WO2020042064A1 - 云台的控制方法与装置、云台系统和无人机 - Google Patents

云台的控制方法与装置、云台系统和无人机 Download PDF

Info

Publication number
WO2020042064A1
WO2020042064A1 PCT/CN2018/103193 CN2018103193W WO2020042064A1 WO 2020042064 A1 WO2020042064 A1 WO 2020042064A1 CN 2018103193 W CN2018103193 W CN 2018103193W WO 2020042064 A1 WO2020042064 A1 WO 2020042064A1
Authority
WO
WIPO (PCT)
Prior art keywords
attitude
current
posture
mode
yaw
Prior art date
Application number
PCT/CN2018/103193
Other languages
English (en)
French (fr)
Inventor
刘帅
王映知
王振动
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880041522.2A priority Critical patent/CN110869283A/zh
Priority to EP18931369.5A priority patent/EP3842682A1/en
Priority to PCT/CN2018/103193 priority patent/WO2020042064A1/zh
Publication of WO2020042064A1 publication Critical patent/WO2020042064A1/zh
Priority to US17/186,853 priority patent/US20210180743A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/041Allowing quick release of the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2071Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction for panning and rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • F16M13/022Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle repositionable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/04Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or holding steady relative to, a person, e.g. by chains, e.g. rifle butt or pistol grip supports, supports attached to the chest or head
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/044Balancing means for balancing rotational movement of the undercarriage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2637Vehicle, car, auto, wheelchair
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2651Camera, photo

Definitions

  • the present invention relates to electronic technology, and in particular, to a control method of a PTZ, a control device for the PTZ, a PTZ system, and an unmanned aerial vehicle.
  • stabilization mode when the user controls the pan / tilt, the pan / tilt in the stabilization mode may cause the gimbal to shake due to the excessive movement angle and impact the mechanical limit.
  • follow mode the user walks and the arm shakes. Other actions will also cause the gimbal to shake.
  • the shake of the gimbal will affect the working effect of the loads mounted on the gimbal, such as cameras, cameras, sensors, and fill lights. For example, if a camera is mounted on the gimbal, If the camera is mounted on the gimbal, the imaging image will be blurred.
  • the camera image will be shaken due to the vibration of the gimbal; if the sensor is mounted on the gimbal, the sensor will obtain errors due to the vibration of the gimbal. ; If a fill light is mounted on the gimbal, the fill light field of the fill light will deviate from the object to be filled due to the shake of the gimbal.
  • Embodiments of the present invention provide a control method of a gimbal, a gimbal control device, a gimbal system, and an unmanned aerial vehicle.
  • the gimbal can be controlled to rotate according to the current attitude of the hinge frame and the current working mode of the gimbal.
  • the control method of a pan / tilt according to an embodiment of the present invention is applied to a pan / tilt system, and the pan / tilt includes a hinge frame.
  • a control method of the pan / tilt includes: acquiring a current posture of the hinge frame; acquiring a current working mode of the pan / tilt; comparing the current posture with a threshold posture, and obtaining a comparison result between the current posture and the threshold posture; and Controlling the PTZ rotation according to the comparison result, wherein the current working mode of the PTZ includes a stabilization mode and a following mode, and controlling the PTZ rotation according to the comparison result includes: according to the comparison result Controlling the pan / tilt head to rotate so that the pan / tilt head maintains the stabilization mode, controlling the pan / tilt head to rotate so that the pan / tilt head maintains the following mode, and controlling an office based on the comparison result
  • the pan / tilt head rotates to switch the pan / tilt head between at least one of the stabilization mode and the following mode.
  • the control device of the gimbal according to the embodiment of the present invention is applied to a gimbal system, the gimbal includes a hinge frame, and the control device includes a processor.
  • the processor is configured to obtain a current attitude of the hinge frame, obtain a current working mode of the gimbal, compare the current attitude and a threshold attitude, obtain a comparison result between the current attitude and the threshold attitude, and
  • the comparison result controls the PTZ rotation, wherein the current working mode of the PTZ includes a stabilization mode and a follow mode, and controlling the PTZ rotation according to the comparison result includes: controlling the PTZ according to the comparison result
  • the pan / tilt head rotates so that the pan / tilt head maintains the stabilization mode, controls the pan / tilt head to rotate so that the pan / tilt head maintains the following mode, and controls the cloud according to the comparison result
  • the platform rotates to switch the gimbal between at least one of the stabilization mode and the following mode.
  • a pan / tilt system includes a pan / tilt and a control device according to the above embodiment.
  • the control device is disposed on the pan / tilt.
  • An unmanned aerial vehicle includes a fuselage and a gimbal system of the above-mentioned embodiment.
  • the gimbal system is disposed on the fuselage.
  • the control method of the pan / tilt controls the pan / tilt rotation according to the comparison result between the current attitude and the threshold attitude of the hinge frame.
  • the impact of the gimbal's hinge frame on the mechanical limit affects the working effect of the load, and in the follow mode, when the user wants to switch the stabilization mode, it automatically switches to the stabilization mode, which ensures the working effect of the load carried on the gimbal.
  • the camera mounted on the gimbal will not experience image shake; or the sensors mounted on the gimbal will not generate errors; or the fill light field of the fill light on the gimbal will not shift the object to be filled.
  • FIG. 1 is a schematic perspective view of a UAV of some embodiments of the present invention.
  • FIG. 2 is a perspective structural diagram of a pan / tilt system of some embodiments of the present invention.
  • 3 to 7 are schematic flowcharts of a control method of a pan / tilt according to some embodiments of the present invention.
  • FIG. 8 is a schematic diagram of a connection between a PTZ system and a computer-readable storage medium according to some embodiments of the present invention.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "plurality” is two or more, unless specifically defined otherwise.
  • connection should be understood in a broad sense unless otherwise specified and limited.
  • they may be fixed connections or removable.
  • Connection, or integral connection can be mechanical, electrical, or can communicate with each other; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements relationship.
  • connection, or integral connection can be mechanical, electrical, or can communicate with each other; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements relationship.
  • an embodiment of the present invention provides an unmanned aerial vehicle 1000, which includes a gimbal system 100 and a main body 200.
  • the gimbal system 100 is mounted on the body 200.
  • the PTZ system 100 includes a PTZ 10, a control device 20, and a load 30.
  • the control device 20 is mounted on the gimbal 10.
  • the head 10 includes a base 11, a shaft frame 12, a motor assembly 13, an inertial measurement unit 14, a load bracket 15, and a joint angle assembly 16.
  • the shaft frame 12 is mounted on the base 11 and is used to carry a load 30.
  • the gimbal 10 may be a handheld gimbal or a gimbal 10 provided on the drone 1000.
  • the PTZ 10 is a handheld PTZ.
  • the principle is similar when the PTZ 10 is the PTZ 10 set on the drone 1000, and will not be described again here.
  • the head 10 is a three-axis handheld head. In other embodiments, the head 10 can also be a two-axis handheld head or a single-axis handheld head.
  • the rotation axis frame 12 includes a yaw axis frame 122, a roll axis frame 124, and a pitch axis frame 126
  • the motor assembly 13 includes a yaw axis motor 132, a roll axis motor 134, and a pitch axis motor 136.
  • the yaw axis frame 122 is mounted on the base 11
  • the roll axis frame 124 is mounted on the yaw axis frame 122
  • the pitch axis frame 126 is mounted on the roll axis frame 124.
  • the yaw axis motor 132 is installed on the base 11 and is used to control the rotation of the yaw axis frame 122.
  • the roll axis motor 134 is installed on the yaw axis frame 122 and is used to drive the roll axis frame 124 to rotate.
  • the pitch axis motor 136 is installed on The roll axis frame 124 is used to drive the pitch axis frame 126 to rotate.
  • the shaft frame 12 is generally provided with a mechanical limit. When the shaft frame 12 hits the mechanical limit, it can no longer be rotated in the original rotation direction.
  • the pitch axis frame 126 and the roll axis frame 124 are provided with a mechanical limit
  • the yaw axis frame 122 is not provided with a mechanical limit.
  • the pitch axis frame 126, the roll axis frame 124, and the yaw axis frame 122 may all be provided with mechanical limits, or no mechanical limits may be provided, or in any other suitable combination.
  • Set the mechanical limit which is not limited here.
  • the mechanical limits of the rotating shaft frame 12 of the different types of pan / tilt heads 10 may be the same or different, which is not limited in this embodiment.
  • the pivot frame 12 of the gimbal 10 may include only one pivot frame 12, for example, the pivot frame 12 of the gimbal 10 includes only a yaw axis frame 122 and a roll axis. Any one of the frame 124 and the pitch axis frame 126, and correspondingly, the motor assembly 13 includes one of a yaw axis motor 132, a roll axis motor 134, and a pitch axis motor 136.
  • the pivot frame 12 of the gimbal 10 may include two frames 12, for example, the pivot frame 12 of the gimbal 10 includes a yaw axis frame 122, a roll axis frame 124, and a pitch axis. Any two of the frames 126 correspond to them, and the motor assembly 13 includes two of a yaw axis motor 132, a roll axis motor 134, and a pitch axis motor 136, which are not limited herein.
  • the rotation axis frame 12 of the embodiment of the present invention The structure is not limited to this, and the yaw axis frame 122, the roll axis frame 124, and the pitch axis frame 126 may be connected in other orders.
  • the inertial measurement unit 14 is provided on the rotation shaft frame 12.
  • the inertial measurement unit 14 is one and is disposed on the rotation shaft frame 12.
  • the inertial measurement unit 14 is provided on the pitch shaft frame 126.
  • the inertial measurement unit 14 can detect the yaw axis.
  • the inertial measurement unit 14 can also cooperate with the joint angle component 16 to calculate the attitude of the base 11 based on the attitude of the load 30 and the joint angle data; or,
  • the inertial measurement unit 14 is two and is disposed on the base 11 and the rotation shaft frame 12, respectively.
  • the inertial measurement unit 14 is disposed on the base 11 and the pitch shaft frame 126.
  • the inertial measurement unit 14 can detect the base 11, the deviation The current attitudes of the yaw axis frame 122, the roll axis frame 124, and the pitch axis frame 126.
  • the inertial measurement unit 14 may also be disposed at other suitable positions.
  • the inertial measurement unit 14 includes at least one of an accelerometer or a gyroscope.
  • the load bracket 15 is mounted on the pitch axis frame 126, and the load bracket 15 is used for mounting and fixing the load 30.
  • the joint angle assembly 16 is disposed on the motor assembly 13 of the pan / tilt head 10, and is used to obtain the joint angle of the motor assembly 13 and send it to the processor 22 of the control device 20.
  • the joint angle assembly 16 includes one or more of a potentiometer, a Hall sensor, and a magnetic encoder.
  • a potentiometer for a three-axis head, each of the yaw axis motor 132, the roll axis motor 134, and the pitch axis motor 136 corresponds to a joint angle assembly 16.
  • the current posture of the base 11 can be calculated based on the joint angle of the motor assembly 13 and the current posture of the rotating shaft frame 12, which can reduce the inertia.
  • the number of measuring units 14 saves costs. It can be understood that the above method is only a schematic description of the current posture acquisition method of the base 11, and the current posture acquisition method of the base 11 is not limited in the embodiment of the present invention.
  • the control device 20 includes a processor 22. Specifically, the control device 20 is provided on the base 11. Of course, the control device 20 may also be disposed on the yaw axis frame 122, the roll axis frame 124, or the pitch axis frame 126, which is not limited herein.
  • the current working mode of the PTZ 10 includes a stabilization mode and a following mode.
  • the gimbal 10 can maintain the stabilization mode, the following mode, and switch between the stabilization mode and the following mode.
  • the stabilization mode refers to that the PTZ always maintains stability in a preset reference direction (for example, horizontal direction).
  • the PTZ 10 will perform negative feedback adjustment on the user's operation to offset possible vibrations and maintain the PTZ 10 Stability of the mounted load 15 (for example, a camera, a mobile phone, and the like will be described below using a camera as an example). Take the pitch as an example to explain.
  • the tilt axis frame 126 of the gimbal 10 performs negative feedback adjustment to keep the camera mounted on the gimbal 10 always in the horizontal direction.
  • the negative feedback adjustment here means that when the user controls the base 11 to tilt, the gimbal 10 controls the camera to tilt the corresponding angle to maintain the camera level to achieve camera stabilization; or when the user controls the base 11 to tilt , The PTZ 10 controls the camera to tilt the corresponding angle to maintain the camera level, to achieve camera stabilization.
  • the gimbal 10 controls the tilt axis frame 126 to tilt 15 degrees so that the camera remains horizontal.
  • the following mode means that the relative angle of the load head 30 and the corresponding rotation shaft frame 12 is maintained constant, so that the rotation of the rotation shaft frame 12 is followed, or the relative angle of the load 30 and the base 11 is maintained to follow the rotation of the base 11.
  • the gimbal 10 controls the tilt axis frame to tilt 15 degrees so that the relative angle between the load 30 and the base 11 remains substantially unchanged; or if the user controls the base 11 to tilt 15 degrees, then The gimbal 10 controls the pitch axis frame to be tilted 15 degrees so that the relative angle between the load 30 and the base 11 remains substantially unchanged.
  • the PTZ 10 maintains the stabilization mode, the keep-following mode, and the PTZ 10 switches between the stabilization mode and the follow-up mode, and can simultaneously perform the stabilization-stabilizing mode and the keep-follow mode on multiple shaft frames 12.
  • And switching operation between the stabilization mode and the following mode may also be an operation of maintaining the stabilization mode, maintaining the following mode, and switching between the stabilization mode and the following mode for each of the shaft frames 12 individually.
  • the control device 20 separately performs the operations of maintaining the stabilization increasing mode, maintaining the following mode, and switching between the stabilization increasing mode and the following mode on each of the shaft frames 12.
  • the PTZ system 100 can execute the control method shown in FIG. 3. Specifically, the control method includes:
  • the current posture of the shaft frame 12 is detected and acquired by the inertial measurement unit 14 and then sent to the processor 22 of the control device 20.
  • the processor 22 is configured to obtain a current attitude of the hinge frame 12, obtain a current working mode of the gimbal 10, and control the rotation of the gimbal 10 according to the current attitude and the current working mode.
  • steps 012, 014, and 016 can all be executed by the processor 22.
  • the current attitude includes the current yaw attitude, the current roll attitude, and the current pitch attitude.
  • the above control method will be described by taking the current attitude as the current yaw attitude as an example.
  • the current attitude is the current roll attitude and the current pitch attitude, The principle is basically the same and will not be repeated here.
  • the preset reference direction (such as true north or a direction defined by the user is set here) Taking the north as a preset reference direction as an example) as an example of the stabilization attitude of the yaw axis frame 122.
  • the current yaw attitude of the yaw axis frame 122 is always maintained In the north (that is, it remains the same), because the yaw axis frame 122 is installed on the base 11, although the current yaw attitude of the yaw axis frame 122 has not changed, the current yaw attitude of the base 11 will follow the user's The yaw operation of the base 11 is changed.
  • the current yaw attitude in the embodiment of the present invention refers to the current yaw attitude of the base 11.
  • the current yaw attitude of the base 11 can be determined by the inertia provided on the base 11.
  • the measurement unit 14 acquires and sends it to the processor 22.
  • the current roll attitude is the current roll attitude of the yaw axis frame 122
  • the current pitch attitude is the current pitch attitude of the roll axis frame 124.
  • the inertial measurement unit 14 obtains the current yaw attitude of the base 11 in real time, and then the inertial measurement unit 14 sends the current yaw attitude to the processor 22, and the processor 22 obtains the current yaw attitude and then obtains the current working mode of the gimbal 10. (Ie, stabilization mode), and then the processor 22 controls the PTZ 10 to rotate according to the comparison result between the current yaw attitude and the threshold attitude. Specifically, the processor 22 controls the PTZ 10 to maintain according to the comparison result of the current yaw attitude and the threshold attitude.
  • the stabilization mode is rotated, the processor 22 controls the PTZ 10 to keep following the rotation mode according to the comparison result of the current attitude and the threshold attitude, and the processor 22 controls the PTZ 10 in the stability stabilization mode and according to the comparison result of the current attitude and the threshold attitude. After switching between the following modes, the PTZ 10 is controlled to rotate in the switched working mode.
  • the threshold attitude is a preset attitude, where the preset attitude includes any one or more of a preset yaw attitude, a preset roll attitude, and a preset pitch attitude.
  • the preset yaw attitude refers to the yaw attitude of the base 11 when the yaw axis frame 122 reaches the mechanical limit
  • the preset roll attitude refers to the yaw axis frame 122 when the roll axis frame 124 reaches the mechanical limit.
  • the preset roll attitude refers to the roll attitude of the roll axis frame 124 when the pitch axis frame 126 reaches the limit.
  • the processor 22 may determine whether the current yaw attitude has reached the preset yaw attitude (that is, determine whether the yaw axis frame 122 will hit the mechanical limit), and then when the current yaw attitude reaches the preset yaw attitude (that is, the yaw axis The frame 122 is about to hit the mechanical limit), and the stabilization mode is switched to the following mode.
  • the yaw axis frame 122 will maintain the relative angle with the base 11 and follow the base 11 Synchronized rotation, so as to ensure that the yaw shaft frame 122 does not hit the mechanical limit.
  • the limit may be an attitude limit.
  • the attitude difference between the attitude of the camera and the attitude of the shaft frame is smaller than the mechanical limit range, and the mechanical limit is reached at the yaw axis frame 122.
  • a certain angle in front means that the stabilization mode of the gimbal 10 is switched to the following mode, and there is a certain amount of redundancy, which can further ensure that the yaw axis frame 122 does not hit the mechanical limit.
  • the threshold attitude is a predetermined attitude
  • the pan / tilt head 10 is controlled to switch from the following mode to the stabilization mode according to a comparison result between the current attitude and the predetermined attitude of the rotating shaft frame 12, wherein the predetermined attitude includes a predetermined attitude. Any one or more of a yaw attitude, a predetermined roll attitude, and a predetermined pitch attitude.
  • the predetermined posture may be different from the preset posture, for example, the preset posture is 30 degrees, the predetermined posture is 5 degrees, and the preset posture and the predetermined posture may also be set according to user input. In other embodiments, the predetermined posture may also be equal to the preset posture, which is not limited herein.
  • the processor 22 compares the current posture with a predetermined posture, and when the current posture is less than (or less than or equal to) the predetermined posture (that is, the user wants to switch from the following mode to the stabilization mode to maintain stable shooting), the processor 22 controls the motor assembly 13 to rotate
  • the rotating shaft frame 12 enables the gimbal 10 to switch the following mode to a stabilization mode, thereby preventing the user's movement and arm shaking from affecting the working effect of the load 30.
  • the control method of the pan / tilt head 10 controls the pan / tilt head rotation according to the comparison result between the current attitude and the threshold attitude of the hinge frame 12, and can not only switch the stabilization mode to follow when the pan / tilt head 10 is about to hit the limit in the stabilization mode.
  • Mode to prevent the pivot frame 12 of the gimbal 10 from impacting the mechanical limit to affect the working effect of the load 30, and in the follow mode, when the user wants to switch the stabilization mode it automatically switches to the stabilization mode, which ensures that the Working effect of load 30.
  • the camera mounted on the gimbal 10 will not experience image shake; or the sensors mounted on the gimbal 10 will not generate errors; or the fill light field of the fill light mounted on the gimbal 10 will not be shifted to be complemented Light object.
  • the current working mode of the PTZ 10 is determined according to user input.
  • the user can input according to his own requirements to control the working mode of the PTZ 10.
  • the user can set multiple pivot frames 12 of the PTZ 10 as a stabilization mode or follow mode; or the user can individually set each pivot frame 12 of the PTZ 10 as a stabilization mode or follow mode.
  • the user The yaw axis frame 122 is set to the stabilization mode or following mode by input, the roll axis frame 124 is set to the stabilization mode or following mode, and the pitch axis frame 126 is set to the stabilization mode or following mode.
  • Step 016 includes:
  • the processor 22 is configured to compare the current attitude with a preset attitude, and control the PTZ 10 to rotate to maintain the stability mode when the current attitude is less than or equal to the preset attitude.
  • steps 0161 and 0162 can be executed by the processor 22.
  • the inertial measurement unit 14 acquires the current attitude in real time and sends it to the processor 22, and the processor 22 compares the current attitude with the preset attitude, and if the current attitude is less than (or less than or equal to) the preset Attitude, that is to say, the shaft frame 12 has not reached the mechanical limit, and the situation in which the shaft frame 12 hits the mechanical limit will not occur. At this time, the processor 22 only needs to control the PTZ 10 to continue to maintain the stabilization mode.
  • the processor 22 controls the yaw axis motor 132 to rotate the yaw axis frame 122 so that the yaw axis frame 122 maintains the stabilization mode If the current roll attitude of the yaw axis frame 122 is less than (or less than or equal to) the preset roll attitude, the processor 22 controls the roll axis motor 134 to rotate the roll axis frame 124 to keep the roll axis frame 124 stable Or if the current pitch attitude of the roll axis frame 124 is less than (or less than) a preset pitch attitude, the processor 22 controls the pitch axis motor 136 to rotate the pitch axis frame 126 to maintain the pitch axis frame 126 in a stabilization mode.
  • the preset yaw attitude may be smaller than the current yaw attitude of the base 11 when the yaw axis frame 122 reaches the mechanical limit, and the preset roll attitude is less than the yaw when the roll axis frame 124 reaches the mechanical limit.
  • the current roll attitude of the axis frame 122 is preset to be smaller than the current pitch attitude of the roll axis frame 124 when the pitch axis frame 126 reaches the limit, retaining a certain amount of redundancy, and further preventing the pivot frame 12 from hitting the mechanical limit.
  • step 016 further includes:
  • the processor 22 is further configured to control the PTZ 10 to rotate when the current attitude is greater than or equal to a preset attitude, so that the PTZ 10 switches the stabilization mode to the following mode.
  • step 0163 may be implemented by the processor 22.
  • the inertial measurement unit 14 obtains the current posture in real time and sends it to the processor 22, and the processor 22 compares the current posture and the preset posture, and the current posture is greater than or equal to the preset posture.
  • the processor 22 switches the stabilization mode of the gimbal 10 to the following mode and controls the motor assembly 13 to rotate so that the gimbal 10 rotates in the following mode.
  • the processor 22 controls the yaw axis motor 132 to rotate the yaw axis frame 122 so that the yaw attitude of the load 30 follows the base 11 current yaw attitude; or if the current roll attitude of the yaw axis frame 122 is greater than (or greater than or equal to) the preset roll attitude, the processor 22 controls the roll axis motor 134 to rotate the roll axis frame 124 so that The roll attitude of the load 30 follows the current roll attitude of the yaw axis frame 122; or, if the current pitch attitude of the roll axis frame 124 is greater than (or greater than or equal to) the preset pitch attitude, the processor 22 controls the pitch axis motor 136 The pitch axis frame 126 is rotated so that the pitch attitude of the load 30 follows the current pitch attitude of the roll axis frame 124.
  • the stabilization mode of the gimbal 10 is switched to the follow mode, which can prevent the hinge frame 12 from hitting the mechanical limit. Bit.
  • the processor 22 controls the PTZ 10 to maintain the stabilization mode when the current attitude is less than or equal to a preset attitude, and the processor 22 Switching the stabilization mode of the PTZ 10 to the follow mode during the preset attitude; or, the processor 22 controls the PTZ 10 to maintain the stabilization mode when the current attitude is less than the preset attitude, and the processor 22 is greater than or equal to the preset attitude when the current attitude is smaller than the preset attitude
  • the stabilizing mode of the PTZ 10 is switched to the following mode.
  • the processor 22 can be prevented from determining which method to execute when the current posture is equal to the preset posture, or at the same time When two methods are implemented, normal operation of the PTZ 10 is ensured.
  • step 016 further includes:
  • 0164 if the current pose is greater than or equal to the preset pose, calculate the duration of the current pose greater than or equal to the preset pose;
  • the processor 22 is further configured to calculate the duration of the current pose greater than or equal to the preset pose when the current pose is greater than or equal to the preset pose, and control the cloud when the duration is greater than or equal to the preset pose.
  • the platform 10 rotates to make the gimbal 10 switch the stabilization mode to the following mode.
  • steps 0164 and 0165 can be implemented by the processor 22.
  • the processor 22 compares the current posture and the preset posture, when the current posture is greater than or equal to the preset posture, it starts to calculate the duration of the current posture greater than or equal to the preset posture, After the duration is greater than or equal to a preset time (for example, the preset time is 5 seconds, 6 seconds, 7 seconds, etc.), the processor 22 switches the current working mode of the gimbal 10 to a follow mode and controls the motor assembly 13 to rotate to The pan / tilt head 10 is rotated in the following mode.
  • a preset time for example, the preset time is 5 seconds, 6 seconds, 7 seconds, etc.
  • the duration of the current posture is greater than the preset posture
  • the preset posture is equal to the posture of the base 11 or the pivot frame 12 when the pivot frame 12 reaches the mechanical limit
  • the current posture is greater than or equal to the preset posture.
  • the shaft frame 12 may have hit the mechanical limit, so the preset attitude should be slightly smaller than the attitude of the base 11 or the shaft frame 12 when the shaft frame 12 reaches the mechanical limit.
  • the pivot frame 12 of the gimbal 10 will always maintain a stabilization posture, such as the roll axis frame 124 and the pitch axis.
  • the frame 126 always maintains a stabilizing attitude in the horizontal direction, so no matter how the user adjusts the camera, it can only be kept horizontal.
  • the user can only manually switch the follow mode and then adjust or continue to roll or tilt until the pivot frame 12 reaches the limit. Angle, but this will cause the shaft frame 12 to hit the limit and make the shooting picture shake, affecting the entire shooting experience.
  • the current posture is compared with the preset posture, and when the current posture is greater than or equal to the preset posture, the duration of the current posture is greater than or equal to the preset posture, and it is determined whether the duration is greater than the preset time, and the duration is greater than the preset posture.
  • the time is set (the user continues to shoot for a certain period of time when the current posture is greater than or equal to the preset posture, at this time the user is likely to want to change the shooting angle)
  • switch the stabilization mode to follow mode so that the user does not need to manually
  • the following mode is switched, and the shooting angle is changed without the hinge frame 12 hitting the mechanical limit, intelligent switching is achieved, and the user experience is better.
  • Step 016 further includes:
  • the processor 22 is further configured to control the PTZ 10 to maintain the stabilization mode when the current posture is greater than or equal to the duration of the preset posture and less than the preset time.
  • step 0166 may be implemented by the processor 22.
  • the user sometimes only wants to change the holding angle of the handheld gimbal 10 to hold the handheld gimbal 10 more comfortably, instead of adjusting the shooting angle of the load 30 (such as a camera) carried by the handheld gimbal 10.
  • the processor 22 determines whether the user wants to change the shooting angle of the camera or temporarily adjusts the holding angle by judging the relationship between the duration of the current pose being greater than or equal to the preset pose and the preset time, and the duration is less than the preset time. (Ie, the user just temporarily adjusts the holding angle), controlling the PTZ 10 to maintain the stabilization mode can prevent the current working mode of the PTZ 10 from being switched by mistake, and the user experience is better.
  • step 0165 includes:
  • the processor 22 is further configured to obtain the difference between the actual attitude of the load 30 and the current attitude, and control the PTZ 10 to rotate so that the load 30 maintains the difference to follow the rotation of the shaft frame 12.
  • steps 01652 and 01654 can be implemented by the processor 22.
  • the processor 22 when the processor 22 controls the PTZ 10 to switch the stabilization mode to the following mode, the processor 22 first obtains the actual attitude of the load 30 through the inertial measurement unit 14.
  • the actual attitude of the load 30 refers to the yaw attitude, roll attitude, and pitch attitude of the load 30 when the earth is used as the reference frame.
  • the attitude of the load 30 may also use the gimbal 10 as a reference frame, or other suitable reference frame, which is not limited herein.
  • the processor 22 obtains the current attitude and calculates the difference between the current attitude and the actual attitude (generally the angle difference), and controls the motor assembly 13 to rotate so that the load 30 keeps the angle difference to follow the rotation of the shaft frame 12 (based on the current attitude)
  • the load 30 rotates with the base 11 to perform a yaw operation).
  • the current attitude is the current yaw attitude of the base 11 or the current pitch attitude of the roll axis frame 124. The principle is similar and will not be repeated here.
  • the processor 22 When the processor 22 switches the stabilization mode to the follow mode, the processor 22 first calculates the angle difference between the current roll attitude and the roll attitude of the load 30 (ie, roll.c-roll.r), that is, calculates the current The difference between the roll attitude and the horizontal angle (roll.c-0-roll.c). At this time, the angle value of the current roll attitude is the angle difference.
  • the processor 22 controls the roll axis motor 134 to rotate the roll axis frame.
  • the processor 22 may also obtain an appropriate angular velocity or angular acceleration value through the difference between the current posture and the actual posture, so that the processor 22 controls the roll axis motor 134 to rotate the roll axis frame 124, which is not limited herein.
  • step 16 further includes:
  • the processor 22 when the current working mode of the gimbal 10 is a follow mode, the processor 22 is configured to compare the current attitude with a predetermined attitude, and when the current attitude is greater than or equal to the predetermined attitude, control the gimbal 10 to rotate so that The gimbal 10 remains in the follow mode.
  • steps 0167 and 0168 can be implemented by the processor 22.
  • the inertial measurement unit 14 acquires the current attitude of the gimbal 10 in real time
  • the processor 22 compares the current attitude with a predetermined attitude, and when the current attitude is greater than (or greater than or equal to) the predetermined attitude, the processor 22 controls the motor assembly 13 to rotate the rotating shaft frame 12 so that the gimbal 10 maintains the following mode.
  • the processor 22 controls the yaw axis motor 132 to rotate the yaw axis frame 122 so that the yaw attitude of the load 30 follows the base 11
  • the processor 22 controls the roll axis motor 134 to rotate the roll axis frame 124 so that the load 30
  • the roll attitude follows the current roll attitude of the yaw axis frame 122; or, if the current pitch attitude of the roll axis frame 124 is greater than (or greater than or equal to) the predetermined pitch attitude, the processor 22 controls the pitch axis motor 136 to rotate the pitch axis
  • the frame 126 follows the current pitch attitude of the roll axis frame 124 with the pitch attitude of the load 30.
  • step 016 further includes:
  • the processor 22 is further configured to control the PTZ 10 to rotate when the current attitude is less than or equal to a predetermined attitude, so that the PTZ 10 switches the following mode to a stabilization mode.
  • step 0169 can be implemented by the processor 22.
  • the processor 22 compares the current posture with the predetermined posture. When the current posture is less than (or less than or equal to) the predetermined posture, the processor 22 controls the motor assembly 13 to rotate the shaft frame 12 so that the gimbal 10 switches the follow mode to the stabilization mode.
  • the current attitude is the current yaw attitude of the base 11
  • the predetermined attitude is the predetermined yaw attitude
  • the northwest is the preset stabilization attitude of the yaw axis frame 122.
  • the current yaw attitude is less than (or less than) the predetermined yaw attitude.
  • the yaw axis frame 122 In the yaw attitude, it means that the user wants to adjust the shooting angle back to the north, but in the following mode (including the stabilization mode is switched to the following mode, or the initial working mode is the following mode), the yaw axis frame 122 remains a certain The angle difference follows the current yaw attitude of the base 11 to yaw. This makes it difficult for the user to adjust the camera's shooting angle to the north, and it is impossible to keep the camera steadily in the north.
  • the processor 22 controls the yaw axis motor 132 to rotate the yaw axis frame 122 to switch the following mode to the stabilization mode to maintain a stable shooting in the north direction.
  • the processor 22 controls the PTZ 10 to maintain the following mode when the current attitude is greater than or equal to the predetermined attitude, and the processor 22 Switching the gimbal 10's follow mode to stabilization mode; or, the processor 22 controls the gimbal 10 to maintain the follow mode when the current attitude is greater than the predetermined attitude, and the processor 22 switches the gimbal 10's follow when the current attitude is less than or equal to the predetermined attitude
  • the mode is the stabilization mode.
  • the processor 22 can be prevented from determining which method to perform when the current posture is equal to the predetermined posture, or to perform both The situation of the method guarantees the normal operation of the PTZ 10.
  • step 016 when the current working mode of the PTZ 10 is the following mode, step 016 further includes:
  • the processor 22 is further configured to control the pan / tilt head 10 to rotate when the current posture is less than or equal to the predetermined posture, and calculate the duration of the current posture to be less than or equal to the predetermined posture, and when the duration is greater than or equal to the predetermined time. Let the gimbal 10 switch the following mode to the stabilization mode.
  • steps 0170 and 0171 can be implemented by the processor 22.
  • the processor 22 compares the current posture and the predetermined posture, if the current posture is less than or equal to the predetermined posture, the duration of the current posture is less than or equal to the predetermined posture, and the processor 22 is in When the duration is greater than or equal to a predetermined time (for example, the predetermined time is 5 seconds, 6 seconds, 7 seconds, etc.), the motor assembly 13 is controlled to rotate the rotating shaft frame 12 to cause the gimbal 10 to switch the follow mode to the stabilization mode.
  • a predetermined time for example, the predetermined time is 5 seconds, 6 seconds, 7 seconds, etc.
  • the current attitude is the current pitching attitude of the roll axis frame 124
  • the predetermined attitude is the predetermined pitching attitude
  • the duration of the current pitching attitude is less than or equal to the predetermined pitching attitude
  • the duration is greater than or equal to the predetermined
  • the camera 22 may shake due to the user ’s operation or walking.
  • the current pitch attitude of the processor 22 is less than or equal to the predetermined pitch attitude. And when the current pitch attitude is less than or equal to the predetermined pitch attitude duration is greater than or equal to the predetermined time, it is determined that the user wants to switch the gimbal 10 to the stabilization mode to maintain stable shooting, and the processor 22 controls the pitch axis motor 136 to rotate the pitch axis Frame 126 to rotate the pitch axis frame 126 in a stabilizing mode to ensure Shooting.
  • the processor 22 when the user manually sets any one or more of the yaw axis frame 122, the roll axis frame 124, and the pitch axis frame 126 as the following mode or the stabilization mode, the processor 22 does not perform the current work. Switching modes are based on user input to ensure user experience.
  • step 016 when the current working mode of the PTZ 10 is the following mode, step 016 further includes:
  • the processor 22 is further configured to control the pan / tilt head 10 to rotate to maintain the following mode when the current posture is less than or equal to the duration of the predetermined posture and less than the predetermined time.
  • step 0172 can be implemented by the processor 22.
  • the processor 22 determines whether the user wants to switch the PTZ 10 to the stabilization mode according to whether the duration of the current posture is less than or equal to the predetermined posture, and the duration of the current posture is less than or equal to the predetermined posture.
  • the PTZ 10 is controlled to rotate to maintain the following mode, the judgment is more accurate, and the user experience is better.
  • step 0171 includes:
  • the processor 22 is further configured to control the PTZ 10 to rotate so that the load 30 reaches and maintains a stable attitude.
  • step 01712 may be implemented by the processor 22.
  • the stabilization posture may be a preset stabilization posture (such as the posture when the load 30 remains horizontal), and the current actual posture of the load 30 (that is, the actual posture of the load 30 when the follow mode is switched to the stabilization mode is used as Stabilization attitude), or the posture of the stabilization mode before the current following mode (that is, the preset stabilization attitude of the shaft frame 12 in the stabilization mode), the stabilization posture can also be determined according to user input, or set according to actual needs. So as to ensure the user's shooting effect.
  • step 01712 includes:
  • 01716 Calculate the rotation speed based on the difference between the actual attitude and the stabilization attitude.
  • the processor 22 is further configured to obtain the actual attitude and the stabilization posture of the load 30, calculate the rotation speed according to the difference between the actual posture and the stabilization posture, and control the PTZ 10 to rotate according to the rotation speed to Load 30 is reached and maintained in a stabilizing attitude.
  • step 01714, step 01716, and step 01718 can be implemented by the processor 22.
  • the inertial measurement unit 14 detects the actual posture of the load 30 in real time and sends it to the processor 22. After the processor 22 obtains the actual posture of the load 30, it calculates The difference between the actual attitude of the load 30 and the stabilization attitude (generally the angle difference), where the actual attitude of the load 30 includes any one or more of an actual yaw attitude, an actual roll attitude, and an actual pitch attitude, and Correspondingly, the stabilization stabilization attitude includes any one or more of a yaw stabilization stabilization attitude, a stabilization stabilization attitude, and a pitch stabilization stabilization attitude, and the processor 22 then uses the angle difference and a preset time (for example, 1 second, 2 seconds).
  • a preset time for example, 1 second, 2 seconds
  • the processor 22 controls the motor assembly 13 to rotate the shaft frame 12 at the rotation speed, so that the load 30 returns from the current actual attitude to the stable attitude smoothly and smoothly at a constant speed.
  • the processor 22 can obtain a proper angular velocity or angular acceleration value of the shaft frame 12 through the difference between the current posture and the actual posture, so that the processor 22 controls the motor assembly 13 to rotate the shaft frame 12 at the rotation speed.
  • the processor 22 controls the yaw axis motor 132 to rotate the yaw axis frame 122 according to the first rotation speed to make the load 30 smoothly reach And maintain the yaw stabilization attitude (for example, the yaw stabilization attitude is positive north), wherein the first rotation speed is obtained according to the difference between the actual yaw attitude and the yaw stabilization attitude of the load 30, and a preset time; If the current roll attitude of the yaw axis frame 122 is less than (or less than or equal to) the predetermined roll attitude, the processor 22 controls the roll axis motor 134 to rotate at the second rotation speed to make the load 30 reach and maintain the roll stabilization The attitude (for example, the roll stabilizing attitude is horizontal), wherein the second rotation speed is obtained according to the difference between the actual roll attitude and the roll stabilizing attitude of the load 30 and the preset time; if the
  • the stabilization attitudes of the yaw axis frame 122, the roll axis frame 124, and the pitch axis frame 126 are irrelevant to each other, and the yaw axis frame 122, the roll axis frame 124, and the pitch axis frame 126 switch to follow the mode Stable mode is implemented separately.
  • the pan / tilt head 10 further includes a display device 18.
  • the display device 18 may be a display screen or the like.
  • the processor 22 controls the PTZ 10 to rotate according to the current attitude and the current working mode so that the PTZ 10 switches between the stabilization mode and the following mode, a prompt message is generated and displayed on the display device 18.
  • the pan / tilt head 10 may also display prompt information through a display screen of a load (such as a camera), which is not limited herein.
  • the processor 22 controls the yaw axis motor 132 to rotate the yaw axis frame 122 to switch the working mode of the yaw axis frame 122.
  • the current working mode of the yaw axis frame 122 is increased from The stable mode is switched to the following mode, and a prompt message (eg, yaw: following mode) is generated to indicate that the working mode of the yaw axis frame 122 has been switched to the following mode and displayed on the display device 18 to remind the user of the yaw axis frame 122.
  • the working mode has been switched, and the switching from the following mode to the stabilization mode can also generate corresponding prompt information to remind the user.
  • the roll axis frame 124 and the pitch axis frame 126 can also generate prompt information when switching the working mode.
  • the principle is similar to that when the yaw axis frame 122 is switching the working mode, and details are not described herein again.
  • the PTZ 10 displays the current working mode in real time through the display device 18, and the user experience is better.
  • the prompt information can be broadcasted by voice, or different working modes can be indicated by different indicators to prompt the user, etc., which is not limited here.
  • a computer-readable storage medium 2000 includes a computer program used in combination with the PTZ system 100, and the computer program may be executed by the processor 22 to implement the control method of any one of the foregoing embodiments. .
  • a computer program may be executed by the processor 22 to perform the control method of the following steps:
  • the computer program may also be executed by the processor 22 to perform the control method of the following steps:
  • Any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for performing a particular logical function or step of a process
  • the scope of the preferred embodiments of the present invention includes additional execution, which may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present invention pertain.
  • Logic and / or steps represented in a flowchart or otherwise described herein, for example, a ordered list of executable instructions that may be considered to perform a logical function may be embodied in any computer-readable medium, For use by, or in combination with, an instruction execution system, device, or device (such as a computer-based system, a system including a processor 22, or other system that can fetch and execute instructions from an instruction execution system, device, or device), Device or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • a person of ordinary skill in the art can understand that performing all or part of the steps carried by the foregoing implementation method can be completed by a program instructing related hardware.
  • the program can be stored in a computer-readable storage medium, and the program is executing , Including one or a combination of the steps of the method embodiments.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules can be executed in the form of hardware or software functional modules. When the integrated module is executed in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Accessories Of Cameras (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

一种云台(10)的控制方法、云台(10)的控制装置(20)、云台系统(100)和无人机(1000)。云台(10)的控制方法应用于云台系统(100)。云台(10)包括转轴框架(12)。控制方法包括:获取转轴框架(12)的当前姿态;获取云台(10)的当前工作模式;比较当前姿态与阈值姿态,获取当前姿态与阈值姿态的比较结果;根据比较结果控制云台(10)转动。

Description

云台的控制方法与装置、云台系统和无人机 技术领域
本发明涉及电子技术,特别涉及一种云台的控制方法、云台的控制装置、云台系统和无人机。
背景技术
在云台技术领域,以手持云台为例,通常有增稳模式和跟随模式两种使用模式。在增稳模式下,当用户控制云台时,处于增稳模式下的云台可能因运动的角度过大从而撞击机械限位导致云台抖动,而在跟随模式下,由于用户走路、手臂抖动等动作,也会导致云台抖动,云台的抖动会影响相机、摄像机、传感器、补光灯等搭载在云台上的负载的工作效果,例如:若云台上搭载有相机,则会因为云台的抖动导致成像画面模糊;若云台上搭载有摄像机,则会因为云台的抖动导致摄像画面抖动;若云台上搭载有传感器,则会因为云台的抖动导致传感器获取信息产生误差;若云台上搭载有补光灯时,则会因为云台的抖动导致补光灯的补光视野偏离待补光物体。
发明内容
本发明的实施方式提供一种云台的控制方法、云台的控制装置、云台系统和无人机,可根据转轴框架的当前姿态和云台的当前工作模式控制云台转动。
本发明实施方式的云台的控制方法应用于云台系统,所述云台包括转轴框架。云台的控制方法包括:获取所述转轴框架的当前姿态;获取所述云台的当前工作模式;比较所述当前姿态与阈值姿态,获取所述当前姿态与所述阈值姿态的比较结果;和根据所述比较结果控制所述云台转动,其中,所述云台的当前工作模式包括增稳模式和跟随模式,所述根据所述比较结果控制所述云台转动包括:根据所述比较结果控制所述云台转动以使所述云台保持所述增稳模式、根据所述比较结果控制所述云台转动以使所述云台保持所述跟随模式、及根据所述比较结果控制所述云台转动以使所述云台在所述增稳模式与所述跟随模式之间切换中的至少一种。
本发明实施方式的云台的控制装置应用于云台系统,所述云台包括转轴框架,所述控制装置包括处理器。所述处理器用于获取所述转轴框架的当前姿态、获取所述云台的当前工作模式、比较所述当前姿态与阈值姿态,获取所述当前姿态与所述阈值姿态的比较结果、及根据所述比较结果控制所述云台转动,其中,所述云台的当前工作模式包括增稳模式和跟随模式,所述根据所述比较结果控制所述云台转动包括:根据所述比较结果控制所述云 台转动以使所述云台保持所述增稳模式、根据所述比较结果控制所述云台转动以使所述云台保持所述跟随模式、及根据所述比较结果控制所述云台转动以使所述云台在所述增稳模式与所述跟随模式之间切换中的至少一种。
本发明实施方式的云台系统包括云台和上述实施方式的控制装置。所述控制装置设置在所述云台上。
本发明实施方式的无人机包括机身和上述实施方式的云台系统。所述云台系统设置在所述机身上。
本发明实施方式的云台的控制方法根据转轴框架的当前姿态和阈值姿态的比较结果控制云台转动,不仅可以在增稳模式时云台即将撞击限位时切换增稳模式为跟随模式以防止云台的转轴框架撞击机械限位影响负载的工作效果,而且在跟随模式下,用户想要切换增稳模式时自动切换为增稳模式,保证了云台上搭载的负载的工作效果。例如,云台上搭载的相机不会出现画面抖动;或者,云台上搭载的传感器不会产生误差;或者,云台上搭载的补光灯的补光视野不会偏移待补光物体。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明某些实施方式的无人机的立体结构示意图;
图2是本发明某些实施方式的云台系统的立体结构示意图;
图3至图7是本发明某些实施方式的云台的控制方法的流程示意图;
图8是本发明某些实施方式的云台系统和计算机可读存储介质的连接示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
请参阅图1,本发明实施方式提供了一种无人机1000,该无人机1000包括云台系统100和机身200。云台系统100安装在机身200上。
请参阅图1和图2,云台系统100包括云台10、云台10的控制装置20和负载30。控制装置20安装在云台10上。
云台10包括基座11、转轴框架12、电机组件13、惯性测量单元14、负载支架15和关节角组件16。转轴框架12安装在基座11上并用于搭载负载30。
云台10可以为手持云台或设置在无人机1000上的云台10。为减小篇幅,以下均以云台10为手持云台为例进行说明,云台10为设置在无人机1000上的云台10时原理类似,在此不再赘述。如图2所示,云台10为三轴手持云台。在其他实施方式中,云台10也可以为两轴手持云台或单轴手持云台等。
具体地,转轴框架12包括偏航轴框架122、横滚轴框架124和俯仰轴框架126,电机组件13包括偏航轴电机132、横滚轴电机134和俯仰轴电机136。其中,偏航轴框架122安装在基座11上,横滚轴框架124安装在偏航轴框架122上,俯仰轴框架126安装在横滚轴框架124上。偏航轴电机132安装在基座11上并用于控制偏航轴框架122转动,横滚轴电机134安装在偏航轴框架122上并用于带动横滚轴框架124转动,俯仰轴电机136安装在横滚轴框架124上并用于带动俯仰轴框架126转动。
进一步地,转轴框架12一般设置有机械限位。当转轴框架12撞到机械限位后,无法再沿原旋转方向进行转动。例如,在一种实施方式中,俯仰轴框架126和横滚轴框架124 设置有机械限位,偏航轴框架122没有设置机械限位。可以理解,在其他实施方式中,俯仰轴框架126、横滚轴框架124和偏航轴框架122可以均设置有机械限位,或者均不设置机械限位,或者以其他任意合适的组合方式来设置机械限位,在此不做限定。进一步地,不同类型的云台10的转轴框架12的机械限位可以相同,也可以不同,在此本实施例不作限定。
可以理解,当云台10为单轴手持云台时,云台10的转轴框架12可以只包括一个转轴框架12,例如,云台10的转轴框架12只包括偏航轴框架122、横滚轴框架124、俯仰轴框架126中的任意一个,与之对应的,电机组件13包括偏航轴电机132、横滚轴电机134、俯仰轴电机136中的一个。当云台10为两轴手持云台时,云台10的转轴框架12可以包括两个框架12,例如,云台10的转轴框架12包括偏航轴框架122、横滚轴框架124、俯仰轴框架126中的任意两个,与之对应的,电机组件13包括偏航轴电机132、横滚轴电机134、俯仰轴电机136中的两个,在此不作限定。另外,虽然如图2中所示,偏航轴框架122与横滚轴框架124的一端连接,横滚轴框架124的另一端与俯仰轴框架126连接,但是本发明实施方式的转轴框架12的结构并不限于此,偏航轴框架122、横滚轴框架124和俯仰轴框架126也可以以其它顺序进行连接。
惯性测量单元14设置转轴框架12上,例如,惯性测量单元14为一个并设置在转轴框架12上,具体地,惯性测量单元14设置在俯仰轴框架126上,惯性测量单元14可以检测偏航轴电机132、横滚轴电机134和俯仰轴电机136的当前姿态,惯性测量单元14还可以与关节角组件16配合,从而根据负载30的姿态和关节角数据计算得到基座11的姿态;或者,惯性测量单元14为两个并分别设置在基座11和转轴框架12上,具体地,惯性测量单元14设置在基座11和俯仰轴框架126上,惯性测量单元14可以检测基座11、偏航轴框架122、横滚轴框架124和俯仰轴框架126的当前姿态。当然,惯性测量单元14也可以设置在其他合适的位置。本发明实施方式的惯性测量单元14为两个并分别设置在基座11和俯仰轴框架126上。进一步地,惯性测量单元14包括加速度计或陀螺仪中的至少一种。
负载支架15安装在俯仰轴框架126上,负载支架15用于安装和固定负载30。
关节角组件16设置在云台10的电机组件13上,用于获取电机组件13的关节角并发送至控制装置20的处理器22。关节角组件16包括电位器、霍尔传感器和磁编码器中的一种或多种。例如,在一种实施方式中,对于三轴云台,其偏航轴电机132、横滚轴电机134和俯仰轴电机136中各对应一个关节角组件16。本实施方式可无需在基座11设置惯性测量单元14来检测基座11的当前姿态,可根据电机组件13的关节角和转轴框架12的当前姿态计算得到基座11的当前姿态,可以减少惯性测量单元14的数量,节省成本。可以理解,上述方法仅为对基座11的当前姿态的获取方式的示意性说明,在本发明实施方式对基 座11的当前姿态的获取方式不作限定。
控制装置20包括处理器22。具体地,控制装置20设置在基座11上。当然,控制装置20也可以设置在偏航轴框架122、横滚轴框架124或俯仰轴框架126上,在此不作限制。
在某些实施方式中,云台10的当前工作模式包括增稳模式和跟随模式。云台10可以保持增稳模式、保持跟随模式、及在增稳模式和跟随模式之间进行切换。其中,增稳模式指的是云台始终保持预设参照方向(例如水平方向)的稳定性,云台10会对用户的操作进行负反馈调节以抵消可能带来的晃动从而保持云台10上搭载的负载15(例如相机、手机等,下面以相机为例进行说明)的稳定。以俯仰为例进行说明,在增稳模式下,用户控制手持云台的基座11进行俯仰时,相机并不会随之俯仰,而是依旧保持原来的拍摄角度(一般为水平),原因在于基座11俯仰时云台10的俯仰轴框架126进行负反馈调节以保持云台10搭载的相机始终在水平方向。这里的负反馈调节指的是当用户控制基座11仰的时候,云台10则控制相机俯相应的角度从而保持相机水平,实现相机的增稳;或者,当用户控制基座11俯的时候,云台10则控制相机仰相应的角度从而保持相机水平,实现相机的增稳。例如,基座11仰15度,则云台10控制俯仰轴框架126俯15度以使得相机依旧保持水平。跟随模式指的是云台10保持负载30与对应的转轴框架12的相对角度不变,从而跟随转轴框架12转动,或保持负载30和基座11的相对角度不变跟随基座11转动。例如,用户控制基座11仰15度,则云台10控制俯仰轴框架仰15度以使得负载30和基座11的相对角度基本保持不变;或者,用户控制基座11俯15度,则云台10控制俯仰轴框架俯15度以使得负载30和基座11的相对角度基本保持不变。需要指出的是,云台10保持增稳模式、保持跟随模式、及云台10在增稳模式和跟随模式之间切换,既可以同时对多个转轴框架12执行保持增稳模式、保持跟随模式、及在增稳模式和跟随模式之间切换的操作;也可以是单独对每个转轴框架12执行保持增稳模式、保持跟随模式、及在增稳模式和跟随模式之间切换的操作。本发明实施方式中,控制装置20单独对每个转轴框架12执行保持增稳模式、保持跟随模式、及在增稳模式和跟随模式之间切换的操作。
请参阅图2和3,本发明实施方式的云台系统100可执行如图3所示的控制方法。具体地,控制方法包括:
012:获取转轴框架12的当前姿态;
014:获取云台10的当前工作模式;
015:比较当前姿态与阈值姿态,获取当前姿态与阈值姿态的比较结果;和
016:根据比较结果控制云台转动。
在某些实施方式中,转轴框架12的当前姿态由惯性测量单元14检测获取后,发送至控制装置20的处理器22。处理器22用于获取转轴框架12的当前姿态、获取云台10的当 前工作模式、及根据当前姿态及当前工作模式控制云台10转动。
也即是说,步骤012、步骤014和步骤016均可由处理器22执行。
具体地,当前姿态包括当前偏航姿态、当前横滚姿态和当前俯仰姿态,下面以当前姿态为当前偏航姿态为例对上述控制方法进行说明,当前姿态为当前横滚姿态和当前俯仰姿态时原理基本相同,在此不再赘述。
云台10在增稳模式下运行时,由于偏航轴框架122安装在基座11上,在增稳模式下,以预设参照方向(例如正北方或用户自定义设定的一个方向,这里以正北方为预设参照方向为例进行说明)为偏航轴框架122的增稳姿态为例,在用户对基座11进行偏航操作时,偏航轴框架122的当前偏航姿态始终保持在正北方(即保持不变),由于偏航轴框架122安装在基座11上,偏航轴框架122的当前偏航姿态虽然未改变,但基座11的当前偏航姿态会跟着用户对基座11的偏航操作而改变,本发明实施方式中的当前偏航姿态指的是基座11的当前偏航姿态,基座11的当前偏航姿态可以由设置在基座11上的惯性测量单元14获取后发送给处理器22。类似的,当前横滚姿态为偏航轴框架122的当前横滚姿态,当前俯仰姿态为横滚轴框架124的当前俯仰姿态。惯性测量单元14实时获取基座11的当前偏航姿态,然后惯性测量单元14将当前偏航姿态发送给处理器22,处理器22获取到当前偏航姿态后再获取云台10的当前工作模式(即增稳模式),然后处理器22根据当前偏航姿态和阈值姿态的比较结果控制云台10转动,具体地,处理器22根据当前偏航姿态和阈值姿态的比较结果控制云台10保持增稳模式进行转动、处理器22根据当前姿态和阈值姿态的比较结果控制云台10保持跟随模式进行转动、及处理器22根据当前姿态和阈值姿态的比较结果控制云台10在增稳模式和跟随模式之间切换后,以切换后的工作模式控制云台10进行转动。
更具体的,当前工作模式为增稳模式时,阈值姿态为预设姿态,其中,预设姿态包括预设偏航姿态、预设横滚姿态和预设俯仰姿态中的任意一种或多种,预设偏航姿态指的是偏航轴框架122到达机械限位时基座11的偏航姿态,预设横滚姿态指的是横滚轴框架124到达机械限位时偏航轴框架122的横滚姿态,预设俯仰姿态指的是俯仰轴框架126到达限位时横滚轴框架124的俯仰姿态。处理器22可判断当前偏航姿态是否达到预设偏航姿态(即判断偏航轴框架122是否将撞击机械限位),然后在当前偏航姿态达到预设偏航姿态时(即偏航轴框架122即将撞击机械限位),将增稳模式切换为跟随模式,此时,在用户继续进行偏航操作时,偏航轴框架122会和基座11保持相对角度不变并跟随基座11同步转动,从而保证偏航轴框架122不会撞击机械限位。在其他实施方式中,限位可以为姿态限位,通过对姿态进行限位使得相机的姿态和转轴框架的姿态之间的姿态差小于机械限位范围,在偏航轴框架122到达机械限位前的一定角度(例如为5度等)即切换云台10的增稳模式为 跟随模式,存在一定的冗余量,可进一步保证偏航轴框架122不会撞击机械限位。
进一步地,当前工作模式为跟随模式时,阈值姿态为预定姿态,根据转轴框架12的当前姿态和预定姿态的比较结果,控制云台10从跟随模式切换为增稳模式,其中,预定姿态包括预定偏航姿态、预定横滚姿态及预定俯仰姿态中的任意一种或多种。进一步地,预定姿态可以和预设姿态不同,例如预设姿态为30度,预定姿态为5度,预设姿态和预定姿态还可以根据用户输入进行设置。在其他实施方式中,预定姿态也可以等于预设姿态,在此不作限制。处理器22比较当前姿态和预定姿态,在当前姿态小于(或小于等于)预定姿态时(即用户想要从跟随模式切换为增稳模式以维持稳定的拍摄),处理器22控制电机组件13转动转轴框架12以使云台10切换跟随模式为增稳模式,从而防止用户走动、手臂抖动等影响负载30的工作效果。
本发明实施方式的云台10的控制方法根据转轴框架12的当前姿态和阈值姿态的比较结果控制云台转动,不仅可以在增稳模式时云台10即将撞击限位时切换增稳模式为跟随模式以防止云台10的转轴框架12撞击机械限位影响负载30的工作效果,而且在跟随模式下,用户想要切换增稳模式时自动切换为增稳模式,保证了云台10上搭载的负载30的工作效果。例如,云台10上搭载的相机不会出现画面抖动;或者,云台10上搭载的传感器不会产生误差;或者,云台10上搭载的补光灯的补光视野不会偏移待补光物体。
在某些实施方式中,云台10的当前工作模式根据用户输入确定。
具体地,用户可根据自身需求输入以控制云台10的工作模式。例如,用户可统一设定云台10的多个转轴框架12为增稳模式或跟随模式;或者,用户单独设定云台10的每个转轴框架12为增稳模式或跟随模式,例如,用户通过输入设定偏航轴框架122为增稳模式或跟随模式、设定横滚轴框架124为增稳模式或跟随模式、及设定俯仰轴框架126为增稳模式或跟随模式。
请参阅图2和图4,在某些实施方式中,在云台10的当前工作模式为增稳模式时,阈值姿态为预设姿态,步骤016包括:
0161:比较当前姿态与预设姿态;及
0162:若当前姿态小于或等于预设姿态,控制云台10转动以使云台10保持增稳模式。
在某些实施方式中,处理器22用于比较当前姿态与预设姿态、及在当前姿态小于或等于预设姿态时,控制云台10转动以使云台10保持增稳模式。
也即是说,步骤0161和步骤0162可以由处理器22执行。
具体地,在云台10处于增稳模式时,惯性测量单元14实时获取当前姿态并发送给处理器22,处理器22比较当前姿态和预设姿态,若当前姿态小于(或小于等于)预设姿态,也即是说,转轴框架12没有达到机械限位,不会出现转轴框架12撞击机械限位的情况。 此时,处理器22只需控制云台10继续保持增稳模式即可。例如:若基座11的当前偏航姿态小于(或小于等于)预设偏航姿态,则处理器22控制偏航轴电机132转动偏航轴框架122以使偏航轴框架122保持增稳模式;若偏航轴框架122的当前横滚姿态小于(或小于等于)预设横滚姿态,则处理器22控制横滚轴电机134转动横滚轴框架124以使横滚轴框架124保持增稳模式;或者,若横滚轴框架124的当前俯仰姿态小于(或小于等于)预设俯仰姿态,则处理器22控制俯仰轴电机136转动俯仰轴框架126以使俯仰轴框架126保持增稳模式。通过上述控制方法,可以在保证转轴框架12不撞击机械限位的同时保持云台10的正常运行。在其他实施方式中,预设偏航姿态可以小于偏航轴框架122到达机械限位时基座11的当前偏航姿态,预设横滚姿态小于横滚轴框架124到达机械限位时偏航轴框架122的当前横滚姿态,预设俯仰姿态小于俯仰轴框架126到达限位时横滚轴框架124的当前俯仰姿态,保留一定的冗余量,进一步防止转轴框架12撞击机械限位。
请继续参阅图2和图4,在某些实施方式中,在云台10的当前工作模式为增稳模式时,阈值姿态为预设姿态,步骤016还包括:
0163:若当前姿态大于或等于预设姿态,控制云台10转动以使云台10切换增稳模式为跟随模式。
在某些实施方式中,处理器22还用于在当前姿态大于或等于预设姿态时,控制云台10转动以使云台10切换增稳模式为跟随模式。
也即是说,步骤0163可以由处理器22实现。
具体地,在云台10的当前工作模式为增稳模式时,惯性测量单元14实时获取当前姿态并发送给处理器22,处理器22比较当前姿态和预设姿态,在当前姿态大于或等于预设姿态时(即转轴框架12即将撞击机械限位),处理器22切换云台10的增稳模式为跟随模式并控制电机组件13转动,以使云台10以跟随模式进行转动。例如,若基座11的当前偏航姿态大于(或大于等于)预设偏航姿态,则处理器22控制偏航轴电机132转动偏航轴框架122以使负载30的偏航姿态跟随基座11的当前偏航姿态;或者,若偏航轴框架122的当前横滚姿态大于(或大于等于)预设横滚姿态,则处理器22控制横滚轴电机134转动横滚轴框架124以使负载30的横滚姿态跟随偏航轴框架122的当前横滚姿态;或者,若横滚轴框架124的当前俯仰姿态大于(或大于等于)预设俯仰姿态,则处理器22控制俯仰轴电机136转动俯仰轴框架126以使负载30的俯仰姿态跟随横滚轴框架124的当前俯仰姿态。本实施方式在转轴框架12当前姿态大于(或大于等于)预设姿态(即转轴框架12即将撞击机械限位)时切换云台10的增稳模式为跟随模式,可防止转轴框架12撞击机械限位。
在某些实施方式中,在云台10的当前工作模式为增稳模式时,处理器22在当前姿态小于或等于预设姿态时控制云台10保持增稳模式,处理器22在当前姿态大于预设姿态时 切换云台10的增稳模式为跟随模式;或者,处理器22在当前姿态小于预设姿态时控制云台10保持增稳模式,处理器22在当前姿态大于或等于预设姿态时切换云台10的增稳模式为跟随模式。
如此,通过合理的设置处理器22执行保持增稳模式和切换增稳模式为跟随模式的操作的判断条件,可以防止当前姿态等于预设姿态时处理器22无法确定该执行哪种方法,或者同时执行两种方法的情况,保证云台10的正常运行。
请参阅图2和图5,在某些实施方式中,在云台10的当前工作模式为增稳模式时,阈值姿态为预设姿态,步骤016还包括:
0164:若当前姿态大于或等于预设姿态,计算当前姿态大于或等于预设姿态的持续时间;及
0165:若持续时间大于或等于预设时间,控制云台10转动以使云台10切换增稳模式为跟随模式。
在某些实施方式中,处理器22还用于在当前姿态大于或等于预设姿态时,计算当前姿态大于或等于预设姿态的持续时间、及在持续时间大于或等于预设时间,控制云台10转动以使云台10切换增稳模式为跟随模式。
也即是说,步骤0164和步骤0165可以由处理器22实现。
具体地,云台10以增稳模式工作时,处理器22比较当前姿态和预设姿态后,在当前姿态大于或等于预设姿态时,开始计算当前姿态大于或等于预设姿态的持续时间,在持续时间大于或等于预设时间(例如,预设时间为5秒、6秒、7秒等等)后,处理器22切换云台10的当前工作模式为跟随模式并控制电机组件13转动以使云台10以跟随模式进行转动。其中,因为要计算当前姿态大于预设姿态的持续时间,所以若预设姿态等于转轴框架12到达机械限位时基座11或转轴框架12的姿态,则在当前姿态大于或等于预设姿态的持续时间之内时,转轴框架12可能就已经撞击机械限位,所以,预设姿态应略小于转轴框架12到达机械限位时基座11或转轴框架12的姿态。
用户在使用手持云台10进行拍摄等操作时,有时候需要调节拍摄角度,但处于增稳模式下,云台10的转轴框架12会始终保持增稳姿态,比如横滚轴框架124和俯仰轴框架126始终保持水平方向的增稳姿态,所以不论用户如何调节相机只能保持水平,用户只能手动切换跟随模式后再进行调节或者持续横滚或俯仰直到转轴框架12达到限位后强制改变拍摄角度,但这样会导致转轴框架12撞击限位使得拍摄画面抖动,影响整个拍摄的体验。本实施方式通过比较当前姿态和预设姿态,在当前姿态大于或等于预设姿态时计算当前姿态大于或等于预设姿态的持续时间,并判断持续时间是否大于预设时间,在持续时间大于预设时间时(用户持续一定时间都是在当前姿态大于或等于预设姿态的情况下进行拍摄,此 时用户大概率是想改变拍摄角度),切换增稳模式为跟随模式以使得用户在无需手动切换跟随模式、且在转轴框架12不撞击机械限位的情况下改变拍摄角度,做到了智能化切换,用户体验较好。
请继续参阅图2和图5,在某些实施方式中,在云台10的当前工作模式为增稳模式时,阈值姿态为预设姿态,步骤016还包括:
0166:在当前姿态大于或等于预设姿态的持续时间小于预设时间时,控制云台10保持增稳模式。
在某些实施方式中,处理器22还用于在当前姿态大于或等于预设姿态的持续时间小于预设时间时,控制云台10保持增稳模式。
也即是说,步骤0166可以由处理器22实现。
具体地,用户有时仅是为了改变手持云台10的握持角度以更舒服的握持手持云台10,而不是为了调整手持云台10搭载的负载30(如相机)的拍摄角度,这时处理器22通过判断当前姿态大于或等于预设姿态的持续时间与预设时间的关系来判断用户是想要改变相机的拍摄角度还是仅仅是暂时调整一下握持角度,在持续时间小于预设时间(即用户仅仅是暂时调整一下握持角度)时控制云台10保持增稳模式,可以防止对云台10的当前工作模式进行误切换,用户体验较好。
请参阅图2和图6,在某些实施方式中,步骤0165包括:
01652:获取负载30的实际姿态与当前姿态之间的差值;和
01654:控制云台10转动以使负载30保持差值跟随转轴框架12转动。
在某些实施方式中,处理器22还用于获取负载30的实际姿态与当前姿态之间的差值、及控制云台10转动以使负载30保持差值跟随转轴框架12转动。
也即是说,步骤01652和步骤01654可以由处理器22实现。
具体地,处理器22控制云台10切换增稳模式为跟随模式时,处理器22先通过惯性测量单元14获取负载30的实际姿态。在一种实施方式中,负载30的实际姿态指的是以大地作为参考系时得到负载30的偏航姿态、横滚姿态及俯仰姿态。在其他实施例中,负载30的姿态也可以以云台10作为参考系,或其他合适的参考系,在此不作限定。进一步地,处理器22获取当前姿态并计算当前姿态和实际姿态的差值(一般为角度差),控制电机组件13转动以使负载30保持该角度差跟随转轴框架12转动(在当前姿态为基座11的当前偏航姿态时,负载30跟随基座11转动以进行偏航操作)。以当前姿态为偏航轴框架122的当前横滚姿态,实际姿态为负载30的横滚姿态为例进行说明,当前姿态为基座11的当前偏航姿态或横滚轴框架124的当前俯仰姿态时原理类似,在此不再赘述。在增稳模式下,用户对云台10进行横滚操作时,负载30的横滚姿态一般保持水平,即负载30的横滚姿态为 roll.r=0,当前横滚姿态为roll.c,在处理器22切换增稳模式为跟随模式时,处理器22先计算当前横滚姿态和负载30的横滚姿态的角度差(即roll.c-roll.r),也即是说,计算当前横滚姿态与水平的角度差(roll.c-0-roll.c),此时的当前横滚姿态的角度值即为角度差,然后处理器22控制横滚轴电机134转动横滚轴框架124以使得负载30与偏航轴框架122的角度差保持不变,且负载30的横滚姿态跟随偏航轴框架122的当前横滚姿态进行横滚操作,例如,偏航轴框架122顺时针沿横滚轴方向旋转15度,则负载30也顺时针沿横滚轴方向旋转15度。可以理解,处理器22也可以通过当前姿态和实际姿态的差值,得到合适的角速度或角加速度值,使得处理器22控制横滚轴电机134转动横滚轴框架124,在此不作限定。
请再次参阅图2和图4,在某些实施方式中,在云台10的当前工作模式为跟随模式时,阈值姿态为预定姿态,步骤16还包括:
0167:比较当前姿态与预定姿态;和
0168:若当前姿态大于或等于预定姿态,则控制云台10转动以使云台10保持跟随模式。
在某些实施方式中,在云台10的当前工作模式为跟随模式时,处理器22用于比较当前姿态与预定姿态、及在当前姿态大于或等于预定姿态时,控制云台10转动以使云台10保持跟随模式。
也即是说,步骤0167和步骤0168可以由处理器22实现。
具体地,在云台10处于跟随模式时,惯性测量单元14实时获取云台10的当前姿态,处理器22比较当前姿态和预定姿态,在当前姿态大于(或大于等于)预定姿态时,处理器22控制电机组件13转动转轴框架12以使云台10保持跟随模式。例如,若基座11的当前偏航姿态大于(或大于等于)预定偏航姿态,则处理器22控制偏航轴电机132转动偏航轴框架122以使负载30的偏航姿态跟随基座11的当前偏航姿态;或者,若偏航轴框架122的当前横滚姿态大于(或大于等于)预定横滚姿态,则处理器22控制横滚轴电机134转动横滚轴框架124以使负载30的横滚姿态跟随偏航轴框架122的当前横滚姿态;或者,若横滚轴框架124的当前俯仰姿态大于(或大于等于)预定俯仰姿态,则处理器22控制俯仰轴电机136转动俯仰轴框架126以使负载30的俯仰姿态跟随横滚轴框架124的当前俯仰姿态。
请再次参阅图2和图4,在某些实施方式中,步骤016还包括:
0169:若当前姿态小于或等于预定姿态,则控制云台10转动以使云台10切换跟随模式为增稳模式。
处理器22还用于在当前姿态小于或等于预定姿态时,控制云台10转动以使云台10切换跟随模式为增稳模式。
也即是说,步骤0169可以由处理器22实现。
具体地,处理器22比较当前姿态和预定姿态,在当前姿态小于(或小于等于)预定姿态时,处理器22控制电机组件13转动转轴框架12以使云台10切换跟随模式为增稳模式。例如,当前姿态为基座11的当前偏航姿态,预定姿态为预定偏航姿态,以正北方为偏航轴框架122的预设增稳姿态,在当前偏航姿态小于(或小于等于)预定偏航姿态时,说明用户想要将拍摄角度重新调回正北方,但跟随模式下(包括增稳模式切换为跟随模式,或者初始工作模式即为跟随模式),偏航轴框架122保持一定的角度差跟随基座11的当前偏航姿态进行偏航,这使得用户不易将相机的拍摄角度调整至正北方,也无法稳定的使相机保持在正北方,会因为用户的操作或走路等等产生晃动,在这种应用场景下,处理器22控制偏航轴电机132转动偏航轴框架122以切换跟随模式为增稳模式以保持正北方向稳定的拍摄。
在某些实施方式中,在云台10的当前工作模式为跟随模式时,处理器22在当前姿态大于或等于预定姿态时控制云台10保持跟随模式,处理器22在当前姿态小于预定姿态时切换云台10的跟随模式为增稳模式;或者,处理器22在当前姿态大于预定姿态时控制云台10保持跟随模式,处理器22在当前姿态小于或等于预定姿态时切换云台10的跟随模式为增稳模式。
如此,通过合理的设置处理器22执行保持跟随模式和切换跟随模式为跟随模式的操作的判断条件,可以防止当前姿态等于预定姿态时处理器22无法确定该执行哪种方法,或者同时执行两种方法的情况,保证云台10的正常运行。
请再次参阅图2和图5,在某些实施方式中,在云台10的当前工作模式为跟随模式时,步骤016还包括:
0170:若当前姿态小于或等于预定姿态,则计算当前姿态小于或等于预定姿态的持续时间;和
0171:在持续时间大于或等于预定时间时,控制云台10转动以使云台10切换跟随模式为增稳模式。
在某些实施方式中,处理器22还用于在当前姿态小于或等于预定姿态,计算当前姿态小于或等于预定姿态的持续时间、及在持续时间大于或等于预定时间时,控制云台10转动以使云台10切换跟随模式为增稳模式。
也即是说,步骤0170和步骤0171可以由处理器22实现。
具体地,云台10以跟随模式工作时,处理器22比较当前姿态和预定姿态后,若当前姿态小于或等于预定姿态,则计算当前姿态小于或等于预定姿态的持续时间,并且处理器22在持续时间大于或等于预定时间(例如,预定时间为5秒、6秒、7秒等等)时,控制电机组件13转动转轴框架12以使云台10切换跟随模式为增稳模式。例如,当前姿态为横 滚轴框架124的当前俯仰姿态,预定姿态为预定俯仰姿态,在当前俯仰姿态小于或等于预定俯仰姿态,且当前俯仰姿态小于或等于预定俯仰姿态的持续时间大于或等于预定时间时,说明用户想要将拍摄角度重新调回增稳姿态(例如为水平),但跟随模式下,俯仰轴框架126保持一定的角度差跟随横滚轴框架124的当前俯仰姿态进行俯仰,这使得用户不易将相机的拍摄角度调整至水平,也无法很好的使相机保持在水平方向,会因为用户的操作或走路等等产生晃动,处理器22在当前俯仰姿态小于或等于预定俯仰姿态,且当前俯仰姿态小于或等于预定俯仰姿态的持续时间大于或等于预定时间时,判断用户想要将云台10切换为增稳模式以保持稳定的拍摄,处理器22控制俯仰轴电机136转动俯仰轴框架126以使俯仰轴框架126以增稳模式转动,从而保证用户的拍摄效果。在其他实施方式中,在用户手动设定偏航轴框架122、横滚轴框架124和俯仰轴框架126中的任意一个或多个为跟随模式或增稳模式时,处理器22不进行当前工作模式的切换,以用户的输入为准,保证用户体验。
请再次参阅图2和图5,在某些实施方式中,在云台10的当前工作模式为跟随模式时,步骤016还包括:
0172:在当前姿态小于或等于预定姿态的持续时间小于预定时间时,控制云台10转动以保持跟随模式。
在某些实施方式中,处理器22还用于在当前姿态小于或等于预定姿态的持续时间小于预定时间时,控制云台10转动以保持跟随模式。
也即是说,步骤0172可以由处理器22实现.
具体地,处理器22根据当前姿态小于或等于预定姿态的持续时间是否小于预定时间来判断用户是否想要将云台10切换为增稳模式,在当前姿态小于或等于预定姿态的持续时间小于预定时间时,控制云台10转动以保持跟随模式,判断较为准确,用户体验较好。
请参阅图2和图6,在某些实施方式中,步骤0171包括:
01712:控制云台10转动以使负载30达到并保持在增稳姿态。
在某些实施方式中,处理器22还用于控制云台10转动以使负载30达到并保持在增稳姿态。
也即是说,步骤01712可以由处理器22实现。
具体地,处理器22在控制云台10切换跟随模式为增稳模式时,控制电机组件13转动转轴框架12以使转轴框架12搭载的负载30达到增稳姿态。其中,增稳姿态可以是预设的增稳姿态(如负载30保持水平时的姿态)、负载30当前的实际姿态(也就是说,以跟随模式切换增稳模式时的负载30的实际姿态作为增稳姿态)、或者当前跟随模式前的增稳模式的姿态(即增稳模式下转轴框架12的预设增稳姿态),还可以根据用户输入确定增稳姿态, 或根据实际需要进行设置,从而保证用户的拍摄效果。
请参阅图2和图7,在某些实施方式中,步骤01712包括:
01714:获取负载30的实际姿态和增稳姿态;
01716:根据实际姿态和增稳姿态之间的差值计算转动速度;及
01718:控制云台10按照转动速度转动以使负载30达到并保持在增稳姿态。
在某些实施方式中,处理器22还用于获取负载30的实际姿态和增稳姿态、根据实际姿态和增稳姿态之间的差值计算转动速度、及控制云台10按照转动速度转动以使负载30达到并保持在增稳姿态。
也即是说,步骤01714、步骤01716和步骤01718可以由处理器22实现。
具体地,处理器22控制云台10切换跟随模式为增稳模式时,惯性测量单元14实时检测负载30的实际姿态并发送给处理器22,处理器22获取到负载30的实际姿态后,计算负载30的实际姿态和增稳姿态的差值(一般为角度差),其中,负载30的实际姿态包括实际偏航姿态、实际横滚姿态及实际俯仰姿态中的任意一种或多种,与之对应的,增稳姿态包括偏航增稳姿态、增稳姿态和俯仰增稳姿态中的任意一种或多种,然后处理器22根据角度差和预设时间(例如为1秒、2秒、3秒等)计算转轴框架12的转动速度,最后处理器22控制电机组件13以该转动速度转动转轴框架12,以使得负载30从当前的实际姿态匀速平滑的回到增稳姿态,用户体验较好。可以理解,处理器22可以通过当前姿态和实际姿态的差值,得到转轴框架12的合适的角速度或角加速度值,使得处理器22控制电机组件13以该转动速度转动转轴框架12。
例如,若基座11的当前偏航姿态小于(或小于等于)预定偏航姿态,则处理器22控制偏航轴电机132按照第一转动速度转动偏航轴框架122以使负载30平滑的达到并保持在偏航增稳姿态(例如偏航增稳姿态为正北方),其中,第一转动速度根据负载30的实际偏航姿态与偏航增稳姿态的差值、及预设时间得到;若偏航轴框架122的当前横滚姿态小于(或小于等于)预定横滚姿态,则处理器22控制横滚轴电机134按照第二转动速度转动以使负载30达到并保持在横滚增稳姿态(例如横滚增稳姿态为水平),其中,第二转动速度根据负载30的实际横滚姿态和横滚增稳姿态的差值、及预设时间得到;若横滚轴框架124的当前俯仰姿态小于(或小于等于)预定俯仰姿态,则处理器22控制俯仰轴框架126按照第三转动速度转动以使负载30达到并保持在俯仰增稳姿态(例如俯仰增稳姿态为水平),其中,第三转动速度根据负载30的实际俯仰姿态和俯仰增稳姿态的差值、及预设时间得到。需要说明的是,偏航轴框架122、横滚轴框架124和俯仰轴框架126的增稳姿态互不相关,偏航轴框架122、横滚轴框架124和俯仰轴框架126切换跟随模式为增稳模式是单独执行的。
请再次参阅图2,在某些实施方式中,云台10还包括显示装置18。显示装置18可以是显示屏等。在处理器22根据当前姿态和当前工作模式控制云台10转动以使云台10在增稳模式和跟随模式之间切换后,生成提示信息并显示在显示装置18上。在另一种实施例中,云台10的也可以通过负载(如相机)的显示屏显示提示信息,在此不作限定。
具体地,以偏航轴框架122为例,处理器22控制偏航轴电机132转动偏航轴框架122以切换偏航轴框架122的工作模式,例如偏航轴框架122的当前工作模式从增稳模式切换为跟随模式,生成偏航轴框架122的工作模式已切换为跟随模式的提示信息(例如:偏航:跟随模式)并显示在显示装置18上以使提醒用户偏航轴框架122的工作模式已经切换,跟随模式切换为增稳模式同样可以生成对应的提示信息提醒用户。横滚轴框架124和俯仰轴框架126在切换工作模式时也可以生成提示信息,原理与偏航轴框架122切换工作模式时类似,在此不再赘述。云台10通过显示装置18实时的显示当前工作模式,用户体验较好。在其他实施方式中,可以通过语音将提示信息播报出去,或者通过不同的指示灯表示不同的工作模式以提示用户等等,在此不做限制。
请参阅图2和图8,本发明实施方式的计算机可读存储介质2000包括与云台系统100结合使用的计算机程序,计算机程序可被处理器22执行以完成上述任意一种实施方式的控制方法。
例如,计算机程序可被处理器22执行以完成以下步骤的控制方法:
012:获取转轴框架12的当前姿态;
014:获取云台10的当前工作模式;
015:比较当前姿态与阈值姿态,获取当前姿态与阈值姿态的比较结果;和
016:根据比较结果控制云台转动。
再例如,计算机程序还可被处理器22执行以完成以下步骤的控制方法:
0161:比较当前姿态与预设姿态;及
0162:若当前姿态小于或等于预设姿态,控制云台转动以使云台保持增稳模式。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于执行特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的执行,其中可以不按所示出或讨论的顺序, 包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于执行逻辑功能的可执行指令的定序列表,可以具体执行在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器22的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来执行。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来执行。例如,如果用硬件来执行,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来执行:具有用于对数据信号执行逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解执行上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式执行,也可以采用软件功能模块的形式执行。所述集成的模块如果以软件功能模块的形式执行并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (37)

  1. 一种云台的控制方法,应用于云台系统,其特征在于,所述云台包括转轴框架,所述控制方法包括:
    获取所述转轴框架的当前姿态;
    获取所述云台的当前工作模式;
    比较所述当前姿态与阈值姿态,获取所述当前姿态与所述阈值姿态的比较结果;和
    根据所述比较结果控制所述云台转动,其中,
    所述云台的当前工作模式包括增稳模式和跟随模式,所述根据所述比较结果控制所述云台转动包括:根据所述比较结果控制所述云台转动以使所述云台保持所述增稳模式、根据所述比较结果控制所述云台转动以使所述云台保持所述跟随模式、及根据所述比较结果控制所述云台转动以使所述云台在所述增稳模式与所述跟随模式之间切换中的至少一种。
  2. 根据权利要求1所述的控制方法,其特征在于,所述当前工作模式为增稳模式时,所述阈值姿态为预设姿态,所述根据所述比较结果控制所述云台转动包括:
    比较所述当前姿态与预设姿态;和
    若所述当前姿态小于或等于所述预设姿态,控制所述云台转动以使所述云台保持所述增稳模式。
  3. 根据权利要求1所述的控制方法,其特征在于,所述当前工作模式为增稳模式时,所述阈值姿态为预设姿态,所述根据所述比较结果控制所述云台转动包括:
    比较所述当前姿态与预设姿态;和
    若所述当前姿态大于或等于所述预设姿态,控制所述云台转动以使所述云台切换所述增稳模式为所述跟随模式。
  4. 根据权利要求1所述的控制方法,其特征在于,所述当前工作模式为增稳模式时,所述阈值姿态为预设姿态,所述根据所述比较结果控制所述云台转动包括:
    比较所述当前姿态与预设姿态;
    若所述当前姿态大于或等于所述预设姿态,计算所述当前姿态大于或等于所述预设姿态的持续时间;和
    在所述持续时间大于或等于预设时间时,控制所述云台转动以使所述云台切换所述增稳模式为所述跟随模式。
  5. 根据权利要求3或4所述的控制方法,其特征在于,所述云台系统包括有负载,所述转轴框架用于搭载所述负载,其中,所述控制所述云台转动以使所述云台切换所述增稳模式为所述跟随模式包括:
    获取所述负载的实际姿态与所述当前姿态之间的差值;和
    控制所述云台转动以使所述负载保持所述差值跟随所述转轴框架转动。
  6. 根据权利要求1所述的控制方法,其特征在于,所述当前工作模式为跟随模式时,所述阈值姿态为预定姿态,所述根据所述比较结果控制所述云台转动包括:
    比较所述当前姿态与预定姿态;和
    若所述当前姿态大于或等于所述预定姿态,则控制所述云台转动以使所述云台保持所述跟随模式。
  7. 根据权利要求1所述的控制方法,其特征在于,所述当前工作模式为跟随模式时,所述阈值姿态为预定姿态,所述根据所述比较结果控制所述云台转动包括:
    比较所述当前姿态与预定姿态;和
    若所述当前姿态小于或等于所述预定姿态,则控制所述云台转动以使所述云台切换所述跟随模式为所述增稳模式。
  8. 根据权利要求1所述的控制方法,其特征在于,所述当前工作模式为跟随模式时,所述阈值姿态为预定姿态,所述根据所述比较结果控制所述云台转动包括:
    比较所述当前姿态与预定姿态;
    若所述当前姿态小于或等于所述预定姿态,则计算所述当前姿态小于或等于所述预定姿态的持续时间;和
    在所述持续时间大于或等于预定时间时,控制所述云台转动以使所述云台切换所述跟随模式为所述增稳模式。
  9. 根据权利要求7或8所述的控制方法,其特征在于,所述云台系统包括有负载,所述转轴框架用于搭载所述负载,其中,所述控制所述云台转动以使所述云台切换所述跟随模式为所述增稳模式包括:
    控制所述云台转动以使所述负载达到并保持在增稳姿态。
  10. 根据权利要求9所述的控制方法,其特征在于,所述控制所述云台转动以使所述负载达到并保持在增稳姿态包括:
    获取所述负载的实际姿态和所述增稳姿态;
    根据所述实际姿态和所述增稳姿态之间的差值计算转动速度;及
    控制所述云台按照所述转动速度转动以使所述负载达到并保持在所述增稳姿态。
  11. 根据权利要求9所述的控制方法,其特征在于,所述增稳姿态为所述负载始终保持水平时的姿态、当前的实际姿态、或所述跟随模式前的所述增稳模式下的姿态。
  12. 根据权利要求1所述的控制方法,其特征在于,所述云台系统包括有负载,所述转轴框架用于搭载所述负载,其中,所述增稳模式包括所述负载与预定参照方向的相对角度保持不变,所述跟随模式包括所述负载与所述转轴框架的相对角度保持不变。
  13. 根据权利要求1或所述的控制方法,其特征在于,所述云台系统包括有负载,所述云台还包括有基座和电机组件,所述转轴框架安装在所述基座上并用于搭载所述负载,所述电机组件用于控制所述云台转动,所述转轴框架包括偏航轴框架、横滚轴框架、俯仰轴框架中的至少一个,所述电机组件包括偏航轴电机、横滚轴电机、俯仰轴电机中的至少一个。
  14. 根据权利要求13所述的控制方法,其特征在于,所述转轴框架包括偏航轴框架、横滚轴框架、俯仰轴框架,所述电机组件包括偏航轴电机、横滚轴电机、俯仰轴电机,其中,所述当前姿态包括所述基座的当前偏航姿态、所述偏航轴框架的当前横滚姿态、及所述横滚轴框架的当前俯仰姿态,预设姿态包括预设俯仰姿态、预设横滚姿态、预设偏航姿态,在所述当前工作模式为增稳模式时,
    若所述基座的当前偏航姿态大于所述预设偏航姿态,则控制所述云台的偏航轴电机转动以使所述负载的偏航姿态跟随所述基座的所述当前偏航姿态;和/或
    若所述基座的当前偏航姿态小于所述预设偏航姿态,则控制所述云台转动以使所述云台保持所述增稳模式;和或
    若所述偏航轴框架的当前横滚姿态大于所述预设横滚姿态,则控制所述云台的横滚轴电机转动以使所述负载的横滚姿态跟随所述偏航轴框架的所述当前横滚姿态;和/或
    若所述偏航轴框架的当前横滚姿态小于所述预设横滚姿态,则控制所述云台转动以使所述云台保持所述增稳模式;和/或
    若所述横滚轴框架的当前俯仰姿态大于所述预设俯仰姿态,则控制所述云台的俯仰轴电机转动以使所述负载的俯仰姿态跟随所述横滚轴框架的所述当前俯仰姿态;和/或
    若所述横滚轴框架的当前俯仰姿态小于所述预设俯仰姿态,则控制所述云台转动以使所述云台保持所述增稳模式。
  15. 根据权利要求13所述的控制方法,其特征在于,所述转轴框架包括偏航轴、横滚轴框架、俯仰轴框架,所述电机组件包括偏航轴电机、横滚轴电机、俯仰轴电机,其中,所述当前姿态包括所述基座的当前偏航姿态、所述偏航轴框架的当前横滚姿态、及所述横滚轴框架的当前俯仰姿态,预定姿态包括预定俯仰姿态、预定横滚姿态、预定偏航姿态,在所述当前工作模式为跟随模式时,
    若所述基座的当前偏航姿态小于所述预定偏航姿态,则控制所述云台按照第一转动速度转动以使所述负载达到并保持在增稳姿态;和/或
    若所述基座的当前偏航姿态大于所述预定偏航姿态,则控制所述云台转动以使所述负载的偏航姿态跟随所述基座的所述当前偏航姿态;和/或
    若所述偏航轴框架的当前横滚姿态小于所述预定横滚姿态,则控制所述云台按照第二转动速度转动以使所述负载达到并保持在增稳姿态;和/或
    若所述偏航轴框架的当前横滚姿态大于所述预定横滚姿态,则控制所述云台转动以使所述负载的横滚姿态跟随所述偏航轴框架的所述当前横滚姿态;和/或
    若所述横滚轴框架的当前俯仰姿态小于所述预定俯仰姿态,则控制所述云台按照第三转动速度转动以使所述负载达到并保持在增稳姿态;和/或
    若所述横滚轴框架的当前俯仰姿态大于所述预定俯仰姿态,则控制所述云台转动以使所述负载的俯仰姿态跟随所述横滚轴框架的所述当前俯仰姿态。
  16. 根据权利要求1所述的控制方法,其特征在于,所述云台包括用于获取所述转轴框架的当前姿态的惯性测量传感器。
  17. 根据权利要求1所述的控制方法,其特征在于,所述云台还包括显示装置,所述根据所述当前姿态及所述当前工作模式控制所述云台转动以使所述云台在所述增稳模式与所述跟随模式之间切换后,生成提示信息,并显示在所述显示装置上。
  18. 一种云台的控制装置,应用于云台系统,其特征在于,所述云台包括转轴框架,所述控制装置包括处理器,所述处理器用于:
    获取所述转轴框架的当前姿态;
    获取所述云台的当前工作模式;
    比较所述当前姿态与阈值姿态,获取所述当前姿态与所述阈值姿态的比较结果;和
    根据所述比较结果控制所述云台转动,其中,
    所述云台的当前工作模式包括增稳模式和跟随模式,所述根据所述比较结果控制所述云台转动包括:根据所述比较结果控制所述云台转动以使所述云台保持所述增稳模式、根据所述比较结果控制所述云台转动以使所述云台保持所述跟随模式、及根据所述比较结果控制所述云台转动以使所述云台在所述增稳模式与所述跟随模式之间切换中的至少一种。
  19. 根据权利要求18所述的控制装置,其特征在于,所述当前工作模式为增稳模式时,所述阈值姿态为预设姿态,所述处理器用于:
    比较所述当前姿态与预设姿态;和
    若所述当前姿态小于或等于所述预设姿态,控制所述云台转动以使所述云台保持所述增稳模式。
  20. 根据权利要求18所述的控制装置,其特征在于,所述当前工作模式为增稳模式时,所述阈值姿态为预设姿态,所述处理器用于:
    比较所述当前姿态与预设姿态;和
    在所述当前姿态大于或等于所述预设姿态时,控制所述云台转动以使所述云台切换所述增稳模式为所述跟随模式。
  21. 根据权利要求18所述的控制装置,其特征在于,所述当前工作模式为增稳模式时,所述阈值姿态为预设姿态,所述处理器用于:
    比较所述当前姿态与预设姿态;
    若所述当前姿态大于或等于所述预设姿态,则计算所述当前姿态大于或等于所述预设姿态的持续时间;和
    若所述持续时间大于或等于预设时间,控制所述云台转动以使所述云台切换所述增稳模式为所述跟随模式。
  22. 根据权利要求20或21所述的控制装置,其特征在于,所述云台系统包括有负载,所述转轴框架用于搭载所述负载,其中,所述处理器用于:
    获取所述负载的实际姿态与所述当前姿态之间的差值;和
    控制所述云台转动以使所述负载保持所述差值跟随所述转轴框架转动。
  23. 根据权利要求18所述的控制装置,其特征在于,当前工作模式为跟随模式时,所述阈值姿态为预定姿态,所述处理器用于:
    比较所述当前姿态与预定姿态;和
    若所述当前姿态大于或等于所述预定姿态,则控制所述云台转动以使所述云台保持所述跟随模式。
  24. 根据权利要求18所述的控制装置,其特征在于,当前工作模式为跟随模式时,所述阈值姿态为预定姿态,所述处理器用于:
    比较所述当前姿态与预定姿态;和
    在所述当前姿态小于或等于所述预定姿态,则控制所述云台转动以使所述云台切换所述跟随模式为所述增稳模式。
  25. 根据权利要求18所述的控制装置,其特征在于,当前工作模式为跟随模式时,所述阈值姿态为预定姿态,所述处理器用于:
    比较所述当前姿态与预定姿态;
    若所述当前姿态小于或等于所述预定姿态,则计算所述当前姿态小于或等于所述预定姿态的持续时间;和
    在所述持续时间大于或等于预定时间时,控制所述云台转动以使所述云台切换所述跟随模式为所述增稳模式。
  26. 根据权利要求24或25所述的控制装置,其特征在于,所述云台系统包括有负载,所述转轴框架用于搭载所述负载,其中,所述处理器用于:
    控制所述云台转动以使所述负载达到并保持在所述增稳姿态。
  27. 根据权利要求26所述的控制装置,其特征在于,所述处理器用于:
    获取所述负载的实际姿态和所述增稳姿态;
    根据所述实际姿态和所述增稳姿态之间的差值计算转动速度;及
    控制所述云台按照所述转动速度转动以使所述负载达到并保持在所述增稳姿态。
  28. 根据权利要求26所述的控制装置,其特征在于,所述增稳姿态为所述负载始终保 持水平时的姿态、当前的实际姿态、或所述跟随模式前的所述增稳模式下的姿态。
  29. 根据权利要求18所述的控制装置,其特征在于,所述云台系统包括有负载,所述转轴框架用于搭载所述负载,其中,所述增稳模式包括所述负载保持与预定参照方向的相对角度不变,所述跟随模式指的是所述负载保持与所述转轴框架的相对角度不变。
  30. 根据权利要求18所述的控制装置,其特征在于,所述云台系统包括有负载,所述云台还包括有基座和电机组件,所述转轴框架安装在所述基座上并用于搭载所述负载,所述电机组件用于控制所述云台转动,所述转轴框架包括偏航轴框架、横滚轴框架、俯仰轴框架中的至少一个,所述电机组件包括偏航轴电机、横滚轴电机、俯仰轴电机中的至少一个。
  31. 根据权利要求30所述的控制装置,其特征在于,所述转轴框架包括偏航轴框架、横滚轴框架、俯仰轴框架,所述电机组件包括偏航轴电机、横滚轴电机、俯仰轴电机,其中,所述当前姿态包括所述基座的当前偏航姿态、所述偏航轴框架的当前横滚姿态、及所述横滚轴框架的当前俯仰姿态,预设姿态包括预设俯仰姿态、预设横滚姿态、预设偏航姿态,在所述当前工作模式为增稳模式时,所述处理器用于:
    若所述基座的当前偏航姿态大于所述预设偏航姿态,则控制所述云台的偏航轴电机转动以使所述负载的偏航姿态跟随所述基座的所述当前偏航姿态;和/或
    若所述基座的当前偏航姿态小于所述预设偏航姿态,则控制所述云台转动以使所述云台保持所述增稳模式;和或
    若所述偏航轴框架的当前横滚姿态大于所述预设横滚姿态,则控制所述云台的横滚轴电机转动以使所述负载的横滚姿态跟随所述偏航轴框架的所述当前横滚姿态;和/或
    若所述偏航轴框架的当前横滚姿态小于所述预设横滚姿态,则控制所述云台转动以使所述云台保持所述增稳模式;和/或
    若所述横滚轴框架的当前俯仰姿态大于所述预设俯仰姿态,则控制所述云台的俯仰轴电机转动以使所述负载的俯仰姿态跟随所述横滚轴框架的所述当前俯仰姿态;和/或
    若所述横滚轴框架的当前俯仰姿态小于所述预设俯仰姿态,则控制所述云台转动以使所述云台保持所述增稳模式。
  32. 根据权利要求30所述的控制装置,其特征在于,所述转轴框架包括所述转轴框架包括偏航轴框架、横滚轴框架、俯仰轴框架,所述电机组件包括偏航轴电机、横滚轴电机、 俯仰轴电机,其中,所述当前姿态包括所述基座的当前偏航姿态、所述偏航轴框架的当前横滚姿态、及所述横滚轴框架的当前俯仰姿态,预定姿态包括预定俯仰姿态、预定横滚姿态、预定偏航姿态,在所述当前工作模式为增稳模式时,在所述当前工作模式为跟随模式时,处理器用于:
    若所述基座的当前偏航姿态小于所述预定偏航姿态,则控制所述云台按照第一转动速度转动以使所述负载达到并保持在所述增稳姿态;和/或
    若所述基座的当前偏航姿态大于所述预定偏航姿态,则控制所述云台转动以使所述负载的偏航姿态跟随所述基座的所述当前偏航姿态;和/或
    若所述偏航轴框架的当前横滚姿态小于所述预定横滚姿态,则控制所述云台按照第二转动速度转动以使所述负载达到并保持在所述增稳姿态;和/或
    若所述偏航轴框架的当前横滚姿态大于所述预定横滚姿态,则控制所述云台转动以使所述负载的横滚姿态跟随所述偏航轴框架的所述当前横滚姿态;和/或
    若所述横滚轴框架的当前俯仰姿态小于所述预定俯仰姿态,则控制所述云台按照第三转动速度转动以使所述负载达到并保持在所述增稳姿态;和/或
    若所述横滚轴框架的当前俯仰姿态大于所述预定俯仰姿态,则控制所述云台转动以使所述负载的俯仰姿态跟随所述横滚轴框架的所述当前俯仰姿态。
  33. 根据权利要求18所述的控制装置,其特征在于,所述云台包括用于获取所述转轴框架的当前姿态的惯性测量传感器。
  34. 根据权利要求18所述的控制装置,其特征在于,所述云台还包括显示装置,所述根据所述当前姿态及所述当前工作模式控制所述云台转动以使所述云台在所述增稳模式与所述跟随模式之间切换后,生成提示信息,并显示在所述显示装置上。
  35. 一种云台系统,其特征在于,包括:
    云台;和
    权利要求18至34任意一项所述的控制装置,所述控制装置设置在所述云台上。
  36. 根据权利要求35所述的云台系统,其特征在于,所述云台系统还包括搭载在所述云台上的负载。
  37. 一种无人机,其特征在于,包括:
    机身;及
    权利要求35或36所述的云台系统,所述云台系统设置在所述机身上。
PCT/CN2018/103193 2018-08-30 2018-08-30 云台的控制方法与装置、云台系统和无人机 WO2020042064A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880041522.2A CN110869283A (zh) 2018-08-30 2018-08-30 云台的控制方法与装置、云台系统和无人机
EP18931369.5A EP3842682A1 (en) 2018-08-30 2018-08-30 Cradle head control method and device, cradle head system and unmanned aerial vehicle
PCT/CN2018/103193 WO2020042064A1 (zh) 2018-08-30 2018-08-30 云台的控制方法与装置、云台系统和无人机
US17/186,853 US20210180743A1 (en) 2018-08-30 2021-02-26 Gimbal control method, gimbal control device, gimbal system, and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/103193 WO2020042064A1 (zh) 2018-08-30 2018-08-30 云台的控制方法与装置、云台系统和无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/186,853 Continuation US20210180743A1 (en) 2018-08-30 2021-02-26 Gimbal control method, gimbal control device, gimbal system, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2020042064A1 true WO2020042064A1 (zh) 2020-03-05

Family

ID=69643354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103193 WO2020042064A1 (zh) 2018-08-30 2018-08-30 云台的控制方法与装置、云台系统和无人机

Country Status (4)

Country Link
US (1) US20210180743A1 (zh)
EP (1) EP3842682A1 (zh)
CN (1) CN110869283A (zh)
WO (1) WO2020042064A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725652B (zh) * 2018-11-16 2022-04-01 广州昂宝电子有限公司 用于无人机云台航向解算与控制的方法
CN113767354A (zh) * 2020-03-31 2021-12-07 深圳市大疆创新科技有限公司 一种云台的控制方法、云台及可移动平台
WO2021217408A1 (zh) * 2020-04-28 2021-11-04 深圳市大疆创新科技有限公司 无人机系统及其控制方法和装置
CN115175854A (zh) * 2020-11-24 2022-10-11 深圳市大疆创新科技有限公司 云台和飞行器的协同控制方法和系统
CN114641746A (zh) * 2020-12-25 2022-06-17 深圳市大疆创新科技有限公司 可移动平台及其控制方法、装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205176664U (zh) * 2015-08-25 2016-04-20 深圳市大疆创新科技有限公司 手持云台
CN107079103A (zh) * 2016-05-31 2017-08-18 深圳市大疆灵眸科技有限公司 云台控制方法、装置和云台
CN107219864A (zh) * 2017-07-14 2017-09-29 北京航空航天大学 一种伺服/手控混合式三自由度轻小型无人机遥感云台系统
CN107466379A (zh) * 2016-04-15 2017-12-12 深圳市大疆灵眸科技有限公司 装配组件、手持云台结构及拍摄装置
US20180106422A1 (en) * 2015-05-27 2018-04-19 Gopro, Inc. Camera System Using Stabilizing Gimbal
CN108061218A (zh) * 2015-09-29 2018-05-22 深圳市大疆灵眸科技有限公司 手柄云台及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109032191A (zh) * 2015-07-03 2018-12-18 深圳市大疆灵眸科技有限公司 云台控制方法及云台
CN105759853A (zh) * 2016-03-30 2016-07-13 深圳市哈博森科技有限公司 一种手持云台及控制方法
CN107124534B (zh) * 2017-03-29 2020-11-27 歌尔股份有限公司 一种三轴云台、拍摄设备、拍摄系统及无人拍摄系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180106422A1 (en) * 2015-05-27 2018-04-19 Gopro, Inc. Camera System Using Stabilizing Gimbal
CN205176664U (zh) * 2015-08-25 2016-04-20 深圳市大疆创新科技有限公司 手持云台
CN108061218A (zh) * 2015-09-29 2018-05-22 深圳市大疆灵眸科技有限公司 手柄云台及其控制方法
CN107466379A (zh) * 2016-04-15 2017-12-12 深圳市大疆灵眸科技有限公司 装配组件、手持云台结构及拍摄装置
CN107079103A (zh) * 2016-05-31 2017-08-18 深圳市大疆灵眸科技有限公司 云台控制方法、装置和云台
CN107219864A (zh) * 2017-07-14 2017-09-29 北京航空航天大学 一种伺服/手控混合式三自由度轻小型无人机遥感云台系统

Also Published As

Publication number Publication date
US20210180743A1 (en) 2021-06-17
EP3842682A1 (en) 2021-06-30
CN110869283A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2020042064A1 (zh) 云台的控制方法与装置、云台系统和无人机
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
US20200213518A1 (en) Method for controlling gimbal, gimbal controller, and gimbal
WO2018191963A1 (zh) 遥控器、云台及云台控制方法、装置、系统
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
US11156905B2 (en) Control method for gimbal, controller, and gimbal
WO2019227384A1 (zh) 一种云台控制方法及云台
WO2019227347A1 (zh) 云台的控制方法、云台、拍摄设备及可读存储介质
WO2020042152A1 (zh) 手持云台的控制方法、手持云台及图像获取设备
WO2018191964A1 (zh) 云台的控制方法以及云台
WO2019210467A1 (zh) 云台控制方法与装置、云台系统、无人机和计算机可读存储介质
WO2020042135A1 (zh) 竖向增稳装置控制方法、竖向增稳装置及图像获取设备
CN106210544A (zh) 一种移动终端及其拍摄视频的防抖处理方法、系统
WO2020042134A1 (zh) 云台的控制方法、云台和移动平台
WO2020051831A1 (zh) 手持云台的控制方法及手持云台、手持设备
EP4012245A1 (en) Handheld gimbal, gimbal control method, and computer readable storage medium
WO2020000423A1 (zh) 云台的控制方法、云台、飞行器和计算机可读存储介质
TWI709011B (zh) 用於無人機雲臺航向解算與控制的方法
WO2022067548A1 (zh) 云台的控制方法及装置、云台以及可移动平台
WO2020107295A1 (zh) 拍摄方法和拍摄系统
WO2019227410A1 (zh) 姿态转换方法、姿态显示方法及云台系统
KR102476705B1 (ko) 카메라 구동장치, 카메라 구동 방법 및 짐벌장치
WO2019227464A1 (zh) 旋转角度控制方法、云台以及计算机可读的记录介质
WO2022134036A1 (zh) 可移动平台及其控制方法、装置
WO2020087354A1 (zh) 竖向增稳机构及其控制方法以及可移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018931369

Country of ref document: EP

Effective date: 20210322