WO2021081843A1 - 云台系统的校准方法、装置、云台系统和计算机可读介质 - Google Patents

云台系统的校准方法、装置、云台系统和计算机可读介质 Download PDF

Info

Publication number
WO2021081843A1
WO2021081843A1 PCT/CN2019/114483 CN2019114483W WO2021081843A1 WO 2021081843 A1 WO2021081843 A1 WO 2021081843A1 CN 2019114483 W CN2019114483 W CN 2019114483W WO 2021081843 A1 WO2021081843 A1 WO 2021081843A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
joystick
deviation
preset
pan
Prior art date
Application number
PCT/CN2019/114483
Other languages
English (en)
French (fr)
Inventor
黄常建
苏铁
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980039331.7A priority Critical patent/CN112334855A/zh
Priority to PCT/CN2019/114483 priority patent/WO2021081843A1/zh
Publication of WO2021081843A1 publication Critical patent/WO2021081843A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Definitions

  • the present invention relates to the technical field of pan/tilt, in particular to a calibration method, device, pan/tilt system and computer readable medium of a pan/tilt system.
  • PTZ is a system that stabilizes the load.
  • the use of a fixed camera with a pan/tilt can increase the stability of the camera, and it can shoot a stable and smooth picture even under sports conditions. Therefore, more and more people use a pan/tilt to record images.
  • the gimbal system may need to calibrate multiple parts during use, but the current gimbal system can only calibrate each part individually and independently during calibration. More than this, there will be cumbersome calibration and multiple calibration problems, which is not conducive to the user's use and operation, resulting in a poor user experience.
  • the first aspect of the embodiments of the present invention provides a method for calibrating a pan/tilt system.
  • the pan/tilt system includes a pan/tilt, a joystick for controlling the pan/tilt, and a An attitude sensor for attitude information of a pan/tilt head, the pan/tilt head includes a rotating shaft mechanism and a motor for driving the rotating shaft mechanism to rotate, and the method includes:
  • a second aspect of the embodiments of the present invention provides a method for calibrating a joystick, and the method includes:
  • the set coordinate system is adjusted according to the first deviation, so that the reference position in the adjusted set coordinate system approaches the preset position.
  • a third aspect of the embodiments of the present invention provides a calibration device for a pan/tilt system.
  • the pan/tilt system includes a pan/tilt, a joystick for controlling the pan/tilt, and an attitude sensor for measuring the attitude information of the pan/tilt.
  • the pan-tilt includes a rotating shaft mechanism and a motor for driving the rotating shaft mechanism to rotate
  • the calibration device includes a memory and a processor, wherein,
  • the memory is used to store a computer program
  • the processor is used to execute the computer program, and when the computer program is executed, realizes: entering a calibration mode;
  • a fourth aspect of the embodiments of the present invention provides a rocker calibration device, including a memory and a processor, wherein:
  • the memory is used to store a computer program
  • the processor is used to execute the computer program, and when executing the computer program, realizes:
  • the set coordinate system is adjusted according to the first deviation, so that the reference position in the adjusted set coordinate system approaches the preset position.
  • a fifth aspect of the embodiments of the present invention provides a pan-tilt system, including: a pan-tilt, the pan-tilt including a rotating shaft mechanism and a motor for driving the rotating shaft mechanism to rotate; a rocker for controlling the pan-tilt; posture The sensor is used to measure the posture information of the pan-tilt and the calibration device of the pan-tilt system provided in the third aspect of the embodiment of the present invention.
  • a sixth aspect of the embodiments of the present invention provides a pan/tilt system, including: a pan/tilt; a joystick for controlling the pan/tilt; and a calibration device for the joystick provided in the fourth aspect of the embodiment of the present invention.
  • a seventh aspect of the embodiments of the present invention provides a computer storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the calibration method of the pan-tilt system provided in the first aspect of the embodiments of the present invention are implemented.
  • the eighth aspect of the embodiments of the present invention provides a computer storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the rocker calibration method provided in the second aspect of the embodiments of the present invention are implemented.
  • the calibration method of the pan/tilt system, the calibration device, the pan/tilt system and the computer readable medium of the present invention can complete the calibration of the rocker, the motor and the attitude sensor of the pan/tilt system during each calibration, without the need for the user to individually check Each item is calibrated, reducing multiple tedious calibration operations and improving user experience.
  • Fig. 1 shows a schematic structural diagram of a pan-tilt system according to an embodiment of the present invention
  • Fig. 2 shows a working principle diagram of a pan-tilt system according to an embodiment of the present invention
  • Fig. 3 shows a flow chart of a calibration method of a pan-tilt system according to an embodiment of the present invention
  • FIG. 4 shows a flow chart of the calibration of the joystick in the calibration method of the pan-tilt system according to an embodiment of the present invention
  • FIG. 5 shows a flow chart of the calibration of the attitude sensor in the calibration method of the pan-tilt system according to an embodiment of the present invention
  • Fig. 6 shows a flow chart of the calibration of the motor in the calibration method of the pan/tilt system according to an embodiment of the present invention
  • Fig. 7 shows a flow chart of a method for calibrating a rocker according to an embodiment of the present invention
  • Fig. 8 shows a structural block diagram of a calibration device of a pan-tilt system according to an embodiment of the present invention
  • Fig. 9 shows a structural block diagram of a calibration device for a rocker according to an embodiment of the present invention.
  • Fig. 10 shows a structural block diagram of a pan-tilt system according to an embodiment of the present invention
  • Fig. 11 shows a structural block diagram of a pan-tilt system according to another embodiment of the present invention.
  • the technology of the embodiment of the present invention is mainly used for pan-tilt.
  • the pan-tilt can be the supporting equipment for installing and fixing the shooting calibration device.
  • the pan-tilt in the embodiment of the present application may be a handheld pan-tilt, or the pan-tilt may also be set on a movable platform, such as a drone or a car.
  • the calibration method of the pan/tilt system, the calibration method of the joystick, the calibration device of the pan/tilt system, the calibration device of the joystick, the pan/tilt system and the computer-readable storage medium of the present application will be described in detail below with reference to the accompanying drawings. In the case of no conflict, the following embodiments and features in the implementation can be combined with each other.
  • the pan/tilt system of the embodiment of the present invention may be a handheld pan/tilt system, but is not limited to a handheld pan/tilt system.
  • the pan/tilt system may also include a mobile platform mounted on a mobile platform (such as including but not limited to drones, mobile robots, and mobile robots). PTZ system on people, ships, etc.).
  • the pan/tilt system includes a pan/tilt, a joystick for controlling the pan/tilt, and an attitude sensor for measuring the attitude information of the pan/tilt.
  • the pan/tilt includes a rotating shaft mechanism and a motor for driving the rotating shaft mechanism to rotate.
  • the pan/tilt in the embodiment of the present invention may be a two-axis pan/tilt or a three-axis pan/tilt.
  • the pan/tilt system of an embodiment of the present application will be described in detail below with reference to Fig. 1 and taking a three-axis pan/tilt as an example.
  • the pan/tilt system 100 includes a pan/tilt 110, and the pan/tilt 110 further includes: a pitch axis assembly, including a pitch axis motor 113-1 and a pitch axis mechanism 113-2; a roll axis assembly, including a horizontal axis A roll axis motor 112-1 and a roll axis mechanism 112-2; and a yaw axis assembly including a yaw axis motor 111-1 and a yaw axis mechanism 111-2.
  • a pitch axis assembly including a pitch axis motor 113-1 and a pitch axis mechanism 113-2
  • a roll axis assembly including a horizontal axis A roll axis motor 112-1 and a roll axis mechanism 112-2
  • a yaw axis assembly including a yaw axis motor 111-1 and a yaw axis mechanism 111-2.
  • the pitch axis motor 113-1 is used to drive the movement of the pitch axis mechanism 113-2
  • the roll axis motor 112-1 is used to drive the movement of the roll axis mechanism 112-2
  • the yaw axis motor 111-1 is used to drive Movement of the yaw axis mechanism 111-2.
  • one side of the pitch axis mechanism 113-2 is connected with a fixing assembly 115, a sliding assembly including a slider 116 and a supporting plate 117 arranged on the fixing assembly 115, and a lens holder 118 arranged on the supporting plate 117 , And the positioning assembly 114 provided in another example of the pitch axis mechanism 113-2.
  • the sliding component can slide relative to the fixed component 115, and the photographing device is disposed on the sliding component.
  • the positioning component 114 can rotate relative to the pitch axis mechanism 113-2, and the positioning component 114 includes a rotating arm 114a that can rotate relative to the pitch axis mechanism 113-2, and a rotating arm 114a that can slide relative to the rotating arm 114a and can interact with the shooting device.
  • the mating part 114b is provided in another example of the pitch axis mechanism 113-2.
  • An attitude sensor such as an inertial measurement unit (IMU) or an angle sensor may be provided in the fixed component 115.
  • the inertial measurement element includes at least one of an accelerometer or a gyroscope, which may be used to measure the attitude and acceleration of the photographing device, or the IMU may also be provided in the positioning component 114.
  • pan/tilt 110 may also include only one or two rotating shaft components.
  • FIG. 1 shows that the yaw axis assembly is connected to one end of the roll axis assembly, and the other end of the roll axis assembly is connected to the pitch axis assembly, the embodiment of the present application is not limited to this, the yaw axis assembly
  • the roll axis assembly and the pitch axis assembly can also be connected in other sequences.
  • a support body is provided under the pan/tilt 110.
  • the support body includes an input portion 120 connected to the pan/tilt 110 and a hand-held member 130 detachably mounted on the input portion 120.
  • the input unit 120 may be used to input an operation instruction of the user on the pan-tilt 110.
  • the input unit 120 may include a calibration trigger button 121.
  • the input unit 120 may also include a rocker 122.
  • the rocker 122 is an active control device of the pan/tilt. It uses an external force to push the rocker to change the position of the rocker to input the position into the controller of the control device to realize the control of the pan/tilt.
  • the rocker usually includes a base, a rotating seat arranged on the base, and a joystick provided on the rotating seat. The user moves the joystick to make the joystick and the rotating seat Rotate relative to the base.
  • the rocker 122 is not necessarily provided on the support body of the pan/tilt head, and can also be implemented in an external form.
  • the input unit 120 may also have other components or parts, for example, may have a switch of a pan/tilt system or the like.
  • the input unit 120 may also be provided with an IMU, and the IMU may be used to measure the posture and acceleration of the input unit.
  • a processor may be provided in the input unit 120 for processing input control instructions, or sending and receiving signals.
  • the processor may also be provided in the handheld member 130.
  • the processor may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), and application specific integrated circuits (application specific integrated circuits). circuit, ASIC), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the processor can communicate with the terminal device, and the user can control the pan-tilt through an application (APP) on the terminal device, for example, make the pan-tilt enter a calibration mode.
  • APP application
  • the hand-held component 130 is detachably connected to the input unit 120.
  • the hand-held component 130 can be a wristband or a handle.
  • the hand-held component 130 can be provided with a pan/tilt system switch or the like.
  • An IMU can also be added to the hand-held component 130, which can be used to measure the posture and acceleration of the hand-held component.
  • a battery for powering the pan-tilt system is provided in the hand-held member 130.
  • the PTZ system uses the attitude sensor as the feedback device and the motor as the output element to form a closed-loop control system.
  • the control quantity is the attitude of the pan/tilt, that is, given a target attitude (joystick value), the measured attitude is achieved through feedback control to reach the target attitude.
  • FIG. 3 shows a flowchart of a calibration method 300 of a pan-tilt system according to an embodiment of the present invention. As shown in FIG. 3, the method 300 includes the following steps:
  • step S310 enter the calibration mode
  • step S320 calibrate the joystick, the motor and the attitude sensor respectively
  • step S330 it is determined whether the calibration of the joystick, the motor and the attitude sensor is successful
  • step S340 if the joystick, the motor, and the attitude sensor are all calibrated successfully, it is determined that the pan-tilt system is successfully calibrated, and the calibration mode is exited.
  • the calibration of the joystick, the motor, and the attitude sensor are independent of each other.
  • the user may not be sure which one of the joystick, motor, or attitude sensor has a problem, so they have to calibrate the joystick, motor, and attitude sensor one by one.
  • the zero position deviation of the joystick or the deviation of the attitude sensor will cause the gimbal's axis of rotation mechanism to drift in a static state, but the user cannot know what causes the axis of rotation.
  • the mechanism drifts, so the joystick calibration and the attitude sensor calibration have to be carried out one by one until the offset is eliminated, that is, the user has to complete multiple calibration operations, resulting in cumbersome operations.
  • the calibration method 300 of the pan/tilt system can simultaneously complete the calibration of the rocker, motor and attitude sensor of the pan/tilt system after entering the calibration mode, without the user needing to calibrate each item separately. , Reduce multiple tedious calibration operations and improve user experience.
  • the calibration mode may be entered when a user's instruction to start calibration is received.
  • the processor of the pan/tilt system receives a calibration command sent by the client, it enters the calibration mode.
  • a calibration action input on the support body of the pan/tilt head is detected, for example, when the user presses a calibration button on the pan/tilt head input unit 120, the pan/tilt head system enters the calibration mode.
  • the user can calibrate the pan/tilt system after discovering the deviation of the pan/tilt or re-installing and replacing the camera. Of course, the user can also calibrate the PTZ system at any time.
  • the control channel of the joystick to the pan/tilt can be closed to avoid interference to the calibration.
  • step S320 is performed to calibrate the joystick, motor and attitude sensor of the pan/tilt system respectively; and step S330 to determine whether the calibration of the joystick, motor and attitude sensor is successful.
  • step S320 and step S330 can be performed alternately, that is, after calibration of each of the joystick, motor, and attitude sensor of the pan-tilt system is completed, it is determined whether the corresponding calibration item is successfully calibrated.
  • step S340 if the three items of the joystick, the motor and the attitude sensor are all calibrated successfully, it is determined that the pan-tilt system is calibrated successfully, and the calibration mode is exited.
  • prompt information can be generated to the user to prompt the user that the calibration is successful, and the prompt information includes, but is not limited to, a sound prompt, an indicator light prompt, or a prompt on the client.
  • the calibration mode is exited.
  • Another possible situation of the calibration failure is: if the calibration of the pan-tilt system is not completed within the first preset time period, the calibration mode is exited. That is to say, the overall calibration time of the pan/tilt system is recorded. If the overall calibration time exceeds the first preset time period, it indicates that the calibration has failed. At this time, the calibration is stopped and the calibration mode is exited. When the calibration fails, a prompt message can be generated to the user to remind the user that the calibration has failed.
  • the joystick, the motor, and the attitude sensor may be calibrated repeatedly until the joystick, the motor, and the attitude sensor are calibrated. Both the motor and the attitude sensor are calibrated successfully.
  • the calibration result can be saved every time the calibration fails, for example, it is possible to record the success or failure of the calibration for each of the above three calibration items.
  • the calibration results of each of the joystick, motor, and attitude sensor in the previous calibration can be repeated to calibrate the failed items among the above three items.
  • a time threshold may be set for the calibration time, and the calibration will be stopped if the time threshold is exceeded.
  • a time threshold can be set separately for each calibration item, which is recorded as the first threshold. That is, if at least one of the joystick, motor and attitude sensor is not calibrated successfully, repeat the calibration of the joystick, motor and attitude sensor until the calibration time of at least one of the joystick, motor and attitude sensor exceeds the first threshold, If the calibration is still not successful at this time, stop the calibration.
  • a time threshold can be set for the total calibration time, which is recorded as the second threshold. That is, if at least one of the joystick, motor and attitude sensor is not calibrated successfully, repeat the calibration of the joystick, motor and attitude sensor until the total calibration time of the joystick, motor and attitude sensor exceeds the second threshold. If the calibration is still not successful, stop the calibration.
  • the number of calibration failures of the joystick, motor and attitude sensor can be counted separately, and if the number of times exceeds the preset number, a prompt message is generated to the user to remind the user that the item may be faulty, so that the user can find and solve the problem in time .
  • the motor and the attitude sensor are calibrated in a preset order, for example, the motor is calibrated first, and then the attitude sensor is calibrated, or the attitude sensor is calibrated first, and then the motor is calibrated. Perform calibration.
  • the calibration of the joystick it can be performed synchronously with the calibration of the motor or the attitude sensor, or the joystick, the motor and the attitude sensor can be calibrated in sequence in a preset order. Since the calibration of the joystick does not affect the calibration of the motor and the attitude sensor, the joystick can be calibrated last, that is, the calibration sequence can be that the motor, the attitude sensor and the joystick can be calibrated in sequence.
  • calibrating the joystick includes the following steps:
  • step S410 obtain first position information of the preset position of the joystick in the set coordinate system
  • step S420 determine the first deviation between the first position information and the second position information of the reference position of the preset position in the set coordinate system
  • step S430 the set coordinate system is adjusted according to the first deviation, so that the reference position in the adjusted set coordinate system approaches the preset position.
  • the set coordinate system is the coordinate system of the joystick, and the coordinate system is established according to the direction of the joystick and the centering position of the joystick, that is, a coordinate system established with the centering position of the joystick as the coordinate origin.
  • the current centering position of the joystick may deviate from the centering position when the coordinate system is established.
  • the center position of the rocker is used as the preset position, that is, the position when the rocker returns to the zero position.
  • the preset position is the center position of the joystick
  • the reference position in the set coordinate system may be the origin of the set coordinate system
  • the second position information in step S420 is the coordinates of the origin of the coordinate system. It is easier to calculate and operate by using the centering position as the preset position.
  • step S410 first determine the position information of the preset position of the joystick in the currently adopted set coordinate system, for example, the coordinates of the center position of the joystick in the currently set coordinate system (ie the median value of the joystick) ). In the ideal situation without any deviation, the centering position of the joystick should coincide with the origin of the coordinate in the current coordinate system.
  • the first deviation between the first position information and the second position information obtained in step S420 is the deviation between the actual coordinates of the joystick in the currently set coordinate system and the coordinate position.
  • step S430 the set coordinate system is adjusted according to the first deviation, so that the reference position in the adjusted set coordinate system approaches the preset position.
  • the preset position as the center position of the joystick as an example, in step S430, by adjusting the set coordinate system, the coordinate origin in the adjusted set coordinate system is approached to the midpoint value of the joystick .
  • step S420 it is first determined whether the first deviation is greater than a preset deviation. If the first deviation is greater than the preset deviation, step S430 is executed to adjust the set coordinate system; if the first deviation is less than or equal to the preset deviation, the default joystick calibration is successful.
  • the execution of the adjustment of the set coordinate system according to the first deviation is triggered, so that the reference position in the adjusted set coordinate system approaches the preset Positioning steps; if the first deviation is not greater than the preset deviation, there is no need to adjust the set coordinate system, and the joystick calibration is directly assumed to be successful.
  • step S330 can be executed to determine whether the joystick is successfully calibrated.
  • it is possible to determine whether the joystick is calibrated successfully according to the position information of the preset position in the set coordinate system which specifically includes: determining that the preset position of the joystick is at the third position in the adjusted set coordinate system Whether the information passes the first legality verification; if it passes, it is determined that the joystick calibration is successful.
  • judging whether the third position information of the preset position in the adjusted set coordinate system passes the first legality verification includes: collecting the preset position in the second preset time period after the adjustment. Set the third position information in the coordinate system; determine the second deviation between the third position information and the fourth position information of the reference position in the adjusted set coordinate system; if the second deviation is in advance If it fluctuates within the range, it is determined that the third position information of the preset position in the adjusted setting coordinate system passes the first legality verification.
  • the third position information may be the actual coordinates of the centering position of the joystick in the adjusted coordinate system; the fourth position information may be the adjusted coordinates The coordinate origin of the system, and the deviation between the actual coordinate and the coordinate origin is the second deviation. If the second deviation does not exceed the preset range within the preset second preset time period, it can be determined that the adjusted coordinate system passes the first legality verification, that is, the joystick calibration is successful. It should be noted that the definition of the preset time period in the first legality verification process as the “second preset time period” is to distinguish it from the “first preset time period” mentioned above, and is not intended to be specific There are no restrictions on the duration.
  • the third position information of a plurality of preset positions and the fourth position information of the reference position may be collected within the second preset time period for comparison, and a plurality of second deviations may be obtained. If neither deviation exceeds the preset range, it is determined that the third location information passes the first legality verification.
  • the third location information of the preset location collected during the second preset time period may also be fused, for example, a plurality of third locations are averaged to obtain the fused location information. The fusion position information is compared with the fourth position information of the reference position to obtain the second deviation. If the second deviation is less than a certain threshold, it is determined that the third position information passes the first legality verification.
  • the joystick is disturbed during the first legality verification, for example, the user accidentally touches the joystick, it may cause the collected second deviation to be too large, resulting in the first legality verification time limit. Therefore, in one embodiment, if the second deviation exceeds a preset interference determination threshold, it is determined that the joystick is subject to external interference, and the preset position is adjusted during the second preset time period. The fifth position information in the subsequent set coordinate system is used to perform the first legality verification.
  • the interference determination threshold is greater than the aforementioned preset range.
  • the fifth information of the preset position in the adjusted set coordinate system during the second preset time period can be re-collected, and the process can be performed again.
  • the first legality verification Therefore, by re-collecting the position information of the joystick after waiting for the end of the interference, the interference can be reduced.
  • the attitude sensor is the feedback element of the pan/tilt.
  • the attitude sensor is the feedback element, and the drive motor of each axis of the pan/tilt is used as the output element to control the attitude of the pan/tilt.
  • the control quantity is the attitude of the pan/tilt, and a target is given. Attitude, the current posture of the gimbal is corrected to the target posture through feedback control, so that the gimbal approaches the target posture from the current posture.
  • the attitude sensor mainly includes an inertial measurement unit (IMU) and an angle sensor.
  • the inertial measurement unit mainly includes a gyroscope and an accelerometer.
  • the gyroscope can measure the angular velocity of each axis of the pan/tilt.
  • the accelerometer can measure the linear acceleration of the pan/tilt along each axis.
  • the processor converts the angular rate signal measured by the gyroscope. Calculate the instantaneous movement direction, inclination and other posture information by calculating the time integral, and use the acceleration signal measured by the accelerometer to calculate the time integral operation to calculate the speed information of the pan/tilt.
  • the measured attitude information is inaccurate due to the drift of the gyroscope. Therefore, use the accelerometer to give the gimbal attitude reference, and integrate the angular velocity measured by the gyroscope to obtain the gimbal's attitude information. Correct the current attitude, that is, use the accelerometer to calibrate the gyroscope, and finally obtain more accurate gimbal attitude information. After the calibration, if it is judged that the gyroscope has been calibrated successfully, it can be judged that the calibration of the attitude sensor is successful.
  • the step of calibrating the gyroscope based on the accelerometer includes:
  • step S510 obtain the first attitude of the pan/tilt based on the accelerometer, and obtain the second attitude of the pan/tilt based on the fusion of the gyroscope and the accelerometer;
  • step S520 a first attitude deviation between the first attitude and the second attitude is determined
  • step S530 the gyroscope is calibrated according to the first attitude deviation, so that the attitude deviation is not greater than a first preset threshold.
  • step S510 the first posture and the second posture are obtained synchronously, that is, during the calibration process, the accelerometer and gyroscope collect data synchronously, and the first posture of the pan/tilt is determined based on the data collected by the accelerometer, and the The data collected by the gyroscope and the accelerometer are fused to obtain the second attitude of the gimbal.
  • the first posture and the second posture can have a variety of expression forms, such as quaternion, Euler angle, matrix, etc., which are not specifically limited here.
  • the gyroscope detects is the angular velocity information of the gimbal body, and the response speed is fast, but it may be subject to the integral interference and integral drift caused by the temperature drift of the zero point.
  • the gyroscope detects the angular velocities of the three axes of the body coordinate system the real-time attitude can be calculated simply and quickly using the integration method.
  • the attitude obtained by the gyroscope includes a pitch attitude component, a roll attitude component, and a yaw attitude component.
  • the accelerometer detects the acceleration information along its input axis.
  • the gravitational acceleration g will have a projection component gsin ⁇ in the direction of the accelerometer input axis, and the accelerometer will have Output data, and obtain the acceleration input by the accelerometer according to the output data.
  • the accelerometer Since the yaw angle is orthogonal to the direction of gravity, the accelerometer cannot measure the yaw angle, and therefore cannot correct the yaw attitude component of the gyroscope. Therefore, the first attitude deviation in this embodiment is calculated based on the pitch attitude component and the roll attitude component in the first attitude and the second attitude.
  • step S520 the deviation between the two is calculated. Since the first attitude comes from the measurement data of the accelerometer, and the second attitude comes from the fusion of the measurement data of the accelerometer and the gyroscope, it can be known that the deviation comes from the measurement data of the gyroscope.
  • a closed-loop control strategy may be adopted to correct the attitude information measured by the gyroscope according to the first attitude deviation between the first attitude and the second attitude, so as to compensate the drift of the gyroscope. Afterwards, it is determined whether the collected information of the gyroscope after drift compensation passes the second legality verification; if it passes, it is determined that the gyroscope is successfully calibrated.
  • At least one of extended Kalman filtering, complementary filtering or smoothing filtering may be used to correct the attitude measured by the gyroscope according to the first attitude deviation.
  • the first posture and the second posture are compared to obtain the small angle error between the two, and the small angle error is estimated by Kalman filter, and the measured posture data of the gyroscope is corrected by Kalman filter estimation, thereby The gyroscope performs drift compensation.
  • the magnitude of the second attitude deviation obtained after the drift compensation of the gyroscope is continuously verified, and then the attitude data of the gyroscope is constantly corrected.
  • drift compensation and the second legality verification are performed alternately.
  • the second posture deviation is obtained based on the third posture and the fourth posture of the pan/tilt
  • the third posture is obtained based on the accelerometer, which is similar to the first posture above
  • the four postures are obtained based on the fusion of the gyroscope and the accelerometer, similar to the second posture above.
  • the second attitude deviation is not greater than the first preset threshold, it is determined that the collected information of the drift-compensated gyroscope passes the second legality verification.
  • the gyroscope before calibrating the gyroscope, it is first determined whether the gyroscope needs to be calibrated. If the gyroscope does not need to be calibrated, it can directly default to the success of the calibration. Specifically, before calibrating the gyroscope according to the first attitude deviation, it is determined whether the first attitude deviation is greater than a first preset threshold. If the first attitude deviation is greater than the first threshold, step S530 is triggered; if the first attitude deviation is not greater than the first preset threshold, it is assumed that the gyroscope calibration is successful.
  • the pan/tilt at two adjacent moments exceeds a predetermined range, that is, the attitude of the pan/tilt has changed too much, it can be considered that the pan/tilt has been interfered by the outside, for example, it has been touched by the user by mistake.
  • detecting that the pan/tilt is interfered by the outside includes: acquiring a fifth attitude of the pan/tilt at a first moment; acquiring a sixth attitude of the pan/tilt at a second moment, the second time being later than all
  • the first moment, and the fifth posture and the sixth posture are determined according to the same method, for example, both are determined by a gyroscope or both are determined by an accelerometer; if the sixth posture exceeds the deviation of the fifth posture Range, it is detected that the pan/tilt is interfered by the outside world.
  • calibrating the motor includes:
  • step S610 within a predetermined period of time, the angular velocity of the motor is measured according to a given target torque
  • step S620 determine the moment of inertia of the motor according to the target torque and the angular velocity
  • step S630 the strength of the motor is adjusted to a preset strength corresponding to the moment of inertia.
  • the pan/tilt head includes a pitch axis motor 113-1 and a pitch axis mechanism 113-2, a roll axis motor 112-1 and a roll axis mechanism 112-2, and a yaw ( yaw) Shaft motor 111-1 and yaw shaft mechanism 111-2.
  • the pitch axis motor 113-1 is used to drive the movement of the pitch axis mechanism 113-2
  • the roll axis motor 112-1 is used to drive the movement of the roll axis mechanism 112-2
  • the yaw axis motor 111-1 is used to drive The movement of the yaw axis mechanism 111-2
  • the pitch axis mechanism 113-2 are used to support the shooting device.
  • the pitch axis motor, the roll axis motor, and the yaw axis motor are calibrated in sequence according to a preset sequence, and step S610-step S630 are steps of calibrating any one of the axis motors.
  • step S610 within a predetermined period of time, a target torque is given, the motor is powered on and rotated, and the angular velocity of the motor at multiple frequency points is measured.
  • the preset time period may be 5-6 seconds; within the preset time period, the frequency of the motor gradually increases, for example, from 10 Hz to 100 Hz.
  • the angular velocity of the motor at multiple frequency points in the frequency range can be collected by the gyroscope.
  • step S620 the angular velocity at each frequency point is differentiated to obtain the angular acceleration at each frequency point. Then, the moment of inertia is obtained according to the ratio of the target moment to the angular acceleration, and the moment of inertia is related to the weight of the load.
  • step S630 the strength of the motor is adjusted to a preset strength corresponding to the moment of inertia. Since the moment of inertia is related to the weight of the load, the preset force corresponding to the moment of inertia matches the weight of the load. As a result, the strength of the motor after calibration is adapted to the weight of the current load.
  • a filter can also be set to filter to avoid resonance.
  • the ratio of the angular velocity to the target torque at each frequency point can be calculated; when the ratio of the angular velocity to the target torque at a certain frequency point is greater than a preset threshold, it is determined that the frequency point is a resonance frequency point.
  • a filter By setting a filter at the resonance frequency point for filtering, resonance can be avoided. For example, assuming that the ratio of the angular velocity to the target torque is detected at a frequency of 70 Hz to be greater than a preset threshold, a filter is set to perform filtering at the frequency of 70 Hz.
  • the filter can filter out the component having the resonance frequency in the torque command of the motor when the motor is running.
  • the parameters of the filter may include depth (that is, the peak of the resonance frequency point), width (that is, the range of the resonance frequency), and the frequency of the resonance frequency point.
  • the above filtering can be achieved by adjusting the depth, width, and frequency. .
  • step S320 is triggered; if it is determined that at least one of the pan/tilt or joystick is not currently in a static state, the calibration mode can be directly exited, or the user is prompted to keep the pan/tilt and joystick. The stillness of the rocker.
  • the step of judging whether the joystick is currently in a static state includes: first, collecting second position information of the current position of the joystick in the set coordinate system during the third time period; if the second position information It is indicated that the current position of the joystick is within the preset position range, and it is determined that the joystick is currently in a stationary state. That is, when the current position of the joystick hardly changes or changes little within a period of time, it can be considered that the joystick is at a standstill.
  • Determining whether the pan/tilt is currently in a static state can be specifically implemented as determining whether the supporting body of the pan/tilt is currently in a static state, and as long as the deviation is within a predetermined range, it can be considered to be in a static state.
  • acquiring the seventh posture of the supporting body of the pan/tilt at the third time acquiring the eighth posture of the supporting body of the gimbal at the fourth time, the fourth time being later than the third time, and The seventh posture and the eighth posture are determined according to the same method; if the eighth posture does not exceed the deviation range of the seventh posture, it is determined that the pan/tilt head is currently in a stationary state.
  • the seventh posture and the eighth posture may be represented by Euler angles.
  • the correction data of the joystick, motor and attitude sensor can be stored after calibration.
  • the correction data may include the above-mentioned corrected setting coordinate system, the adjusted motor strength, or the corrected output posture of the gyroscope, etc.
  • the calibration method of the pan/tilt system can complete the calibration of the joystick, the motor and the attitude sensor of the pan/tilt system during each calibration, without the user needing to calibrate each item separately , Reduce multiple tedious calibration operations and improve user experience.
  • FIG. 7 shows a flowchart of a method 700 for calibrating a rocker according to an embodiment of the present invention. As shown in FIG. 7, the method 700 includes the following steps:
  • step S710 obtain the first position information of the preset position of the joystick in the set coordinate system
  • step S720 determine the first deviation between the first position information and the second position information of the reference position of the preset position in the set coordinate system
  • step S730 the set coordinate system is adjusted according to the first deviation, so that the reference position in the adjusted set coordinate system approaches the preset position.
  • the set coordinate system is the coordinate system of the joystick, which is established according to the direction of the joystick and the centering position of the joystick, that is, the coordinate system established with the centering position of the joystick as the coordinate origin.
  • the current centering position of the joystick may deviate from the centering position when the coordinate system is established.
  • the center position of the rocker is used as the preset position, that is, the position when the rocker returns to the zero position.
  • the preset position is the center position of the joystick
  • the reference position in the set coordinate system may be the origin of the set coordinate system
  • the second position information in step S720 is the coordinates of the origin of the coordinate system. It is easier to calculate and operate by using the centering position as the preset position.
  • step S710 first determine the position information of the preset position of the joystick in the currently adopted set coordinate system, for example, the coordinates of the center position of the joystick in the currently set coordinate system (ie the median value of the joystick) ). In the ideal situation without any deviation, the centering position of the joystick should coincide with the origin of the coordinate in the current coordinate system.
  • the first deviation between the first position information and the second position information obtained in step S720 is the deviation between the actual coordinates of the joystick in the currently set coordinate system and the coordinate position.
  • step S730 the set coordinate system is adjusted according to the first deviation, so that the reference position in the adjusted set coordinate system approaches the preset position.
  • the preset position as the center position of the joystick as an example
  • step S730 by adjusting the setting coordinate system, the coordinate origin in the adjusted setting coordinate system is approached to the midpoint value of the joystick .
  • step S720 it is first determined whether the first deviation is greater than a preset deviation. If the first deviation is greater than the preset deviation, step S440 is executed, otherwise, it is assumed that the joystick calibration is successful. That is, if the first deviation is greater than the preset deviation, the execution of the adjustment of the set coordinate system according to the first deviation is triggered, so that the reference position in the adjusted set coordinate system approaches the preset The step of positioning; if the first deviation is not greater than the preset deviation, it is assumed that the joystick calibration is successful.
  • the joystick After the joystick is calibrated through the above steps S710 to S730, it can be determined whether the joystick is successfully calibrated. In an embodiment, it is possible to determine whether the joystick is calibrated successfully according to the position information of the preset position in the set coordinate system, which specifically includes: determining that the preset position of the joystick is at the third position in the adjusted set coordinate system Whether the information passes the first legality verification; if it passes, it is determined that the joystick calibration is successful.
  • judging whether the third position information of the preset position in the adjusted set coordinate system passes the first legality verification includes: collecting the preset position in the second preset time period after the adjustment. Set the third position information in the coordinate system; determine the second deviation between the third position information and the fourth position information of the reference position in the adjusted set coordinate system; if the second deviation is in advance If it fluctuates within the range, it is determined that the third position information of the preset position in the adjusted setting coordinate system passes the first legality verification.
  • the third position information may be the actual coordinates of the centering position of the joystick in the adjusted coordinate system; the fourth position information may be the adjusted coordinates The coordinate origin of the system, and the deviation between the actual coordinate and the coordinate origin is the second deviation. If the second deviation does not exceed the preset range within the preset second preset time period, it can be determined that the adjusted coordinate system passes the first legality verification, that is, the joystick calibration is successful. It should be noted that the definition of the preset time period in the first legality verification process as the “second preset time period” is to distinguish it from the “first preset time period” mentioned above, and is not intended to be specific There are no restrictions on the duration.
  • the third position information of a plurality of preset positions may be collected within the second preset time period, the fourth position information of the reference position is compared, and a plurality of second deviations are obtained. If neither deviation exceeds the preset range, it is determined that the third location information passes the first legality verification.
  • the third location information of the preset location collected during the second preset time period may also be fused, for example, a plurality of third locations are averaged to obtain the fused location information.
  • the fusion position information is compared with the fourth position information of the reference position to obtain the second deviation. If the second deviation is less than a certain threshold, it is determined that the third position information passes the first legality verification.
  • the joystick is disturbed during the first legality verification, for example, the user accidentally touches the joystick, it may cause the collected second deviation to be too large, resulting in the first legality verification time limit. Therefore, in one embodiment, if the second deviation exceeds a preset interference determination threshold, it is determined that the joystick is subject to external interference, and the preset position is adjusted during the second preset time period. The fifth position information in the subsequent set coordinate system is used to perform the first legality verification.
  • the interference determination threshold is greater than the aforementioned preset range.
  • the fifth information of the preset position in the adjusted set coordinate system during the second preset time period can be re-collected, and the process can be performed again.
  • the first legality verification Therefore, by re-collecting the position information of the joystick after waiting for the end of the interference, the interference can be reduced.
  • the calibration method of the joystick according to the embodiment of the present invention does not need to perform calibration by rocking the joystick to the maximum range, which simplifies the user operation required for calibration and improves the user experience.
  • FIG. 8 is a schematic block diagram of a calibration device 800 of a pan-tilt system according to an embodiment of the present invention.
  • the calibration device 800 of the pan-tilt system shown in FIG. 8 includes a processor 810, a memory 820, and a computer program stored on the memory 820 and running on the processor 810.
  • the processor implements the foregoing when the program is executed.
  • the main functions of the calibration device 800 of the pan-tilt system will be described below, and part of the details already described above will be omitted.
  • the processor 810 may be a central processing unit (CPU), an image processing unit (GPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other forms with data processing capabilities and/or instruction execution capabilities
  • the processor 810 may be a central processing unit (CPU) or other forms of processing units with data processing capabilities and/or instruction execution capabilities, and may control other components in the calibration device 800 to perform desired Function.
  • the processor 810 can include one or more embedded processors, processor cores, microprocessors, logic circuits, hardware finite state machines (FSM), digital signal processors (DSP), or combinations thereof.
  • the memory 820 includes one or more computer program products, and the computer program products may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • the volatile memory may include random access memory (RAM) and/or cache memory (cache), for example.
  • the non-volatile memory may include, for example, read-only memory (ROM), hard disk, flash memory, and the like.
  • One or more computer program instructions can be stored on the computer-readable storage medium, and the processor 810 can run the program instructions to implement the calibration method and the calibration method in the embodiments of the present invention (implemented by the processor) described below. / Or other desired functions.
  • Various application programs and various data such as various data used and/or generated by the application program, can also be stored in the computer-readable storage medium.
  • the processor 810 implements the following steps when executing the program: enter the calibration mode; calibrate the joystick, the motor, and the attitude sensor respectively; determine the joystick, the motor, and the attitude Whether the sensor is calibrated successfully; if the joystick, the motor and the attitude sensor are all calibrated successfully, it is determined that the pan/tilt system calibration is successful, and the calibration mode is exited.
  • the processor 810 when the processor 810 executes the program, it also implements: if at least one of the joystick, the motor, and the attitude sensor is not calibrated successfully, then it is determined that the calibration of the pan/tilt system has failed, and the system exits Describe the calibration mode.
  • the processor 810 when the processor 810 executes the program, it also realizes: if at least one of the joystick, the motor, and the attitude sensor is not calibrated successfully, repeat the calibration of the joystick, the motor Calibrate with the attitude sensor until the joystick, the motor and the attitude sensor are all calibrated successfully.
  • the processor 810 when the processor 810 executes the program, it also realizes: if at least one of the joystick, the motor, and the attitude sensor is not calibrated successfully, repeat the calibration of the joystick, the motor Calibrate with the attitude sensor until the calibration time of at least one of the joystick, the motor and the attitude sensor exceeds a first threshold, or until the calibration time of the joystick, the motor and the attitude sensor The total calibration time exceeds the second threshold.
  • the repeating calibration of the joystick, the motor, and the attitude sensor includes: repeating the calibration according to the calibration result of the joystick, the motor, and the attitude sensor in the previous calibration. Calibrate the items that have failed to be calibrated among the joystick, the motor, and the attitude sensor.
  • the processor 810 when the processor 810 executes the program, it further implements: if the calibration of the pan/tilt system is not completed within the first preset time period, exit the calibration mode.
  • the calibration of the joystick, the motor, and the attitude sensor of the pan/tilt head respectively includes: calibrating the motor and the attitude sensor in a preset sequence.
  • the calibrating the motor and the attitude sensor in a preset sequence includes: calibrating the motor, the attitude sensor, and the rocker in sequence.
  • calibrating the joystick includes: acquiring first position information of the preset position of the joystick in a set coordinate system; determining that the first position information is in relation to the preset position The first deviation between the second position information of the reference position in the set coordinate system; adjust the set coordinate system according to the first deviation, so that the reference position in the adjusted set coordinate system tends to Close to the preset position.
  • the method before the adjusting the set coordinate system according to the first deviation so that the reference position in the adjusted set coordinate system approaches the preset position, the method further includes: If the first deviation is greater than the preset deviation, the execution of the adjustment of the set coordinate system according to the first deviation is triggered, so that the reference position in the adjusted set coordinate system approaches the preset position Steps; if the first deviation is not greater than the preset deviation, it is assumed that the joystick calibration is successful.
  • determining that the joystick calibration is successful includes: determining whether the third position information of the preset position in the adjusted set coordinate system passes the first legality verification; if it passes, then determining the The joystick calibration is successful.
  • the judging whether the third position information of the preset position in the adjusted set coordinate system passes the first legality verification includes: collecting the preset position within the second preset time period The third position information in the adjusted setting coordinate system; determine the second deviation between the third position information and the fourth position information of the reference position in the adjusted setting coordinate system; if the first If the second deviation fluctuates within the preset range, it is determined that the third position information of the preset position in the adjusted set coordinate system passes the first legality verification.
  • the processor 810 when the processor 810 executes the program, it also implements: if the second deviation exceeds a preset interference determination threshold, determine that the joystick is interfered by the outside world, and re-collect the second preset The fifth position information of the preset position in the adjusted set coordinate system within the time period is used to perform the first legality verification.
  • the preset position includes a centered position of the rocker.
  • the attitude sensor includes a gyroscope
  • calibrating the attitude sensor includes: calibrating the gyroscope
  • determining whether the attitude sensor is successfully calibrated includes: determining whether the gyroscope is calibrated successfully.
  • the attitude sensor further includes an accelerometer
  • the calibrating the gyroscope includes: obtaining a first attitude of the pan/tilt based on the accelerometer, and based on the gyroscope and the gyroscope.
  • the accelerometer is fused to obtain the second attitude of the pan/tilt; the first attitude deviation between the first attitude and the second attitude is determined; the gyroscope is calibrated according to the first attitude deviation, so that The attitude deviation is not greater than the first preset threshold.
  • the method before calibrating the gyroscope according to the first attitude deviation so that the first attitude deviation is not greater than a first preset threshold, the method further includes: if the first attitude deviation is If the deviation is greater than the first preset threshold, the step of calibrating the gyroscope according to the attitude deviation is triggered so that the first attitude deviation is not greater than the first preset threshold; if the first attitude If the deviation is not greater than the first preset threshold, it is assumed that the calibration of the gyroscope is successful.
  • the first attitude deviation is calculated based on the pitch attitude component and the roll attitude component in the first attitude and the second attitude.
  • the calibrating the gyroscope according to the first attitude deviation includes: using a filter to compensate for the drift of the gyroscope according to the first attitude deviation.
  • determining whether the gyroscope is successfully calibrated includes: determining whether the collected information of the gyroscope after drift compensation passes the second legality verification; if it passes, it is determined that the gyroscope is calibrated successfully.
  • the judging whether the collected information of the gyroscope after drift compensation passes the second legality verification includes: in the process of compensating the drift of the gyroscope, continuously verifying the drift of the gyroscope The magnitude of the second posture deviation obtained after compensation, the second posture deviation is obtained according to the third posture and the fourth posture of the pan/tilt, the third posture is obtained based on the accelerometer, and the fourth posture is obtained based on the accelerometer. The attitude is obtained based on the fusion of the gyroscope and the accelerometer; if the deviation of the second attitude is not greater than the first preset threshold, it is determined that the collected information of the drift-compensated gyroscope passes the second legitimacy verification.
  • the processor 810 when the processor 810 executes the program, it also realizes that during the process of calibrating the attitude sensor, if it is detected that the pan/tilt is interfered by the outside, the calibration mode is exited.
  • the detecting that the pan/tilt is interfered by the outside includes: acquiring a fifth attitude of the pan/tilt at a first moment; acquiring a sixth attitude of the pan/tilt at a second moment, and The second time is later than the first time, and the fifth posture and the sixth posture are determined according to the same calibration device; if the sixth posture exceeds the deviation range of the fifth posture, the detection The pan/tilt is disturbed by outsiders.
  • calibrating the motor includes: measuring the angular velocity of the motor according to a given target torque within a predetermined period of time; and determining the moment of inertia of the motor according to the target torque and the angular velocity ; Adjust the strength of the motor to a preset strength corresponding to the moment of inertia.
  • determining whether the motor is successfully calibrated includes: after the motor is calibrated, it is assumed that the motor is calibrated successfully.
  • the processor 810 when the processor 810 executes the program, it also implements: storing correction data of the joystick, the motor, and the attitude sensor after calibration.
  • the processor 810 when the processor 810 executes the program, it also realizes: respectively counting the number of failed calibrations of the joystick, the motor, and the attitude sensor, and if the number of times exceeds a preset number of times, then generate a message to the user Prompt information.
  • the entering the calibration mode includes: entering the calibration mode when a calibration command sent by the client is received or a calibration action input on the supporting body of the pan/tilt is detected.
  • the method further includes: determining that the pan/tilt and the joystick are currently Whether it is in a static state; if it is determined that the pan-tilt and the joystick are currently in a static state, trigger the execution of the step of calibrating the joystick, the motor and the attitude sensor respectively.
  • determining whether the joystick is currently in a stationary state includes: collecting second position information of the current position of the joystick in a set coordinate system during the third time period; if the second position information It is indicated that the current position of the joystick is within the preset position range, and it is determined that the joystick is currently in a stationary state.
  • determining whether the pan/tilt is currently in a static state includes: acquiring the seventh posture of the supporting body of the pan/tilt at the third moment; acquiring the eighth posture of the supporting body of the pan/tilt at the fourth moment. Posture, the fourth time is later than the third time, and the seventh posture and the eighth posture are determined according to the same calibration device; if the eighth posture does not exceed the deviation range of the seventh posture , It is determined that the pan/tilt is currently in a static state.
  • the processor 810 when the processor 810 executes the program, it also implements: in the calibration mode, close the control channel of the joystick to the pan/tilt.
  • FIG. 9 is a schematic block diagram of a calibration device 900 of a rocker according to an embodiment of the present invention.
  • the calibration device 900 of the joystick shown in FIG. 9 includes a processor 910, a memory 920, and a computer program stored on the memory 920 and running on the processor 910.
  • the processor executes the program when the program is executed.
  • the steps of the calibration method 700 shown in 7 only the main functions of the calibration device 900 of the pan-tilt system will be described below, and part of the details already described above will be omitted.
  • the processor 910 implements the following steps when executing the program: acquiring the first position information of the preset position of the joystick in the set coordinate system; determining that the first position information is in relation to the preset position The first deviation between the second position information of the reference position in the set coordinate system; adjust the set coordinate system according to the first deviation, so that the reference position in the adjusted set coordinate system tends to Close to the preset position.
  • the method before the adjusting the set coordinate system according to the first deviation so that the reference position in the adjusted set coordinate system approaches the preset position, the method further includes: If the first deviation is greater than the preset deviation, the execution of the adjustment of the set coordinate system according to the first deviation is triggered, so that the reference position in the adjusted set coordinate system approaches the preset position Steps; if the first deviation is not greater than the preset deviation, it is assumed that the joystick calibration is successful.
  • the processor 910 when the processor 910 executes the computer program, it further implements: judging whether the third position information of the preset position in the adjusted set coordinate system passes the first legality verification; If it passes, it is determined that the joystick calibration is successful.
  • the judging whether the third position information of the preset position in the adjusted set coordinate system passes the first legality verification includes: collecting the preset position within the second preset time period The third position information in the adjusted setting coordinate system; determine the second deviation between the third position information and the fourth position information of the reference position in the adjusted setting coordinate system; if the first If the second deviation fluctuates within the preset range, it is determined that the third position information of the preset position in the adjusted set coordinate system passes the first legality verification.
  • the processor 910 when the processor 910 executes the computer program, it further implements: if the second deviation exceeds a preset interference determination threshold, determine that the joystick is subject to external interference, and re-collect all The fifth position information of the preset position in the adjusted set coordinate system within the second preset time period is used to perform the first legality verification.
  • the preset position includes a centered position of the rocker.
  • an embodiment of the present invention also provides a pan/tilt system.
  • the pan/tilt system 1000 includes a pan/tilt 1010, and the pan/tilt 1010 includes a rotating shaft mechanism and a motor for driving the rotating shaft mechanism to rotate.
  • Joystick 1020 used to control the pan/tilt;
  • attitude sensor 1030 used to measure the attitude information of the pan/tilt, and the calibration device 800 of the pan/tilt system as shown in FIG. 8.
  • the pan-tilt system 1000 may be a supporting device for installing and fixing a shooting calibration device.
  • the pan-tilt system 1000 of the embodiment of the present invention may be a handheld pan-tilt, and the pan-tilt system may also be set on a movable platform, such as a drone or a car.
  • a movable platform such as a drone or a car.
  • the rotation axis mechanism of the pan/tilt head 1010 may include a pitch mechanism, a roll mechanism, and a yaw mechanism.
  • the multiple rotating shaft mechanisms can be connected in series.
  • the pitch axis motor is used to drive the movement of the pitch axis mechanism
  • the roll axis motor is used to drive the movement of the roll axis mechanism
  • the yaw axis motor is used to drive the movement of the yaw axis mechanism.
  • the rocker 1020 is used to control the pan/tilt 1010.
  • the joystick is pushed by an external force to change the position of the joystick to input the position into the controller of the control device, thereby realizing the control of the pan-tilt.
  • the rocker 1020 may include a base, a rotating seat arranged on the base, and a joystick arranged on the rotating seat.
  • the rocker 1020 can be arranged on the support body of the pan/tilt, or can be implemented as an external connection.
  • the attitude sensor 1030 is used to measure the attitude information of the pan/tilt head 1010.
  • the attitude sensor 1030 may include an inertial measurement element and an angle sensor, where the inertial measurement element may include a gyroscope and an accelerometer.
  • the pan-tilt system 1000 also includes a calibration device 800 shown in FIG. 8, which specifically includes one or more processors 810, a memory 820, and a computer program stored on the memory 820 and running on the processor 810.
  • the processor 810 implements the steps of the calibration method 300 of the pan-tilt system shown in FIG. 3 when the program is executed.
  • the embodiment of the present invention also provides a pan/tilt system.
  • the pan/tilt system 1100 includes a pan/tilt 1110, a joystick 1120, and a joystick calibration device 900 as shown in FIG.
  • the lever 1120 is used to control the pan/tilt 1110.
  • the pan/tilt head 1110 may include a rotating shaft mechanism and a motor for driving the rotating shaft mechanism to rotate.
  • the specific structure of the pan/tilt head 1110, the joystick 1120, and other parts of the pan/tilt system 1100 can be referred to above.
  • the pan-tilt system 1100 also includes a calibration device 900 shown in FIG. 9, which specifically includes one or more processors 910, a memory 920, and a computer program stored on the memory 920 and running on the processor 910.
  • the processor When the program 910 is executed, the steps of the rocker calibration method 700 shown in FIG. 7 are implemented.
  • the embodiment of the present invention also provides a computer storage medium on which a computer program is stored.
  • the steps of the aforementioned method 300 or method 700 can be implemented.
  • the computer storage medium is a computer-readable storage medium.
  • the computer storage medium may include, for example, a memory card of a smart phone, a storage component of a tablet computer, a hard disk of a personal computer, a read-only memory (ROM), an erasable programmable read-only memory (EPROM), a portable compact disk read-only memory ( CD-ROM), USB memory, or any combination of the above storage media.
  • the computer-readable storage medium may be any combination of one or more computer-readable storage media.
  • the calibration method of the pan/tilt system, the calibration device, the pan/tilt system, and the computer-readable medium of the embodiments of the present invention can complete the three items of the joystick, motor and attitude sensor of the pan/tilt system during each calibration. Calibration without the need for users to calibrate each item individually, reducing multiple tedious calibration operations and improving user experience.
  • the disclosed system, calibration device, and method can be implemented in other ways.
  • the embodiments of the calibration device described above are only illustrative.
  • the division of the units is only a logical function division.
  • there may be other division methods for example, multiple units or components can be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, calibration devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some modules according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a calibration device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • a program for realizing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Studio Devices (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种云台系统的校准方法、装置、云台系统和计算机可读介质,云台系统包括云台(1010)、用于控制云台的摇杆(1020)以及用于测量云台的姿态信息的姿态传感器(1030),云台包括转轴机构以及用于驱动转轴机构转动的电机。云台系统校准方法包括:进入校准模式(S310);分别对摇杆、电机和姿态传感器进行校准(S320);判断摇杆、电机和姿态传感器是否校准成功(S330);若摇杆、电机和姿态传感器均校准成功,则判断云台系统校准成功,并退出校准模式(S340)。该方法在每次校准时能够完成对云台系统的摇杆、电机和姿态传感器三项的校准,无需用户单独对每一项进行校准,减少多次繁琐的校准操作,提升用户体验。

Description

云台系统的校准方法、装置、云台系统和计算机可读介质 技术领域
本发明涉及云台技术领域,具体而言涉及一种云台系统的校准方法、装置、云台系统和计算机可读介质。
背景技术
云台是为负载增稳的系统。使用云台固定拍摄设备,可以为拍摄设备增稳,即使在运动条件下也可以拍摄出稳定流畅的画面,因而越来越多人使用云台去记录影像。
云台系统在使用过程中可能需要对多个部分进行校准,但目前的云台系统在进行校准时只能对每个部分单一独立地进行校准,从而导致在使用过程中,如果上述问题出现两种以上,就会出现繁琐校准以及多次校准的问题,不利于用户使用和操作,导致用户使用体验较差。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
针对现有技术的不足,本发明实施例第一方面提供了一种云台系统的校准方法,所述云台系统包括云台、用于控制所述云台的摇杆以及用于测量所述云台的姿态信息的姿态传感器,所述云台包括转轴机构以及用于驱动所述转轴机构转动的电机,所述方法包括:
进入校准模式;
分别对所述摇杆、所述电机和所述姿态传感器进行校准;
判断所述摇杆、所述电机和所述姿态传感器是否校准成功;
若所述摇杆、所述电机和所述姿态传感器均校准成功,则判断云台系统校准成功,并退出所述校准模式。
本发明实施例第二方面提供一种摇杆的校准方法,所述方法包括:
获取所述摇杆的预设位置在设定坐标系中的第一位置信息;
确定所述第一位置信息与所述预设位置在所述设定坐标系中的参考位置的第二位置信息之间的第一偏差;
根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置。
本发明实施例第三方面提供一种云台系统的校准装置,所述云台系统包括云台、用于控制所述云台的摇杆以及用于测量所述云台的姿态信息的姿态传感器,所述云台包括转轴机构以及用于驱动所述转轴机构转动的电机,所述校准装置包括存储器与处理器,其中,
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序,并在执行所述计算机程序时,实现:进入校准模式;
分别对所述摇杆、所述电机和所述姿态传感器进行校准;
判断所述摇杆、所述电机和所述姿态传感器是否校准成功;
若所述摇杆、所述电机和所述姿态传感器均校准成功,则判断云台系统校准成功,并退出所述校准模式。
本发明实施例第四方面提供一种摇杆的校准装置,包括存储器与处理器,其中,
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序,并在执行所述计算机程序时,实现:
获取所述摇杆的预设位置在设定坐标系中的第一位置信息;
确定所述第一位置信息与所述预设位置在所述设定坐标系中的参考位置的第二位置信息之间的第一偏差;
根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置。
本发明实施例第五方面提供一种云台系统,包括:云台,所述云台包括转轴机构以及用于驱动所述转轴机构转动的电机;摇杆,用于控制所述云台;姿态传感器,用于测量所述云台的姿态信息,以及本 发明实施例第三方面提供的云台系统的校准装置。
本发明实施例第六方面提供一种云台系统,包括:云台;摇杆,用于控制所述云台;以及本发明实施例第四方面提供的摇杆的校准装置。
本发明实施例第七方面提供一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例第一方面提供的云台系统的校准方法的步骤。
本发明实施例第八方面提供一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例第二方面提供的摇杆的校准方法的步骤。
本发明的云台系统的校准方法、校准装置、云台系统和计算机可读介质,在每次校准时能够完成对云台系统的摇杆、电机和姿态传感器三项的校准,无需用户单独对每一项进行校准,减少多次繁琐的校准操作,提升用户体验。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。
附图中:
图1示出了根据本发明一实施例的云台系统的结构示意图;
图2示出了根据本发明一实施例的云台系统的工作原理图;
图3示出了根据本发明一实施例的云台系统的校准方法的流程图;
图4示出了根据本发明一实施例的云台系统的校准方法中摇杆的校准的流程图;
图5示出了根据本发明一实施例的云台系统的校准方法中姿态传感器的校准的流程图;
图6示出了根据本发明一实施例的云台系统的校准方法中电机的校准的流程图;
图7示出了根据本发明一实施例的摇杆的校准方法的流程图;
图8示出了根据本发明一实施例的云台系统的校准装置的结构 框图;
图9示出了根据本发明一实施例的摇杆的校准装置的结构框图;
图10示出了根据本发明一实施例的云台系统的结构框图;
图11示出了根据本发明另一实施例的云台系统的结构框图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本发明提出的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
本发明实施例的技术主要用于云台。云台可以是安装、固定拍摄 校准装置的支撑设备。本申请实施例的云台可以是手持云台,或者,云台也可以设置在可移动平台上,例如无人机或汽车等。下面结合附图,对本申请的云台系统的校准方法、摇杆的校准方法、云台系统的校准装置、摇杆的校准装置、云台系统和计算机可读存储介质进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
本发明实施例的云台系统可以为手持云台系统,但不限于手持云台系统,例如所述云台系统也可以包括搭载于移动平台(如包括但不限于无人机、移动机器人、无人船等)上的云台系统。所述云台系统包括云台、用于控制所述云台的摇杆以及用于测量所述云台的姿态信息的姿态传感器。其中,所述云台包括转轴机构以及用于驱动所述转轴机构转动的电机。本发明实施例的云台可为两轴云台,也可以为三轴云台,以下首先结合图1,以三轴云台为例对本申请一实施例的云台系统进行具体说明。
如图1所示,云台系统100包括云台110,云台110进一步包括:俯仰轴组件,包括俯仰(pitch)轴电机113-1和俯仰轴机构113-2;横滚轴组件,包括横滚(roll)轴电机112-1和横滚轴机构112-2;以及偏航轴组件,包括偏航(yaw)轴电机111-1和偏航轴机构111-2。其中,俯仰轴电机113-1用于驱动俯仰轴机构113-2的运动,横滚轴电机112-1用于驱动横滚轴机构112-2的运动,偏航轴电机111-1用于驱动偏航轴机构111-2的运动。
在一个实施例中,俯仰轴机构113-2的一侧连接有固定组件115、设置于固定组件115上的包括滑块116和支撑板117的滑动组件,设置于支撑板117上的镜头支架118,以及设置在俯仰轴机构113-2的另一例的定位组件114。其中,所述滑动组件可相对固定组件115滑动,所述拍摄设备设置于所述滑动组件上。所述定位组件114可相对俯仰轴机构113-2转动,所述定位组件114包括一可相对俯仰轴机构113-2转动的转动臂114a以及一可相对转动臂114a滑动且可与所述拍摄设备配合的配合部114b。
固定组件115内可以设置有姿态传感器,例如惯性测量单元(Inertial measurement unit,IMU)或角度传感器。所述惯性测量元件包 括加速度计或陀螺仪中的至少一种,可以用于测量拍摄设备的姿态和加速度等,或者,IMU也可以设置在定位组件114中。
应理解,云台110也可以只包括一个或两个转轴组件。另外,虽然图1中所示的为偏航轴组件连接于横滚轴组件的一端,横滚轴组件的另一端连接于俯仰轴组件,但是本申请实施例并不限于此,偏航轴组件、横滚轴组件和俯仰轴组件也可以以其它顺序进行连接。
云台110下方设有支撑主体,示例性地,所述支撑主体包括与所述云台110连接的输入部120以及可拆卸地安装于所述输入部120的手持构件130。
输入部120可以用于输入用户对云台110的操作指令。示例性地,输入部120可以包括校准触发按键121。输入部120还可以包括摇杆122。摇杆122为云台的主动控制装置,其借由外力抵推摇杆,使摇杆变换位置,以将该位置输入控制装置的控制器中,从而实现对云台的控制。所述摇杆通常包括基座、设置于所述基座上的转动座及设置于所述转动座上的操纵杆,用户通过拨动所述操纵杆,使所述操纵杆及所述转动座相对所述基座转动。需要注意的是,摇杆122并不一定设置在云台的支撑主体上,也可以实现为外接形式。
输入部120还可以具有其他部件或者部分,例如,可以具有云台系统的开关等。输入部120中还可以设置IMU,该IMU可以用于测量输入部的姿态、加速度等。
输入部120中可以设置处理器,用于对输入的控制指令进行处理,或者收发信号等。当然,处理器也可以设置于手持构件130中。
可选地,该处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
处理器可以与终端设备进行通信,用户可以通过终端设备上的应用(APP)对云台进行控制,例如,使云台进入校准模式。
手持构件130可拆卸地连接于输入部120,手持构件130可以是手环或者手柄等,手持构件130上可以设置云台系统的开关等。也可以在手持构件130加装IMU,可以用于测量手持构件的姿态和加速等。所述手持构件130内设置有为所述云台系统供电的电池。当所述手持构件130与所述输入部120相机械连接时,也同时电性连接。
以上示例性地描述了根据本发明实施例的云台系统。下面参照2描述云台系统的工作原理。如图2所示,云台系统通过姿态传感器作为反馈器件,电机作为输出元件,形成闭环控制系统。在该闭环控制系统中,控制量为云台的姿态,即给定一个目标姿态(摇杆数值),通过反馈控制实现测量姿态达到目标姿态。
下面,参照图3-图6,对本发明实施例提供的云台系统的校准方法进行描述。图3示出了根据本发明的一个实施例的云台系统的校准方法300的流程图。如图3所示,方法300包括如下步骤:
首先,在步骤S310,进入校准模式;
在步骤S320,分别对所述摇杆、所述电机和所述姿态传感器进行校准;
在步骤S330,判断所述摇杆、所述电机和所述姿态传感器是否校准成功;
在步骤S340,若所述摇杆、所述电机和所述姿态传感器均校准成功,则判断云台系统校准成功,并退出所述校准模式。
现有的云台系统在进行校准时,摇杆、电机以及姿态传感器的校准是相互独立的。在云台出现偏移时,用户很可能不能确定摇杆、电机或姿态传感器中哪一项出现问题,因而不得不逐一对摇杆、电机和姿态传感器进行校准。例如,在实际使用过程中,摇杆的回中零位偏差或姿态传感器的偏移都会导致云台的转轴机构在静止状态下出现漂移,但用户并不能得知具体是哪种原因导致了转轴机构漂移,因而不得不逐一进行摇杆校准和姿态传感器校准,直到消除偏移,即用户不得不完成多次校准操作,导致操作繁琐。此外,多个相互独立的校准模式还会导致开启校准模式的组合按键或客户端上的应用程序选项相对复杂。相比而言,本发明实施例的云台系统的校准方法300,在进入校准模式以后能够同时完成对云台系统的摇杆、电机和姿态传 感器的校准,无需用户单独对每一项进行校准,减少多次繁琐的校准操作,提升用户体验。
具体地,在步骤S310中,可以在接收到用户的开始校准的指令时,进入所述校准模式。作为一例,当云台系统的处理器接收到客户端发送的校准命令时,进入校准模式。作为另一例,当检测到云台的支撑主体上输入的校准动作时,例如,当用户按下云台输入部120上的校准按键时,使云台系统进入所述校准模式。用户可以在发现云台存在偏移现象或者重新拆装更换拍摄装置以后对云台系统进行校准。当然,用户也可以在任意时刻对云台系统进行校准。
在所述校准模式下,可以关闭摇杆对云台的控制通道,以避免对校准造成干扰。例如,在校准模式下,可以锁定摇杆,或切断摇杆与云台系统控制单元之间的通信。
进入校准模式后,执行步骤S320,分别对云台系统的摇杆、电机和姿态传感器进行校准;以及步骤S330,判断摇杆、电机和姿态传感器是否校准成功。其中,步骤S320与步骤S330可以交替执行,即可以在对云台系统的摇杆、电机和姿态传感器中的每一项校准完毕后,分别判断对应的校准项是否校准成功。接着,在步骤S340中,若摇杆、电机和姿态传感器三项均校准成功,则判断云台系统校准成功,并退出所述校准模式。此时,可以向用户生成提示信息,以提示用户校准成功,所述提示信息包括而不限于声音提示、指示灯提示或在客户端上进行提示。
在一个实施例中,若摇杆、电机以及姿态传感器中至少一项未校准成功,则判断云台系统校准失败,并退出所述校准模式。校准失败的另一种可能情况为:若在第一预设时间段内未完成所述云台系统的校准,则退出所述校准模式。也就是说,记录云台系统的整体校准时间,若整体校准时间超过第一预设时间段,则表示校准失败,此时停止校准,并退出校准模式。在校准失败时,可以向用户生成提示信息,以提示用户校准失败。
在另一个实施例中,若摇杆、电机以及姿态传感器中至少一项未校准成功,则可以重复对所述摇杆、所述电机和所述姿态传感器进行校准,直到所述摇杆、所述电机和所述姿态传感器均校准成功。
进一步地,为了提高校准效率,在每次校准失败时可以保存校准结果,例如记录以上三项校准项中的每一项分别校准成功或是校准失败。进而在重复对摇杆、电机和姿态传感器进行校准时,可以根据上一次校准中摇杆、电机和姿态传感器中每一项的校准结果,重复对以上三项中校准失败的项进行校准。
进一步地,为了避免校准进入死循环,可以对校准时间设置时间阈值,若超出时间阈值则停止校准。在一种实现方式中,可以针对每一校准项分别设置时间阈值,记为第一阈值。即若摇杆、电机和姿态传感器中至少一项未校准成功,则重复对摇杆、电机和姿态传感器进行校准,直到摇杆、电机和姿态传感器中至少一项的校准时间超过第一阈值,若此时仍未校准成功,则停止校准。
在另一种实现方式中,可以针对总的校准时间设置时间阈值,记为第二阈值。即若摇杆、电机和姿态传感器中至少一项未校准成功,则重复对摇杆、电机和姿态传感器进行校准,直到摇杆、电机和姿态传感器的总校准时间超过第二阈值,若此时仍未校准成功,则停止校准。
当摇杆、姿态传感器和电机中某一项反复多次校准失败时,可能表示该项存在故障。因而,可以分别统计摇杆、电机和姿态传感器校准失败的次数,若所述次数超过预设次数,则向用户生成提示信息,以提示用户该项可能存在故障,以便于用户及时发现并解决问题。
下面,参照图4至图6,分别对根据本发明实施例的摇杆、电机和姿态传感器的校准进行说明。
其中,由于姿态传感器中的惯性测量元件,尤其是加速度计对云台机体的振动非常敏感,稍有扰动,加速度方向就会偏移,而在对电机进行校准时云台会产生震动,因而电机和姿态传感器分别在不同时刻进行校准。因此,在一种实现方式中,按照预设顺序对所述电机和所述姿态传感器进行校准,例如先对电机进行校准,再对姿态传感器进行校准,或先对姿态传感器进行校准,再对电机进行校准。
至于对摇杆进行的校准,可以与对电机或姿态传感器的校准同步进行,也可以按照预设次序依次对摇杆、电机和姿态传感器进行校准。由于摇杆的校准不会影响电机和姿态传感器的校准,因而可以最后对 摇杆进行校准,即校准顺序可以是可以依次对电机、姿态传感器和摇杆进行校准。
首先,参照图4对根据本发明一个实施例的摇杆的校准进行说明。
如图4所示,对摇杆进行校准包括如下步骤:
在步骤S410,获取所述摇杆的预设位置在设定坐标系中的第一位置信息;
在步骤S420,确定所述第一位置信息与所述预设位置在所述设定坐标系中的参考位置的第二位置信息之间的第一偏差;
在步骤S430,根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置。
其中,所述设定坐标系为摇杆的坐标系,该坐标系根据摇杆方向以及摇杆的回中位置建立,即以摇杆的回中位置为坐标原点建立的坐标系。但摇杆当前的回中位置可能与建立坐标系时的回中位置发生了偏移。
在一个实施例中,采用摇杆的回中位置作为所述预设位置,即摇杆归于零位时的位置。当所述预设位置为摇杆的回中位置时,设定坐标系中的参考位置可以为设定坐标系的原点,则步骤S420中的第二位置信息为坐标系原点的坐标。采用回中位置作为预设位置更易于计算和实际操作。
在步骤S410中,首先确定摇杆的预设位置在当前采用的设定坐标系下的位置信息,例如摇杆的回中位置在当前设定坐标系下的坐标(即摇杆的中位值)。在不存在任何偏差的理想情况下,摇杆的回中位置在当前坐标系下应与坐标原点重合。在步骤S420中获得的第一位置信息和第二位置信息的第一偏差即当前设定坐标系下摇杆的实际坐标与坐标位置之间的偏差。
之后,在步骤S430中,根据所述第一偏差调整设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置。继续以预设位置为摇杆的回中位置为例,在步骤S430中,通过调整设定坐标系,使调整后的设定坐标系中的坐标原点趋近于所述摇杆的中位值。
如上所述,对设定坐标系的调整目标是使参考位置趋近于预设位 置,但二者之间可能存在细微偏差。因而,在步骤S420中获取到所述第一偏差之后,首先判断所述第一偏差是否大于预设偏差。若第一偏差大于预设偏差,则执行步骤S430,对设定坐标系进行调整;若第一偏差小于或等于预设偏差,则默认摇杆校准成功。即,若第一偏差大于预设偏差,则触发执行所述根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置的步骤;若第一偏差不大于预设偏差,则无需调整设定坐标系,直接默认所述摇杆校准成功。
在通过上述步骤S410到S430对摇杆进行校准之后,则可以执行步骤S330,判断摇杆是否校准成功。在一个实施例中,可以根据预设位置在设定坐标系中的位置信息判断摇杆是否校准成功,具体包括:判断摇杆的预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证;若通过,则确定所述摇杆校准成功。
示例性地,判断所述预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证包括:采集第二预设时间段内所述预设位置在调整后的设定坐标系中的第三位置信息;确定所述第三位置信息与调整后的设定坐标系中的参考位置的第四位置信息之间的第二偏差;若所述第二偏差在预设范围内波动,则确定所述预设位置在调整后的设定坐标系中的第三位置信息通过第一合法性验证。
继续以预设位置为摇杆的回中位置为例,所述第三位置信息可以是摇杆的回中位置在调整后的坐标系中的实际坐标;第四位置信息可以是调整后的坐标系的坐标原点,该实际坐标与坐标原点的偏差则为所述第二偏差。若在预设的第二预设时间段内,第二偏差没有超过预设范围,则可以确定调整后的坐标系通过第一合法性验证,即摇杆校准成功。需要注意的是,将第一合法性验证过程中的预设时间段定义为“第二预设时间段”是为了与上文中的“第一预设时间段”进行区分,而不意图对具体时长进行任何限制。
在一种实现方式中,可以在第二预设时间段内采集多个预设位置的第三位置信息、参考位置的第四位置信息进行比较,并得到多个第二偏差,若多个第二偏差均没有超过预设范围,则确定第三位置信息通过第一合法性验证。在另一种实现方式中,也可以将第二预设时间 段内采集到的预设位置的第三位置信息进行融合处理,例如对多个第三位置求平均值,从而得到融合位置信息,并将融合位置信息与参考位置的第四位置信息进行比较,以得到第二偏差,若该第二偏差小于某一阈值,则确定第三位置信息通过第一合法性验证。
若在第一合法性验证的过程中摇杆收到干扰,例如用户误触到摇杆,则可能导致采集到的第二偏差过大,而造成第一合法性验证时效。因而在一个实施例中,若所述第二偏差超过预设的干扰判定阈值,则判断所述摇杆受到外界干扰,并重新采集所述第二预设时间段内所述预设位置在调整后的设定坐标系中的第五位置信息以进行所述第一合法性验证。其中,干扰判定阈值大于上述的预设范围。
进一步地,若判断摇杆受到外界干扰,则可以在等待预设时长后,重新采集第二预设时间段内所述预设位置在调整后的设定坐标系中的第五信息,重新进行第一合法性验证。由此,通过在等待干扰结束后重新进行采集摇杆的位置信息,可以降低干扰。
以上结合图4对摇杆的校准进行了描述。下面,参照图5对根据本发明一实施例的姿态传感器的校准进行说明。
其中,姿态传感器为云台的反馈元件。具体地,在对云台进行控制时,姿态传感器为反馈元件、以云台各个轴的驱动电机为输出元件来对云台的姿态进行控制,控制量是云台的姿态,通过给定一个目标姿态,通过反馈控制将云台当前姿态向目标姿态修正,以使云台从当前姿态向目标姿态趋近。
姿态传感器主要包括惯性测量单元(IMU)和角度传感器,其中。惯性测量单元主要包含陀螺仪和加速度计,陀螺仪可以测量云台各个轴的转动的角速度,加速度计可以测量云台沿着各轴运动的线性加速度,处理器将陀螺仪所测的角速率信号对时间积分运算,推算出瞬时运动方向、倾角等姿态信息,利用加速度计测得的加速度信号,对时间积分运算,可以推算出云台的速度信息。
在采用陀螺仪在进行数据测量时,由于陀螺仪存在漂移,导致测量出的姿态信息并不准确,因此,使用加速度计给定云台姿态参考,对陀螺仪测量的角速度积分获得的云台的当前姿态进行修正,也就是 利用加速度计对陀螺仪进行校准,最终获得较为准确的云台姿态信息。校准结束后,若判断陀螺仪校准成功,则可以判断姿态传感器校准成功。
在一个实施例中,基于加速度计对陀螺仪进行校准的步骤包括:
在步骤S510,基于所述加速度计得到所述云台的第一姿态,并基于所述陀螺仪和所述加速度计融合得到所述云台的第二姿态;
在步骤S520,确定所述第一姿态和所述第二姿态之间的第一姿态偏差;
在步骤S530,根据所述第一姿态偏差对所述陀螺仪进行校准,以使所述姿态偏差不大于第一预设阈值。
在步骤S510中,第一姿态和第二姿态是同步获得的,即在校准过程中,加速度计和陀螺仪同步采集数据,并基于加速度计采集到的数据确定云台的第一姿态,以及对陀螺仪和加速度计采集到的数据进行融合以获得云台的第二姿态。第一姿态和第二姿态可以有多种表达形式,例如四元数、欧拉角、矩阵等,此处不作具体的限定。
陀螺仪检测到的是云台机体角速度信息,响应速度快,但其中可能会受到零点随温度漂移产生的积分干扰和积分漂移。在陀螺仪检测到机体坐标系三轴的角速度之后,可以利用积分法简单快速的计算出实时姿态。以三轴云台为例,陀螺仪获得的姿态包括俯仰姿态分量、横滚姿态分量以及偏航姿态分量。
加速度计检测到的是沿其输入轴方向的加速度信息,当加速度计输入轴与水平方向存在夹角θ时,重力加速度g将在加速度计输入轴方向出现投影分量gsinθ,此时加速度计会有输出数据,根据该输出数据得到该加速度计输入的加速度。由于偏航角与重力方向正交,使加速度计无法测量偏航角,因而无法对陀螺仪的偏航姿态分量进行修正。因此,本实施例中的第一姿态偏差是基于所述第一姿态以及所述第二姿态中的俯仰姿态分量和横滚姿态分量计算得到的。
在获得第一姿态和第二姿态之后,在步骤S520中,计算二者之间的偏差。由于第一姿态来自加速度计的测量数据,第二姿态来自加速度计和陀螺仪的测量数据的融合,因而可知偏差来自于陀螺仪的测量数据。
在步骤S530中,可采用闭环控制策略,根据第一姿态与第二姿态之间的第一姿态偏差对通过陀螺仪测量得到的姿态信息进行修正,从而对陀螺仪进行漂移补偿。之后,判断漂移补偿后的陀螺仪的采集信息是否通过第二合法性验证;若通过,则确定所述陀螺仪校准成功。
其中,具体地,可利用扩展卡尔曼滤波、互补滤波或平滑滤波中的至少一种根据所述第一姿态偏差对陀螺仪测得的姿态进行修正。具体地,将第一姿态与第二姿态进行比较,得到二者之间的小角度误差,对该小角度误差做卡尔曼滤波估计,通过卡尔曼滤波估计修正陀螺仪的测量姿态数据,从而对陀螺仪进行漂移补偿。
由于采用了闭环控制策略,因而在对陀螺仪的漂移进行补偿的过程中,不断验证在所述陀螺仪的漂移补偿后得到的第二姿态偏差的大小,进而不断地修正陀螺仪的姿态数据。也就是说,漂移补偿和第二合法性验证是交替进行的。其中,所述第二姿态偏差为依据所述云台的第三姿态以及第四姿态得到,所述第三姿态为基于所述加速度计得到的,类似于上文中的第一姿态;所述第四姿态为基于所述陀螺仪、所述加速度计融合得到的,类似于上文中的第二姿态。在不断修正的过程中,若在所述第二姿态偏差不大于所述第一预设阈值时,则确定漂移补偿后的陀螺仪的采集信息通过第二合法性验证。
在一个实施例中,在对陀螺仪进行校准之前,首先判断陀螺仪是否需要进行校准。若陀螺仪不需要校准,则可以直接默认校准成功。具体地,在所述根据所述第一姿态偏差对所述陀螺仪进行校准之前,判断第一姿态偏差是否大于第一预设阈值。若第一姿态偏差大于第一阈值,则触发执行步骤S530;若第一姿态偏差不大于所述第一预设阈值,则默认所述陀螺仪校准成功。
在一个实施例中,在对姿态传感器进行校准的过程中,若检测到所述云台受到外界干扰,则无法得到准确的姿态信息,因而此时停止校准,并退出校准模式。
作为示例,若检测到云台在两相邻时刻的姿态偏差超过预定范围,即云台的姿态发生了过大的改变,则可以认为云台受到了外界干扰,例如受到了用户误触。具体地,检测到所述云台受到外界干扰包括:获取所述云台在第一时刻的第五姿态;获取所述云台在第二时刻 的第六姿态,所述第二时刻晚于所述第一时刻,且所述第五姿态以及所述第六姿态为依据相同方法确定,例如均由陀螺仪确定或均由加速度计确定;若所述第六姿态超过所述第五姿态的偏差范围,则检测到所述云台受到外界干扰。
其中,在计算第六姿态与第五姿态的偏差是否超过预定范围时,可以分别计算二者的俯仰姿态分量和横滚姿态分量的偏差是否在一定偏差范围内。
下面,参照图6对根据本发明一个实施例的电机的校准方法进行说明。如图6所示,对所述电机进行校准包括:
在步骤S610,在预定时间段内,根据给定的目标力矩测得所述电机的角速度;
在步骤S620,根据所述目标力矩与所述角速度确定所述电机的转动惯量;
在步骤S630,将所述电机的力度调整为与所述转动惯量相对应的预设力度。
作为示例,参照图1,云台包括俯仰(pitch)轴电机113-1和俯仰轴机构113-2、横滚(roll)轴电机112-1和横滚轴机构112-2、以及偏航(yaw)轴电机111-1和偏航轴机构111-2。其中,俯仰轴电机113-1用于驱动俯仰轴机构113-2的运动,横滚轴电机112-1用于驱动横滚轴机构112-2的运动,偏航轴电机111-1用于驱动偏航轴机构111-2的运动,俯仰轴机构113-2用于支撑拍摄设备。在本发明实施例中,按照预设顺序依次对俯仰轴电机、横滚轴电机和偏航轴电机进行校准,步骤S610-步骤S630为对其中任意一轴电机进行校准的步骤。
具体地,在步骤S610,在预定时间段内,给定目标力矩,使电机上电转动,并测得多个频率点下电机的角速度。作为示例,所述预设时间段可以为5-6秒;在预设时间段内,电机的频率逐渐增大,例如由10Hz增大到100Hz。可以通过陀螺仪采集该频率范围内的多个频率点下的电机的角速度。
在步骤S620中,对各频率点下的角速度进行微分,以得到在各频率点下的角加速度。接着,根据所述目标力矩与所述角加速度的比 值求得转动惯量,所述转动惯量与负载的重量相关。
最后,在步骤S630,将电机的力度调整为与所述转动惯量相对应的预设力度。由于转动惯量与负载的重量相关,因而与转动惯量相对应的预设力度与负载的重量相匹配。由此,使校准后电机的力度适应于当前负载的重量。
由于电机在某个频率点处可能存在共振模态,因而在通过上述方式对电机进行校准的过程中,还可以设置滤波器进行滤波,以避免发生共振。
具体地,可以计算每个所述频率点下所述角速度与所述目标力矩的比值;当在某个频率点处角速度与目标力矩的比值大于预设阈值时,则判断该频率点为共振频率点。通过在所述共振频率点处设置滤波器以进行滤波,可以避免发生共振。例如,假设在70Hz的频率点处检测到角速度与目标力矩的比值大于预设阈值,则设置滤波器以在70Hz的频率点处进行滤波。
示例性地,通过设置所述滤波器的参数,可以使所述滤波器在电机运行时滤除电机的转矩指令中具有所述共振频率的分量。所述滤波器的参数可以包括深度(即共振频率点的峰值)、宽度(即共振频率的范围)以及所述共振频率点的频率,具体地,可以通过调整深度、宽度、频率来实现上述滤波。
在一个实施例中,通过上述方法对电机进行校准之后,无需进行额外的验证,即可默认电机校准成功。
如上所述,由于对云台系统的校准较佳地应在静止状态下进行,因而在一个实施例中,在进入所述校准模式之后,首先判断云台以及摇杆当前是否处于静止状态。若确定云台以及摇杆当前均处于静止状态,则触发执行步骤S320;若判断云台或摇杆中至少一项当前未处于静止状态,则可以直接退出校准模式,或提示用户保持云台和摇杆的静止。
示例性地,判断摇杆当前是否处于静止状态的步骤包括:首先,采集第三时间段内所述摇杆的当前位置在设定坐标系中的第二位置信息;若所述第二位置信息指示所述摇杆的当前位置处于预设位置范围内,则确定所述摇杆当前处于静止状态。也即,摇杆的当前位置在 一时长内几乎未发生变化或变化较小时,可以认为摇杆前处于静止状态。
判断云台当前是否处于静止状态可以具体实现为判断云台的支撑主体当前是否处于静止状态,并且只要偏差在预定范围内,均可以认为其处于静止状态。示例性地,获取云台的支撑主体在第三时刻的第七姿态;获取所述云台的支撑主体在第四时刻的第八姿态,所述第四时刻晚于所述第三时刻,且所述第七姿态以及所述第八姿态为依据相同方法确定;若所述第八姿态未超过所述第七姿态的偏差范围,则确定所述云台当前处于静止状态。其中,所述第七姿态和所述第八姿态可以由欧拉角表示。
校准成功以后,则可以存储校准后摇杆、电机和姿态传感器的修正数据。其中,所述修正数据可以包括上文所述的修正后的设定坐标系、调整后的电机力度或修正后的陀螺仪的输出姿态等。
基于上面的描述,根据本发明实施例的云台系统的校准方法在每次校准时能够完成对云台系统的摇杆、电机和姿态传感器三项的校准,无需用户单独对每一项进行校准,减少多次繁琐的校准操作,提升用户体验。
下面,参照图7,对本发明实施例提供的摇杆的校准方法进行描述。其中,所述摇杆可以是如上所述的云台系统的摇杆,也可以是用于操纵其他装置的摇杆,例如操纵无人机或者遥控平台车等的摇杆。图7示出了根据本发明的一个实施例的摇杆的校准方法700的流程图。如图7所示,方法700包括如下步骤:
在步骤S710,获取摇杆的预设位置在设定坐标系中的第一位置信息;
在步骤S720,确定所述第一位置信息与所述预设位置在所述设定坐标系中的参考位置的第二位置信息之间的第一偏差;
在步骤S730,根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置。
其中,所述设定坐标系为摇杆的坐标系,该坐标系根据摇杆方向以及摇杆的回中位置建立,即以摇杆的回中位置为坐标原点建立的坐 标系。但摇杆当前的回中位置可能与建立坐标系时的回中位置发生了偏移。
在一个实施例中,采用摇杆的回中位置作为所述预设位置,即摇杆归于零位时的位置。当所述预设位置为摇杆的回中位置时,设定坐标系中的参考位置可以为设定坐标系的原点,则步骤S720中的第二位置信息为坐标系原点的坐标。采用回中位置作为预设位置更易于计算和实际操作。
在步骤S710中,首先确定摇杆的预设位置在当前采用的设定坐标系下的位置信息,例如摇杆的回中位置在当前设定坐标系下的坐标(即摇杆的中位值)。在不存在任何偏差的理想情况下,摇杆的回中位置在当前坐标系下应与坐标原点重合。在步骤S720中获得的第一位置信息和第二位置信息的第一偏差即当前设定坐标系下摇杆的实际坐标与坐标位置之间的偏差。
之后,在步骤S730中,根据所述第一偏差调整设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置。继续以预设位置为摇杆的回中位置为例,在步骤S730中,通过调整设定坐标系,使调整后的设定坐标系中的坐标原点趋近于所述摇杆的中位值。
如上所述,对设定坐标系的调整目标是使参考位置趋近于预设位置,但二者之间可能存在细微偏差。因而,在步骤S720中获取到所述第一偏差之后,首先判断所述第一偏差是否大于预设偏差。若第一偏差大于预设偏差,则执行步骤S440,否则默认摇杆校准成功。即,若第一偏差大于预设偏差,则触发执行所述根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置的步骤;若第一偏差不大于预设偏差,则默认所述摇杆校准成功。
在通过上述步骤S710到S730对摇杆进行校准之后,则可以判断摇杆是否校准成功。在一个实施例中,可以根据预设位置在设定坐标系中的位置信息判断摇杆是否校准成功,具体包括:判断摇杆的预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证;若通过,则确定所述摇杆校准成功。
示例性地,判断所述预设位置在调整后的设定坐标系中的第三位 置信息是否通过第一合法性验证包括:采集第二预设时间段内所述预设位置在调整后的设定坐标系中的第三位置信息;确定所述第三位置信息与调整后的设定坐标系中的参考位置的第四位置信息之间的第二偏差;若所述第二偏差在预设范围内波动,则确定所述预设位置在调整后的设定坐标系中的第三位置信息通过第一合法性验证。
继续以预设位置为摇杆的回中位置为例,所述第三位置信息可以是摇杆的回中位置在调整后的坐标系中的实际坐标;第四位置信息可以是调整后的坐标系的坐标原点,该实际坐标与坐标原点的偏差则为所述第二偏差。若在预设的第二预设时间段内,第二偏差没有超过预设范围,则可以确定调整后的坐标系通过第一合法性验证,即摇杆校准成功。需要注意的是,将第一合法性验证过程中的预设时间段定义为“第二预设时间段”是为了与上文中的“第一预设时间段”进行区分,而不意图对具体时长进行任何限制。
在一种实现方式中,可以在第二预设时间段内采集多个预设位置的第三位置信息,参考位置的第四位置信息进行比较,并得到多个第二偏差,若多个第二偏差均没有超过预设范围,则确定第三位置信息通过第一合法性验证。在另一种实现方式中,也可以将第二预设时间段内采集到的预设位置的第三位置信息进行融合处理,例如对多个第三位置求平均值,从而得到融合位置信息,并将融合位置信息与参考位置的第四位置信息进行比较,以得到第二偏差,若该第二偏差小于某一阈值,则确定第三位置信息通过第一合法性验证。
若在第一合法性验证的过程中摇杆收到干扰,例如用户误触到摇杆,则可能导致采集到的第二偏差过大,而造成第一合法性验证时效。因而在一个实施例中,若所述第二偏差超过预设的干扰判定阈值,则判断所述摇杆受到外界干扰,并重新采集所述第二预设时间段内所述预设位置在调整后的设定坐标系中的第五位置信息以进行所述第一合法性验证。其中,干扰判定阈值大于上述的预设范围。
进一步地,若判断摇杆受到外界干扰,则可以在等待预设时长后,重新采集第二预设时间段内所述预设位置在调整后的设定坐标系中的第五信息,重新进行第一合法性验证。由此,通过在等待干扰结束后重新进行采集摇杆的位置信息,可以降低干扰。
根据本发明实施例的摇杆的校准方法无需通过将摇杆摇到最大范围来进行校准,简化了校准所需的用户操作,提高了用户体验。
图8是本发明实施例的云台系统的校准装置800的一个示意性框图。图8所示的云台系统的校准装置800包括:处理器810、存储器820及存储在所述存储器820上且在所述处理器810上运行的计算机程序,处理器执行所述程序时实现前述图3所示的校准方法300的步骤,以下仅对云台系统的校准装置800的主要功能进行描述,而省略上文已描述的部分细节。
所述处理器810可以是中央处理单元(CPU)、图像处理单元(GPU)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者具有数据处理能力和/或指令执行能力的其它形式的处理单元,所述处理器810可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其它形式的处理单元,并且可以控制所述校准装置800中的其它组件以执行期望的功能。例如,处理器810能够包括一个或多个嵌入式处理器、处理器核心、微型处理器、逻辑电路、硬件有限状态机(FSM)、数字信号处理器(DSP)或它们的组合。
所述存储器820包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器810可以运行所述程序指令,以实现下文所述的本发明实施例中(由处理器实现)的校准方法以及/或者其它期望的功能。在所述计算机可读存储介质中还可以存储各种应用程序和各种数据,例如所述应用程序使用和/或产生的各种数据等。
具体地,处理器810执行所述程序时实现以下步骤:进入校准模式;分别对所述摇杆、所述电机和所述姿态传感器进行校准;判断所述摇杆、所述电机和所述姿态传感器是否校准成功;若所述摇杆、所述电机和所述姿态传感器均校准成功,则判断云台系统校准成功,并 退出所述校准模式。
在一个实施例中,处理器810执行所述程序时还实现:若所述摇杆、所述电机和所述姿态传感器中至少一项未校准成功,则判断云台系统校准失败,并退出所述校准模式。
在一个实施例中,处理器810执行所述程序时还实现:若所述摇杆、所述电机和所述姿态传感器中至少一项未校准成功,则重复对所述摇杆、所述电机和所述姿态传感器进行校准,直到所述摇杆、所述电机和所述姿态传感器均校准成功。
在一个实施例中,处理器810执行所述程序时还实现:若所述摇杆、所述电机和所述姿态传感器中至少一项未校准成功,则重复对所述摇杆、所述电机和所述姿态传感器进行校准,直到所述摇杆、所述电机和所述姿态传感器中至少一项的校准时间超过第一阈值,或直到所述摇杆、所述电机和所述姿态传感器的总校准时间超过第二阈值。
在一个实施例中,所述重复对所述摇杆、所述电机和所述姿态传感器进行校准包括:根据上一次校准中所述摇杆、所述电机和所述姿态传感器的校准结果,重复对所述摇杆、所述电机和所述姿态传感器中校准失败的项进行校准。
在一个实施例中,处理器810执行所述程序时还实现:若在第一预设时间段内未完成所述云台系统的校准,则退出所述校准模式。
在一个实施例中,所述分别对云台的摇杆、电机和姿态传感器进行校准包括:按照预设顺序对所述电机和所述姿态传感器进行校准。
在一个实施例中,所述按照预设顺序对所述电机和所述姿态传感器进行校准包括:依次对所述电机、所述姿态传感器和所述摇杆进行校准。
在一个实施例中,对所述摇杆进行校准包括:获取所述摇杆的预设位置在设定坐标系中的第一位置信息;确定所述第一位置信息与所述预设位置在所述设定坐标系中的参考位置的第二位置信息之间的第一偏差;根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置。
在一个实施例中,在所述根据所述第一偏差调整所述设定坐标 系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置之前,还包括:若所述第一偏差大于预设偏差,则触发执行所述根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置的步骤;若所述第一偏差不大于所述预设偏差,则默认所述摇杆校准成功。
在一个实施例中,判断所述摇杆校准成功包括:判断所述预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证;若通过,则确定所述摇杆校准成功。
在一个实施例中,所述判断所述预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证包括:采集第二预设时间段内所述预设位置在调整后的设定坐标系中的第三位置信息;确定所述第三位置信息与调整后的设定坐标系中的参考位置的第四位置信息之间的第二偏差;若所述第二偏差在预设范围内波动,则确定所述预设位置在调整后的设定坐标系中的第三位置信息通过第一合法性验证。
在一个实施例中,处理器810执行所述程序时还实现:若所述第二偏差超过预设的干扰判定阈值,则判断所述摇杆受到外界干扰,并重新采集所述第二预设时间段内所述预设位置在调整后的设定坐标系中的第五位置信息以进行所述第一合法性验证。
在一个实施例中,所述预设位置包括所述摇杆的回中位置。
在一个实施例中,所述姿态传感器包括陀螺仪,对所述姿态传感器进行校准包括:对所述陀螺仪进行校准;判断所述姿态传感器是否校准成功包括:判断所述陀螺仪是否校准成功。
在一个实施例中,所述姿态传感器还包括加速度计,所述对所述陀螺仪进行校准包括:基于所述加速度计得到所述云台的第一姿态,并基于所述陀螺仪和所述加速度计融合得到所述云台的第二姿态;确定所述第一姿态和所述第二姿态之间的第一姿态偏差;根据所述第一姿态偏差对所述陀螺仪进行校准,以使所述姿态偏差不大于第一预设阈值。
在一个实施例中,在所述根据所述第一姿态偏差对所述陀螺仪进 行校准,以使所述第一姿态偏差不大于第一预设阈值之前,还包括:若所述第一姿态偏差大于第一预设阈值,则触发执行所述根据所述姿态偏差对所述陀螺仪进行校准,以使所述第一姿态偏差不大于第一预设阈值的步骤;若所述第一姿态偏差不大于所述第一预设阈值,则默认所述陀螺仪校准成功。
在一个实施例中,所述第一姿态偏差是基于所述第一姿态以及所述第二姿态中的俯仰姿态分量和横滚姿态分量计算得到的。
在一个实施例中,所述对根据所述第一姿态偏差对所述陀螺仪进行校准包括:利用滤波器并按照所述第一姿态偏差对所述陀螺仪的漂移进行补偿。
在一个实施例中,判断所述陀螺仪是否校准成功包括:判断漂移补偿后的陀螺仪的采集信息是否通过第二合法性验证;若通过,则确定所述陀螺仪校准成功。
在一个实施例中,所述判断漂移补偿后的陀螺仪的采集信息是否通过第二合法性验证包括:在对所述陀螺仪的漂移进行补偿的过程中,不断验证在所述陀螺仪的漂移补偿后得到的第二姿态偏差的大小,所述第二姿态偏差为依据所述云台的第三姿态以及第四姿态得到,所述第三姿态为基于所述加速度计得到,所述第四姿态为基于所述陀螺仪、所述加速度计融合得到;若在所述第二姿态偏差不大于所述第一预设阈值时,则确定漂移补偿后的陀螺仪的采集信息通过第二合法性验证。
在一个实施例中,处理器810执行所述程序时还实现:在对所述姿态传感器进行校准的过程中,若检测到所述云台受到外界干扰,则退出所述校准模式。
在一个实施例中,所述检测到所述云台受到外界干扰包括:获取所述云台在第一时刻的第五姿态;获取所述云台在第二时刻的第六姿态,所述第二时刻晚于所述第一时刻,且所述第五姿态以及所述第六姿态为依据相同校准装置确定;若所述第六姿态超过所述第五姿态的偏差范围,则检测到所述云台受到外界干扰。
在一个实施例中,对所述电机进行校准包括:在预定时间段内, 根据给定的目标力矩测得所述电机的角速度;根据所述目标力矩与所述角速度确定所述电机的转动惯量;将所述电机的力度调整为与所述转动惯量相对应的预设力度。
在一个实施例中,判断所述电机是否校准成功包括:在对所述电机进行校准之后,默认所述电机校准成功。
在一个实施例中,处理器810执行所述程序时还实现:存储校准后所述摇杆、所述电机和所述姿态传感器的修正数据。
在一个实施例中,处理器810执行所述程序时还实现:分别统计所述摇杆、所述电机和所述姿态传感器校准失败的次数,若所述次数超过预设次数,则向用户生成提示信息。
在一个实施例中,所述进入校准模式包括:当接收到客户端发送的校准命令或检测到所述云台的支撑主体上输入的校准动作时,进入所述校准模式。
在一个实施例中,在进入所述校准模式之后,在所述分别对所述摇杆、所述电机和所述姿态传感器进行校准之前,还包括:判断所述云台以及所述摇杆当前是否处于静止状态;若确定所述云台以及所述摇杆当前均处于静止状态,则触发执行所述分别对所述摇杆、所述电机和所述姿态传感器进行校准的步骤。
在一个实施例中,判断所述摇杆当前是否处于静止状态包括:采集第三时间段内所述摇杆的当前位置在设定坐标系中的第二位置信息;若所述第二位置信息指示所述摇杆的当前位置处于预设位置范围内,则确定所述摇杆当前处于静止状态。
在一个实施例中,判断所述云台当前是否处于静止状态包括:获取所述云台的支撑主体在第三时刻的第七姿态;获取所述云台的支撑主体在第四时刻的第八姿态,所述第四时刻晚于所述第三时刻,且所述第七姿态以及所述第八姿态为依据相同校准装置确定;若所述第八姿态未超过所述第七姿态的偏差范围,则确定所述云台当前处于静止状态。
在一个实施例中,处理器810执行所述程序时还实现:在所述校准模式下,关闭所述摇杆对所述云台的控制通道。
图9是本发明实施例的摇杆的校准装置900的一个示意性框图。图9所示的摇杆的校准装置900包括:处理器910、存储器920及存储在所述存储器920上且在所述处理器910上运行的计算机程序,处理器执行所述程序时实现前述图7所示的校准方法700的步骤,以下仅对云台系统的校准装置900的主要功能进行描述,而省略上文已描述的部分细节。
具体地,处理器910执行所述程序时实现以下步骤:获取所述摇杆的预设位置在设定坐标系中的第一位置信息;确定所述第一位置信息与所述预设位置在所述设定坐标系中的参考位置的第二位置信息之间的第一偏差;根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置。
在一个实施例中,在所述根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置之前,还包括:若所述第一偏差大于预设偏差,则触发执行所述根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置的步骤;若所述第一偏差不大于所述预设偏差,则默认所述摇杆校准成功。
在一个实施例中,所述处理器910在执行所述计算机程序时,还实现:判断所述预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证;若通过,则确定所述摇杆校准成功。
在一个实施例中,所述判断所述预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证包括:采集第二预设时间段内所述预设位置在调整后的设定坐标系中的第三位置信息;确定所述第三位置信息与调整后的设定坐标系中的参考位置的第四位置信息之间的第二偏差;若所述第二偏差在预设范围内波动,则确定所述预设位置在调整后的设定坐标系中的第三位置信息通过第一合法性验证。
在一个实施例中,所述处理器910在执行所述计算机程序时,还实现:若所述第二偏差超过预设的干扰判定阈值,则判断所述摇杆受 到外界干扰,并重新采集所述第二预设时间段内所述预设位置在调整后的设定坐标系中的第五位置信息以进行所述第一合法性验证。
在一个实施例中,所述预设位置包括所述摇杆的回中位置。
另外,本发明实施例还提供了一种云台系统,如图10所示,该云台系统1000包括云台1010,所述云台1010包括转轴机构以及用于驱动所述转轴机构转动的电机;摇杆1020,用于控制所述云台;以及姿态传感器1030,用于测量所述云台的姿态信息以及如图8所示的云台系统的校准装置800。
云台系统1000可以是安装、固定拍摄校准装置的支撑设备。本发明实施例的云台系统1000可以是手持云台,云台系统也可以设置在可移动平台上,例如,无人机或汽车等。云台系统1000的一种示例性的结构可以参照图1。
如图1所示,以三轴云台为例,云台1010的转轴机构可以包括俯仰轴(pitch)机构、横滚轴(roll)机构和偏航轴(yaw)机构。该多个转轴机构可以串联连接。俯仰轴电机用于驱动俯仰轴机构的运动,横滚轴电机用于驱动横滚轴机构的运动,偏航轴电机用于驱动偏航轴机构的运动。
摇杆1020用于控制云台1010。借由外力抵推摇杆,使摇杆变换位置,以将该位置输入控制装置的控制器中,从而实现对云台的控制。所述摇杆1020可以包括基座、设置于所述基座上的转动座及设置于所述转动座上的操纵杆。摇杆1020可以设置在云台的支撑主体上,也可以实现为外接形式。
姿态传感器1030用于测量云台1010的姿态信息。作为示例,姿态传感器1030可以包括惯性测量元件和角度传感器,其中,惯性测量元件可以包括陀螺仪和加速度计。
云台系统1000还包括图8所示的校准装置800,具体包括一个或多个处理器810、存储器820及存储在所述存储器820上且在所述处理器810上运行的计算机程序,处理器810执行所述程序时实现前述图3所示的云台系统的校准方法300的步骤。
另外,本发明实施例还提供了一种云台系统,如图11所示,该 云台系统1100包括云台1110、摇杆1120以及如图9所示的摇杆的校准装置900,其中摇杆1120用于控制云台1110。在一种实施方式中,云台1110可以包括转轴机构以及用于驱动所述转轴机构转动的电机。云台1110、摇杆1120以及云台系统1100其他部分的具体结构可以参照上文。
云台系统1100还包括图9所示的校准装置900,具体包括一个或多个处理器910、存储器920及存储在所述存储器920上且在所述处理器910上运行的计算机程序,处理器910执行所述程序时实现前述图7所示的摇杆的校准方法700的步骤。
另外,本发明实施例还提供了一种计算机存储介质,其上存储有计算机程序。当所述计算机程序由处理器执行时,可以实现前述方法300或方法700的步骤。
例如,该计算机存储介质为计算机可读存储介质。计算机存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
综上所述,本发明实施例的云台系统的校准方法、校准装置、云台系统和计算机可读介质,在每次校准时能够完成对云台系统的摇杆、电机和姿态传感器三项的校准,无需用户单独对每一项进行校准,减少多次繁琐的校准操作,提升用户体验。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁, 上述描述的系统、校准装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、校准装置和方法,可以通过其它的方式实现。例如,以上所描述的校准装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,校准装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公 开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的校准装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干校准装置的单元权利要求中,这些校准装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。

Claims (80)

  1. 一种云台系统的校准方法,所述云台系统包括云台、用于控制所述云台的摇杆以及用于测量所述云台的姿态信息的姿态传感器,所述云台包括转轴机构以及用于驱动所述转轴机构转动的电机,其特征在于,所述方法包括:
    进入校准模式;
    分别对所述摇杆、所述电机和所述姿态传感器进行校准;
    判断所述摇杆、所述电机和所述姿态传感器是否校准成功;
    若所述摇杆、所述电机和所述姿态传感器均校准成功,则判断云台系统校准成功,并退出所述校准模式。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    若所述摇杆、所述电机和所述姿态传感器中至少一项未校准成功,则判断云台系统校准失败,并退出所述校准模式。
  3. 如权利要求1所述的方法,其特征在于,还包括:
    若所述摇杆、所述电机和所述姿态传感器中至少一项未校准成功,则重复对所述摇杆、所述电机和所述姿态传感器进行校准,直到所述摇杆、所述电机和所述姿态传感器均校准成功。
  4. 如权利要求1所述的方法,其特征在于,还包括:
    若所述摇杆、所述电机和所述姿态传感器中至少一项未校准成功,则重复对所述摇杆、所述电机和所述姿态传感器进行校准,直到所述摇杆、所述电机和所述姿态传感器中至少一项的校准时间超过第一阈值,或直到所述摇杆、所述电机和所述姿态传感器的总校准时间超过第二阈值。
  5. 如权利要求3或4所述的方法,其特征在于,所述重复对所述摇杆、所述电机和所述姿态传感器进行校准包括:
    根据上一次校准中所述摇杆、所述电机和所述姿态传感器的校准结果,重复对所述摇杆、所述电机和所述姿态传感器中校准失败的项进行校准。
  6. 如权利要求1所述的方法,其特征在于,还包括:
    若在第一预设时间段内未完成所述云台系统的校准,则退出所述校准模式。
  7. 如权利要求1所述的方法,其特征在于,所述分别对云台的摇杆、电机和姿态传感器进行校准包括:
    按照预设顺序对所述电机和所述姿态传感器进行校准。
  8. 如权利要求7所述的方法,其特征在于,所述按照预设顺序对所述电机和所述姿态传感器进行校准包括:
    依次对所述电机、所述姿态传感器和所述摇杆进行校准。
  9. 如权利要求1所述的方法,其特征在于,对所述摇杆进行校准包括:
    获取所述摇杆的预设位置在设定坐标系中的第一位置信息;
    确定所述第一位置信息与所述预设位置在所述设定坐标系中的参考位置的第二位置信息之间的第一偏差;
    根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置。
  10. 如权利要求9所述的方法,其特征在于,在所述根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置之前,还包括:
    若所述第一偏差大于预设偏差,则触发执行所述根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置的步骤;
    若所述第一偏差不大于所述预设偏差,则默认所述摇杆校准成功。
  11. 如权利要求9所述的方法,其特征在于,判断所述摇杆校准成功包括:
    判断所述预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证;
    若通过,则确定所述摇杆校准成功。
  12. 如权利要求11所述的方法,其特征在于,所述判断所述预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证包括:
    采集第二预设时间段内所述预设位置在调整后的设定坐标系中的第三位置信息;
    确定所述第三位置信息与调整后的设定坐标系中的参考位置的第四位置信息之间的第二偏差;
    若所述第二偏差在预设范围内波动,则确定所述预设位置在调整后的设定坐标系中的第三位置信息通过第一合法性验证。
  13. 如权利要求12所述的方法,其特征在于,还包括:
    若所述第二偏差超过预设的干扰判定阈值,则判断所述摇杆受到外界干扰,并重新采集所述第二预设时间段内所述预设位置在调整后的设定坐标系中的第五位置信息以进行所述第一合法性验证。
  14. 如权利要求9至13中任一项所述的方法,其特征在于,所述预设位置包括所述摇杆的回中位置。
  15. 如权利要求1所述的方法,其特征在于,所述姿态传感器包括陀螺仪,对所述姿态传感器进行校准包括:
    对所述陀螺仪进行校准;
    判断所述姿态传感器是否校准成功包括:
    判断所述陀螺仪是否校准成功。
  16. 如权利要求15所述的方法,其特征在于,所述姿态传感器还包括加速度计,所述对所述陀螺仪进行校准包括:
    基于所述加速度计得到所述云台的第一姿态,并基于所述陀螺仪和所述加速度计融合得到所述云台的第二姿态;
    确定所述第一姿态和所述第二姿态之间的第一姿态偏差;
    根据所述第一姿态偏差对所述陀螺仪进行校准,以使所述姿态偏差不大于第一预设阈值。
  17. 如权利要求16所述的方法,其特征在于,在所述根据所述第一姿态偏差对所述陀螺仪进行校准,以使所述第一姿态偏差不大于第一预设阈值之前,还包括:
    若所述第一姿态偏差大于第一预设阈值,则触发执行所述根据所述姿态偏差对所述陀螺仪进行校准,以使所述第一姿态偏差不大于第一预设阈值的步骤;
    若所述第一姿态偏差不大于所述第一预设阈值,则默认所述陀螺仪校准成功。
  18. 如权利要求16或17所述的方法,其特征在于,所述第一姿 态偏差是基于所述第一姿态以及所述第二姿态中的俯仰姿态分量和横滚姿态分量计算得到的。
  19. 如权利要求16所述的方法,其特征在于,所述对根据所述第一姿态偏差对所述陀螺仪进行校准包括:
    利用滤波器并按照所述第一姿态偏差对所述陀螺仪的漂移进行补偿。
  20. 如权利要求19所述的方法,其特征在于,判断所述陀螺仪是否校准成功包括:
    判断漂移补偿后的陀螺仪的采集信息是否通过第二合法性验证;
    若通过,则确定所述陀螺仪校准成功。
  21. 如权利要求20所述的方法,其特征在于,所述判断漂移补偿后的陀螺仪的采集信息是否通过第二合法性验证包括:
    在对所述陀螺仪的漂移进行补偿的过程中,不断验证在所述陀螺仪的漂移补偿后得到的第二姿态偏差的大小,所述第二姿态偏差为依据所述云台的第三姿态以及第四姿态得到,所述第三姿态为基于所述加速度计得到,所述第四姿态为基于所述陀螺仪、所述加速度计融合得到;
    若在所述第二姿态偏差不大于所述第一预设阈值时,则确定漂移补偿后的陀螺仪的采集信息通过第二合法性验证。
  22. 如权利要求1所述的方法,其特征在于,还包括:
    在对所述姿态传感器进行校准的过程中,若检测到所述云台受到外界干扰,则退出所述校准模式。
  23. 如权利要求22所述的方法,其特征在于,所述检测到所述云台受到外界干扰包括:
    获取所述云台在第一时刻的第五姿态;
    获取所述云台在第二时刻的第六姿态,所述第二时刻晚于所述第一时刻,且所述第五姿态以及所述第六姿态为依据相同方法确定;
    若所述第六姿态超过所述第五姿态的偏差范围,则检测到所述云台受到外界干扰。
  24. 如权利要求1所述的方法,其特征在于,对所述电机进行校准包括:
    在预定时间段内,根据给定的目标力矩测得所述电机的角速度;
    根据所述目标力矩与所述角速度确定所述电机的转动惯量;
    将所述电机的力度调整为与所述转动惯量相对应的预设力度。
  25. 如权利要求1所述的方法,其特征在于,判断所述电机是否校准成功包括:
    在对所述电机进行校准之后,默认所述电机校准成功。
  26. 如权利要求1所述的方法,其特征在于,还包括:
    存储校准后所述摇杆、所述电机和所述姿态传感器的修正数据。
  27. 如权利要求1所述的方法,其特征在于,还包括:
    分别统计所述摇杆、所述电机和所述姿态传感器校准失败的次数,若所述次数超过预设次数,则向用户生成提示信息。
  28. 如权利要求1所述的方法,其特征在于,所述进入校准模式包括:
    当接收到客户端发送的校准命令或检测到所述云台的支撑主体上输入的校准动作时,进入所述校准模式。
  29. 如权利要求1所述的方法,其特征在于,在进入所述校准模式之后,在所述分别对所述摇杆、所述电机和所述姿态传感器进行校准之前,还包括:
    判断所述云台以及所述摇杆当前是否处于静止状态;
    若确定所述云台以及所述摇杆当前均处于静止状态,则触发执行所述分别对所述摇杆、所述电机和所述姿态传感器进行校准的步骤。
  30. 如权利要求29所述的方法,其特征在于,判断所述摇杆当前是否处于静止状态包括:
    采集第三时间段内所述摇杆的当前位置在设定坐标系中的第二位置信息;
    若所述第二位置信息指示所述摇杆的当前位置处于预设位置范围内,则确定所述摇杆当前处于静止状态。
  31. 如权利要求29所述的方法,其特征在于,判断所述云台当前是否处于静止状态包括:
    获取所述云台的支撑主体在第三时刻的第七姿态;
    获取所述云台的支撑主体在第四时刻的第八姿态,所述第四时刻 晚于所述第三时刻,且所述第七姿态以及所述第八姿态为依据相同方法确定;
    若所述第八姿态未超过所述第七姿态的偏差范围,则确定所述云台当前处于静止状态。
  32. 如权利要求31所述的方法,其特征在于,还包括:
    在所述校准模式下,关闭所述摇杆对所述云台的控制通道。
  33. 一种摇杆的校准方法,其特征在于,所述方法包括:
    获取所述摇杆的预设位置在设定坐标系中的第一位置信息;
    确定所述第一位置信息与所述预设位置在所述设定坐标系中的参考位置的第二位置信息之间的第一偏差;
    根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置。
  34. 如权利要求33所述的方法,其特征在于,在所述根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置之前,还包括:
    若所述第一偏差大于预设偏差,则触发执行所述根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置的步骤;
    若所述第一偏差不大于所述预设偏差,则默认所述摇杆校准成功。
  35. 如权利要求33所述的方法,其特征在于,还包括:
    判断所述预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证;
    若通过,则确定所述摇杆校准成功。
  36. 如权利要求35所述的方法,其特征在于,所述判断所述预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证包括:
    采集第二预设时间段内所述预设位置在调整后的设定坐标系中的第三位置信息;
    确定所述第三位置信息与调整后的设定坐标系中的参考位置的第四位置信息之间的第二偏差;
    若所述第二偏差在预设范围内波动,则确定所述预设位置在调整后的设定坐标系中的第三位置信息通过第一合法性验证。
  37. 如权利要求36所述的方法,其特征在于,还包括:
    若所述第二偏差超过预设的干扰判定阈值,则判断所述摇杆受到外界干扰,并重新采集所述第二预设时间段内所述预设位置在调整后的设定坐标系中的第五位置信息以进行所述第一合法性验证。
  38. 如权利要求33至37中任一项所述的方法,其特征在于,所述预设位置包括所述摇杆的回中位置。
  39. 一种云台系统的校准装置,所述云台系统包括云台、用于控制所述云台的摇杆以及用于测量所述云台的姿态信息的姿态传感器,所述云台包括转轴机构以及用于驱动所述转轴机构转动的电机,其特征在于,所述校准装置包括存储器与处理器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,并在执行所述计算机程序时,实现:进入校准模式;
    分别对所述摇杆、所述电机和所述姿态传感器进行校准;
    判断所述摇杆、所述电机和所述姿态传感器是否校准成功;
    若所述摇杆、所述电机和所述姿态传感器均校准成功,则判断云台系统校准成功,并退出所述校准模式。
  40. 如权利要求39所述的校准装置,其特征在于,还包括:
    若所述摇杆、所述电机和所述姿态传感器中至少一项未校准成功,则判断云台系统校准失败,并退出所述校准模式。
  41. 如权利要求39所述的校准装置,其特征在于,还包括:
    若所述摇杆、所述电机和所述姿态传感器中至少一项未校准成功,则重复对所述摇杆、所述电机和所述姿态传感器进行校准,直到所述摇杆、所述电机和所述姿态传感器均校准成功。
  42. 如权利要求39所述的校准装置,其特征在于,还包括:
    若所述摇杆、所述电机和所述姿态传感器中至少一项未校准成功,则重复对所述摇杆、所述电机和所述姿态传感器进行校准,直到所述摇杆、所述电机和所述姿态传感器中至少一项的校准时间超过第一阈值,或直到所述摇杆、所述电机和所述姿态传感器的总校准时间 超过第二阈值。
  43. 如权利要求41或42所述的校准装置,其特征在于,所述重复对所述摇杆、所述电机和所述姿态传感器进行校准包括:
    根据上一次校准中所述摇杆、所述电机和所述姿态传感器的校准结果,重复对所述摇杆、所述电机和所述姿态传感器中校准失败的项进行校准。
  44. 如权利要求39所述的校准装置,其特征在于,还包括:
    若在第一预设时间段内未完成所述云台系统的校准,则退出所述校准模式。
  45. 如权利要求39所述的校准装置,其特征在于,所述分别对云台的摇杆、电机和姿态传感器进行校准包括:
    按照预设顺序对所述电机和所述姿态传感器进行校准。
  46. 如权利要求45所述的校准装置,其特征在于,所述按照预设顺序对所述电机和所述姿态传感器进行校准包括:
    依次对所述电机、所述姿态传感器和所述摇杆进行校准。
  47. 如权利要求39所述的校准装置,其特征在于,对所述摇杆进行校准包括:
    获取所述摇杆的预设位置在设定坐标系中的第一位置信息;
    确定所述第一位置信息与所述预设位置在所述设定坐标系中的参考位置的第二位置信息之间的第一偏差;
    根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置。
  48. 如权利要求47所述的校准装置,其特征在于,在所述根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置之前,还包括:
    若所述第一偏差大于预设偏差,则触发执行所述根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置的步骤;
    若所述第一偏差不大于所述预设偏差,则默认所述摇杆校准成功。
  49. 如权利要求47所述的校准装置,其特征在于,判断所述摇 杆校准成功包括:
    判断所述预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证;
    若通过,则确定所述摇杆校准成功。
  50. 如权利要求49所述的校准装置,其特征在于,所述判断所述预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证包括:
    采集第二预设时间段内所述预设位置在调整后的设定坐标系中的第三位置信息;
    确定所述第三位置信息与调整后的设定坐标系中的参考位置的第四位置信息之间的第二偏差;
    若所述第二偏差在预设范围内波动,则确定所述预设位置在调整后的设定坐标系中的第三位置信息通过第一合法性验证。
  51. 如权利要求50所述的校准装置,其特征在于,还包括:
    若所述第二偏差超过预设的干扰判定阈值,则判断所述摇杆受到外界干扰,并重新采集所述第二预设时间段内所述预设位置在调整后的设定坐标系中的第五位置信息以进行所述第一合法性验证。
  52. 如权利要求47至51中任一项所述的校准装置,其特征在于,所述预设位置包括所述摇杆的回中位置。
  53. 如权利要求39所述的校准装置,其特征在于,所述姿态传感器包括陀螺仪,对所述姿态传感器进行校准包括:
    对所述陀螺仪进行校准;
    判断所述姿态传感器是否校准成功包括:
    判断所述陀螺仪是否校准成功。
  54. 如权利要求53所述的校准装置,其特征在于,所述姿态传感器还包括加速度计,所述对所述陀螺仪进行校准包括:
    基于所述加速度计得到所述云台的第一姿态,并基于所述陀螺仪和所述加速度计融合得到所述云台的第二姿态;
    确定所述第一姿态和所述第二姿态之间的第一姿态偏差;
    根据所述第一姿态偏差对所述陀螺仪进行校准,以使所述姿态偏差不大于第一预设阈值。
  55. 如权利要求54所述的校准装置,其特征在于,在所述根据所述第一姿态偏差对所述陀螺仪进行校准,以使所述第一姿态偏差不大于第一预设阈值之前,还包括:
    若所述第一姿态偏差大于第一预设阈值,则触发执行所述根据所述姿态偏差对所述陀螺仪进行校准,以使所述第一姿态偏差不大于第一预设阈值的步骤;
    若所述第一姿态偏差不大于所述第一预设阈值,则默认所述陀螺仪校准成功。
  56. 如权利要求54或55所述的校准装置,其特征在于,所述第一姿态偏差是基于所述第一姿态以及所述第二姿态中的俯仰姿态分量和横滚姿态分量计算得到的。
  57. 如权利要求54所述的校准装置,其特征在于,所述对根据所述第一姿态偏差对所述陀螺仪进行校准包括:
    利用滤波器并按照所述第一姿态偏差对所述陀螺仪的漂移进行补偿。
  58. 如权利要求57所述的校准装置,其特征在于,判断所述陀螺仪是否校准成功包括:
    判断漂移补偿后的陀螺仪的采集信息是否通过第二合法性验证;
    若通过,则确定所述陀螺仪校准成功。
  59. 如权利要求58所述的校准装置,其特征在于,所述判断漂移补偿后的陀螺仪的采集信息是否通过第二合法性验证包括:
    在对所述陀螺仪的漂移进行补偿的过程中,不断验证在所述陀螺仪的漂移补偿后得到的第二姿态偏差的大小,所述第二姿态偏差为依据所述云台的第三姿态以及第四姿态得到,所述第三姿态为基于所述加速度计得到,所述第四姿态为基于所述陀螺仪、所述加速度计融合得到;
    若在所述第二姿态偏差不大于所述第一预设阈值时,则确定漂移补偿后的陀螺仪的采集信息通过第二合法性验证。
  60. 如权利要求39所述的校准装置,其特征在于,还包括:
    在对所述姿态传感器进行校准的过程中,若检测到所述云台受到外界干扰,则退出所述校准模式。
  61. 如权利要求60所述的校准装置,其特征在于,所述检测到所述云台受到外界干扰包括:
    获取所述云台在第一时刻的第五姿态;
    获取所述云台在第二时刻的第六姿态,所述第二时刻晚于所述第一时刻,且所述第五姿态以及所述第六姿态为依据相同校准装置确定;
    若所述第六姿态超过所述第五姿态的偏差范围,则检测到所述云台受到外界干扰。
  62. 如权利要求39所述的校准装置,其特征在于,对所述电机进行校准包括:
    在预定时间段内,根据给定的目标力矩测得所述电机的角速度;
    根据所述目标力矩与所述角速度确定所述电机的转动惯量;
    将所述电机的力度调整为与所述转动惯量相对应的预设力度。
  63. 如权利要求39所述的校准装置,其特征在于,判断所述电机是否校准成功包括:
    在对所述电机进行校准之后,默认所述电机校准成功。
  64. 如权利要求39所述的校准装置,其特征在于,还包括:
    存储校准后所述摇杆、所述电机和所述姿态传感器的修正数据。
  65. 如权利要求39所述的校准装置,其特征在于,还包括:
    分别统计所述摇杆、所述电机和所述姿态传感器校准失败的次数,若所述次数超过预设次数,则向用户生成提示信息。
  66. 如权利要求39所述的校准装置,其特征在于,所述进入校准模式包括:
    当接收到客户端发送的校准命令或检测到所述云台的支撑主体上输入的校准动作时,进入所述校准模式。
  67. 如权利要求39所述的校准装置,其特征在于,在进入所述校准模式之后,在所述分别对所述摇杆、所述电机和所述姿态传感器进行校准之前,还包括:
    判断所述云台以及所述摇杆当前是否处于静止状态;
    若确定所述云台以及所述摇杆当前均处于静止状态,则触发执行所述分别对所述摇杆、所述电机和所述姿态传感器进行校准的步骤。
  68. 如权利要求67所述的校准装置,其特征在于,判断所述摇杆当前是否处于静止状态包括:
    采集第三时间段内所述摇杆的当前位置在设定坐标系中的第二位置信息;
    若所述第二位置信息指示所述摇杆的当前位置处于预设位置范围内,则确定所述摇杆当前处于静止状态。
  69. 如权利要求67所述的校准装置,其特征在于,判断所述云台当前是否处于静止状态包括:
    获取所述云台的支撑主体在第三时刻的第七姿态;
    获取所述云台的支撑主体在第四时刻的第八姿态,所述第四时刻晚于所述第三时刻,且所述第七姿态以及所述第八姿态为依据相同校准装置确定;
    若所述第八姿态未超过所述第七姿态的偏差范围,则确定所述云台当前处于静止状态。
  70. 如权利要求69所述的校准装置,其特征在于,还包括:
    在所述校准模式下,关闭所述摇杆对所述云台的控制通道。
  71. 一种摇杆的校准装置,其特征在于,包括存储器与处理器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,并在执行所述计算机程序时,实现:
    获取所述摇杆的预设位置在设定坐标系中的第一位置信息;
    确定所述第一位置信息与所述预设位置在所述设定坐标系中的参考位置的第二位置信息之间的第一偏差;
    根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置。
  72. 如权利要求71所述的校准装置,其特征在于,在所述根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近于所述预设位置之前,还包括:
    若所述第一偏差大于预设偏差,则触发执行所述根据所述第一偏差调整所述设定坐标系,以使调整后的设定坐标系中的参考位置趋近 于所述预设位置的步骤;
    若所述第一偏差不大于所述预设偏差,则默认所述摇杆校准成功。
  73. 如权利要求72所述的校准装置,其特征在于,所述处理器在执行所述计算机程序时,还实现:
    判断所述预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证;
    若通过,则确定所述摇杆校准成功。
  74. 如权利要求73所述的校准装置,其特征在于,所述判断所述预设位置在调整后的设定坐标系中的第三位置信息是否通过第一合法性验证包括:
    采集第二预设时间段内所述预设位置在调整后的设定坐标系中的第三位置信息;
    确定所述第三位置信息与调整后的设定坐标系中的参考位置的第四位置信息之间的第二偏差;
    若所述第二偏差在预设范围内波动,则确定所述预设位置在调整后的设定坐标系中的第三位置信息通过第一合法性验证。
  75. 如权利要求74所述的校准装置,其特征在于,所述处理器在执行所述计算机程序时,还实现:
    若所述第二偏差超过预设的干扰判定阈值,则判断所述摇杆受到外界干扰,并重新采集所述第二预设时间段内所述预设位置在调整后的设定坐标系中的第五位置信息以进行所述第一合法性验证。
  76. 如权利要求71至75中任一项所述的校准装置,其特征在于,所述预设位置包括所述摇杆的回中位置。
  77. 一种云台系统,其特征在于,包括:
    云台,所述云台包括转轴机构以及用于驱动所述转轴机构转动的电机;
    摇杆,用于控制所述云台;
    姿态传感器,用于测量所述云台的姿态信息;以及
    权利要求39-70中任一项所述的云台系统的校准装置。
  78. 一种云台系统,其特征在于,包括:
    云台;
    摇杆,用于控制所述云台;以及
    权利要求71-76中任一项所述的摇杆的校准装置。
  79. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至32中任一项所述的云台系统的校准方法的步骤。
  80. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求33至38中任一项所述的摇杆的校准方法的步骤。
PCT/CN2019/114483 2019-10-30 2019-10-30 云台系统的校准方法、装置、云台系统和计算机可读介质 WO2021081843A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980039331.7A CN112334855A (zh) 2019-10-30 2019-10-30 云台系统的校准方法、装置、云台系统和计算机可读介质
PCT/CN2019/114483 WO2021081843A1 (zh) 2019-10-30 2019-10-30 云台系统的校准方法、装置、云台系统和计算机可读介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114483 WO2021081843A1 (zh) 2019-10-30 2019-10-30 云台系统的校准方法、装置、云台系统和计算机可读介质

Publications (1)

Publication Number Publication Date
WO2021081843A1 true WO2021081843A1 (zh) 2021-05-06

Family

ID=74319820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114483 WO2021081843A1 (zh) 2019-10-30 2019-10-30 云台系统的校准方法、装置、云台系统和计算机可读介质

Country Status (2)

Country Link
CN (1) CN112334855A (zh)
WO (1) WO2021081843A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163115B (zh) * 2021-04-02 2023-05-26 桂林智神信息技术股份有限公司 増稳方法、増稳装置、计算机可读介质及电子设备
CN113280806A (zh) * 2021-05-12 2021-08-20 上海智能网联汽车技术中心有限公司 适用于车路协同网联设备姿态调节的智能云台和调节方法
CN113835028A (zh) * 2021-09-15 2021-12-24 深圳创维-Rgb电子有限公司 一种云台电机自动检测方法、终端及计算机可读存储介质
CN115562369A (zh) * 2022-09-22 2023-01-03 北京富吉瑞光电科技股份有限公司 云台的控制方法及装置、存储介质和处理器
CN115596738B (zh) * 2022-09-27 2023-06-27 浙江凯富博科科技有限公司 一种深海液压两轴云台
CN117935861A (zh) * 2024-02-23 2024-04-26 广东朝歌智慧互联科技有限公司 一种云台边界定位方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200819A (ja) * 2002-12-17 2004-07-15 Clarion Co Ltd 車載カメラのキャリブレーション方法及びキャリブレーション装置
KR20120105201A (ko) * 2011-03-15 2012-09-25 삼성테크윈 주식회사 휴대 단말, 원격 카메라, 및 휴대 단말에 의한 원격 카메라의 팬/틸트/줌 제어 방법
CN102917263A (zh) * 2011-08-02 2013-02-06 奇高电子股份有限公司 无线遥控影像显示系统与用于其中的控制器及处理方法
CN105513072A (zh) * 2015-12-05 2016-04-20 中国航空工业集团公司洛阳电光设备研究所 一种云台校正方法
CN108496137A (zh) * 2017-04-21 2018-09-04 深圳市大疆灵眸科技有限公司 遥控器、云台及云台控制方法、装置、系统
CN108700252A (zh) * 2017-04-21 2018-10-23 深圳市大疆灵眸科技有限公司 云台的控制方法以及云台

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101260967B (zh) * 2008-04-17 2010-09-15 上海微电子装备有限公司 Xyy精密定位平台的校准方法
CN104215439B (zh) * 2013-06-04 2017-01-25 名硕电脑(苏州)有限公司 摇杆中心点校正方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200819A (ja) * 2002-12-17 2004-07-15 Clarion Co Ltd 車載カメラのキャリブレーション方法及びキャリブレーション装置
KR20120105201A (ko) * 2011-03-15 2012-09-25 삼성테크윈 주식회사 휴대 단말, 원격 카메라, 및 휴대 단말에 의한 원격 카메라의 팬/틸트/줌 제어 방법
CN102917263A (zh) * 2011-08-02 2013-02-06 奇高电子股份有限公司 无线遥控影像显示系统与用于其中的控制器及处理方法
CN105513072A (zh) * 2015-12-05 2016-04-20 中国航空工业集团公司洛阳电光设备研究所 一种云台校正方法
CN108496137A (zh) * 2017-04-21 2018-09-04 深圳市大疆灵眸科技有限公司 遥控器、云台及云台控制方法、装置、系统
CN108700252A (zh) * 2017-04-21 2018-10-23 深圳市大疆灵眸科技有限公司 云台的控制方法以及云台

Also Published As

Publication number Publication date
CN112334855A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
WO2021081843A1 (zh) 云台系统的校准方法、装置、云台系统和计算机可读介质
US9458963B1 (en) 360-degree gimbal system
EP3736653B1 (en) Handheld gimbal control method and handheld gimbal
EP2812774B1 (en) Method for managing screen orientation of a portable electronic device
JP6510652B2 (ja) 撮像システム及び撮像制御方法
US20200358958A1 (en) Imaging device, and method and apparatus for controlling the imaging device
JP6255117B2 (ja) 撮像制御方法、装置および雲台装置
CN102428431A (zh) 包括显示器的便携式电子设备及控制此类设备的方法
US20190356848A1 (en) Power Management for Optical Position Tracking Devices
US20140063279A1 (en) Image capture device and image processor
WO2020107292A1 (zh) 云台的控制方法、云台、移动平台和计算机可读存储介质
TW200825868A (en) Inertial sensing method and system
JP2013122647A (ja) 情報処理装置、情報処理方法及びプログラム
WO2019227384A1 (zh) 一种云台控制方法及云台
WO2019057091A1 (zh) 游戏客户端的控制方法、装置、存储介质和电子装置
KR101495961B1 (ko) 골프 자세 교정 시스템 및 방법
CN110337560B (zh) 云台的控制方法、云台、拍摄设备及可读存储介质
WO2020237493A1 (zh) 云台零位标定方法和云台
WO2019051640A1 (zh) 云台的控制方法、控制器和云台
US9658701B2 (en) Input device with hybrid tracking
WO2020062281A1 (zh) 云台的控制方法、云台、可移动平台及可读存储介质
WO2021134644A1 (zh) 云台的控制方法和云台
WO2020000423A1 (zh) 云台的控制方法、云台、飞行器和计算机可读存储介质
CN110337624A (zh) 姿态转换方法、姿态显示方法及云台系统
US20120223972A1 (en) Projecting system and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950811

Country of ref document: EP

Kind code of ref document: A1