WO2020000423A1 - 云台的控制方法、云台、飞行器和计算机可读存储介质 - Google Patents

云台的控制方法、云台、飞行器和计算机可读存储介质 Download PDF

Info

Publication number
WO2020000423A1
WO2020000423A1 PCT/CN2018/093821 CN2018093821W WO2020000423A1 WO 2020000423 A1 WO2020000423 A1 WO 2020000423A1 CN 2018093821 W CN2018093821 W CN 2018093821W WO 2020000423 A1 WO2020000423 A1 WO 2020000423A1
Authority
WO
WIPO (PCT)
Prior art keywords
posture
attitude
preset
shaft structure
gimbal
Prior art date
Application number
PCT/CN2018/093821
Other languages
English (en)
French (fr)
Inventor
刘帅
王映知
李兵
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880013244.XA priority Critical patent/CN110831860A/zh
Priority to PCT/CN2018/093821 priority patent/WO2020000423A1/zh
Publication of WO2020000423A1 publication Critical patent/WO2020000423A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the present invention relates to electronic technology, and in particular, to a control method for a PTZ, a PTZ, an aircraft, and a computer-readable storage medium.
  • Camera shake usually affects the captured image or video.
  • overshoot is prone to occur when the gimbal generates a large step.
  • the transition from the joint angle closed loop to the attitude closed loop is equivalent to a large step, and the gimbal will overshoot.
  • a large noise is generated during the rotation, which affects the user experience.
  • Embodiments of the present invention provide a control method of a gimbal, a gimbal, an aircraft, and a computer-readable storage medium, which can control a rotation axis structure of the gimbal to rotate with a preset motion parameter.
  • a control method for a pan / tilt according to an embodiment of the present invention includes:
  • the gimbal includes a hinge structure and a processor.
  • the processor is configured to obtain a first attitude of the hinge structure at the current moment, obtain a reference attitude of the hinge structure, and according to the first attitude and The reference attitude controls the rotating shaft structure to adjust the first attitude to the reference attitude with preset motion parameters.
  • the aircraft includes a center frame, an aircraft arm connected to the center frame, and a power unit connected to the aircraft arm, and the aircraft further includes the foregoing gimbal.
  • a computer-readable storage medium stores a computer program thereon, and the computer program can be executed by a processor to complete the foregoing control method.
  • control method of the gimbal, the gimbal, the aircraft, and the computer-readable storage medium control the rotary axis structure of the gimbal to rotate with a preset motion parameter, thereby avoiding overshoot when the gimbal generates a large step, For example, the transition from the joint angle closed-loop to the attitude closed-loop when the gimbal is started, and the noise generated during rotation is reduced, so that the user feels more comfortable when using the gimbal.
  • FIG. 1 is a schematic perspective structural diagram of an aircraft according to some embodiments of the present invention.
  • FIG. 2 is a schematic perspective structural view of a pan / tilt according to some embodiments of the present invention
  • FIG. 3 is a schematic diagram of a pan / tilt head according to some embodiments of the present invention.
  • FIG. 4 is a schematic flowchart of a control method for a pan / tilt according to some embodiments of the present invention.
  • FIG. 5 is a schematic diagram of a pan / tilt head according to some embodiments of the present invention.
  • 6 to 11 are schematic flowcharts of a control method for a pan / tilt according to some embodiments of the present invention.
  • FIG. 12 is a schematic diagram of a connection between a PTZ and a computer-readable storage medium according to some embodiments of the present invention.
  • Aircraft 1000 Aircraft 1000, gimbal 100, pivot structure 10, pivot frame 17, translation axis frame 172, roll axis frame 174, pitch axis frame 176, actuator 19, translation axis motor 192, roll axis motor 194, pitch axis motor 196 , Processor 20, base 30, load bracket 40, inertial measurement sensor 50, joint angle acquisition assembly 70, center frame 200, arm 300, power unit 400, imaging device 500, and computer-readable storage medium 2000.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "plurality” is two or more, unless specifically defined otherwise.
  • an embodiment of the present invention provides an aircraft 1000.
  • the aircraft 1000 includes a gimbal 100, a center frame 200, an arm 300 connected to the center frame 200, and a power unit 400 connected to the arm 300.
  • the pan / tilt head 100 may be any of the following embodiments.
  • the imaging device 500 can be mounted on the pan / tilt 100, and the imaging device 500 can be used to acquire images.
  • the PTZ 100 can also be used to carry other devices, which is not specifically limited herein.
  • the gimbal 100 is a handheld gimbal or a gimbal provided on the aircraft 1000.
  • the head 100 is a three-axis head.
  • the rotating shaft structure 10 of the gimbal 100 includes a rotating shaft frame 17 and an actuator 19.
  • the rotating shaft frame 17 includes a translation shaft frame 172, a roll shaft frame 174, and a pitch shaft frame 176.
  • the actuator 19 includes a translation shaft motor 192, a roll The axis motor 194 and the pitch axis motor 196.
  • the head 100 further includes a base 30 and a load bracket 40.
  • the translation axis motor 192 is mounted on the base 30 to drive the translation axis frame 172 to rotate, and the roll axis motor 194 is mounted to the roll axis frame 174 to rotate the roll axis frame 174.
  • the pitch axis motor 196 is mounted on the roll axis frame 174 for driving the pitch axis frame 176 to rotate.
  • the rotating shaft structure 10 of the pan / tilt head 100 may also include only one rotating shaft frame 17 and actuator 19, or two rotating shaft frames 17 and actuator 19, which is not limited in this embodiment.
  • the pan axis frame 172 is connected to one end of the roll axis frame 174
  • the other end of the roll axis frame 174 is connected to the pitch axis frame 176
  • the load bracket 40 is directly connected to the pitch axis frame 176.
  • the embodiment of the present invention is not limited thereto, and the translation axis frame 172, the roll axis frame 174, and the pitch axis frame 176 may be connected in other orders.
  • a pan / tilt head 100 includes a shaft structure 10 and a processor 20.
  • the PTZ 100 can execute the control method shown in FIG. 4.
  • the control method includes:
  • the gimbal 100 is further provided with an inertial measurement sensor 50.
  • the inertial measurement sensor 50 may be disposed on the rotating shaft frame 17, or may be disposed at other suitable positions for reading the attitude information of the gimbal 100.
  • the inertial measurement sensor 50 includes at least one of an accelerometer or a gyroscope. The first attitude of the gimbal 100 is detected and acquired by the inertial measurement sensor 50 and then transmitted to the processor 20.
  • control method further includes:
  • step 014 may include:
  • the attitude of the base 30 can be detected by the inertial measurement sensor 50.
  • the gimbal 100 includes two inertial measurement sensors 50, one of which is used to detect the attitude of the rotating shaft structure 10 of the gimbal 100, and one of the inertial measurement sensors is used to detect the attitude of the base 30.
  • the pan / tilt head 100 is further provided with a joint angle acquisition component 70, which is used to acquire the joint angle of the rotation axis structure 10 of the pan / tilt head 100.
  • the attitude of the base 30 can be calculated and calculated according to the attitude of the gimbal acquired by the inertial measurement sensor 50 and the joint angle of the rotating shaft structure 10 acquired by the joint angle acquisition component 70. It can be understood that the foregoing method is only a schematic description of the obtaining manner of the base 30 in this embodiment, and the obtaining manner of the base 30 is not limited in this embodiment.
  • Step 014 after acquiring the attitude of the base 30, further includes:
  • 0144 Determine the reference attitude based on the attitude of the base 30.
  • the posture of the rotating shaft structure 10 when determining the reference posture according to the posture of the base 30, may be determined according to the posture of the base 30 to determine the reference posture. Specifically, taking the three-axis head as an example, the attitude of at least one of the pan axis frame 172, the roll axis frame 174, and the pitch axis frame 176 can be determined according to the posture of the base 30.
  • the reference attitudes of the pan axis frame 172, the roll axis frame 174, and the pitch axis frame 176 of the gimbal 100 are (yaw.r, roll.r, pitch.r), and the translation of the base 30
  • the attitudes in the axial direction, the roll axis direction, and the pitch axis direction are (yaw.f, roll.f, pitch.f).
  • attitude yaw.r of the translation axis frame 172 of the gimbal 100 is consistent with the attitude yaw.f of the translation axis direction of the base 30, and the attitude roll.r and the pitch axis frame 176 of the roll axis frame 174 of the gimbal 100
  • the posture pitch.r is kept horizontal. That is, the reference attitudes of the translation axis frame 172, the roll axis frame 174, and the pitch axis frame 176 of the gimbal 100 can be determined as (yaw.f, 0, 0).
  • the pan axis frame of the gimbal 100 172 follows the translation axis of the base 30 while the roll axis frame 174 and the pitch axis frame 176 of the gimbal 100 remain horizontal at all times.
  • the reference posture of the rotating shaft structure 10 can be obtained according to the posture of the base 30.
  • the reference attitudes of the pan axis frame 172, the roll axis frame 174, and the pitch axis frame 176 of the gimbal 100 may be partially or entirely consistent with the attitudes of the pan axis direction, the roll axis direction, and the pitch axis direction of the base 30. This embodiment is not limited herein.
  • step 014 may also include:
  • 0146 Determine the reference attitude based on user input.
  • the user may input a reference gesture according to his or her own needs.
  • the reference gesture is, for example, a preset arbitrary gesture, such as (0, 0, 0) or (180, 180, 180). In this way, the reference attitude can be made to meet the needs of the user.
  • the method further includes:
  • the rotating shaft structure 10 is controlled according to the first posture and the reference posture to adjust the first posture to the reference posture with a preset motion parameter.
  • the processor 20 may control the actuator 19 to rotate the rotating shaft structure 10 with a preset motion parameter, so as to adjust the first posture to the reference posture.
  • the motion parameters are, for example, angular velocity parameters, angular acceleration parameters, etc. of the shaft structure 10, which are not limited in this embodiment.
  • the motion parameter is used as the angular velocity parameter for description.
  • the angular velocity parameter is the rotational angular velocity of the shaft structure 10, and the rotational angular velocity of the shaft structure 10 is smaller than the maximum rotational angular velocity of the shaft structure 10.
  • the rotational angular velocity of the rotary shaft structure 10 is too large, for example, when the rotational angular speed of the rotary shaft structure 10 is the maximum rotational angular speed of the rotary shaft structure 10, it is easy to cause a large step of the gimbal 100, which may cause the gimbal to overshoot, and Large noise is generated.
  • the rotational angular velocity of the rotary shaft structure 10 is smaller than the maximum rotational angular velocity of the rotary shaft structure 10. In this way, a large step of the gimbal 100 can be avoided, thereby preventing the gimbal 100 from overshooting and generating noise.
  • the maximum angular velocity of the shaft structure 10 is the maximum angular velocity that the shaft structure 10 can reach during the rotation.
  • the control method according to the embodiment of the present invention may be implemented by the pan / tilt head 100 according to the embodiment of the present invention, wherein step 012, step 014, step 0142, step 0144, step 0146 and step 016 may be performed by the processor 20 and the rotating shaft Structure 10 is implemented. That is to say, the processor 20 may be used to obtain the first attitude of the shaft structure 10 at the current time, obtain the reference attitude of the shaft structure 10, obtain the attitude of the base 30, determine the reference attitude based on the attitude of the base 30, and The reference posture is determined by inputting, and the rotating shaft structure 10 is controlled according to the first posture and the reference posture to adjust the first posture to the reference posture with a preset motion parameter.
  • the control method of the pan / tilt head 100, the pan / tilt head 100, and the aircraft control shaft structure 10 according to the embodiment of the present invention rotate with preset motion parameters, thereby avoiding overshoot when the pan / tilt 100 generates a large step, for example, when the pan / tilt is started
  • the transition from the joint angle closed-loop to the attitude closed-loop is reduced, and the noise generated during rotation is reduced, so that the user feels more comfortable when using the PTZ 100.
  • control method includes:
  • step 016 includes:
  • the processor 20 is configured to obtain a preset angular velocity parameter and control the shaft structure 10 according to a preset parameter, a reference attitude of the shaft structure 10 and a first attitude of the shaft structure 10.
  • the first attitude is adjusted to the reference attitude with a preset angular velocity parameter.
  • steps 024 and 0162 can be implemented by the processor 20.
  • the preset angular velocity parameters of the pan axis frame 172, the roll axis frame 174, and the pitch axis frame 176 may be different.
  • the attitude difference between the first attitude and the reference attitude may be calculated first, and then a preset angular velocity parameter may be determined according to the attitude difference.
  • preset angular velocity parameters of the pan axis frame 172, the roll axis frame 174, and the pitch axis frame 176 can be determined according to the difference between the first attitude and the reference attitude.
  • the reference attitudes of the translation axis frame 172, the roll axis frame 174, and the pitch axis frame 176 of the gimbal 100 are (yaw.r, roll.r, pitch.r), and the translation of the gimbal 100
  • the first attitudes of the axis frame 172, the roll axis frame 174, and the pitch axis frame 176 are (yaw.1, roll.1, pitch.1), then the pan axis frame 172, the roll axis frame 174, and the pitch of the gimbal 100
  • the attitude difference (yaw.d1, roll.d1, pitch.d1) of the axis frame 176 can be (yaw.r-yaw.1, roll.r-roll.1, pitch.r-pitch.1), that is, the translation axis
  • the attitude difference yaw.d1 of the frame 172 can be determined according to the first attitude yaw.1 of the translation axis frame 172 and the reference attitude yaw.
  • the attitude difference roll.d1 of the roll axis frame 174 can be determined according to the roll axis
  • the first attitude roll.1 of the frame 174 and the reference attitude roll.r of the roll axis frame 174 are determined.
  • the attitude difference pitch.d1 of the pitch axis frame 176 can be determined according to the first attitude pitch.1 of the pitch axis frame 176 and the pitch axis frame.
  • a reference attitude of 176 is determined by pitch.r.
  • the preset angular velocity parameters of the translation axis frame 172, the roll axis frame 174, and the pitch axis frame 176 may also be determined according to a preset parameter, a difference between the first attitude and a reference attitude.
  • the angular velocity parameter yaw. ⁇ of the translation axis frame 172 may be k1 * (yaw.r-yaw.1), and the angular velocity parameter roll. ⁇ of the roll axis frame 174 may be k2 * (roll .r-roll.1), the angular velocity parameter pitch. ⁇ of the pitch axis frame 176 can be k3 * (pitch.r-pitch.1), where k1, k2, and k3 are preset parameters and can be stored in the cloud in advance
  • the station 100 may be determined by user input. It can be understood that the values of k1, k2, and k3 can be the same or different, which is not limited in this embodiment.
  • the preset angular velocity parameter is determined according to the attitude difference (difference value) between the first attitude and the reference attitude. It can be understood that in other embodiments, the preset angular velocity parameters may also be determined according to other suitable algorithms, which are not specifically limited herein.
  • control method after acquiring the first attitude of the pivot structure 10 of the gimbal 100 at the current moment and the reference posture of the pivot structure 10, the control method further includes:
  • the gimbal 100 further includes a joint angle acquisition component 70.
  • the joint angle acquisition component 70 is configured to acquire a joint angle of the shaft structure 10 and send the joint angle to the processor 20.
  • the joint angle acquisition component 70 includes one or more of a potentiometer, a Hall sensor, and a magnetic encoder.
  • a potentiometer for a three-axis head, each of the translation axis frame 172, the roll axis frame 174, and the pitch axis frame 176 corresponds to a joint angle acquisition component 70.
  • control method further includes:
  • the processor 20 acquires a preset angular velocity parameter according to the joint angle of the shaft structure 10. That is, step 018 may be implemented by the joint angle acquisition component 70, and step 022 may be implemented by the processor 20.
  • the rotating shaft structure 10 when the rotating shaft structure 10 can only rotate a limited circle, the rotating shaft structure 10 is generally provided with a mechanical limit. When the shaft structure 10 hits the mechanical limit, it cannot rotate in the original rotation direction. Since different joint angles may correspond to the same Euler angle, in order to reduce or avoid the shaft structure 10 from hitting the mechanical limit, a preset angular velocity parameter can be obtained according to the joint angle of the shaft structure 10, and then the shaft structure 10 is controlled to Preset angular velocity parameters for rotation. It can be understood that the mechanical limits of the translation axis frame 172, the roll axis frame 174, and the pitch axis frame 176 in the rotation axis structure 10 of the gimbal 100 may be the same or different.
  • the mechanical limits of the rotating shaft structure 10 of the different types of pan / tilt heads 100 may be the same or different, which is not limited in this embodiment. Further, when the mechanical limit range of the rotary shaft structure 10 is small, or the rotary shaft structure 10 can rotate infinitely, since it does not need to consider hitting the limit, it is possible to directly control without obtaining the preset angular velocity parameter according to the joint angle.
  • the rotating shaft structure 10 rotates with a preset angular velocity parameter.
  • obtaining the preset angular velocity parameter according to the joint angle of the shaft structure 10 in step 022 includes:
  • the preset parameters are obtained according to the preset parameters, the reference attitude of the rotation shaft structure 10, and the first posture of the rotation shaft structure 10 Angular velocity parameter.
  • the processor 20 is configured to, when the joint angle is less than or equal to the first preset joint angle and greater than or equal to the second preset joint angle, according to the preset parameters, the shaft structure 10
  • the reference attitude and the first attitude of the shaft structure 10 are used to obtain preset angular velocity parameters.
  • the obtaining of the preset angular velocity parameter according to the preset parameters, the reference attitude of the shaft structure 10 and the first attitude of the shaft structure 10 may be different, or may be other suitable algorithms, which are not described herein.
  • step 0222 can be implemented by the processor 20.
  • the first preset joint angle and the second preset joint angle may be stored in the PTZ 100 in advance or determined by user input.
  • the first preset joint angle is greater than the second preset joint angle.
  • the mechanical limit of the translation axis frame 172 is, for example, -320 degrees to 320 degrees
  • the first preset joint angle is, for example, 180 degrees.
  • the two preset joint angles are, for example, -180 degrees.
  • a preset angular velocity parameter may be determined according to a preset parameter, a first attitude, and a reference attitude. Specifically, the obtaining of the preset angular velocity parameter according to the preset parameters, the reference attitude of the shaft structure 10 and the first attitude of the shaft structure 10 may be different, or may be other suitable algorithms, which are not described herein.
  • step 022 further includes:
  • the processor 20 is configured to determine the preset angular velocity parameter as the first angular velocity when the joint angle is greater than the first preset joint angle, and when the joint angle is smaller than the second preset joint Determine the preset angular velocity parameter as the second angular velocity during the angle.
  • steps 0226 and 0228 can be implemented by the processor 20.
  • the translation axis is also used as an example for a three-axis head.
  • the mechanical limit of the translation axis frame 172 is, for example, -320 degrees to 320 degrees.
  • the first preset is The joint angle is, for example, 180 degrees, and the second preset joint angle is, for example, -180 degrees.
  • the preset angular velocity parameter may be determined as the first angular velocity, and in a direction that reduces the joint angle of the translation axis motor 192 The rotation is performed to reduce the joint angle, that is, the translation axis motor 192 is rotated at a first angular velocity to reduce the joint angle.
  • the preset angular velocity parameter can be determined as the second angular velocity, and the joint angle of the translation axis motor 192 increases along the Rotating the direction to increase the joint angle, that is, the translation axis motor 192 is rotated at the second angular velocity to increase the joint angle.
  • the embodiment of the present invention is also applicable to the rotating shaft structure 10 of the pan / tilt head 100, which is not limited in this embodiment.
  • a roll axis is taken as an example.
  • the mechanical limit of the roll axis frame 174 is, for example, -45 degrees to 45 degrees.
  • the preset joint angle is, for example, 180 degrees, and the second preset joint angle is, for example, -180 degrees.
  • the preset angular velocity parameter may be obtained according to a preset parameter, a reference attitude of the rotary shaft structure 10 and a first attitude of the rotary shaft structure 10.
  • the rotating shaft structure 10 enters step 0222 after the first angular velocity or the second angular velocity is rotated, that is, restart The acquired joint angle will become less than or equal to the first preset joint angle and greater than or equal to the second preset joint angle.
  • the preset angular velocity parameter may be determined again according to the first posture and the reference posture. It can be understood that the rotation according to the first angular velocity or the second angular velocity may be adjusted until the attitude of the head 100 is adjusted to the reference attitude, which is not limited in this embodiment.
  • the rotation direction of the first angular velocity is opposite to the rotation direction of the second angular velocity.
  • the rotation of the first angular velocity is to reduce the joint angle; and
  • the rotation of the second angular velocity is to increase the joint angle. Therefore, the first angular velocity The rotation direction of is opposite to that of the second angular velocity.
  • the processor 20 controls the rotation shaft structure 10 to adjust the first posture to the reference posture with the preset angular speed parameter.
  • control method further includes:
  • step 026 may include:
  • 0264 Determine the second posture according to the first posture and the rotation angle.
  • the second posture of the pan / tilt head 100 is formed after the first posture of the pan / tilt head 100 is rotated for a preset period of time, the second posture can be determined by the first posture and the rotation angle, and the rotation of the rotating shaft structure 10 The angle can be determined by a preset angular velocity parameter and a preset duration. Take the three-axis gimbal as an example.
  • the first attitudes of the pan axis frame 172, the roll axis frame 174, and the pitch axis frame 176 of the gimbal 100 are (yaw.1, roll.1, pitch .1)
  • the second attitude of the translation axis frame 172, the roll axis frame 174, and the pitch axis frame 176 of the gimbal 100 is (yaw.2, roll.2, pitch.2)
  • the preset duration is t
  • the angular velocity parameter of the frame 172 is yaw. ⁇
  • the angular velocity parameter of the roll axis frame 174 is roll. ⁇
  • the angular velocity parameter of the pitch axis frame 176 is pitch. ⁇
  • the rotation angle of the translation axis frame 172 is yaw. ⁇ * t
  • the rotation angle of the roll axis frame 174 is roll. ⁇ * t
  • the rotation angle of the pitch axis frame 176 is pitch. ⁇ * t
  • the second attitude may also be obtained by measurement by the inertial measurement sensor 50, which is not limited in this embodiment.
  • control method further includes:
  • 028 Determine whether the second posture is adjusted to the reference posture according to the second posture and the reference posture.
  • step 026, step 0262, step 0264, and step 028 may be implemented by the processor 20, that is, the processor 20 is configured to obtain the preset time after the PTZ 100.
  • the second posture of the vehicle determining the rotation angle of the rotating shaft structure 10 according to a preset angular velocity parameter and a preset duration, determining the second posture according to the first posture and the rotation angle, and judging whether the second posture is adjusted as Reference attitude.
  • the rotating shaft 10 After controlling the rotating shaft 10 to rotate for a preset period of time with a preset motion parameter, it is necessary to determine whether the attitude of the pan / tilt head 100 has been adjusted to a reference posture, that is, by using the second attitude and the reference posture of the pan / tilt head 100 after a preset duration. Determine whether the adjustment is complete.
  • the preset duration may be stored in the PTZ 100 in advance or determined by user input.
  • step 028 includes:
  • the processor 20 is configured to calculate the attitude difference according to the second attitude and the reference attitude, determine whether the attitude difference is less than a preset threshold, and determine the first time when the attitude difference is greater than or equal to the preset threshold.
  • the two attitudes are not adjusted to the reference attitude, and it is determined that the second attitude is adjusted to the reference attitude when the attitude difference is less than a preset threshold.
  • step 0282, step 0284, step 0286, and step 0288 can be implemented by the processor 20.
  • the first attitude of the translation axis frame 172, the roll axis frame 174, and the pitch axis frame 176 of the gimbal 100 is (yaw.1, roll.
  • determining whether the attitude difference is less than a preset threshold it may be to determine whether the attitude difference of at least one of the pan axis frame 172, the roll axis frame 174, and the pitch axis frame 176 is smaller than a preset threshold, that is, whether yaw.d2 is smaller than a preset threshold Whether the threshold, and / or roll.d2 is less than a preset threshold, and / or whether pitch.d2 is less than a preset threshold.
  • it may be set in advance that when the posture difference of any one or more frames is greater than or equal to a preset threshold, it is determined that the second posture is not adjusted to the reference posture; the posture difference of all the frames is less than the preset threshold.
  • the preset threshold can be stored in the PTZ 100 in advance or determined by the user's input.
  • the preset threshold is generally small, such as 1 degree, 5 degrees, 10 degrees, etc., so that the attitude of the PTZ 100 and the reference attitude can be adjusted after the adjustment. Consistent. It can be understood that the preset thresholds of the pan axis frame 172, the roll axis frame 174, and the pitch axis frame 176 of the gimbal 100 can be set to be the same or different.
  • the control method when the second posture is not adjusted to the reference posture, the second posture is the first posture at the current moment, and the control method further includes:
  • the loop is executed to obtain the first attitude of the rotating shaft structure 10 of the gimbal 100 at the current time, obtain the reference attitude of the rotating shaft structure 10, and control the rotating shaft structure 10 according to the first attitude and the reference attitude to adjust the first attitude to a preset motion parameter to Reference attitude.
  • the processor 20 when the second posture is not adjusted to the reference posture, is configured to perform a cycle of acquiring the first posture of the rotating shaft structure 10 at the current moment and acquiring the reference posture of the rotating shaft structure 10. And controlling the rotating shaft structure 10 according to the first posture and the reference posture to adjust the first posture to the reference posture with a preset motion parameter.
  • the control method according to the embodiment of the present invention may be executed cyclically to continue to control the rotating shaft structure 10 to rotate.
  • the attitude of the head 10 is adjusted as a reference attitude.
  • control method when it is determined that the second posture has been adjusted to the reference posture, the control method further includes:
  • the rotating shaft structure 10 is controlled to rotate according to the control signal.
  • the processor 20 when it is determined that the second posture has been adjusted to the reference posture, the processor 20 is configured to receive a control signal and control the rotation of the rotating shaft structure 10 according to the control signal.
  • steps 034 and 036 can be implemented by the shaft structure 10 and the processor 20.
  • the PTZ 100 can communicate with a remote control terminal.
  • the remote control terminal is, for example, a remote control, a mobile phone, a tablet computer, etc., and a control signal can be generated through a physical key or a virtual key of the remote control terminal.
  • the control signal can also be generated in other ways, which is not specifically limited here.
  • the received control signal is the roll shaft frame 174 rotation 5 Degrees, the roll axis frame 174 is controlled to rotate 5 degrees correspondingly. In this way, the rotating shaft structure 10 can be further controlled according to the control signal to rotate the rotating shaft structure 10 in real time.
  • control method when it is determined that the second posture has been adjusted to the reference posture, the control method further includes:
  • the processor 20 when it is determined that the second posture has been adjusted to the reference posture, the processor 20 is configured to control the rotating shaft structure 10 to stop rotating.
  • step 038 may be implemented by the shaft structure 10 and the processor 20.
  • the rotating shaft structure 10 may also be directly controlled to stop rotating, for example, the rotating shaft structure 10 may be controlled to stop rotating when no control signal is received to reduce the power consumption of the gimbal 100.
  • control method further includes:
  • the processor 20 is configured to determine the current pose of the gimbal 100, and the current pose includes the top and bottom positions of the gimbal, and determining motion parameters according to the current position, The motion parameters include the direction of rotation.
  • steps 042 and 044 can be implemented by the processor 20.
  • the joint angle and the rotation direction of the rotating shaft structure 10 may also be different.
  • the joint angle of the translation axis frame 172 disposed on the gimbal is opposite to the joint angle of the translation axis frame 172 disposed below the gimbal, that is, the The forward rotation direction of the translation axis frame 172 is opposite to the forward rotation direction of the translation axis frame 172 below the gimbal.
  • the reverse rotation direction is opposite; the joint angle of the roll axis frame 174 on the gimbal is the same as the joint angle of the roll axis frame 174 on the gimbal, that is, the The forward rotation direction is the same as the forward rotation direction of the roll axis frame 174 under the head.
  • the reverse rotation direction of the roll axis frame 174 on the head is the same as that of the roll axis frame 174 under the head.
  • the direction of rotation is the same; the joint angle of the pitch axis frame 176 on the gimbal is opposite to the joint angle of the pitch axis frame 176 on the gimbal, that is, the forward rotation direction of the pitch axis frame 176 on the gimbal and The forward rotation direction of the tilt axis frame 176 under the gimbal is opposite, and the Reverse rotational direction of the shaft frame 176 and a reverse rotational direction opposite the head pitch axis frame 176 opposite. Therefore, the current pose of the PTZ 100 can be determined, and then the motion parameters are determined according to the current pose, so that the motion parameters can be made more accurate.
  • the first angular velocity of the pan axis frame 172, the roll axis frame 174, and the pitch axis frame 176 may be reverse rotation when the gimbal is placed downward.
  • the second angular velocity may be positive rotation; when the gimbal is mounted, the first angular velocity of the translation axis frame 172 and the pitch axis frame 176 may be positive rotation, and the second angular velocity of the translation axis frame 172 and the pitch axis frame 176 may be reverse.
  • the first angular velocity of the roll shaft frame 174 may be a reverse rotation
  • the second angular velocity of the roll shaft frame 174 may be a forward rotation.
  • the rotation directions of the first angular velocity and the second angular velocity corresponding to the upper and lower positions of the pan / tilt head are only examples here, and other rotation directions may be used in other embodiments, which are not specifically limited herein.
  • the current pose of the gimbal 100 can be detected by the inertial measurement sensor 50.
  • the inertial measurement sensor 50 is, for example, an acceleration sensor
  • the acceleration sensor is, for example, a gravity sensor.
  • the gravity sensor is used to measure the direction of the gravity acceleration of the base 30, and then the current position of the gimbal 100 is determined according to the direction of the gravity acceleration of the base 30 For example, when the direction of the gravity acceleration of the base 30 is downward, the current pose of the gimbal 100 is downward, and when the direction of the gravity acceleration of the base 30 is upward, the current pose of the gimbal 100 is a gimbal. On the home.
  • a computer-readable storage medium 2000 includes a computer program used in combination with the pan / tilt 100, and the computer program can be executed by the processor 20 to implement the control method of any one of the foregoing embodiments.
  • a computer program may be executed by the processor 20 to perform the control method described in the following steps:
  • the rotating shaft structure 10 is controlled according to the first posture and the reference posture to adjust the first posture to the reference posture with a preset motion parameter.
  • the computer program may also be executed by the processor 20 to implement the control method described in the following steps:
  • 0144 Determine the reference attitude based on the attitude of the base 30.
  • Any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for performing a particular logical function or step of a process
  • the scope of the preferred embodiments of the present invention includes additional implementations, where the functions may be performed out of the order shown or discussed, including performing the functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which It is understood by those skilled in the art to which the embodiments of the present invention pertain.
  • Logic and / or steps represented in a flowchart or otherwise described herein, for example, a sequenced list of executable instructions that may be considered to perform a logical function, may be embodied in any computer-readable medium,
  • any computer-readable medium For the instruction execution system, device, or device (such as a computer-based system, a system including a processor, or other system that can fetch and execute instructions from the instruction execution system, device, or device), or combine these instruction execution systems, devices, or devices Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • each part of the present invention may be executed by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be performed by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a logic gate circuit having a logic function for performing a logic function on a data signal Discrete logic circuits, application specific integrated circuits with suitable combinational logic gate circuits, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules can be executed in the form of hardware or software functional modules. When the integrated module is executed in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种云台(100)的控制方法、云台(100)、飞行器(1000)和计算机可读存储介质(2000),该控制方法包括:(012)获取云台(100)的转轴结构(10)在当前时刻的第一姿态;(014)获取转轴结构(10)的参考姿态;(016)根据第一姿态与参考姿态控制转轴结构(10)以预设的运动参数将第一姿态调整为参考姿态。该云台(100)用于执行该控制方法,该飞行器(1000)包括该云台(100),该计算机可读存储介质(2000)存储有可被处理器(20)执行该控制方法的计算机程序。

Description

云台的控制方法、云台、飞行器和计算机可读存储介质 技术领域
本发明涉及电子技术,特别涉及一种云台的控制方法、云台、飞行器和计算机可读存储介质。
背景技术
相机的抖动通常会影响拍摄的图像或视频,为了提高相机的防抖能力,可以将相机设置在云台上,利用云台的调节能力来保持相机的稳定。然而,云台产生大的阶跃时容易发生超调,例如云台启动时,从关节角闭环切换到姿态闭环的过渡相当于一个大阶跃,云台会发生超调。此外,在转动过程中会产生较大的噪声,从而影响用户体验。
发明内容
本发明的实施方式提供一种云台的控制方法、云台、飞行器和计算机可读存储介质,可控制云台的转轴结构以预设的运动参数进行转动。
本发明实施方式的云台的控制方法包括:
获取所述云台的转轴结构在当前时刻的第一姿态;
获取所述转轴结构的参考姿态;
根据所述第一姿态与所述参考姿态控制所述转轴结构以预设的运动参数将所述第一姿态调整为所述参考姿态。
本发明实施方式的云台包括转轴结构和处理器,所述处理器用于获取所述转轴结构在当前时刻的第一姿态、获取所述转轴结构的参考姿态、及根据所述第一姿态与所述参考姿态控制所述转轴结构以预设的运动参数将所述第一姿态调整为所述参考姿态。
本发明实施方式的飞行器,所述飞行器包括中心架、与所述中心架连接的机臂以及与所述机臂连接的动力单元,所述飞行器还包括上述云台。
本发明实施方式的计算机可读存储介质,其上存储有计算机程序,所述计算机程序可被处理器执行以完成上述控制方法。
本发明实施方式的云台的控制方法、云台、飞行器和计算机可读存储介质控制云台的转轴结构以预设的运动参数进行转动,从而避免云台产生大的阶跃时发生超调,例如在云台启动时从关节角闭环切换到姿态闭环的过渡,并且减小转动时产生的噪声,使得用户使用云台时感觉更加舒适。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描 述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明某些实施方式的飞行器的立体结构示意图;
图2是本发明某些实施方式的云台的立体结构示意图;
图3是本发明某些实施方式的云台的示意图;
图4是本发明某些实施方式的云台的控制方法的流程示意图;
图5是本发明某些实施方式的云台的示意图;
图6至图11是本发明某些实施方式的云台的控制方法的流程示意图;
图12是本发明某些实施方式的云台和计算机可读存储介质的连接示意图。
主要元件符号附图说明:
飞行器1000、云台100、转轴结构10、转轴框架17、平移轴框架172、横滚轴框架174、俯仰轴框架176、执行器19、平移轴电机192、横滚轴电机194、俯仰轴电机196、处理器20、基座30、负载支架40、惯性测量传感器50、关节角获取组件70、中心架200、机臂300、动力单元400、成像装置500、计算机可读存储介质2000。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化 本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
请参阅图1,本发明实施方式提供了一种飞行器1000,该飞行器1000包括云台100、中心架200、与中心架200连接的机臂300以及与机臂300连接的动力单元400,其中,云台100可以是下述任意一种实施方式的云台100。
在某些实施方式中,云台100上可搭载有成像装置500,成像装置500可以用于采集图像。当然,云台100也可以用于搭载其他装置,在此不做具体限定。
在一种实施例中,云台100为手持云台或设置在飞行器1000上的云台。结合图2,如图2所示,云台100为三轴云台。云台100的转轴结构10包括转轴框架17和执行器19,具体地,转轴框架17包括平移轴框架172、横滚轴框架174和俯仰轴框架176,执行器19包括平移轴电机192、横滚轴电机194和俯仰轴电机196。所述云台100还包括基座30以及负载支架40。其中,所述平移轴电机192安装于所述基座30用于带动平移轴框架172转动,所述横滚轴电机194安装于所述横滚轴框架174用于带动横滚轴框架174转动,所述俯仰轴电机196安装于所述横滚轴框架174用于带动俯仰轴框架176转动。
可以理解,云台100的转轴结构10也可以只包括一个转轴框架17和执行器19,或者两个转轴框架17和执行器19,在此本实施例不作限定。另外,虽然图2中所示,平移轴框架172连接于横滚轴框架174的一端,横滚轴框架174的另一端连接于俯仰轴框架176,负载支架40直接连接在俯仰轴框架176上,但是本发明实施例并不限于此,平移轴框架172、横滚轴框架174和俯仰轴框架176也可以以其它顺序进行连接。
请参阅图3,本发明实施方式的云台100包括有转轴结构10和处理器20。
请参阅图4,本发明实施方式的云台100可执行如图4所示的控制方法。具体地,所述控制方法包括:
012:获取云台100的转轴结构10在当前时刻的第一姿态。
请参阅图5,在某些实施方式中,云台100还设置有惯性测量传感器50。惯性测量传感器50可以设置在转轴框架17上,也可设置在其他合适的位置,用于读取云台100的姿态信息。进一步地,所述惯性测量传感器50包括加速度计或陀螺仪中的至少一种。云台 100的第一姿态由惯性测量传感器50检测获取后,发送至处理器20。
请再次参阅图4,所述控制方法还包括:
014:获取转轴结构10的参考姿态。
在某些实施方式中,所述转轴结构10的参考姿态可根据基座30的姿态获取。具体地,步骤014可以包括:
0142:获取基座30的姿态;
在某些实施方式中,基座30的姿态可以由惯性测量传感器50检测获得。例如,在一种实施方式中,云台100包括两个惯性测量传感器50,其中一个惯性测量传感器用于检测云台100的转轴结构10的姿态,一个惯性测量传感器用于检测基座30的姿态。在其他实施方式中,云台100还设置有关节角获取组件70,所述关节角获取组件70用于获取云台100的转轴结构10的关节角。进一步地,基座30的姿态可以根据惯性测量传感器50获取的云台的姿态和关节角获取组件70获取的转轴结构10的关节角计算获得。可以理解,上述方法仅为本实施例对基座30的获取方式的示意性说明,在此本实施例对基座30的获取方式不作限定。
步骤014在获取基座30的姿态后,还包括:
0144:根据基座30的姿态确定参考姿态。
在某些实施方式中,根据基座30的姿态确定参考姿态时,可以根据基座30的姿态确定转轴结构10的姿态以确定参考姿态。具体地,以三轴云台为例,可以根据基座30的姿态确定平移轴框架172、横滚轴框架174和俯仰轴框架176中至少一个框架的姿态。例如,在一个实施方式中,云台100的平移轴框架172、横滚轴框架174和俯仰轴框架176的参考姿态为(yaw.r,roll.r,pitch.r),基座30的平移轴方向、横滚轴方向和俯仰轴方向的姿态为(yaw.f,roll.f,pitch.f)。期望云台100的平移轴框架172的姿态yaw.r与基座30的平移轴方向的姿态yaw.f保持一致,同时云台100的横滚轴框架174的姿态roll.r和俯仰轴框架176的姿态pitch.r均保持水平。也就是说,可以确定云台100的平移轴框架172、横滚轴框架174和俯仰轴框架176的参考姿态为(yaw.f,0,0),此时所述云台100的平移轴框架172跟随基座30的平移轴移动,同时云台100的横滚轴框架174和俯仰轴框架176始终保持水平。如此,所述转轴结构10的参考姿态可根据基座30的姿态获取。可以理解,云台100的平移轴框架172、横滚轴框架174和俯仰轴框架176的参考姿态可以部分或全部与基座30的平移轴方向、横滚轴方向和俯仰轴方向的姿态一致,在此本实施例不作限定。
在某些实施方式中,所述转轴结构10的参考姿态可根据用户输入获取。具体地,步骤014也可以包括:
0146:根据用户输入确定参考姿态。
具体地,用户可以根据自身的需求输入参考姿态,参考姿态例如为预设的任意姿态,例如(0,0,0)或(180,180,180)等。如此,可以使得参考姿态符合用户的需求。
进一步地,请再次参阅图4,所述控制方法获取云台100的转轴结构10在当前时刻的第一姿态和转轴结构10的参考姿态后,还包括:
016:根据第一姿态与参考姿态控制转轴结构10以预设的运动参数将第一姿态调整为参考姿态。
具体地,处理器20可以控制执行器19以预设的运动参数转动转轴结构10,从而将第一姿态调整为参考姿态。
运动参数例如为转轴结构10的角速度参数、角加速度参数等,本实施例不作限定。在以下任意一种实施方式中,以运动参数为角速度参数进行说明。
在某些实施方式中,角速度参数为转轴结构10的转动角速度,转轴结构10的转动角速度小于转轴结构10的最大转动角速度。
具体地,转轴结构10的转动角速度太大时,例如转轴结构10的转动角速度为转轴结构10的最大转动角速度时,容易导致云台100产生大的阶跃,从而导致云台发生超调,并且产生较大的噪声,本发明实施方式中,转轴结构10的转动角速度小于转轴结构10的最大转动角速度,如此,可以避免云台100产生大的阶跃,从而避免云台100发生超调和产生噪声。其中,转轴结构10的最大转动角速度为转轴结构10在转动过程中能够达到的最大角速度。
请再次参阅图5,本发明实施方式的控制方法可以由本发明实施方式的云台100实现,其中,步骤012、步骤014、步骤0142、步骤0144、步骤0146和步骤016可以由处理器20和转轴结构10实现。也即是说,处理器20可以用于获取转轴结构10在当前时刻的第一姿态、获取转轴结构10的参考姿态、获取基座30的姿态、根据基座30的姿态确定参考姿态、根据用户输入确定参考姿态、及根据第一姿态与参考姿态控制转轴结构10以预设的运动参数将第一姿态调整为参考姿态。
本发明实施方式的云台100的控制方法、云台100和飞行器控制转轴结构10以预设的运动参数进行转动,从而避免云台100产生大的阶跃时发生超调,例如在云台启动时从关节角闭环切换到姿态闭环的过渡,并且减小转动时产生的噪声,使得用户使用云台100时感觉更加舒适。
请参阅图6,在某些实施方式中,控制方法包括:
024:根据预设参数、转轴结构10的参考姿态及转轴结构10的第一姿态来获取预设的角速度参数。
进一步地,步骤016包括:
0162:控制转轴结构10以预设的角速度参数将第一姿态调整为参考姿态。
请再次参阅图3,在某些实施方式中,处理器20用于根据预设参数、转轴结构10的参考姿态及转轴结构10的第一姿态来获取预设的角速度参数、及控制转轴结构10以预设的角速度参数将第一姿态调整为参考姿态。
也即是说,步骤024和步骤0162可以由处理器20实现。
具体地,平移轴框架172、横滚轴框架174和俯仰轴框架176的预设的角速度参数可以不同。在一种实施方式中,可以先计算第一姿态与参考姿态的姿态差,再根据该姿态差确定预设的角速度参数。以三轴云台为例,可以根据第一姿态与参考姿态的差值确定平移轴框架172、横滚轴框架174和俯仰轴框架176的预设的角速度参数。例如,在一个实施方式中,云台100的平移轴框架172、横滚轴框架174和俯仰轴框架176的参考姿态为(yaw.r,roll.r,pitch.r),云台100的平移轴框架172、横滚轴框架174和俯仰轴框架176的第一姿态为(yaw.1,roll.1,pitch.1),则云台100的平移轴框架172、横滚轴框架174和俯仰轴框架176的姿态差(yaw.d1,roll.d1,pitch.d1)可以为(yaw.r-yaw.1,roll.r-roll.1,pitch.r-pitch.1),即平移轴框架172的姿态差yaw.d1可以根据平移轴框架172的第一姿态yaw.1和平移轴框架172的参考姿态yaw.r确定,横滚轴框架174的姿态差roll.d1可以根据横滚轴框架174的第一姿态roll.1和横滚轴框架174的参考姿态roll.r确定,俯仰轴框架176的姿态差pitch.d1可以根据俯仰轴框架176的第一姿态pitch.1和俯仰轴框架176的参考姿态pitch.r确定。进一步地,也可以根据预设参数、第一姿态与参考姿态的差值确定平移轴框架172、横滚轴框架174和俯仰轴框架176的预设的角速度参数。例如,在一种实施方式中,平移轴框架172的角速度参数yaw.ω可以为k1*(yaw.r-yaw.1),横滚轴框架174的角速度参数roll.ω可以为k2*(roll.r-roll.1),俯仰轴框架176的角速度参数pitch.ω可以为k3*(pitch.r-pitch.1),其中,k1、k2、k3均为预设参数,可以预先存储在云台100中或由用户输入确定。可以理解,k1、k2、k3的取值可以相同或不同,本实施例不作限定。
在本发明实施方式中,根据第一姿态与参考姿态的姿态差(差值)确定预设的角速度参数。可以理解,在其他实施方式中,也可以根据其他合适的算法来确定预设的角速度参数,在此不做具体限定。
请参阅图7,在某些实施方式中,获取云台100的转轴结构10在当前时刻的第一姿态和转轴结构10的参考姿态后,所述控制方法还包括:
018:获取转轴结构10的关节角。
请再次参阅图5,如上所述,在某些实施方式中,云台100还包括关节角获取组件70,关节角获取组件70用于获取转轴结构10的关节角并发送至处理器20。关节角获取组件70包括电位器、霍尔传感器和磁编码器中的一种或多种。例如,在一种实施方式中,对于三 轴云台,其平移轴框架172、横滚轴框架174和俯仰轴框架176中各对应一个关节角获取组件70。
请继续参阅图7,获取转轴结构10的关节角后,所述控制方法还包括:
022:根据转轴结构10的关节角获取预设的角速度参数。
在某些实施方式中,获取转轴结构10的关节角后,处理器20根据转轴结构10的关节角获取预设的角速度参数。也即是说,步骤018可以由关节角获取组件70实现,步骤022可以由处理器20实现。
具体地,当转轴结构10只能转动有限圈时,转轴结构10一般设置有机械限位。当转轴结构10撞到机械限位后,无法再沿原旋转方向进行转动。由于不同的关节角对应的可能是同一个欧拉角,为了减少或避免转轴结构10撞到机械限位,可以根据转轴结构10的关节角获取预设的角速度参数,然后再控制转轴结构10以预设的角速度参数进行转动。可以理解,云台100的转轴结构10中的平移轴框架172、横滚轴框架174和俯仰轴框架176的机械限位可以相同,也可以不同。进一步地,不同类型的云台100的转轴结构10的机械限位可以相同,也可以不同,在此本实施例不作限定。进一步地,当转轴结构10的机械限位范围较小,或者转轴结构10可以转动无限圈时,由于不需考虑撞到限位,因此可以不根据关节角获取预设的角速度参数,而直接控制转轴结构10以预设的角速度参数进行转动。
具体地,请参阅图8,在某些实施方式中,步骤022中根据转轴结构10的关节角获取预设的角速度参数包括:
0222:当关节角小于或等于第一预设关节角并且大于或等于第二预设关节角时,根据预设参数、转轴结构10的参考姿态及转轴结构10的第一姿态来获取预设的角速度参数。
请继续参阅图5,在某些实施方式中,处理器20用于当关节角小于或等于第一预设关节角并且大于或等于第二预设关节角时,根据预设参数、转轴结构10的参考姿态及转轴结构10的第一姿态来获取预设的角速度参数。具体地,所述根据预设参数、转轴结构10的参考姿态及转轴结构10的第一姿态来获取预设的角速度参数可以作差,也可以为其他合适的算法,此处不赘述。
也即是说,步骤0222可以由处理器20实现。
具体地,第一预设关节角和第二预设关节角可以预先存储在云台100中或由用户输入确定。
在某些实施方式中,第一预设关节角大于第二预设关节角。对于三轴云台而言,以平移轴为例,在一个实施例中,其平移轴框架172的机械限位例如为-320度至320度,第一预设关节角例如为180度,第二预设关节角例如为-180度。在平移轴电机192上的关节角获取组件70测得的关节角大于第一预设关节角即180度时,由于不同的关节角对应同一欧 拉角,为避免撞到机械限位,可以以预设的速度控制平移轴电机192朝向关节角减小的方向旋转。在关节角小于第二预设关节角即-180度时,同样为避免撞到机械限位,可以以预设的速度控制平移轴电机192朝向关节角增加的方向旋转。当关节角小于或等于第一预设关节角即180度并且大于或等于第二预设关节角即-180度时,说明转轴结构10的关节角比较适中,不会撞到机械限位,此时可以根据预设参数、第一姿态与参考姿态确定预设的角速度参数。具体地,所述根据预设参数、转轴结构10的参考姿态及转轴结构10的第一姿态来获取预设的角速度参数可以作差,也可以为其他合适的算法,此处不赘述。
请再次参阅图8,在某些实施方式中,步骤022还包括:
0226:在关节角大于第一预设关节角时,确定预设的角速度参数为第一角速度;
0228:在关节角小于第二预设关节角时,确定预设的角速度参数为第二角速度。
请再次参阅图5,在某些实施方式中,处理器20用于在关节角大于第一预设关节角时确定预设的角速度参数为第一角速度、及在关节角小于第二预设关节角时确定预设的角速度参数为第二角速度。
也即是说,步骤0226和步骤0228可以由处理器20实现。
在某些实施方式中,对于三轴云台而言,同样以平移轴为例,在一个实施例中,其平移轴框架172的机械限位例如为-320度至320度,第一预设关节角例如为180度,第二预设关节角例如为-180度。在关节角大于第一预设关节角即180度时,为避免撞到机械限位,可以将预设的角速度参数确定为第一角速度,并且沿使得平移轴电机192的关节角减小的方向进行旋转以减小关节角,即使得平移轴电机192以第一角速度进行转动以减小关节角。在关节角小于第二预设关节角即-180度时,为避免撞到机械限位,可以将预设的角速度参数确定为第二角速度,并且沿使得平移轴电机192的关节角增大的方向进行旋转以增加关节角,即使得平移轴电机192以第二角速度进行转动以增加关节角。可以理解,本发明实施方式对云台100的转轴结构10也适用,本实施例不作限定。
在另一些实施例中,仍然对于三轴云台而言,以横滚轴为例,在一个实施例中,其横滚轴框架174的机械限位例如为-45度至45度,第一预设关节角例如为180度,第二预设关节角例如为-180度。此时由于不会撞到机械限位,因此可以不根据关节角获取预设的角速度参数,而直接控制转轴结构10以预设的角速度参数进行转动。具体地,可以根据预设参数、转轴结构10的参考姿态及转轴结构10的第一姿态来获取预设的角速度参数,上述方法可以作差,也可以为其他合适的算法,此处不赘述。
在一种实施例中,在关节角大于第一预设关节角或关节角小于第二预设关节角时,转轴结构10经过第一角速度或第二角速度的转动后会进入步骤0222,即重新获取的关节角会变成小于或等于第一预设关节角并且大于或等于第二预设关节角,此时可以根据第一姿 态与参考姿态重新确定预设的角速度参数。可以理解,也可以按照第一角速度或第二角速度的转动直至云台100的姿态调整为参考姿态,本实施例不作限定。
在某些实施方式中,第一角速度的转动方向与第二角速度的转动方向相反。具体地,在关节角大于第一预设关节角时,关节角增加会比较容易撞到限位,关节角减小不容易撞到限位,第一角速度的转动是为了减小关节角;而在关节角小于第二预设关节角时,关节角减小会比较容易撞到限位,关节角增加不容易撞到限位,第二角速度的转动是为了增加关节角,因此,第一角速度的转动方向与第二角速度的转动方向是相反的。
进一步地,请参阅图6至图8,根据所述转轴结构10的关节角获取预设的角速度参数后,处理器20控制转轴结构10以预设的角速度参数将第一姿态调整为参考姿态。
请参阅图9,在某些实施方式中,在步骤016后,控制方法还包括:
026:获取预设时长后云台100的第二姿态。
具体地,步骤026可以包括:
0262:根据预设的角速度参数和预设时长确定转轴结构10的转动角度;
0264:根据第一姿态和转动角度确定第二姿态。
具体地,由于云台100的第二姿态是由云台100的第一姿态经过预设时长的转动后形成,因此可以通过第一姿态和转动角度来确定第二姿态,而转轴结构10的转动角度可以由预设的角速度参数和预设时长确定。以三轴云台为例,例如,在一个实施方式中,云台100的平移轴框架172、横滚轴框架174和俯仰轴框架176的第一姿态为(yaw.1,roll.1,pitch.1),云台100的平移轴框架172、横滚轴框架174和俯仰轴框架176的第二姿态为(yaw.2,roll.2,pitch.2),预设时长为t,平移轴框架172的角速度参数为yaw.ω,横滚轴框架174的角速度参数为roll.ω,俯仰轴框架176的角速度参数为pitch.ω,则平移轴框架172的转动角度为yaw.ω*t,横滚轴框架174的转动角度为roll.ω*t,俯仰轴框架176的转动角度为pitch.ω*t,因此yaw.2=yaw.1+yaw.ω*t,roll.2=roll.1+roll.ω*t,pitch.2=pitch.1+pitch.ω*t。如此,可以通过运算而无需通过惯性测量传感器50来获取云台的第二姿态。
可以理解,在其他实施方式中,第二姿态也可以通过惯性测量传感器50测量获得,本实施例不作限定。
进一步地,控制方法还包括:
028:根据第二姿态与参考姿态判断第二姿态是否调整为参考姿态。
请再次参阅图3,在某些实施方式中,步骤026、步骤0262、步骤0264、和步骤028可以由处理器20实现,也即是说,处理器20用于获取预设时长后云台100的第二姿态、根据预设的角速度参数和预设时长确定转轴结构10的转动角度、根据第一姿态和转动角度确定第二姿态、及根据第二姿态与参考姿态判断第二姿态是否调整为参考姿态。
具体地,在控制转轴10以预设的运动参数转动预设时长后,需要判断云台100的姿态是否已经调整为参考姿态,即通过预设时长后云台100的第二姿态与参考姿态来判断调整是否完成。其中,预设时长可以预先存储在云台100中或由用户输入确定。
请参阅图10,在某些实施方式中,步骤028包括:
0282:根据第二姿态与参考姿态计算姿态差;
0284:判断姿态差是否小于预设阈值;
0286:在姿态差大于或等于预设阈值时,确定第二姿态没有调整为参考姿态;
0288:在姿态差小于预设阈值时,确定第二姿态已调整为参考姿态。
请再次参阅图3,在某些实施方式中,处理器20用于根据第二姿态与参考姿态计算姿态差、判断姿态差是否小于预设阈值、在姿态差大于或等于预设阈值时确定第二姿态没有调整为参考姿态、及在姿态差小于预设阈值时确定第二姿态已调整为参考姿态。
也即是说,步骤0282、步骤0284、步骤0286和步骤0288可以由处理器20实现。
具体地,以三轴云台为例,例如,在一个实施方式中,云台100的平移轴框架172、横滚轴框架174和俯仰轴框架176的第一姿态为(yaw.1,roll.1,pitch.1),云台100的平移轴框架172、横滚轴框架174和俯仰轴框架176的第二姿态为(yaw.2,roll.2,pitch.2),则云台100的平移轴框架172、横滚轴框架174和俯仰轴框架176的姿态差(roll.d2,pitch.d2,yaw.d2)可以为(roll.r-roll.2,pitch.r-pitch.2,yaw.r-yaw.2)。判断姿态差是否小于预设阈值时,可以是判断平移轴框架172、横滚轴框架174和俯仰轴框架176中的至少一个的姿态差是否小于预设阈值,即判断yaw.d2是否小于预设阈值,和/或roll.d2是否小于预设阈值,和/或pitch.d2是否小于预设阈值。在一种实施方式中,可以预先设置在任意一个或多个框架的姿态差大于或等于预设阈值时,确定第二姿态没有调整为参考姿态;在所有的框架的姿态差均小于预设阈值时,确定第二姿态已调整为参考姿态。预设阈值可以预先存储在云台100中或由用户输入确定,预设阈值一般比较小,例如为1度、5度、10度等,如此才能使得调整后云台100的姿态与参考姿态基本一致。可以理解,云台100的平移轴框架172、横滚轴框架174和俯仰轴框架176的预设阈值可以设置为相同,也可以设置为不同。
请再次参阅图9,在某些实施方式中,在第二姿态没有调整为参考姿态时,令第二姿态为当前时刻的第一姿态,控制方法还包括:
循环执行获取云台100的转轴结构10在当前时刻的第一姿态、获取转轴结构10的参考姿态、及根据第一姿态与参考姿态控制转轴结构10以预设的运动参数将第一姿态调整为参考姿态。
请再次参阅图3,在某些实施方式中,在第二姿态没有调整为参考姿态时,处理器20用于循环执行获取转轴结构10在当前时刻的第一姿态、获取转轴结构10的参考姿态、及 根据第一姿态与参考姿态控制转轴结构10以预设的运动参数将第一姿态调整为参考姿态。
具体地,在第二姿态没有调整为参考姿态时,说明至少一个转轴结构10的姿态差还大于或等于预设阈值,此时可以循环执行本发明实施方式的控制方法以继续控制转轴结构10转动以将云台10的姿态调整为参考姿态。令第二姿态为当前时刻的第一姿态,可以不需要重新计算或者测量当前时刻的第一姿态,使得第一姿态的获取更加快速。
请再次参阅图9,在某些实施方式中,在确定第二姿态已调整为参考姿态时,控制方法还包括:
034:接收控制信号;
036:根据控制信号控制转轴结构10转动。
请再次参阅图3,在某些实施方式中,在确定第二姿态已调整为参考姿态时,处理器20用于接收控制信号、及根据控制信号控制转轴结构10转动。
也即是说,步骤034和步骤036可以由转轴结构10和处理器20实现。
具体地,云台100可以与遥控终端进行通信,遥控终端例如为遥控器、手机、平板电脑等,通过遥控终端的物理按键或虚拟按键可以产生控制信号。当然,控制信号还可以通过其他方式产生,在此不做具体限定。在第二姿态已调整为参考姿态时,可以判断是否接收到控制信号,在接收到控制信号时,可以根据控制信号控制转轴结构10转动,例如接收到的控制信号为横滚轴框架174转动5度,则控制横滚轴框架174对应转动5度。如此,可以根据控制信号进一步地控制转轴结构10以使转轴结构10实时转动。
请再次参阅图9,在某些实施方式中,在确定第二姿态已调整为参考姿态时,控制方法还包括;
038:控制转轴结构10停止转动。
请再次参阅图3,在某些实施方式中,在确定第二姿态已调整为参考姿态时,处理器20用于控制转轴结构10停止转动。
也即是说,步骤038可以由转轴结构10和处理器20实现。
具体地,在确定第二姿态已调整为参考姿态时,也可以直接控制转轴结构10停止转动,例如在没有接收到控制信号时可以控制转轴结构10停止转动以减少云台100的功耗。
请参阅图11,进一步地,在某些实施方式中,控制方法还包括:
042:判断云台100的当前位姿,当前位姿包括云台上置和云台下置;和
044:根据当前位姿确定运动参数,运动参数包括转动方向。
请再次参阅图3,在某些实施方式中,处理器20用于判断云台100的当前位姿,当前位姿包括云台上置和云台下置、及根据当前位姿确定运动参数,运动参数包括转动方向。
也即是说,步骤042和步骤044可以由处理器20实现。
具体地,在云台100的位姿不同时,关节角和转轴结构10的转动方向也可能会不同。以三轴云台为例,在一种实施例中,云台上置的平移轴框架172的关节角和云台下置的平移轴框架172的关节角相反,亦即,云台上置的平移轴框架172的正向转动方向和云台下置的平移轴框架172的正向转动方向相反,云台上置的平移轴框架172的反向转动方向和云台下置的平移轴框架172的反向转动方向相反;云台上置的横滚轴框架174的关节角和云台下置的横滚轴框架174的关节角一致,亦即,云台上置的横滚轴框架174的正向转动方向和云台下置的横滚轴框架174的正向转动方向一致,云台上置的横滚轴框架174的反向转动方向和云台下置的横滚轴框架174的反向转动方向一致;云台上置的俯仰轴框架176的关节角和云台下置的俯仰轴框架176的关节角相反,亦即,云台上置的俯仰轴框架176的正向转动方向和云台下置的俯仰轴框架176的正向转动方向相反,云台上置的俯仰轴框架176的反向转动方向和云台下置的俯仰轴框架176的反向转动方向相反。因此,可以判断云台100的当前位姿,再根据当前位姿确定运动参数,从而可以使得运动参数更加准确。具体地,云台下置时,平移轴框架172、横滚轴框架174和俯仰轴框架176的第一角速度可以为反向旋转,平移轴框架172、横滚轴框架174和俯仰轴框架176的第二角速度可以为正向旋转;云台上置时,平移轴框架172和俯仰轴框架176的第一角速度可以为正向旋转,平移轴框架172和俯仰轴框架176的第二角速度可以为反向旋转,横滚轴框架174的第一角速度可以为反向旋转,横滚轴框架174的第二角速度可以为正向旋转。当然,云台上置和云台下置对应的第一角速度和第二角速度的转动方向在此只是示例,在其他实施方式中也可以是其他转动方向,在此不做具体限定。
在某些实施方式中,云台100的当前位姿可以由惯性测量传感器50检测。具体地,惯性测量传感器50例如为加速度传感器,加速度传感器例如为重力传感器,利用重力传感器测量基座30的重力加速度的方向,再根据基座30的重力加速度的方向确定云台100的当前位姿,例如当基座30的重力加速度的方向向下时,云台100的当前位姿为云台下置,当基座30的重力加速度的方向向上时,云台100的当前位姿为云台上置。
请参阅图12,本发明实施方式的计算机可读存储介质2000包括与云台100结合使用的计算机程序,所述计算机程序可被处理器20执行以完成上述任意一种实施方式的控制方法。
例如,计算机程序可被处理器20执行以完成以下步骤所述的控制方法:
012:获取云台100的转轴结构10在当前时刻的第一姿态;
014:获取转轴结构10的参考姿态;
016:根据第一姿态与参考姿态控制转轴结构10以预设的运动参数将第一姿态调整为参考姿态。
再例如,计算机程序还可被处理器20执行以完成以下步骤所述的控制方法:
0142:获取基座30的姿态;
0144:根据基座30的姿态确定参考姿态。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于执行特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的执行,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于执行逻辑功能的可执行指令的定序列表,可以具体执行在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来执行。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来执行。例如,如果用硬件来执行,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来执行:具有用于对数据信号执行逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解执行上述实施方法携带的全部或部分步骤是可以 通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式执行,也可以采用软件功能模块的形式执行。所述集成的模块如果以软件功能模块的形式执行并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (41)

  1. 一种云台的控制方法,其特征在于,所述控制方法包括:
    获取所述云台的转轴结构在当前时刻的第一姿态;
    获取所述转轴结构的参考姿态;
    根据所述第一姿态与所述参考姿态控制所述转轴结构以预设的运动参数将所述第一姿态调整为所述参考姿态。
  2. 根据权利要求1所述的控制方法,其特征在于,所述云台包括基座,所述获取所述转轴结构的参考姿态包括:
    获取所述基座的姿态;
    根据所述基座的姿态确定所述参考姿态。
  3. 根据权利要求1所述的控制方法,其特征在于,所述获取所述转轴结构的参考姿态包括:
    根据用户输入确定所述参考姿态。
  4. 根据权利要求1所述的控制方法,其特征在于,所述运动参数为所述转轴结构的角速度参数。
  5. 根据权利要求4所述的控制方法,其特征在于,所述角速度参数为所述转轴结构的转动角速度,所述转轴结构的转动角速度小于所述转轴结构的最大转动角速度。
  6. 根据权利要求4所述的控制方法,其特征在于,所述控制方法包括:
    根据预设参数、所述转轴结构的参考姿态及所述转轴结构的第一姿态来获取所述预设的角速度参数。
  7. 根据权利要求4所述的控制方法,其特征在于,所述控制方法还包括:
    获取所述转轴结构的关节角;
    根据所述转轴结构的关节角获取预设的角速度参数。
  8. 根据权利要求7所述的控制方法,其特征在于,所述根据所述转轴结构的关节角获取预设的角速度参数包括:
    当所述关节角小于或等于第一预设关节角并且大于或等于第二预设关节角时,根据预设参数、所述转轴结构的参考姿态及所述转轴结构的第一姿态来获取所述预设的角速度参数。
  9. 根据权利要求7所述的控制方法,其特征在于,所述根据所述转轴结构的关节角获取预设的角速度参数包括:
    在所述关节角大于第一预设关节角时,确定所述预设的角速度参数为第一角速度;
    在所述关节角小于第二预设关节角时,确定所述预设的角速度参数为第二角速度。
  10. 根据权利要求9所述的控制方法,其特征在于,所述第一角速度的转动方向与所述第二角速度的转动方向相反。
  11. 根据权利要求8至10任一项所述的控制方法,其特征在于,所述第一预设关节角大于所述第二预设关节角。
  12. 根据权利要求1至10任一项所述的控制方法,其特征在于,所述控制方法还包括:
    获取预设时长后所述云台的第二姿态;
    根据所述第二姿态与所述参考姿态判断所述第二姿态是否调整为所述参考姿态。
  13. 根据权利要求12所述的控制方法,其特征在于,所述获取预设时长后所述云台的第二姿态包括:
    根据所述预设的角速度参数和所述预设时长确定所述转轴结构的转动角度;
    根据所述第一姿态和所述转动角度确定所述第二姿态。
  14. 根据权利要求12所述的控制方法,其特征在于,所述根据所述第二姿态与所述参考姿态判断所述第二姿态是否调整为所述参考姿态包括:
    根据所述第二姿态与所述参考姿态计算姿态差;
    判断所述姿态差是否小于预设阈值;
    在所述姿态差大于或等于所述预设阈值时,确定所述第二姿态没有调整为所述参考姿态;
    在所述姿态差小于所述预设阈值时,确定所述第二姿态已调整为所述参考姿态。
  15. 根据权利要求14所述的控制方法,其特征在于,在所述第二姿态没有调整为所述参考姿态时,所述控制方法还包括:
    循环执行所述获取所述云台的转轴结构在当前时刻的第一姿态、所述获取所述转轴结构的参考姿态、及所述根据所述第一姿态与所述参考姿态控制所述转轴结构以预设的运动参数将所述第一姿态调整为所述参考姿态。
  16. 根据权利要求14所述的控制方法,其特征在于,在确定所述第二姿态已调整为所述参考姿态时,所述控制方法还包括:
    接收控制信号;
    根据所述控制信号控制所述转轴结构转动。
  17. 根据权利要求14所述的控制方法,其特征在于,在确定所述第二姿态已调整为所述参考姿态时,所述控制方法还包括;
    控制所述转轴结构停止转动。
  18. 根据权利要求1所述的控制方法,其特征在于,所述控制方法还包括:
    判断所述云台的当前位姿,所述当前位姿包括云台上置和云台下置;和
    根据所述当前位姿确定所述运动参数,所述运动参数包括转动方向。
  19. 根据权利要求18所述的控制方法,其特征在于,所述云台包括惯性测量传感器,所述云台的第一姿态与所述当前位姿由所述惯性测量传感器检测。
  20. 一种云台,其特征在于,所述云台包括转轴结构和处理器,所述处理器用于:
    获取所述转轴结构在当前时刻的第一姿态;
    获取所述转轴结构的参考姿态;
    根据所述第一姿态与所述参考姿态控制所述转轴结构以预设的运动参数将所述第一姿态调整为所述参考姿态。
  21. 根据权利要求20所述的云台,其特征在于,所述云台包括基座,所述处理器用于:
    获取所述基座的姿态;
    根据所述基座的姿态确定所述参考姿态。
  22. 根据权利要求20所述的云台,其特征在于,所述处理器用于:
    根据用户输入确定所述参考姿态。
  23. 根据权利要求20所述的云台,其特征在于,所述运动参数为所述转轴结构的角速度参数。
  24. 根据权利要求23所述的云台,其特征在于,所述角速度参数为所述转轴结构的转动角速度,所述转轴结构的转动角速度小于所述转轴结构的最大转动角速度。
  25. 根据权利要求23所述的云台,其特征在于,所述处理器用于:
    根据预设参数、所述转轴结构的参考姿态及所述转轴结构的第一姿态来获取所述预设的角速度参数。
  26. 根据权利要求23所述的云台,其特征在于,所述云台还包括关节角获取组件,所述关节角获取组件用于获取所述转轴结构的关节角并发送至所述处理器;所述处理器用于根据所述转轴结构的关节角获取预设的角速度参数。
  27. 根据权利要求26所述的云台,其特征在于,所述关节角获取组件包括电位器、霍尔传感器和磁编码器中的一种或多种。
  28. 根据权利要求26所述的云台,其特征在于,所述处理器用于:
    当所述关节角小于或等于第一预设关节角并且大于或等于第二预设关节角时,根据预设参数、所述转轴结构的参考姿态及所述转轴结构的第一姿态来获取所述预设的角速度参数。
  29. 根据权利要求26所述的云台,其特征在于,所述处理器用于:
    在所述关节角大于第一预设关节角时,确定所述预设的角速度参数为第一角速度;
    在所述关节角小于第二预设关节角时,确定所述预设的角速度参数为第二角速度。
  30. 根据权利要求29所述的云台,其特征在于,所述第一角速度的转动方向与所述第二角速度的转动方向相反。
  31. 根据权利要求28至30任一项所述的云台,其特征在于,所述第一预设关节角大于所述第二预设关节角。
  32. 根据权利要求20至30任一项所述的云台,其特征在于,所述处理器用于:
    获取预设时长后所述云台的第二姿态;
    根据所述第二姿态与所述参考姿态判断所述第二姿态是否调整为所述参考姿态。
  33. 根据权利要求32所述的云台,其特征在于,所述处理器用于:
    根据所述预设的角速度参数和所述预设时长确定所述转轴结构的转动角度;
    根据所述第一姿态和所述转动角度确定所述第二姿态。
  34. 根据权利要求32所述的云台,其特征在于,所述处理器用于:
    根据所述第二姿态与所述参考姿态计算姿态差;
    判断所述姿态差是否小于预设阈值;
    在所述姿态差大于或等于所述预设阈值时,确定所述第二姿态没有调整为所述参考姿态;
    在所述姿态差小于所述预设阈值时,确定所述第二姿态已调整为所述参考姿态。
  35. 根据权利要求34所述的云台,其特征在于,在所述第二姿态没有调整为所述参考姿态时,所述处理器用于:
    循环执行所述获取所述转轴结构在当前时刻的第一姿态、所述获取所述转轴结构的参考姿态、及所述根据所述第一姿态与所述参考姿态控制所述转轴结构以预设的运动参数将所述第一姿态调整为所述参考姿态。
  36. 根据权利要求34所述的云台,其特征在于,在确定所述第二姿态已调整为所述参考姿态时,所述处理器用于:
    接收控制信号;
    根据所述控制信号控制所述转轴结构转动。
  37. 根据权利要求34所述的云台,其特征在于,在确定所述第二姿态已调整为所述参考姿态时,所述处理器用于:
    控制所述转轴结构停止转动。
  38. 根据权利要求20所述的云台,其特征在于,所述处理器用于:
    判断所述云台的当前位姿,所述当前位姿包括云台上置和云台下置;和
    根据所述当前位姿确定所述运动参数,所述运动参数包括转动方向。
  39. 根据权利要求38所述的云台,其特征在于,所述云台包括惯性测量传感器,所述 云台的第一姿态与所述当前位姿由所述惯性测量传感器检测。
  40. 一种飞行器,所述飞行器包括中心架、与所述中心架连接的机臂及与所述机臂连接的动力单元,其特征在于,所述飞行器还包括权利要求20至39任意一项所述的云台。
  41. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序可被处理器执行以完成权利要求1至19中任意一项所述的控制方法。
PCT/CN2018/093821 2018-06-29 2018-06-29 云台的控制方法、云台、飞行器和计算机可读存储介质 WO2020000423A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880013244.XA CN110831860A (zh) 2018-06-29 2018-06-29 云台的控制方法、云台、飞行器和计算机可读存储介质
PCT/CN2018/093821 WO2020000423A1 (zh) 2018-06-29 2018-06-29 云台的控制方法、云台、飞行器和计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093821 WO2020000423A1 (zh) 2018-06-29 2018-06-29 云台的控制方法、云台、飞行器和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020000423A1 true WO2020000423A1 (zh) 2020-01-02

Family

ID=68985699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093821 WO2020000423A1 (zh) 2018-06-29 2018-06-29 云台的控制方法、云台、飞行器和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN110831860A (zh)
WO (1) WO2020000423A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638730A (zh) * 2020-05-25 2020-09-08 浙江大华技术股份有限公司 一种双云台控制方法、装置、电子设备及存储介质
WO2022027579A1 (zh) * 2020-08-07 2022-02-10 深圳市大疆创新科技有限公司 云台的检测方法、增稳云台、可移动平台和存储介质
CN114435613A (zh) * 2022-02-21 2022-05-06 山东省国土测绘院 一种基于无人机测绘的相机姿态调测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203567947U (zh) * 2013-06-04 2014-04-30 国家电网公司 无人机自稳定云台
CN105867436A (zh) * 2015-11-27 2016-08-17 深圳市星图智控科技有限公司 无人飞行器及其云台系统
CN105912028A (zh) * 2015-12-30 2016-08-31 东莞市青麦田数码科技有限公司 云台控制系统和控制方法
CN107074348A (zh) * 2016-12-30 2017-08-18 深圳市大疆创新科技有限公司 控制方法、装置、设备及无人飞行器
CN107585320A (zh) * 2017-10-31 2018-01-16 深圳市中航佳智能科技有限公司 一种云台装置及无人机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426282A (zh) * 2013-07-31 2013-12-04 深圳市大疆创新科技有限公司 遥控方法及终端
US20160327389A1 (en) * 2015-05-06 2016-11-10 Gopro, Inc. Calibration Transfer Between Two Devices
WO2017031697A1 (zh) * 2015-08-25 2017-03-02 深圳市大疆创新科技有限公司 模式控制系统及方法,及使用其的手持云台、可移动平台
CN105438492A (zh) * 2015-12-17 2016-03-30 小米科技有限责任公司 一体式云台相机和无人机
CN206096942U (zh) * 2016-08-31 2017-04-12 深圳市大疆创新科技有限公司 飞行控制系统和飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203567947U (zh) * 2013-06-04 2014-04-30 国家电网公司 无人机自稳定云台
CN105867436A (zh) * 2015-11-27 2016-08-17 深圳市星图智控科技有限公司 无人飞行器及其云台系统
CN105912028A (zh) * 2015-12-30 2016-08-31 东莞市青麦田数码科技有限公司 云台控制系统和控制方法
CN107074348A (zh) * 2016-12-30 2017-08-18 深圳市大疆创新科技有限公司 控制方法、装置、设备及无人飞行器
CN107585320A (zh) * 2017-10-31 2018-01-16 深圳市中航佳智能科技有限公司 一种云台装置及无人机

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638730A (zh) * 2020-05-25 2020-09-08 浙江大华技术股份有限公司 一种双云台控制方法、装置、电子设备及存储介质
CN111638730B (zh) * 2020-05-25 2023-07-25 浙江大华技术股份有限公司 一种双云台控制方法、装置、电子设备及存储介质
WO2022027579A1 (zh) * 2020-08-07 2022-02-10 深圳市大疆创新科技有限公司 云台的检测方法、增稳云台、可移动平台和存储介质
CN114435613A (zh) * 2022-02-21 2022-05-06 山东省国土测绘院 一种基于无人机测绘的相机姿态调测系统
CN114435613B (zh) * 2022-02-21 2024-03-08 山东省国土测绘院 一种基于无人机测绘的相机姿态调测系统

Also Published As

Publication number Publication date
CN110831860A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2020042064A1 (zh) 云台的控制方法与装置、云台系统和无人机
JP6255117B2 (ja) 撮像制御方法、装置および雲台装置
US11265471B2 (en) Gimbal control method, device, gimbal, system, and storage medium
WO2020000423A1 (zh) 云台的控制方法、云台、飞行器和计算机可读存储介质
WO2018191963A1 (zh) 遥控器、云台及云台控制方法、装置、系统
CN108521814B (zh) 云台的控制方法、控制器和云台
WO2019227347A1 (zh) 云台的控制方法、云台、拍摄设备及可读存储介质
WO2020042152A1 (zh) 手持云台的控制方法、手持云台及图像获取设备
WO2019227384A1 (zh) 一种云台控制方法及云台
WO2019126932A1 (zh) 云台的控制方法和控制设备
WO2021026753A1 (zh) 云台控制方法、云台及计算机可读存储介质
WO2019127094A1 (zh) 无人机、无人机控制方法和装置
WO2020107292A1 (zh) 云台的控制方法、云台、移动平台和计算机可读存储介质
CN106210544A (zh) 一种移动终端及其拍摄视频的防抖处理方法、系统
WO2020062298A1 (zh) 云台及其控制方法、可移动平台
WO2018191964A1 (zh) 云台的控制方法以及云台
WO2019210467A1 (zh) 云台控制方法与装置、云台系统、无人机和计算机可读存储介质
WO2019095210A1 (zh) 智能眼镜及其控制云台的方法、云台、控制方法和无人机
WO2020062281A1 (zh) 云台的控制方法、云台、可移动平台及可读存储介质
TWI709011B (zh) 用於無人機雲臺航向解算與控制的方法
JP6026695B1 (ja) 制御装置、移動体、制御方法及びプログラム
WO2019227410A1 (zh) 姿态转换方法、姿态显示方法及云台系统
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
WO2019148348A1 (zh) 云台控制方法和装置
WO2020087354A1 (zh) 竖向增稳机构及其控制方法以及可移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924753

Country of ref document: EP

Kind code of ref document: A1