WO2019227347A1 - 云台的控制方法、云台、拍摄设备及可读存储介质 - Google Patents

云台的控制方法、云台、拍摄设备及可读存储介质 Download PDF

Info

Publication number
WO2019227347A1
WO2019227347A1 PCT/CN2018/089048 CN2018089048W WO2019227347A1 WO 2019227347 A1 WO2019227347 A1 WO 2019227347A1 CN 2018089048 W CN2018089048 W CN 2018089048W WO 2019227347 A1 WO2019227347 A1 WO 2019227347A1
Authority
WO
WIPO (PCT)
Prior art keywords
gimbal
joint angle
target
pan
attitude
Prior art date
Application number
PCT/CN2018/089048
Other languages
English (en)
French (fr)
Inventor
刘帅
王映知
王文军
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880012716.XA priority Critical patent/CN110337560B/zh
Priority to PCT/CN2018/089048 priority patent/WO2019227347A1/zh
Publication of WO2019227347A1 publication Critical patent/WO2019227347A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/08Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a vertical axis, e.g. panoramic heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the present application relates to the field of PTZ control, and in particular, to a method for controlling a PTZ, a PTZ, a photographing device, and a readable storage medium.
  • the gimbal is generally driven by multiple motors.
  • the three-axis gimbal includes a yaw axis motor, a roll axis motor, and a pitch axis. Motor. In the free mode, push the gimbal to the corresponding position by hand. When the gimbal is turned to the target attitude, it will easily hit the limit, which will cause the motor to stall, the temperature will rise, the motor will burn out easily, and the user experience will be poor.
  • Embodiments of the present application provide a control method for a PTZ, a PTZ, a photographing device, and a readable storage medium.
  • An embodiment of the present application provides a method for controlling a PTZ.
  • the control method of the PTZ includes:
  • the movement direction of the pan / tilt is determined according to the target joint angle of the pan / tilt and the current joint angle of the pan / tilt, and the pan / tilt is controlled to move to the target attitude in accordance with the movement direction of the pan / tilt.
  • the gimbal returns to the target attitude, it hits the limit and causes the motor to stall, which can increase the service life of the gimbal and provide good user experience.
  • An embodiment of the present application provides a gimbal including one or more gimbal axes and a motor for driving the one or more gimbal axes to move.
  • the pan / tilt includes: one or more processors, working individually or collectively, the processors are used to:
  • the movement direction of the gimbal is determined according to the target joint angle of the gimbal and the current joint angle of the gimbal, and the gimbal is controlled to move to the target attitude in accordance with the gimbal's movement direction. This can prevent the gimbal from turning to When the target attitude hits the limit and the motor stalls, the service life of the gimbal can be improved, and the user experience is good.
  • An embodiment of the present application provides a photographing apparatus.
  • the photographing device includes the pan / tilt head and a photographing device of the foregoing embodiment, and the photographing device is installed on the pan / tilt head.
  • the movement direction of the gimbal is determined according to the target joint angle of the gimbal and the current joint angle of the gimbal, and the gimbal is controlled to move to the target attitude in accordance with the gimbal's movement direction, which can prevent the gimbal from rotating
  • the situation where the motor stalls when hitting the limit position when reaching the target attitude can improve the service life of the gimbal and provide good user experience.
  • An embodiment of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the method for controlling the PTZ in the foregoing embodiment is implemented.
  • FIG. 1 is a flowchart of a control method for a pan / tilt according to an embodiment of the present application.
  • FIG. 2 is a schematic block diagram of a pan / tilt according to an embodiment of the present application.
  • FIG. 3 is another flowchart of a control method for a pan / tilt according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an operation path of a pan / tilt according to an embodiment of the present application.
  • FIG. 5 is another flowchart of a control method for a pan / tilt according to an embodiment of the present application.
  • FIG. 6 is another flowchart of the control method of the pan / tilt according to the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a photographing device according to an embodiment of the present application.
  • Camera 200 PTZ 100, yaw axis arm 21, roll axis arm 23, pitch axis arm 25, yaw axis motor 22, roll axis motor 24, pitch axis motor 26, mechanical limit 201,
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, the meaning of "a plurality" is two or more, unless it is specifically and specifically defined otherwise.
  • the control method of the pan / tilt 100 according to the embodiment of the present application can be implemented by the pan / tilt 100 according to the embodiment of the present application and applied to the photographing device 200 and the pan / tilt 100 according to the embodiment of the present application.
  • the PTZ 100 includes a mechanical limit 201.
  • the PTZ 100 moves within the range defined by the mechanical limit 201.
  • the control method of the PTZ 100 includes:
  • Step S10 Obtain the current pose of the PTZ 100 and the current joint angle of the PTZ 100;
  • Step S20 Calculate the base attitude of the PTZ 100 according to the current attitude of the PTZ 100 and the current joint angle of the PTZ 100;
  • Step S30 Calculate the target joint angle of the PTZ 100 according to the base attitude and the target attitude of the PTZ 100;
  • Step S40 Determine the moving direction of the PTZ 100 according to the target joint angle of the PTZ 100 and the current joint angle of the PTZ 100;
  • step S50 the PTZ 100 is controlled to move to the target attitude of the PTZ 100 according to the movement direction of the PTZ 100.
  • the pan / tilt 100 includes one or more processors 10, which work individually or collectively.
  • the gimbal 100 may include a memory 20, and the memory 20 may include a volatile memory (random-access memory, RAM); the memory 20 may also include a non-volatile memory (non-volatile memory) For example, flash memory (flash memory), hard disk (HDD) or solid-state drive (SSD); used to store computer programs.
  • the processor 10 can call a program to implement a corresponding control method of the PTZ 100.
  • the processor 10 is used for:
  • the PTZ 100 is controlled to move to the target attitude of the PTZ 100 according to the moving direction of the PTZ 100.
  • steps S10, S20, S30, S40, and S50 of the control method of the pan / tilt 100 according to the embodiment of the present application may be implemented by the processor 10.
  • the control method of the pan / tilt head 100 and the pan / tilt head 100 determine the movement direction of the pan / tilt head 100 according to the target joint angle of the pan / tilt head 100 and the current joint angle of the pan / tilt head 100, and control the pan / tilt head 100 according to the The moving direction moves to the target posture, which can avoid the situation that the motor will stall due to hitting the limit when the gimbal 100 rotates to the target posture, thereby improving the service life of the gimbal 100 and providing good user experience.
  • the target posture may be manually input by the user, for example, the user manually enters the target posture of the PTZ 100.
  • the PTZ 100 is in a free state, and the user pushes the PTZ with his hand. The gimbal needs to return to its original state, and the attitude corresponding to the original state is the target attitude of the gimbal 100 in this scenario.
  • determining the movement direction of the gimbal 100 according to the target joint angle of the gimbal 100 and the current joint angle of the gimbal 100 includes: according to the relative of the target joint angle of the gimbal 100 and the current joint angle of the gimbal 100 The size determines the direction of movement.
  • the pan / tilt head 100 may be a stabilizing device and a supporting device for installing and fixing a load such as a camera or a sensor.
  • the head 100 can be a two-axis head 100 or a three-axis head 100.
  • This embodiment further uses the pan / tilt head 100 as a three-axis pan / tilt head 100 as an example for further explanation.
  • the gimbal 100 may include a yaw axis arm 21, a roll axis arm 23, a pitch axis axis arm 25, and a yaw axis motor 22 for controlling the rotation of the yaw axis axis arm 21.
  • the axis arm 21, the roll axis arm 23, and the pitch axis axis arm 25 are rotated to control the attitude of the pan / tilt head 100.
  • the pan / tilt head 100 includes a base 30, an outer frame 120, a middle frame 130 and an inner frame 140.
  • the middle frame 130 is rotatably connected to the outer frame 120 and the inner frame 140.
  • the base 30 of the pan / tilt 100 is rotatably connected to the outer frame 120.
  • the current posture of the PTZ 100 is the current posture of the inner frame 140. Specifically, the measured values of the current pose and the current joint angle of the gimbal 100 are known (measurable).
  • the outer frame 120 is rotated about the Z axis, and the posture of the outer frame 120 can be obtained according to the posture of the base and the joint angle of the outer frame 120.
  • the middle frame 130 is rotated about the X axis, and can be obtained according to the posture of the outer frame 120 and the joint angle of the middle frame 130.
  • the posture of the middle frame 130 is such that the inner frame 140 rotates around the Y axis.
  • the posture of the inner frame 140 can be obtained according to the posture of the middle frame 130 and the joint angle of the inner frame 140.
  • the posture of the inner frame 140 is the posture of the gimbal 100.
  • the yaw axis arm 21 may correspond to the outer frame 120 of the gimbal 100
  • the roll axis arm 23 may correspond to the middle frame 130 of the gimbal 100
  • the shaft arm 25 may correspond to the inner frame 140 of the head 100.
  • the gimbal 100 when the gimbal 100 is placed under the load carried by the gimbal 100 and the target joint angle of the gimbal 100 is greater than the current joint angle of the gimbal 100, control the gimbal 100 to move along the positive direction of the Z axis of the gimbal;
  • the PTZ 100 is placed above the load carried by the PTZ 100 and the target joint angle of the PTZ 100 is smaller than the current joint angle of the PTZ 100, the PTZ 100 is controlled to move along the positive direction of the Z axis of the PTZ 100.
  • controlling the PTZ 100 to move along the positive direction of the Z axis of the PTZ can be understood as moving clockwise along the Z axis of the PTZ.
  • the attitude of the gimbal in this embodiment is a three-dimensional quantity
  • the joint angle of the gimbal is a one-dimensional quantity.
  • the gimbal is horizontally placed on the ground.
  • the base is flat on the ground.
  • the joint angles of the roll axis and pitch axis are both 0.
  • the current pose of the PTZ 100 may be the pose of the inner frame 140 of the PTZ, and the current pose of the PTZ 100 may be obtained through an inertial measurement unit (IMU) provided on the inner frame 140 of the PTZ 100 ) Measured attitude.
  • IMU inertial measurement unit
  • the inertial measurement unit includes an accelerometer and a gyroscope.
  • the current joint angle of the gimbal 100 is obtained through angle sensors (such as Hall sensors) provided in the yaw axis motor 22, the roll axis motor 24, and the pitch axis motor 26, respectively, to obtain the corresponding The current joint angle.
  • the target attitude of the PTZ 100 may be setting data directly input by the user, that is, the PTZ 100 will move the PTZ 100 to the position of the target attitude of the PTZ 100 according to the setting data input by the user.
  • the current attitude quaternion of the gimbal 100 is represented by q_camera_meas
  • the quaternion of the joint angle of the inner frame of the gimbal 100 is represented by q_inn
  • the quaternion of the joint angle of the middle frame 130 of the gimbal 100 The number is expressed as q_mid
  • the quaternion of the joint angle of the outer frame 120 of the gimbal 100 is expressed as q_out
  • the quaternion q_base of the base attitude of the gimbal 100 is expressed as q_camera_meas
  • the quaternion of the joint angle of the inner frame of the gimbal 100 is represented by q_inn
  • the quaternion of the joint angle of the middle frame 130 of the gimbal 100 The number is expressed as q_mid
  • the quaternion of the joint angle of the outer frame 120 of the gimbal 100 is expressed as q_out
  • q_camera_meas q_base * q_out * q_mid * q_inn
  • the quaternion of the target attitude of the PTZ 100 input by the user is expressed as q_camera_tar
  • the quaternion of the target joint angle of the inner frame 140 is expressed as q_inn_tar
  • the quaternion of the target joint angle of the middle frame 130 is expressed as q_mid_tar
  • the quaternion of the target joint angle of the outer frame 120 is represented as q_out_tar. Since the attitude q_base of the base of the gimbal 100 can be considered constant within a certain period of time (for example, 1 second), the target joint angle q_mid_tar of the middle frame 130 and the target joint angle q_out_tar of the outer frame 120 are in this section.
  • q_mid_tar q_mid
  • q_out_tar q_out
  • q_camera_tar q_base * q_out_tar * q_mid_tar * q_inn_tar
  • the joint angle q_mid_tar of the middle frame 130, and finally the joint angle q_out_tar of the outer frame 120 is obtained based on the joint angle q_mid_tar of the middle frame 130.
  • the motors of each rotation axis are adjusted according to the target joint angle of the gimbal 100 to make the gimbal 100 reach the target attitude. .
  • the attitude of the gimbal in this embodiment is a three-dimensional quantity
  • the joint angle of the gimbal is a one-dimensional quantity.
  • the gimbal is horizontally placed on the ground.
  • the base is flat on the ground.
  • the joint angles of the roll axis and pitch axis are both 0.
  • the joint angle q_out_tar of the outer frame 120 is the target joint angle of the gimbal 100 of this embodiment.
  • the quaternion representation method of the joint angle of each axis in this embodiment can be regarded as the description method of Euler angles, that is, the quaternion representation method of the joint angle of each axis can be converted into the representation of Euler angles method.
  • the range of Euler angles is [-180 degrees, 180 degrees].
  • the processor 10 may determine the movement direction of the gimbal 100 according to the target joint of the gimbal 100 and the current joint angle of the gimbal 100, that is, it may control the gimbal 100 to The path runs in the opposite direction or in the opposite direction to avoid the PTZ 100 from hitting the limit.
  • the processor 10 can control the PTZ 100 to move to the target attitude of the PTZ 100 set by the user according to the movement direction determined by the processor 10.
  • the PTZ 100 includes a mechanical limit 201.
  • the PTZ 100 moves within a range defined by the mechanical limit 201.
  • the control method includes:
  • the target joint angle of the pan / tilt head 100 is selected from the preset position of the current joint angle of the pan / tilt head 100 as the final position of the pan / tilt head 100.
  • Target joint angle is selected from the preset position of the current joint angle of the pan / tilt head 100 as the final position of the pan / tilt head 100.
  • the processor 10 is configured to:
  • the target joint angle of the pan / tilt head 100 is selected from the preset position of the current joint angle of the pan / tilt head 100 as the final position of the pan / tilt head 100.
  • Target joint angle is selected from the preset position of the current joint angle of the pan / tilt head 100 as the final position of the pan / tilt head 100.
  • control method of the above embodiment can be implemented by the processor 10.
  • the preset position is a position where the head 100 is located when one of the target joint angles of the plurality of heads 100 is closest to the current joint angle of the head 100.
  • the PTZ 100 can move from the current joint angle to one of the target joint angles, but in some cases it needs to be considered that if you want the PTZ 100 moves from the current position to the target posture in less time.
  • the preset position can also be understood as the target joint angle closest to the current joint angle of the PTZ 100 among the multiple target joint angles, that is, one of the target joint angles of the multiple PTZ 100 and the PTZ 100 A target joint angle of the gimbal 100 when the current joint angle angle difference is the smallest.
  • the gimbal is horizontally placed on the ground, and the gimbal base is flat on the ground.
  • the joint angles of the roll axis and pitch axis are both 0, in the embodiment, only the movement of the yaw axis is concerned.
  • the range defined by the mechanical limit is [-400 degrees, 400 degrees]
  • the current joint angle of the PTZ 100 is 100 degrees.
  • the angle difference between the two is 70 degrees.
  • the angle difference between the two is 290 degrees.
  • the target joint angle of the PTZ 100 is -330 degrees and the current joint angle of the PTZ 100 is 100 degrees, the angle difference between the two is 430 degrees. Therefore, the target joint angle of the PTZ 100 corresponding to the position closest to the current joint angle value of the PTZ 100 at 30 degrees can be obtained, that is, at this time, 30 degrees can be the final target joint of the PTZ 100 angle.
  • control method of the PTZ 100 includes:
  • Step S60 determining whether the difference between the current joint angle of the PTZ 100 and the final target joint angle of the PTZ 100 is less than a preset value
  • step S62 controlling the PTZ 100 to directly move to the target posture according to the moving direction of the PTZ 100;
  • step S64 generating an intermediate target attitude according to the current joint angle of the PTZ 100 and the final target joint angle of the PTZ 100, and controlling the PTZ 100 to move to the intermediate target attitude in accordance with the movement direction of the PTZ 100 until the PTZ 100 moves To the target attitude of the gimbal 100.
  • the processor 10 is configured to:
  • this can prevent the PTZ 100 from hitting the mechanical limit 201, and can smoothly rotate the PTZ 100 to the target attitude of the PTZ 100.
  • the mechanical limit 201 of the outer frame 120 is generally large, and the problem of the shortest path collision limit is more likely to occur. Therefore, the following first and second embodiments are exemplified by the outer frame 120. Note that the outer frame 120 rotates around the yaw axis. For the convenience of illustration, in the following first and second embodiments, in special cases, the gimbal is placed horizontally on the ground, and the gimbal base is placed on the ground. At this time, the Z axis of the world coordinate system and the Z axis of the gimbal's coordinate system are parallel and perpendicular to the horizontal plane.
  • the first and second embodiments are explanations of the target joint angles of the plurality of gimbals 100 within the range defined by the mechanical limit 201.
  • the preset value may be 180 degrees, and the current joint angle of the gimbal is the joint angle of the yaw axis as an example.
  • the joint angles of the roll axis and pitch axis are both 0. .
  • the range of the mechanical limit 201 is [-320 degrees, 320 degrees].
  • the joint angle of the PTZ 100 in a clockwise direction gradually increases, and the joint angle of the PTZ 100 in a counterclockwise direction gradually decreases.
  • the mechanical limit 201 includes the first limit 201a and the second limit 201b.
  • the first limit is the maximum angular position in the positive range
  • the second limit is the negative range.
  • the minimum angular position that is, the first limit position 201a corresponds to a position of 320 degrees
  • the second limit position corresponds to a position of -320 degrees.
  • the PTZ can be turned counterclockwise from point B to point D, point A, and slide past the second limit 201b of the mechanical limit to point C. At the same time, the PTZ can rotate clockwise from point B to point E, point F, slide through the first limit 201a of the mechanical limit, and finally to point C.
  • the current attitude of the PTZ 100 is -60 degrees
  • the current joint angle of the PTZ 100 is 200 degrees
  • the target attitude of the PTZ 100 is 50 degrees.
  • the base attitude (yaw) + the current joint angle of the outer frame the current attitude of the gimbal
  • the PTZ moves in the forward direction (clockwise) from point D to point B as the shortest path, there is no mechanical limit, and the final target joint of the PTZ 100
  • the difference (110 degrees) between the angle (310 degrees) and the current joint angle (200 degrees) of the gimbal 100 is less than the preset value (180 degrees). Therefore, you do not need to avoid the shortest path, you can directly move the gimbal 100 from the current attitude Move to the target posture.
  • the control method of the above embodiment can be applied to any one of a yaw axis, a roll axis, and a pitch axis of the gimbal 100 or a multi-axis.
  • the range of the mechanical limit 201 of the gimbal 100 is [-450 degrees, 120 degrees], and the current joint angle of the gimbal is the joint angle of the yaw axis as an example.
  • the roll axis Both the pitch angle and the pitch axis are zero. It is known that the current attitude of the PTZ 100 is 50 degrees, the current joint angle of the PTZ 100 is 110 degrees, and the target attitude of the PTZ 100 is -140 degrees.
  • the target joint angle (-80 degrees) of the PTZ 100 is closer to the current joint angle (110 degrees) of the PTZ 100, the target joint angle (-80 degrees) of the PTZ 100 is taken as the final target of the PTZ 100 Joint angle.
  • the gimbal moves in the positive direction (clockwise) from the position of the current joint angle (110 degrees) of the gimbal 100 to the position of the target joint angle (-80 degrees) of the gimbal 100 is the shortest path, but it will Hit a mechanical limit, so at this time, this embodiment controls the PTZ to avoid the shortest path, that is, to control the position of the PTZ in the opposite direction (counterclockwise) from the current joint angle (110 degrees) of the PTZ 100 Move to the position where the target joint angle (-80 degrees) of the gimbal 100 is.
  • the gimbal 100 Since the difference (190) between the target joint angle (-80 degrees) of the PTZ 100 and the current joint angle (110 degrees) of the PTZ 100 is greater than the preset value (180 degrees), during the closed-loop attitude, the shortest path Problem, the gimbal 100 will generate a clockwise speed, so when the difference between the target joint angle and the current joint angle is greater than a preset value, multiple intermediate poses need to be generated to move the gimbal along the intermediate pose to the target pose. Therefore, the target joint angle of the PTZ 100 (-80 degrees) and the current joint angle of the PTZ 100 (110 degrees) need to be used to generate the intermediate target joint angle of the PTZ 100.
  • the intermediate target attitude of the PTZ 100 PTZ 100
  • the current joint angle (110 degrees) + dir * 40, since the gimbal rotates in the opposite direction (counterclockwise), then dir -1, that is, the intermediate target joint angle of the gimbal 100 is 70 degrees. Therefore, the processor 10 can control the PTZ 100 to move from the current joint angle of the PTZ 100 to the intermediate target joint angle of the PTZ 100, and to move the joint after the PTZ 100 moves to the intermediate target joint angle of the PTZ 100 The angle is used as the current joint angle of the PTZ 100, and so on, until the PTZ 100 moves to the target joint angle of the PTZ 100 and reaches the target attitude.
  • the control method of the above embodiment can be applied to any one of a yaw axis, a roll axis, and a pitch axis of the gimbal 100 or a multi-axis.
  • intermediate target attitude can be calculated according to the intermediate target joint angle and the base attitude of the gimbal 100.
  • Intermediate target attitude of PTZ 100 current attitude of PTZ 100 + dir * R, where dir represents the direction of PTZ movement, dir is 1 when PTZ movement is positive, and dir is -1 when PTZ is negative .
  • R is a preset value, and R can range from 0 to 90.
  • the PTZ 100 includes a mechanical limit 201.
  • the PTZ 100 moves within a range defined by the mechanical limit 201.
  • step S70 when the target joint angle of a single PTZ 100 exists within the range defined by the mechanical limit 201, it is determined whether the difference between the current joint angle of the PTZ 100 and the target joint angle of the PTZ 100 is less than a preset value. If yes, step S72, controlling the PTZ 100 to directly move to the target posture according to the moving direction of the PTZ 100;
  • step S74 Generate an intermediate target attitude according to the current joint angle of the PTZ 100 and the target joint angle of the PTZ 100, and control the PTZ 100 to move to the intermediate target attitude according to the movement direction of the PTZ 100 until the PTZ 100 moves to Goal posture.
  • the processor 10 is configured to:
  • this can prevent the PTZ 100 from hitting the mechanical limit 201, and can smoothly rotate the PTZ 100 to the target attitude of the PTZ 100.
  • the mechanical limit 201 of the outer frame 120 is generally large, and the problem of the shortest path collision limit is more likely to occur. Therefore, the third and fourth embodiments below are both for the outer frame 120 as To illustrate, the outer frame 120 rotates around the yaw axis.
  • the gimbal is placed horizontally on the ground, and the gimbal base is placed flat. On the ground, at this time, the Z axis that meets the world coordinate system and the Z axis of the gimbal's coordinate system are parallel and both are perpendicular to the horizontal plane.
  • the Z axis of the gimbal coincides with the yaw axis of the gimbal, and the roll axis
  • the roll and pitch joint angles are both 0.
  • the following third and fourth embodiments are explanations of a target joint angle of a single gimbal 100 within a range defined by the mechanical limit 201.
  • Embodiment 3 The range of the mechanical limit 201 of the gimbal 100 is [-320 degrees, 320 degrees], and the current joint angle of the gimbal is the joint angle of the yaw axis as an example.
  • the roll axis Both the pitch angle and the pitch axis are zero.
  • the current attitude of the PTZ 100 is -60 degrees
  • the current joint angle of the PTZ 100 is 200 degrees
  • the target attitude of the PTZ 100 is 90 degrees.
  • the obtained angle + 360 * I (I ⁇ N) represents the same orientation.
  • the target joint angle of the PTZ 100 can be calculated to be -10 degrees. Within the range of the mechanical limit, the joint angle of the PTZ 100 has only one target joint angle (-10 degrees) of the PTZ 100.
  • the gimbal moves in the positive direction (clockwise) from the position of the current joint angle (200 degrees) of the gimbal 100 to the position of the target joint angle (-10 degrees) of the gimbal 100 is the shortest path, but it will Hit a mechanical limit, so at this time, this embodiment controls the PTZ to avoid the shortest path, that is, to control the position of the PTZ in the opposite direction (counterclockwise) from the current joint angle (200 degrees) of the PTZ 100 Move to the position where the target joint angle (-10 degrees) of the gimbal 100 is.
  • the PTZ 100 Since the difference (210 degrees) between the target joint angle (-10 degrees) of the PTZ 100 and the current joint angle (200 degrees) of the PTZ 100 is greater than the preset value (180 degrees), during the closed-loop attitude, the shortest For the problem of the path, the PTZ 100 will generate a clockwise speed. Therefore, when the difference between the target joint angle and the current joint angle is greater than a preset value, multiple intermediate poses need to be generated to move the PTZ along the intermediate pose to the target pose. Therefore, the intermediate target joint angle of the PTZ 100 needs to be generated according to the target joint angle (-10 degrees) of the PTZ 100 and the current joint angle (200 degrees) of the PTZ 100.
  • the intermediate target attitude of the PTZ 100 PTZ
  • the control method of the above embodiment can be applied to any one of a yaw axis, a roll axis, and a pitch axis of the gimbal 100 or a multi-axis.
  • Embodiment 4 The range of the mechanical limit 201 of the gimbal 100 is [-180 degrees, 180 degrees], and the current joint angle of the gimbal is the joint angle of the yaw axis as an example.
  • the roll axis Both the pitch angle and the pitch axis are zero. It is known that the current attitude of the PTZ 100 is -60 degrees, the current joint angle of the PTZ 100 is 0 degrees, and the target attitude of the PTZ 100 is -50 degrees.
  • the base attitude (yaw) + the current joint angle of the outer frame the current attitude of the gimbal
  • the attitude and the current joint angle of the gimbal 100 can be used to obtain the base attitude of the gimbal 100 as -60 degrees
  • base attitude (yaw) + target joint angle of the outer frame target attitude of the gimbal
  • the target joint angle of the gimbal 100 is 10 degrees
  • the feasible joint angle of the gimbal 100 within the range of the mechanical limit is only one target joint angle of the gimbal 100 (10 degrees).
  • the gimbal moves in the positive direction (clockwise) from the position of the current joint angle (0 degrees) of the gimbal 100 to the position of the target joint angle (10 degrees) of the gimbal 100 as the shortest path.
  • the difference (10 degrees) between the target joint angle (10 degrees) of the PTZ 100 and the current joint angle (0 degrees) of the PTZ 100 is less than the preset value (180 degrees), so there is no need to avoid the shortest path,
  • the PTZ 100 can be directly moved from the current posture to the target posture.
  • the control method of the above embodiment can be applied to any one of a yaw axis, a roll axis, and a pitch axis of the gimbal 100 or a multi-axis.
  • the PTZ 100 includes a mechanical limit 201
  • the mechanical limit 201 includes a first limit 201 a and a second limit 201 b
  • the PTZ 100 is at the first position.
  • the movement within the range defined by the limit 201a and the second limit 201b together, the control method includes:
  • Step S80 when the target joint angle of the PTZ 100 is outside the range, calculate a first difference between the target joint angle of the PTZ 100 and the joint angle at which the first limit second limit 201b is located, and calculate the The second difference between the target joint angle and the joint angle at which the second limit 201b is located;
  • Step S82 determining whether the first difference is smaller than the second difference
  • step S84 the target joint angle of the PTZ 100 is corrected to the joint angle at which the first limit 201a is located;
  • step S86 the target joint angle of the gimbal 100 is corrected to the joint angle where the second limit 201b is located.
  • the processor 10 is configured to:
  • the target joint angle of the gimbal 100 is corrected to the joint angle where the first limit 201a is located;
  • the target joint angle of the gimbal 100 is corrected to the joint angle at which the second limit 201b is located.
  • this can prevent the PTZ 100 from hitting the mechanical limit, and can smoothly rotate the PTZ 100 to the target attitude of the PTZ 100.
  • the following fourth embodiment is an explanation that the target joint angle of the gimbal 100 is out of range.
  • the mechanical limit 201 of the outer frame 120 is generally large, and the problem of the shortest path collision limit is more likely to occur. Therefore, the following embodiment 5 is used as an example to explain the outer frame 120.
  • the outer frame 120 rotates around the yaw axis.
  • the pan / tilt head is placed horizontally on the ground and the pan / tilt base is placed on the ground.
  • the Z axis of the system is parallel to the Z axis of the coordinate system of the gimbal, and both are perpendicular to the horizontal plane.
  • the Z axis of the gimbal coincides with the yaw axis of the gimbal, and the roll axis and pitch axis All joint angles are 0, and in the embodiment, only the movement of the yaw axis is focused.
  • Embodiment 5 The range of the mechanical limit of the PTZ 100 is [-200 degrees, 60 degrees], that is, the first limit 201a is -200 degrees, the second limit 201b is 60 degrees, and the current joint angle of the PTZ is The yaw joint angle is taken as an example, and the roll and pitch joint angles are both zero. It is known that the current attitude of the PTZ 100 is 90 degrees, the current joint angle of the PTZ 100 is -10 degrees, and the target attitude of the PTZ 100 is 170 degrees.
  • the base attitude (yaw) + the current joint angle of the outer frame the current attitude of the gimbal
  • the current attitude and the current joint angle of the gimbal 100 can be used to determine that the base attitude of the gimbal 100 is 100 degrees.
  • base attitude (yaw) + target joint angle of the outer frame target attitude of the gimbal
  • the target attitude of the platform 100 (170 degrees) and the base attitude of the platform 100 (100 degrees) can be calculated to calculate the target joint angle of the platform 100 is 70 degrees, and the target joint angle of the platform 100 (70 degrees) is at the mechanical limit Outside the range of 201.
  • the first difference between the target joint angle (70 degrees) of the gimbal 100 and the joint angle (-200 degrees) where the first limit 201a is located is 270 degrees, and the target joint angle (70 degrees) of the gimbal 100 is calculated.
  • the joint angle (60 degrees) where the second limit is located has a second difference of 10 degrees. Since the first difference (270 degrees) is greater than the second difference (10), the target joint angle of the gimbal 100 is corrected to the joint angle (60 degrees) at which the second limit 201b is located. Since the difference (70 degrees) between the corrected joint angle (60) of the gimbal 100 and the current joint angle (-10 degrees) of the gimbal 100 is less than the preset value (180 degrees), the gimbal is moving in the positive direction (forward The clockwise direction is the shortest path from the position where the current joint angle (-10 degrees) of the PTZ 100 is located to the position where the target joint angle (-60 degrees) of the PTZ 100 is.
  • the PTZ 100 can be directly moved from the current attitude to the target attitude. It should be noted that the control method of the above embodiment can be applied to any one of a yaw axis, a roll axis, and a pitch axis of the gimbal 100 or a multi-axis.
  • an embodiment of the present application further provides a photographing device 200.
  • the photographing device 200 includes a pan / tilt head 100 and a photographing device 110, and the photographing device 110 is installed on the pan / tilt 100.
  • the moving direction of the PTZ 100 is determined according to the target joint angle of the PTZ 100 and the current joint angle of the PTZ 100, and the PTZ 100 is controlled to move to the target posture according to the moving direction of the PTZ 100, This can prevent the motor from stalling due to hitting the limit when the gimbal 100 is turned to the target attitude, thereby improving the service life of the gimbal 100 and providing good user experience.
  • the photographing device 200100 may further include a supporting device, and the supporting device is configured to support the pan / tilt 100.
  • the photographing device 200100 may be, for example, a handheld photographing device 200.
  • An embodiment of the present application provides a readable storage medium on which a computer program is stored, and when the program is executed by the processor 10, any one of the processes of the control method of the pan / tilt 100 of the foregoing embodiment is implemented.
  • Any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for performing a particular logical function or step of a process
  • the scope of the preferred embodiments of the present application includes additional implementations, which may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present application pertain.
  • Logic and / or steps represented in a flowchart or otherwise described herein, for example, a sequenced list of executable instructions that may be considered to perform a logical function, may be embodied in any computer-readable medium,
  • any computer-readable medium For the instruction execution system, device, or device (such as a computer-based system, a system including a processor, or other system that can fetch and execute instructions from the instruction execution system, device, or device), or combine these instruction execution systems, devices, or devices Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • each part of the present application may be executed by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be performed by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a logic gate circuit having a logic function for performing a logic function on a data signal Discrete logic circuits, application specific integrated circuits with suitable combinational logic gate circuits, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules can be executed in the form of hardware or software functional modules. When the integrated module is executed in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Accessories Of Cameras (AREA)
  • Studio Devices (AREA)

Abstract

一种云台(100)的控制方法、云台(100)、拍摄设备(200)及可读存储介质。云台(100)的控制方法包括步骤:获取云台(100)的当前姿态和云台(100)的当前关节角(S10);根据云台(100)的当前姿态和云台(100)的当前关节角计算云台(100)的基座姿态(S20);根据云台(100)的基座姿态和目标姿态计算云台(100)的目标关节角(S30);根据云台(100)的目标关节角和云台(100)的当前关节角确定云台(100)的运动方向(S40);控制云台(100)按照云台(100)的运动方向运动至云台的目标姿态(S50)。

Description

云台的控制方法、云台、拍摄设备及可读存储介质 技术领域
本申请涉及云台控制领域,特别涉及一种云台的控制方法、云台、拍摄设备和可读存储介质。
背景技术
在相关技术中,云台一般由多个电机驱动,例如对于三轴云台来说,三轴云台包括有偏航(yaw)轴电机、横滚(roll)轴电机及俯仰(pitch)轴电机。云台在自由模式下,用手推云台到相应的位置,云台回转至目标姿态时容易撞到限位,从而导致电机堵转,温度上升,容易烧坏电机,用户体验性差。
发明内容
本申请的实施方式提供一种云台的控制方法、云台、拍摄设备和可读存储介质。
本申请的实施方式提供一种云台的控制方法。所述云台的控制方法包括:
获取云台的当前姿态和所述云台的当前关节角;
根据所述云台的当前姿态和所述云台的当前关节角计算所述云台的基座姿态;
根据所述云台的基座姿态和所述云台的目标姿态计算所述云台的目标关节角;
根据所述云台的目标关节角和所述云台的当前关节角确定所述云台的运动方向;
控制所述云台按照所述云台的运动方向运动至所述云台的目标姿态。
本实施方式的云台的控制方法中,根据云台的目标关节角和云台的当前关节角确定云台的运动方向,并控制云台按照云台的运动方向运动至目标姿态,这样可以避免云台回转至目标姿态时撞到限位而导致电机堵转的情况,从而可以提高云台的使用寿命,用户体验性好。
本申请的实施方式提供一种云台,包括一个或多个云台轴以及驱动所述一个或多个云台轴运动的电机。云台包括:一个或多个处理器,单独地或共同地工作,所述处理器用于:
获取云台的当前姿态和所述云台的当前关节角;
根据所述云台的当前姿态和所述云台的当前关节角计算所述云台的基座姿态;
根据所述云台的基座姿态和目标姿态计算所述云台的目标关节角;
根据所述云台的目标关节角和所述云台的当前关节角确定所述云台的运动方向;
控制所述云台按照所述云台的运动方向运动至所述云台的目标姿态。
本实施方式的云台中,根据云台的目标关节角和云台的当前关节角确定云台的运动方 向,并控制云台按照云台的运动方向运动至目标姿态,这样可以避免云台回转至目标姿态时撞到限位而导致电机堵转的情况,从而可以提高云台的使用寿命,用户体验性好。
本申请的实施方式提供一种拍摄设备。所述拍摄设备包括上述实施方式的云台和拍摄装置,所述拍摄装置安装在所述云台。
本实施方式的拍摄设备中,根据云台的目标关节角和云台的当前关节角确定云台的运动方向,并控制云台按照云台的运动方向运动至目标姿态,这样可以避免云台回转至目标姿态时撞到限位而导致电机堵转的情况,从而可以提高云台的使用寿命,用户体验性好。
本申请的实施方式提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述实施方式的云台的控制方法。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的云台的控制方法的流程图。
图2是本申请实施方式的云台的模块示意图。
图3是本申请实施方式的云台的控制方法的另一流程图。
图4是本申请实施方式的云台的运行路径示意图。
图5是本申请实施方式的云台的控制方法的又一流程图。
图6是本申请实施方式的云台的控制方法的再一流程图。
图7是本申请实施方式的拍摄设备的结构示意图。
附图主要元件标号:
拍摄设备200、云台100、偏航轴轴臂21、横滚轴轴臂23、俯仰轴轴臂25、偏航轴电机22、横滚轴电机24、俯仰轴电机26、机械限位201、第一限位201a、第二限位201b、处理器10、存储器20、拍摄装置110、外框架120、中框架130、内框架140。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1及图2,本申请实施方式的云台100的控制方法可由本申请实施方式的云台100实现,并应用于本申请实施方式的拍摄设备200和云台100。云台100包括机械限位201,云台100在机械限位201所限定的范围内运动,云台100的控制方法包括:
步骤S10,获取云台100的当前姿态和云台100的当前关节角;
步骤S20,根据云台100的当前姿态和云台100的当前关节角计算云台100的基座姿态;
步骤S30,根据云台100的基座姿态和目标姿态计算云台100的目标关节角;
步骤S40,根据云台100的目标关节角和云台100的当前关节角确定云台100的运动方向;
步骤S50,控制云台100按照云台100的运动方向运动至云台100的目标姿态。
请参阅图2,本申请实施方式的云台100包括一个或多个处理器10,单独地或共同地工作。云台100可以包括存储器20,存储器20可以包括易失性存储器(volatile memory)例如随机存取存储器(random-access memory,RAM);存储器20也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);用于存储计算机程序。处理器10可以调用程序,实现相应的云台100的控制方法。处理器10用于:
获取云台100的当前姿态和云台100的当前关节角;
根据云台100的当前姿态和云台100的当前关节角计算云台100的基座姿态;
根据云台100的基座姿态和目标姿态计算云台100的目标关节角;
根据云台100的目标关节角和云台100的当前关节角确定云台100的运动方向;
控制云台100按照云台100的运动方向运动至云台100的目标姿态。
也就是说,本申请实施方式的云台100的控制方法的步骤S10、S20、S30、S40及S50均可由处理器10实现。
本申请实施方式的云台100的控制方法及云台100,根据云台100的目标关节角和云台100的当前关节角确定云台100的运动方向,并控制云台100按照云台100的运动方向运动至目标姿态,这样可以避免云台100回转至目标姿态时撞到限位而导致电机堵转的情况,从而可以提高云台100的使用寿命,用户体验性好。
在一些实施例中,目标姿态可以由用户手动输入,例如用户手动输入云台100的目标姿态,在另一些实施例中,云台100在自由状态下,用户用手推动云台,放手后,云台需恢复原状,原状对应的姿态就是云台100在这种场景下的目标姿态。
在某些实施方式中,根据云台100的目标关节角和云台100的当前关节角确定云台100的运动方向包括:根据云台100的目标关节角和云台100的当前关节角的相对大小确定运动方向。
具体的,云台100可以是用来安装、固定相机或传感器等负载的增稳设备和支撑设备。云台100可以为两轴云台100,也可以为三轴云台100。本实施方式以云台100为三轴云台100为例进一步说明。请结合图7,云台100可包括偏航轴轴臂21、横滚轴轴臂23、俯仰轴轴臂25和用于控制偏航轴轴臂21转动的偏航轴电机22、用于控制横滚轴轴臂23转动的横滚轴电机24和用于控制俯仰轴轴臂25转动的俯仰轴电机26,通过偏航轴电机22、横滚轴电机24和俯仰轴电机26对应控制偏航轴轴臂21、横滚轴轴臂23和俯仰轴轴臂25转动,实现云台100姿态的控制。
请参图7,云台100包括基座30、外框架120、中框架130和内框架140,中框架130转动连接外框架120和内框架140,云台100的基座30转动连接外框架120,云台100的当前姿态为内框架140的当前姿态。具体的,云台100的当前姿态和当前关节角的测量值是已知的(可测量得到)。外框架120绕Z轴旋转,根据基座姿态和外框架120的关节角可以得到外框架120的姿态,中框架130绕X轴旋转,根据外框架120的姿态和中框架130的关节角可以得到中框架130的姿态,内框架140绕Y轴旋转,根据中框架130的姿态和内框架140的关节角可以得到内框架140的姿态,内框架140的姿态即为云台100的姿态。
在图7的示例中,偏航轴(yaw)轴臂21可对应云台100的外框架120,横滚轴(roll)轴臂23可对应云台100的中框架130,俯仰轴(pitch)轴臂25可对应云台100的内框架 140。
具体的,当云台100放置在云台100搭载的负载的下方,并且云台100的目标关节角大于云台100的当前关节角时,控制云台100沿云台的Z轴正方向运动;当云台100放置在云台100搭载的负载的上方,并且云台100的目标关节角小于云台100的当前关节角时,控制云台100沿云台100的Z轴正方向运动。需要说明的是,本实施方式的控制云台100沿云台的Z轴正方向运动可以理解为沿云台的Z轴的顺时针方向运动。
需要说明的是,本实施方式的云台姿态为三维量,而云台的关节角为一维量,为了方便举例说明,在以下的实施方式中,云台是水平放置在地面上,云台基座平放在地面上,此时横滚轴(roll)和俯仰轴(pitch)的关节角都为0,在实施例中只关注偏航轴(yaw)的运动。在一个例子中,云台100的当前姿态可为云台的内框架140的姿态,云台100的当前姿态可通过设置在云台100的内框架140上的惯性测量单元(IMU,Inertial measurement unit)测量而得到的姿态。惯性测量单元包括加速度计和陀螺仪。而云台100的当前关节角分别通过设置在偏航轴电机22、横滚轴电机24及俯仰轴电机26里面的角度传感器(如霍尔传感器)来获取云台100的各个转动轴所对应的当前关节角。
云台100的目标姿态可为用户直接输入的设定数据,也就是说,云台100会根据用户输入的设定数据以使得云台100运动至云台100的目标姿态的位置。
在一个实施例中,若云台100的当前姿态四元数表示为q_camera_meas,云台100的内框架的关节角的四元数表示为q_inn,云台100的中框架130的关节角的四元数表示为q_mid,云台100的外框架120的关节角的四元数表示为q_out,云台100的基座姿态的四元数q_base。根据q_camera_meas=q_base*q_out*q_mid*q_inn,可计算得到云台100的基座姿态为q_base=q_camera_meas*q_inn -1*q_mid -1*q_out -1
进一步地,若用户输入的云台100的目标姿态的四元数表示为q_camera_tar,内框架140的目标关节角的四元数表示为q_inn_tar,中框架130的目标关节角四元数表示为q_mid_tar,外框架120的目标关节角的四元数表示为q_out_tar。由于在一定时间内(例如1秒)云台100的基座姿态q_base可以认为是不变的,并且云台100的中框架130的目标关节角q_mid_tar和外框架120的目标关节角q_out_tar在这段时间内也可以认为是不变的,q_mid_tar=q_mid,q_out_tar=q_out,由:q_camera_tar=q_base*q_out_tar*q_mid_tar*q_inn_tar,求出内框架140的关节角q_inn_tar,此时,也可以认为云台100的基座姿态q_base和外框架120的目标关节角q_out_tar在这段时间内也是不变的,也就是说q_out_tar=q_out,将q_inn_tar、q_base代入上述公式q_camera_tar=q_base*q_out_tar*q_mid_tar*q_inn_tar中,求得中框架130的关节角q_mid_tar,最后根据中框架130的关节角q_mid_tar求得外框架120的关节角q_out_tar,各个转动轴的电机根据云台100的目标关节角调节,以使云台100达 到目标姿态。
需要说明的是,本实施方式的云台姿态为三维量,而云台的关节角为一维量,为了方便举例说明,在以下的实施方式中,云台是水平放置在地面上,云台基座平放在地面上,此时横滚轴(roll)和俯仰轴(pitch)的关节角都为0,在实施例中只关注偏航轴(yaw)的运动。在一个实施例中,外框架120的关节角q_out_tar即为本实施方式的云台100的目标关节角。本实施方式中的各个轴的关节角的四元数表示方法可以认为是欧拉角的描述方式,也就是说,可以将各个轴的关节角的四元数表示方法转换为欧拉角的表示方法。而欧拉角的范围为[-180度,180度]。
具体的,在本实施方式中,处理器10可根据云台100的目标关节和云台100的当前关节角确定云台100的运动方向,也就是说,可根据具体情况控制云台100按照正方向或者反方向的路径运行以避免云台100撞到限位,另外处理器10可控制云台100按照处理器10所确定的运动方向运动至用户设定的云台100的目标姿态。
请参阅图4,在某些实施方式中,云台100包括机械限位201,云台100在机械限位201所限定的范围内运动,控制方法包括:
当在机械限位201所限定的范围内存在多个云台100的目标关节角时,选取与云台100的当前关节角距离预设位置的云台100的目标关节角作为云台100的最终目标关节角。
在某些实施方式中,处理器10用于:
当在机械限位201所限定的范围内存在多个云台100的目标关节角时,选取与云台100的当前关节角距离预设位置的云台100的目标关节角作为云台100的最终目标关节角。
也就是说,上述实施方式的控制方法可由处理器10实现。
如此,这样可使得云台100较快速地运动至云台100的目标姿态。
在某些实施方式中,预设位置为多个云台100的目标关节角的其中一个距离云台100的当前关节角最近时云台100所处的位置。具体地,在本实施方式中,由于存在多个目标关节角,因此,云台100可以从当前关节角运动到其中一个目标关节角,但在某种情况下需要考虑的是,如果希望云台100以较少的时间从当前位置运动至目标姿态,这样,在当前关节角与多个目标关节角的比较中,存在这样的一个目标关节角,该目标关节角使得云台100从当前位置移动至该目标关节角时所需的时间最少,那么可以将这个目标关节角设置为预设位置。也就是说,预设位置也可理解为多个目标关节角中距离云台100的当前关节角最近的一个目标关节角,即多个云台100的目标关节角的其中一个与云台100的当前关节角角度差最小时云台100的一个目标关节角。
为了方便举例说明,在以下的实施方式中,云台是水平放置在地面上,云台基座平放在地面上,此时横滚轴(roll)和俯仰轴(pitch)的关节角都为0,在实施例中只关注偏航 轴(yaw)的运动。在一个例子中,机械限位所限定的范围为[-400度,400度],云台100的当前关节角为100度,若通过欧拉角的方式计算得到云台100的第一个目标关节角为30度,则找到所有满足:30度+360度乘以i所得到的总数值∈[-400度,400度],若i=1时,可得到表示式:-400<(30+360=390)<400,也就是说,390度满足在机械限位所限定的范围内,云台100的第二个目标关节角为390度。若i=-1时,可得到表示式:-400<(30-360=-330)<400,也就是说-330度满足在机械限位所限定的范围内,云台的第三个目标关节角为-330度。当云台100的目标关节角为30度和云台100的当前关节角为100度时,两者的角度差为70度。当云台100的目标关节角为390度和云台100的当前关节角为100度时,两者的角度差为290度。当云台100的目标关节角为-330度和云台100的当前关节角为100度时,两者的角度差为430度。因此,可得到30度为距离云台100的当前关节角的值最近的位置所最对应的云台100的目标关节角,也就是说,此时可以将30度最为云台100的最终目标关节角。
请参阅图3,在某些实施方式中,云台100的控制方法包括:
步骤S60,判断云台100的当前关节角与云台100的最终目标关节角的差值是否小于预设值,
若是,步骤S62,控制云台100按照云台100的运动方向直接运动至目标姿态;
若否,步骤S64,根据云台100的当前关节角与云台100的最终目标关节角生成中间目标姿态,控制云台100按照云台100的运动方向运动至中间目标姿态,直至云台100运动至云台100的目标姿态。
在某些实施方式中,处理器10用于:
判断云台100的当前关节角与云台100的最终目标关节角的差值是否小于预设值,若是,控制云台100按照云台100的运动方向直接运动至目标姿态;
若否,根据云台100的当前关节角与云台100的最终目标关节角生成中间目标姿态,控制云台100按照云台100的运动方向运动至中间目标姿态,直至云台100运动至云台100的目标姿态。
如此,这样可以避免云台100撞到机械限201,并且可使云台100平滑地转动至云台100的目标姿态。
需要说明的是,云台100的实际设计中,一般外框架120的机械限位201较大,较容易出现最短路径撞限位的问题,因此以下实施例一和二均以外框架120为例来说明,其中外框架120为绕yaw轴旋转,为了方便举例说明,在以下的实施例一和二是在特殊情况下,云台是水平放置在地面上,云台基座平放在地面上,此时满足世界坐标系的Z轴和云台的坐标系的Z轴平行,均垂直于水平面,云台的Z轴与云台的偏航轴(yaw)重合,而横滚 轴(roll)和俯仰轴(pitch)的关节角都为0,在实施例中只关注偏航轴(yaw)的运动。在该情况下,云台的关节角和云台的姿态之间的关系满足:基座姿态(yaw)+外框架的当前关节角=云台的当前姿态;基座姿态(yaw)+外框架的目标关节角=云台的目标姿态。
实施例一和二为机械限位201所限定的范围内存在多个云台100的目标关节角的解释说明。
实施例一:预设值可为180度,云台的当前关节角为偏航轴(yaw)的关节角为例说明,横滚轴(roll)和俯仰轴(pitch)的关节角都为0。请参阅图4,机械限位201的范围为[-320度,320度],顺时针方向的云台100的关节角逐渐增大,逆时针方向的云台100的关节角逐渐减小。请参阅图4,这里需要说明一下云台的转动规则:机械限位201包括第一限位201a和第二限位201b,第一限位是正范围的最大角度位置,第二限位是负范围的最小角度位置,即第一限位201a对应320度的位置,第二限位对应-320度的位置。若云台100当前位置在O点,云台可以从O点沿着顺时针方向运动至机械限位的第一限位201a,但不能跨过第一限位201a,云台100可以从O点沿着逆时针方向运动至机械限位的第二限位201b,但不能跨过第二限位。也就是说,云台100可以从O点沿着顺时针方向运动可以滑过机械限位的第二限位201b,云台100可以从O点沿着逆时针方向运动可以滑过机械限位的第一限位201a。云台可以从B点逆时针依次转动至D点、A点、滑过机械限位的第二限位201b最后到C点。同时,云台可以从B点顺时针依次转动至E点、F点、滑过机械限位的第一限位201a最后到C点。
若已知:云台100的当前姿态为-60度,云台100的当前关节角为200度,在D点,云台100的目标姿态为50度。根据关系式:基座姿态(yaw)+外框架的当前关节角=云台的当前姿态,可求解得基座姿态=-60-200=-260度,对于姿态角度来说,求得的角度+360*I(I∈N)表示同一个方位,一般会把姿态角度限制在[-180度,180度]的范围内,则可以得到基座姿态=-260+360=100度,也就是说,通过云台100的当前姿态和云台100的当前关节角可求得云台100的基座姿态为100度。然后再根据关系式:基座姿态(yaw)+外框架的目标关节角=云台的目标姿态,可求得云台100的目标关节角=50-100=-50度,也就是说,通过云台100的目标姿态(50度)和云台100的基座姿态(100度)可计算得到云台100的目标关节角为-50度,在C点,在机械限位的范围内可行的云台100的目标关节角还可以为:-50度+360度=310度,在B点,也就是说,存在多解的情况:云台100的目标关节角分别是-50度和310度。由于云台100的目标关节角(310度)距离云台100的当前关节角(200度)较近,因此,将云台100的目标关节角(310度)作为云台100的最终目标关节角。也就是说,控制云台从D点转动B点,云台沿正方向(顺时针反向)从D点运动至B点为最短路径,没有存在机械限位,而且云台100的最终目标关节角(310度)与云台 100的当前关节角(200度)的差值(110度)小于预设值(180度),因此,不需要规避最短路径,可以直接将云台100从当前姿态运动至目标姿态。需要说明的是,上述实施方式的控制方法可以应用在云台100的偏航轴(yaw)、横滚轴(roll)及俯仰轴(pitch)中的任一轴或者多轴。
实施例二,云台100的机械限位201的范围为[-450度,120度],云台的当前关节角为偏航轴(yaw)的关节角为例说明,横滚轴(roll)和俯仰轴(pitch)的关节角都为0。已知:云台100的当前姿态为50度,云台100的当前关节角为110度,云台100的目标姿态为-140度。根据关系式:基座姿态(yaw)+外框架的当前关节角=云台的当前姿态,可求解得基座姿态=50-110=-60度,也就是说,通过云台100的当前姿态和云台100的当前关节角可求得云台100的基座姿态为-60度,然后再根据关系式:基座姿态(yaw)+外框架的目标关节角=云台的目标姿态,可求得云台100的目标关节角=-140-(-60)=-80度,也就是说,通过云台100的目标姿态(-140度)和云台100的基座姿态(-60度)可计算得到云台100的目标关节角为-80度,在机械限位的范围内可行的云台100的目标关节角还可以为:-80度-360度=-440度,也就是说,存在多解的情况:云台100的目标关节角分别是-80度和-440度。由于云台100的目标关节角(-80度)距离云台100的当前关节角(110度)较近,因此,将云台100的目标关节角(-80度)作为云台100的最终目标关节角。云台沿正方向(顺时针方向)从云台100的当前关节角(110度)所处的位置运动至云台100的目标关节角(-80度)所处的位置为最短路径,但是会撞到机械限位,因此,此时,本实施方式控制云台规避最短路径,也就是控制云台沿反方向(逆时针方向)从云台100的当前关节角(110度)所处的位置运动至云台100的目标关节角(-80度)所处的位置。由于云台100的目标关节角(-80度)与云台100的当前关节角(110度)的差值(190)大于预设值(180度),在姿态闭环的过程中,由于最短路径的问题,云台100会生成一个顺时针的速度,因此目标关节角与当前关节角的差值大于预设值时,需要生成多个中间姿态,使云台沿着中间姿态运动到目标姿态,所以需要根据云台100的目标关节角(-80度)与云台100的当前关节角(110度)生成云台100的中间目标关节角,例如,云台100的中间目标姿态=云台100的当前关节角(110度)+dir*40,由于云台为反方向(逆时针方向)转动,则dir=-1,也就是说,求得云台100的中间目标关节角为70度。因此,处理器10可控制云台100从云台100的当前关节角运动到云台100的中间目标关节角,并且在云台100运动至云台100的中间目标关节角后将运动后的关节角作为云台100的当前关节角,以此类推,直到云台100运动至云台100的目标关节角,达到目标姿态。需要说明的是,上述实施方式的控制方法可以应用在云台100的偏航轴(yaw)、横滚轴(roll)及俯仰轴(pitch)中的任一轴或者多轴。
需要指出的是,中间目标姿态可根据中间目标关节角以及云台100的基座姿态计算得到。云台100的中间目标姿态=云台100的当前姿态+dir*R,其中,dir表示云台的运动方向,云台运动为正方向时dir为1,云台为负方向时dir为-1。R为预设数值,R的范围可为0至90。
请参阅图2、图4及图5,在某些实施方式中,云台100包括机械限位201,云台100在机械限位201所限定的范围内运动,控制方法包括:
步骤S70,当在机械限位201所限定的范围内存在单个云台100的目标关节角时,判断云台100的当前关节角与云台100的目标关节角的差值是否小于预设值,若是,步骤S72,控制云台100按照云台100的运动方向直接运动至目标姿态;
若否,步骤S74,根据云台100的当前关节角与云台100的目标关节角生成中间目标姿态,控制云台100按照云台100的运动方向运动至中间目标姿态,直至云台100运动至目标姿态。
在某些实施方式中,处理器10用于:
当在机械限位201所限定的范围内存在单个云台100的目标关节角时,判断云台100的当前关节角与云台100的目标关节角的差值是否小于预设值,若是,控制云台100按照云台100的运动方向直接运动至目标姿态;
若否,根据云台100的当前关节角与云台100的目标关节角生成云台100的中间目标姿态,控制云台100按照云台100的运动方向运动至中间目标姿态,直至云台100运动至目标姿态。
如此,这样可以避免云台100撞到机械限位201,并且可使云台100平滑地转动至云台100的目标姿态。
需要说明的是,云台100的实际设计中,一般外框架120的机械限位201较大,较容易出现最短路径撞限位的问题,因此以下实施例三和实施例四均以外框架120为例来说明,其中外框架120为绕yaw轴旋转,为了方便举例说明,在以下的实施例三和实施例四是在特殊情况下,云台是水平放置在地面上,云台基座平放在地面上,此时满足世界坐标系的Z轴和云台的坐标系的Z轴平行,均垂直于水平面,云台的Z轴与云台的偏航轴(yaw)重合,而横滚轴(roll)和俯仰轴(pitch)的关节角都为0,在实施例中只关注偏航轴(yaw)的运动。在该情况下,云台的关节角和云台的姿态之间的关系满足:基座姿态(yaw)+外框架的当前关节角=云台的当前姿态;基座姿态(yaw)+外框架的目标关节角=云台的目标姿态。以下实施例三和实施例四为机械限位201所限定的范围内存在单个云台100的目标关节角的解释说明。
实施例三:云台100的机械限位201的范围为[-320度,320度],云台的当前关节角为 偏航轴(yaw)的关节角为例说明,横滚轴(roll)和俯仰轴(pitch)的关节角都为0。已知:云台100的当前姿态为-60度,云台100的当前关节角为200度,云台100的目标姿态为90度。根据关系式:基座姿态(yaw)+外框架的当前关节角=云台的当前姿态,可求解得基座姿态=-60-200=-260度,对于姿态角度来说,求得的角度+360*I(I∈N)表示同一个方位,一般会把姿态角度限制在[-180度,180度]的范围内,则可以得到基座姿态=-260+360=100度,也就是说,通过云台100的当前姿态和云台100的当前关节角可求得云台100的基座姿态为100度,然后再根据关系式:基座姿态(yaw)+外框架的目标关节角=云台的目标姿态,可求得云台100的目标关节角=90-100=-10度,也就是说,通过云台100的目标姿态(90度)和云台100的基座姿态(100度)可计算得到云台100的目标关节角为-10度,在机械限位的范围内可行的云台100关节角只有一个云台100的目标关节角(-10度)。云台沿正方向(顺时针方向)从云台100的当前关节角(200度)所处的位置运动至云台100的目标关节角(-10度)所处的位置为最短路径,但是会撞到机械限位,因此,此时,本实施方式控制云台规避最短路径,也就是控制云台沿反方向(逆时针方向)从云台100的当前关节角(200度)所处的位置运动至云台100的目标关节角(-10度)所处的位置。由于云台100的目标关节角(-10度)与云台100的当前关节角(200度)的差值(210度)大于预设值(180度),在姿态闭环的过程中,由于最短路径的问题,云台100会生成一个顺时针的速度,因此目标关节角与当前关节角的差值大于预设值时,需要生成多个中间姿态,使云台沿着中间姿态运动到目标姿态,所以需要根据云台100的目标关节角(-10度)与云台100的当前关节角(200度)生成云台100的中间目标关节角,例如,云台100的中间目标姿态=云台100的当前关节角(200度)+dir*40,控制云台沿反方向(逆时针方向)运动,dir=-1,也就是说,求得云台100的中间目标关节角为160度。因此,处理器10可控制云台100从云台100的当前关节角运动到云台100的中间目标关节角,并且在云台100运动至云台100的中间目标关节角后将运动后的关节角作为云台100的当前关节角,以此类推,直到云台100运动至云台100的目标关节角,达到目标姿态。需要说明的是,上述实施方式的控制方法可以应用在云台100的偏航轴(yaw)、横滚轴(roll)及俯仰轴(pitch)中的任一轴或者多轴。
实施例四:云台100的机械限位201的范围为[-180度,180度],云台的当前关节角为偏航轴(yaw)的关节角为例说明,横滚轴(roll)和俯仰轴(pitch)的关节角都为0。已知:云台100的当前姿态为-60度,云台100的当前关节角为0度,云台100的目标姿态为-50度。根据关系式:基座姿态(yaw)+外框架的当前关节角=云台的当前姿态,可求解得基座姿态=-60-0=-60度,也就是说,通过云台100的当前姿态和云台100的当前关节角可求得云台100的基座姿态为-60度,然后再根据关系式:基座姿态(yaw)+外框架的目标关 节角=云台的目标姿态,可求得云台100的目标关节角=-50-(-60)=10度,也就是说,通过云台100的目标姿态(-60度)和云台100的基座姿态(-50度)可计算得到云台100的目标关节角为10度,在机械限位的范围内可行的云台100关节角只有一个云台100的目标关节角(10度)。云台沿正方向(顺时针方向)从云台100的当前关节角(0度)所处的位置运动至云台100的目标关节角(10度)所处的位置为最短路径,没有存在机械限位,云台100的目标关节角(10度)与云台100的当前关节角(0度)的差值(10度)小于预设值(180度),因此,不需要规避最短路径,可以直接将云台100从当前姿态运动至目标姿态。需要说明的是,上述实施方式的控制方法可以应用在云台100的偏航轴(yaw)、横滚轴(roll)及俯仰轴(pitch)中的任一轴或者多轴。
请参阅图2、图4及图6,在某些实施方式中,云台100包括机械限位201,机械限位201包括第一限位201a和第二限位201b,云台100在第一限位201a和第二限位201b共同所限定的范围内运动,控制方法包括:
步骤S80,当云台100的目标关节角位于范围外时,计算云台100的目标关节角与第一限位第二限位201b所处的关节角的第一差值,计算云台100的目标关节角与第二限位201b所处的关节角的第二差值;
步骤S82,判断第一差值是否小于第二差值;
若第一差值小于第二差值,步骤S84,则将云台100的目标关节角修正为第一限位201a所处的关节角;
若第一差值大于第二差值,步骤S86,则将云台100的目标关节角修正为第二限位201b所处的关节角。
在某些实施方式中,处理器10用于:
当云台100的目标关节角位于范围外时,计算云台100的目标关节角与第一限位201a所处的关节角的第一差值;
计算云台100的目标关节角与第二限位所处的关节角的第二差值;
判断第一差值与第二差值的大小;
若第一差值小于第二差值,则将云台100的目标关节角修正为第一限位201a所处的关节角;
若第一差值大于第二差值,则将云台100的目标关节角修正为第二限位201b所处的关节角。
如此,这样可以避免云台100撞到机械限位,并且可使云台100平滑地转动至云台100的目标姿态。
以下实施例四为云台100的目标关节角位于范围外的解释说明。
需要说明的是,云台100的实际设计中,一般外框架120的机械限位201较大,较容易出现最短路径撞限位的问题,因此以下实施例五以外框架120为例来说明,其中外框架120为绕yaw轴旋转,为了方便举例说明,在以下的实施例五是在特殊情况下,云台是水平放置在地面上,云台基座平放在地面上,此时满足世界坐标系的Z轴和云台的坐标系的Z轴平行,均垂直于水平面,云台的Z轴与云台的偏航轴(yaw)重合,而横滚轴(roll)和俯仰轴(pitch)的关节角都为0,在实施例中只关注偏航轴(yaw)的运动。在该情况下,云台的关节角和云台的姿态之间的关系满足:基座姿态(yaw)+外框架的当前关节角=云台的当前姿态;基座姿态(yaw)+外框架的目标关节角=云台的目标姿态。
实施例五:云台100的机械限位的范围为[-200度,60度],即第一限位201a为-200度,第二限位201b为60度,云台的当前关节角为偏航轴(yaw)的关节角为例说明,横滚轴(roll)和俯仰轴(pitch)的关节角都为0。已知:云台100的当前姿态为90度,云台100的当前关节角为-10度,云台100的目标姿态为170度。根据关系式:基座姿态(yaw)+外框架的当前关节角=云台的当前姿态,可求解得基座姿态=90-(-10)=100度,也就是说,通过云台100的当前姿态和云台100的当前关节角可求得云台100的基座姿态为100度。然后再根据关系式:基座姿态(yaw)+外框架的目标关节角=云台的目标姿态,可求得云台100的目标关节角=170-100=70度,也就是说,通过云台100的目标姿态(170度)和云台100的基座姿态(100度)可计算得到云台100的目标关节角为70度,云台100的目标关节角(70度)位于机械限位201的范围外。此时,计算云台100的目标关节角(70度)与第一限位201a所处的关节角(-200度)的第一差值为270度,计算云台100的目标关节角(70度)与第二限位所处的关节角(60度)的第二差值为10度。由于第一差值(270度)大于第二差值(10),则将云台100的目标关节角修正为第二限位201b所处的关节角(60度)。由于修正后的云台100的目标关节角(60)与云台100的当前关节角(-10度)的差值(70度)小于预设值(180度),云台沿正方向(顺时针反向)从云台100的当前关节角(-10度)所处的位置运动至云台100的目标关节角(-60度)所处的位置为最短路径,没有存在机械限位,因此,无需规避最短路径,可以直接将云台100从当前姿态运动至目标姿态。需要说明的是,上述实施方式的控制方法可以应用在云台100的偏航轴(yaw)、横滚轴(roll)及俯仰轴(pitch)中的任一轴或者多轴。
请参阅图7,本申请实施方式还提供一种拍摄设备200。拍摄设备200包括云台100和拍摄装置110,拍摄装置110安装在云台100。
本实施方式的拍摄设备200中,根据云台100的目标关节角和云台100的当前关节角确定云台100的运动方向,并控制云台100按照云台100的运动方向运动至目标姿态,这样可以避免云台100回转至目标姿态时撞到限位而导致电机堵转的情况,从而可以提高云 台100的使用寿命,用户体验性好。
其中,拍摄设备200100还可以包括支撑装置,该支撑装置用于支撑云台100。该拍摄设备200100可以为诸如手持拍摄设备200。
本申请的实施方式提供一种可读存储介质,其上存储有计算机程序,该程序被处理器10执行时实现上述实施方式的云台100的控制方法中的任一流程。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于执行特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的执行,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于执行逻辑功能的可执行指令的定序列表,可以具体执行在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来执行。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来执行。例如,如果用硬件来执行,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来执行:具有用于对数据信号执行逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场 可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解执行上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式执行,也可以采用软件功能模块的形式执行。所述集成的模块如果以软件功能模块的形式执行并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种云台的控制方法,其特征在于,包括:
    获取云台的当前姿态和所述云台的当前关节角;
    根据所述云台的当前姿态和所述云台的当前关节角计算所述云台的基座姿态;
    根据所述云台的基座姿态和所述云台的目标姿态计算所述云台的目标关节角;
    根据所述云台的目标关节角和所述云台的当前关节角确定所述云台的运动方向;
    控制所述云台按照所述云台的运动方向运动至所述云台的目标姿态。
  2. 如权利要求1所述的控制方法,其特征在于,所述根据所述云台的目标关节角和所述云台的当前关节角确定所述云台的运动方向包括:根据所述云台的目标关节角和所述云台的当前关节角的相对大小确定运动方向。
  3. 如权利要求1所述的控制方法,其特征在于,所述云台包括机械限位,所述云台在所述机械限位所限定的范围内运动,所述控制方法包括:
    当在所述机械限位所限定的范围内存在多个所述云台的目标关节角时,选取与所述云台的当前关节角距离预设位置的所述云台的目标关节角作为所述云台的最终目标关节角。
  4. 如权利要求3所述的控制方法,其特征在于,所述预设位置为多个所述云台的目标关节角的其中一个距离所述云台的当前关节角最近时所述云台所处的位置。
  5. 如权利要求4所述的控制方法,其特征在于,所述距离所述云台的当前关节角最近时所述云台所处的位置是多个所述云台的目标关节角的其中一个与所述云台的当前关节角角度差最小时所述云台所处的位置。
  6. 如权利要求3所述的控制方法,其特征在于,所述控制方法包括:
    判断所述云台的当前关节角与所述云台的最终目标关节角的差值是否小于预设值,若是,控制所述云台按照所述云台的运动方向直接运动至所述云台的目标姿态;
    若否,根据所述云台的当前关节角与所述云台的最终目标关节角生成中间目标姿态,控制所述云台按照所述云台的运动方向运动至所述中间目标姿态,直至所述云台运动至所述云台的目标姿态。
  7. 如权利要求1所述的控制方法,其特征在于,所述云台包括机械限位,所述云台在 所述机械限位所限定的范围内运动,所述控制方法包括:
    当在所述机械限位所限定的范围内存在单个所述云台的目标关节角时,判断所述云台的当前关节角与所述云台的目标关节角的差值是否小于预设值,若是,控制所述云台按照所述云台的运动方向直接运动至所述云台的目标姿态;
    若否,根据所述云台的当前关节角与所述云台的目标关节角生成中间目标姿态,控制所述云台按照所述云台的运动方向运动至所述中间目标姿态,直至所述云台运动至所述云台的目标姿态。
  8. 如权利要求1所述的控制方法,其特征在于,所述云台包括机械限位,所述机械限位包括第一限位和第二限位,所述云台在所述第一限位和所述第二限位共同所限定的范围内运动,所述控制方法包括:
    当所述云台的目标关节角位于所述范围外时,计算所述云台的目标关节角与所述第一限位所处的关节角的第一差值,计算所述云台的目标关节角与所述第二限位所处的关节角的第二差值;
    判断所述第一差值与所述第二差值的大小;
    若所述第一差值小于所述第二差值,则将所述云台的目标关节角修正为所述第一限位所处的关节角;
    若所述第一差值大于所述第二差值,则将所述云台的目标关节角修正为所述第二限位所处的关节角。
  9. 如权利要求1所述的控制方法,其特征在于,所述云台包括外框架、中框架和内框架,所述中框架转动连接所述外框架和所述内框架,所述云台的基座转动连接所述外框架,所述云台的当前姿态为所述内框架的当前姿态。
  10. 一种云台,包括一个或多个云台轴以及驱动所述一个或多个云台轴运动的电机,其特征在于,包括:一个或多个处理器,单独地或共同地工作,所述处理器用于:
    获取所述云台的当前姿态和所述云台的当前关节角;
    根据所述云台的当前姿态和所述云台的当前关节角计算所述云台的基座姿态;
    根据所述云台的基座姿态和目标姿态计算所述云台的目标关节角;
    根据所述云台的目标关节角和所述云台的当前关节角确定所述云台的运动方向;
    控制所述云台按照所述云台的运动方向运动至所述云台的目标姿态。
  11. 如权利要求10所述的云台,其特征在于,所述根据所述云台的目标关节角和所述 云台的当前关节角确定所述云台的运动方向包括:根据所述云台的目标关节角和所述云台的当前关节角的相对大小确定运动方向。
  12. 如权利要求10所述的云台,其特征在于,所述云台包括机械限位,所述云台在所述机械限位所限定的范围内运动,所述处理器用于:
    当在所述机械限位所限定的范围内存在多个所述云台的目标关节角时,选取与所述云台的当前关节角距离预设位置的所述云台的目标关节角作为所述云台的最终目标关节角。
  13. 如权利要求12所述的云台,其特征在于,所述预设位置为多个所述云台的目标关节角的其中一个距离所述云台的当前关节角最近时所述云台所处的位置。
  14. 如权利要求13所述的云台,其特征在于,所述距离所述云台的当前关节角最近时所述云台所处的位置是多个所述云台的目标关节角的其中一个与所述云台的当前关节角角度差最小时所述云台所处的位置。
  15. 如权利要求12所述的云台,其特征在于,所述处理器用于:判断所述云台的当前关节角与所述云台的最终目标关节角的差值是否小于预设值,若是,控制所述云台按照所述云台的运动方向直接运动至所述云台的目标姿态;
    若否,根据所述云台的当前关节角与所述云台的最终目标关节角生成中间目标姿态,控制所述云台按照所述云台的运动方向运动至所述中间目标姿态,直至所述云台运动至所述云台的目标姿态。
  16. 如权利要求10所述的云台,其特征在于,所述云台包括机械限位,所述云台在所述机械限位所限定的范围内运动,所述处理器用于:
    当在所述机械限位所限定的范围内存在单个所述云台的目标关节角时,判断所述云台的当前关节角与所述云台的目标关节角的差值是否小于预设值,若是,控制所述云台按照所述云台的运动方向直接运动至所述云台的目标姿态;
    若否,根据所述云台的当前关节角与所述云台的目标关节角生成中间目标姿态,控制所述云台按照所述云台的运动方向运动至所述中间目标姿态,直至所述云台运动至所述云台的目标姿态。
  17. 如权利要求10所述的云台,其特征在于,所述云台包括机械限位,所述机械限位 包括第一限位和第二限位,所述云台在所述第一限位和所述第二限位共同所限定的范围内运动,所述处理器用于:
    当所述云台的目标关节角位于所述范围外时,计算所述云台的目标关节角与所述第一限位所处的关节角的第一差值,计算所述云台的目标关节角与所述第二限位所处的关节角的第二差值;
    判断所述第一差值与所述第二差值的大小;
    若所述第一差值大于所述第二差值,则将所述云台的目标关节角修正为所述第一限位所处的关节角;
    若所述第一差值小于所述第二差值,则将所述云台的目标关节角修正为所述第二限位所处的关节角。
  18. 如权利要求10所述的云台,其特征在于,所述云台还包括所述云台包括外框架、中框架和内框架,所述中框架转动连接所述外框架和所述内框架,所述云台的基座转动连接所述外框架。
  19. 一种拍摄设备,其特征在于,包括权利要求10至18任一项所述的云台和拍摄装置,所述拍摄装置安装在所述云台。
  20. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至9任一项所述的云台的控制方法的步骤。
PCT/CN2018/089048 2018-05-30 2018-05-30 云台的控制方法、云台、拍摄设备及可读存储介质 WO2019227347A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880012716.XA CN110337560B (zh) 2018-05-30 2018-05-30 云台的控制方法、云台、拍摄设备及可读存储介质
PCT/CN2018/089048 WO2019227347A1 (zh) 2018-05-30 2018-05-30 云台的控制方法、云台、拍摄设备及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/089048 WO2019227347A1 (zh) 2018-05-30 2018-05-30 云台的控制方法、云台、拍摄设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2019227347A1 true WO2019227347A1 (zh) 2019-12-05

Family

ID=68139096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089048 WO2019227347A1 (zh) 2018-05-30 2018-05-30 云台的控制方法、云台、拍摄设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN110337560B (zh)
WO (1) WO2019227347A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021102797A1 (zh) * 2019-11-28 2021-06-03 深圳市大疆创新科技有限公司 一种云台控制方法、控制装置及控制系统
WO2021134644A1 (zh) * 2019-12-31 2021-07-08 深圳市大疆创新科技有限公司 云台的控制方法和云台
WO2021134645A1 (zh) * 2019-12-31 2021-07-08 深圳市大疆创新科技有限公司 云台的控制方法和云台
CN113170051A (zh) * 2020-06-08 2021-07-23 深圳市大疆创新科技有限公司 云台控制方法、手持云台及计算机可读存储介质
CN113272755A (zh) * 2020-07-01 2021-08-17 深圳市大疆创新科技有限公司 云台的控制方法、装置、云台及计算机可读存储介质
CN114158271A (zh) * 2020-07-08 2022-03-08 深圳市大疆创新科技有限公司 云台控制方法、云台组件、装置、可移动平台和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150346721A1 (en) * 2014-05-30 2015-12-03 Aibotix GmbH Aircraft
CN105283816A (zh) * 2013-07-31 2016-01-27 深圳市大疆创新科技有限公司 远程控制方法及终端
KR20160081839A (ko) * 2014-12-30 2016-07-08 계명대학교 산학협력단 무인 항공기 제어 장치 및 이를 이용한 무인 항공기 제어 방법
CN105912028A (zh) * 2015-12-30 2016-08-31 东莞市青麦田数码科技有限公司 云台控制系统和控制方法
CN105992980A (zh) * 2015-05-18 2016-10-05 深圳市大疆创新科技有限公司 基于无头模式的无人机控制方法及设备
CN106161892A (zh) * 2015-05-15 2016-11-23 三星电子株式会社 摄影装置及其姿态控制方法以及无人驾驶飞行器
CN106586009A (zh) * 2016-10-27 2017-04-26 江苏云端智能科技有限公司 一种无人机
CN106742003A (zh) * 2015-11-20 2017-05-31 广州亿航智能技术有限公司 基于智能显示设备的无人机云台转动控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650570B (zh) * 2009-09-10 2012-05-23 成都六九一四科技有限公司 智能云台对准系统
CN105116926B (zh) * 2015-08-20 2018-05-04 深圳一电航空技术有限公司 云台控制方法和装置
CN105978441A (zh) * 2016-06-15 2016-09-28 零度智控(北京)智能科技有限公司 无人机、电机控制装置及方法
CN107807680B (zh) * 2017-09-21 2020-06-12 中国科学院长春光学精密机械与物理研究所 一种云台漂移补偿方法
CN207394285U (zh) * 2017-09-27 2018-05-22 浙江大华技术股份有限公司 一种云台转动限位结构及云台

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105283816A (zh) * 2013-07-31 2016-01-27 深圳市大疆创新科技有限公司 远程控制方法及终端
US20150346721A1 (en) * 2014-05-30 2015-12-03 Aibotix GmbH Aircraft
KR20160081839A (ko) * 2014-12-30 2016-07-08 계명대학교 산학협력단 무인 항공기 제어 장치 및 이를 이용한 무인 항공기 제어 방법
CN106161892A (zh) * 2015-05-15 2016-11-23 三星电子株式会社 摄影装置及其姿态控制方法以及无人驾驶飞行器
CN105992980A (zh) * 2015-05-18 2016-10-05 深圳市大疆创新科技有限公司 基于无头模式的无人机控制方法及设备
CN106742003A (zh) * 2015-11-20 2017-05-31 广州亿航智能技术有限公司 基于智能显示设备的无人机云台转动控制方法
CN105912028A (zh) * 2015-12-30 2016-08-31 东莞市青麦田数码科技有限公司 云台控制系统和控制方法
CN106586009A (zh) * 2016-10-27 2017-04-26 江苏云端智能科技有限公司 一种无人机

Also Published As

Publication number Publication date
CN110337560A (zh) 2019-10-15
CN110337560B (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2019227347A1 (zh) 云台的控制方法、云台、拍摄设备及可读存储介质
US20200213518A1 (en) Method for controlling gimbal, gimbal controller, and gimbal
WO2019227384A1 (zh) 一种云台控制方法及云台
WO2020042064A1 (zh) 云台的控制方法与装置、云台系统和无人机
WO2021026753A1 (zh) 云台控制方法、云台及计算机可读存储介质
JP6430661B2 (ja) 安定プラットホーム、並びにその追従制御システム及び方法
US20200326709A1 (en) Method and device for controlling reset of gimbal, gimbal, and unmanned aerial vehicle
US20200256506A1 (en) Method for controlling gimbal, gimbal, control system, and movable device
WO2018191964A1 (zh) 云台的控制方法以及云台
CN109885105A (zh) 云台控制方法、装置及云台
WO2019100249A1 (zh) 云台的控制方法、云台以及无人飞行器
JP2018106051A5 (zh)
WO2019126932A1 (zh) 云台的控制方法和控制设备
WO2019210467A1 (zh) 云台控制方法与装置、云台系统、无人机和计算机可读存储介质
WO2020107292A1 (zh) 云台的控制方法、云台、移动平台和计算机可读存储介质
WO2019119455A1 (zh) 一种云台校准方法及云台设备
WO2021081843A1 (zh) 云台系统的校准方法、装置、云台系统和计算机可读介质
WO2020237493A1 (zh) 云台零位标定方法和云台
WO2020062281A1 (zh) 云台的控制方法、云台、可移动平台及可读存储介质
WO2020107284A1 (zh) 云台的模式切换方法、装置、可移动平台及存储介质
WO2020000423A1 (zh) 云台的控制方法、云台、飞行器和计算机可读存储介质
JP2021504735A (ja) ジンバル制御方法、ジンバル、及びコンピュータプログラム
WO2021134644A1 (zh) 云台的控制方法和云台
JP6026695B1 (ja) 制御装置、移動体、制御方法及びプログラム
WO2019227464A1 (zh) 旋转角度控制方法、云台以及计算机可读的记录介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921181

Country of ref document: EP

Kind code of ref document: A1