WO2019056381A1 - 云台的控制方法、云台控制器及云台 - Google Patents

云台的控制方法、云台控制器及云台 Download PDF

Info

Publication number
WO2019056381A1
WO2019056381A1 PCT/CN2017/103205 CN2017103205W WO2019056381A1 WO 2019056381 A1 WO2019056381 A1 WO 2019056381A1 CN 2017103205 W CN2017103205 W CN 2017103205W WO 2019056381 A1 WO2019056381 A1 WO 2019056381A1
Authority
WO
WIPO (PCT)
Prior art keywords
pan
tilt
attitude
base
yaw
Prior art date
Application number
PCT/CN2017/103205
Other languages
English (en)
French (fr)
Inventor
苏铁
潘立忠
Original Assignee
深圳市大疆灵眸科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆灵眸科技有限公司 filed Critical 深圳市大疆灵眸科技有限公司
Priority to CN201780026915.1A priority Critical patent/CN109196266B/zh
Priority to PCT/CN2017/103205 priority patent/WO2019056381A1/zh
Publication of WO2019056381A1 publication Critical patent/WO2019056381A1/zh
Priority to US16/817,082 priority patent/US20200213518A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/04Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or holding steady relative to, a person, e.g. by chains, e.g. rifle butt or pistol grip supports, supports attached to the chest or head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/043Allowing translations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2014Undercarriages with or without wheels comprising means allowing pivoting adjustment around a vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2021Undercarriages with or without wheels comprising means allowing pivoting adjustment around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2042Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction constituted of several dependent joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2064Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction for tilting and panning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2071Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction for panning and rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2085Undercarriages with or without wheels comprising means allowing sideward adjustment, i.e. left-right translation of the head relatively to the undercarriage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2092Undercarriages with or without wheels comprising means allowing depth adjustment, i.e. forward-backward translation of the head relatively to the undercarriage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/24Undercarriages with or without wheels changeable in height or length of legs, also for transport only, e.g. by means of tubes screwed into each other
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/044Balancing means for balancing rotational movement of the undercarriage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/06Arms
    • F16M2200/063Parallelogram arms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations

Definitions

  • the embodiments of the present invention relate to the field of drones, and in particular, to a method for controlling a pan/tilt, a pan/tilt controller, and a pan/tilt.
  • Steadicam As a camera stabilizer, Steadicam is self-balancing and stabilized by gravity. Under the photographer's precise control, smooth video can be captured.
  • the advantage of Steadicam is that it responds quickly to the control of the photographer, especially in the yaw direction, and can be fully synchronized.
  • the disadvantage of Steadicam is that the stability is limited, the equipment itself relies on gravity to stabilize, the anti-disturbance ability is poor, and the stability is related to the accuracy of equipment debugging and the operation of the photographer.
  • Steadicam is very in the direction of the roll. Difficult to control, the picture is easy to skew.
  • the handheld cloud platform has the ability to stabilize the electrons.
  • the IMU detects the attitude of the camera, calculates the amount of jitter based on the target attitude and the actual attitude of the camera, and uses the motor to perform feedback compensation to eliminate the calculated jitter and achieve electronic control stabilization. effect.
  • the advantage of the handheld PTZ is that it has strong stability, can compensate for small jitter, and has strong resistance to external disturbances.
  • the ability to stabilize the stability is not related to the accuracy of the equipment debugging and the operation of the photographer. Easy to control, the screen is not easy to skew.
  • the disadvantage of the handheld gimbal is that the response speed is slow, and the accuracy of the rotation by the motor is not high.
  • Steadicam and handheld PTZ are complementary. If the handheld PTZ is installed on Steadicam, the handheld PTZ is equipped with a camera, which will greatly facilitate the film and television photography. However, in the actual combination process, Steadicam and handheld PTZ will find that when Steadicam switches between high and low positions, the PTZ will go crazy, causing the camera to fail to shoot stable high to low or low to high. Lens.
  • the embodiment of the invention provides a control method of the pan/tilt, a pan/tilt controller and a pan/tilt to prevent the pan/tilt from going crazy when the Steadicam is switched between high and low positions.
  • a first aspect of the embodiments of the present invention provides a method for controlling a pan/tilt.
  • the pylon base and the yaw axis arm of the pan/tilt are fixedly connected.
  • the method includes:
  • the actual yaw attitude of the pan/tilt is controlled according to the target yaw attitude of the pan/tilt.
  • a second aspect of the embodiments of the present invention provides a pan/tilt controller, including: a memory and a processor;
  • the memory is for storing program code
  • the processor calls the program code to perform the following operations when the program code is executed:
  • the pylon base and the yaw axis arm of the gimbal are fixedly connected.
  • a third aspect of the embodiments of the present invention provides a cloud platform, including:
  • a yaw axis arm a pitch axis arm, a roll axis arm, a pan/tilt base, a yaw axis drive motor, a pitch axis drive motor, a roll axis drive motor, and a pan/tilt controller according to the second aspect ;
  • the pan/tilt base is fixedly connected to the yaw axis arm.
  • the control method of the pan/tilt head, the pan-tilt controller and the pan/tilt head provided by the embodiment provide the yaw attitude of the base of the gimbal when the base of the pan-tilt is rotated by the pitch axis of the base of the pan-tilt.
  • the camera's shooting direction can be directed to the direction indicated by the balance component, overcoming the cloud platform.
  • the problem of causing the camera to blink is such that the camera can capture a stable high to low or low to high lens.
  • FIG. 1 is a schematic structural diagram of a Steadicam according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a cloud platform according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a combination of a handheld cloud platform and a Steadicam according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a combination of a handheld cloud platform and a Steadicam according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a combination of a handheld cloud platform and a Steadicam according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a combination of a handheld cloud platform and a Steadicam according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a method for controlling a pan/tilt according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a combination of a handheld cloud platform and a Steadicam according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a combination of a handheld cloud platform and a Steadicam according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a combination of a handheld cloud platform and a Steadicam according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a working principle of a cloud platform according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of a method for controlling a pan/tilt according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of a method for controlling a pan/tilt according to an embodiment of the present invention.
  • FIG. 14 is a structural diagram of a pan/tilt controller according to an embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be in the middle. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • Steadicam As a camera stabilizer, Steadicam is self-balancing and stabilized by gravity. Under the photographer's precise control, smooth video can be captured. As shown in FIG. 1, the Steadicam includes an auxiliary vest 11, a balance assembly 12, a damper arm 13, and a camera 14 is mounted on the balance unit 12.
  • the advantage of Steadicam is that it responds quickly to the control of the photographer, especially in the yaw direction, and can be fully synchronized.
  • the disadvantage of Steadicam is that the stability is limited. The equipment itself relies on gravity to stabilize, and the anti-disturbance ability is poor. The stability is related to the accuracy of equipment debugging and the operation of the photographer. In addition, Steadicam's roll direction is very Difficult to control, the picture is easy to skew.
  • FIG. 2 is a schematic structural diagram of a cloud platform according to an embodiment of the present invention.
  • the cloud platform may specifically be a handheld cloud platform. As shown in FIG.
  • the platform 20 includes a pitch axis motor 21, a roll axis motor 22, a yaw axis motor 23, a pan/tilt base 24, The yaw axis arm 25, the camera fixing mechanism 26, the pitch axis arm 27, the roll axis arm 28, and the camera 29, wherein the camera fixing mechanism 26 includes an inertial measurement unit (IMU), for the IMU
  • IMU inertial measurement unit
  • the advantage of the handheld PTZ is that it has strong stability, can compensate for small jitter, and has strong resistance to external disturbances. The ability to stabilize the stability is not related to the accuracy of the equipment debugging and the operation of the photographer. Easy to control, the screen is not easy to skew.
  • the disadvantage of the handheld gimbal is that the response speed is slow, and the accuracy of the rotation by the motor is not high.
  • FIG. 3 is a schematic diagram of a combination of a handheld pan/tilt and a Steadicam provided by the embodiment. As shown in Fig.
  • 31 denotes a pitch axis motor of the handheld pan/tilt head
  • 32 denotes a roll axis motor of the hand-held pan/tilt head
  • 33 denotes a yaw axis motor of the hand-held pan/tilt head
  • 34 denotes a pan-tilt base
  • 35 denotes a hand-held head
  • the yaw axis arm, 36 denotes a camera fixing mechanism
  • 37 denotes a pitch axis arm of the hand-held pan
  • 38 denotes a roll axis arm of the hand-held head
  • 39 denotes a camera mounted on the hand-held head.
  • 40 represents the balance component of Steadicam. Specifically, the handheld pan/tilt is fixedly coupled to the balance component 40 of the Steadicam through the pan-tilt base 34.
  • the camera fixing mechanism 36 includes an IMU for detecting the posture of the camera 39.
  • the X-axis, the Y-axis, and the Z-axis represent the three axes of the coordinate system of the pan-tilt base 34, assuming that the balance component 40 of the Steadicam is cylindrical, and optionally, the Z-axis of the coordinate system.
  • the X-axis of the coordinate system is in the radial direction of the balance assembly 40, and the coordinate system of the pan-tilt base 34 conforms to the right-handed coordinate system.
  • the relationship between the coordinate system of the gimbal base 34 and the ground coordinate system can be expressed in an attitude angle that reflects the attitude of the gimbal base 34 relative to the ground.
  • the handheld pan/tilt can select the three-axis mode or the two-axis mode.
  • the pan-tilt base 34 is connected to the balance component 40 of the Steadicam.
  • the handheld pan-tilt first detects the balance.
  • the assembly 40 rotates with the Z axis as the rotation axis, and then controls the yaw axis motor 33 of the handheld pan/tilt to rotate, so that the yaw axis motor 33 rotates with the balance component 40 rotating with the Z axis as the rotation axis, and the handheld pan/tilt is biased.
  • the aero axis motor 33 rotates, the yaw attitude of the handheld pan/tilt changes. It can be seen that the handheld gimbal has a yaw attitude in the three-axis mode. The state response is slower. In order to improve the response speed of the yaw attitude of the handheld pan/tilt, the handheld pan/tilt can be set to a two-axis mode.
  • the yaw axis motor of the handheld pan/tilt is locked by a mechanical lock, so that the yaw axis of the handheld pan/tilt is locked.
  • the motor unloading force, the yaw base 34 and the yaw axis wall of the handheld pan/tilt, that is, the yaw axis arm 35 are fixedly connected.
  • the handheld pan/tilt enters the two-axis mode, and the handheld pan/tilt can only be in the pitch direction of the camera 39 and Stabilization control is carried out in the roll direction, and the yaw direction of the handheld head is stabilized by Steadicam.
  • the handheld pan/tilt After the handheld pan/tilt enters the two-axis mode, as shown in FIG. 3, the stellar posture of the handheld pan/tilt changes while the balance component 40 of the Steadicam rotates with the Z-axis as the rotation axis.
  • the handheld pan/tilt is in a two-axis mode.
  • locking the yaw axis motor in the three-axis motor is one possibility to realize the two-axis mode.
  • the handheld gimbal itself has only two motors, that is, the handheld head includes pitching. Shaft motor and roll axis motors, but do not include yaw axis motors.
  • the installation is Steadicam with handheld PTZ to switch between high and low positions includes the following possible situations:
  • the first possibility is that the handheld pan/tilt rotates with the roll axis as the axis of rotation while Steadicam performs high and low position switching.
  • the second possibility is that the handheld pan/tilt rotates with the pitch axis as the axis of rotation while Steadicam performs high and low position switching.
  • the Steadicam mounted with the handheld head is rotated in the direction of the arrow 41, that is, the balance unit 40 is rotated with the Y axis of the coordinate system of the pan-tilt base 34 as a rotation axis, so that the handheld head can be moved.
  • the camera 39 can be made to take a picture from high to low while rotating.
  • the angle between the roll axis arm 38 of the handheld pan/tilt and the horizontal plane is constantly changing during the high and low position switching.
  • the pitch axis arm 37 of the handheld pan/tilt may change with the change of the roll axis arm 38, or may remain unchanged.
  • FIG 3 and 4 show the pitch axis arm 37 of the handheld pan/tilt relative to the roll axis arm 38.
  • the pitch axis motor 31 is controlled to rotate so that the angle between the roll axis arm 38 and the pitch axis arm 37 does not change.
  • the embodiment does not limit the attitude of the tilting axis arm 37 of the handheld pan/tilt during the process of switching the handheld pan/tilt from the high position to the low position while the handheld pan/tilt is rotating with the pitch axis as the rotation axis.
  • the attitude of the tilting axis arm 37 of the handheld pan/tilt relative to the ground remains unchanged.
  • the roll angle of the camera 39 changes, that is, It is said that the roll axis motor 32 of the handheld pan/tilt can control the roll angle of the camera 39 for keeping the picture taken by the camera horizontal.
  • the roll axis motor 32 of the handheld pan/tilt gradually loses the ability to control the roll angle of the camera 39, and the roll angle of the camera 39 In theory, it is gradually controlled by the yaw axis motor 33. Assume that the handheld pan/tilt is in the initial posture as shown in FIG. 3, and gradually switches from the high position to the low position along the direction of the arrow 41, and when it is rotated to the posture shown in FIG. 6, the roll axis of the handheld pan/tilt The motor 32 is no longer able to control the roll angle of the camera 39.
  • the handheld pan/tilt will first adjust the yaw axis motor 33 to be photographed. The screen is leveled.
  • the yaw axis motor 33 cannot output the control force and cannot function to control the photographing screen.
  • the handheld pan/tilt can only control the shooting picture by controlling the roll axis motor 32 and the pitch axis motor 31 of the handheld pan/tilt, which causes the roll axis motor 32 of the handheld pan/tilt and the pitch axis motor 31 of the hand-held pan/tilt to continuously Adjusting the posture of the camera 39 causes the handheld pan/tilt to go wild.
  • FIG. 6 is only a schematic diagram illustrating the posture of the handheld gimbal when the handheld pan/tilt is proficient. In the process of the high and low position switching of the Steadicam, the other postures of the handheld gimbal may also be Caused the handheld cloud platform to go crazy.
  • Steadicam can switch from high to low, or from low to high
  • Figure 3-6 is a schematic illustration.
  • the manner of switching is not specifically limited. Understandably, in the process of Steadicam switching from a low position to a high position, there may be a problem that the handheld cloud platform is going crazy. The specific principle and the process of Steadicam switching from a high position to a low position, the handheld head The principle of madness is the same and will not be repeated here.
  • the embodiment of the present invention provides a control method of the pan/tilt, and the following embodiments of the present invention will be combined with specific embodiments.
  • the control method of the provided PTZ is described in detail.
  • Embodiments of the present invention provide a method for controlling a pan/tilt.
  • FIG. 7 is a flowchart of a method for controlling a pan/tilt according to an embodiment of the present invention. As shown in FIG. 7, the method in this embodiment may include:
  • Step S701 When the pan-tilt base rotates with the pitch axis of the pan-tilt base as a rotation axis, obtain a yaw attitude of the pan-tilt base.
  • the yoke base and the yaw axis arm of the pan/tilt are fixedly connected.
  • the cloud platform is specifically a handheld cloud platform
  • the yaw axis arm of the cloud platform is specifically a yaw axis arm 35 of the handheld cloud platform as shown in FIG. 3, and the pylon base 34 and the handheld cloud platform are biased.
  • the axle axle arm 35 is fixedly coupled, i.e., the panhead base 34 and the yaw axle arm 35 are incapable of relative movement.
  • the X-axis, the Y-axis, and the Z-axis represent the three axes of the coordinate system of the pan-tilt base 34, assuming that the balance component 40 of the Steadicam is cylindrical, and optionally, the Z-axis of the coordinate system is balanced.
  • the X-axis of the coordinate system is in the radial direction of the balance assembly 40, and the coordinate system of the pan-tilt base 34 conforms to the right-handed coordinate system.
  • the pan/tilt is fixedly connected to the Steadicam through the gimbal base.
  • the handheld pan/tilt is fixedly connected to the balance component 40 of the Steadicam through the pan-tilt base 34.
  • the balance assembly 40 is rotated by the X-axis of the coordinate system of the pan-tilt base 34, the roll angle of the balance assembly 40 or the pan-tilt base 34 is changed, so that the pan-tilt base 34 can be seated.
  • the X-axis of the target system serves as the roll axis of the pan-tilt base 34.
  • the pitch angle of the balance assembly 40 or the pan-tilt base 34 changes, and therefore, the Y-axis of the coordinate system of the pan-tilt base 34 can be As the pitch axis of the pan-tilt base 34.
  • the yaw angle of the balance assembly 40 or the pan-tilt base 34 changes, and therefore, the coordinate system of the pan-tilt base 34 can be Z.
  • the shaft serves as the yaw axis of the gimbal base 34.
  • pan-tilt base 34 When the pan-tilt base 34 rotates with the pitch axis of the pan-tilt base 34 as the axis of rotation, it indicates that Steadicam is driving the pan/tilt through the pan-tilt base 34 to perform high and low position switching, and the pan-tilt base 34 is pan/tilt.
  • the yaw attitude of the gimbal base 34 is acquired during the rotation of the pitch axis of the susceptor 34 for the rotation axis.
  • acquiring a yaw attitude of the pedestal base includes: acquiring an actual posture of the gyro; acquiring an angle of rotation of a driving motor of each axis of the pylon; according to an actual posture and a position of the pylon Describe the angle of rotation to determine the yaw attitude of the base of the gimbal.
  • the camera fixing mechanism 36 includes an IMU.
  • the IMU is used to detect the posture of the camera 39. That is, the IMU in the camera fixing mechanism 36 can detect the posture of the camera 39 in real time. It can be understood that the camera The actual posture of 39 is the actual posture of the handheld head.
  • each axis corresponds to a drive motor, and each drive motor has an angle sensor corresponding to the angle at which the corresponding drive motor rotates.
  • the yaw attitude of the gimbal base 34 is determined according to the actual posture of the handheld pan/tilt and the angle of rotation of the drive motor of each axis in the handheld pan/tilt.
  • the angle of the driving motor rotation of each axis of the pan/tilt includes: obtaining an angle of rotation of a driving motor of each of the pitch axis, the yaw axis, and the roll axis of the pan/tilt.
  • the handheld pan/tilt head is a three-axis pan/tilt head, and the three axes specifically include a pitch axis, a yaw axis, and a roll axis, and each axis has a driving motor, as shown in FIG.
  • the pitch axis motor 31 That is, the drive motor of the pitch axis of the handheld pan/tilt, the roll axis motor 32 is the drive motor of the roll axis of the handheld pan/tilt, and the yaw axis motor 33 is the drive motor of the yaw axis of the handheld pan/tilt.
  • the angle sensor corresponding to the pitch axis motor 31 can detect the angle at which the pitch axis motor 31 rotates; the angle sensor corresponding to the roll axis motor 32 can detect the angle at which the roll axis motor 32 rotates; the angle sensor corresponding to the yaw axis motor 33 can The angle at which the yaw axis motor 33 rotates is detected.
  • the actual attitude of the handheld pan/tilt is represented by a quaternion, and the pitch axis of the handheld pan/tilt
  • the angle of rotation of the driving motor is represented by a quaternion.
  • the angle of rotation of the driving motor of the rolling platform of the handheld gimbal is represented by a quaternion.
  • the angle of rotation of the driving motor of the yaw axis of the handheld pan/tilt is a four-element. The number indicates that four quaternions are obtained.
  • an achievable way of determining the yaw attitude of the pan-tilt base 34 is to multiply the above four quaternions
  • the quaternion obtained after the multiplication can represent the attitude of the gimbal base 34, and the quaternion obtained after the multiplication is converted into the attitude angle of the gimbal base 34, which is the Euler angle, and the Euler angle includes the cloud.
  • the yaw angle, the roll angle, and the pitch angle of the stage base 34 determine the yaw attitude of the platform base 34.
  • Step S702 Determine a target yaw attitude of the pan/tilt according to a yaw attitude of the pan/tilt base.
  • the handheld pan/tilt can determine the target yaw attitude of the handheld pan/tilt according to the yaw attitude of the pan/tilt base 34.
  • determining the target yaw attitude of the pan/tilt according to the yaw attitude of the pedestal base includes: if the pitch posture of the pedestal base is within a first preset range, according to The yaw attitude of the gimbal base determines a target yaw attitude of the gimbal.
  • the angle between the X-axis and the horizontal plane of the coordinate system of the gimbal base 34 reflects the pitch attitude of the pan-tilt base 34, assuming the horizontal direction is as indicated by h, the coordinates of the gimbal base 34
  • the pitch attitude of the pan-tilt base 34 is positive
  • the positive half-axis of the X-axis of the coordinate system of the gimbal base 34 is at the horizontal plane of the origin of the coordinate
  • the pitch attitude of the pan/tilt base 34 is negative.
  • the pan-tilt base 34 When the pan-tilt base 34 is in the posture shown in FIG. 3, the positive half-axis of the X-axis of the coordinate system of the pan-tilt base 34 coincides with the horizontal direction h, and the pitch angle of the pan-tilt base 34 is zero. As shown in FIG. 3-6, as the pan-tilt base 34 rotates with the pitch axis of the pan-tilt base 34 as the rotation axis, the pan-tilt base is switched from the high position to the low-level position.
  • the positive half-axis of the X-axis of the 34 coordinate system is located below the horizontal plane of the origin of the coordinate, and the angle between the positive half-axis of the X-axis of the coordinate system of the gimbal base 34 and the horizontal direction h is gradually increased.
  • the pitch angle of 34 is gradually decreased.
  • the pitch angle of the pan-tilt base 34 is -90 degrees.
  • the pitch angle of the pan-tilt base 34 will be less than -90 degrees.
  • the handheld pan-tilt is according to the yaw attitude of the pan-tilt base 34.
  • the first preset range here may specifically be -105 degrees to -75 degrees, that is, as the pan-tilt base 34 rotates with the pitch axis of the pan-tilt base 34 as the axis of rotation, the Steadicam is from the high plane.
  • the handheld pan-tilt determines the handheld pan-tilt according to the yaw attitude of the pan-tilt base 34. Target yaw attitude.
  • the Steadicam can also switch from the low position to the high position.
  • Steadicam equipped with a handheld head can also be rotated in the direction indicated by arrow 41 from the initial posture as shown in FIG.
  • the pan-tilt base 34 is in the posture shown in FIG. 8
  • the positive half-axis of the X-axis of the coordinate system of the pan-tilt base 34 is opposite to the horizontal direction h, and the pitch angle of the pan-tilt base 34 is 180 degrees.
  • the process of Steadicam switching from a low position to a high position the cloud
  • the positive half-axis of the X-axis of the coordinate system of the base pedestal 34 is located above the horizontal plane of the origin of the coordinate, and the angle between the positive half-axis of the X-axis of the coordinate system of the gimbal base 34 and the horizontal direction h gradually decreases.
  • the pitch angle of the stage base 34 is gradually reduced. As shown in Fig. 10, the pitch angle of the pan/tilt base 34 is 90 degrees.
  • the pitch angle of the pan-tilt base 34 will be less than 90 degrees.
  • the handheld pan-tilt is according to the yaw attitude of the pan-tilt base 34. Determine the target yaw attitude of the handheld head.
  • the first preset range here may specifically be 75 degrees to 105 degrees, that is, as the pan-tilt base 34 continuously rotates with the pitch axis of the pan-tilt base 34 as a rotation axis, Steadicam switches from a low position.
  • the handheld pan-tilt determines the target yaw attitude of the handheld pan-tilt according to the yaw attitude of the pan-tilt base 34. .
  • the target roll attitude of the pan/tilt is 0.
  • the roll attitude of the hand-held pan/tilt will change, causing the picture taken by the camera 39 to be skewed, and in order to prevent the picture taken by the camera 39 from being skewed, the hand-held cloud will be held.
  • the target roll attitude is set to 0, and the handheld pan/tilt will be based on the actual roll attitude of the handheld pan/tilt.
  • the target roll attitude calculates the attitude difference between the actual roll attitude and the target roll attitude, and further performs closed-loop control based on the attitude difference to calculate the torque of the roll axis motor 32, and transmits the torque to the roll axis motor 32.
  • the actual roll attitude of the hand-held head is smoothly transitioned to the target roll attitude 0 of the hand-held head.
  • the Steadicam can switch from a low position to a high position or from a high position to a low position.
  • the handheld pan-tilt is biased according to the pan-tilt base 34.
  • the target yaw attitude of the handheld pan/tilt is determined.
  • the actual roll attitude of the handheld pan/tilt may be controlled to smoothly transition to the target roll attitude of the handheld pan/tilt. If Steadicam moves from a high position to a low position, the pitch attitude of the pan-tilt base 34 is outside the range of -105 degrees to -75 degrees, then the handheld pan/tilt controls its actual roll attitude to the handheld cloud.
  • the goal of the stage is a smooth transition of the posture 0.
  • the handheld head is in accordance with the yaw attitude of the platform base 34.
  • the target yaw attitude of the handheld pan/tilt is determined.
  • the actual roll attitude of the handheld pan/tilt may be controlled to smoothly transition to the target roll attitude of the handheld pan/tilt.
  • the pitch attitude of the pan-tilt base 34 is outside the range of 75 to 105 degrees, and the handheld pan/tilt controls its actual roll attitude to the handheld pan/tilt.
  • the target roll attitude is 0 smooth transition.
  • Step S703 controlling an actual yaw attitude of the pan/tilt according to a target yaw attitude of the pan/tilt.
  • Figure 11 shows the working principle of the gimbal.
  • the inertial measurement unit of the gimbal includes a three-axis accelerometer and a three-axis gyroscope.
  • the gyroscope is used to detect the angular velocity of the pan-tilt three axes. Integrating the angular velocity of the three axes of the gimbal can obtain the measurement attitude of the gimbal, that is, the actual attitude of the gimbal.
  • the target attitude of the gimbal can be obtained according to the torque of the motor and the rocker value of the remote controller.
  • the control deviation can be obtained, and the controller of the pan/tilt control the current of the three-axis motor according to the control deviation, so that the rotation of the three-axis motor generates a torque, thereby changing the actual situation of the gimbal.
  • the posture makes the actual posture of the gimbal smoothly transition to the target posture of the gimbal.
  • the target yaw attitude of the pan/tilt head may be
  • the actual yaw attitude of the gimbal calculates the attitude difference, and further calculates the target motor torque by closed-loop control of the attitude difference, and sends the torque to the target motor for feedback control.
  • controlling the actual yaw attitude of the pan/tilt according to the target yaw attitude of the pan/tilt includes: controlling a roll axis driving motor rotation of the pan/tilt to make the pan/tilt actual The yaw attitude smoothly transitions to the target yaw attitude of the gimbal.
  • the roll axis motor 32 of the handheld pan/tilt is gradually lost during the rotation of the pan-tilt base 34 with the pitch axis of the pan-tilt base 34 as the axis of rotation.
  • the ability to control the roll angle of the camera 39, the ability of the roll axis motor 32 of the hand-held pan/tilt to control the yaw angle of the camera 39 is gradually enhanced.
  • the roll axis motor 32 of the hand-held pan/tilt can no longer control the roll angle of the camera 39.
  • the pan-tilt determines the target of the handheld pan-tilt according to the yaw attitude of the pan-tilt base 34.
  • the flight attitude optionally, the target yaw attitude of the handheld pan/tilt is the yaw attitude of the pan/tilt base 34, and further controls the roll axis drive motor of the handheld pan/tilt, that is, the roll axis motor 32 rotates, so that the handheld cloud
  • the actual yaw attitude of the station smoothly transitions to the target yaw attitude of the handheld head, that is, the actual yaw attitude of the handheld head is smoothly transitioned to the yaw attitude of the platform pedestal 34, ie, the handheld cloud is controlled
  • the actual yaw attitude of the station changes in accordance with the yaw attitude of the gimbal base 34.
  • Fig. 6 is only a schematic illustration of a gesture of the handheld pan/tilt when the handheld pan/tilt is unacceptable.
  • the pitch angle of the pan-tilt base 34 is -90 degrees.
  • the handheld pan/tilt may be mad, in order to prevent the handheld cloud.
  • the madness of the station can control the actual yaw attitude of the handheld pan/tilt to follow the yaw attitude of the gimbal base 34.
  • Fig. 10 is only a schematic illustration of another gesture of the handheld pan/tilt when the handheld pan/tilt is proficient.
  • the pan-tilt base 34 has a pitch angle of 90 degrees.
  • the handheld pan/tilt may be mad.
  • the actual yaw attitude of the handheld pan/tilt may be controlled to follow the yaw attitude of the pan-tilt base 34.
  • the handheld pan/tilt can be fixedly connected with other supporting components or supporting components in addition to the fixed components of the stanicon's balancing components.
  • Other supporting components or supporting components can be combined with the pan/tilt head of the handheld pan/tilt.
  • the base is fixedly connected.
  • the target yaw attitude of the pan-tilt is determined by acquiring the yaw attitude of the pan-tilt base, and according to the determined pan-tilt
  • the target yaw attitude controls the actual yaw attitude of the gimbal, so that the actual yaw attitude of the gimbal changes according to the yaw attitude of the gimbal base, avoiding the turbulence of the gimbal in the process of switching between the high and low positions.
  • the camera's shooting direction can be pointed to the direction indicated by the balance component, and the problem that the camera's shooting direction is smashed can be overcome by the pan-tilt madness, so that the camera can be photographed stably. High to low or low to high lens.
  • Embodiments of the present invention provide a method for controlling a pan/tilt.
  • determining the pan-tilt according to the yaw attitude of the pan-tilt base includes the following possible situations:
  • a possible situation is: if the pitch posture of the pan/tilt base is within a first preset range, determining a target yaw attitude of the pan/tilt according to a yaw attitude of the pan/tilt base
  • the method includes: if the pitch posture of the pan-tilt base is within a first preset range, and an angle of rotation of a drive motor of the roll axis in the pan-tilt is within a second preset range, according to the pan-tilt base
  • the yaw attitude determines the target yaw attitude of the gimbal.
  • the pan-tilt base 34 rotates with the pitch axis of the pan-tilt base 34 as the axis of rotation, Steadicam switches from a high position to a low-level position, and the handheld head is held.
  • the roll motor 32 may rotate. Therefore, in the present embodiment, when the handheld pan/tilt determines the target yaw attitude of the handheld pan/tilt according to the yaw attitude of the pan-tilt base 34, it is necessary to consider not only the pan-tilt base but also the pan-tilt base.
  • the range of the pitch angle of 34 also needs to consider the range of the angle at which the roll motor 32 rotates.
  • the handheld pan/tilt is determined according to the yaw attitude of the pan-tilt base 34.
  • the second preset range may specifically be -20 degrees to 20 degrees.
  • the pitch angle of the pan-tilt base 34 during the process of Steadicam switching from the high position to the low position When the angle of rotation of the roll motor 32 is greater than -20 degrees and less than 20 degrees, the hand-held head is according to the platform of the pan-tilt base 34, which is greater than -105 degrees and less than -75 degrees, and the angle at which the roll motor 32 rotates, that is, the joint angle of the roll motor 32 is greater than -20 degrees.
  • the yaw attitude determines the target yaw attitude of the handheld head.
  • the pitch angle of the pan-tilt base 34 is greater when the Steadicam is switched from the low position to the high position. 75 degrees, and less than 105 degrees, and the angle of rotation of the roll motor 32, that is, the joint angle of the roll motor 32 is greater than -20 degrees, and less than 20 degrees, the handheld head is in accordance with the yaw attitude of the platform base 34 Determine the target yaw attitude of the handheld head.
  • determining the target yaw attitude of the pan/tilt according to the yaw attitude of the pan/tilt base includes: setting a target yaw angle of the pan/tilt to the pedestal of the pan/tilt Yaw angle.
  • the handheld pan/tilt sets the target yaw attitude of the handheld pan/tilt to the yaw angle of the pan/tilt base.
  • the yaw angle of the pedestal base is the actual yaw of the pan/tilt base 34 determined according to the actual posture of the handheld pan/tilt and the angle of rotation of the drive motor of each axis in the handheld pan/tilt described in the above embodiment. angle.
  • the target roll attitude of the handheld pan/tilt is set to zero.
  • the handheld pan/tilt may smoothly control the target roll attitude of the handheld pan/tilt without controlling the actual roll attitude of the handheld pan/tilt; if the pitch attitude of the pan-tilt base 34 is at - Outside the range of 105 degrees to -75 degrees, or / and the angle of rotation of the roll motor 32 is outside the range of -20 degrees to 20 degrees, the handheld pan/tilt controls its actual roll attitude to the target of the handheld head. Rolling attitude 0 smooth transition.
  • the handheld pan/tilt may smoothly control the target roll attitude of the handheld pan/tilt without controlling the actual roll attitude of the handheld pan/tilt; if the pan attitude of the pan-tilt base 34 is 75 Outside the range of 105 degrees, or / and the angle of rotation of the roll motor 32 is outside the range of -20 degrees to 20 degrees, the handheld pan/tilt controls its actual roll attitude to the target roll of the handheld head. Attitude 0 smooth transition.
  • Another possible case is: if the pitch posture of the pan/tilt base is within a first preset range, determining a target yaw of the pan/tilt according to a yaw attitude of the pan/tilt base
  • the attitude includes: if the pitch posture of the pan-tilt base is within a first preset range and the angle of rotation of the drive motor of the roll axis in the pan-tilt is within a third preset range, according to the pan-tilt base
  • the yaw attitude of the seat determines the target yaw attitude of the gimbal.
  • the third preset range may specifically be 160 degrees to 200 degrees.
  • the pitch angle of the pan-tilt base 34 during the process of Steadicam switching from the high position to the low position
  • the handheld pan/tilt determines the target of the handheld pan-tilt according to the yaw attitude of the pan-tilt base 34. Yaw posture.
  • the pitch angle of the pan-tilt base 34 is greater when the Steadicam is switched from the low position to the high position. 75 degrees, and less than 105 degrees, and the angle of rotation of the roll motor 32 is greater than 160 degrees, and less than 200 degrees, the handheld head determines the target yaw attitude of the handheld head according to the yaw attitude of the platform base 34 .
  • determining the target yaw attitude of the pan/tilt according to the yaw attitude of the pan/tilt base includes: setting a target yaw angle of the pan/tilt to the pedestal of the pan/tilt The yaw angle is subtracted by 180 degrees or the yaw angle of the gimbal base is plus 180 degrees.
  • the handheld pan/tilt sets the target yaw attitude of the handheld pan/tilt to the yaw angle of the pan/tilt base minus 180 degrees, or the handheld pan/tilt sets the target yaw attitude of the handheld pan/tilt to the pan/tilt base.
  • the yaw angle is plus 180 degrees.
  • the target roll attitude of the handheld pan/tilt is set to zero.
  • the handheld pan/tilt may smoothly control the target roll attitude of the handheld pan/tilt without controlling the actual roll attitude of the handheld pan/tilt; if the pan attitude of the pan/tilt base 34 is at -105 Outside the range of -75 degrees, or / and the angle of rotation of the roller motor 32 is outside the range of 160 degrees to 200 degrees, then the handheld pan/tilt control The actual roll attitude smoothly transitions to the target roll attitude of the handheld pan/tilt.
  • the handheld pan/tilt may smoothly control the target roll attitude of the handheld pan/tilt without controlling the actual roll attitude of the handheld pan/tilt; if the pitch attitude of the pan-tilt base 34 is in the range of 75 degrees to 105 degrees In addition, or / and the angle of rotation of the roll motor 32 is outside the range of 160 degrees to 200 degrees, the handheld pan/tilt controls its actual roll attitude to smoothly transition to the target roll attitude 0 of the handheld head.
  • the pan/tilt The target yaw attitude is the actual yaw attitude of the pan/tilt.
  • the target yaw attitude of the handheld pan/tilt is the actual yaw attitude of the handheld pan/tilt, rather than the yaw attitude of the gimbal base.
  • the pan/tilt The target yaw attitude is the actual yaw attitude of the pan/tilt.
  • the target yaw attitude of the handheld pan/tilt is the actual yaw attitude of the handheld pan/tilt, rather than the yaw attitude of the gimbal base.
  • the yaw attitude of the pedestal determines the target yaw attitude of the gimbal. That is to say, according to the yaw attitude of the pedestal of the gimbal, when determining the target yaw attitude of the gimbal, it is necessary to consider not only the pitch angle of the gimbal base.
  • the scope of the roll axis motor also needs to consider the range of the angle of rotation of the roll axis motor, thereby improving the accuracy of the target yaw attitude of the gimbal and improving the control accuracy of the pan/tilt.
  • Embodiments of the present invention provide a method for controlling a pan/tilt.
  • Figure 12 provides an embodiment of the present invention.
  • FIG. 13 is a flowchart of a method for controlling a pan/tilt according to an embodiment of the present invention.
  • the target roll attitude of the pan/tilt is zero.
  • the control method of the pan/tilt further includes: controlling an actual roll attitude of the pan/tilt according to a target roll attitude of the pan/tilt.
  • the target roll attitude is set to 0, and the handheld pan/tilt will calculate the attitude difference between the actual roll attitude and the target roll attitude according to the actual roll attitude and the target roll attitude of the handheld pan/tilt, and further according to the attitude difference
  • the closed loop control is performed to calculate the torque of the roll motor 32, and the torque is sent to the roll motor 32 to rotate the roll motor 32, thereby making the actual roll attitude of the handheld head to the target of the handheld head.
  • Rolling attitude 0 smooth transition.
  • the angle between the roll axis arm 38 of the handheld pan/tilt and the horizontal plane is constantly changing during the high and low position switching.
  • the pitch axis arm 37 of the handheld pan/tilt may change with the change of the roll axis arm 38, or may remain unchanged.
  • 3 and 4 show the case where the attitude of the pitch axis arm 37 of the hand-held pan/tilt relative to the roll axis arm 38 is constant.
  • 3 and 5 show the case where the attitude of the pitch axis arm 37 of the hand-held pan/tilt with respect to the ground remains unchanged.
  • the method further includes the steps shown in FIG. :
  • step S1201 the target pitch attitude of the pan/tilt is determined according to the actual pitch attitude of the pan-tilt and the angle of the driving motor rotation of the pitch axis of the pan-tilt.
  • the actual pitch attitude of the handheld pan/tilt is 0.
  • the angle between the roll axis arm 38 of the hand-held head and the horizontal plane will vary.
  • the hand-held head needs to be rolled according to the roll.
  • the attitude of the shaft arm 38 relative to the ground changes, and the driving motor that determines the pitch axis, that is, the pitch axis motor 31, needs to be Further, the handheld pan/tilt determines the target pitch attitude of the handheld pan/tilt according to the actual pitch attitude of the handheld pan/tilt and the angle at which the pitch motor of the pitch axis, that is, the pitch axis motor 31, needs to be rotated.
  • Step S1202 Control an actual pitch attitude of the pan/tilt according to a target pitch attitude of the pan/tilt.
  • the attitude difference between the actual pitch attitude and the target pitch attitude is calculated according to the actual pitch attitude and the target pitch attitude of the handheld pan/tilt, and the closed-loop control calculation is further performed according to the attitude difference.
  • the torque of the pitch axis motor 31 is output, and the torque is transmitted to the pitch axis motor 31 to rotate the pitch axis motor 31, thereby smoothly transitioning the actual pitch attitude of the handheld pan/tilt head to the target pitch attitude of the handheld pan/tilt head. Thereby, the attitude of the pitch axis arm 37 of the pan/tilt relative to the roll axis arm 38 is maintained.
  • Steinicon maintains the attitude of the tilting axis arm 37 of the handheld pan/tilt relative to the ground, and the method further includes the steps shown in FIG. 13:
  • step S1301 the target pitch attitude of the pan/tilt is set as the preset pitch attitude.
  • the target pitch attitude of the handheld head is set as the preset pitch attitude, and the preset The pitch attitude may be a fixed pitch attitude of the handheld pan/tilt relative to the ground, for example, the preset pitch attitude may be zero.
  • Step S1302 Control an actual pitch attitude of the pan/tilt according to a target pitch attitude of the pan/tilt.
  • the actual pitch attitude of the handheld pan/tilt is 0.
  • the handheld pan/tilt can calculate the attitude difference between the actual pitch attitude and the target pitch attitude according to the actual pitch attitude of the handheld pan/tilt and the target pitch attitude 0, and further according to the attitude difference.
  • the closed loop control is performed to calculate the torque of the pitch axis motor 31, and the torque is sent to the pitch axis motor 31 to rotate the pitch axis motor 31, thereby smoothing the actual pitch attitude of the handheld pan/tilt to the target pitch attitude 0 of the handheld pan/tilt head. transition. Thereby, the attitude of the pitch axis arm 37 of the gimbal with respect to the ground is unchanged.
  • Embodiments of the present invention provide a pan/tilt controller.
  • 14 is a structural diagram of a PTZ controller according to an embodiment of the present invention.
  • the PTZ controller 140 includes a processor 141 and a memory 142.
  • the memory 142 is configured to store program code.
  • the program code is used to perform the following operations: when the pan-tilt base rotates with the pitch axis of the pan-tilt base as a rotation axis, obtaining a yaw attitude of the pan-tilt base Determining a target yaw attitude of the pan/tilt according to a yaw attitude of the pan/tilt base; controlling an actual yaw attitude of the pan/tilt according to a target yaw attitude of the pan/tilt; wherein, the pan/tilt The yaw and the yaw axis arm of the gimbal are fixedly connected.
  • the method is specifically configured to: acquire an actual posture of the pan/tilt; and acquire an angle of rotation of a driving motor of each axis of the pan/tilt; The actual attitude of the gimbal and the angle of the rotation determine the yaw attitude of the gimbal base.
  • the processor 141 acquires the angle of rotation of the driving motor of each axis of the pan-tilt
  • the processor 141 is specifically configured to: obtain an angle of rotation of the driving motor of each of the pitch axis, the yaw axis, and the roll axis of the pan-tilt.
  • the processor 141 determines a target yaw attitude of the pan/tilt according to a yaw attitude of the pan/tilt base.
  • the processor 141 is configured according to the The yaw attitude of the gimbal base determines the target yaw attitude of the gimbal. The determining, by the processor 141, the target yaw attitude of the pan/tilt according to the yaw attitude of the pan/tilt base, specifically: setting the target yaw angle of the pan/tilt to the pedestal of the pan/tilt Yaw angle.
  • the processor 141 is configured according to the pan/tilt
  • the yaw attitude of the pedestal determines the target yaw attitude of the gimbal.
  • the processor 141 determines the target yaw attitude of the pan/tilt according to the yaw attitude of the pan/tilt base, and is specifically used for:
  • the target yaw angle of the gimbal is set to be 180 degrees of the yaw angle of the gimbal base or 180 degrees of the yaw angle of the gimbal base.
  • the processor 141 controls the actual yaw attitude of the pan/tilt according to the target yaw attitude of the pan/tilt
  • the processor 141 is specifically configured to: control the roll axis driving motor rotation of the pan/tilt to make the pan/tilt head The actual yaw attitude smoothly transitions to the target yaw attitude of the gimbal.
  • the target yaw attitude of the pan-tilt is determined by acquiring the yaw attitude of the pan-tilt base, and according to the determined pan-tilt
  • the target yaw attitude controls the actual yaw attitude of the gimbal, so that the actual yaw attitude of the gimbal changes according to the yaw attitude of the gimbal base, avoiding the turbulence of the gimbal in the process of switching between the high and low positions.
  • the camera's shooting direction can be pointed to the direction indicated by the balance component, and the problem that the camera's shooting direction is smashed can be overcome by the pan-tilt madness, so that the camera can be photographed stably. High to low or low to high lens.
  • Embodiments of the present invention provide a pan/tilt controller.
  • the target roll attitude of the pan/tilt is 0.
  • the processor 141 is further configured to: control an actual roll attitude of the pan/tilt according to a target roll attitude of the pan/tilt.
  • the processor 141 is further configured to: determine a target pitch attitude of the pan/tilt according to an actual pitch posture of the pan-tilt and an angle of driving the motor of the pan-tilt axis of the pan-tilt. Alternatively, the processor 141 is further configured to: set a target pitch attitude of the pan/tilt to a preset pitch attitude. Further, the processor 141 is further configured to: control an actual pitch posture of the pan/tilt according to a target pitch posture of the pan/tilt.
  • controlling the actual roll attitude of the pan/tilt according to the target roll attitude of the pan/tilt, and controlling the target pitch attitude of the pan/tilt, according to the target pitch attitude of the pan/tilt controlling The actual pitch attitude of the PTZ enables Steadicam to control the actual roll attitude and the actual pitch attitude during the high and low position switching, which further improves the control accuracy of the PTZ.
  • Embodiments of the present invention provide a cloud platform.
  • the pan/tilt head includes: a yaw axis arm, a pitch axis arm, a roll axis arm, a pan/tilt base, a yaw axis drive motor, a pitch axis drive motor, a roll axis drive motor, and the above embodiment
  • the pan/tilt controller wherein the pan/tilt base is fixedly connected to the yaw axis arm.
  • the pan/tilt is fixedly connected to the Steadicam through the pan/tilt base.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Accessories Of Cameras (AREA)
  • Studio Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种云台(20)的控制方法、云台控制器(140)及云台(20),当云台基座(24)以云台基座(24)的俯仰轴为转动轴线进行转动时,通过获取云台基座(24)的偏航姿态,确定云台(20)的目标偏航姿态,并根据确定出的云台(20)的目标偏航姿态,控制云台(20)的实际偏航姿态,使得云台(20)的实际偏航姿态跟随云台基座(24)的偏航姿态而变化,避免云台(20)在高低机位切换的过程中疯转,使得摄像机(14)能够拍摄出稳定的由高到低或由低到高的镜头。

Description

云台的控制方法、云台控制器及云台 技术领域
本发明实施例涉及无人机领域,尤其涉及一种云台的控制方法、云台控制器及云台。
背景技术
斯坦尼康作为摄像机稳定器搭载上摄像机后通过重力进行自平衡增稳,在摄影师的精准控制下,可以拍摄出顺滑的视频。斯坦尼康的优势在于对摄影师手上的控制响应较快,特别是偏航方向上的响应,能做到完全同步。斯坦尼康的缺点在于增稳能力有限,设备本身依靠重力增稳,抗扰动能力差,增稳能力跟设备调试的精准度和摄影师的操作关系很大;另外,斯坦尼康在横滚方向上很难控制,画面容易歪斜。
手持云台具备电子增稳能力,利用IMU检测出摄像机的姿态,再根据摄像机的目标姿态与实际姿态计算出抖动量,利用电机进行反馈补偿,将计算出来的抖动量消除,达到电控增稳效果。手持云台的优势在于增稳能力强,对微小抖动都能补偿掉,抗外界扰动能力强,增稳能力跟设备调试的精准度和摄影师的操作关系不大,手持云台的横滚方向上容易控制,画面不容易歪斜。手持云台的缺点是响应速度慢、依靠电机进行转动跟随的精准度不高。
可见斯坦尼康和手持云台的优缺点互补,如果将手持云台安装在斯坦尼康上,手持云台搭载有摄像机,将会对影视摄影带来极大便利。但是,斯坦尼康和手持云台在实际结合过程中会发现,当斯坦尼康进行高低机位切换的时候,云台会疯转,导致摄像机无法拍摄出稳定的由高到低或由低到高的镜头。
发明内容
本发明实施例提供一种云台的控制方法、云台控制器及云台,以避免斯坦尼康进行高低机位切换时云台疯转。
本发明实施例的第一方面是提供一种云台的控制方法,云台基座与云台的偏航轴臂是固定连接的,所述方法包括:
当云台基座以所述云台基座的俯仰轴为转动轴线进行转动的过程中,获取云台基座的偏航姿态;
根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态;
根据所述云台的目标偏航姿态,控制所述云台的实际偏航姿态。
本发明实施例的第二方面是提供一种云台控制器,包括:存储器和处理器;
所述存储器用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
当云台基座以所述云台基座的俯仰轴为转动轴线进行转动的过程中,获取云台基座的偏航姿态;
根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态;
根据所述云台的目标偏航姿态,控制所述云台的实际偏航姿态;
其中,云台基座与云台的偏航轴臂是固定连接的。
本发明实施例的第三方面是提供一种云台,包括:
偏航轴臂、俯仰轴臂、横滚轴臂、云台基座、偏航轴的驱动电机、俯仰轴的驱动电机、横滚轴的驱动电机、及第二方面所述的云台控制器;
其中,所述云台基座与偏航轴臂固定连接。
本实施例提供的云台的控制方法、云台控制器及云台,当云台基座以云台基座的俯仰轴为转动轴线进行转动时,通过获取云台基座的偏航姿态,确定云台的目标偏航姿态,并根据确定出的云台的目标偏航姿态,控制云台的实际偏航姿态,使得云台的实际偏航姿态跟随云台基座的偏航姿态而变化,避免云台在高低机位切换的过程中疯转,在云台基座与斯坦尼康的平衡组件固定连接的前提下,可以保证摄像机的拍摄方向指向平衡组件指示的方向,克服云台疯转使得摄像机的拍摄方向歪掉的问题,使得摄像机能够拍摄出稳定的由高到低或由低到高的镜头。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的斯坦尼康的结构示意图;
图2为本发明实施例提供的云台的结构示意图;
图3为本发明实施例提供的手持云台和斯坦尼康结合的示意图;
图4为本发明实施例提供的手持云台和斯坦尼康结合的示意图;
图5为本发明实施例提供的手持云台和斯坦尼康结合的示意图;
图6为本发明实施例提供的手持云台和斯坦尼康结合的示意图;
图7为本发明实施例提供的云台的控制方法的流程图;
图8为本发明实施例提供的手持云台和斯坦尼康结合的示意图;
图9为本发明实施例提供的手持云台和斯坦尼康结合的示意图;
图10为本发明实施例提供的手持云台和斯坦尼康结合的示意图;
图11为本发明实施例提供的云台的工作原理的示意图;
图12为本发明实施例提供的云台的控制方法的流程图;
图13为本发明实施例提供的云台的控制方法的流程图;
图14为本发明实施例提供的云台控制器的结构图。
附图标记:
11-辅助背心   12-平衡组件    13-减振臂
14-摄像机    20-云台    21-俯仰轴电机
22-横滚轴电机   23-偏航轴电机     24-云台基座
25-偏航轴轴臂   26-摄像机固定机构   27-俯仰轴轴臂
28-横滚轴轴臂    29-摄像机    31-手持云台的俯仰轴电机
32-手持云台的横滚轴电机        33-手持云台的偏航轴电机
34-云台基座           35-手持云台的偏航轴轴臂
36-摄像机固定机构     37-手持云台的俯仰轴轴臂
38-手持云台的横滚轴轴臂      39-摄像机
40-斯坦尼康的平衡组件        41-箭头
140-云台控制器              141-处理器   142-存储器
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
斯坦尼康作为摄像机稳定器搭载上摄像机后通过重力进行自平衡增稳,在摄影师的精准控制下,可以拍摄出顺滑的视频。如图1所示,斯坦尼康包括辅助背心11、平衡组件12、减振臂13,平衡组件12上搭载有摄像机14。斯坦尼康的优势在于对摄影师手上的控制响应较快,特别是偏航方向上的响应,能做到完全同步。斯坦尼康的缺点在于增稳能力有限,设备本身依靠重力增稳,抗扰动能力差,增稳能力跟设备调试的精准度和摄影师的操作关系很大;另外,斯坦尼康的横滚方向上很难控制,画面容易歪斜。
手持云台具备电子增稳能力,利用IMU检测出摄像机的姿态,再根据摄像机的目标姿态与实际姿态计算出抖动量,利用电机进行反馈补偿,将计算出来的抖动量消除,达到电控增稳效果。图2为本发明实施例提供的云台的结构示意图。该云台具体可以是手持云台。如图2所示,云台20包括俯仰轴电机21、横滚轴电机22、偏航轴电机23、云台基座24、 偏航轴轴臂25、摄像机固定机构26、俯仰轴轴臂27、横滚轴轴臂28、摄像机29,其中,摄像机固定机构26内包括惯性测量元件(Inertial Measurement Unit,简称IMU),IMU用于检测摄像机29的姿态。手持云台的优势在于增稳能力强,对微小抖动都能补偿掉,抗外界扰动能力强,增稳能力跟设备调试的精准度和摄影师的操作关系不大,手持云台的横滚方向上容易控制,画面不容易歪斜。手持云台的缺点是响应速度慢、依靠电机进行转动跟随的精准度不高。
可见斯坦尼康和手持云台的优缺点互补,如果将手持云台安装在斯坦尼康上,手持云台搭载有摄像机,将会对影视摄影带来极大便利。图3为本实施例提供的手持云台和斯坦尼康结合的示意图。如图3所示,31表示手持云台的俯仰轴电机、32表示手持云台的横滚轴电机、33表示手持云台的偏航轴电机、34表示云台基座、35表示手持云台的偏航轴轴臂、36表示摄像机固定机构、37表示手持云台的俯仰轴轴臂、38表示手持云台的横滚轴轴臂、39表示搭载在手持云台上的摄像机。40表示斯坦尼康的平衡组件。具体的,手持云台通过云台基座34与斯坦尼康的平衡组件40固定连接。其中,摄像机固定机构36内包括IMU,IMU用于检测摄像机39的姿态。
另外,如图3所示,X轴、Y轴、Z轴表示云台基座34的坐标系的三轴,假设斯坦尼康的平衡组件40呈柱形,可选的,该坐标系的Z轴在平衡组件40的轴向上,该坐标系的X轴在平衡组件40的径向上,云台基座34的坐标系符合右手坐标系。云台基座34的坐标系与地面坐标系之间的关系可以以姿态角表示,该姿态角反映出了云台基座34相对于地面的姿态。
在本实施例中,手持云台安装在斯坦尼康上之后,手持云台可以选择三轴模式,也可以选择两轴模式。当手持云台选择三轴模式时,云台基座34与斯坦尼康的平衡组件40连接,如图3所示,当平衡组件40以Z轴为转动轴线转动时,手持云台先检测到平衡组件40以Z轴为转动轴线转动,再控制手持云台的偏航轴电机33转动,以使偏航轴电机33随着平衡组件40以Z轴为转动轴线转动而转动,手持云台的偏航轴电机33转动时,手持云台的偏航姿态发生变化。可见,手持云台在三轴模式下,其偏航姿 态响应较慢。为了提高手持云台的偏航姿态的响应速度,可以将手持云台设置为两轴模式,具体的,用机械锁将手持云台的偏航轴电机锁住,使得手持云台的偏航轴电机卸力,云台基座34和手持云台的偏航轴壁即偏航轴轴臂35固定连接,此时手持云台进入两轴模式,手持云台只能对摄像机39在俯仰方向和横滚方向上进行增稳控制,手持云台的偏航方向由斯坦尼康进行增稳控制。手持云台进入两轴模式后,如图3所示,斯坦尼康的平衡组件40以Z轴为转动轴线转动的同时,手持云台的偏航姿态发生变化。可选的,在后续实施例中,手持云台处于两轴模式。需要说明的是,将三轴电机中的偏航轴电机锁住是实现两轴模式的一种可能情况,另一种可能情况是,手持云台本身只有两个电机,即手持云台包括俯仰轴电机和横滚轴电机,但不包括偏航轴电机。
通常情况下,为了拍摄出不同角度的画面,或者为了让摄像机39拍摄出的画面的角度持续变化,可能需要对安装有手持云台的斯坦尼康进行高低机位切换,可选的,对安装有手持云台的斯坦尼康进行高低机位切换包括如下几种可能的情况:
第一种可能的情况是:手持云台以横滚轴为转动轴线转动的同时斯坦尼康进行高低机位切换。
第二种可能的情况是:手持云台以俯仰轴为转动轴线转动的同时斯坦尼康进行高低机位切换。
下面以第二种可能的情况为例介绍手持云台和斯坦尼康结合时可能存在的问题。如图3所示,沿着箭头41的方向转动安装有手持云台的斯坦尼康,也就是说,以云台基座34坐标系的Y轴为转动轴线转动平衡组件40,可使手持云台从高机位切换到低机位同时手持云台以俯仰轴为转动轴线转动,例如转动到如图4所示的位置,在转动的同时可使摄像机39拍摄出从高到低的画面。
如图3和图4可知,斯坦尼康在进行高低机位切换的过程中,手持云台的横滚轴轴臂38与水平面之间的角度在不断变化。可选的,斯坦尼康在进行高低机位切换的过程中,手持云台的俯仰轴轴臂37可以随着横滚轴轴臂38的变化而变化,也可以保持不变。
图3和图4所示的是手持云台的俯仰轴轴臂37相对于横滚轴轴臂38 的姿态不变的情况。具体的,当手持云台检测到横滚轴轴臂38的姿态变化时,控制俯仰轴电机31转动,以使横滚轴轴臂38与俯仰轴轴臂37之间的角度不变。
另外,如图3所示,沿着箭头41的方向转动安装有手持云台的斯坦尼康时,还可以转动到如图5所示的位置,如图5所示,斯坦尼康在进行高低机位切换的过程中,手持云台的俯仰轴轴臂37相对于地面的姿态保持不变。
本实施例并不限定手持云台从高机位切换到低机位同时手持云台以俯仰轴为转动轴线转动的过程中,手持云台的俯仰轴轴臂37的姿态。这里以手持云台的俯仰轴轴臂37相对于地面的姿态保持不变为例,如图3可知,手持云台的横滚轴电机32转动时,摄像机39的横滚角发生变化,也就是说,手持云台的横滚轴电机32可以控制摄像机39的横滚角,用于将摄像机拍摄的画面保持水平。当手持云台沿着箭头41的方向从高机位切换到低机位的过程中,手持云台的横滚轴电机32逐渐失去控制摄像机39的横滚角的能力,摄像机39的横滚角理论上逐渐由偏航轴电机33来控制。假设手持云台以图3所示的姿态为初始姿态,沿着箭头41的方向逐渐从高机位切换到低机位,转动到如图6所示的姿态时,手持云台的横滚轴电机32不再能够控制摄像机39的横滚角。此时,若由于摄像师对平衡组件40的操作导致摄像机39的横滚角发生了变化,将会导致被拍摄物体在摄像机39拍摄的画面中歪斜,此时手持云台会对摄像机39的姿态进行控制,以使摄像机39的拍摄画面保持水平。然而,在手持云台对摄像机39的姿态进行控制的过程中,手持云台倾向于以最短的行程将拍摄画面控制成水平,因此,手持云台将首先去调整偏航轴电机33以期将拍摄画面控平,但是,由于云台基座34和偏航轴臂即偏航轴轴臂35固定连接,偏航轴电机33无法输出控制力,不能起到对拍摄画面进行控制的作用,因此,手持云台只能通过控制横滚轴电机32和手持云台的俯仰轴电机31来将拍摄画面控平,如此会导致手持云台的横滚轴电机32和手持云台的俯仰轴电机31不断的调节摄像机39的姿态,从而导致手持云台出现疯转的现象。经过手持云台的横滚轴电机32和俯仰轴电机31不断的调节摄像机39的姿态,当摄像机39拍摄的画面被调平时,摄像机39的拍摄方向可能 已经不是摄像师想要拍摄的方向了,此时,摄像机39的拍摄方向已经歪到一边,而不是正对拍摄物体。另外,需要说明的是,图6只是示意性说明手持云台出现疯转时,手持云台的一种姿态,在斯坦尼康进行高低机位切换的过程中,手持云台所处的其他姿态也可能导致手持云台出现疯转。
可以理解的是,斯坦尼康进行高低机位切换具体可以是斯坦尼康从高机位切换到低机位,也可以是从低机位切换到高机位,图3-图6只是示意性说明,并不对切换的方式作具体限定。可以理解,斯坦尼康从低机位切换到高机位的过程中,也可能存在手持云台疯转的问题,具体原理和斯坦尼康从高机位切换到低机位的过程中,手持云台疯转的原理一致,此处不再赘述。
为了解决上述问题,即斯坦尼康进行高低机位切换的过程中,手持云台疯转的问题,本发明实施例提供了一种云台的控制方法,下面将结合具体的实施例对本发明实施例提供的云台的控制方法进行详细的介绍。
本发明实施例提供一种云台的控制方法。图7为本发明实施例提供的云台的控制方法的流程图。如图7所示,本实施例中的方法,可以包括:
步骤S701、当云台基座以所述云台基座的俯仰轴为转动轴线进行转动的过程中,获取云台基座的偏航姿态。
在本实施例中,云台基座与云台的偏航轴臂是固定连接的。可选的,该云台具体为手持云台,云台的偏航轴臂具体为如图3所示的手持云台的偏航轴轴臂35,云台基座34与手持云台的偏航轴轴臂35是固定连接的,即云台基座34与偏航轴轴臂35是不能相对运动的。
如图3所示,X轴、Y轴、Z轴表示云台基座34的坐标系的三轴,假设斯坦尼康的平衡组件40呈柱形,可选的,该坐标系的Z轴在平衡组件40的轴向上,该坐标系的X轴在平衡组件40的径向上,云台基座34的坐标系符合右手坐标系。
在本实施例中,所述云台通过云台基座与斯坦尼康固定连接。具体的,如图3所示,手持云台通过云台基座34与斯坦尼康的平衡组件40固定连接。当平衡组件40以云台基座34坐标系的X轴为转动轴线转动时,平衡组件40或云台基座34的横滚角发生变化,因此,可以将云台基座34坐 标系的X轴作为云台基座34的横滚轴。当平衡组件40以云台基座34坐标系的Y轴为转动轴线转动时,平衡组件40或云台基座34的俯仰角发生变化,因此,可以将云台基座34坐标系的Y轴作为云台基座34的俯仰轴。当平衡组件40以云台基座34坐标系的Z轴为转动轴线转动时,平衡组件40或云台基座34的偏航角发生变化,因此,可以将云台基座34坐标系的Z轴作为云台基座34的偏航轴。
当云台基座34以云台基座34的俯仰轴为转动轴线进行转动时,说明斯坦尼康在通过云台基座34带动云台进行高低机位切换,在云台基座34以云台基座34的俯仰轴为转动轴线进行转动的过程中,获取云台基座34的偏航姿态。
具体的,获取云台基座的偏航姿态,包括:获取所述云台的实际姿态;获取所述云台的每一个轴的驱动电机转动的角度;根据所述云台的实际姿态和所述转动的角度,确定云台基座的偏航姿态。
如图3-图6所示,摄像机固定机构36内包括IMU,IMU用于检测摄像机39的姿态,也就是说,摄像机固定机构36内的IMU可以实时检测出摄像机39的姿态,可以理解,摄像机39的实际姿态为手持云台的实际姿态。另外,在手持云台中,每一个轴对应有一个驱动电机,每个驱动电机对应有一个角度传感器,该角度传感器可以检测其对应的驱动电机转动的角度。进一步的,根据手持云台的实际姿态,以及手持云台中每一个轴的驱动电机转动的角度,确定云台基座34的偏航姿态。
其中,所述获取所述云台的每一个轴的驱动电机转动的角度,包括:获取云台的俯仰轴、偏航轴、横滚轴中每一个轴的驱动电机转动的角度。可选的,手持云台为三轴云台,三轴具体包括俯仰轴、偏航轴、横滚轴,每个轴对应有一个驱动电机,如图3-图6所示,俯仰轴电机31即为手持云台的俯仰轴的驱动电机,横滚轴电机32即为手持云台的横滚轴的驱动电机,偏航轴电机33即为手持云台的偏航轴的驱动电机。俯仰轴电机31对应的角度传感器可检测出俯仰轴电机31转动的角度;横滚轴电机32对应的角度传感器可检测出横滚轴电机32转动的角度;偏航轴电机33对应的角度传感器可检测出偏航轴电机33转动的角度。
可选的,手持云台的实际姿态以一个四元数表示,手持云台的俯仰轴 的驱动电机转动的角度以一个四元数表示,手持云台的横滚轴的驱动电机转动的角度以一个四元数表示,手持云台的偏航轴的驱动电机转动的角度以一个四元数表示,如此得到4个四元数。
根据手持云台的实际姿态,以及手持云台中每一个轴的驱动电机转动的角度,确定云台基座34的偏航姿态的一种可实现方式是:将上述4个四元数进行连乘,连乘后得到的四元数可表示云台基座34的姿态,将连乘后得到的四元数转变成云台基座34的姿态角也就是欧拉角,该欧拉角包括云台基座34的偏航角、横滚角、俯仰角,从而确定出云台基座34的偏航姿态。
步骤S702、根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态。
当云台基座34以云台基座34的俯仰轴为转动轴线进行转动时,说明斯坦尼康在进行高低机位切换,在本实施例中,斯坦尼康在进行高低机位切换的过程中,手持云台可根据云台基座34的偏航姿态,确定手持云台的目标偏航姿态。
具体的,所述根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态,包括:若所述云台基座的俯仰姿态在第一预设范围内,则根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态。
如图3-图6所示,云台基座34坐标系的X轴与水平面的夹角反映出了云台基座34的俯仰姿态,假设水平方向如h所示,云台基座34坐标系的X轴的正半轴位于过坐标原点的水平面之上时,云台基座34的俯仰姿态为正,当云台基座34坐标系的X轴的正半轴位于过坐标原点的水平面之下时,云台基座34的俯仰姿态为负。
当云台基座34处于图3所示的姿态时,云台基座34坐标系的X轴的正半轴与水平方向h一致,云台基座34的俯仰角为0。如图3-图6所示,随着云台基座34以云台基座34的俯仰轴为转动轴线不断转动,斯坦尼康从高机位切换到低机位的过程中,云台基座34坐标系的X轴的正半轴位于过坐标原点的水平面之下,云台基座34坐标系的X轴的正半轴与水平方向h之间的夹角逐渐增大,云台基座34的俯仰角逐渐减小,如图6所示,云台基座34的俯仰角为-90度。在图6所示的基础上,继续沿着箭头 41所示的方向转动时,云台基座34的俯仰角将小于-90度。可选的,斯坦尼康从高机位向低机位切换的过程中,当云台基座34的俯仰姿态在第一预设范围内时,手持云台根据云台基座34的偏航姿态,确定手持云台的目标偏航姿态。此处的第一预设范围具体可以是-105度到-75度,也就是说,随着云台基座34以云台基座34的俯仰轴为转动轴线不断转动,斯坦尼康从高机位切换到低机位的过程中,当云台基座34的俯仰角大于-105度,且小于-75度时,手持云台根据云台基座34的偏航姿态,确定手持云台的目标偏航姿态。
另外,在云台基座34以云台基座34的俯仰轴为转动轴线进行转动时,斯坦尼康还可以从低机位向高机位切换。例如,安装有手持云台的斯坦尼康还可以从如图8所示的初始姿态沿着箭头41所示的方向转动。当云台基座34处于图8所示的姿态时,云台基座34坐标系的X轴的正半轴与水平方向h相反,云台基座34的俯仰角为180度。如图8、图9、图10所示,随着云台基座34以云台基座34的俯仰轴为转动轴线不断转动,斯坦尼康从低机位切换到高机位的过程中,云台基座34坐标系的X轴的正半轴位于过坐标原点的水平面之上,云台基座34坐标系的X轴的正半轴与水平方向h之间的夹角逐渐减小,云台基座34的俯仰角逐渐减小,如图10所示,云台基座34的俯仰角为90度。在图10所示的基础上,继续沿着箭头41所示的方向转动时,云台基座34的俯仰角将小于90度。可选的,斯坦尼康从低机位向高机位切换的过程中,当云台基座34的俯仰姿态在第一预设范围内时,手持云台根据云台基座34的偏航姿态,确定手持云台的目标偏航姿态。此处的第一预设范围具体可以是75度到105度,也就是说,随着云台基座34以云台基座34的俯仰轴为转动轴线不断转动,斯坦尼康从低机位切换到高机位的过程中,当云台基座34的俯仰角大于75度,且小于105度时,手持云台根据云台基座34的偏航姿态,确定手持云台的目标偏航姿态。
在本实施例中,所述云台的目标横滚姿态为0。如图3所示,当手持云台的横滚轴电机32转动时,手持云台的横滚姿态将发生变化,导致摄像机39拍摄的画面歪斜,为了避免摄像机39拍摄的画面歪斜,将手持云台的目标横滚姿态设置为0,手持云台将根据手持云台的实际横滚姿态和 目标横滚姿态计算出实际横滚姿态和目标横滚姿态之间的姿态差,进一步根据该姿态差进行闭环控制计算出横滚轴电机32的扭矩,并将该扭矩发送给横滚轴电机32,以使横滚轴电机32转动,从而使得手持云台的实际横滚姿态向手持云台的目标横滚姿态0平滑过渡。
当云台基座34以云台基座34的俯仰轴为转动轴线进行转动的过程中,斯坦尼康可以从低机位向高机位切换,也可以从高机位向低机位切换。
例如,斯坦尼康从高机位向低机位切换的过程中,当云台基座34的俯仰姿态在-105度到-75度的范围内时,手持云台根据云台基座34的偏航姿态,确定手持云台的目标偏航姿态,在这种情况下,可以不控制手持云台的实际横滚姿态向手持云台的目标横滚姿态0平滑过渡。如果斯坦尼康从高机位向低机位切换的过程中,云台基座34的俯仰姿态在-105度到-75度的范围之外,则手持云台控制其实际横滚姿态向手持云台的目标横滚姿态0平滑过渡。
例如,斯坦尼康从低机位向高机位切换的过程中,当云台基座34的俯仰姿态在75度到105度的范围内时,手持云台根据云台基座34的偏航姿态,确定手持云台的目标偏航姿态,在这种情况下,可以不控制手持云台的实际横滚姿态向手持云台的目标横滚姿态0平滑过渡。如果斯坦尼康从低机位向高机位切换的过程中,云台基座34的俯仰姿态在75度到105度的范围之外,则手持云台控制其实际横滚姿态向手持云台的目标横滚姿态0平滑过渡。
步骤S703、根据所述云台的目标偏航姿态,控制所述云台的实际偏航姿态。
如图11所示为云台的工作原理,具体的,云台的惯性测量单元包括一个三轴的加速度计和一个三轴的的陀螺仪,陀螺仪用于检测云台三轴的角速度,通过对云台三轴的角速度进行积分可以得到云台的测量姿态也就是云台的实际姿态。另外,根据电机的扭矩和遥控器的摇杆数值可得到云台的目标姿态。进一步的,根据云台的目标姿态和云台的实际姿态可得出控制偏差,云台的控制器根据控制偏差控制三轴电机的电流,使得三轴电机转动产生力矩,进而改变云台的实际姿态,使得云台的实际姿态向云台的目标姿态平滑过渡。
结合图11所示的云台的工作原理,当根据所述云台的目标偏航姿态,控制所述云台的实际偏航姿态时,可以根据所述云台的目标偏航姿态和所述云台的实际偏航姿态计算出姿态差,进一步通过姿态差进行闭环控制算出目标电机扭矩,将该扭矩发送给目标电机进行反馈控制。
可选的,所述根据所述云台的目标偏航姿态,控制所述云台的实际偏航姿态,包括:控制所述云台的横滚轴驱动电机转动以使所述云台的实际偏航姿态向所述云台的目标偏航姿态平滑地过渡。
根据图3-图6,以及图8-图10可知,当云台基座34以云台基座34的俯仰轴为转动轴线进行转动的过程中,手持云台的横滚轴电机32逐渐失去控制摄像机39的横滚角的能力,手持云台的横滚轴电机32控制摄像机39的偏航角的能力逐渐增强。当云台基座34转动到如图6或图10所示的姿态时,手持云台的横滚轴电机32不再能够控制摄像机39的横滚角。此时,若由于摄像师对平衡组件40的操作导致摄像机39的横滚角发生了变化,将会导致被拍摄物体在摄像机39拍摄的画面中歪斜。为了防止手持云台疯转,防止云台为了保持摄像机39的拍摄画面水平而将拍摄方向歪到一边,此时手持云台根据云台基座34的偏航姿态,确定手持云台的目标偏航姿态,可选的,手持云台的目标偏航姿态为云台基座34的偏航姿态,进一步控制手持云台的横滚轴驱动电机也就是横滚轴电机32转动,以使手持云台的实际偏航姿态向手持云台的目标偏航姿态平滑地过渡,也就是说,控制手持云台的实际偏航姿态向云台基座34的偏航姿态平滑地过渡,即控制手持云台的实际偏航姿态跟随云台基座34的偏航姿态而变化。
图6只是示意性说明手持云台出现疯转时,手持云台的一种姿态,如图6所示,云台基座34的俯仰角为-90度。斯坦尼康从高机位向低机位切换的过程中,当云台基座34的俯仰姿态在-105度到-75度的范围内时,手持云台有可能出现疯转,为了防止手持云台疯转,可以控制手持云台的实际偏航姿态跟随云台基座34的偏航姿态而变化。
图10只是示意性说明手持云台出现疯转时,手持云台的另一种姿态,如图10所示,云台基座34的俯仰角为90度。斯坦尼康从低机位向高机位切换的过程中,当云台基座34的俯仰姿态在75度到105度的范围内时, 手持云台有可能出现疯转,为了防止手持云台疯转,可以控制手持云台的实际偏航姿态跟随云台基座34的偏航姿态而变化。
另外,需要说明的是,手持云台除了可以和斯坦尼康的平衡组件固定连接以外,还可以和其他的支撑部件或支持部件固定连接,其他的支撑部件或支持部件可以和手持云台的云台基座固定连接。
本实施例当云台基座以云台基座的俯仰轴为转动轴线进行转动时,通过获取云台基座的偏航姿态,确定云台的目标偏航姿态,并根据确定出的云台的目标偏航姿态,控制云台的实际偏航姿态,使得云台的实际偏航姿态跟随云台基座的偏航姿态而变化,避免云台在高低机位切换的过程中疯转,在云台基座与斯坦尼康的平衡组件固定连接的前提下,可以保证摄像机的拍摄方向指向平衡组件指示的方向,克服云台疯转使得摄像机的拍摄方向歪掉的问题,使得摄像机能够拍摄出稳定的由高到低或由低到高的镜头。
本发明实施例提供一种云台的控制方法。在图7所示实施例的基础上,所述若所述云台基座的俯仰姿态在第一预设范围内,则根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态包括如下几种可能的情况:
一种可能的情况是:所述若所述云台基座的俯仰姿态在第一预设范围内,则根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态,包括:若所述云台基座的俯仰姿态在第一预设范围内且所述云台中横滚轴的驱动电机转动的角度在第二预设范围内,则根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态。
如图3-图6所示,随着云台基座34以云台基座34的俯仰轴为转动轴线不断转动,斯坦尼康从高机位切换到低机位的过程中,手持云台的横滚轴电机32可能会发生转动,因此,在本实施例中,手持云台根据云台基座34的偏航姿态,确定手持云台的目标偏航姿态时,不仅需要考虑云台基座34的俯仰角的范围,还需要考虑横滚轴电机32转动的角度的范围,可选的,当云台基座34的俯仰角在第一预设范围内且横滚轴电机32转动的角度在第二预设范围内时,手持云台根据云台基座34的偏航姿态,确 定手持云台的目标偏航姿态。此处,第二预设范围具体可以是-20度到20度。
可选的,随着云台基座34以云台基座34的俯仰轴为转动轴线不断转动,斯坦尼康从高机位切换到低机位的过程中,当云台基座34的俯仰角大于-105度,且小于-75度,以及横滚轴电机32转动的角度即横滚轴电机32的关节角度大于-20度,且小于20度时,手持云台根据云台基座34的偏航姿态,确定手持云台的目标偏航姿态。
同理,随着云台基座34以云台基座34的俯仰轴为转动轴线不断转动,斯坦尼康从低机位切换到高机位的过程中,当云台基座34的俯仰角大于75度,且小于105度,以及横滚轴电机32转动的角度即横滚轴电机32的关节角度大于-20度,且小于20度时,手持云台根据云台基座34的偏航姿态,确定手持云台的目标偏航姿态。
可选的,所述根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态,包括:将所述云台的目标偏航角设置为所述云台基座的偏航角。具体的,手持云台将手持云台的目标偏航姿态设置为云台基座的偏航角。云台基座的偏航角即是上述实施例所述的根据手持云台的实际姿态,以及手持云台中每一个轴的驱动电机转动的角度,确定出的云台基座34的实际偏航角。
根据上述实施例可知,为了避免摄像机39拍摄的画面歪斜,将手持云台的目标横滚姿态设置为0。在本实施例中,当斯坦尼康从高机位向低机位切换的过程中,如果云台基座34的俯仰角大于-105度,且小于-75度,以及横滚轴电机32转动的角度大于-20度,且小于20度时,手持云台可以不控制手持云台的实际横滚姿态向手持云台的目标横滚姿态0平滑过渡;如果云台基座34的俯仰姿态在-105度到-75度的范围之外,或/及横滚轴电机32转动的角度在-20度到20度的范围之外,则手持云台控制其实际横滚姿态向手持云台的目标横滚姿态0平滑过渡。
同理,当斯坦尼康从低机位向高机位切换的过程中,如果云台基座34的俯仰角大于75度,且小于105度,以及横滚轴电机32转动的角度大于-20度,且小于20度时,手持云台可以不控制手持云台的实际横滚姿态向手持云台的目标横滚姿态0平滑过渡;如果云台基座34的俯仰姿态在75 度到105度的范围之外,或/及横滚轴电机32转动的角度在-20度到20度的范围之外,则手持云台控制其实际横滚姿态向手持云台的目标横滚姿态0平滑过渡。
另一种可能的情况是:所述若所述云台基座的俯仰姿态在第一预设范围内,则根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态,包括:若所述云台基座的俯仰姿态在第一预设范围内且所述云台中横滚轴的驱动电机转动的角度在第三预设范围内,则根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态。
可选的,第三预设范围具体可以是160度到200度。可选的,随着云台基座34以云台基座34的俯仰轴为转动轴线不断转动,斯坦尼康从高机位切换到低机位的过程中,当云台基座34的俯仰角大于-105度,且小于-75度,以及横滚轴电机32转动的角度大于160度,且小于200度时,手持云台根据云台基座34的偏航姿态,确定手持云台的目标偏航姿态。
同理,随着云台基座34以云台基座34的俯仰轴为转动轴线不断转动,斯坦尼康从低机位切换到高机位的过程中,当云台基座34的俯仰角大于75度,且小于105度,以及横滚轴电机32转动的角度大于160度,且小于200度时,手持云台根据云台基座34的偏航姿态,确定手持云台的目标偏航姿态。
可选的,所述根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态,包括:将所述云台的目标偏航角设置为所述云台基座的偏航角减去180度或者所述云台基座的偏航角加上180度。具体的,手持云台将手持云台的目标偏航姿态设置为云台基座的偏航角减去180度,或者,手持云台将手持云台的目标偏航姿态设置为云台基座的偏航角加上180度。
根据上述实施例可知,为了避免摄像机39拍摄的画面歪斜,将手持云台的目标横滚姿态设置为0。在本实施例中,当斯坦尼康从高机位向低机位切换的过程中,如果云台基座34的俯仰角大于-105度,且小于-75度,以及横滚轴电机32转动的角度大于160度,且小于200度时,手持云台可以不控制手持云台的实际横滚姿态向手持云台的目标横滚姿态0平滑过渡;如果云台基座34的俯仰姿态在-105度到-75度的范围之外,或/及横滚轴电机32转动的角度在160度到200度的范围之外,则手持云台控制 其实际横滚姿态向手持云台的目标横滚姿态0平滑过渡。
同理,当斯坦尼康从低机位向高机位切换的过程中,如果云台基座34的俯仰角大于75度,且小于105度,以及横滚轴电机32转动的角度大于160度,且小于200度时,手持云台可以不控制手持云台的实际横滚姿态向手持云台的目标横滚姿态0平滑过渡;如果云台基座34的俯仰姿态在75度到105度的范围之外,或/及横滚轴电机32转动的角度在160度到200度的范围之外,则手持云台控制其实际横滚姿态向手持云台的目标横滚姿态0平滑过渡。
另外,若所述云台基座的俯仰姿态在第一预设范围外,或/及所述云台中横滚轴的驱动电机转动的角度在第二预设范围外,则所述云台的目标偏航姿态为所述云台的实际偏航姿态。
例如,当斯坦尼康从高机位向低机位切换的过程中,如果云台基座34的俯仰姿态在-105度到-75度的范围之外,或/及横滚轴电机32转动的角度在-20度到20度的范围之外,则手持云台的目标偏航姿态为手持云台的实际偏航姿态,而不是根据云台基座的偏航姿态来确定。
此外,若所述云台基座的俯仰姿态在第一预设范围外,或/及所述云台中横滚轴的驱动电机转动的角度在第三预设范围外,则所述云台的目标偏航姿态为所述云台的实际偏航姿态。
例如,当斯坦尼康从高机位向低机位切换的过程中,如果云台基座34的俯仰姿态在-105度到-75度的范围之外,或/及横滚轴电机32转动的角度在160度到200度的范围之外,则手持云台的目标偏航姿态为手持云台的实际偏航姿态,而不是根据云台基座的偏航姿态来确定。
本实施例中,当云台基座的俯仰姿态在第一预设范围内且云台中横滚轴的驱动电机转动的角度在第二预设范围或第三预设范围内时,根据云台基座的偏航姿态,确定云台的目标偏航姿态,也就是说,根据云台基座的偏航姿态,确定云台的目标偏航姿态时,不仅需要考虑云台基座的俯仰角的范围,还需要考虑横滚轴电机转动的角度的范围,从而提高了云台的目标偏航姿态的精确度,同时提高了对云台的控制精度。
本发明实施例提供一种云台的控制方法。图12为本发明实施例提供 的云台的控制方法的流程图。图13为本发明实施例提供的云台的控制方法的流程图。
在上述所示实施例的基础上,所述云台的目标横滚姿态为0。所述云台的控制方法还包括:根据所述云台的目标横滚姿态,控制所述云台的实际横滚姿态。
如图3所示,当手持云台的横滚轴电机32转动时,手持云台的横滚姿态将发生变化,导致摄像机39拍摄的画面歪斜,为了避免摄像机39拍摄的画面歪斜,将手持云台的目标横滚姿态设置为0,手持云台将根据手持云台的实际横滚姿态和目标横滚姿态计算出实际横滚姿态和目标横滚姿态之间的姿态差,进一步根据该姿态差进行闭环控制计算出横滚轴电机32的扭矩,并将该扭矩发送给横滚轴电机32,以使横滚轴电机32转动,从而使得手持云台的实际横滚姿态向手持云台的目标横滚姿态0平滑过渡。
如图3和图4可知,斯坦尼康在进行高低机位切换的过程中,手持云台的横滚轴轴臂38与水平面之间的角度在不断变化。可选的,斯坦尼康在进行高低机位切换的过程中,手持云台的俯仰轴轴臂37可以随着横滚轴轴臂38的变化而变化,也可以保持不变。图3和图4所示的是手持云台的俯仰轴轴臂37相对于横滚轴轴臂38的姿态不变的情况。图3和图5所示的是手持云台的俯仰轴轴臂37相对于地面的姿态保持不变的情况。
具体的,斯坦尼康在进行高低机位切换的过程中,如果手持云台的俯仰轴轴臂37相对于横滚轴轴臂38的姿态不变,所述方法还包括如图12所示的步骤:
步骤S1201、根据云台的实际俯仰姿态和云台的俯仰轴的驱动电机转动的角度确定云台的目标俯仰姿态。
如图3所示,手持云台的实际俯仰姿态为0,当斯坦尼康以图3所示的姿态为初始姿态,沿着箭头41所示的方向,从高机位向低机位切换时,手持云台的横滚轴轴臂38与水平面之间的角度将发生变化。为了保持手持云台的俯仰轴轴臂37相对于横滚轴轴臂38的姿态不变,当手持云台的横滚轴轴臂38相对于地面的姿态变化时,手持云台需要根据横滚轴轴臂38相对于地面的姿态变化,确定出俯仰轴的驱动电机即俯仰轴电机31需 要转动的角度,进一步的,手持云台根据手持云台的实际俯仰姿态,以及俯仰轴的驱动电机即俯仰轴电机31需要转动的角度,确定出手持云台的目标俯仰姿态。
步骤S1202、根据所述云台的目标俯仰姿态,控制所述云台的实际俯仰姿态。
手持云台确定出手持云台的目标俯仰姿态后,依据手持云台的实际俯仰姿态和目标俯仰姿态计算出实际俯仰姿态和目标俯仰姿态之间的姿态差,进一步根据该姿态差进行闭环控制计算出俯仰轴电机31的扭矩,并将该扭矩发送给俯仰轴电机31,以使俯仰轴电机31转动,从而使得手持云台的实际俯仰姿态向手持云台的目标俯仰姿态平滑过渡。从而保证云台的俯仰轴轴臂37相对于横滚轴轴臂38的姿态不变。
另外,斯坦尼康在进行高低机位切换的过程中,如果手持云台的俯仰轴轴臂37相对于地面的姿态保持不变,所述方法还包括如图13所示的步骤:
步骤S1301、将云台的目标俯仰姿态设置为预设俯仰姿态。
当斯坦尼康以图3所示的姿态为初始姿态,沿着箭头41所示的方向,从高机位向低机位切换时,设置手持云台的目标俯仰姿态为预设俯仰姿态,该预设俯仰姿态可以是手持云台相对于地面固定的俯仰姿态,例如,该预设俯仰姿态可以为0。
步骤S1302、根据所述云台的目标俯仰姿态,控制所述云台的实际俯仰姿态。
如图3所示,手持云台的实际俯仰姿态为0,当斯坦尼康以图3所示的姿态为初始姿态,沿着箭头41所示的方向,从高机位向低机位切换时,如果手持云台的实际俯仰姿态发生了变化,则手持云台可依据手持云台的实际俯仰姿态和目标俯仰姿态0计算出实际俯仰姿态和目标俯仰姿态之间的姿态差,进一步根据该姿态差进行闭环控制计算出俯仰轴电机31的扭矩,并将该扭矩发送给俯仰轴电机31,以使俯仰轴电机31转动,从而使得手持云台的实际俯仰姿态向手持云台的目标俯仰姿态0平滑过渡。从而保证云台的俯仰轴轴臂37相对于地面的姿态不变。
本实施例通过确定云台的目标横滚姿态,根据云台的目标横滚姿态, 控制云台的实际横滚姿态,以及通过确定云台的目标俯仰姿态,根据云台的目标俯仰姿态,控制云台的实际俯仰姿态,实现了斯坦尼康在进行高低机位切换的过程中,云台对其实际横滚姿态和实际俯仰姿态的控制,进一步提高了对云台的控制精度。
本发明实施例提供一种云台控制器。图14为本发明实施例提供的云台控制器的结构图,如图14所示,云台控制器140包括:处理器141和存储器142,存储器142用于存储程序代码;处理器141调用所述程序代码,当程序代码被执行时,用于执行以下操作:当云台基座以所述云台基座的俯仰轴为转动轴线进行转动的过程中,获取云台基座的偏航姿态;根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态;根据所述云台的目标偏航姿态,控制所述云台的实际偏航姿态;其中,云台基座与云台的偏航轴臂是固定连接的。
可选的,处理器141获取云台基座的偏航姿态时,具体用于:获取所述云台的实际姿态;获取所述云台的每一个轴的驱动电机转动的角度;根据所述云台的实际姿态和所述转动的角度,确定云台基座的偏航姿态。
处理器141获取所述云台的每一个轴的驱动电机转动的角度时,具体用于:获取云台的俯仰轴、偏航轴、横滚轴中每一个轴的驱动电机转动的角度。
具体的,若所述云台基座的俯仰姿态在第一预设范围内,则处理器141根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态。
可选的,若所述云台基座的俯仰姿态在第一预设范围内且所述云台中横滚轴的驱动电机转动的角度在第二预设范围内,则处理器141根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态。处理器141根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态时,具体用于:将所述云台的目标偏航角设置为所述云台基座的偏航角。
或者,若所述云台基座的俯仰姿态在第一预设范围内且所述云台中横滚轴的驱动电机转动的角度在第三预设范围内,则处理器141根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态。处理器141根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态时,具体用于:将所 述云台的目标偏航角设置为所述云台基座的偏航角减去180度或者所述云台基座的偏航角加上180度。
另外,处理器141根据所述云台的目标偏航姿态,控制所述云台的实际偏航姿态时,具体用于:控制所述云台的横滚轴驱动电机转动以使所述云台的实际偏航姿态向所述云台的目标偏航姿态平滑地过渡。
本发明实施例提供的云台控制器的具体原理和实现方式均与图7所示实施例类似,此处不再赘述。
本实施例当云台基座以云台基座的俯仰轴为转动轴线进行转动时,通过获取云台基座的偏航姿态,确定云台的目标偏航姿态,并根据确定出的云台的目标偏航姿态,控制云台的实际偏航姿态,使得云台的实际偏航姿态跟随云台基座的偏航姿态而变化,避免云台在高低机位切换的过程中疯转,在云台基座与斯坦尼康的平衡组件固定连接的前提下,可以保证摄像机的拍摄方向指向平衡组件指示的方向,克服云台疯转使得摄像机的拍摄方向歪掉的问题,使得摄像机能够拍摄出稳定的由高到低或由低到高的镜头。
本发明实施例提供一种云台控制器。在图14所示实施例提供的技术方案的基础上,所述云台的目标横滚姿态为0。处理器141还用于:根据所述云台的目标横滚姿态,控制所述云台的实际横滚姿态。
处理器141还用于:根据云台的实际俯仰姿态和云台的俯仰轴的驱动电机转动的角度确定云台的目标俯仰姿态。或者,处理器141还用于:将云台的目标俯仰姿态设置为预设俯仰姿态。进一步的,处理器141还用于:根据所述云台的目标俯仰姿态,控制所述云台的实际俯仰姿态。
本发明实施例提供的云台控制器的具体原理和实现方式均与图12和图13所示实施例类似,此处不再赘述。
本实施例通过确定云台的目标横滚姿态,根据云台的目标横滚姿态,控制云台的实际横滚姿态,以及通过确定云台的目标俯仰姿态,根据云台的目标俯仰姿态,控制云台的实际俯仰姿态,实现了斯坦尼康在进行高低机位切换的过程中,云台对其实际横滚姿态和实际俯仰姿态的控制,进一步提高了对云台的控制精度。
本发明实施例提供一种云台。该云台包括:偏航轴臂、俯仰轴臂、横滚轴臂、云台基座、偏航轴的驱动电机、俯仰轴的驱动电机、横滚轴的驱动电机、及上述实施例所述的云台控制器;其中,所述云台基座与偏航轴臂固定连接。
可选的,所述云台通过所述云台基座与斯坦尼康固定连接。
本发明实施例提供的云台的具体原理和实现方式均与上述实施例类似,此处不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (31)

  1. 一种云台的控制方法,其特征在于,云台基座与云台的偏航轴臂是固定连接的,所述方法包括:
    当云台基座以所述云台基座的俯仰轴为转动轴线进行转动的过程中,获取云台基座的偏航姿态;
    根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态;
    根据所述云台的目标偏航姿态,控制所述云台的实际偏航姿态。
  2. 根据权利要求1所述的方法,其特征在于,所述获取云台基座的偏航姿态,包括:
    获取所述云台的实际姿态;
    获取所述云台的每一个轴的驱动电机转动的角度;
    根据所述云台的实际姿态和所述转动的角度,确定云台基座的偏航姿态。
  3. 根据权利要求2所述的方法,其特征在于,所述获取所述云台的每一个轴的驱动电机转动的角度,包括:
    获取云台的俯仰轴、偏航轴、横滚轴中每一个轴的驱动电机转动的角度。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态,包括:
    若所述云台基座的俯仰姿态在第一预设范围内,则根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态。
  5. 根据权利要求4所述的方法,其特征在于,所述若所述云台基座的俯仰姿态在第一预设范围内,则根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态,包括:
    若所述云台基座的俯仰姿态在第一预设范围内且所述云台中横滚轴的驱动电机转动的角度在第二预设范围内,则根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态,包括:
    将所述云台的目标偏航角设置为所述云台基座的偏航角。
  7. 根据权利要求4所述的方法,其特征在于,所述若所述云台基座的俯仰姿态在第一预设范围内,则根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态,包括:
    若所述云台基座的俯仰姿态在第一预设范围内且所述云台中横滚轴的驱动电机转动的角度在第三预设范围内,则根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态,包括:
    将所述云台的目标偏航角设置为所述云台基座的偏航角减去180度或者所述云台基座的偏航角加上180度。
  9. 根据权利要求4-8任一项所述的方法,其特征在于,所述根据所述云台的目标偏航姿态,控制所述云台的实际偏航姿态,包括:
    控制所述云台的横滚轴驱动电机转动以使所述云台的实际偏航姿态向所述云台的目标偏航姿态平滑地过渡。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述云台的目标横滚姿态为0。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    根据所述云台的目标横滚姿态,控制所述云台的实际横滚姿态。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    根据云台的实际俯仰姿态和云台的俯仰轴的驱动电机转动的角度确定云台的目标俯仰姿态。
  13. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    将云台的目标俯仰姿态设置为预设俯仰姿态。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    根据所述云台的目标俯仰姿态,控制所述云台的实际俯仰姿态。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,所述云台通过云台基座与斯坦尼康固定连接。
  16. 一种云台控制器,其特征在于,包括:存储器和处理器;
    所述存储器用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:当云台基座以所述云台基座的俯仰轴为转动轴线进行转动的过程中,获取云台基座的偏航姿态;
    根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态;
    根据所述云台的目标偏航姿态,控制所述云台的实际偏航姿态;
    其中,云台基座与云台的偏航轴臂是固定连接的。
  17. 根据权利要求16所述的云台控制器,其特征在于,所述处理器获取云台基座的偏航姿态时,具体用于:
    获取所述云台的实际姿态;
    获取所述云台的每一个轴的驱动电机转动的角度;
    根据所述云台的实际姿态和所述转动的角度,确定云台基座的偏航姿态。
  18. 根据权利要求17所述的云台控制器,其特征在于,所述处理器获取所述云台的每一个轴的驱动电机转动的角度时,具体用于:
    获取云台的俯仰轴、偏航轴、横滚轴中每一个轴的驱动电机转动的角度。
  19. 根据权利要求16-18任一项所述的云台控制器,其特征在于,若所述云台基座的俯仰姿态在第一预设范围内,则所述处理器根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态。
  20. 根据权利要求19所述的云台控制器,其特征在于,若所述云台基座的俯仰姿态在第一预设范围内且所述云台中横滚轴的驱动电机转动的角度在第二预设范围内,则所述处理器根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态。
  21. 根据权利要求20所述的云台控制器,其特征在于,所述处理器根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态时,具体用于:
    将所述云台的目标偏航角设置为所述云台基座的偏航角。
  22. 根据权利要求19所述的云台控制器,其特征在于,若所述云台 基座的俯仰姿态在第一预设范围内且所述云台中横滚轴的驱动电机转动的角度在第三预设范围内,则所述处理器根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态。
  23. 根据权利要求22所述的云台控制器,其特征在于,所述处理器根据所述云台基座的偏航姿态,确定所述云台的目标偏航姿态时,具体用于:
    将所述云台的目标偏航角设置为所述云台基座的偏航角减去180度或者所述云台基座的偏航角加上180度。
  24. 根据权利要求19-23任一项所述的云台控制器,其特征在于,所述处理器根据所述云台的目标偏航姿态,控制所述云台的实际偏航姿态时,具体用于:
    控制所述云台的横滚轴驱动电机转动以使所述云台的实际偏航姿态向所述云台的目标偏航姿态平滑地过渡。
  25. 根据权利要求16-24任一项所述的云台控制器,其特征在于,所述云台的目标横滚姿态为0。
  26. 根据权利要求25所述的云台控制器,其特征在于,所述处理器还用于:
    根据所述云台的目标横滚姿态,控制所述云台的实际横滚姿态。
  27. 根据权利要求25或26所述的云台控制器,其特征在于,所述处理器还用于:
    根据云台的实际俯仰姿态和云台的俯仰轴的驱动电机转动的角度确定云台的目标俯仰姿态。
  28. 根据权利要求25或26所述的云台控制器,其特征在于,所述处理器还用于:
    将云台的目标俯仰姿态设置为预设俯仰姿态。
  29. 根据权利要求27或28所述的云台控制器,其特征在于,所述处理器还用于:
    根据所述云台的目标俯仰姿态,控制所述云台的实际俯仰姿态。
  30. 一种云台,其特征在于,包括:
    偏航轴臂、俯仰轴臂、横滚轴臂、云台基座、偏航轴的驱动电机、俯 仰轴的驱动电机、横滚轴的驱动电机、及如权利要求16-29任一项所述的云台控制器;
    其中,所述云台基座与偏航轴臂固定连接。
  31. 根据权利要求30所述的云台,其特征在于,所述云台通过所述云台基座与斯坦尼康固定连接。
PCT/CN2017/103205 2017-09-25 2017-09-25 云台的控制方法、云台控制器及云台 WO2019056381A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780026915.1A CN109196266B (zh) 2017-09-25 2017-09-25 云台的控制方法、云台控制器及云台
PCT/CN2017/103205 WO2019056381A1 (zh) 2017-09-25 2017-09-25 云台的控制方法、云台控制器及云台
US16/817,082 US20200213518A1 (en) 2017-09-25 2020-03-12 Method for controlling gimbal, gimbal controller, and gimbal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/103205 WO2019056381A1 (zh) 2017-09-25 2017-09-25 云台的控制方法、云台控制器及云台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/817,082 Continuation US20200213518A1 (en) 2017-09-25 2020-03-12 Method for controlling gimbal, gimbal controller, and gimbal

Publications (1)

Publication Number Publication Date
WO2019056381A1 true WO2019056381A1 (zh) 2019-03-28

Family

ID=64948914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103205 WO2019056381A1 (zh) 2017-09-25 2017-09-25 云台的控制方法、云台控制器及云台

Country Status (3)

Country Link
US (1) US20200213518A1 (zh)
CN (1) CN109196266B (zh)
WO (1) WO2019056381A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112901958B (zh) * 2015-08-27 2022-11-08 深圳市大疆灵眸科技有限公司 手柄云台及其控制方法
EP3954934A1 (en) * 2016-12-30 2022-02-16 SZ DJI Osmo Technology Co., Ltd. Method and device for controlling cradle head, and cradle head
WO2019205152A1 (zh) * 2018-04-28 2019-10-31 深圳市大疆创新科技有限公司 云台的控制方法和云台
WO2021026760A1 (zh) * 2019-08-13 2021-02-18 深圳市大疆创新科技有限公司 云台系统及其控制方法
CN112119255A (zh) * 2019-08-14 2020-12-22 深圳市大疆创新科技有限公司 手持云台及其控制方法
FR3107754B1 (fr) * 2020-02-27 2022-03-18 Xyzed Lyre motorisée pour vidéo projecteur
CN114158271A (zh) * 2020-07-08 2022-03-08 深圳市大疆创新科技有限公司 云台控制方法、云台组件、装置、可移动平台和存储介质
CN112161183A (zh) * 2020-10-23 2021-01-01 平顶山学院 一种新闻采访设备稳定器
JP7264931B2 (ja) * 2021-03-25 2023-04-25 キヤノンプレシジョン株式会社 ジンバル及びそれを有するシステム
WO2023272596A1 (zh) * 2021-06-30 2023-01-05 深圳市大疆创新科技有限公司 云台系统处理方法、装置及云台系统
CN113721450A (zh) * 2021-08-05 2021-11-30 杭州海康威视数字技术股份有限公司 一种终端设备及其控制方法和装置
WO2023065112A1 (zh) * 2021-10-19 2023-04-27 深圳市大疆创新科技有限公司 云台跟随时的交互方法、装置及云台系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070050139A1 (en) * 2005-04-27 2007-03-01 Sidman Adam D Handheld platform stabilization system employing distributed rotation sensors
CN102393596A (zh) * 2011-10-08 2012-03-28 上海理工大学 摄像机稳定器
CN203259762U (zh) * 2013-05-24 2013-10-30 朱卓 一种多功能摄影支架
CN103984193A (zh) * 2014-03-14 2014-08-13 广州虹天航空科技有限公司 拍摄设备稳定器及其控制方法
CN204719384U (zh) * 2015-07-07 2015-10-21 孙宗炎 简易多用途摄像稳定器
CN105697947A (zh) * 2016-04-12 2016-06-22 广州好创智能科技有限公司 稳定拍摄云台

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113768A (en) * 1991-03-15 1992-05-19 Brown Garrett W Cable-suspended apparatus for supporting a stabilized camera assembly
US20070206090A1 (en) * 2006-03-06 2007-09-06 Toby Barraud Portable video system for two-way remote steadicam-operated interviewing
US9458963B1 (en) * 2015-03-31 2016-10-04 Swiftcam Technologies Group Company Limited 360-degree gimbal system
CN206191193U (zh) * 2016-10-13 2017-05-24 纳恩博(北京)科技有限公司 一种云台和机器人头部
WO2018107337A1 (zh) * 2016-12-12 2018-06-21 深圳市大疆创新科技有限公司 云台及其操作方法、控制方法,及使用其的可移动设备
WO2018120059A1 (zh) * 2016-12-30 2018-07-05 深圳市大疆灵眸科技有限公司 用于云台的控制方法、控制系统、云台和无人飞行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070050139A1 (en) * 2005-04-27 2007-03-01 Sidman Adam D Handheld platform stabilization system employing distributed rotation sensors
CN102393596A (zh) * 2011-10-08 2012-03-28 上海理工大学 摄像机稳定器
CN203259762U (zh) * 2013-05-24 2013-10-30 朱卓 一种多功能摄影支架
CN103984193A (zh) * 2014-03-14 2014-08-13 广州虹天航空科技有限公司 拍摄设备稳定器及其控制方法
CN204719384U (zh) * 2015-07-07 2015-10-21 孙宗炎 简易多用途摄像稳定器
CN105697947A (zh) * 2016-04-12 2016-06-22 广州好创智能科技有限公司 稳定拍摄云台

Also Published As

Publication number Publication date
CN109196266A (zh) 2019-01-11
CN109196266B (zh) 2020-09-01
US20200213518A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2019056381A1 (zh) 云台的控制方法、云台控制器及云台
CN107074348B (zh) 控制方法、装置、设备及无人飞行器
CN109071034B (zh) 切换云台工作模式的方法、控制器和图像增稳设备
CN111279113B (zh) 手持云台控制方法和手持云台
WO2020215215A1 (zh) 一种云台控制方法、设备、云台、系统及存储介质
CN108521777B (zh) 云台的控制方法、云台以及无人飞行器
WO2019227384A1 (zh) 一种云台控制方法及云台
KR101617808B1 (ko) 카메라 균형제어 기능을 갖는 헬리캠용 짐벌 장치
WO2018191987A1 (zh) 云台及云台控制方法
WO2019051640A1 (zh) 云台的控制方法、控制器和云台
WO2020107284A1 (zh) 云台的模式切换方法、装置、可移动平台及存储介质
WO2020062281A1 (zh) 云台的控制方法、云台、可移动平台及可读存储介质
WO2020042064A1 (zh) 云台的控制方法与装置、云台系统和无人机
WO2020248086A1 (zh) 云台系统的控制方法及云台系统
WO2021026790A1 (zh) 手持云台、云台控制方法及计算机可读存储介质
CN108696674A (zh) 重心调整机构及其相关摄影装置
WO2018191971A1 (zh) 一种云台的控制方法以及云台
WO2023010318A1 (zh) 云台控制方法、装置、云台和存储介质
WO2019205152A1 (zh) 云台的控制方法和云台
KR102127962B1 (ko) 팬틸트-짐벌 일체형 시스템 및 그 제어 방법
WO2018214015A1 (zh) 一种航向修正方法、设备及飞行器
WO2022082442A1 (zh) 云台的控制方法及云台
WO2021134643A1 (zh) 云台的控制方法和云台
WO2021026760A1 (zh) 云台系统及其控制方法
WO2021195941A1 (zh) 一种云台的控制方法、云台及可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926312

Country of ref document: EP

Kind code of ref document: A1