WO2022067548A1 - 云台的控制方法及装置、云台以及可移动平台 - Google Patents

云台的控制方法及装置、云台以及可移动平台 Download PDF

Info

Publication number
WO2022067548A1
WO2022067548A1 PCT/CN2020/118984 CN2020118984W WO2022067548A1 WO 2022067548 A1 WO2022067548 A1 WO 2022067548A1 CN 2020118984 W CN2020118984 W CN 2020118984W WO 2022067548 A1 WO2022067548 A1 WO 2022067548A1
Authority
WO
WIPO (PCT)
Prior art keywords
gimbal
pan
tilt
stabilization mode
load
Prior art date
Application number
PCT/CN2020/118984
Other languages
English (en)
French (fr)
Inventor
王文杰
苏铁
林荣华
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080035401.4A priority Critical patent/CN113826377B/zh
Priority to PCT/CN2020/118984 priority patent/WO2022067548A1/zh
Publication of WO2022067548A1 publication Critical patent/WO2022067548A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6815Motion detection by distinguishing pan or tilt from motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction

Definitions

  • the present application relates to the field of PTZ technology, and more particularly to a PTZ control method, a PTZ control device, a computer-readable storage medium, a PTZ component, a PTZ, and a movable platform.
  • the gimbal is also called stabilizer or stabilizer, which can be used to carry a load to control the attitude of the load.
  • stabilizer can be used to carry a load to control the attitude of the load.
  • the stabilization effect of the gimbal may be some factors that make the stabilization effect of the gimbal not good. If the stabilization effect of the gimbal is not good, it will affect the control effect of the gimbal on the load attitude and affect the user. user experience.
  • a pan/tilt control method a pan/tilt control device, a computer-readable storage medium, a pan/tilt assembly, a pan/tilt, and a movable platform are proposed to overcome or at least partially solve the above problems.
  • a control method of a pan/tilt head the pan/tilt head is used for stabilizing a load
  • the load includes a first part and a second part that are connected to each other, the first part is connected to the The pan/tilt is connected so that the pan/tilt can support the load, the second part is selectively connected with the pan/tilt via a reinforcement device, and the method includes: detecting the contact between the second part and the pan/tilt.
  • connection situation control the gimbal to enter the first stabilization mode or the second stabilization mode according to the connection result; wherein, the gimbal control parameters corresponding to the first stabilization mode are different from those of the second stabilization mode PTZ control parameters corresponding to the mode.
  • a control method of a pan/tilt the pan/tilt is used to stabilize a load
  • the load includes a first part and a second part that are connected to each other, the first part is connected to the
  • the pan/tilt is connected so that the pan/tilt can support the load
  • the second part is selectively connected to the pan/tilt through a reinforcement device
  • the method includes: determining whether the second part passes through the reinforcement device is fixed to the PTZ; and the PTZ control parameters of the PTZ are adjusted according to the judgment result.
  • a method for controlling a pan/tilt is provided, the pan/tilt is used for stabilizing a load, the load includes a first part and a second part that are connected to each other, the first part is connected to the The pan/tilt is connected so that the pan/tilt can support the load, the second part is selectively connected to the pan/tilt through a reinforcement device, and the method includes: determining whether the second part passes through the reinforcement device is fixed to the pan/tilt; when the judgment result indicates that the second part is not fixed to the pan/tilt, output prompt information for prompting that the second part of the load is not reinforced to the pan/tilt.
  • a method for controlling a pan/tilt head is provided, the pan/tilt head is used to stabilize a load, the load includes a first part and a second part that are connected to each other, the first part is connected to the The gimbal is connected so that the gimbal can support the load, the second part is selectively connected with the gimbal through a reinforcement device, and the method includes: acquiring a stabilization mode selection signal; according to the stabilization The mode selection signal controls the gimbal to enter a first stabilization mode or a second stabilization mode; wherein, in the first stabilization mode, the second part is not connected to the gimbal through the reinforcement device ; in the second stabilization mode, the second part is connected with the head via the reinforcement device.
  • a method for controlling a gimbal is provided.
  • the gimbal is used to stabilize a load, and the gimbal has a first stabilization mode and a second stabilization mode with different control parameters of the gimbal.
  • the method includes: acquiring a stabilization mode selection signal; and controlling the gimbal to enter the first stabilization mode or the second stabilization mode according to the stabilization mode selection signal.
  • a control device for a pan/tilt the pan/tilt is used for stabilizing a load
  • the load includes a first part and a second part that are connected to each other, the first part is connected to the The pan/tilt is connected so that the pan/tilt can support the load, the second part is selectively connected with the pan/tilt through a reinforcement device
  • the control device includes: a memory for storing executable instructions; a processor , which is used to execute the executable instructions stored in the memory to perform the following operations: detect the connection between the second part and the pan-tilt; control the pan-tilt to enter the first A stabilization mode or a second stabilization mode; wherein the gimbal control parameters corresponding to the first stabilization mode are different from the gimbal control parameters corresponding to the second stabilization mode.
  • a control device for a pan/tilt the pan/tilt is used for stabilizing a load
  • the load includes a first part and a second part that are connected to each other, the first part is connected to the The pan/tilt is connected so that the pan/tilt can support the load, the second part is selectively connected with the pan/tilt through a reinforcement device
  • the control device includes: a memory for storing executable instructions; a processor , for executing the executable instructions stored in the memory to perform the following operations: judging whether the second part is fixed to the pan/tilt by the reinforcement device; adjusting the pan/tilt according to the judgment result PTZ control parameters.
  • a control device for a pan/tilt the pan/tilt is used for stabilizing a load
  • the load includes a first part and a second part that are connected to each other, the first part is connected to the The pan/tilt is connected so that the pan/tilt can support the load, the second part is selectively connected with the pan/tilt through a reinforcement device
  • the control device includes: a memory for storing executable instructions; a processor , for executing the executable instructions stored in the memory to perform the following operations: judging whether the second part is fixed to the pan/tilt by the reinforcement device; when the judgment result indicates that the second part is When not being fixed to the pan/tilt head, outputting prompt information for prompting that the second part of the load is not reinforced to the pan/tilt head.
  • a control device for a pan/tilt the pan/tilt is used for stabilizing a load
  • the load includes a first part and a second part that are connected to each other, the first part is connected to the The pan/tilt is connected so that the pan/tilt can support the load, the second part is selectively connected with the pan/tilt through a reinforcement device
  • the control device includes: a memory for storing executable instructions; a processor , for executing the executable instructions stored in the memory to perform the following operations: acquiring a stabilization mode selection signal; controlling the pan/tilt to enter a first stabilization mode or a second stabilization mode according to the stabilization mode selection signal stabilization mode; wherein, in the first stabilization mode, the second part is not connected to the gimbal through the reinforcement device; in the second stabilization mode, the second part is The reinforcement device is connected with the pan/tilt.
  • a control device for a pan/tilt the pan/tilt is used for stabilizing a load, and the pan/tilt has a first stabilization mode and a second stabilization mode with different control parameters of the pan/tilt.
  • the control device includes: a memory for storing executable instructions; a processor for executing the executable instructions stored in the memory to perform the following operations: acquiring a stabilization mode selection signal; The stabilization mode selection signal controls the gimbal to enter the first stabilization mode or the second stabilization mode.
  • a computer-readable storage medium storing executable instructions that, when executed by one or more processors, cause the one or more processors to Each processor executes the control method described in any one of the above aspects.
  • a pan-tilt assembly comprising: a pan-tilt for stabilizing a load, the load comprising a first part and a second part connected to each other, the The first part is connected with the head so that the head can support the load; a reinforcement device is used to selectively connect the second part with the head through the reinforcement device; as in the present application.
  • a pan/tilt head is provided, the pan/tilt head is used for stabilizing a load, and the pan/tilt head has a first stabilization mode and a second stabilization mode with different pan/tilt control parameters,
  • the pan/tilt includes: the control device according to the tenth aspect of the present application.
  • a movable platform comprising: the head according to the twelfth aspect or the thirteenth aspect of the present application, and a platform for supporting the The support mechanism of the gimbal.
  • the present application detects the connection between the second part of the load and the gimbal, and controls the gimbal to enter the first stabilization mode or the second stabilization mode with different gimbal control parameters according to the connection result, or directly controls the parameters of the gimbal, Effectively, the control parameters of the gimbal can be adapted to the different connection conditions between the load and the gimbal, so that the gimbal can have suitable stability enhancement performance under different connection conditions between the load and the gimbal, which improves the gimbal's accuracy.
  • the control effect of the load attitude improves the stabilization effect of the gimbal.
  • Fig. 1 is a control principle diagram of a pan-tilt head according to an embodiment of the present application
  • FIG. 2 is a perspective view of a movable platform according to one embodiment of the present application.
  • FIG. 3 is a schematic diagram of an electrical module of a movable platform according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a reinforcement device for a movable platform according to an embodiment of the present application
  • FIG. 5 is a side view of a movable platform according to one embodiment of the present application.
  • FIG. 6 is a cross-sectional view of a movable platform according to one embodiment of the present application.
  • FIG. 7 is a schematic diagram of a control method of a pan-tilt head according to the first embodiment of the present application.
  • FIG. 8 is a schematic diagram of mechanical resonance information of the gimbal when the second part of the load is not connected to the gimbal according to an embodiment of the present application;
  • FIG. 9 is a schematic diagram of mechanical resonance information of the gimbal when the second part of the load is connected to the gimbal according to an embodiment of the present application;
  • FIG. 10 is a schematic diagram of a control method of a pan-tilt head according to a second embodiment of the present application.
  • FIG. 11 is a schematic diagram of a control method of a pan-tilt head according to a third embodiment of the present application.
  • FIG. 12 is a schematic diagram of a control method of a pan/tilt head according to a fourth embodiment of the present application.
  • FIG. 13 is a schematic diagram of a control method of a pan-tilt head according to a fifth embodiment of the present application.
  • first and second are only used for description purposes, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • features defined as “first” and “second” may expressly or implicitly include, but are not limited to, one or more of said features.
  • a method for controlling a pan/tilt is provided first, and the pan/tilt is used to stabilize the load.
  • the load includes a first part and a second part that are connected to each other, the first part is connected to the head so that the head can support the load, and the second part is selectively connected to the head through a reinforcement device.
  • the reinforcement means may at least be used to limit the movement of the second part relative to the head in two opposite directions, thereby increasing the effect of securing the second part to the head.
  • the reinforcement device can be used to limit the movement of the second part relative to the head in the first direction and the second direction, wherein the included angle between the first direction and the second direction is 180 degrees.
  • the reinforcement device can be used In order to limit the movement of the second part relative to the head in the first direction, the second direction and the third direction, the angle between the first direction and the second direction is 180 degrees, and the angle between the third direction and the first direction is 180 degrees.
  • the angle is an arbitrary angle
  • the included angle between the third direction and the second direction is an arbitrary angle, etc.
  • Fig. 1 is a control principle diagram of a gimbal according to an embodiment of the present application.
  • the inertial measurement element detects the current attitude of the load, and uses the current attitude of the load And compare it with the target attitude to find the control deviation, the control system controls the motor according to the control deviation to adjust the attitude of the load, and finally reduce the control deviation to ensure that the deviation between the actual attitude of the load and the target attitude is as small as possible.
  • the load is an imaging device
  • the imaging device can be stably imaged.
  • the payload may be an imaging device.
  • it can be a camera, a video camera, etc., specifically, a single-lens reflex camera, a mirrorless camera, etc.
  • the first part can be the body of the imaging device
  • the second part can be the lens of the imaging device.
  • the lens of the imaging device and the body of the imaging device can be detachably connected.
  • the load may be other devices having a first part and a second part that can generate relative vibration.
  • the relative vibration of the first part and the second part can be caused by the connection relationship between the first part and the second part, or the shape of the first part and the second part.
  • the relative vibration of the first part and the second part may be caused by the fact that the first part and the second part are detachably connected, and the relative vibration of the first part and the second part may be caused by the protrusion of the second part from the first part.
  • the load can be a microphone, and the microphone includes a detachable hand-held part and a voice receiving part, the first part can be the hand-held part, and the second part can be the voice receiving part.
  • the load can be a laser ranging device
  • the laser ranging device includes a body and a laser transmitter protruding from the body, then the first part can be the body of the laser ranging device, and the second part can be the laser transmitter .
  • FIG. 2 is a perspective view of a movable platform according to an embodiment of the present application.
  • the movable platform includes a pan-tilt 1 and a supporting mechanism for supporting the pan-tilt 1 .
  • the pan/tilt head 1 is used to carry the imaging device 2 to maintain the balance of the imaging device 2 .
  • the imaging device 2 can be moved, so as to enhance the stability of the imaging device 2 or adjust the shooting angle.
  • the pan/tilt head 1 can reduce and eliminate the shaking generated by the imaging device 2 , so as to ensure the shooting effect of the imaging device 2 .
  • FIG. 3 is a schematic diagram of an electrical module of a movable platform according to an embodiment of the present application. Please also refer to FIG.
  • the imaging device 2 is mounted on the adjustment assembly 11 .
  • the adjustment assembly 11 is used to adjust the posture of the image forming apparatus 2 .
  • the adjustment assembly 11 includes a plurality of motors and adjustment arms 111 with multiple dimensions.
  • the motor drives the adjusting arm 111 to rotate or move to adjust the posture of the imaging device 2 .
  • the support mechanism in FIG. 2 and FIG. 5 is a handheld mechanism as an example, that is, the movable platform may include a handheld pan/tilt head.
  • the control handle 18 is provided with an operation device, which can be an operation button, an operation lever or a control interface, etc., so as to control the gimbal 1 or the load, for example, to control the opening, closing, and rotation of the motor of the gimbal.
  • the load is the imaging device 2
  • it can also be used to control the opening, closing and shooting of the imaging device 2, so as to facilitate the operator to operate during the holding process.
  • the tripod 19 is used to support the entire handheld head.
  • the hand-held pan/tilt can also be used in a stationary state, which can also reduce the vibration of the imaging device 2 and play an anti-shake effect for the imaging device 2 to shoot.
  • control handle 18 Taking the support mechanism as the control handle 18 as an example, the shape of the control handle 18 is not limited to the column shape shown in FIG. 2 and FIG. The present embodiment does not limit the specific shape of the control handle 18 .
  • the control handle 18 enables the pan/tilt 1 to be directly operated by the user, and has a wide range of application scenarios, which is convenient for the user to operate, and saves costs.
  • the support mechanism may also include a movement mechanism.
  • the moving mechanism may include, but is not limited to, the chassis of the unmanned vehicle, the fuselage of the robot or the fuselage of the drone (not shown in the figure). That is, the movable platform may include, for example, an unmanned vehicle, a drone, or a robot.
  • the chassis of the unmanned vehicle as the supporting mechanism as an example, the chassis can be moved directly using wheels, or it can be moved through other mechanisms such as crawlers.
  • the number of wheels of the unmanned vehicle may be one or more, which is not limited in this embodiment.
  • the pan/tilt 1 can not only be connected to the head of the body of the robot, but also be connected to other parts of the body of the robot, such as the robot arm and the back of the robot. This is not limited.
  • UAVs are also commonly referred to as UAVs (Unmanned Aerial Vehicles), wherein UAVs can include fixed-wing UAVs, rotary-wing UAVs, umbrella-wing UAVs, etc. .
  • UAVs Unmanned Aerial Vehicles
  • the gimbal 1 can be connected not only to the bottom of the drone, but also to the top, side and other positions of the drone, which is not limited in this embodiment.
  • the motion detection module 12 is used to detect motion parameters of the imaging device 2 .
  • the motion detection module 12 may be an attitude sensor, and may include motion sensors such as a three-axis gyroscope, a three-axis accelerometer, and a three-axis electronic compass.
  • the motion parameters may include tilt angle, motion acceleration, and the like.
  • the control center 13 is electrically connected with the motion detection module 12 to receive the motion parameters sent by the motion detection module 12 , and the control center 13 is electrically connected with the adjustment component 11 , and the control center 13 can control the rotation of the adjustment component 11 to adjust the imaging device 2 according to the motion parameters. gesture.
  • the control center 13 controls each drive motor of the adjustment assembly 11 to achieve the purpose of controlling the adjustment arms 111 of the adjustment assembly 11 , so as to adjust the posture of the imaging device 2 , avoid the posture deviation of the imaging device 2 , and improve the shooting effect of the imaging device 2 .
  • the pan/tilt head 1 of this embodiment further includes an imaging device mounting plate 14 and a reinforcement device 15 .
  • the imaging device mounting plate 14 is used for fixedly mounting the imaging device 2 .
  • the imaging device 2 is connected to the adjustment assembly 11 through the imaging device mounting plate 14 .
  • the imaging device 2 includes a body 21 and a lens that are connected to each other.
  • the body 21 is mounted and fixed on the imaging device mounting plate 14 .
  • the imaging device mounting plate 14 can be a quick release plate, so that the imaging device can be quickly fixed on the adjustment assembly 11 of the pan/tilt head.
  • the body 21 is fixed on one end of the imaging device mounting plate 14 ; the lens is correspondingly located at the other end of the imaging device mounting plate 14 .
  • the reinforcement device 15 is used to support the lens of the imaging device.
  • the lens 22 can be supported by an external force. Since it is necessary to adjust the focus of the optical lens of the lens 22 of the imaging device 2 , a support surface 23 that can be in contact with the reinforcement device 15 is formed on the outer side of the lens 22 . When the reinforcement device 15 is in supporting contact with the support surface 23 of the lens 22 , the reinforcement device 15 does not affect the rotation and focus adjustment of the lens 22 .
  • the reinforcement device 15 is detachably connected to the imaging device mounting plate 14 .
  • the reinforcement device 15 is arranged corresponding to the position of the lens 22 , and the reinforcement device 15 is arranged at an end of the imaging device mounting plate 14 away from the body 21 .
  • FIG. 4 is a schematic structural diagram of the reinforcement device 15 of the movable platform according to an embodiment of the present application. Please also refer to FIG.
  • the main body 151 is used for detachable connection with the imaging device mounting plate 14 .
  • the main body 151 includes a support portion 154 and a mounting portion 155 .
  • the mounting portion 155 is used for mounting the first part, and the reinforcing device 15 may be provided on the mounting portion.
  • the support portion 154 and the mounting portion 155 are arranged substantially perpendicular to each other.
  • the support portion 154 is used to support the top block 152, the hoop member 153 and the like.
  • the top block 152 is mounted on the support portion 154 for supporting and supporting the lens 22 .
  • the hoop member 153 is movable along the axial direction of the lens 22 .
  • the hoop member 153 is used to hoop and fix the main body 151 and the lens 22 .
  • the contact point of the top block 152 and the lens 22 is located below the lens 22 , and the contact point of the hoop 153 and the lens 22 is located above the lens 22 . Therefore, the acting forces in the upper and lower directions are beneficial to keep the lens 22 stably fixed in the upper and lower directions.
  • the hoop member 153 moves along the axial direction of the lens 22 , and the hoop member 153 can be adjusted to contact the supporting surface 23 of the lens 22 correspondingly, so as to avoid the hoop effect of the hoop member 153 from affecting the normal use of the lens 22 .
  • the mounting portion 155 is used for fixedly connecting with the imaging device mounting plate 14 to mount the supporting portion 154 on the imaging device mounting plate 14 .
  • the support portion 154 and the mounting portion 155 may be two independent separate structures, or may be an integral structure.
  • the support portion 154 may be disposed approximately parallel to the imaging device mounting plate 14 , and the mounting portion 155 may be disposed approximately perpendicular to the imaging device mounting plate 14 .
  • the imaging device mounting plate 14 is provided with screw holes.
  • the mounting portion 155 may be screwed into the screw hole of the imaging device mounting plate 14 through the fastener 150 .
  • Fasteners 150 may be screws.
  • the mounting portion 155 is provided with an adjustment position.
  • the mounting portion 155 adjusts the mounting position with the image forming device mounting plate 14 by the adjustment position.
  • the adjustment positions can be a plurality of holes arranged in an array, and the installation positions of the mounting portion 155 and the imaging device mounting plate 14 can be adjusted by adjusting the holes of the mounting fasteners, that is, the height of the support portion 154 can be adjusted.
  • the adjustment position may be a through groove 1551 opened in the mounting portion 155 .
  • the through groove 1551 extends along the surface of the mounting portion 155 toward the supporting portion 154 .
  • the fasteners 150 pass through the through grooves 1551 to fasten the mounting portion 155 to the imaging device mounting plate 14 .
  • the distance between the support portion 154 and the imaging device installation board 14 can be adjusted. Therefore, the position where the mounting portion 155 is mounted on the imaging device mounting plate 14 can be adjusted through the adjustment position of the mounting portion 155 , so that the height of the supporting portion 154 can be adjusted so that the supporting portion 154 can move in a direction close to or away from the lens 22 .
  • the distance between the support portion 154 and the lens 22 can be adjusted to make the top block 152 abut on the support surface 23 of the lens 22 .
  • the mounting portion 155 and the supporting portion 154 are arranged in an approximately L-shape. Then the fasteners 150 can pass through the two sides of the through slot 1551 respectively, and are respectively fastened and fixed with the imaging device mounting plate 14 . Therefore, the support portion 154 may extend toward the imaging device body 21 or may extend away from the imaging device body 21 . Referring to FIG. 2 , the support portion 154 is extended toward the imaging device body 21 .
  • FIG. 5 is a side view of the movable platform according to an embodiment of the present application. Please refer to FIG. 5 at the same time.
  • the support portion 154 may also be extended away from the imaging device body 21 .
  • the installation direction of the support portion 154 is selected according to the length of the lens 22 .
  • the support portion 154 extends away from the imaging device body 21 and toward the outside of the lens 22 to maintain the balance of the lens 22 .
  • the support portion 154 extends toward the imaging device body 21 to support the lens 22 .
  • the support portion 154 is provided with a guide rail 156 .
  • the guide rail 156 extends in the axial direction of the lens 22 .
  • the top block 152 is movably disposed on the guide rail 156 .
  • the top block 152 can move in the direction of the guide rail 156 , and through the through slot 1551 of the mounting portion 155 , the top block 152 can be indirectly moved in the direction perpendicular to the guide rail 156 . Therefore, the supporting portion 154 and the mounting portion 155 of the main body 151 can adjust the position of the top block 152 in two vertical dimensions.
  • the jacking positions between the top block 152 and the lens 22 are different.
  • the position of the center of gravity of the lens 22 with different lengths is different, and the position of the top block 152 can be corresponding to the position of the center of gravity of the lens 22 to support the lens 22 more stably.
  • the positions of the support surface 23 of the lens 22 on the axial direction of the lens 22 are different. Therefore, when the top block 152 needs to adjust the relative position relative to different lenses 22 , the top block 152 moves along the guide rail 156 to adjust the position of the top block 152 in the axial direction of the lens 22 .
  • the top block 152 may also be directly fixed on the support portion.
  • the top block 152 can also support the lens 22 upward from below the lens 22 to provide at least a focus point for the lens 22 .
  • the top block 152 cooperates with the hoop 23 to improve the stability of the lens 22 .
  • the top block 152 includes a first end 1521 and a second end 1522 .
  • the width of the first end 1521 is smaller than the width of the second end 1522 .
  • the width direction is the direction perpendicular to the guide rail 156 .
  • the first end 1521 is movably connected to the guide rail 156 .
  • the second end 1522 is used to support the lens 22 .
  • a buffer layer 1523 is provided on the surface of the second end 1522 for abutting against the lens 22 .
  • the buffer layer 1523 can increase the frictional force between the top block 152 and the lens 22 to ensure that the top block 152 can stably support the lens 22 .
  • the hardness of the buffer layer 1523 is relatively soft to avoid damage to the lens 22 .
  • the reinforcement device 15 also includes a drive.
  • the driving member is drivingly connected with the top block 152 to drive the top block 152 to move along the guide rail 156 .
  • the driving member can be electric drive or manual mechanical drive.
  • the driving member can directly drive the top block 152 to move.
  • the drive member may also drive the top block 152 to move indirectly.
  • the guide rail 156 is a screw rod, and the top block 152 is threadedly connected to the screw rod. When the screw rod is rotated, the top block 152 moves along the screw rod.
  • the driving member is a knob 157 provided at one end of the screw rod, and the knob 157 is drivingly connected with the screw rod. The rotation of the knob 157 drives the screw to rotate.
  • the support portion 154 of the main body 151 is further provided with a guide groove 158 .
  • the guide groove 158 extends in the axial direction of the lens 22 .
  • the guide rail 156 is accommodated in the guide groove 158 .
  • the first end 1521 of the top block 152 is limited in the guide groove 158 .
  • the guide groove can further limit the movement track of the top block 152 .
  • the hoop member 153 is also movable along the extending direction of the guide rail 156 .
  • the hoop member 153 is used to hoop and fix the main body 151 and the lens 22 .
  • the contact point of the top block 152 and the lens 22 is located below the lens 22
  • the contact point of the hoop 153 and the lens 22 is located above the lens 22 . Therefore, the acting forces in the upper and lower directions are beneficial to keep the lens 22 stably fixed in the upper and lower directions.
  • there are multiple focus points between the hoop member 153 and the lens 22 which further increases the stability of the lens 22 , thereby preventing the lens 22 from shaking and the like, and improving the imaging quality of the imaging device 2 .
  • the hoop position of the hoop member 153 and the lens 22 is the support surface 23 of the lens 22 . Therefore, the hoop member 153 moves along the direction of the guide rail 156 to adjust the corresponding connection between the hoop member 153 and the support surface 23 of the lens 22 .
  • the hoop member 153 can be connected to the main body 151 , or can exist separately from the main body 151 . As long as the hoop member 153 can move along the extending direction of the guide rail 156 , the main body 151 and the lens 22 can be hoop-fixed.
  • the hoop member 153 is connected to the main body 151 .
  • the main body 151 is provided with an opening 159 .
  • the opening 159 extends along the axial direction of the lens 22 , and both ends of the hoop 153 pass through the opening 159 respectively to be connected to the main body 151 .
  • the cuff 153 is movable along the extending direction of the opening 159 .
  • the openings 159 may be one or two. Specifically, in this embodiment, there are two openings 159 , and the two openings 159 are oppositely disposed on both sides of the guide rail 156 to ensure that the hoop 153 can be stably connected to the main body 151 .
  • the hoop member 153 may also be slidably disposed on the support portion 154 through a chute or the like, the chute may be a groove, and the chute extends along the extending direction of the guide rail 156 .
  • the hoop member 153 can surround the lens 22 to bind and connect the main body 151 and the lens 22 .
  • the hoop member 153 includes one or more of flexible straps, elastic straps, and plastic straps.
  • the force bearing surface 23 between the hoop member 153 and the lens 22 is a closed ring, which ensures that the hoop member 153 can stably bind the lens 22 .
  • the hoop member 153 can surround at least a part of the circumference of the lens 22 so as to fasten the lens 22 in a hoop.
  • the cuff 153 may be two rigid arms disposed opposite to each other. The two rigid arms can clamp opposite sides of the fixed lens 22 . The two rigid arms cooperate with the top block 152 to form a triangular force point distribution to keep the lens 22 stable. Then the rigid arm can also be arc-shaped, and the arc-shaped rigid arm can better match the shape of the lens 22, so that the rigid arm and the lens 22 are in surface contact or line contact, and the lens 22 can be fixed with a more stable hoop. .
  • the hoop member 153 is adapted to the supporting surface 23 on the lens 22 , it is ensured that the hoop member 153 and the supporting surface 23 can be in complete contact, so that the lens 22 is kept stable.
  • the width of the hoop member 153 should be less than or equal to the width of the support surface 23 .
  • the width of the hoop member 153 is the dimension of the hoop member 153 along the axial direction of the lens 22 .
  • the hoop 153 avoids contact with the outer area of the support surface 23, which affects the rotation and focus adjustment of the lens.
  • the hoop member 153 is provided with a locking portion.
  • the locking portion locks and connects both ends of the hoop member 153 .
  • the locking portion includes a velcro 1531 arranged at one end of the hoop member 153 and a connecting ring 1532 arranged at the other end of the hoop member 153.
  • the velcro 1531 passes through the connecting ring 1532 and is adjusted by adjusting the hoop member 153 to form a aperture size.
  • the locking portion can also be a lock or a buckle.
  • the locking portion can lock and fasten both ends of the hoop member 153. So that the hoop member 153 can be stably bound to the outside of the lens 22 .
  • the hoop member 153 can also be connected with the top block 152 .
  • the movement of the top block 152 can drive the hoop member 153 to move. Then, when the top block 152 moves to the support surface 23 of the lens 22 , the hoop 153 also moves in place accordingly, and the lens 22 can be fastened and fixed.
  • the hoop member 153 can be divided into two parts, which are respectively fixed on both sides of the top block 152 .
  • the hoop pieces 153 can be fixed on both sides of the top block 152 by means of bolts or welding.
  • the above-mentioned reinforcement device 15 supports the lens 22, and realizes multi-point support for the lens 22 through the top block 152 and the hoop member 153, and when the top block 152 and the hoop member 153 are in hoop contact with the lens 22, it will not affect the The rotation of the lens 22 adjusts the focus. Therefore, during the movement of the pan/tilt head 1 using the reinforcement device 15, the lens 22 can be stably fixed on the imaging device mounting plate 14, and the lens 22 will not shake, thereby improving the imaging effect of the imaging device.
  • the top block 152 may be provided with an opening, so that the hoop member 153 can pass through the top block 152 and form a follow-up effect with the top block 152 .
  • the adjustment assembly 11 may include a plurality of adjustment arms 111 and a plurality of motors.
  • Each adjustment arm 111 is used to rotate the load around one axis, for example, the adjustment assembly 11 includes one adjustment arm 111 , two adjustment arms 111 , three adjustment arms 111 or more adjustment arms 111 , correspondingly, the adjustment assembly 11
  • the load may be allowed to rotate about one, two, three or more axes, and the axes used for rotation may or may not be orthogonal to each other. In some embodiments, as shown in FIG.
  • the adjustment assembly 11 can control the attitude of the load through the motor 120 , including controlling one or more of the pitch angle, roll angle and yaw angle of the load, and accordingly, the load can Rotation about one or more of the pitch axis P, the roll axis R, and the yaw axis Y.
  • FIG. 6 is a cross-sectional view of a gimbal according to an embodiment of the present application.
  • the first adjustment arm is connected to the support mechanism 200, and the first adjustment arm can rotate relative to the support mechanism 200 to change the yaw angle of the load, that is, when the first adjustment arm rotates relative to the support mechanism 200, the load can be rotated around the support mechanism 200.
  • Yaw axis Y rotation Y rotation.
  • the second adjusting arm is connected with the first adjusting arm, and the second adjusting arm can rotate relative to the support mechanism 200 to change the roll angle of the load, that is, when the second adjusting arm rotates relative to the supporting mechanism 200, the load can be rotated around the horizontal Roller R rotates.
  • the third adjusting arm is connected with the second adjusting arm, and the third adjusting arm can rotate relative to the support mechanism 200 to change the pitch angle of the load, that is, when the third adjusting arm rotates relative to the supporting mechanism 200, the load can be rotated around the pitch axis P rotates.
  • the motor 120 includes a rotor part and a stator part. It is understood that the stator part and the rotor part can rotate relative to each other. 6 shows only one motor 120, the rotor part of the motor 120 and one of the stator parts are connected with the first adjusting arm, the rotor part of the motor 120 and the other one of the stator parts are connected with the support mechanism 200, The motor 120 is used to drive the first adjustment arm and the load to rotate about a predetermined axis, for example, the predetermined axis may include a yaw axis Y.
  • stator part may be connected with the first adjusting arm, and the rotor part may be connected with the support mechanism 200; in other embodiments, the rotor part may be connected with the first adjusting arm, and the stator part and The support mechanism 200 is connected.
  • the adjustment assembly 11 may include other motors besides the motor 120 connecting the first adjustment arm and the support mechanism 200, such as a motor connecting the two adjustment arms 111 and a motor connecting the adjustment arm 111 and the imaging device mounting plate Any motor related to the stabilization performance of the gimbal 1, such as the motor.
  • FIG. 7 is a schematic diagram of a control method of a pan/tilt head according to a first embodiment of the present application. Please refer to FIG. 7 .
  • the control method of this embodiment includes:
  • the pan-tilt control parameters corresponding to the first stabilization mode are different from the pan-tilt control parameters corresponding to the second stabilization mode.
  • the gimbal has different dynamic model parameters and frequency response characteristics.
  • the gimbal control parameters cannot be adapted to the difference between the connection between the load and the gimbal, thus reducing the performance of the gimbal.
  • the connection between the second part and the gimbal is detected, and the gimbal is controlled to enter the first stabilization mode or the second stabilization mode according to the connection result, so that the control parameters of the gimbal can be adapted to the load and the gimbal.
  • connection conditions of the load and the gimbal allow the gimbal to have suitable stabilization performance, which improves the control effect of the gimbal on the attitude of the load, that is, the stabilization effect of the gimbal is improved.
  • connection between the second part and the PTZ can be automatically identified by the PTZ, which does not require the user to identify, which improves the user experience.
  • Detecting the connection between the second part and the gimbal may include: acquiring mechanical resonance information of the gimbal, and detecting the connection between the second part and the gimbal according to the mechanical resonance information.
  • the mechanical resonance information can be obtained by measurement by an IMU (Inertial Measurement Unit, inertial measurement unit).
  • IMU Inertial Measurement Unit
  • the model parameters and frequency response characteristics of the gimbal can be detected through the output of the inertial measurement unit, such as changes in the angular velocity of the gimbal. , so as to obtain the mechanical resonance information of the gimbal according to the model parameters and frequency response characteristics of the gimbal.
  • the gimbal Since only the first part of the gimbal and the first part of the second part are connected to the gimbal, the gimbal will generate additional mechanical resonance compared to the case of connecting both the first and second parts to the gimbal , this additional mechanical resonance is more pronounced when the first part is detachably connected to the second part or the second part protrudes from the first part.
  • the load is an imaging device
  • the first part is the body of the imaging device
  • the second part is a lens, a telephoto lens, a large lens, etc. that are detachable relative to the body, such mechanical resonance will be more obvious. Therefore, the connection between the second part and the pan/tilt head can be accurately detected based on the mechanical resonance information.
  • Obtaining the mechanical resonance information of the gimbal may include: obtaining an excitation signal, controlling the motor rotation of the gimbal according to the output torque indicated by the excitation signal, and determining the mechanical resonance information of the gimbal based on the rotation of the motor.
  • the rotation of the motor of the gimbal is controlled according to the output torque indicated by the excitation signal, so that the mechanical resonance information can be easily obtained by the inertial measurement unit, so as to facilitate the detection of the first The connection between the second part and the gimbal.
  • the adjustment assembly may include one adjustment arm, two adjustment arms, three adjustment arms or more adjustment arms, and accordingly the head may allow the load to rotate about one, two, three or more axes , the axes used for rotation may or may not be orthogonal to each other. That is to say, the gimbal can be a single-axis gimbal, a dual-axis gimbal, a three-axis gimbal, or a multi-axis gimbal with other axes. Accordingly, the adjustment assembly may include one motor, two motors, three motors, or more motors equal to the number of adjustment arms.
  • one motor is located between an adjustment arm and the support mechanism, that is, one of the rotor part and the stator part of the motor is directly connected to the support mechanism, the other is directly connected to the adjustment arm, and the other
  • the motor can be connected to two adjustment arms separately or to one adjustment arm and load mounting plate.
  • the motor controlled to output the output torque indicated by the excitation signal can be any motor of the gimbal, and other motors can also output the output torque indicated by the excitation signal.
  • the adjustment assembly may include a first adjustment arm, a second adjustment arm and a third adjustment arm.
  • the first adjustment arm can be connected with the support mechanism, and the first adjustment arm can be rotated relative to the support mechanism, so that the yaw angle of the load changes, that is, when the first adjustment arm rotates relative to the support mechanism, the load can be rotated around the yaw axis rotation.
  • the second adjusting arm is connected with the first adjusting arm, and the second adjusting arm can rotate relative to the support mechanism, so that the roll angle of the load changes, that is, when the second adjusting arm rotates relative to the supporting mechanism, the load can be rotated around the roll axis rotate.
  • the third adjusting arm is connected with the second adjusting arm, and the third adjusting arm can rotate relative to the support mechanism to change the pitch angle of the load, that is, when the third adjusting arm rotates relative to the supporting mechanism, the load can be rotated around the pitch axis.
  • the adjustment assembly may further include a first motor, a second motor and a third motor.
  • the first motor can be connected to the first adjusting arm and the support mechanism, and the first motor is used to drive the load to rotate around the yaw axis;
  • the second motor can be connected to the first adjusting arm and the second adjusting arm, and the second motor is used to drive the load Rotate around the roll axis;
  • the third motor can be connected to the second adjustment arm and the third adjustment arm, and the third motor is used to drive the load to rotate around the pitch axis.
  • the end of the third adjusting arm away from the third motor can be connected to the load mounting plate.
  • the number of adjusting arms of the adjusting assembly may be equal to the number of motors, and the third adjusting arm and the load mounting plate may not be connected by a motor, for example, by a screw, a buckle or other components.
  • the number of adjustment arms of the adjustment assembly may not be equal to the number of motors, the adjustment assembly may include a fourth motor, and the third adjustment arm and the load mounting plate may be connected through the fourth motor.
  • the motor controlled to output the output torque indicated by the excitation signal can be any motor of the first motor, the second motor, or the third motor and other adjustment components.
  • the motor controlled to output the output torque indicated by the excitation signal is the first motor
  • the second motor and the third motor may also output the output torque indicated by the excitation signal.
  • this embodiment does not limit the corresponding relationship between the first adjusting arm, the second adjusting arm and the third adjusting arm and the pitch axis, the roll axis and the yaw axis, for example, the first adjusting arm may also be the first adjusting arm.
  • the load is rotated about the yaw axis
  • the second adjustment arm is made to rotate the load about the pitch axis
  • the third adjustment arm is made to rotate the load about the roll axis, etc.
  • the excitation signal can be obtained by triggering the gimbal to perform the self-tuning operation when the gimbal meets the preset self-tuning conditions, and the self-tuning operation is used to adapt the load and the gimbal control parameters.
  • the self-tuning operation refers to identifying the model parameters of the controlled object, which is the combination of the gimbal and the load, through the method of system identification, and adjusting the control parameters of the gimbal according to the identified model, so that the gimbal can be adapted to different loads. Very good control performance.
  • a step disturbance experiment is performed with the control parameters of the PTZ, and the tuning parameter values are calculated according to the operating state of the PTZ.
  • this embodiment does not limit the specific implementation of the self-tuning operation for the control parameters of the PTZ, for example, the corresponding self-tuning implementation may be set according to the specific control parameters.
  • the force value of the motor on the gimbal as the control parameter of the gimbal as an example
  • a realization process of self-tuning the force value of the motor is provided, including the following steps:
  • a target torque (the target torque can be the output torque indicated by the excitation signal) is given, the motor is powered on and rotated, and the angular velocity of the motor at multiple frequency points is measured.
  • the preset time period may be 5-6 seconds; within the preset time period, the frequency of the motor gradually increases, for example, from 10 Hz to 100 Hz.
  • the angular velocity of the motor at multiple frequency points in the frequency range can be collected by the gyroscope.
  • the angular velocity at each frequency point is differentiated to obtain the angular acceleration at each frequency point.
  • the moment of inertia is obtained from the ratio of the target torque to the angular acceleration, and the moment of inertia is related to the weight of the load.
  • the force of the motor can be adjusted to the first preset force or the second preset force corresponding to the moment of inertia. Since the moment of inertia is related to the weight of the load, both the first preset force and the second preset force corresponding to the moment of inertia match the weight of the load. Thereby, the force of the calibrated motor is adapted to the weight of the current load.
  • the first preset strength and the second preset strength may correspond to the first stabilization mode and the second stabilization mode, respectively.
  • the first preset strength corresponds to the first stabilization mode
  • the second preset strength corresponds to the second stabilization mode.
  • the strength of the motor is adjusted to the first preset strength
  • the strength of the motor is adjusted to the second preset strength.
  • the force of the motor can be adjusted to a force value within a preset force range corresponding to the moment of inertia, so that when the connection between the second part and the gimbal is different, the force can be adjusted according to the connection to adjust the strength of the motor.
  • a filter can also be set for filtering, so as to improve the stabilization performance of the gimbal.
  • the parameters of the filter may include an attenuation coefficient and a cutoff frequency, and the frequency point filtering during the working process of the motor can be realized by adjusting the attenuation coefficient and the cutoff frequency.
  • the filter parameter of the motor may be adjusted to the first preset filter parameter or the second preset filter parameter corresponding to the moment of inertia. Since the moment of inertia is related to the weight of the load, both the first preset filter parameter and the second preset filter parameter corresponding to the moment of inertia match the weight of the load.
  • the filter parameters of the calibrated motor are adapted to the weight of the current load.
  • the parameters of the first preset filter and the second preset filter may correspond to the first stabilization mode and the second stabilization mode, respectively.
  • the first preset filter parameters correspond to the first stabilization mode
  • the second preset filter parameters correspond to the second stabilization mode.
  • the filter parameter of the motor can be adjusted to a filter parameter within the preset filter parameter range corresponding to the moment of inertia, so that when the connection between the second part and the gimbal is different, The filter parameters of the motor can be adjusted according to this connection.
  • the adjustment of the response speed of the load pose can be realized by adjusting the motor strength value. Adjusting the motor strength value can affect the speed of position control and reduce the attitude error of the gimbal.
  • the motor strength value is related to the inertia of the load, and the corresponding tuning strategy is: map according to the inertia of the load, the larger the inertia, the smaller the corresponding motor strength value.
  • the strength of the motor can be adjusted to a first preset strength or a second preset strength corresponding to the moment of inertia.
  • the first preset intensity and the second preset intensity may correspond to the first stabilization mode and the second stabilization mode, respectively.
  • the first preset intensity corresponds to the first stabilization mode
  • the second preset intensity corresponds to the second stabilization mode.
  • the strength of the motor is adjusted to be the first preset strength
  • the strength of the motor is adjusted to be the second preset strength
  • the strength of the motor can be adjusted to a strength value within a preset strength range corresponding to the moment of inertia, so that when the connection between the second part and the gimbal is different, the strength of the motor can be adjusted according to the connection to adjust the strength of the motor.
  • control parameters of the gimbal can be matched with the load on the gimbal, thereby ensuring the operation quality and effect of the gimbal and the load set on the gimbal.
  • the self-tuning operation may be triggered based on an instruction input by the user, and the instruction is used to select the gimbal to enter the first stabilization mode and the second stabilization mode, which indicates that the second part is fixedly connected to the gimbal.
  • the instruction is used to select the gimbal to enter the first stabilization mode
  • the second stabilization mode is to indicate the second part
  • the command is used to select the gimbal to enter the second stabilization mode.
  • the gimbal when the user inputs a stabilization mode for selecting the gimbal to enter the first stabilization mode and the second stabilization mode indicating that the second part is fixedly connected to the gimbal, the gimbal will be triggered to enter the auto-tuning operation, thereby Generate an excitation signal indicating the output torque; then, the gimbal controls the rotation of the motor of the gimbal according to the output torque indicated by the excitation signal, and determines the mechanical resonance information of the gimbal based on the rotation of the motor; and then detects the second part according to the mechanical resonance information. The connection status of the gimbal; finally, control the gimbal to enter the first stabilization mode or the second stabilization mode according to the connection result.
  • the command input by the user is used to select the gimbal to enter the first stabilization mode and the second stabilization mode indicating that the second part is fixedly connected to the gimbal, it does not mean that the second part has been fixedly connected to the gimbal at this time. Cloud platform. Therefore, when the gimbal of this embodiment receives the instruction, it does not directly control the gimbal to enter the first stabilization mode and the second stabilization mode instructing the second part to be fixedly connected to the stabilization mode, but instead Detect the connection between the second part and the gimbal, and control the gimbal to enter the first stabilization mode or the second stabilization mode according to the connection result.
  • the gimbal is directly controlled to enter the first stabilization mode and the gimbal.
  • the situation of the stabilization mode indicating that the second part is fixedly connected to the gimbal occurs, so that the control parameters of the gimbal can be effectively adapted to the connection between the load and the gimbal, and the user's use can be improved. experience.
  • the self-tuning conditions in this embodiment refer to the state conditions that the gimbal needs to meet before performing the self-tuning operation on the gimbal.
  • the self-tuning conditions may include: the motor shaft angle of the motor on the gimbal is at a preset value Angle range (for example, the motor shaft angle of any motor on the gimbal is within a preset angle range); the included angle between the axis of the support mechanism of the gimbal and the vertical direction is less than a preset angle threshold.
  • Angle range for example, the motor shaft angle of any motor on the gimbal is within a preset angle range
  • the included angle between the axis of the support mechanism of the gimbal and the vertical direction is less than a preset angle threshold.
  • the motor shaft angle of the motor on the gimbal when the motor shaft angle of the motor on the gimbal is within the preset angle range, it can be called that the gimbal is in the middle state at this time, and the distance between the axis of the support mechanism of the gimbal and the vertical direction is
  • the included angle is smaller than the preset angle threshold, it can be said that the support mechanism of the gimbal remains in a horizontal state at this time; that is, when the gimbal is in the center state and the support mechanism of the gimbal remains in a horizontal state, Then it is considered that the state of the gimbal meets the control self-tuning conditions.
  • the specific judgment is based on the following:
  • angle i the attitude of the support mechanism of the gimbal
  • the angle is mainly determined by the central axis of the support mechanism.
  • the angle formed with the vertical direction is recorded as the inclination angle base_tilt of the support mechanism, and the angle threshold base_tilt threshold is preconfigured.
  • the preset angle range is the angle range corresponding to the preset 0 position, and the specific numerical range thereof is not limited in this embodiment, and those skilled in the art can set it according to specific application requirements and design requirements, for example:
  • the set angle range can be -5° to 5°, -3° to 3°, or -1° to 1°, and so on.
  • the motor shaft angle of the motor on the gimbal is any one of the above preset angle ranges (including boundary values), it can be determined that the motor shaft angle on the gimbal is within the preset angle range.
  • the axis of the support mechanism of the gimbal refers to a straight line around which the support mechanism of the gimbal can rotate (for example, a straight line parallel to the longitudinal section of the support mechanism), also called the central axis.
  • the included angle between the axis of the support mechanism and the vertical direction is smaller than a preset angle threshold, that is, the head is basically in a horizontal state.
  • the angle threshold in this embodiment is preset threshold information for identifying whether the pan/tilt is in a horizontal state. This embodiment does not limit its specific numerical range, and those skilled in the art can use it according to specific application requirements.
  • the angle threshold is 0.5°, 0.3° or 0.1°, etc.; specifically, when the angle between the axis of the support mechanism of the gimbal and the vertical direction is smaller than the above-mentioned angle threshold, you can It is determined that the gimbal is basically in a horizontal state, and when the included angle between the axis of the support mechanism of the gimbal and the vertical direction is greater than or equal to the above-mentioned angle threshold, it can be determined that the gimbal is not in a horizontal state.
  • a status reminder message corresponding to the gimbal can be generated to prompt the user to adjust the gimbal to meet the preset self-tuning conditions.
  • the status reminder information may include identification information for identifying that the gimbal currently does not meet the self-tuning conditions, and the generated status reminder information can remind the user to adjust the gimbal to meet the preset self-tuning conditions, so that the gimbal can Perform self-tuning operation.
  • the status reminder information may remind the user to adjust the gimbal to meet the preset self-tuning conditions through a sound reminder method and/or a vibration reminder method.
  • the status reminder information corresponding to the PTZ can be sent to the client, and the client can trigger the corresponding reminder method through the status reminder information, and the reminder method can include sound reminder method and/or vibration reminder
  • the sound reminder mode you can broadcast preset content to the user, such as "you have new information, please pay attention to check it", etc.; when triggering the vibration reminder mode, you can control the client to vibrate to remind the user in time View the corresponding status alerts.
  • the mechanical resonance information may include vibration frequency range and mechanical resonance amplitude. Then, detecting the connection between the second part and the gimbal according to the mechanical resonance information may include: detecting the connection between the second part and the gimbal according to the comparison between the mechanical resonance amplitude within a preset range of the vibration frequency range and the preset amplitude.
  • the preset range may be determined according to actual conditions or experiments, for example, the preset range may be determined according to the type of the support mechanism. That is to say, when the supporting mechanism is different, correspondingly, the value of the preset range is also different. For example, when the support mechanism is different, the resonance situation of the gimbal may be different, then when the support mechanism is a handle, the preset range is one value; when the support mechanism is the robot body, the preset range can be another value. value; when the support mechanism is the chassis of the unmanned vehicle, the preset range can be another value; when the support mechanism is the fuselage of the drone, the preset range can be another value.
  • the preset range can also be determined according to the type of the load or the type of the gimbal.
  • the value of the preset range can be determined according to the weight of the load, and the value of the preset range can be determined according to the axis on which the gimbal can drive the load to rotate around the axis. number to determine the value of the preset range, etc.
  • this embodiment also detects the connection between the second part and the gimbal according to the comparison between the mechanical resonance amplitude within the preset range of the vibration frequency range and the preset amplitude. , to improve the accuracy of detection results.
  • detecting the connection between the second part and the gimbal may include: when the mechanical resonance amplitude within the preset range of the vibration frequency range is smaller than the preset amplitude When , it is determined that the second part is fixedly connected to the gimbal through the reinforcement device; when the mechanical resonance amplitude within the preset range of the vibration frequency range is greater than the preset amplitude, it is determined that the second part is not fixedly connected to the gimbal through the reinforcement device.
  • the preset amplitude may be determined according to actual conditions or experiments, for example, the preset amplitude may be determined according to the type of the support mechanism. That is to say, when the supporting mechanisms are different, correspondingly, the values of the preset amplitudes are also different. For example, when the supporting mechanism is different, the resonance situation of the gimbal may be different, then when the supporting mechanism is a handle, the preset amplitude is one value; when the supporting mechanism is the robot body, the preset amplitude can be another value. value; when the supporting mechanism is the chassis of the unmanned vehicle, the preset amplitude can be another value; when the supporting mechanism is the fuselage of the drone, the preset amplitude can be another value.
  • the preset amplitude can also be determined according to the type of the load or the type of the gimbal.
  • the value of the preset amplitude can be determined according to the weight of the load, and the value of the preset amplitude can be determined according to the axis on which the gimbal can drive the load to rotate around the axis. number to determine the value of the preset amplitude, etc.
  • FIG. 8 is a schematic diagram of the mechanical resonance information of the gimbal according to an embodiment of the present application when the second part of the load is not connected to the gimbal
  • FIG. 9 is a schematic diagram of the gimbal according to an embodiment of the present application when the second part of the load is Schematic diagram of mechanical resonance information when connected to a gimbal.
  • the abscissa of the coordinate system of the drawings shown in FIG. 8 and FIG. 9 represents the vibration frequency
  • the ordinate of the coordinate system represents the resonance amplitude
  • the interval represented by the vibration frequency A and the vibration frequency B is the preset range
  • the resonance amplitude C represents the preset range magnitude.
  • the mechanical resonance amplitude of the gimbal corresponding to some vibration frequency values within the preset range is greater than the preset amplitude, it can be determined that the second part is not fixedly connected to the gimbal through the reinforcement device.
  • the mechanical resonance amplitude of the gimbal corresponding to all the vibration frequency values within the preset range is greater than the preset amplitude, it is determined that the second part is not fixedly connected to the gimbal through the reinforcement device.
  • the mechanical resonance amplitude of the gimbal corresponding to one or more vibration frequency values within the preset range is equal to the preset amplitude
  • the mechanical resonance amplitude of the gimbal corresponding to the other vibration frequency values within the preset range can be determined.
  • the resonant amplitude is compared with a preset amplitude to determine whether the second part is fixedly connected to the head via the reinforcement means.
  • the mechanical resonance amplitude of the gimbal corresponding to other vibration frequency values within the preset range is smaller than the preset amplitude, it is determined that the second part is fixedly connected to the gimbal through the reinforcement device;
  • any one of the mechanical resonance amplitudes of the gimbal corresponding to the vibration frequency value of 1 is greater than the preset amplitude, it is determined that the second part is not fixedly connected to the gimbal through the reinforcement device.
  • the mechanical resonance amplitude of the gimbal corresponding to all the vibration frequency values within the preset range is equal to the preset amplitude, it can be determined that the second part is not fixedly connected to the gimbal through the reinforcement device or that the second part is fixed through the reinforcement device. Connect to the gimbal.
  • Controlling the gimbal to enter the first stabilization mode or the second stabilization mode according to the connection result may include: when the second part is not fixedly connected to the gimbal through the reinforcement device, controlling the gimbal to enter the first stabilization mode; in the second part When it is fixedly connected to the gimbal through the reinforcement device, the gimbal is controlled to enter the second stabilization mode.
  • the gimbal When the gimbal is in the first stabilization mode, the gimbal can be in a static state, or in a low-speed, relatively stable motion state. When the gimbal is in the second stabilization mode, the gimbal can be in the process of motion shooting or flight shooting.
  • the gimbal control parameters may include at least one of a force value of a motor of the gimbal, a strength value of the motor, and a configuration parameter of a filter of the motor. It can be understood that the control parameters of the pan/tilt head may include at least one of the force value of any motor of the pan/tilt head, the strength value of any motor, and the configuration parameters of the filter of any motor.
  • the force value corresponding to the first stabilization mode is smaller than the force value corresponding to the second stabilization mode. That is, the sensitivity for resisting external disturbance torque when the gimbal is in the first stabilization mode is smaller than the sensitivity for resisting external disturbance torque when the gimbal is in the second stabilization mode.
  • the force value of the motor may be related to the output torque information and torque spectrum information of the motor.
  • the mechanical rigidity of the gimbal and the load as a whole will become lower, and the gimbal will produce Additional mechanical resonance.
  • the gimbal When the gimbal generates additional mechanical resonance, if the force value of the motor is set to a high value, the frequency of the mechanical resonance will not be effectively attenuated, and a resonance phenomenon will occur, which will cause the gimbal to work abnormally. Therefore, when the second part is not fixedly connected to the gimbal through the reinforcement device, the gimbal is controlled to enter the first stabilization mode in which the force value of the motor is relatively small.
  • the gimbal When the second part is fixedly connected to the gimbal through the reinforcement device, the gimbal will not generate additional mechanical resonance, and the relatively high force value of the motor will not cause the gimbal to work abnormally. Therefore, when the second part is fixedly connected to the gimbal through the reinforcement device, the gimbal is controlled to enter the second stabilization mode in which the force value of the motor is relatively large, thereby improving the stabilization performance of the gimbal and the increase of the gimbal to the load. stable effect.
  • the load is an imaging device
  • the second stabilization mode improves the stabilization effect of the gimbal on the load, thereby ensuring that the imaging device can image stably when the gimbal is in the second stabilization mode.
  • the intensity value corresponding to the first stabilization mode is smaller than that of the second stabilization mode. That is, the sensitivity of the gimbal control amount used to respond to the input when the gimbal is in the first stabilization mode is smaller than the sensitivity of the gimbal control amount used to respond to the input when the gimbal is in the second stabilization mode, where the input can be
  • the input device on the support mechanism for example, the input device may be a joystick for controlling the pan/tilt head.
  • the strength value of the motor can affect the speed of the position control of the gimbal and reduce the attitude error of the gimbal.
  • the strength value of the motor is proportional to the strength value, that is, the greater the strength value of the motor, the greater the strength value of the motor, and the smaller the strength value of the motor, the smaller the strength value of the motor. Since for the same load, the strength value corresponding to the first stabilization mode is smaller than the strength value corresponding to the second stabilization mode, for the same load, the strength value corresponding to the first stabilization mode is smaller than that of the second stabilization mode.
  • the intensity value is small.
  • the gimbal is controlled to enter the second stabilization mode in which the strength value of the motor is relatively large, so that the gimbal has a higher response to the input gimbal control amount. Sensitivity to enhance user experience.
  • the configuration parameters of the filter corresponding to the first stabilization mode are used to suppress the specific mechanical resonance of the gimbal; the configuration parameters of the filter corresponding to the second stabilization mode are used to prohibit suppressing the specific mechanical resonance of the gimbal.
  • the specific mechanical resonance may be the mechanical resonance caused by the second part being connected to the pan/tilt head. Because, when the second part is fixedly connected to the gimbal through the reinforcement device, the gimbal will not generate the specific mechanical resonance, so the configuration parameters of the filter are not required to suppress the specific mechanical resonance of the gimbal, so that the gimbal's specific mechanical resonance is not required. The phase delay of the control system becomes smaller. When the second part is not fixedly connected to the gimbal through the reinforcement device, the gimbal will generate the specific mechanical resonance. Therefore, the configuration parameters of the filter are used to suppress the specific mechanical resonance of the gimbal to improve the user experience.
  • the configuration parameters of the filter can include depth (that is, the peak value of the resonance frequency point), width (that is, the range of the resonance frequency) and the frequency of the resonance frequency point. function of specific mechanical resonances.
  • the control method may further include outputting prompt information for prompting that the second part of the load is not fixedly connected to the pan/tilt head when the second part is not fixedly connected to the pan/tilt head via the reinforcement device. It is convenient for the user to grasp the reason why the second stabilization mode cannot be entered at this time, and can remind the user that the second part of the load needs to be connected to the gimbal with the reinforcement device.
  • the gimbal When the user input is used to select the gimbal to enter the first stabilization mode and the second stabilization mode indicating that the second part is fixedly connected to the gimbal in the stabilization mode, the gimbal will be triggered to enter the auto-tuning operation, thereby generating an indication output.
  • the excitation signal of the torque then, the gimbal controls the motor rotation of the gimbal according to the output torque indicated by the excitation signal, and determines the mechanical resonance information of the gimbal based on the rotation of the motor; and then detects the connection between the second part and the gimbal according to the mechanical resonance information.
  • the gimbal will output a prompt message indicating that the second part of the load is not fixedly connected to the gimbal.
  • the gimbal may enter the first stabilization mode.
  • the prompt information is output, when the user re-enters the stabilization mode for selecting the gimbal to enter the first stabilization mode and the second stabilization mode indicating that the second part is fixedly connected to the gimbal, the Trigger the gimbal again to enter the auto-tuning operation, and repeat the subsequent operations.
  • the gimbal after outputting the preset time period of the prompt information, the gimbal will automatically enter the self-tuning operation and repeat the subsequent operations. Fix the second part to the gimbal, and automatically trigger the gimbal to enter auto-tuning again.
  • the prompt information may include at least one of visual prompt information, auditory prompt information, and tactile prompt information. That is, in some embodiments, the prompt information may only include visual prompt information, or only include auditory prompt information, or only include tactile prompt information. In other embodiments, the prompt information may include any two of visual prompt information, auditory prompt information, and tactile prompt information. In other embodiments, the prompt information may include visual prompt information, auditory prompt information and tactile prompt information at the same time.
  • the visual cue information may include images, text, or both.
  • the PTZ may include a display device, and images and/or text may be displayed through the display device.
  • the position of the display device is not limited in this embodiment.
  • the display device may be located in the support mechanism, or may be independent of the pan/tilt and be connected to the pan/tilt in communication.
  • the audible prompt information may include the sound produced by the vibration of the motor.
  • the frequency of the motor vibration can be selected according to the actual situation, which is not limited in this embodiment.
  • the tactile prompt information may include vibration, for example, the vibration of the support mechanism, the vibration of the adjustment component, etc., wherein the frequency of the vibration may be selected according to the actual situation, which is not limited in this embodiment.
  • FIG. 10 is a schematic diagram of a control method of a pan-tilt head according to a second embodiment of the present application.
  • the gimbal used in the control method of the gimbal according to the second embodiment of the present application is used to stabilize the load.
  • the load includes a first part and a second part that are connected to each other.
  • the first part is connected to the gimbal so that the gimbal can support the load.
  • the second part is selectively connected to the pan/tilt through the reinforcement device.
  • the structure of the pan/tilt and the load may refer to the foregoing embodiments, and will not be repeated here.
  • control method of the PTZ according to the second embodiment of the present application includes:
  • the relevant content of judging whether the second part is fixed to the pan/tilt by the reinforcement device may refer to the foregoing embodiments, and will not be repeated here.
  • Adjusting the gimbal control parameters of the gimbal according to the judgment result can effectively make the gimbal control parameters adapt to the different connection conditions between the load and the gimbal, so that under different connection conditions between the load and the gimbal, the gimbal can With suitable stabilization performance, the control effect of the gimbal on the load attitude is improved, that is, the stabilization effect of the gimbal is improved.
  • the connection between the second part and the PTZ can be automatically identified by the PTZ, which does not require the user to identify, which improves the user experience.
  • the gimbal control parameters may include at least one of the force value of the motor of the gimbal, the strength value of the motor, and the configuration parameters of the filter of the motor.
  • adjusting the gimbal control parameters of the gimbal according to the judgment result includes: when the judgment result is that the second part is not fixed to the gimbal by the reinforcement device, reducing the strength value of the motor (reducing the sensitivity for resisting external disturbance torque) ), reduce the strength value of the motor (reduce the sensitivity of the gimbal control amount used to respond to the input), or make the configuration parameters of the motor's filter to suppress the specific mechanical resonance of the gimbal; when the judgment result is that the second part passes through the reinforcement device
  • increase the strength value of the motor increase the sensitivity to resist external disturbance torque
  • increase the strength value of the motor increase the sensitivity of the gimbal control amount used to respond to the input
  • the configuration parameters of the gimbal prohibit the suppression of specific mechanical resonances of the gimbal.
  • the control method of the second embodiment of the present application may further include outputting a prompt message for prompting that the second part of the load is not fixedly connected to the gimbal when the second part is not fixedly connected to the gimbal through the reinforcement device.
  • a prompt message for prompting for prompting that the second part of the load is not fixedly connected to the gimbal when the second part is not fixedly connected to the gimbal through the reinforcement device.
  • FIG. 11 is a schematic diagram of a control method of a pan-tilt head according to a third embodiment of the present application.
  • the gimbal used in the control method of the gimbal according to the third embodiment of the present application is used to stabilize the load, the load includes a first part and a second part that are connected to each other, and the first part is connected to the gimbal so that the gimbal can support the load, The second part is selectively connected to the pan/tilt through the reinforcement device.
  • the structure of the pan/tilt and the load may refer to the foregoing embodiments, and will not be repeated here.
  • control method of the pan/tilt according to the third embodiment of the present application includes:
  • the relevant content of judging whether the second part is fixed to the pan/tilt by the reinforcement device may refer to the foregoing embodiments, and will not be repeated here. Therefore, it is convenient for the user to grasp the connection status of the gimbal and the load, and the user can be reminded that the second part of the load needs to be connected to the gimbal by the reinforcement device, so as to improve the user experience.
  • the judgment result indicates that the second part is not fixed to the gimbal, it outputs a prompt message for prompting that the second part of the load is not reinforced to the gimbal, instead of adjusting the control parameters of the gimbal, which ensures the increase of the gimbal.
  • the stability performance is guaranteed, and the stabilization effect of the gimbal is guaranteed.
  • control method of the third embodiment of the present application may further include adjusting the pan-tilt control parameters of the pan-tilt according to the judgment result, wherein, for the relevant content of adjusting the pan-tilt control parameters of the pan-tilt according to the judgment result, please refer to the aforementioned Examples are not repeated here.
  • control method of the third embodiment of the present application may further include controlling the gimbal to enter the first stabilization mode or the second stabilization mode according to the judgment result.
  • the related content of the first stabilization mode, the second stabilization mode, and the control of the gimbal to enter the first stabilization mode or the second stabilization mode according to the judgment result may refer to the foregoing embodiments, which will not be repeated here.
  • FIG. 12 is a schematic diagram of a control method of a pan/tilt head according to a fourth embodiment of the present application.
  • the gimbal used in the control method of the gimbal according to the fourth embodiment of the present application is used to stabilize the load, the load includes a first part and a second part that are connected to each other, and the first part is connected to the gimbal so that the gimbal can support the load, The second part is selectively connected to the pan/tilt through the reinforcement device.
  • the structure of the pan/tilt and the load may refer to the foregoing embodiments, and will not be repeated here.
  • control method of the pan/tilt according to the fourth embodiment of the present application includes:
  • This kind of gimbal has different stabilization modes, and the control method of the gimbal according to the fourth embodiment of the present application can make the different stabilization modes of the gimbal adapt to different situations, for example, to adapt to different loads
  • the connection with the PTZ can improve the user experience.
  • This method enables the gimbal to have suitable stabilization performance when the selection signal of the stabilization mode is different, and improves the control effect of the gimbal on the attitude of the load, that is, the stabilization effect of the gimbal is improved.
  • the second part in the first stabilization mode, is not connected to the gimbal through the reinforcement device, and in the second stabilization mode, the second part is connected to the gimbal through the reinforcement device.
  • the stabilization mode selection signal may be input by the user, and the stabilization mode selection signal is used to select the gimbal to enter the first stabilization mode or the second stabilization mode.
  • controlling the gimbal to enter the first stabilization mode or the second stabilization mode according to the stabilization mode selection signal includes directly controlling the gimbal to enter the stabilization mode corresponding to the stabilization mode selection signal.
  • the mode selection signal is used to select the gimbal to enter the first stabilization mode, it will directly control the gimbal to enter the first stabilization mode.
  • the stabilization mode selection signal is used to select the gimbal to enter the second stabilization mode, it will directly control the gimbal to enter the second stabilization mode. The gimbal enters the second stabilization mode.
  • controlling the gimbal to enter the first stabilization mode or the second stabilization mode according to the stabilization mode selection signal includes: when the stabilization mode selection signal is used to select the gimbal to enter the first stabilization mode, then Directly control the gimbal to enter the first stabilization mode; when the stabilization mode selection signal is used to select the gimbal to enter the second stabilization mode, check the connection between the second part and the gimbal, if the connection result is that the second part fails When the reinforcement device is fixedly connected to the gimbal, the gimbal is controlled to enter the first stabilization mode. If the connection result is that the second part is fixedly connected to the gimbal through the reinforcement device, the gimbal is controlled to enter the second stabilization mode.
  • the control method of the fourth embodiment of the present application may further include outputting a prompt message for indicating that the second part of the load is not fixedly connected to the gimbal when the second part is not fixedly connected to the gimbal through the reinforcement device.
  • a prompt message for indicating that the second part of the load is not fixedly connected to the gimbal when the second part is not fixedly connected to the gimbal through the reinforcement device.
  • FIG. 13 is a schematic diagram of a control method of a pan-tilt head according to a fifth embodiment of the present application.
  • the pan/tilt to which the control method of the pan/tilt according to the fifth embodiment of the present application is applied is used to stabilize the load, and the pan/tilt has a first stabilization mode and a second stabilization mode with different control parameters of the pan/tilt.
  • control method of the PTZ according to the fourth embodiment of the present application includes:
  • This kind of gimbal has different stabilization modes, and the control method of the gimbal according to the fifth embodiment of the present application can make the different stabilization modes of the gimbal adapt to different situations, for example, to adapt to different loads
  • the connection with the PTZ can improve the user experience.
  • This method enables the gimbal to have suitable stabilization performance when the selection signal of the stabilization mode is different, and improves the control effect of the gimbal on the attitude of the load, that is, the stabilization effect of the gimbal is improved.
  • the related content of the stabilization mode selection signal and the control of the gimbal to enter the first stabilization mode or the second stabilization mode according to the stabilization mode selection signal may refer to the foregoing embodiments, which will not be repeated here.
  • the structure of the pan/tilt to which the control method of the pan/tilt according to the fifth embodiment of the present application is applied and the structure of the load supported by the pan/tilt may refer to the foregoing embodiments, which will not be repeated here.
  • This embodiment also provides a control device for a gimbal.
  • the gimbal is used to stabilize a load.
  • the load includes a first part and a second part that are connected to each other.
  • the first part is connected to the gimbal so that the gimbal can support the load, and the second part is connected to the gimbal.
  • the control device includes a memory and a processor.
  • Memory is used to store executable instructions.
  • the processor is configured to execute the executable instructions stored in the memory to perform the following operations: detect the connection between the second part and the pan-tilt; control the pan-tilt to enter the first stabilization mode or the second stabilization mode according to the connection result.
  • pan-tilt control parameters corresponding to the first stabilization mode are different from the pan-tilt control parameters corresponding to the second stabilization mode.
  • control device may be located in a support mechanism for supporting the pan/tilt, or may be independent of the pan/tilt and be connected to the pan/tilt in communication.
  • the processor may also perform the following operations: obtain the mechanical resonance information of the gimbal; and detect the connection between the second part and the gimbal according to the mechanical resonance information.
  • the processor may also perform the following operations: acquiring an excitation signal, and controlling the rotation of the motor of the pan/tilt according to the output torque indicated by the excitation signal; and determining the mechanical resonance information of the pan/tilt based on the rotation of the motor.
  • the excitation signal can be obtained by triggering the gimbal to perform the self-tuning operation when the gimbal meets the preset self-tuning conditions, and the self-tuning operation is used to adapt the load and the gimbal control parameters.
  • the self-tuning operation may be triggered based on an instruction input by the user, and the instruction is used to select the stabilization mode in which the gimbal enters the first stabilization mode and the second stabilization mode indicating that the second part is fixedly connected to the gimbal.
  • the mechanical resonance information may include vibration frequency range and mechanical resonance amplitude.
  • the processor may further perform the following operation: detect the connection of the second part with the pan/tilt according to the comparison between the mechanical resonance amplitude within the preset range of the vibration frequency range and the preset amplitude.
  • the processor may also perform the following operations: when the mechanical resonance amplitude within the preset range of the vibration frequency range is smaller than the preset amplitude, determine that the second part is fixedly connected to the pan/tilt through the reinforcement device; When the mechanical resonance amplitude is greater than the preset amplitude, it is determined that the second part is not fixedly connected to the gimbal through the reinforcement device.
  • the gimbal control parameters may include at least one of the force value of the motor of the gimbal, the strength value of the motor, and the configuration parameters of the filter of the motor.
  • the force value corresponding to the first stabilization mode may be smaller than the force value corresponding to the second stabilization mode.
  • the intensity value corresponding to the first stabilization mode may be smaller than the intensity value corresponding to the second stabilization mode.
  • the configuration parameters of the filter corresponding to the first stabilization mode can be used to suppress the specific mechanical resonance of the gimbal; the configuration parameters of the filter corresponding to the second stabilization mode can be used to prohibit the suppression of the specific mechanical resonance of the gimbal.
  • the sensitivity for resisting the external disturbance torque may be smaller than the sensitivity for resisting the external disturbance torque when the gimbal is in the second stabilization mode.
  • the sensitivity of the gimbal control amount used to respond to the input when the gimbal is in the first stabilization mode may be smaller than the sensitivity of the gimbal control amount used to respond to the input when the gimbal is in the second stabilization mode.
  • the processor can also perform the following operations: when the second part is not fixedly connected to the gimbal through the reinforcement device, control the gimbal to enter the first stabilization mode; when the second part is fixedly connected to the gimbal through the reinforcement device, control the gimbal Enter the second stabilization mode.
  • the processor may further perform the following operation: output a prompt message for prompting that the second part of the load is not fixedly connected to the pan/tilt via the prompt device.
  • the prompt information may include at least one of the following: visual prompt information, auditory prompt information, and tactile prompt information.
  • the visual cue information may include images and/or text
  • the audible cue information may include sounds generated by the vibration of the pan/tilt head
  • the tactile cue information may include vibrations.
  • the pan/tilt head may include a mounting portion for mounting the first portion, and the reinforcing device may be provided on the mounting portion.
  • the stiffening means may at least be used to limit movement of the second part relative to the head in two opposite directions.
  • the payload may include an imaging device, the first portion may include a body of the imaging device, and the second portion may include a lens of the imaging device.
  • the lens of the imaging device and the body of the imaging device may be detachably connected.
  • the reinforcement device may include a main body, a top block, and a hoop.
  • the main body is used for detachable connection with the imaging device mounting plate provided on the pan/tilt head, and the main body includes a support portion.
  • the top block is used for supporting the lens, and the top block is arranged on the support part.
  • the hoop is movable along the axial direction of the lens, and the hoop is used to fix the main body and the lens.
  • the ferrule can surround at least a portion of the perimeter of the lens to secure the lens ferrule.
  • the cuff may include one or more of flexible straps, elastic straps, and plastic straps.
  • An embodiment of the present application further provides a control device for a pan/tilt, that is, the second control device provided in this embodiment.
  • the pan/tilt applied by the second control device provided by this embodiment is used to stabilize the load, and the load includes mutual The first part and the second part are connected.
  • the first part is connected with the gimbal so that the gimbal can support the load, and the second part is selectively connected with the gimbal through the reinforcement device.
  • the related content of the gimbal and the structure of the load can be referred to The foregoing embodiments are not repeated here.
  • the second control device provided in this embodiment may be located in a support mechanism for supporting the pan/tilt, or may be independent of the pan/tilt and connected to the pan/tilt in communication.
  • the second control apparatus may include a memory and a processor.
  • Memory is used to store executable instructions.
  • the processor is used for executing the executable instructions stored in the memory to perform the following operations: judging whether the second part is fixed to the pan-tilt by the reinforcement device; adjusting the pan-tilt control parameters of the pan-tilt according to the judgment result.
  • the processor of the second control device executes the determination of whether the second part is fixed to the pan/tilt through the reinforcement device. Reference may be made to the foregoing embodiments, which will not be repeated here. Adjusting the gimbal control parameters of the gimbal according to the judgment result can effectively make the gimbal control parameters adapt to the difference between the load and the connection of the gimbal, and improve the user experience.
  • the gimbal control parameters may include at least one of the force value of the motor of the gimbal, the strength value of the motor, and the configuration parameters of the filter of the motor.
  • adjusting the gimbal control parameters of the gimbal according to the judgment result includes: when the judgment result is that the second part is not fixed to the gimbal by the reinforcement device, reducing the strength value of the motor (reducing the sensitivity for resisting external disturbance torque) ), reduce the strength value of the motor (reduce the sensitivity of the gimbal control amount used to respond to the input), or make the configuration parameters of the motor's filter to suppress the specific mechanical resonance of the gimbal; when the judgment result is that the second part passes through the reinforcement device
  • increase the strength value of the motor increase the sensitivity to resist external disturbance torque
  • increase the strength value of the motor increase the sensitivity of the gimbal control amount used to respond to the input
  • the configuration parameters of the gimbal prohibit the suppression of specific mechanical resonances of the gimbal.
  • the processor of the second control device provided in this embodiment may further execute the following content: when the second part is not fixedly connected to the pan/tilt via the reinforcement device, output a signal for prompting that the second part of the load is not fixedly connected to the pan/tilt. prompt information.
  • prompt information For the relevant content of the prompt information, reference may be made to the foregoing embodiments, which will not be repeated here.
  • This embodiment also provides a control device for a pan/tilt, that is, the third control device provided in this embodiment.
  • the pan/tilt applied by the third control device provided by this embodiment is used to stabilize the load, and the load includes interconnections.
  • the first part and the second part, the first part is connected with the gimbal so that the gimbal can support the load, and the second part is selectively connected with the gimbal through the reinforcement device.
  • the structure of the gimbal and the load please refer to the foregoing. Examples are not repeated here.
  • the third control device provided in this embodiment may be located in a support mechanism for supporting the pan/tilt, or may be independent of the pan/tilt and connected to the pan/tilt in communication.
  • the third control apparatus includes a memory and a processor.
  • Memory is used to store executable instructions.
  • the processor is configured to execute the executable instructions stored in the memory to perform the following operations: judging whether the second part is fixed to the PTZ through the reinforcement device; when the judgment result indicates that the second part is not fixed to the PTZ, the output is used for prompting Message that the second part of the load is not reinforced to the gimbal.
  • the processor of the third control device determines whether the second part is fixed to the pan/tilt by the reinforcement device. Reference may be made to the foregoing embodiments, and details are not repeated here. Therefore, it is convenient for the user to grasp the connection status of the gimbal and the load, and the user can be reminded that the second part of the load needs to be connected to the gimbal by the reinforcement device, so as to improve the user experience.
  • the processor of the third control device provided in this embodiment may further include adjusting the PTZ control parameters of the PTZ according to the judgment result, wherein the related content of adjusting the PTZ control parameters of the PTZ according to the judgment result Reference may be made to the foregoing embodiments, which will not be repeated here.
  • the processor of the third control apparatus provided in this embodiment may further include controlling the pan/tilt head to enter the first stabilization mode or the second stabilization mode according to the judgment result.
  • the related content of the first stabilization mode, the second stabilization mode, and the control of the gimbal to enter the first stabilization mode or the second stabilization mode according to the judgment result may refer to the foregoing embodiments, which will not be repeated here.
  • This embodiment also provides a control device for a pan/tilt, that is, the fourth control device provided by this embodiment.
  • the pan/tilt applied by the fourth control device provided by this embodiment is used to stabilize the load, and the load includes interconnections.
  • the first part and the second part, the first part is connected with the gimbal so that the gimbal can support the load, and the second part is selectively connected with the gimbal through the reinforcement device.
  • the structure of the gimbal and the load please refer to the foregoing. Examples are not repeated here.
  • the fourth control device provided in this embodiment may be located in a support mechanism for supporting the pan/tilt, or may be independent of the pan/tilt and be connected to the pan/tilt in communication.
  • the fourth control apparatus includes a memory and a processor.
  • Memory is used to store executable instructions.
  • the processor is configured to execute the executable instructions stored in the memory to perform the following operations: acquiring the stabilization mode selection signal; and controlling the pan/tilt to enter the first stabilization mode or the second stabilization mode according to the stabilization mode selection signal.
  • the second part in the first stabilization mode, is not connected to the gimbal through the reinforcement device. In the second stabilization mode, the second part is connected to the gimbal through the reinforcement device.
  • This kind of gimbal has different stabilization modes.
  • the fourth control device provided in this embodiment can make the different stabilization modes of the gimbal adapt to different situations. connection to improve the user experience.
  • the related content of the stabilization mode selection signal and the control of the gimbal to enter the first stabilization mode or the second stabilization mode according to the stabilization mode selection signal may refer to the foregoing embodiments, which will not be repeated here.
  • the processor of the fourth control device provided in this embodiment may also output a prompt message for prompting that the second part of the load is not fixedly connected to the gimbal when the second part is not fixedly connected to the gimbal through the reinforcement device.
  • a prompt message for prompting that the second part of the load is not fixedly connected to the gimbal when the second part is not fixedly connected to the gimbal through the reinforcement device.
  • This embodiment also provides a control device for a PTZ, that is, the fifth control device provided in this embodiment.
  • the PTZ applied by the fifth control device provided in this embodiment is used to stabilize the load, and the PTZ has a cloud A first stabilization mode and a second stabilization mode with different station control parameters.
  • the fifth control device provided in this embodiment may be located in a support mechanism for supporting the pan/tilt, or may be independent of the pan/tilt and connected to the pan/tilt in communication.
  • the fifth control apparatus includes a memory and a processor.
  • Memory is used to store executable instructions.
  • the processor is configured to execute the executable instructions stored in the memory to perform the following operations: acquiring the stabilization mode selection signal; and controlling the pan/tilt to enter the first stabilization mode or the second stabilization mode according to the stabilization mode selection signal.
  • This kind of gimbal has different stabilization modes, and the fifth control device provided in this embodiment can make the different stabilization modes of the gimbal adapt to different situations, for example, to adapt to different loads and differences in the gimbal. connection to improve the user experience.
  • the related content of the stabilization mode selection signal and the control of the gimbal to enter the first stabilization mode or the second stabilization mode according to the stabilization mode selection signal may refer to the foregoing embodiments, which will not be repeated here.
  • the structure of the pan/tilt to which the fifth control device provided in this embodiment is applied and the structure of the load supported by the pan/tilt may refer to the foregoing embodiments, which will not be repeated here.
  • This embodiment also provides a computer-readable storage medium, where the computer-readable storage medium stores executable instructions, and when executed by one or more processors, the executable instructions can cause one or more processors to execute any of the above A control method in one embodiment.
  • the computer-readable storage medium may also be referred to as a memory, and the executable instructions may also be referred to as a program.
  • the processor may perform various appropriate actions and processes according to programs stored in read only memory (ROM) or loaded into random access memory (RAM).
  • a processor may include, for example, a general-purpose microprocessor (eg, a CPU), an instruction set processor and/or a related chipset, and/or a special-purpose microprocessor (eg, an application specific integrated circuit (ASIC)), among others.
  • the processor may also include onboard memory for caching purposes.
  • the processor may comprise a single processing unit or multiple processing units for performing different actions of the method flow according to this embodiment.
  • the processor, ROM, and RAM are connected to each other through a bus.
  • the processor performs various operations of the method flow according to the present embodiment by executing programs in the ROM and/or RAM. Note that programs may also be stored in one or more memories other than ROM and RAM.
  • the processor may also perform various operations of the method flow according to the present embodiment by executing programs stored in one or more memories.
  • the apparatus to which the computer-readable storage medium is applied may further include an input/output (I/O) interface, which is also connected to the bus.
  • the device employing the computer-readable storage medium may also include one or more of the following components connected to the I/O interface: an input portion including a keyboard, a mouse, etc.; an input portion such as a cathode ray tube (CRT), a liquid crystal display (LCD) ), etc., and an output section for speakers, etc.; a storage section including a hard disk, etc.; and a communication section including a network interface card such as a LAN card, a modem, and the like.
  • the communication section performs communication processing via a network such as the Internet.
  • Removable media such as magnetic disks, optical disks, magneto-optical disks, semiconductor memories, etc., are mounted on the drive as needed, so that the computer program read therefrom is installed into the storage section as needed.
  • the method flow according to this embodiment can be implemented as a computer software program.
  • the present embodiment includes a computer program product comprising a computer program carried on a computer-readable storage medium, the computer program containing program code for performing the method shown in the flowchart.
  • the computer program may be downloaded and installed from a network via the communication portion, and/or installed from a removable medium.
  • the above-described functions defined in the system of the present embodiment are executed.
  • computer readable storage media may include, but are not limited to, non-volatile or volatile storage media such as random access memory (RAM), static RAM, dynamic RAM, read only memory (ROM), programmable ROM , Erasable Programmable ROM, Electrically Erasable Programmable ROM, Flash Memory, Secure Digital (SD) Card, etc.
  • RAM random access memory
  • ROM read only memory
  • programmable ROM Erasable Programmable ROM
  • Flash Memory Flash Memory
  • SD Secure Digital
  • This embodiment also provides a pan-tilt assembly, which includes a pan-tilt, a reinforcement device, and a control device.
  • the gimbal is used to stabilize the load
  • the load includes a first part and a second part that are connected to each other, and the first part is connected to the gimbal so that the gimbal can support the load.
  • the reinforcement device is used for selectively connecting the second part with the head via the reinforcement device.
  • the control device is any one of the first control device, the second control device, the third control device, and the fourth control device provided in this embodiment. For the relevant content of the control device, reference may be made to the foregoing embodiments, which will not be repeated here.
  • the pan/tilt may further include an installation portion, the mounting portion is used for mounting the first portion so as to connect the first portion with the pan/tilt, and the mounting portion is provided with a reinforcement device.
  • the stiffening means may at least be used to limit movement of the second part relative to the head in two opposite directions.
  • the payload may include an imaging device, the first portion may include a body of the imaging device, and the second portion may include a lens of the imaging device.
  • the lens of the imaging device may be detachably connected to the body of the imaging device.
  • the pan/tilt head may further include an imaging device mounting plate fixedly connected with the mounting portion.
  • the reinforcement device may include a main body, a top block, and a hoop.
  • the main body is used for detachable connection with the imaging device mounting plate, and the main body includes a support part.
  • the top block is used for supporting the lens, and the top block is arranged on the support part.
  • the hoop is movable along the axial direction of the lens, and the hoop is used to fix the main body and the lens.
  • the ferrule can surround at least a portion of the perimeter of the lens to secure the lens ferrule.
  • the cuff may include one or more of flexible straps, elastic straps, and plastic straps.
  • This embodiment also provides a pan/tilt, that is, the second pan/tilt provided by this embodiment.
  • the second pan/tilt provided by this embodiment is used to stabilize the load.
  • the pan/tilt has a first pan/tilt with different control parameters of the pan/tilt.
  • the gimbal includes the fifth control device provided in this embodiment. For the relevant content of the control device, reference may be made to the foregoing embodiments, which will not be repeated here.
  • the second type of gimbal provided in this embodiment has different stabilization modes, which can be adapted to different situations, for example, to different connections between loads and the gimbal, thereby improving user experience.
  • This embodiment also provides a movable platform, where the movable platform includes any of the above-mentioned pan-tilts and a support mechanism for supporting the pan-tilt.
  • the movable platform includes any of the above-mentioned pan-tilts and a support mechanism for supporting the pan-tilt.
  • the support mechanism may include a hand-held mechanism or a movement mechanism, the hand-held mechanism may include a handle.
  • the mobile mechanism may include the chassis of the unmanned vehicle, the body of the robot or the body of the unmanned aerial vehicle, that is, the movable platform may be a handheld gimbal, an unmanned vehicle, a robot, an unmanned vehicle, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)
  • Automatic Assembly (AREA)

Abstract

一种云台的控制方法、云台的控制装置、计算机可读存储介质、云台组件、云台以及可移动平台。云台用于增稳负载,负载包括相互连接的第一部分和第二部分,第一部分与云台连接以使得云台能够支撑负载,第二部分选择性地通过加固装置与云台连接,控制方法包括:检测第二部分与云台的连接情况;根据连接结果,控制云台进入第一增稳模式或第二增稳模式。其中,第一增稳模式对应的云台控制参数不同于第二增稳模式对应的云台控制参数。从而有效地使得云台的控制参数能够适配负载与云台的连接情况的不同,使得在负载与云台的不同的连接情况下,云台都能有适宜的增稳性能,提高了云台对负载姿态的控制效果,即提高了云台的增稳效果。

Description

云台的控制方法及装置、云台以及可移动平台 技术领域
本申请涉及云台技术领域,更具体地涉及一种云台的控制方法、云台的控制装置、计算机可读存储介质、云台组件、云台以及可移动平台。
背景技术
云台通常也被称为稳定器或增稳器,可以用来搭载负载,以实现对负载的姿态的控制。然而,在云台的使用过程中,可能存在一些使得云台的增稳效果不好的因素,若云台的增稳效果不好,将会影响云台对负载姿态的控制效果,且影响用户的使用体验。
发明内容
鉴于上述问题,提出了一种克服上述问题或者至少部分地解决上述问题的云台的控制方法、云台的控制装置、计算机可读存储介质、云台组件、云台以及可移动平台。
根据本申请的第一个方面,提供了一种云台的控制方法,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述方法包括:检测所述第二部分与所述云台的连接情况;根据所述连接结果,控制所述云台进入第一增稳模式或第二增稳模式;其中,所述第一增稳模式对应的云台控制参数不同于所述第二增稳模式对应的云台控制参数。
根据本申请的第二个方面,提供了一种云台的控制方法,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述 第二部分选择性地通过加固装置与所述云台连接,所述方法包括:判断所述第二部分是否通过所述加固装置被固定至所述云台;根据判断结果调节所述云台的云台控制参数。
根据本申请的第三个方面,提供了一种云台的控制方法,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述方法包括:判断所述第二部分是否通过所述加固装置被固定至所述云台;当判断结果指示所述第二部分未被固定至所述云台时,输出用于提示所述负载的第二部分未加固至所述云台的提示信息。
根据本申请的第四个方面,提供了一种云台的控制方法,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述方法包括:获取增稳模式选择信号;根据所述增稳模式选择信号控制所述云台进入第一增稳模式或第二增稳模式;其中,在所述第一增稳模式下,所述第二部分未通过所述加固装置与所述云台连接;在所述第二增稳模式下,所述第二部分通过所述加固装置与所述云台连接。
根据本申请的第五个方面,提供了一种云台的控制方法,所述云台用于增稳负载,所述云台具有云台控制参数不同的第一增稳模式以及第二增稳模式,所述方法包括:获取增稳模式选择信号;根据所述增稳模式选择信号控制所述云台进入所述第一增稳模式或所述第二增稳模式。
根据本申请的第六个方面,提供了一种云台的控制装置,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述控制装置包括:存储器,用于存储可执行指令;处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:检测所述第二部分与所述 云台的连接情况;根据所述连接结果,控制所述云台进入第一增稳模式或第二增稳模式;其中,所述第一增稳模式对应的云台控制参数不同于所述第二增稳模式对应的云台控制参数。
根据本申请的第七个方面,提供了一种云台的控制装置,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述控制装置包括:存储器,用于存储可执行指令;处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:判断所述第二部分是否通过所述加固装置被固定至所述云台;根据判断结果调节所述云台的云台控制参数。
根据本申请的第八个方面,提供了一种云台的控制装置,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述控制装置包括:存储器,用于存储可执行指令;处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:判断所述第二部分是否通过所述加固装置被固定至所述云台;当判断结果指示所述第二部分未被固定至所述云台时,输出用于提示所述负载的第二部分未加固至所述云台的提示信息。
根据本申请的第九个方面,提供了一种云台的控制装置,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述控制装置包括:存储器,用于存储可执行指令;处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:获取增稳模式选择信号;根据所述增稳模式选择信号控制所述云台进入第一增稳模式或第二增稳模式;其中,在所述第一增稳模式下,所述第二部分未通过所述加固装置与所述云台连接;在所述第二增稳模式下,所述第二部分通 过所述加固装置与所述云台连接。
根据本申请的第十个方面,提供了一种云台的控制装置,所述云台用于增稳负载,所述云台具有云台控制参数不同的第一增稳模式以及第二增稳模式,所述控制装置包括:存储器,用于存储可执行指令;处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:获取增稳模式选择信号;根据所述增稳模式选择信号控制所述云台进入所述第一增稳模式或所述第二增稳模式。
根据本申请的第十一个方面,提供了一种计算机可读存储介质,其存储有可执行指令,所述可执行指令在由一个或多个处理器执行时,可以使所述一个或多个处理器执行上述任一个方面所述的控制方法。
根据本申请的第十二个方面,提供了一种云台组件,所述云台组件包括:云台,用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载;加固装置,用于使所述第二部分选择性地通过所述加固装置与所述云台连接;如本申请的第六个方面至第九个方面中任一个方面所述的控制装置。
根据本申请的第十三个方面,提供了一种云台,所述云台用于增稳负载,所述云台具有云台控制参数不同的第一增稳模式以及第二增稳模式,所述云台包括:如本申请的第十个方面所述的控制装置。
根据本申请的第十四个方面,提供了一种可移动平台,所述可移动平台包括:如本申请第十二个方面或第十三个方面所述的云台以及用于支撑所述云台的支撑机构。
本申请通过检测负载的第二部分与云台的连接情况,并根据连接结果控制云台进入云台控制参数不同的第一增稳模式或第二增稳模式,或者直接控制云台的参数,有效地使得云台的控制参数能够适配负载与云台的连接情况的不同,使得在负载与云台的不同的连接情况下,云台都能有适宜的增稳性能,提高了云台对负载姿态的控制效果,即提高了云台的增稳效果。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。本申请内容中提供的仅仅是一个实施例,而不是本申请本身,本申请内容的效果仅仅是实施例的效果,而不是本申请所有的、全部的技术效果。
附图说明
通过下文中参照附图对本申请所作的描述,本申请的其它目的和优点将显而易见,并可帮助对本申请有全面的理解。其中:
图1是根据本申请的一个实施例的云台的控制原理图;
图2是根据本申请的一个实施例的可移动平台的立体图;
图3是根据本申请的一个实施例的可移动平台的电学模块示意图;
图4是根据本申请的一个实施例的可移动平台的加固装置的结构示意图;
图5是根据本申请的一个实施例的可移动平台的侧视图;
图6是根据本申请的一个实施例的可移动平台的剖视图;
图7是根据本申请的第一个实施例的云台的控制方法的示意图;
图8是本申请的一个实施例的云台在负载的第二部分未被连接至云台时的机械共振信息示意图;
图9是本申请的一个实施例的云台在负载的第二部分被连接至云台时的机械共振信息示意图;
图10是根据本申请的第二个实施例的云台的控制方法的示意图;
图11是根据本申请的第三个实施例的云台的控制方法的示意图;
图12是根据本申请的第四个实施例的云台的控制方法的示意图;
图13是根据本申请的第五个实施例的云台的控制方法的示意图。
应该注意的是,附图并未按比例绘制,并且出于说明目的,在整个附图中类似结构或功能的元素通常用类似的附图标记来表示。还应该注意的是,附图只是为了便于描述优选实施例,而不是本申请本身。附图没有示出所描述的实施例的每个方面,并且不限制本申请的范围。
图中,1为云台;11为调节组件;111为调节臂;12为运动检测模块;13为控制中心;14为成像装置安装板;15为加固装置;150为紧固件;151为主体;152为顶块;1521为第一端;1522为第二端;153为抱箍件;1531为魔术贴;1532为连接环;154为支撑部;155为安装部;1551为通槽;156为导轨;157为旋钮;158为导槽;159为开口;2为成像装置;21为机身;22为镜头;23为支撑面;18为操控手柄;19为脚架;120为电机;200为支撑机构。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括但不限于一个或者更多个所述特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请。为了简化本申请的公开,下文中对特定例子的部件和方法进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。
本实施例,首先提供了一种云台的控制方法,云台用于增稳负载。 负载包括相互连接的第一部分和第二部分,第一部分与云台连接以使得云台能够支撑负载,第二部分选择性地通过加固装置与云台连接。
加固装置可以至少用于限制第二部分相对于云台在两个相反方向上的运动,从而提高将第二部分固定到云台的效果。例如,加固装置可以用于限制第二部分相对于云台在第一方向上以及第二方向上的移动,其中第一方向与第二方向的夹角为180度,又例如,加固装置可以用于限制第二部分相对于云台在第一方向上、第二方向上以及第三方向上的移动,其中第一方向与第二方向的夹角为180度,第三方向与第一方向的夹角为任意角,第三方向与第二方向的夹角为任意角等。
图1是根据本申请的一个实施例的云台的控制原理图,如图1所示,云台在调整负载的姿态时,是通过惯性测量元件检测负载的当前姿态,并将负载的当前姿态并和目标姿态做比较,求出控制偏差,控制系统根据控制偏差控制电机,以调整负载的姿态,最终减小控制偏差,保证负载的实际姿态和目标姿态偏差尽量小。其中,当负载为成像装置时,可以使得成像装置稳定成像。
在一些实施例中,负载可以为成像装置。例如可以为照相机、摄像机等,具体地,可以为单反相机、微单相机等,则第一部分可以为成像装置的机身,第二部分可以为成像装置的镜头。成像装置的镜头与成像装置的机身可以可拆卸连接。
在另一些实施例中,负载可以为其他具有可以产生相对震动的第一部分和第二部分的装置。可以理解地,第一部分和第二部分的相对震动可以是由于第一部分和第二部分的连接关系产生的,也可以是第一部分和第二部分的形状等产生的。例如,第一部分和第二部分的相对震动可以是由于第一部分和第二部分是可拆卸连接而产生的,第一部分和第二部分的相对震动可以是由于第二部分凸出于第一部分产生的。例如,负载可以为麦克风,麦克包括可拆卸的手持部和语音接收部,则第一部分可以为手持部,第二部分可以为语音接收部。又例如,负载可以为激光测距装置,激光测距装置包括机身以及凸出于机身的激光发射器,则第一部分可以为激光测距装置的机身,第二部分 可以为激光发射器。
图2是根据本申请的一个实施例的可移动平台的立体图,可移动平台包括云台1以及用于支撑云台1的支撑机构。
以云台增稳的负载为成像装置为例。请参阅图2,云台1用于承载成像装置2,保持成像装置2的平衡。通过移动云台1,可以实现对成像装置2的移动,用于对成像装置2起到增稳作用或拍摄角度的调节。例如,该云台1在移动成像装置2的过程中,可以减小消除成像装置2发生的抖动,以保证成像装置2的拍摄效果。
图3是根据本申请的一个实施例的可移动平台的电学模块示意图,请同时参阅图3,本实施方式的可移动平台的云台1包括调节组件11、运动检测模块12及控制中心13。
成像装置2安装于调节组件11上。调节组件11用于调节安装于成像装置2的姿态。调节组件11包括多个电机及多个维度的调节臂111。电机驱动调节臂111转动或移动,以调节成像装置2的姿态。
图2以及图5中的支撑机构以手持机构为例,也即,可移动平台可以包括手持云台。具体地,调节组件11远离成像装置2的一端设有操控手柄18,进一步的,可以设有脚架19。操控手柄18上设有操作装置,操作装置可以为操作按键、操作杆或操控界面等,以便于控制云台1或负载,例如操控云台的电机的开启、关闭、转动等。其中,当负载为成像装置2时,还可以用来操控成像装置2的开启、关闭以及拍摄等,从而方便操作人员在把持过程中操作。脚架19用于支撑整个手持云台。该手持云台也可以静置使用,同样可以减小成像装置2的振动,对成像装置2拍摄起到防抖作用。
以支撑机构为操控手柄18为例,操控手柄18的形状并不限于图2以及图5所示的柱状,也就是说,手柄不仅可以为圆柱状、棱柱状等,还可以为圆台状、棱锥状、球状等,甚至是上述各种形状的组合或异形形状等,本实施例对操控手柄18的具体形状并不加以限定。这种操控手柄18使得云台1可以直接被用户手持操作,应用场景广泛,便于用户操作,且节省成本。
在另一些实施例中,支撑机构还可以包括移动机构。具体地,移 动机构可以包括但不限于无人车的底盘、机器人的机身或无人机的机身(图中未示出)。也即,可移动平台可以包括诸如无人车、无人机或机器人。
以支撑机构为无人车的底盘为例,底盘的移动方式可以是直接利用轮子进行移动,也可以通过履带等其他机构移动。其中,当无人车直接利用轮子进行移动时,无人车的轮子的数量可以为一个或多个,本实施例对此并不加以限定。
以支撑机构为机器人的机身为例,云台1不仅可以与机器人的机身的机器头部连接,也可以与器人的机身的机器手臂、机器背部等其他部位连接,本实施例对此并不加以限定。
以支撑机构为无人机的机身为例。可以理解地,无人机通常也被称为UAV(Unmanned Aerial Vehicle,无人飞行器),其中,无人机可以包括固定翼无人机、旋翼无人机、伞翼无人机等各种类型。可以理解地,云台1不仅可以与无人机的底部连接,也可以与无人机的顶部、侧部等位置连接,本实施例对此并不加以限制。
运动检测模块12用于检测成像装置2的运动参数。运动检测模块12可以为姿态传感器,可以包含三轴陀螺仪、三轴加速度计,三轴电子罗盘等运动传感器。运动参数可以包括倾斜角度、运动加速度等。
控制中心13与运动检测模块12电信号连接,接收运动检测模块12发送的运动参数,控制中心13与调节组件11电信号连接,控制中心13能够根据运动参数控制调节组件11旋转以调节成像装置2的姿态。控制中心13控制调节组件11的各个驱动电机,以达到控制调节组件11各个调节臂111的目的,从而实现对成像装置2姿态的调节,避免成像装置2姿态偏移,提高成像装置2的拍摄效果。
具体在本实施方式中,本实施方式的云台1还包括成像装置安装板14及加固装置15。成像装置安装板14用于固定安装成像装置2。成像装置2通过成像装置安装板14与调节组件11连接。通常,成像装置2包括相互连接的机身21与镜头。机身21安装固定于成像装置安装板14上。成像装置安装板14可以为快装板,以方便成像装置快 速固定于云台的调节组件11上。机身21固定设于成像装置安装板14的一端;镜头对应位于成像装置安装板14的另一端。
加固装置15用于支撑成像装置的镜头。镜头22可以受外力支撑作用。由于需要对成像装置2的镜头22的光学镜片进行调焦,镜头22的外侧形成有可以与加固装置15支撑接触的支撑面23。当加固装置15与镜头22的支撑面23相支持接触的时候,加固装置15不影响镜头22的转动调焦。
加固装置15可拆卸连接于成像装置安装板14上。加固装置15对应镜头22位置设置,加固装置15设置于成像装置安装板14远离机身21的一端。
图4是根据本申请的一个实施例的可移动平台的加固装置15的结构示意图,请同时参阅图4,加固装置15包括主体151、顶块152及抱箍件153。
主体151用于与成像装置安装板14可拆卸连接。主体151包括支撑部154及安装部155。安装部155用于安装第一部分,且加固装置15可以设于安装部上。
支撑部154与安装部155大致垂直设置。支撑部154用于支撑顶块152、抱箍件153等。顶块152安装于支撑部154上,用于顶持支撑镜头22。抱箍件153沿镜头22的轴向可移动。抱箍件153用于将主体151及镜头22抱箍固定。顶块152与镜头22的着力点位于镜头22的下方,抱箍件153与镜头22的着力点位于镜头22的上方。因此,上、下两个方向的作用力,有利于将镜头22在上、下方向保持稳定固定。并且,抱箍件153与镜头22的着力点为多个,进一步增加了镜头22的稳定程度,从而避免镜头22发生抖动等,提高成像装置2的成像质量。并且,抱箍件153沿镜头22的轴向移动,可调节抱箍件153与镜头22的支撑面23对应接触,避免抱箍件153的抱箍作用影响镜头22的正常使用。
具体在本实施方式中,安装部155用于与成像装置安装板14固定连接,以将支撑部154安装于成像装置安装板14上。可以理解,支撑部154与安装部155可以为两个独立分体结构,也可以为一体结 构。
支撑部154可以近似平行于成像装置安装板14设置,安装部155可以近似垂直于成像装置安装板14设置。成像装置安装板14开设有螺孔。安装部155可以通过紧固件150螺纹连接于成像装置安装板14的螺孔内。紧固件150可以为螺丝。
并且,安装部155设有调节位。安装部155通过调节位调节与成像装置安装板14的安装位置。调节位可以为多个成阵列排布的孔位,通过调节安装紧固件的孔位来实现调节安装部155与成像装置安装板14的安装位置,即调节支撑部154的高度。
具体在本实施方式中,调节位可以为开设于安装部155的通槽1551。该通槽1551沿安装部155的表面,朝向支撑部154延伸。紧固件150穿过通槽1551将安装部155紧固安装于成像装置安装板14上。调节紧固件150于通槽1551内的安装位置,从而可以调节支撑部154距成像装置安装板14的距离。因此,通过安装部155的调节位可以调节安装部155安装于成像装置安装板14的位置,从而可以调节支撑部154的高度,使支撑部154能够沿靠近或远离镜头22的方向移动。当对于不同口径大小的镜头22,可以通过调节支撑部154与镜头22之间的距离,使顶块152抵持于镜头22的支撑面23上。
并且,安装部155与支撑部154之间大约呈L形设置。则紧固件150可以分别从通槽1551的两侧穿过,并分别与成像装置安装板14紧固固定。因此,支撑部154可以朝向成像装置机身21延伸,也可以背向成像装置机身21延伸。请参阅图2,该支撑部154朝向成像装置机身21延伸设置。
图5是根据本申请的一个实施例的可移动平台的侧视图,请同时参阅图5,支撑部154也可以背向成像装置机身21延伸设置。具体根据镜头22的长度,选择支撑部154的安装方向。当镜头22的长度较大的时候,镜头22的长度大于成像装置安装板14的长度,则支撑部154背向成像装置机身21、朝向镜头22外侧延伸,以便于保持镜头22的平衡。当镜头22的长度较小的时候,镜头22的长度小于成像装置安装板14的长度,则支撑部154朝向成像装置机身21延伸, 以实现对镜头22的支撑。
请同时参阅图4,支撑部154设有导轨156。导轨156沿镜头22的轴向延伸。顶块152可移动设于导轨156上。顶块152可以沿导轨156的方向移动,并且通过安装部155的通槽1551,可以间接使顶块152能够沿垂直于导轨156的方向上移动。因此,主体151的支撑部154与安装部155可以实现顶块152在两个垂直维度方向上的位置调整。
对于不同长度、不同型号的镜头22,顶块152与镜头22之间的顶持位置不同。例如,不同长度的镜头22,其重心位置不同,该顶块152的位置可对应设于镜头22的重心位置附近,以更稳定地支撑镜头22。对于不同型号的镜头22,该镜头22的支撑面23在镜头22的轴向上的位置不同。因此,当顶块152需要相对于不同镜头22调节相对位置的时候,顶块152沿导轨156移动,即可调节顶块152在镜头22轴向上的位置。
在其他实施方式中,顶块152也可以直接固定设置于支撑部上。顶块152也可以从镜头22的下方对镜头22向上进行支撑,为镜头22提供至少一着力点,同样,顶块152与抱箍件23相互配合,以提高镜头22的稳定性。
具体在本实施方式中,顶块152包括第一端1521及第二端1522。第一端1521的宽度小于第二端1522的宽度。在支撑部154所在的平面内,宽度方向为垂直于导轨156的方向。
第一端1521可移动连接于导轨156上。第二端1522用于支撑镜头22。第二端1522用于与镜头22抵接的表面设有缓冲层1523。缓冲层1523可以增大顶块152与镜头22之间的摩擦力,保证顶块152能够稳定支撑镜头22。并且,缓冲层1523的硬度较软,避免损坏镜头22。
加固装置15还包括驱动件。驱动件与顶块152驱动连接,以驱动顶块152沿导轨156移动。驱动件可以为电动驱动,也可以为手动机械驱动。
驱动件可以直接驱动顶块152移动。例如伸缩缸、伸缩杆等。驱 动件也可以间接驱动顶块152移动。具体在本实施方式中,导轨156为丝杆,顶块152螺纹连接于丝杆上,转动丝杆,顶块152沿丝杆移动。具体地,驱动件为丝杆一端设置的旋钮157,旋钮157与丝杆驱动连接。旋钮157转动驱动丝杆转动。
主体151的支撑部154还开设有导槽158。导槽158沿镜头22的轴向延伸。导轨156收容于导槽158内。顶块152的第一端1521限位于导槽158内。当顶块152沿导轨156移动的时候,导槽可以对顶块152的运动轨迹起到进一步限位的作用。
抱箍件153沿导轨156的延伸方向也可移动。抱箍件153用于将主体151及镜头22抱箍固定。顶块152与镜头22的着力点位于镜头22的下方,抱箍件153与镜头22的着力点位于镜头22的上方。因此,上、下两个方向的作用力,有利于将镜头22在上、下方向保持稳定固定。并且,抱箍件153与镜头22的着力点为多个,进一步增加了镜头22的稳定程度,从而避免镜头22发生抖动等,提高成像装置2的成像质量。
抱箍件153与镜头22的抱箍位置为镜头22的支撑面23。因此,抱箍件153沿导轨156方向移动,以调节抱箍件153与镜头22的支撑面23对应连接。
抱箍件153可以连接于主体151上,也可以分离于主体151存在。只要抱箍件153能够沿导轨156的延伸方向移动,将主体151与镜头22抱箍固定即可。
具体在本实施方式,抱箍件153连接于主体151上。主体151开设有开口159。开口159沿镜头22的轴向延伸,抱箍件153的两端分别穿过开口159以连接于主体151上。抱箍件153可沿开口159的延伸方向移动。当顶块152沿导轨156移动的时候,如果抱箍件153位于顶块152的运动前方,则顶块152会推动抱箍件153移动,可以实现抱箍件153与顶块152的同步移动。
并且,开口159可以为一个或两个。具体在本实施方式中,开口159为两个,两个开口159相对设于导轨156的两侧,保证抱箍件153能够与主体151保持稳定连接。
或者,抱箍件153还可以通过滑槽等可滑动设于支撑部154上,滑槽可以为凹槽,滑槽沿导轨156的延伸方向延伸。
具体在本实施方式中,抱箍件153可围绕镜头22一周,将主体151与镜头22绑定连接。抱箍件153包括柔性绑带、弹性绑带、塑胶带中的一种或多种。该抱箍件153与镜头22之间的受力支撑面23为一闭合环形,保证抱箍件153能够稳定绑定镜头22。
或者,在其他实施方式中,抱箍件153能够至少围绕镜头22部分周长,以将镜头22抱箍固定。例如,抱箍件153可以为两相对设置的刚性臂。两刚性臂可以相对夹持固定镜头22的两侧。两刚性臂与顶块152配合,可以形成三角形的受力点分布,使镜头22保持稳定。则刚性臂也可以为弧形形状,弧形的刚性臂可以更好的与镜头22的形状相适配,使刚性臂与镜头22形成面接触或线接触,以更稳定的抱箍固定镜头22。
并且,抱箍件153与镜头22上支撑面23相适配,则保证抱箍件153与支撑面23能够完全接触,使镜头22保持稳定。
并且,抱箍件153的宽度要小于等于支撑面23的宽度。抱箍件153的宽度为抱箍件153在沿镜头22轴向上的尺寸。抱箍件153避免与支撑面23的外部区域接触,影响镜头的转动调焦。
抱箍件153设有锁定部。锁定部使抱箍件153的两端锁定连接。
具体在本实施方式中,锁定部包括设于抱箍件153一端的魔术贴1531及设于抱箍件153另一端的连接环1532,魔术贴1531穿过连接环1532,调节抱箍件153形成的孔径大小。
在其他实施方式中,锁定部还可以为锁扣或卡扣等,当抱箍件153能够完全贴紧镜头22的外侧面的时候,锁定部可以将抱箍件153的两端锁定紧固,以使抱箍件153能够稳定绑定在镜头22的外侧。
在其他实施方式中,抱箍件153也可以与顶块152连接。顶块152移动可以带动抱箍件153移动。则当顶块152运动到镜头22的支撑面23的时候,则抱箍件153也随之运动到位,可以对镜头22进行紧固固定。
其中,抱箍件153可以分为两部分,分别固定在顶块152的两侧。 抱箍件153可以通过螺栓或焊接等方式,固定设于顶块152的两侧。上述加固装置15对镜头22进行支撑,通过顶块152及抱箍件153实现对镜头22的多点支撑,并且,当顶块152及抱箍件153与镜头22进行抱箍接触,不会影响镜头22的转动调焦。因此,在使用上述加固装置15的云台1在运动过程中,镜头22能够稳定固定在成像装置安装板14上,镜头22不会发生晃动,从而提高成像装置的拍摄效果。
其中,当抱箍件153为柔性绑带、弹性绑带等时,顶块152上可以设有开口,使得抱箍件153可以穿过顶块152,而与顶块152形成随动的效果。
其中,调节组件11可以包括多个调节臂111以及多个电机。每个调节臂111用于使负载绕一个轴旋转,例如,调节组件11包括一个调节臂111、两个调节臂111、三个调节臂111或更多个调节臂111,相应地,调节组件11可以允许负载绕一个、两个、三个或更多个轴旋转,用于旋转的轴可以彼此正交,也可以不是正交。在一些实施例中,如图6所示,调节组件11通过电机120可以控制负载的姿态,包括控制负载的俯仰角、横滚角以及偏航角中的一个或多个,相应地,负载可以绕俯仰轴P、横滚轴R以及偏航轴Y中的一个或多个旋转。
图6是根据本申请的一个实施例的云台的剖视图,以图6所示的手持云台为例,调节臂111可以为3个,如第一调节臂、第二调节臂以及第三调节臂。其中,第一调节臂与支撑机构200连接,并且第一调节臂可以相对支撑机构200转动,以使得负载的偏航角发生变化,即第一调节臂相对支撑机构200转动时,可以使得负载绕偏航轴Y旋转。第二调节臂与第一调节臂连接,并且第二调节臂可以相对支撑机构200转动,以使得负载的横滚角发生变化,即第二调节臂相对支撑机构200转动时,可以使得负载绕横滚轴R旋转。第三调节臂与第二调节臂连接,并且第三调节臂可以相对支撑机构200转动,以使得负载的俯仰角发生变化,即第三调节臂相对支撑机构200转动时,可以使得负载绕俯仰轴P旋转。
其中,电机120包括转子部分以及定子部分,可以理解地,定子部分和转子部分可以相对转动。其中,图6中仅仅示出了一个电机 120,该电机120的转子部分与定子部分中的一个与第一调节臂连接,电机120的转子部分与定子部分中的另一个与支撑机构200连接,电机120用于驱动第一调节臂以及负载绕预设轴线转动,例如,预设轴线可以包括偏航轴线Y。也就是说,在一些实施例中,可以是定子部分和第一调节臂连接,转子部分和支撑机构200连接,在另一些实施例中,可以是转子部分和第一调节臂连接,定子部分和支撑机构200连接。
可以理解地,调节组件11除了包括连接第一调节臂和支撑机构200的电机120外,还可以包括其他的电机,例如连接两个调节臂111的电机以及连接调节臂111和成像装置安装板的电机等任何与云台1的增稳性能有关的电机。
图7是根据本申请的第一个实施例的云台的控制方法的示意图,请参阅图7,本实施例的控制方法包括:
S702,检测第二部分与云台的连接情况。
S703,根据连接结果,控制云台进入第一增稳模式或第二增稳模式。其中,第一增稳模式对应的云台控制参数不同于第二增稳模式对应的云台控制参数。
将负载连接至云台时,只将云台的第一部分与第二部分中的第一部分与云台连接的情况,相比于将第一部分和第二部分都与云台连接的情况,会导致云台具有不同的动力学模型参数和频率响应特性,此时,如果采用统一的云台控制参数,并不能使得云台的控制参数能够适配负载与云台的连接情况的不同,从而降低了用户的使用体验。而本实施例通过检测第二部分与云台的连接情况,并根据连接结果来控制云台进入第一增稳模式或第二增稳模式,使得云台的控制参数能够适配负载与云台的连接情况的不同,使得在负载与云台的不同的连接情况下,云台都能有适宜的增稳性能,提高了云台对负载姿态的控制效果,即提高了云台的增稳效果。并且,第二部分与云台的连接情况可以通过云台自动识别,不需要用户去识别,提升了用户体验。
检测第二部分与云台的连接情况可以包括:获取云台的机械共振信息,根据机械共振信息检测第二部分与云台的连接情况。具体地, 机械共振信息可以由IMU(Inertial Measurement Unit,惯性测量单元)测量获得,例如,通过惯性测量单元的输出可以检测出云台的模型参数和频率响应特性,例如云台的角速度的变化情况,从而根据云台的模型参数和频率响应特性得到云台的机械共振信息。
由于,只将云台的第一部分与第二部分中的第一部分与云台连接的情况,相比于将第一部分和第二部分都与云台连接的情况,云台会产生额外的机械共振,当第一部分与第二部分可拆卸连接或第二部分凸出于第一部分时,这种额外的机械共振会更加明显。例如,当负载为成像装置,第一部分为成像装置的机身,第二部分为相对于机身可拆卸的镜头、长焦镜头、大镜头等时,这种机械共振会更加明显。因此,根据机械共振信息能够准确地检测出第二部分与云台的连接情况。
获取云台的机械共振信息可以包括:获取激励信号,根据激励信号指示的输出力矩控制云台的电机转动,基于电机的转动确定云台的机械共振信息。
由于,电机在转动的情况下,云台才会产生明显的共振,因此,据激励信号指示的输出力矩控制云台的电机转动,能够使得机械共振信息便于被惯性测量单元获得,从而便于检测第二部分与云台的连接情况。
可以理解地,调节组件可以包括一个调节臂、两个调节臂、三个调节臂或更多个调节臂,相应地,云台可以允许负载绕一个、两个、三个或更多个轴旋转,用于旋转的轴可以彼此正交,也可以不是正交。也就是说,云台可以为单轴云台、双轴云台、三轴云台或其他轴数的多轴云台。相应地,调节组件可以包括与调节臂的数量相等的一个电机、两个电机、三个电机或更多个电机。其中,所有电机中有一个电机位于一个调节臂与支撑机构之间,也即,该电机的转子部分与定子部分中的一个与支撑机构直接连接,另一个与该调节臂直接连接,而其他的电机可以分别连接两个调节臂或连接一个调节臂以及负载安装板。其中,根据激励信号指示的输出力矩控制云台的电机转动时,被控制为输出激励信号指示的输出力矩的电机可以为云台任一个电 机,而其他电机可以也输出激励信号指示的输出力矩。
以可以使负载绕俯仰轴、横滚轴以及偏航轴旋转的三轴云台为例,调节组件可以包括第一调节臂、第二调节臂以及第三调节臂。其中,第一调节臂可以与支撑机构连接,并且第一调节臂可以相对支撑机构转动,以使得负载的偏航角发生变化,即第一调节臂相对支撑机构转动时,可以使得负载绕偏航轴旋转。第二调节臂与第一调节臂连接,并且第二调节臂可以相对支撑机构转动,以使得负载的横滚角发生变化,即第二调节臂相对支撑机构转动时,可以使得负载绕横滚轴旋转。第三调节臂与第二调节臂连接,并且第三调节臂可以相对支撑机构转动,以使得负载的俯仰角发生变化,即第三调节臂相对支撑机构转动时,可以使得负载绕俯仰轴旋转。相应地,调节组件还可以包括第一电机、第二电机以及第三电机。其中,第一电机可以连接第一调节臂与支撑机构,第一电机用于驱动负载绕偏航轴旋转;第二电机可以连接第一调节臂以及第二调节臂,第二电机用于驱动负载绕横滚轴旋转;第三电机可以连接第二调节臂以及第三调节臂,第三电机用于驱动负载绕俯仰轴旋转。
可以理解地,第三调节臂远离第三电机的一端可以连接负载安装板。并且,在一些实施例中,调节组件的调节臂的数量与电机的数量可以相等,则第三调节臂与负载安装板间可以不通过电机连接,例如通过螺杆、卡扣等部件连接。在另一些实施例中,调节组件的调节臂的数量与电机的数量可以不相等,则调节组件可以包括第四电机,第三调节臂与负载安装板间可以通过第四电机连接。
其中,根据激励信号指示的输出力矩控制云台的电机转动时,被控制为输出激励信号指示的输出力矩的电机可以为第一电机、第二电机或第三电机等调节组件的任何电机。例如,当被控制为输出激励信号指示的输出力矩的电机为第一电机时,第二电机以及第三电机也可以输出激励信号指示的输出力矩。可以理解地,本实施例对第一调节臂、第二调节臂以及第三调节臂与俯仰轴、横滚轴以及偏航轴的对应关系并不加以限制,例如,也可以为第一调节臂使得负载绕偏航轴旋转,第二调节臂使得负载绕俯仰轴旋转,第三调节臂使得负载绕横滚 轴旋转等。
激励信号可以为云台满足预设的自整定条件时用于触发云台进行自整定操作得到,自整定操作用于适配负载与云台控制参数。
自整定操作是指通过系统辨识的方法对云台和负载组合这一被控对象的模型参数进行辨识,根据辨识得到的模型调整云台控制参数,从而使得云台适配不同负载时都能达到很好的控制性能。
自整定操作时,以云台的控制参数进行阶跃扰动实验,根据云台的运行状态计算出整定参数值。其中,本实施例对于对云台的控制参数进行自整定操作的具体实现方式不做限定,例如,可以根据具体的控制参数来设置相应的自整定实现方式。下面以云台上电机的力度值作为云台的控制参数为例,提供了一种对电机的力度值进行自整定操作的实现过程,包括如下步骤:
在预定时间段内,给定目标力矩(该目标力矩可以为上述根据激励信号指示的输出力矩),使电机上电转动,并测得多个频率点下电机的角速度。作为示例,预设时间段可以为5-6秒;在预设时间段内,电机的频率逐渐增大,例如由10Hz增大到100Hz。可以通过陀螺仪采集该频率范围内的多个频率点下的电机的角速度。
而后,对各频率点下的角速度进行微分,以得到在各频率点下的角加速度。接着,根据目标力矩与角加速度的比值求得转动惯量,转动惯量与负载的重量相关。
最后,在一些实施例中,可以将电机的力度调整为与转动惯量相对应的第一预设力度或第二预设力度。由于转动惯量与负载的重量相关,因而与转动惯量相对应的第一预设力度以及第二预设力度均与负载的重量相匹配。由此,使校准后电机的力度适应于当前负载的重量。可以理解地,第一预设力度、第二预设力度可以分别与第一增稳模式、第二增稳模式对应。例如,第一预设力度与第一增稳模式对应,第二预设力度与第二增稳模式对应。则在控制云台进入第一增稳模式时,调整电机的力度为第一预设力度,在控制云台进入第二增稳模式时,调整电机的力度为第二预设力度。在另一些实施例中,可以将电机的力度调整为与转动惯量相对应的预设力度范围内的一个力度值,以使 得在第二部分与云台的连接情况不同时,可以根据该连接情况来调节电机的力度值。
进一步的,在通过上述方式对电机进行校准的过程中,还可以设置滤波器进行滤波,以提高云台的增稳性能。其中,滤波器的参数可以包括衰减系数、截止频率,通过调整衰减系数、截止频率来实现电机工作过程中的频点滤波。相应地,在一些实施例中,可以将电机的滤波器参数调整为与转动惯量相对应的第一预设滤波器参数或第二预设滤波器参数。由于转动惯量与负载的重量相关,因而与转动惯量相对应的第一预设滤波器参数以及第二预设滤波器参数均与负载的重量相匹配。由此,使校准后电机的滤波器参数适应于当前负载的重量。可以理解地,第一预设滤波器、第二预设滤波器参数可以分别与第一增稳模式、第二增稳模式对应。例如,第一预设滤波器参数与第一增稳模式对应,第二预设滤波器参数与第二增稳模式对应。则在控制云台进入第一增稳模式时,调整电机的滤波器参数为第一预设滤波器参数,在控制云台进入第二增稳模式时,调整电机的滤波器参数为第二预设滤波器参数。在另一些实施例中,可以将电机的滤波器参数调整为与转动惯量相对应的预设滤波器参数范围内的一个滤波器参数,以使得在第二部分与云台的连接情况不同时,可以根据该连接情况来调节电机的滤波器参数。
另外,需要说明的是,对负载位姿的响应速度的调节可以通过电机强度值的调节来实现,调整电机强度值可以影响位置控制的快慢程度而减少云台的姿态误差。其中,电机强度值与负载的惯量相关,则对应的整定策略是:按照负载的惯量进行映射,惯量越大,对应的电机强度值越小。在一些实施例中,可以将电机的强度调整为与转动惯量相对应的第一预设强度或第二预设强度。由于转动惯量与负载的重量相关,因而与转动惯量相对应的第一预设强度以及第二预设强度均与负载的重量相匹配。由此,使校准后电机的强度适应于当前负载的重量。可以理解地,第一预设强度、第二预设强度可以分别与第一增稳模式、第二增稳模式对应。例如,第一预设强度与第一增稳模式对应,第二预设强度与第二增稳模式对应。则在控制云台进入第一增稳 模式时,调整电机的强度为第一预设强度,在控制云台进入第二增稳模式时,调整电机的强度为第二预设强度。在另一些实施例中,可以将电机的强度调整为与转动惯量相对应的预设强度范围内的一个强度值,以使得在第二部分与云台的连接情况不同时,可以根据该连接情况来调节电机的强度值。
通过对云台的控制参数进行自整定操作,可以使得云台的控制参数与云台上的负载相匹配,进而可以保证云台以及设置于云台上的负载的作业质量和效果。
在一些实施例中,自整定操作可以为基于用户输入的指令触发,指令用于选择云台进入第一增稳模式与第二增稳模式中指示第二部分固定连接至云台的增稳模式。可以理解地,当第一增稳模式为指示第二部分固定连接至云台的增稳模式时,指令用于选择云台进入第一增稳模式,当第二增稳模式为指示第二部分固定连接至云台的增稳模式时,指令用于选择云台进入第二增稳模式。
也就是说,当用户输入用于选择云台进入第一增稳模式与第二增稳模式中指示第二部分固定连接至云台的增稳模式时,会触发云台进入自整定操作,从而产生指示出输出力矩的激励信号;然后,云台根据激励信号指示的输出力矩控制云台的电机转动,并基于电机的转动确定云台的机械共振信息;再根据机械共振信息检测第二部分与云台的连接情况;最后根据连接结果控制云台进入第一增稳模式或第二增稳模式。
用户输入的指令虽然用于选择云台进入第一增稳模式与第二增稳模式中指示第二部分固定连接至云台的增稳模式,但并不表示此时第二部分已经固定连接至云台。因此,本实施例的云台在接收到该指令时,并不直接控制云台进入第一增稳模式与第二增稳模式中指示第二部分固定连接至云台的增稳模式,而是检测第二部分与云台的连接情况,并根据连接结果控制云台进入第一增稳模式或第二增稳模式。从而避免在用户忘记使第二部分固定连接至云台时以及用户对第二部分是否固定连接至云台的情况掌握不清楚或掌握错误时,云台直接被控制成进入第一增稳模式与第二增稳模式中指示第二部分固定连 接至云台的增稳模式的情况发生,进而有效地使得云台的控制参数能够适配负载与云台的连接情况的不同,并提升用户的使用体验。
在触发云台进行自整定操作前,可以检测云台是否满足预设的自整定条件,在云台满足预设的自整定条件时,可以排除云台受到影响自整定操作的外界干扰,也可以使得云台在一基准条件下完成自整定操作。其中,本实施例中的自整定条件是指在对云台进行自整定操作之前,云台所需要满足的状态条件,具体的,自整定条件可以包括:云台上电机的电机轴角度处于预设角度范围(例如,云台上任一个电机的电机轴角度处于预设角度范围);云台的支撑机构的轴线与竖直方向之间的夹角小于预设的角度阈值。
其中,为了便于描述,在云台上电机的电机轴角度处于预设角度范围时,可以称为此时的云台处于回中状态,在云台的支撑机构的轴线与竖直方向之间的夹角小于预设的角度阈值时,则可以称为此时的云台的支撑机构保持在水平状态;也即,在云台处于回中状态,且云台的支撑机构保持在水平状态时,则认为云台的状态满足控制自整定条件。具体的判断依据如下:
以三轴云台为例,电机测量得到的云台的旋转角度记为angle i,其中i=x,y,z,预先配置有角度阈值angle threshold_i,其中i=x,y,z。根据云台的姿态和电机测量得到的旋转角度可以计算得到云台支撑机构的姿态,从而可以计算得到云台的支撑机构和竖直方向的夹角,该夹角主要是由支撑机构的中轴线与竖直方向所构成的夹角,记为支撑机构倾角base_tilt,预先配置有角度阈值base_tilt threshold。如果在检测的过程中,对于i=x,y,z,均有|angle i|<angle threshold_i,并且|base_tilt|<base_tilt threshold,那么则可以确定云台的支撑机构基本处于水平状态,且云台处于回中状态,即说明此时云台的状态满足自整定条件。
其中,预设角度范围是与预设0位置相对应的角度范围,本实施例对于其具体的数值范围不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,例如:预设角度范围可以为-5°至5°、-3°至3°或者-1°至1°等等。在云台上的电机的电机轴角度 为上述预设角度范围中的任意一个值(包括边界值)时,则可以确定云台上的电机轴角度处于预设角度范围。
另外,云台的支撑机构的轴线是指云台的支撑机构可以绕着旋转的一条直线(例如,与支撑机构的纵截面平行的一条直线),也叫中轴线,本实施例中云台的支撑机构的轴线与竖直方向之间的夹角小于预设的角度阈值,即云台基本处于水平状态。具体的,本实施例中的角度阈值是预先设置的用于识别云台是否处于水平状态的阈值信息,本实施例对于其具体的数值范围不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,例如:角度阈值0.5°、0.3°或者0.1°等等;具体的,在云台的支撑机构的轴线与竖直方向之间的夹角小于上述的角度阈值时,则可以确定云台基本处于水平状态,在云台的支撑机构的轴线与竖直方向之间的夹角大于或等于上述的角度阈值时,则可以确定云台未处于水平状态。
需要注意的是,在检测云台是否满足预设的自整定条件时,需要同时对云台上电机的电机轴角度和云台的支撑机构的轴线与竖直方向之间的夹角进行检测,只有在云台上电机的电机轴角度处于预设角度范围,同时云台的支撑机构的轴线与竖直方向之间的夹角小于预设的角度阈值时,才确定云台满足了预设的自整定条件,其他情况均为云台不满足自整定条件的情况。
在云台未满足自整定条件时,可以生成与云台相对应的状态提醒信息,以提示用户将云台调整为满足预设的自整定条件。该状态提醒信息中可以包括有用于标识云台当前未满足自整定条件的标识信息,通过所生成的状态提醒信息可以提醒用户将云台调整为满足预设的自整定条件,以使得云台能够进行自整定的操作。具体应用时,状态提醒信息可以通过声音提醒方式和/或振动提醒方式来提醒用户将云台调整为满足预设的自整定条件。例如:在生成与云台相对应的状态提醒信息之后,可以将状态提醒信息发送至客户端,客户端通过状态提醒信息触发相应的提醒方式,该提醒方式可以包括声音提醒方式和/或振动提醒方式,在触发声音提醒方式时,可以向用户广播预设内容,如“您有新信息,请注意查看”等等;在触发振动提醒方式时, 则可以控制客户端进行振动,以提醒用户及时查看相应的状态提醒信息。
机械共振信息可以包括振动频率范围和机械共振幅度。则根据机械共振信息检测第二部分与云台的连接情况可以包括:根据振动频率范围的预设范围内的机械共振幅度与预设幅度的比较,检测第二部分与云台的连接情况。
其中,预设范围可以根据实际情况或者实验来进行确定,例如,预设范围可以根据支撑机构的类型来确定。也就是说,当支撑机构不同时,相应地,预设范围的取值也不同。例如,支撑机构不同时,云台的共振情况可以不一样,那么当支撑机构为手柄时,预设范围为一个取值;当支撑机构为机器人的机身时,预设范围可以为另一个取值;当支撑机构为无人车的底盘时,预设范围可以为又一个取值;当支撑机构为无人机的机身时,预设范围可以为再一个取值。在其他实施例中,预设范围还可以根据负载的类型或云台等的类型来确定,例如,根据负载的重量来确定预设范围的取值,根据云台可带动负载绕轴转动的轴数来确定预设范围的取值等。
发明人发现,第二部分未连接到云台的情况,与第二部分连接到云台的情况相比,预设范围内的机械共振幅度有较大区别。因此,为了便于准确检测第二部分与云台的连接情况,本实施例还根据振动频率范围的预设范围内的机械共振幅度与预设幅度的比较,检测第二部分与云台的连接情况,以提高检测结果的准确性。
根据振动频率范围的预设范围内的机械共振幅度与预设幅度的比较,检测第二部分与云台的连接情况可以包括:当振动频率范围的预设范围内的机械共振幅度小于预设幅度时,确定第二部分通过加固装置固定连接至云台;当振动频率范围的预设范围内的机械共振幅度大于预设幅度时,确定第二部分未通过加固装置固定连接至云台。
其中,预设幅度可以根据实际情况或者实验来进行确定,例如,预设幅度可以根据支撑机构的类型来确定。也就是说,当支撑机构不同时,相应地,预设幅度的取值也不同。例如,支撑机构不同时,云台的共振情况可以不一样,那么当支撑机构为手柄时,预设幅度为一 个取值;当支撑机构为机器人的机身时,预设幅度可以为另一个取值;当支撑机构为无人车的底盘时,预设幅度可以为又一个取值;当支撑机构为无人机的机身时,预设幅度可以为再一个取值。在其他实施例中,预设幅度还可以根据负载的类型或云台等的类型来确定,例如,根据负载的重量来确定预设幅度的取值,根据云台可带动负载绕轴转动的轴数来确定预设幅度的取值等。
图8是本申请的一个实施例的云台在负载的第二部分未被连接至云台时的机械共振信息示意图,图9是本申请的一个实施例的云台在负载的第二部分被连接至云台时的机械共振信息示意图。其中,图8以及图9所示的附图的坐标系横坐标表示振动频率,坐标系纵坐标表示共振幅度,振动频率A和振动频率B表示的区间为预设范围,共振幅度C表示预设幅度。
如图8所示,在预设范围内的一些振动频率值对应的云台的机械共振幅度大于预设幅度,则可以确定第二部分未通过加固装置固定连接至云台。在另一些实施例中,在预设范围内的所有振动频率值对应的云台的机械共振幅度大于预设幅度时,才确定第二部分未通过加固装置固定连接至云台。
如图9所示,在预设范围内的所有振动频率值对应的云台的机械共振幅度小于预设幅度时,则可以确定第二部分通过加固装置固定连接至云台。
可以理解地,在预设范围内的一个或多个振动频率值对应的云台的机械共振幅度等于预设幅度时,则可以根据预设范围内的其他的振动频率值对应的云台的机械共振幅度与预设幅度来比较,以确定第二部分是否通过加固装置固定连接至云台。具体地,当预设范围内的其他的振动频率值对应的云台的机械共振幅度都小于预设幅度时,则确定第二部分通过加固装置固定连接至云台;当预设范围内的其他的振动频率值对应的云台的机械共振幅度中任一个机械共振幅度大于预设幅度时,则确定第二部分未通过加固装置固定连接至云台。若预设范围内的所有的振动频率值对应的云台的机械共振幅度都等于预设幅度时,则可以确定第二部分未通过加固装置固定连接至云台或确定 第二部分通过加固装置固定连接至云台。
根据连接结果控制云台进入第一增稳模式或第二增稳模式可以包括:在第二部分未通过加固装置固定连接至云台时,控制云台进入第一增稳模式;在第二部分通过加固装置固定连接至云台时,控制云台进入第二增稳模式。
云台处于第一增稳模式时,云台可以处于静止状态,或者低速、较为平稳的运动状态。云台处于第二增稳模式时,云台可以处于运动拍摄,或者飞行拍摄等的过程中。
在一些实施例中,云台控制参数可以包括云台的电机的力度值、电机的强度值以及电机的滤波器的配置参数中的至少之一。可以理解地,云台控制参数可以包括云台的任一个电机的力度值、任一个电机的强度值以及任一个电机的滤波器的配置参数中至少之一。
其中,对于同一负载,第一增稳模式对应的力度值相比第二增稳模式对应的力度值较小。即,云台处于第一增稳模式时用于抵抗外部干扰力矩的灵敏度,小于云台处于第二增稳模式时用于抵抗外部干扰力矩的灵敏度。可以理解地,电机的力度值可以跟电机的输出力矩信息以及力矩频谱信息有关。
由于,第二部分未通过加固装置固定连接至云台的情况,相比于第二部分通过加固装置固定连接至云台的情况,云台与负载整体的机械刚度会变低,云台会产生额外的机械共振。当云台产生额外的机械共振时,如果电机的力度值取的较高,该机械共振的频率会无法被有效衰减,就会产生共振现象,这将会导致云台工作异常。因此,在第二部分未通过加固装置固定连接至云台时,控制云台进入电机的力度值相对较小的第一增稳模式。而在第二部分通过加固装置固定连接至云台时,云台不会产生额外的机械共振,电机取相对较高的力度值也不会导致云台工作异常。因此,在第二部分通过加固装置固定连接至云台时,控制云台进入电机的力度值相对较大的第二增稳模式,从而提高云台的增稳性能,提高云台对负载的增稳效果。在负载为成像装置时,由于第二增稳模式提高了云台对负载的增稳效果,从而保证云台在第二增稳模式时,成像装置能稳定成像。
对于同一负载,第一增稳模式对应的强度值相比第二增稳模式对于的强度值较小。即,云台处于第一增稳模式时用于响应输入的云台控制量的灵敏度,小于云台处于第二增稳模式时用于响应输入的云台控制量的灵敏度,其中该输入可以为支撑机构上的输入装置接收的用户输入,例如输入装置可以为用于控制云台的摇杆。
电机的强度值可以影响云台的位置控制的快慢程度而减少云台的姿态误差。其中,电机的力度值与强度值成正比,即电机的力度值越大,电机的强度值也越大,电机的力度值越小,电机的强度值也越小。由于对于同一负载,第一增稳模式对应的力度值相比第二增稳模式对应的力度值较小,则对于同一负载,第一增稳模式对应的强度值相比第二增稳模式对于的强度值较小。因此,在第二部分通过加固装置固定连接至云台时,控制云台进入电机的强度值相对较大的第二增稳模式,从而使得云台具有较高的响应输入的云台控制量的灵敏度,以提升用户体验。
对于同一负载,第一增稳模式对应的滤波器的配置参数用于抑制云台的特定机械共振;第二增稳模式对应的滤波器的配置参数用于禁止抑制云台的特定机械共振。
可以理解地,特定机械共振可以为第二部分为连接至云台引起的机械共振。由于,在第二部分通过加固装置固定连接至云台时,云台不会产生该特定机械共振,也就不需要滤波器的配置参数用于抑制云台的特定机械共振,从而使得云台的控制系统的相位延迟变小。而在第二部分未通过加固装置固定连接至云台时,云台会产生该特定机械共振,因此,滤波器的配置参数用于抑制云台的特定机械共振,以提升用户的使用体验。
其中,滤波器的配置参数可以包括深度(即共振频率点的峰值)、宽度(即共振频率的范围)以及共振频率点的频率,具体地,可以通过调整深度、宽度、频率来实现抑制云台的特定机械共振的功能。
控制方法还可以包括在第二部分未通过加固装置固定连接至云台时,输出用于提示负载的第二部分未固定连接至云台的提示信息。便于用户掌握此时无法进入第二增稳模式的原因,并可以提醒用户需 要利用加固装置将负载的第二部分连接至云台。
当用户输入用于选择云台进入第一增稳模式与第二增稳模式中指示第二部分固定连接至云台的增稳模式时,会触发云台进入自整定操作,从而产生指示出输出力矩的激励信号;然后,云台根据激励信号指示的输出力矩控制云台的电机转动,并基于电机的转动确定云台的机械共振信息;再根据机械共振信息检测第二部分与云台的连接情况;若检测的结果为第二部分通过加固装置与云台连接,则云台会输出用于提示负载的第二部分未固定连接至云台的提示信息。在一些实施例中,输出提示信息后,云台可以进入第一增稳模式。在一些实施例中,输出提示信息后,当用户再次输入用于选择云台进入第一增稳模式与第二增稳模式中指示第二部分固定连接至云台的增稳模式时,则会再次触发云台进入自整定操作,并重复后续操作。在另一些实施例中,输出提示信息的预设时间段后,云台会自行进入自整定操作,并重复后续操作,其中,预设时间段能够便于用户在云台不发生抖动的情况下,将第二部分固定连接至云台,并自动触发云台再次进入自整定。
其中,提示信息可以包括视觉提示信息、听觉提示信息以及触觉提示信息中至少一种。也就是说,在一些实施例中,提示信息可以仅包括视觉提示信息,或仅包括听觉提示信息,又或者仅包括触觉提示信息。在另一些实施例中,提示信息可以包括视觉提示信息、听觉提示信息以及触觉提示信息中任意两种。在其他实施例中,提示信息可以同时包括视觉提示信息、听觉提示信息以及触觉提示信息。
视觉提示信息可以包括图像,也可以包括文字,还可以同时包括图像和文字。具体地,云台可以包括显示装置,则可以通过显示装置显示图像和/或文字。其中,本实施例对显示装置的位置并不加以限制,例如,显示装置可以位于支撑机构,也可以独立于云台并与云台通信连接。
听觉提示信息可以包括电机振动产生的声音。其中,电机振动的频率可以根据实际情况选择,本实施例对此并不加以限制。
触觉提示信息可以包括震动,例如,支撑机构的震动、调节组件 的震动等,其中,该震动的频率可以根据实际情况选择,本实施例对此并不加以限制。
图10是根据本申请的第二个实施例的云台的控制方法的示意图。本申请的第二个实施例的云台的控制方法应用的云台用于增稳负载,负载包括相互连接的第一部分和第二部分,第一部分与云台连接以使得云台能够支撑负载,第二部分选择性地通过加固装置与云台连接,该云台以及负载的结构上的相关内容可参考前述实施例,此处不再赘述。
如图10所示,本申请的第二个实施例的云台的控制方法包括:
S1002,判断第二部分是否通过加固装置被固定至云台。
S1004,根据判断结果调节云台的云台控制参数。
其中,判断第二部分是否通过加固装置被固定至云台的相关内容可参考前述实施例,此处不再赘述。根据判断结果调节云台的云台控制参数,能有效地使得云台的控制参数适配负载与云台的连接情况的不同,使得在负载与云台的不同的连接情况下,云台都能有适宜的增稳性能,提高了云台对负载姿态的控制效果,即提高了云台的增稳效果。并且,第二部分与云台的连接情况可以通过云台自动识别,不需要用户去识别,提升了用户体验。
云台控制参数可以包括云台的电机的力度值、电机的强度值以及电机的滤波器的配置参数中的至少之一。
对于同一负载,根据判断结果调节云台的云台控制参数包括:当判断结果为第二部分未通过加固装置被固定至云台时,降低电机的力度值(降低用于抵抗外部干扰力矩的灵敏度)、降低电机的强度值(降低用于响应输入的云台控制量的灵敏度)或使得电机的滤波器的配置参数用于抑制云台的特定机械共振;当判断结果为第二部分通过加固装置被固定至云台时,增大电机的力度值(增高用于抵抗外部干扰力矩的灵敏度)、增大电机的强度值(增高用于响应输入的云台控制量的灵敏度)或使得电机的滤波器的配置参数禁止抑制云台的特定机械共振。其中,电机的力度值、电机的强度值、电机的滤波器的配置参数以及特定机械共振的相关内容可参考前述实施例,此处不再赘述。
本申请第二个实施例的控制方法还可以包括在第二部分未通过加固装置固定连接至云台时,输出用于提示负载的第二部分未固定连接至云台的提示信息。提示信息的相关内容可参考前述实施例,此处不再赘述。
图11是根据本申请的第三个实施例的云台的控制方法的示意图。本申请的第三个实施例的云台的控制方法应用的云台用于增稳负载,负载包括相互连接的第一部分和第二部分,第一部分与云台连接以使得云台能够支撑负载,第二部分选择性地通过加固装置与云台连接,该云台以及负载的结构上的相关内容可参考前述实施例,此处不再赘述。
如图11所示,本申请的第三个实施例的云台的控制方法包括:
S1102,判断第二部分是否通过加固装置被固定至云台。
S1104,当判断结果指示第二部分未被固定至云台时,输出用于提示负载的第二部分未加固至云台的提示信息。
其中,判断第二部分是否通过加固装置被固定至云台的相关内容可参考前述实施例,此处不再赘述。由此,便于用户掌握云台以及负载的连接状态,并可以提醒用户需要利用加固装置将负载的第二部分连接至云台,以提升用户体验。并且,在判断结果指示第二部分未被固定至云台时,输出用于提示负载的第二部分未加固至云台的提示信息,并不是调整云台的控制参数,保证了云台的增稳性能,并保证了云台的增稳效果。
在一些实施例中,本申请第三个实施例的控制方法还可以包括根据判断结果调节云台的云台控制参数,其中,根据判断结果调节云台的云台控制参数的相关内容可参考前述实施例,此处不再赘述。
在另一些实施例中,本申请第三个实施例的控制方法还可以包括根据判断结果控制云台进入第一增稳模式或第二增稳模式。其中,第一增稳模式、第二增稳模式以及根据判断结果控制云台进入第一增稳模式或第二增稳模式的相关内容可参考前述实施例,此处不再赘述。
图12是根据本申请的第四个实施例的云台的控制方法的示意图。本申请的第四个实施例的云台的控制方法应用的云台用于增稳负 载,负载包括相互连接的第一部分和第二部分,第一部分与云台连接以使得云台能够支撑负载,第二部分选择性地通过加固装置与云台连接,该云台以及负载的结构上的相关内容可参考前述实施例,此处不再赘述。
如图12所示,本申请的第四个实施例的云台的控制方法包括:
S1202,获取增稳模式选择信号。
S1204,根据增稳模式选择信号控制云台进入第一增稳模式或第二增稳模式。
这种云台具有不同的增稳模式,本申请的第四个实施例的云台的控制方法可以使得云台的不同的增稳模式适配于不同的情况,例如,适配于不同的负载与云台的连接情况,从而提升用户体验。这种方法使得在增稳模式选择信号不同的情况下,云台都能有适宜的增稳性能,提高了云台对负载姿态的控制效果,即提高了云台的增稳效果。
其中,在第一增稳模式下,第二部分未通过加固装置与云台连接,在第二增稳模式下,第二部分通过加固装置与云台连接。第一增稳模式以及第二增稳模式的相关内容可参考前述实施例,此处不再赘述。
可以理解地,增稳模式选择信号可以是用户输入的,增稳模式选择信号用于选择云台进入第一增稳模式或第二增稳模式。
在一些实施例中,根据增稳模式选择信号控制云台进入第一增稳模式或第二增稳模式包括直接控制云台进入与增稳模式选择信号对应的增稳模式,例如,当增稳模式选择信号用于选择云台进入第一增稳模式时,则直接控制云台进入第一增稳模式,当增稳模式选择信号用于选择云台进入第二增稳模式时,则直接控制云台进入第二增稳模式。
在另一些实施例中,根据增稳模式选择信号控制云台进入第一增稳模式或第二增稳模式包括:当增稳模式选择信号用于选择云台进入第一增稳模式时,则直接控制云台进入第一增稳模式;当增稳模式选择信号用于选择云台进入第二增稳模式时,检测第二部分与云台的连接情况,若连接结果为第二部分未通过加固装置固定连接至云台时,则控制云台进入第一增稳模式,若连接结果为第二部分通过加固装置 固定连接至云台时,则控制云台进入第二增稳模式。
其中,检测第二部分与云台的连接情况以及云台控制参数的相关内容可参考前述实施例,此处不再赘述。
本申请第四个实施例的控制方法还可以包括在第二部分未通过加固装置固定连接至云台时,输出用于提示负载的第二部分未固定连接至云台的提示信息。提示信息的相关内容可参考前述实施例,此处不再赘述。
图13是根据本申请的第五个实施例的云台的控制方法的示意图。本申请的第五个实施例的云台的控制方法应用的云台用于增稳负载,云台具有云台控制参数不同的第一增稳模式以及第二增稳模式。
如图13所示,本申请的第四个实施例的云台的控制方法包括:
S1302,获取增稳模式选择信号;
S1304,根据增稳模式选择信号控制云台进入第一增稳模式或第二增稳模式。
这种云台具有不同的增稳模式,本申请的第五个实施例的云台的控制方法可以使得云台的不同的增稳模式适配于不同的情况,例如,适配于不同的负载与云台的连接情况,从而提升用户体验。这种方法使得在增稳模式选择信号不同的情况下,云台都能有适宜的增稳性能,提高了云台对负载姿态的控制效果,即提高了云台的增稳效果。
其中,增稳模式选择信号以及根据增稳模式选择信号控制云台进入第一增稳模式或第二增稳模式的相关内容可参考前述实施例,此处不再赘述。并且,本申请的第五个实施例的云台的控制方法应用的云台的结构以及该云台支撑的负载的结构可以参考前述实施例,此处不再赘述。
本实施例还提供了一种云台的控制装置,云台用于增稳负载,负载包括相互连接的第一部分和第二部分,第一部分与云台连接以使得云台能够支撑负载,第二部分选择性地通过加固装置与云台连接。
控制装置包括存储器以及处理器。存储器用于存储可执行指令。处理器用于执行存储器中存储的可执行指令,以执行如下操作:检测第二部分与云台的连接情况;根据连接结果,控制云台进入第一增稳 模式或第二增稳模式。
其中,第一增稳模式对应的云台控制参数不同于第二增稳模式对应的云台控制参数。
可以理解地,控制装置可以位于用于支撑云台的支撑机构,也可以独立于云台并与云台通信连接等。
处理器还可以执行如下操作:获取云台的机械共振信息;根据机械共振信息检测第二部分与云台的连接情况。
处理器还可以执行如下操作:获取激励信号,根据激励信号指示的输出力矩控制云台的电机转动;基于电机的转动确定云台的机械共振信息。
激励信号可以为云台满足预设的自整定条件时用于触发云台进行自整定操作得到,自整定操作用于适配负载与云台控制参数。
自整定操作可以为基于用户输入的指令触发,指令用于选择云台进入第一增稳模式与第二增稳模式中指示第二部分固定连接至云台的增稳模式。
机械共振信息可以包括振动频率范围和机械共振幅度。处理器还可以执行如下操作:根据振动频率范围的预设范围内的机械共振幅度与预设幅度的比较,检测第二部分与云台的连接情况。
处理器还可以执行如下操作:当振动频率范围的预设范围内的机械共振幅度小于预设幅度时,确定第二部分通过加固装置固定连接至云台;当振动频率范围的预设范围内的机械共振幅度大于预设幅度时,确定第二部分未通过加固装置固定连接至云台。
云台控制参数可以包括云台的电机的力度值、电机的强度值以及电机的滤波器的配置参数中的至少之一。
对于同一负载,第一增稳模式对应的力度值可以相比第二增稳模式对应的力度值较小。
对于同一负载,第一增稳模式对应的强度值可以相比第二增稳模式对于的强度值较小。
对于同一负载,第一增稳模式对应的滤波器的配置参数可以用于抑制云台的特定机械共振;第二增稳模式对应的滤波器的配置参数可 以用于禁止抑制云台的特定机械共振。
云台处于第一增稳模式时用于抵抗外部干扰力矩的灵敏度,可以小于云台处于第二增稳模式时用于抵抗外部干扰力矩的灵敏度。
云台处于第一增稳模式时用于响应输入的云台控制量的灵敏度,可以小于云台处于第二增稳模式时用于响应输入的云台控制量的灵敏度。
处理器还可以执行如下操作:在第二部分未通过加固装置固定连接至云台时,控制云台进入第一增稳模式;在第二部分通过加固装置固定连接至云台时,控制云台进入第二增稳模式。
在第二部分未通过加固装置固定连接至云台时,处理器还可以执行如下操作:通过提示装置输出用于提示负载的第二部分未固定连接至云台的提示信息。
提示信息可以包括以下至少一种:视觉提示信息、听觉提示信息、触觉提示信息。
视觉提示信息可以包括图像和/或文字,听觉提示信息包括云台振动产生的声音,触觉提示信息包括震动。
云台可以包括用于安装第一部分的安装部,且加固装置可以设于安装部上。
加固装置可以至少用于限制第二部分相对于云台在两个相反方向上的运动。
负载可以包括成像装置,第一部分可以包括成像装置的机身,第二部分可以包括成像装置的镜头。成像装置的镜头与成像装置的机身可以是可拆卸连接。
加固装置可以包括主体、顶块以及抱箍件。主体用于与设于云台的成像装置安装板可拆卸连接,主体包括支撑部。顶块用于支撑镜头,顶块设于支撑部。抱箍件沿镜头的轴向可移动,抱箍件用于将主体及镜头抱箍固定。
抱箍件能够至少围绕镜头部分周长,以将镜头抱箍固定。抱箍件可以包括柔性绑带、弹性绑带、塑胶带中的一种或多种。
本申请实施例还提供了一种云台的控制装置,即本实施例提供的 第二种控制装置,本实施例提供的第二种控制装置应用的云台用于增稳负载,负载包括相互连接的第一部分和第二部分,第一部分与云台连接以使得云台能够支撑负载,第二部分选择性地通过加固装置与云台连接,该云台以及负载的结构上的相关内容可参考前述实施例,此处不再赘述。
可以理解地,本实施例提供的第二种控制装置可以位于用于支撑云台的支撑机构,也可以独立于云台并与云台通信连接等。
本实施例提供的第二种控制装置可以包括存储器以及处理器。存储器用于存储可执行指令。处理器用于执行存储器中存储的可执行指令,以执行如下操作:判断第二部分是否通过加固装置被固定至云台;根据判断结果调节云台的云台控制参数。
其中,本实施例提供的第二种控制装置的处理器执行判断第二部分是否通过加固装置被固定至云台的相关内容可参考前述实施例,此处不再赘述。根据判断结果调节云台的云台控制参数,能有效地使得云台的控制参数适配负载与云台的连接情况的不同,并提升用户的使用体验。
云台控制参数可以包括云台的电机的力度值、电机的强度值以及电机的滤波器的配置参数中的至少之一。
对于同一负载,根据判断结果调节云台的云台控制参数包括:当判断结果为第二部分未通过加固装置被固定至云台时,降低电机的力度值(降低用于抵抗外部干扰力矩的灵敏度)、降低电机的强度值(降低用于响应输入的云台控制量的灵敏度)或使得电机的滤波器的配置参数用于抑制云台的特定机械共振;当判断结果为第二部分通过加固装置被固定至云台时,增大电机的力度值(增高用于抵抗外部干扰力矩的灵敏度)、增大电机的强度值(增高用于响应输入的云台控制量的灵敏度)或使得电机的滤波器的配置参数禁止抑制云台的特定机械共振。其中,电机的力度值、电机的强度值、电机的滤波器的配置参数以及特定机械共振的相关内容可参考前述实施例,此处不再赘述。
本实施例提供的第二种控制装置的处理器还可以执行以下内容:在第二部分未通过加固装置固定连接至云台时,输出用于提示负载的 第二部分未固定连接至云台的提示信息。提示信息的相关内容可参考前述实施例,此处不再赘述。
本实施例还提供了一种云台的控制装置,即本实施例提供的第三种控制装置,本实施例提供的第三种控制装置应用的云台用于增稳负载,负载包括相互连接的第一部分和第二部分,第一部分与云台连接以使得云台能够支撑负载,第二部分选择性地通过加固装置与云台连接,该云台以及负载的结构上的相关内容可参考前述实施例,此处不再赘述。
可以理解地,本实施例提供的第三种控制装置可以位于用于支撑云台的支撑机构,也可以独立于云台并与云台通信连接等。
本实施例提供的第三种控制装置包括存储器以及处理器。存储器用于存储可执行指令。处理器用于执行存储器中存储的可执行指令,以执行如下操作:判断第二部分是否通过加固装置被固定至云台;当判断结果指示第二部分未被固定至云台时,输出用于提示负载的第二部分未加固至云台的提示信息。
其中,本实施例提供的第三种控制装置的处理器判断第二部分是否通过加固装置被固定至云台的相关内容可参考前述实施例,此处不再赘述。由此,便于用户掌握云台以及负载的连接状态,并可以提醒用户需要利用加固装置将负载的第二部分连接至云台,以提升用户体验。
在一些实施例中,本实施例提供的第三种控制装置的处理器还可以包括根据判断结果调节云台的云台控制参数,其中,根据判断结果调节云台的云台控制参数的相关内容可参考前述实施例,此处不再赘述。
在另一些实施例中,本实施例提供的第三种控制装置的处理器还可以包括根据判断结果控制云台进入第一增稳模式或第二增稳模式。其中,第一增稳模式、第二增稳模式以及根据判断结果控制云台进入第一增稳模式或第二增稳模式的相关内容可参考前述实施例,此处不再赘述。
本实施例还提供了一种云台的控制装置,即本实施例提供的第四 种控制装置,本实施例提供的第四种控制装置应用的云台用于增稳负载,负载包括相互连接的第一部分和第二部分,第一部分与云台连接以使得云台能够支撑负载,第二部分选择性地通过加固装置与云台连接,该云台以及负载的结构上的相关内容可参考前述实施例,此处不再赘述。
可以理解地,本实施例提供的第四种控制装置可以位于用于支撑云台的支撑机构,也可以独立于云台并与云台通信连接等。
本实施例提供的第四种控制装置包括存储器以及处理器。存储器用于存储可执行指令。处理器用于执行存储器中存储的可执行指令,以执行如下操作:获取增稳模式选择信号;根据增稳模式选择信号控制云台进入第一增稳模式或第二增稳模式。
其中,在第一增稳模式下,第二部分未通过加固装置与云台连接。在第二增稳模式下,第二部分通过加固装置与云台连接。第一增稳模式以及第二增稳模式的相关内容可参考前述实施例,此处不再赘述。
这种云台具有不同的增稳模式,本实施例提供的第四种控制装置可以使得云台的不同的增稳模式适配于不同的情况,例如,适配于不同的负载与云台的连接情况,从而提升用户体验。
其中,增稳模式选择信号以及根据增稳模式选择信号控制云台进入第一增稳模式或第二增稳模式的相关内容可参考前述实施例,此处不再赘述。
本实施例提供的第四种控制装置的处理器还可以执行在第二部分未通过加固装置固定连接至云台时,输出用于提示负载的第二部分未固定连接至云台的提示信息。提示信息的相关内容可参考前述实施例,此处不再赘述。
本实施例还提供了一种云台的控制装置,即本实施例提供的第五种控制装置,本实施例提供的第五种控制装置应用的云台用于增稳负载,云台具有云台控制参数不同的第一增稳模式以及第二增稳模式。
可以理解地,本实施例提供的第五种控制装置可以位于用于支撑云台的支撑机构,也可以独立于云台并与云台通信连接等。
本实施例提供的第五种控制装置包括存储器以及处理器。存储器 用于存储可执行指令。处理器用于执行存储器中存储的可执行指令,以执行如下操作:获取增稳模式选择信号;根据增稳模式选择信号控制云台进入第一增稳模式或第二增稳模式。
这种云台具有不同的增稳模式,本实施例提供的第五种控制装置可以使得云台的不同的增稳模式适配于不同的情况,例如,适配于不同的负载与云台的连接情况,从而提升用户体验。
其中,增稳模式选择信号以及根据增稳模式选择信号控制云台进入第一增稳模式或第二增稳模式的相关内容可参考前述实施例,此处不再赘述。并且,本实施例提供的第五种控制装置应用的云台的结构以及该云台支撑的负载的结构可以参考前述实施例,此处不再赘述。
本实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有可执行指令,可执行指令在由一个或多个处理器执行时,可以使一个或多个处理器执行上述任一个实施例中的控制方法。
其中计算机可读存储介质也可以被称为存储器,可执行指令又可以被称为程序。处理器可以根据存储在只读存储器(ROM)中的程序或者加载到随机访问存储器(RAM)中的程序而执行各种适当的动作和处理。处理器例如可以包括通用微处理器(例如CPU)、指令集处理器和/或相关芯片组和/或专用微处理器(例如,专用集成电路(ASIC)),等等。处理器还可以包括用于缓存用途的板载存储器。处理器可以包括用于执行根据本实施例的方法流程的不同动作的单一处理单元或者是多个处理单元。
处理器、ROM以及RAM通过总线彼此相连。处理器通过执行ROM和/或RAM中的程序来执行根据本实施例的方法流程的各种操作。需要注意,程序也可以存储在除ROM和RAM以外的一个或多个存储器中。处理器也可以通过执行存储在一个或多个存储器中的程序来执行根据本实施例的方法流程的各种操作。
根据本实施例,应用计算机可读存储介质的装置还可以包括输入/输出(I/O)接口,输入/输出(I/O)接口也连接至总线。应用计算机可读存储介质的装置还可以包括连接至I/O接口的以下部件中的一项或多项:包括键盘、鼠标等的输入部分;包括诸如阴极射线管(CRT)、 液晶显示器(LCD)等以及扬声器等的输出部分;包括硬盘等的存储部分;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分。通信部分经由诸如因特网的网络执行通信处理。驱动器也根据需要连接至I/O接口。可拆卸介质,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器上,以便于从其上读出的计算机程序根据需要被安装入存储部分。
根据本实施例的方法流程可以被实现为计算机软件程序。例如,本实施例包括一种计算机程序产品,其包括承载在计算机可读存储介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分从网络上被下载和安装,和/或从可拆卸介质被安装。在该计算机程序被处理器执行时,执行本实施例的系统中限定的上述功能。
可以理解地,计算机可读存储介质可以包括但不限于非易失性或易失性存储介质,例如随机存取存储器(RAM)、静态RAM、动态RAM、只读存储器(ROM)、可编程ROM、可擦除可编程ROM、电可擦除可编程ROM、闪存、安全数字(SD)卡等。
本实施例还提供了一种云台组件,云台组件包括云台、加固装置以及控制装置。
云台用于增稳负载,负载包括相互连接的第一部分和第二部分,第一部分与云台连接以使得云台能够支撑负载。
加固装置用于使第二部分选择性地通过加固装置与云台连接。控制装置为本实施例提供的第一种控制装置、第二种控制装置、第三种控制装置以及第四种控制装置中的任意一种。该控制装置的相关内容可参考前述实施例,此处不再赘述。
云台还可以包括安装部,安装部用于安装第一部分,以使第一部分与云台连接,且安装部上设有加固装置。加固装置可以至少用于限制第二部分相对于云台在两个相反方向上的运动。
负载可以包括成像装置,第一部分可以包括成像装置的机身,第二部分可以包括成像装置的镜头。成像装置的镜头可以与成像装置的机身可拆卸连接。
云台还可以包括与安装部固定连接的成像装置安装板。加固装置可以包括主体、顶块以及抱箍件。
主体用于与成像装置安装板可拆卸连接,主体包括支撑部。顶块用于支撑镜头,顶块设于支撑部。抱箍件沿镜头的轴向可移动,抱箍件用于将主体及镜头抱箍固定。抱箍件能够至少围绕镜头部分周长,以将镜头抱箍固定。抱箍件可以包括柔性绑带、弹性绑带、塑胶带中的一种或多种。
本实施例还提供了一种云台,即本实施例提供的第二种云台,本实施例提供的第二种云台用于增稳负载,云台具有云台控制参数不同的第一增稳模式以及第二增稳模式,云台包括本实施例提供的第五种控制装置。该控制装置的相关内容可参考前述实施例,此处不再赘述。
本实施例提供的第二种云台具有不同的增稳模式,可以适配于不同的情况,例如,适配于不同的负载与云台的连接情况,从而提升用户体验。
本实施例还提供了一种可移动平台,可移动平台包括上述任一云台以及用于支撑云台的支撑机构。云台的相关内容可参考前述实施例,此处不再赘述。
支撑机构可以包括手持机构或移动机构,手持机构可以包括手柄。移动机构可以包括无人车的底盘、机器人的机身或无人机的机身,也就是说,可移动平台可以为手持云台、无人车、机器人、无人车等。
对于本申请的实施例,还需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (69)

  1. 一种云台的控制方法,其特征在于,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述方法包括:
    检测所述第二部分与所述云台的连接情况;
    根据所述连接结果,控制所述云台进入第一增稳模式或第二增稳模式;
    其中,所述第一增稳模式对应的云台控制参数不同于所述第二增稳模式对应的云台控制参数。
  2. 根据权利要求1所述的控制方法,其特征在于,所述检测所述第二部分与所述云台的连接情况,包括:
    获取所述云台的机械共振信息;
    根据所述机械共振信息检测所述第二部分与所述云台的连接情况。
  3. 根据权利要求2所述的控制方法,其特征在于,所述获取所述云台的机械共振信息,包括:
    获取激励信号,根据所述激励信号指示的输出力矩控制所述云台的电机转动;
    基于所述电机的转动确定所述云台的机械共振信息。
  4. 根据权利要求3所述的控制方法,其特征在于,所述激励信号为所述云台满足预设的自整定条件时用于触发所述云台进行自整定操作得到;
    所述自整定操作用于适配所述负载与所述云台控制参数。
  5. 根据权利要求4所述的控制方法,其特征在于,所述自整定 操作为基于用户输入的指令触发,所述指令用于选择所述云台进入所述第一增稳模式与所述第二增稳模式中指示所述第二部分固定连接至所述云台的增稳模式。
  6. 根据权利要求2所述的控制方法,其特征在于,所述机械共振信息包括:振动频率范围和机械共振幅度;
    所述根据所述机械共振信息检测所述第二部分与所述云台的连接情况,包括:
    根据所述振动频率范围的预设范围内的机械共振幅度与预设幅度的比较,检测所述第二部分与所述云台的连接情况。
  7. 根据权利要求6所述的控制方法,其特征在于,所述根据所述振动频率范围的预设范围内的机械共振幅度与预设幅度的比较,检测所述第二部分与所述云台的连接情况,包括:
    当所述振动频率范围的预设范围内的机械共振幅度小于所述预设幅度时,确定所述第二部分通过所述加固装置固定连接至所述云台;
    当所述振动频率范围的预设范围内的机械共振幅度大于所述预设幅度时,确定所述第二部分未通过所述加固装置固定连接至所述云台。
  8. 根据权利要求1所述的控制方法,其特征在于,所述云台控制参数包括所述云台的电机的力度值、所述电机的强度值以及所述电机的滤波器的配置参数中的至少之一。
  9. 根据权利要求8所述的控制方法,其特征在于,对于同一所述负载,所述第一增稳模式对应的力度值相比所述第二增稳模式对应的力度值较小。
  10. 根据权利要求8所述的控制方法,其特征在于,对于同一所 述负载,所述第一增稳模式对应的强度值相比所述第二增稳模式对于的强度值较小。
  11. 根据权利要求8所述的控制方法,其特征在于,对于同一所述负载,所述第一增稳模式对应的滤波器的配置参数用于抑制所述云台的特定机械共振;
    所述第二增稳模式对应的所述滤波器的配置参数用于禁止抑制所述云台的特定机械共振。
  12. 根据权利要求1所述的控制方法,其特征在于,所述云台处于所述第一增稳模式时用于抵抗外部干扰力矩的灵敏度,小于所述云台处于所述第二增稳模式时用于抵抗外部干扰力矩的灵敏度。
  13. 根据权利要求1所述的控制方法,其特征在于,所述云台处于所述第一增稳模式时用于响应输入的云台控制量的灵敏度,小于所述云台处于所述第二增稳模式时用于响应输入的云台控制量的灵敏度。
  14. 根据权利要求1至13中任一项所述的控制方法,其特征在于,所述根据所述连接结果,控制所述云台进入第一增稳模式或第二增稳模式,包括:
    在所述第二部分未通过所述加固装置固定连接至所述云台时,控制所述云台进入所述第一增稳模式;
    在所述第二部分通过所述加固装置固定连接至所述云台时,控制所述云台进入所述第二增稳模式。
  15. 根据权利要求14所述的控制方法,其特征在于,所述方法还包括:
    在所述第二部分未通过所述加固装置固定连接至所述云台时,输出用于提示所述负载的第二部分未固定连接至所述云台的提示信息。
  16. 根据权利要求15所述的控制方法,其特征在于,所述提示信息包括以下至少一种:视觉提示信息、听觉提示信息、触觉提示信息。
  17. 根据权利要求16所述的控制方法,其特征在于,所述视觉提示信息包括:图像和/或文字;
    所述听觉提示信息包括:所述云台振动产生的声音;
    所述触觉提示信息包括:震动。
  18. 根据权利要求1所述的控制方法,其特征在于,所述云台包括用于安装所述第一部分的安装部,且所述加固装置设于所述安装部上。
  19. 根据权利要求1所述的控制方法,其特征在于,所述加固装置至少用于限制所述第二部分相对于所述云台在两个相反方向上的运动。
  20. 根据权利要求18或19所述的控制方法,其特征在于,所述负载包括成像装置,所述第一部分包括所述成像装置的机身,所述第二部分包括所述成像装置的镜头。
  21. 根据权利要求20所述的控制方法,其特征在于,所述成像装置的镜头与所述成像装置的机身可拆卸连接。
  22. 根据权利要求20所述的控制方法,其特征在于,所述加固装置,包括:
    主体,用于与设于所述云台的成像装置安装板可拆卸连接,所述主体包括支撑部;
    顶块,用于支撑所述镜头,所述顶块设于所述支撑部;及
    抱箍件,沿所述镜头的轴向可移动,所述抱箍件用于将所述主体及所述镜头抱箍固定。
  23. 根据权利要求22所述的控制方法,其特征在于,所述抱箍件能够至少围绕所述镜头部分周长,以将所述镜头抱箍固定。
  24. 根据权利要求23所述的控制方法,其特征在于,所述抱箍件包括柔性绑带、弹性绑带、塑胶带中的一种或多种。
  25. 一种云台的控制方法,其特征在于,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述方法包括:
    判断所述第二部分是否通过所述加固装置被固定至所述云台;
    根据判断结果调节所述云台的云台控制参数。
  26. 一种云台的控制方法,其特征在于,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述方法包括:
    判断所述第二部分是否通过所述加固装置被固定至所述云台;
    当判断结果指示所述第二部分未被固定至所述云台时,输出用于提示所述负载的第二部分未加固至所述云台的提示信息。
  27. 一种云台的控制方法,其特征在于,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述方法包括:
    获取增稳模式选择信号;
    根据所述增稳模式选择信号控制所述云台进入第一增稳模式或 第二增稳模式;
    其中,在所述第一增稳模式下,所述第二部分未通过所述加固装置与所述云台连接;
    在所述第二增稳模式下,所述第二部分通过所述加固装置与所述云台连接。
  28. 一种云台的控制方法,其特征在于,所述云台用于增稳负载,所述云台具有云台控制参数不同的第一增稳模式以及第二增稳模式,所述方法包括:
    获取增稳模式选择信号;
    根据所述增稳模式选择信号控制所述云台进入所述第一增稳模式或所述第二增稳模式。
  29. 一种云台的控制装置,其特征在于,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述控制装置包括:
    存储器,用于存储可执行指令;
    处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:
    检测所述第二部分与所述云台的连接情况;
    根据所述连接结果,控制所述云台进入第一增稳模式或第二增稳模式;
    其中,所述第一增稳模式对应的云台控制参数不同于所述第二增稳模式对应的云台控制参数。
  30. 根据权利要求29所述的控制装置,其特征在于,所述处理器还执行如下操作:
    获取所述云台的机械共振信息;
    根据所述机械共振信息检测所述第二部分与所述云台的连接情 况。
  31. 根据权利要求30所述的控制装置,其特征在于,所述处理器还执行如下操作:
    获取激励信号,根据所述激励信号指示的输出力矩控制所述云台的电机转动;
    基于所述电机的转动确定所述云台的机械共振信息。
  32. 根据权利要求31所述的控制装置,其特征在于,所述激励信号为所述云台满足预设的自整定条件时用于触发所述云台进行自整定操作得到;
    所述自整定操作用于适配所述负载与所述云台控制参数。
  33. 根据权利要求32所述的控制装置,其特征在于,所述自整定操作为基于用户输入的指令触发,所述指令用于选择所述云台进入所述第一增稳模式与所述第二增稳模式中指示所述第二部分固定连接至所述云台的增稳模式。
  34. 根据权利要求30所述的控制装置,其特征在于,所述机械共振信息包括:振动频率范围和机械共振幅度;
    所述处理器还执行如下操作:
    根据所述振动频率范围的预设范围内的机械共振幅度与预设幅度的比较,检测所述第二部分与所述云台的连接情况。
  35. 根据权利要求34所述的控制装置,其特征在于,所述处理器还执行如下操作:
    当所述振动频率范围的预设范围内的机械共振幅度小于所述预设幅度时,确定所述第二部分通过所述加固装置固定连接至所述云台;
    当所述振动频率范围的预设范围内的机械共振幅度大于所述预 设幅度时,确定所述第二部分未通过所述加固装置固定连接至所述云台。
  36. 根据权利要求29所述的控制装置,其特征在于,所述云台控制参数包括所述云台的电机的力度值、所述电机的强度值以及所述电机的滤波器的配置参数中的至少之一。
  37. 根据权利要求36所述的控制装置,其特征在于,对于同一所述负载,所述第一增稳模式对应的力度值相比所述第二增稳模式对应的力度值较小。
  38. 根据权利要求36所述的控制装置,其特征在于,对于同一所述负载,所述第一增稳模式对应的强度值相比所述第二增稳模式对于的强度值较小。
  39. 根据权利要求36所述的控制装置,其特征在于,对于同一所述负载,所述第一增稳模式对应的滤波器的配置参数用于抑制所述云台的特定机械共振;
    所述第二增稳模式对应的所述滤波器的配置参数用于禁止抑制所述云台的特定机械共振。
  40. 根据权利要求29所述的控制装置,其特征在于,所述云台处于所述第一增稳模式时用于抵抗外部干扰力矩的灵敏度,小于所述云台处于所述第二增稳模式时用于抵抗外部干扰力矩的灵敏度。
  41. 根据权利要求29所述的控制装置,其特征在于,所述云台处于所述第一增稳模式时用于响应输入的云台控制量的灵敏度,小于所述云台处于所述第二增稳模式时用于响应输入的云台控制量的灵敏度。
  42. 根据权利要求29至41中任一项所述的控制装置,其特征在于,所述处理器还执行如下操作:
    在所述第二部分未通过所述加固装置固定连接至所述云台时,控制所述云台进入所述第一增稳模式;
    在所述第二部分通过所述加固装置固定连接至所述云台时,控制所述云台进入所述第二增稳模式。
  43. 根据权利要求42所述的控制装置,其特征在于,在所述第二部分未通过所述加固装置固定连接至所述云台时,所述处理器还执行如下操作:
    通过提示装置输出用于提示所述负载的第二部分未固定连接至所述云台的提示信息。
  44. 根据权利要求43所述的控制装置,其特征在于,所述提示信息包括以下至少一种:视觉提示信息、听觉提示信息、触觉提示信息。
  45. 根据权利要求44所述的控制装置,其特征在于,所述视觉提示信息包括:图像和/或文字;
    所述听觉提示信息包括:所述云台振动产生的声音;
    所述触觉提示信息包括:震动。
  46. 根据权利要求29所述的控制装置,其特征在于,所述云台包括用于安装所述第一部分的安装部,且所述加固装置设于所述安装部上。
  47. 根据权利要求29所述的控制装置,其特征在于,所述加固装置至少用于限制所述第二部分相对于所述云台在两个相反方向上的运动。
  48. 根据权利要求46或47所述的控制装置,其特征在于,所述负载包括成像装置,所述第一部分包括所述成像装置的机身,所述第二部分包括所述成像装置的镜头。
  49. 根据权利要求48所述的控制装置,其特征在于,所述成像装置的镜头与所述成像装置的机身可拆卸连接。
  50. 根据权利要求48所述的控制装置,其特征在于,所述加固装置,包括:
    主体,用于与设于所述云台的成像装置安装板可拆卸连接,所述主体包括支撑部;
    顶块,用于支撑所述镜头,所述顶块设于所述支撑部;及
    抱箍件,沿所述镜头的轴向可移动,所述抱箍件用于将所述主体及所述镜头抱箍固定。
  51. 根据权利要求50所述的控制装置,其特征在于,所述抱箍件能够至少围绕所述镜头部分周长,以将所述镜头抱箍固定。
  52. 根据权利要求51所述的控制装置,其特征在于,所述抱箍件包括柔性绑带、弹性绑带、塑胶带中的一种或多种。
  53. 一种云台的控制装置,其特征在于,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述控制装置包括:
    存储器,用于存储可执行指令;
    处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:
    判断所述第二部分是否通过所述加固装置被固定至所述云台;
    根据判断结果调节所述云台的云台控制参数。
  54. 一种云台的控制装置,其特征在于,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述控制装置包括:
    存储器,用于存储可执行指令;
    处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:
    判断所述第二部分是否通过所述加固装置被固定至所述云台;
    当判断结果指示所述第二部分未被固定至所述云台时,输出用于提示所述负载的第二部分未加固至所述云台的提示信息。
  55. 一种云台的控制装置,其特征在于,所述云台用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载,所述第二部分选择性地通过加固装置与所述云台连接,所述控制装置包括:
    存储器,用于存储可执行指令;
    处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:
    获取增稳模式选择信号;
    根据所述增稳模式选择信号控制所述云台进入第一增稳模式或第二增稳模式;
    其中,在所述第一增稳模式下,所述第二部分未通过所述加固装置与所述云台连接;
    在所述第二增稳模式下,所述第二部分通过所述加固装置与所述云台连接。
  56. 一种云台的控制装置,其特征在于,所述云台用于增稳负载,所述云台具有云台控制参数不同的第一增稳模式以及第二增稳模式,所述控制装置包括:
    存储器,用于存储可执行指令;
    处理器,用于执行所述存储器中存储的所述可执行指令,以执行如下操作:
    获取增稳模式选择信号;
    根据所述增稳模式选择信号控制所述云台进入所述第一增稳模式或所述第二增稳模式。
  57. 一种计算机可读存储介质,其特征在于,其存储有可执行指令,所述可执行指令在由一个或多个处理器执行时,可以使所述一个或多个处理器执行如权利要求1至28中任一项权利要求所述的控制方法。
  58. 一种云台组件,其特征在于,所述云台组件包括:
    云台,用于增稳负载,所述负载包括相互连接的第一部分和第二部分,所述第一部分与所述云台连接以使得所述云台能够支撑所述负载;
    加固装置,用于使所述第二部分选择性地通过所述加固装置与所述云台连接;
    如权利要求29至55中任一项权利要求所述控制装置。
  59. 根据权利要求58所述的云台组件,其特征在于,所述云台包括:
    安装部,用于安装所述第一部分,以使所述第一部分与所述云台连接,且所述安装部上设有所述加固装置。
  60. 根据权利要求58所述的云台组件,其特征在于,所述加固装置至少用于限制所述第二部分相对于所述云台在两个相反方向上的运动。
  61. 根据权利要求59所述的云台组件,其特征在于,所述负载 包括成像装置,所述第一部分包括所述成像装置的机身,所述第二部分包括所述成像装置的镜头。
  62. 根据权利要求61所述的云台组件,其特征在于,所述成像装置的镜头与所述成像装置的机身可拆卸连接。
  63. 根据权利要求61所述的云台组件,其特征在于,所述云台还包括与所述安装部固定连接的成像装置安装板;所述加固装置,包括:
    主体,用于与所述成像装置安装板可拆卸连接,所述主体包括支撑部;
    顶块,用于支撑所述镜头,所述顶块设于所述支撑部;及
    抱箍件,沿所述镜头的轴向可移动,所述抱箍件用于将所述主体及所述镜头抱箍固定。
  64. 根据权利要求63所述的云台组件,其特征在于,所述抱箍件能够至少围绕所述镜头部分周长,以将所述镜头抱箍固定。
  65. 根据权利要求64所述的云台组件,其特征在于,所述抱箍件包括柔性绑带、弹性绑带、塑胶带中的一种或多种。
  66. 一种云台,其特征在于,所述云台用于增稳负载,所述云台具有云台控制参数不同的第一增稳模式以及第二增稳模式,所述云台包括:
    如权利要求56所述控制装置。
  67. 一种可移动平台,其特征在于,包括:如权利要求58至66中任一项所述的云台以及用于支撑所述云台的支撑机构。
  68. 如权利要求67所述的可移动平台,其特征在于,所述支撑 机构包括手持机构或移动机构。
  69. 如权利要求68所述的可移动平台,其特征在于,所述手持机构包括手柄;
    所述移动机构包括无人车的底盘、机器人的机身或无人机的机身。
PCT/CN2020/118984 2020-09-29 2020-09-29 云台的控制方法及装置、云台以及可移动平台 WO2022067548A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080035401.4A CN113826377B (zh) 2020-09-29 2020-09-29 云台的控制方法及装置、云台以及可移动平台
PCT/CN2020/118984 WO2022067548A1 (zh) 2020-09-29 2020-09-29 云台的控制方法及装置、云台以及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118984 WO2022067548A1 (zh) 2020-09-29 2020-09-29 云台的控制方法及装置、云台以及可移动平台

Publications (1)

Publication Number Publication Date
WO2022067548A1 true WO2022067548A1 (zh) 2022-04-07

Family

ID=78924228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118984 WO2022067548A1 (zh) 2020-09-29 2020-09-29 云台的控制方法及装置、云台以及可移动平台

Country Status (2)

Country Link
CN (1) CN113826377B (zh)
WO (1) WO2022067548A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115225683B (zh) * 2022-05-31 2024-04-09 亿航智能设备(广州)有限公司 一种无人机云台通信系统及云台通信数据处理方法
WO2024060158A1 (zh) * 2022-09-22 2024-03-28 深圳市大疆创新科技有限公司 一种增稳装置的控制方法、装置和计算机存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205405037U (zh) * 2016-02-25 2016-07-27 深圳市道通智能航空技术有限公司 一种云台相机机身与镜头的间隙消除机构、云台及飞行器
US20180084173A1 (en) * 2016-09-16 2018-03-22 Gopro, Inc. Vibration Damping Gimbal Sleeve for an Aerial Vehicle
CN108055466A (zh) * 2017-12-31 2018-05-18 深圳市秦墨科技有限公司 一种手持云台增稳方法及其装置、手持云台
CN109073140A (zh) * 2016-05-31 2018-12-21 深圳市大疆灵眸科技有限公司 用于自适应云台的方法和系统
CN110908223A (zh) * 2017-07-31 2020-03-24 深圳市大疆灵眸科技有限公司 云台拍摄器
CN111594723A (zh) * 2020-05-20 2020-08-28 深圳市莫孚康技术有限公司 摄像机稳定装置及控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11401045B2 (en) * 2011-08-29 2022-08-02 Aerovironment, Inc. Camera ball turret having high bandwidth data transmission to external image processor
CN107975661B (zh) * 2015-09-29 2020-03-03 深圳市大疆灵眸科技有限公司 手柄云台及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205405037U (zh) * 2016-02-25 2016-07-27 深圳市道通智能航空技术有限公司 一种云台相机机身与镜头的间隙消除机构、云台及飞行器
CN109073140A (zh) * 2016-05-31 2018-12-21 深圳市大疆灵眸科技有限公司 用于自适应云台的方法和系统
US20180084173A1 (en) * 2016-09-16 2018-03-22 Gopro, Inc. Vibration Damping Gimbal Sleeve for an Aerial Vehicle
CN110908223A (zh) * 2017-07-31 2020-03-24 深圳市大疆灵眸科技有限公司 云台拍摄器
CN108055466A (zh) * 2017-12-31 2018-05-18 深圳市秦墨科技有限公司 一种手持云台增稳方法及其装置、手持云台
CN111594723A (zh) * 2020-05-20 2020-08-28 深圳市莫孚康技术有限公司 摄像机稳定装置及控制方法

Also Published As

Publication number Publication date
CN113826377B (zh) 2023-05-16
CN113826377A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
CN109000612B (zh) 设备的角度估算方法、装置、摄像组件及飞行器
US20200213518A1 (en) Method for controlling gimbal, gimbal controller, and gimbal
JP6818984B2 (ja) 搭載物を安定させる安定化装置
US9574703B2 (en) Hand-held or vehicle mounted camera stabilization system
JP6334576B2 (ja) 能動的に安定化させたカメラのポインティング制御を可能にするための方法及びシステム
WO2022067548A1 (zh) 云台的控制方法及装置、云台以及可移动平台
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
US11156905B2 (en) Control method for gimbal, controller, and gimbal
WO2020042064A1 (zh) 云台的控制方法与装置、云台系统和无人机
WO2018148906A1 (zh) 云台参数的配置方法、装置及云台
WO2018191963A1 (zh) 遥控器、云台及云台控制方法、装置、系统
US20220221102A1 (en) Gimbal control method and gimbal
WO2019210467A1 (zh) 云台控制方法与装置、云台系统、无人机和计算机可读存储介质
TWI709011B (zh) 用於無人機雲臺航向解算與控制的方法
US20240118596A1 (en) Gimbal control method and device
KR102476705B1 (ko) 카메라 구동장치, 카메라 구동 방법 및 짐벌장치
JP2008244893A (ja) 撮像空間安定化装置及び被写体追尾装置
WO2019205125A1 (zh) 增稳装置和手持云台装置
WO2022061915A1 (zh) 电机及其控制方法、计算机可读存储介质以及机械装置
WO2019134427A1 (zh) 云台系统及其控制方法
WO2022068069A1 (zh) 云台组件及其镜头支架
WO2019205152A1 (zh) 云台的控制方法和云台
CN110832424A (zh) 竖向增稳机构及其控制方法以及可移动设备
WO2023010318A1 (zh) 云台控制方法、装置、云台和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955573

Country of ref document: EP

Kind code of ref document: A1