07-14 纳恩博(北京)科技有限公司 一种云台、及云台电机的控制方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105840973A (zh) * 2016-03-30 2016-08-10 乐视控股(北京)有限公司 手持云台及手持云台系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110153250A1 (en) * 2009-12-17 2011-06-23 Raytheon Company Cooperative Calibration of Heading Sensors
CN106155105A (zh) * 2015-04-08 2016-11-23 优利科技有限公司 控制云台的装置及云台系统
CN105045018A (zh) * 2015-07-30 2015-11-11 极翼机器人(上海)有限公司 云台
CN105676880A (zh) * 2016-01-13 2016-06-15 零度智控(北京)智能科技有限公司 一种云台摄像装置的控制方法及系统
CN205534911U (zh) * 2016-01-26 2016-08-31 深圳市大疆创新科技有限公司 电调系统及具有该电调系统的云台
CN205560201U (zh) * 2016-01-26 2016-09-07 深圳市大疆创新科技有限公司 云台及使用该云台的拍摄设备和无人飞行器
CN106953553A (zh) * 2017-03-12 2017-07-14 纳恩博(北京)科技有限公司 一种云台、及云台电机的控制方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113423643A (zh) * 2019-12-31 2021-09-21 深圳市大疆创新科技有限公司 云台的控制方法和云台

Also Published As

Publication number Publication date
CN108700249A (zh) 2018-10-23
US20200256506A1 (en) 2020-08-13
CN108700249B (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2019084709A1 (zh) 控制云台的方法、云台、控制系统和可移动设备
US11377211B2 (en) Flight path generation method, flight path generation system, flight vehicle, program, and storage medium
EP3734395A1 (en) Method for switching operating mode of gimbal, and controller and image stability augmentation device
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
US11156905B2 (en) Control method for gimbal, controller, and gimbal
US20220155800A1 (en) Method and apparatus for yaw fusion and aircraft
JP6289750B1 (ja) 移動体、移動体制御方法、移動体制御システム、及び移動体制御プログラム
US20220238029A1 (en) Unmanned aerial vehicle return method and apparatus and unmanned aerial vehicle
US11958604B2 (en) Unmanned aerial vehicle and method for controlling gimbal thereof
WO2019205002A1 (zh) 手持云台的姿态解算的方法和云台系统
CN109154815B (zh) 最高温度点跟踪方法、装置和无人机
US20210229810A1 (en) Information processing device, flight control method, and flight control system
CN108780321B (zh) 用于设备姿态调整的方法、设备、系统和计算机可读存储介质
WO2021217371A1 (zh) 可移动平台的控制方法和装置
WO2021168819A1 (zh) 无人机的返航控制方法和设备
US11662817B2 (en) Method for controlling gimbal by somatosensory controller, gimbal, somatosensory controller, and system
US20210208214A1 (en) Magnetic sensor calibration method and mobile platform
WO2019023906A1 (zh) 同步方法、设备和系统
CN110377058B (zh) 一种飞行器的偏航角修正方法、装置及飞行器
WO2020019260A1 (zh) 磁传感器校准方法、控制终端以及可移动平台
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
US20210208608A1 (en) Control method, control apparatus, control terminal for unmanned aerial vehicle
US20210105411A1 (en) Determination device, photographing system, movable body, composite system, determination method, and program
WO2020019175A1 (zh) 图像处理方法和设备、摄像装置以及无人机
WO2021168821A1 (zh) 可移动平台的控制方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930666

Country of ref document: EP

Kind code of ref document: A1