WO2023010318A1 - 云台控制方法、装置、云台和存储介质 - Google Patents

云台控制方法、装置、云台和存储介质 Download PDF

Info

Publication number
WO2023010318A1
WO2023010318A1 PCT/CN2021/110480 CN2021110480W WO2023010318A1 WO 2023010318 A1 WO2023010318 A1 WO 2023010318A1 CN 2021110480 W CN2021110480 W CN 2021110480W WO 2023010318 A1 WO2023010318 A1 WO 2023010318A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
compensation angle
pan
change information
axis
Prior art date
Application number
PCT/CN2021/110480
Other languages
English (en)
French (fr)
Inventor
蒋李
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/110480 priority Critical patent/WO2023010318A1/zh
Priority to CN202180100194.0A priority patent/CN117597532A/zh
Publication of WO2023010318A1 publication Critical patent/WO2023010318A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • Embodiments of the present invention relate to the technical field of pan-tilts, and in particular, to a pan-tilt control method and device, a pan-tilt, and a storage medium.
  • the stabilization of three-axis gimbals is mainly aimed at rotation disturbances, while for vibrations in other motion directions other than the target motion direction, it is Unable to perform stabilization operation.
  • the handle of the three-axis gimbal rotates the pitch axis pitch
  • turning the same angle in the opposite direction of the pitch axis can offset the rotation disturbance and realize the stabilization operation.
  • the three-axis gimbal cannot achieve a stabilization effect in the vertical direction, which will easily cause the image captured by the gimbal to shake very badly.
  • Embodiments of the present invention provide a pan-tilt control method, device, pan-tilt, and storage medium, through the position sensor on the pan-tilt, the compensation operation for the captured image of the photographing device is realized, and the working quality of the photographing device on the pan-tilt is guaranteed and effects.
  • the first aspect of the present invention is to provide a method for controlling a pan/tilt, wherein the pan/tilt includes: a bearing seat for supporting the photographing device, at least one axis for adjusting the angle of the photographing device, and a position sensor, the The photographing device is used for photographing images; the method includes:
  • the rotation of the at least one axis is controlled based on the position change information, so as to compensate the image captured by the photographing device.
  • the second aspect of the present invention is to provide a pan-tilt control device, wherein the pan-tilt includes: a bearing seat for supporting the photographing device, at least one axis for adjusting the angle of the photographing device, and a position sensor, the The shooting device is used for image shooting; the control device includes:
  • a processor for running a computer program stored in said memory to:
  • the rotation of the at least one axis is controlled based on the position change information, so as to compensate the image captured by the photographing device.
  • a third aspect of the present invention is to provide a cloud platform, comprising:
  • the bearing seat is used to support the shooting device
  • the pan-tilt control device described in the second aspect above is used to control the pan-tilt.
  • a fourth aspect of the present invention is to provide a computer-readable storage medium, the storage medium is a computer-readable storage medium, and program instructions are stored in the computer-readable storage medium, and the program instructions are used in the first aspect.
  • the above-mentioned PTZ control method is to provide a computer-readable storage medium, the storage medium is a computer-readable storage medium, and program instructions are stored in the computer-readable storage medium, and the program instructions are used in the first aspect.
  • the position change information of the photographing device is acquired through a position sensor arranged on the pan/tilt; and then the at least one axis is controlled to rotate based on the position change information, so as to control the photographing device Compensate the image taken; thereby effectively realize the compensation operation of the image taken by the shooting device through the position sensor on the cloud platform, ensure the quality and effect of the shooting device on the cloud platform, and further improve the practicability of the method , Conducive to market promotion and application.
  • Fig. 1 is a schematic flow chart of a pan-tilt control method provided by an embodiment of the present invention
  • FIG. 2 is a structural schematic diagram 1 of a pan/tilt provided by an embodiment of the present invention
  • Fig. 3 is a structural schematic diagram II of a pan/tilt provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the range of motion of the photographing device relative to the target object provided by the embodiment of the present invention.
  • Fig. 5 is a schematic flowchart of controlling the rotation of the at least one shaft based on the position change information provided by an embodiment of the present invention
  • Fig. 6 is a schematic flowchart of controlling the rotation of the at least one shaft based on the position change information provided by an embodiment of the present invention
  • FIG. 7 is a schematic flow diagram of another pan/tilt control method provided by an embodiment of the present invention.
  • Fig. 8 is a schematic flowchart of controlling the rotation of the at least one shaft based on the position change information provided by an embodiment of the present invention
  • FIG. 9 is a schematic diagram of the principle of a pan-tilt control method provided by an application embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a pan/tilt provided by an application embodiment of the present invention.
  • Fig. 11 is a schematic diagram of the principle of controlling the pan-tilt provided by the application embodiment of the present invention.
  • Fig. 12 is a schematic diagram of determining the target angle corresponding to the pan/tilt provided by the application embodiment of the present invention.
  • Fig. 13 is a schematic structural diagram of a pan-tilt control device provided by an embodiment of the present invention.
  • Fig. 14 is a schematic structural diagram of a pan/tilt provided by an embodiment of the present invention.
  • the mainstream structure of the application is the three-axis gimbal, and the stabilization operation of the three-axis gimbal is mainly for the rotation disturbance, but it cannot be used for the vibration in other motion directions except the target motion direction.
  • Perform stabilization operations For example, when the handle of the three-axis gimbal rotates the pitch axis pitch, turning the same angle in the opposite direction of the pitch axis can offset the rotation disturbance and realize the stabilization operation.
  • some sports scenes such as: climbing stairs, running and other scenes where the gimbal moves.
  • the three-axis gimbal cannot achieve a stabilization effect in the vertical direction, which will easily cause the image captured by the gimbal to shake very badly.
  • a related technology provides a gimbal with a fourth axis added to it.
  • the fourth axis it is possible to stabilize the shaking in other motion directions than the target motion direction, and improve the picture acquisition quality of the image acquisition device (such as: camera, terminal equipment with image acquisition function, etc.) located on the pan/tilt .
  • the fourth axis is added to the above-mentioned pan/tilt structure, it will not only add an extra actuator (for controlling the fourth axis), but also increase the volume, weight and cost of the pan/tilt.
  • this embodiment provides a pan-tilt control method, device, pan-tilt and storage medium, wherein the pan-tilt includes: a bearing seat for supporting the photographing device, at least one for adjusting the angle of the photographing device An axis and a position sensor, and the photographing device is used for image capturing; the pan-tilt control method includes: obtaining position change information of the photographing device through the position sensor; controlling at least one axis to rotate based on the position change information, so as to perform image capture on the photographing device Compensation, which effectively realizes the compensation of the image taken by the shooting device based on the position sensor, and ensures the quality and effect of the shooting device on the pan/tilt.
  • Fig. 1 is the schematic flow chart of a kind of pan-tilt control method that the embodiment of the present invention provides;
  • pan-tilt can comprise: be used for supporting photographing device A bearing seat, at least one axis for adjusting the angle of the shooting device, and a position sensor, the shooting device is used for image shooting; specifically, in the application scene that requires image acquisition operations, the camera can be a camera, video camera, mobile phone or Any other device capable of taking pictures. It is understandable that not only a shooting device can be installed on the gimbal, but other types of loads can also be installed, such as detectors, follow-spot lights, etc.
  • the detectors can be temperature sensors, humidity sensors, wind speed sensors, carbon dioxide sensors, etc. .
  • the load can be a follow-spot light. It can be understood that the load type is not limited to the above-described types, and those skilled in the art may configure the load arbitrarily according to different application scenarios or application requirements.
  • pan-tilt in this embodiment can be a handheld pan-tilt, a vehicle-mounted pan-tilt, an airborne pan-tilt, etc.
  • Those skilled in the art can select different types of pan-tilts based on different application scenarios or application requirements, which will not be repeated here. repeat.
  • the gimbal 100 may include: a first motor 107 for driving the camera 200 to rotate around a first axis (yaw axis-yaw axis), and a first motor 107 for driving the camera 200 around a second axis (roll axis-roll axis).
  • the rotating second motor 108 and the third motor 109 for driving the camera 200 to rotate around the third axis (pitch axis-pitch axis), and the first bracket 101 between the first motor 107 and the second motor 108,
  • the second bracket 102 located between the second motor 108 and the third motor 109, one end of the third motor 109 is connected to the shooting device 200 or connected to the third bracket 103 for supporting the shooting device 200;
  • the third bracket 103 It may be a clamp for clamping the photographing device, or a frame for covering at least one surface of the photographing device to stabilize the photographing device, or an adapter plate for example.
  • the shapes and structures of the first bracket 101 , the second bracket 102 , and the third bracket 103 can be designed according to requirements, and are not specifically limited here.
  • the pan/tilt has a yaw-roll-pitch structure.
  • the structure of the three-axis gimbal is not limited to the structure described in FIG. 2 above.
  • the gimbal can also be a yaw-pitch-roll structure. As shown in FIG.
  • the gimbal 100 can include: The first motor 107 for rotating the device 200 around the first axis (yaw axis-yaw axis), the second motor 108 for driving the camera device 200 to rotate around the second axis (pitch axis-pitch axis), and the second motor 108 for driving the camera device 200
  • the third motor 109 rotating around the third axis (roll axis-roll axis), and the first bracket 101 between the first motor 107 and the second motor 108, between the second motor 108 and the third motor 109
  • One end of the third motor 109 is connected to the photographing device 200 or connected to the third support 103 for supporting the photographing device 200 .
  • the pan-tilt control method can control the above-mentioned pan-tilt, and the execution subject of the control method can be a pan-tilt control device.
  • the control device can be implemented as software, Or a combination of software and hardware; specifically, the method may include:
  • Step S101 Obtain position change information of the photographing device through a position sensor.
  • Step S102 Control at least one axis to rotate based on the position change information, so as to compensate the image captured by the photographing device.
  • Step S101 Obtain position change information of the photographing device through a position sensor.
  • the photographing device when the photographing device is set on the pan-tilt, the photographing device can move along with the movement of the pan-tilt. Specifically, the pan-tilt can move based on a target motion direction.
  • the target motion direction can be Corresponding to different directions, for example: when the user holds the pan-tilt to move on a certain plane, the target movement direction can be the horizontal direction; when the user holds the pan-tilt to go up the stairs, the target movement direction can be the oblique direction.
  • the direction of the target movement can be the vertical direction during the process of the UAV straight down from a high altitude or straight up from a low altitude.
  • the photographing device on the pan-tilt can move along with the movement of the pan-tilt.
  • the shooting device not only has position changes in the horizontal direction, but also has position changes in other directions (vertical up and down directions).
  • the movement of the gimbal has a certain positional deviation in the up and down direction relative to a certain target object.
  • the target movement direction of the gimbal is the oblique direction
  • the shooting device not only has position changes in the oblique direction, but also has position changes in other directions (vertical up and down directions), that is, the shooting device at this time follows the motion of the gimbal Relative to a certain target object, there is a certain positional deviation in the up and down direction.
  • the camera device can perform an image capture operation on a certain target object, and there is a certain positional deviation of the camera device relative to the target object.
  • the direction of is the direction in which the target object reciprocates relative to the photographing device.
  • the set angle can be 90°, that is, the position offset
  • the direction may be perpendicular to the target motion direction.
  • the shooting device is a camera
  • the target movement direction of the pan-tilt can be the horizontal direction, and the position is offset.
  • the moving direction may be a vertical direction in which the target object reciprocates relative to the camera.
  • the position offset direction is perpendicular to the moving direction of the target.
  • the target movement direction of the gimbal can be the vertical direction, and the position offset direction can be the horizontal direction in which the target object reciprocates relative to the camera.
  • the position offset direction is perpendicular to the target motion direction.
  • the target movement direction of the pan-tilt can be the oblique direction
  • the position offset direction can be the vertical direction in which the target object reciprocates relative to the camera.
  • the position offset direction An acute angle or an obtuse angle with the target motion direction.
  • a position sensor for obtaining the position change information of the shooting device may be provided on the cloud platform.
  • the position sensor may be used to obtain the position change information of the shooting device, so as to control at least one camera based on the position change information.
  • the axis is rotated to compensate for the image captured by the camera.
  • the position sensor can be installed on the bearing seat, and the position sensor at this time is used to obtain the position change information of the photographing device, that is, the position change information of the photographing device can be obtained directly through the position sensor installed on the bearing seat.
  • the bearing seat of the pan/tilt can include a plurality of shaft arms, and the position sensor can be arranged on any shaft arm, wherein the position sensor can include at least one of the following: binocular sensor, inertial measurement unit IMU, time-of-flight sensor TOF .
  • the position sensor can be placed on the shaft arm close to the roll axis; for a gimbal with a yaw-roll-pitch structure, the position sensor can be set near On the shaft arm of the pitch axis, as long as the position sensor can be arranged close to the shaft arm where the shooting device is located, it can ensure accurate and stable acquisition of the position change information of the shooting device.
  • the pan-tilt may include a pan-tilt handle for supporting the bearing seat, and the position sensor may be installed on the pan-tilt handle; at this time, obtaining the position change information of the shooting device through the position sensor may include: obtaining the cloud position information through the position sensor The position change of the pan-tilt of the platform; the installation position relationship between the handle of the pan-tilt and the bearing seat is determined; the position change information of the shooting device is determined based on the position change of the pan-tilt and the installation position relationship.
  • the position sensor since the position sensor is installed on the handle of the pan-tilt, and the shooting device at this time is arranged on the bearing base, and the handle of the pan-tilt is connected with the bearing base, at this time, during the movement of the pan-tilt, the position sensor can directly obtain The position change information of the pan/tilt (that is, the position change information of the pan/tilt relative to the target object), and then based on the pan/tilt structure, the installation position relationship between the pan/tilt handle and the bearing seat can be determined, and then based on the pan/tilt position change and installation The location relationship is used to determine the location change information of the camera.
  • the position change information of the pan/tilt that is, the position change information of the pan/tilt relative to the target object
  • the installation position relationship between the pan/tilt handle and the bearing seat can be determined, and then based on the pan/tilt position change and installation
  • the location relationship is used to determine the location change information of the camera.
  • Step S102 Control at least one axis to rotate based on the position change information, so as to compensate the image captured by the photographing device.
  • the target object is included in the image
  • the obtained position change information can identify the position deviation of the photographing device relative to the target object. Since the above-mentioned position deviation can be eliminated or reduced by controlling at least one axis on the pan/tilt, after the position change information is obtained, at least one axis can be controlled to rotate based on the position change information, so as to capture the images captured by the shooting device. The image is compensated.
  • the position change information can be analyzed and processed to determine the control parameter corresponding to at least one axis, and the control parameter can be a compensation angle , the obtained compensation angle is used to reduce or eliminate the positional deviation of the photographing device relative to the target object, and then at least one axis may be controlled to rotate based on the compensation angle.
  • the compensation angle corresponding to at least one axis can be determined through the position change information.
  • the mapping relationship between the position change information and the compensation angle is preset. Through the above mapping relationship, it can be determined that the camera shakes in the direction the compensation angle.
  • rules for analyzing and processing the position change information and the compensation angle are preset, and after the position change information is acquired, the compensation angle of the photographing device in the shaking direction can be determined based on the above rules.
  • those skilled in the art can also use other methods to determine the compensation angle of the camera in the direction of shaking, as long as the accuracy and reliability of determining the compensation angle of the camera in the direction of shaking can be guaranteed, it is not necessary here Let me repeat.
  • the pan/tilt can be controlled to move according to the compensation angle, so as to compensate the image captured by the photographing device.
  • the motor control parameters can be determined based on the compensation angle, and then the motors can be controlled based on the motor control parameters, so as to control the movement of the shaft arm on the pan-tilt, and then compensate the images captured by the shooting device.
  • controlling the gimbal to move according to the compensation angle can include: in the gimbal coordinate system , if the shaking direction is the pitch direction of the gimbal (that is, the vertical direction), then the pitch axis of the gimbal is controlled to move according to the compensation angle.
  • controlling the movement of the gimbal according to the compensation angle may include: in the gimbal coordinate system, if the shaking direction is the roll direction of the gimbal (that is, the left-right direction), controlling the gimbal according to the compensation angle The rollers move.
  • a pan/tilt coordinate system is established in advance, the X-axis direction of the pan/tilt coordinate system is parallel to the The direction can be parallel to the axial direction of the gimbal base (or the gimbal handle), the Y-axis direction is perpendicular to the Z-axis direction and the X-axis direction, and the X-axis direction (index finger direction), Y-axis direction (middle finger direction) direction) and the Z-axis direction (thumb direction) satisfy the right-hand rule.
  • the pitch axis of the gimbal can be controlled according to the compensation angle (pitch axis) for motion.
  • the shaking direction is the yaw direction of the gimbal, it is necessary to compensate the relative motion between the shooting device and the target object in the yaw direction. Therefore, the yaw axis (yaw axis) of the gimbal can be controlled according to the compensation angle Get some exercise.
  • the shaking direction is the roll direction of the gimbal, it is necessary to compensate the relative motion of the shooting device and the target object in the roll direction.
  • the roll axis (roll axis) of the gimbal can be controlled according to the compensation angle Movement, thus effectively realizing that when there is position change information of the shooting device relative to the target object in the shaking direction, the relative motion of the shooting device and the target object in the shaking direction can be compensated, thereby effectively ensuring that the shooting device The quality and effectiveness of the operation.
  • the pan/tilt control method provided in this embodiment obtains the position change information of the photographing device through the position sensor, and then controls at least one axis to rotate based on the position change information to compensate the image captured by the photographing device, thereby effectively realizing
  • the position sensor on the platform is used to compensate the image taken by the shooting device, which ensures the quality and effect of the shooting device on the platform, further improves the practicability of the method, and is beneficial to market promotion and application.
  • Fig. 5 is a schematic flowchart of controlling at least one axis to rotate based on position change information provided by an embodiment of the present invention; on the basis of the above-mentioned embodiments, continue to refer to Fig. 5, when the target object is included in the image, this embodiment Controlling at least one axis to rotate based on position change information in may include:
  • Step S501 Obtain the object distance of the target object captured by the photographing device relative to the photographing device.
  • the object distance between the photographing device and the target object can be determined, specifically, the distance between the photographing device and the target object
  • the distance between objects can be obtained by measuring the distance sensor.
  • other implementation manners in the prior art may also be used to determine the object distance between the photographing device and the target object.
  • Step S502 Control at least one axis to rotate based on the object distance and position change information.
  • the object distance and position change information can be analyzed and processed to control at least one axis on the pan/tilt to rotate based on the analysis and processing results.
  • at least one axis on the pan/tilt may include a pitch axis.
  • controlling at least one axis to rotate based on the object distance and position change information in this embodiment may include: determining the relationship between the camera and the camera based on the position change information The first distance and value of the distance change between the horizontal planes; the first compensation angle of the camera on the pitch axis is determined based on the object distance and the first distance and value; and the rotation of the pitch axis is controlled based on the first compensation angle.
  • the position change information of the shooting device can be analyzed and processed to determine the distance change between the shooting device and the horizontal plane
  • the first distance and value; the above-mentioned horizontal plane may refer to a plane parallel to the ground plane where the target object is located.
  • the position change and value of the distance change between the shooting device and the horizontal plane can be counted.
  • the direction of movement is the X-axis direction as an example.
  • the position change information of the shooting device can be obtained through the position sensor installed on the pan/tilt.
  • the position change information can include: the shooting device is relative to the target object in the Y-axis direction and Z-axis
  • the corresponding vibration amplitude information in the direction, and then, the position change and value of the distance change between the shooting device and the horizontal plane can be determined based on the vibration amplitude information in the Y-axis direction and the vibration amplitude information in the Z-axis direction.
  • the vibration amplitude information in the Y-axis direction can be analyzed and compared with the vibration amplitude information in the Z-axis direction, and the relatively large vibration amplitude information can be determined as the position change of the distance between the photographing device phase and the horizontal plane. and value.
  • the vibration amplitude information in the Y-axis direction and the vibration amplitude information in the Z-axis direction can be vector-combined to obtain the composite amplitude information, and the composite amplitude information is determined as the distance change between the shooting device and the horizontal plane. Position changes and values.
  • the object distance and the first distance and value can be analyzed and processed to determine the first compensation angle of the camera on the pitch axis.
  • based on the object distance and Determining the first compensation angle of the camera on the pitch axis by the first distance and value may include: when the first distance and value is greater than the first distance threshold, determining the ratio of the first distance threshold to the object distance as the first compensation Angle; wherein, the first distance threshold is greater than 0.
  • determining the first compensation angle of the photographing device on the pitch axis based on the object distance and the first distance and value may include: when the first distance and value is less than or equal to the first distance threshold and greater than or equal to the second distance threshold, the ratio of the first distance sum to the object distance is determined as the first compensation angle; wherein, the second distance threshold is smaller than the first distance threshold, and the absolute value of the second distance threshold is equal to the absolute value of the first distance threshold .
  • determining the first compensation angle of the photographing device on the pitch axis based on the object distance and the first distance sum value may include: when the first distance sum value is smaller than the second distance threshold value, then combining the second distance threshold value with The ratio of the object distance is determined as the first compensation angle; wherein, the second distance threshold is less than zero.
  • a first distance threshold and a second distance threshold for analyzing and processing the first distance and value are preset, and the second distance threshold may be smaller than the first distance threshold.
  • the first distance threshold is the same as the second distance threshold.
  • the absolute values of the distance thresholds may be the same, the first distance threshold may be a positive value greater than 0, and the second distance threshold may be a negative value less than 0.
  • the first distance and value can be analyzed and compared with the first distance threshold and the second distance threshold respectively.
  • the first distance and value is greater than the first distance threshold, it means that the shooting device and the The relative motion range of the target object in the shaking direction is relatively large. At this time, in order to avoid controlling the large motion range of the pan/tilt, the ratio between the first distance threshold and the object distance can be determined as the first distance threshold corresponding to the shooting device. a compensation angle.
  • the ratio of the first distance sum value to the object distance can be directly determined as the first compensation angle corresponding to the photographing device.
  • the first distance sum value is less than the second distance threshold, it also indicates that the relative movement range of the shooting device and the target object in the shaking direction is relatively large. At this time, in order to avoid the large movement range of the control pan/tilt, The ratio of the second distance threshold to the object distance is determined as the first compensation angle corresponding to the photographing device.
  • At least one axis on the gimbal may also include a yaw axis; at this time, based on the object distance and position change information, controlling at least one axis to rotate may include: determining the relative position of the shooting device based on the position change information The second distance and value of the distance change between the planes determined by the roll axis and the yaw axis of the device; based on the object distance and the second distance and value, determine the second compensation angle of the shooting device on the yaw axis; based on The second compensation angle controls the rotation of the yaw axis.
  • determining the second compensation angle of the photographing device on the yaw axis based on the object distance and the second distance sum value may include: when the second distance sum value is greater than a third distance threshold value, then combining the second distance threshold value with the object distance The ratio is determined as the second compensation angle; wherein, the third distance threshold is greater than 0.
  • Determining the second compensation angle of the photographing device on the yaw axis based on the object distance and the second distance and value may include: when the second distance and value is less than or equal to the third distance threshold and greater than or equal to the fourth distance threshold, then The ratio of the second distance sum to the object distance is determined as the second compensation angle; wherein, the fourth distance threshold is smaller than the third distance threshold, and the absolute value of the fourth distance threshold is equal to the absolute value of the third distance threshold.
  • Determining the second compensation angle of the photographing device on the yaw axis based on the object distance and the second distance sum value may include: when the second distance sum value is smaller than the fourth distance threshold value, then the ratio of the fourth distance threshold value to the object distance, Determined as the second compensation angle; wherein, the fourth distance threshold is less than 0.
  • At least one axis includes the yaw axis" to realize the realization of controlling the rotation of at least one axis based on the object distance and position change information
  • the realization principle and the realization effect are the same as in the above-mentioned embodiment
  • at least One axis includes a pitch axis” to realize the realization of controlling at least one axis to rotate based on the object distance and position change information, the realization principle and the realization effect are similar.
  • Fig. 6 is a schematic flowchart of controlling at least one axis to rotate based on position change information provided by an embodiment of the present invention; on the basis of the above embodiments, referring to Fig. 6 , the position change information includes the direction of movement; at this time, the present invention
  • controlling at least one shaft to rotate based on the position change information may include:
  • Step S601 Determine the compensation direction and compensation angle of the photographing device based on the position change information and the movement direction.
  • Step S602 Control the pan/tilt to move based on the compensation direction and compensation angle.
  • the position change information and the movement direction can be analyzed and processed to determine the compensation direction and compensation angle of the shooting device.
  • the moving direction included in the above position change information is the moving direction of the target object relative to the shooting device.
  • the moving direction can be analyzed and processed, and the obtained
  • the compensation direction is the direction used to control the photographing device to reduce or eliminate the relative movement range between the photographing device and the target object in the direction of position offset.
  • the compensation direction may be the same as the moving direction of the target object relative to the shooting device, for example: when the target object moves downward relative to the shooting device, at this time, in order to ensure that the shooting device can continuously
  • the device needs to move downward relative to the target object, so that the relative position between the target object and the shooting device remains unchanged or changes little, thus effectively ensuring the determination of the compensation direction corresponding to the shooting device Accurate and reliable.
  • the direction of movement of the target object relative to the shooting device can be determined through the captured pictures in the image acquisition device, specifically through the acquisition of the target object
  • the moving direction of the target object relative to the shooting device is determined based on the position change information in the frame, and then the compensation direction of the shooting device is determined based on the moving direction of the target object relative to the shooting device.
  • the gimbal can be controlled to move based on the compensation direction and compensation angle.
  • the gimbal motor control parameters can be determined based on the compensation direction and compensation angle, and then based on the gimbal motor control parameters.
  • the pan/tilt is controlled to compensate for the relative movement of the shooting device and the target object in the shaking direction.
  • the compensation direction and compensation angle of the shooting device are determined based on the position change information and the movement direction, and then the pan/tilt is controlled to move based on the compensation direction and compensation angle, effectively realizing the control of the pan/tilt in the direction dimension and angle dimension , thereby ensuring the quality and effect of controlling the pan-tilt, and improving the stability and reliability of the pan-tilt control method.
  • Figure 7 is a schematic flow chart of another pan/tilt control method provided by an embodiment of the present invention; on the basis of any one of the above embodiments, referring to the accompanying drawing 7, after determining the compensation direction and compensation angle of the shooting device, the present invention
  • the method in the embodiment may also include:
  • Step S701 Detect whether the compensation angle is greater than a preset angle threshold.
  • Step S702 When the compensation angle is greater than the angle threshold, obtain a control coefficient for controlling the movement of the pan/tilt.
  • Step S703 Determine a target compensation angle based on the control coefficient and the compensation angle, wherein the target compensation angle is less than or equal to an angle threshold.
  • the gimbal can be controlled to move based on the compensation angle.
  • the compensation angle is relatively large, if the gimbal is controlled directly based on the compensation angle, the range of the gimbal motion will be relatively large.
  • you can The determined compensation angle is limited according to the actual demand.
  • the compensation angle is relatively small, the range of controlling the gimbal to move based on the compensation angle is small, and at this time, the gimbal can be directly controlled to move based on the compensation angle.
  • the control coefficient used to control the movement of the pan/tilt can be obtained, wherein the control coefficient is stored in the preset area, and can be obtained by accessing the preset area The control coefficient used to control the motion of the gimbal.
  • the target compensation angle may be determined based on the control coefficient and the compensation angle, wherein the target compensation angle is less than or equal to the angle threshold.
  • the control coefficient may be a coefficient greater than 0 and less than 1.
  • determining the target compensation angle may include: determining a product value of the control coefficient and the compensation angle as the target compensation angle.
  • the control coefficient is a coefficient greater than 0 and less than 1
  • the product value of the control coefficient and the compensation angle can be determined as the target compensation angle, and the target compensation angle at this time is less than or equal to the angle threshold, thereby effectively ensuring the accuracy and reliability of determining the target compensation angle.
  • control coefficient may be a coefficient greater than 1
  • determining the target compensation angle based on the control coefficient and the compensation angle may include: determining the ratio of the compensation angle to the control coefficient as the target compensation angle.
  • the ratio of the compensation angle to the control coefficient can be determined as the target compensation angle, and the target compensation angle at this time is less than or equal to the angle threshold , thus effectively ensuring the accuracy and reliability of determining the target compensation angle.
  • the control coefficient used to control the movement of the pan/tilt is obtained, and then the target compensation angle is determined based on the control coefficient and the compensation angle , this effectively realizes that when the compensation angle is relatively large, the compensation angle can be adjusted to a relatively small target compensation angle, and then the pan/tilt is controlled based on the target compensation angle, effectively avoiding the occurrence of excessive control of the pan/tilt movement , further improving the stability and reliability of controlling the pan/tilt.
  • Fig. 8 is a schematic flowchart of controlling the rotation of the at least one shaft based on the position change information provided by an embodiment of the present invention; on the basis of any of the above embodiments, referring to Fig. 8, this embodiment provides another An implementation of controlling the movement of the pan-tilt according to the compensation angle.
  • controlling the movement of the pan-tilt according to the compensation angle in this embodiment may include:
  • Step S801 Obtain the speed information of the shooting device relative to the target object.
  • Step S802 Based on the velocity information, determine the angular velocity corresponding to the camera.
  • Step S803 Control at least one axis to move based on the compensation angle and the angular velocity.
  • the positional displacement direction of the shooting device relative to the target object can be obtained.
  • speed information Specifically, a binocular sensor or an inertial measurement unit (IMU) may be provided on the pan/tilt, and then the speed information of the photographing device in a position offset direction relative to the target object may be acquired through the binocular sensor or IMU.
  • IMU inertial measurement unit
  • the velocity information can be analyzed and processed to determine the angular velocity corresponding to the photographing device.
  • this embodiment does not limit the specific implementation of determining the angular velocity corresponding to the photographing device.
  • Technicians can set according to specific application scenarios and application requirements.
  • the mapping relationship between velocity information and angular velocity is pre-configured, and the angular velocity corresponding to the shooting device can be determined based on the above mapping relationship.
  • the target setting speed can be obtained, and then the speed deviation is determined based on the measured speed information and the target setting speed, and then the angular velocity corresponding to the shooting device is determined based on the speed deviation, and the angular velocity is used to reduce or Eliminate the positional deviation of the shooting device relative to the target object in the positional deviation direction.
  • At least one axis of the pan/tilt can be controlled to move based on the compensation angle and angular velocity, thereby effectively realizing the accuracy of controlling the pan/tilt, and further providing the pan/tilt control The practicality of the method.
  • this application embodiment provides a pan/tilt control method, and the pan/tilt control method is used to solve
  • the three-axis gimbal in the prior art can only increase stability in the direction of rotation, but cannot increase stability in the vertical direction, for example: when the user is running with a handheld gimbal When it is necessary to shoot close objects in scenes such as climbing stairs, it cannot effectively stabilize in the vertical direction.
  • pan-tilt control method In order to facilitate the understanding of the pan-tilt control method provided in this application embodiment, the realization principle of the pan-tilt control method is firstly described. When there is a movement, the imaging of the subject on the camera will move. If the camera moves back and forth quickly, then the whole picture will shake violently, which will affect the shooting effect.
  • the direction of rotation is related to the optical path design of the camera. For example, as shown in Figure 9, in the camera When moving vertically upwards, that is, the subject moves downward relative to the camera. At this time, in order to ensure the quality and effect of shooting the subject, it is necessary to control the camera to rotate downward at an angle to ensure that the subject can appear on the camera. In the capture screen of the camera, and improve the quality and effect of shooting objects.
  • the pitch axis arm of the gimbal provided in this application embodiment may be provided with a position sensor, as shown in FIG. 10 , the position sensor may be TOF, binocular, IMU, or a combination thereof.
  • the PTZ control method provided in the present embodiment can comprise the following steps:
  • Step 1 Measure information such as position change information and speed of the camera in the vertical direction through the position sensor.
  • Step 2 Map information such as position change information and velocity to the target angle and angular velocity of the pitch axis.
  • mapping the position change information to the target angle in the process of mapping the position change information to the target angle, it can be realized through the following implementation methods, assuming that the object distance is l, and the height in the vertical direction collected by the position sensor is h , at the set control frequency (or the update frequency of the position sensor), the following mapping relationship can be used to determine the target angle ⁇ (defined as positive when the gimbal turns upward):
  • ⁇ h i is the position change information of the camera in the vertical direction measured by the position sensor (it is defined as positive when the gimbal turns upward), and H is a threshold value of a position change value, which means that the vertical stabilization compensation only compensates within a range
  • the displacement in the vertical direction wherein, H can be a positive value, -H can be a negative value; N represents a time period, is the sum of the position change values within this time period (N), and the above-mentioned time period is the closed-loop frequency for controlling the pan/tilt.
  • Step 3 Input the target angle and angular velocity into the angle controller to obtain the motor control parameters.
  • Step 4 Control the motor on the gimbal based on the motor control parameters to control the rotation of the pitch axis on the gimbal to set the angle, and realize the compensation operation for the relative motion between the camera and the object in the vertical direction.
  • the pan-tilt control method provided by this application embodiment effectively realizes the stabilization operation for shaking in other motion directions except the target motion direction, thereby ensuring the quality and effect of the pictures taken by the camera on the pan-tilt , effectively avoiding the jittering or blurring of the picture when shooting a close object, further improving the practicability of the method, and being beneficial to market promotion and application.
  • Fig. 13 is a schematic structural diagram of a pan-tilt control device provided by an embodiment of the present invention; referring to the accompanying drawing 13, the present embodiment provides a pan-tilt control device, wherein the pan-tilt includes: Bearing base, at least one axis for adjusting the angle of the shooting device and a position sensor, the shooting device is used for image shooting; specifically, the control device may include:
  • memory 12 for storing computer programs
  • the processor 11 is used to execute the computer program stored in the memory 12 to realize:
  • At least one axis is controlled to rotate based on the position change information, so as to compensate the image captured by the photographing device.
  • processor 11 is also configured to execute all or part of the steps in the foregoing embodiment shown in FIG. 1 .
  • the structure of the electronic device may further include a communication interface 13 for the electronic device to communicate with other devices or a communication network.
  • the position sensor is installed on the bearing seat for acquiring position change information of the photographing device.
  • the pan/tilt includes a pan/tilt handle for supporting the bearing seat, and the position sensor is installed on the pan/tilt handle; when the processor 11 obtains the position change information of the shooting device through the position sensor, the processor 11 is used to: pass the position The sensor acquires the position change of the pan-tilt; determines the installation position relationship between the handle of the pan-tilt and the bearing seat; and determines the position change information of the shooting device based on the position change of the pan-tilt and the installation position relationship.
  • the image includes a target object; when the processor 11 controls at least one axis to rotate based on the position change information, the processor 11 is configured to: acquire the object distance of the target object captured by the shooting device relative to the shooting device; Object distance and position change information to control at least one axis to rotate.
  • At least one axis includes a pitch axis; when the processor 11 controls at least one axis to rotate based on the object distance and position change information, the processor 11 is configured to perform: determine the distance between the shooting device and the horizontal plane based on the position change information The first distance and value of the distance change; determine the first compensation angle of the shooting device on the pitch axis based on the object distance and the first distance and value; and control the rotation of the pitch axis based on the first compensation angle.
  • the processor 11 when the processor 11 determines the first compensation angle of the photographing device on the pitch axis based on the object distance and the first distance sum value, the processor 11 is configured to: when the first distance sum value is greater than the first distance threshold , the ratio of the first distance threshold to the object distance is determined as the first compensation angle; wherein, the first distance threshold is greater than 0.
  • the processor 11 determines the first compensation angle of the photographing device on the pitch axis based on the object distance and the first distance sum value
  • the processor 11 is configured to: when the first distance sum value is less than or equal to the first distance threshold and is greater than or equal to the second distance threshold, the ratio of the first distance sum value to the object distance is determined as the first compensation angle; wherein, the second distance threshold is less than the first distance threshold, and the absolute value of the second distance threshold The value is equal to the absolute value of the first distance threshold.
  • the processor 11 when the processor 11 determines the first compensation angle of the photographing device on the pitch axis based on the object distance and the first distance sum value, the processor 11 is configured to: when the first distance sum value is less than the second distance threshold , the ratio of the second distance threshold to the object distance is determined as the first compensation angle; wherein, the second distance threshold is less than zero.
  • At least one axis includes a yaw axis; when the processor 11 controls the at least one axis to rotate based on the object distance and position change information, the processor 11 is configured to perform: determine the relative position of the shooting device based on the position change information The second distance and value of the distance change between the planes determined by the roll axis and the yaw axis of the device; based on the object distance and the second distance and value, determine the second compensation angle of the shooting device on the yaw axis; based on The second compensation angle controls the rotation of the yaw axis.
  • the processor 11 determines the second compensation angle of the shooting device on the yaw axis based on the object distance and the second distance and value
  • the processor 11 is configured to: when the second distance and the value are greater than the third distance threshold, the ratio of the second distance threshold to the object distance is determined as the second compensation angle; wherein, the third distance threshold is greater than 0.
  • the processor 11 when the processor 11 determines the second compensation angle of the photographing device on the yaw axis based on the object distance and the second distance sum value, the processor 11 is configured to: when the second distance sum value is less than or equal to the first Three distance thresholds, and when greater than or equal to the fourth distance threshold, the ratio of the second distance sum value to the object distance is determined as the second compensation angle; wherein, the fourth distance threshold is less than the third distance threshold, and the fourth distance threshold The absolute value of is equal to the absolute value of the third distance threshold.
  • the processor 11 when the processor 11 determines the second compensation angle of the photographing device on the yaw axis based on the object distance and the second distance sum value, the processor 11 is configured to: when the second distance sum value is less than the fourth distance threshold, the ratio of the fourth distance threshold to the object distance is determined as the second compensation angle; wherein, the fourth distance threshold is less than 0.
  • the position change information includes the direction of movement; when the processor 11 controls at least one axis to rotate based on the position change information, the processor 11 is configured to: determine the compensation direction and compensation direction of the camera based on the position change information and the movement direction Angle: Control the gimbal to move based on the compensation direction and compensation angle.
  • the processor 11 is also used to: detect whether the compensation angle is greater than a preset angle threshold; A control coefficient for the movement; based on the control coefficient and the compensation angle, a target compensation angle is determined, wherein the target compensation angle is less than or equal to an angle threshold.
  • the processor 11 when the processor 11 determines the target compensation angle based on the control coefficient and the compensation angle, the processor 11 is configured to: determine the product value of the control coefficient and the compensation angle as the target compensation angle.
  • the processor 11 when the processor 11 controls at least one axis to rotate based on the position change information, the processor 11 is configured to: acquire speed information of the photographing device relative to the target object; determine an angular velocity corresponding to the photographing device based on the speed information ; Control at least one axis to rotate based on position change information and angular velocity.
  • the device shown in FIG. 13 can execute the method of the embodiment shown in FIG. 1-FIG. 12 .
  • the parts not described in detail in this embodiment refer to the relevant description of the embodiment shown in FIG. 1-FIG. 12 .
  • an embodiment of the present invention provides a computer storage medium, which is used to store computer software instructions used by electronic devices, which includes the programs involved in executing the pan/tilt control method in the method embodiments shown in FIGS. 1-12 above. .
  • Fig. 14 is a schematic structural diagram of a pan/tilt provided by an embodiment of the present invention. Referring to the accompanying drawing 14, this embodiment provides a pan/tilt, including:
  • the bearing seat 21 is used to support the shooting device 22;
  • the pan-tilt control device 24 in the above-mentioned embodiment in FIG. 13 is used to control the pan-tilt.
  • the bearing seat 21 can be different with the type of platform, for example, when the cloud platform is a hand-held platform, the bearing seat 21 can be a handle; when the cloud platform is an airborne platform, the bearing seat 21 can be a The fuselage of the platform. It can be understood that the pan/tilt includes but is not limited to the types described above.
  • the disclosed related remote control device and method can be realized in other ways.
  • the embodiments of the remote control device described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of remote control devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium , including several instructions for causing a computer processor (processor) to execute all or part of the steps of the method described in each embodiment of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种云台控制方法、装置、云台和存储介质,云台包括:用于支撑拍摄装置(22)的承载座(21)、用于调整拍摄装置(22)的角度的至少一个轴以及位置传感器(23),拍摄装置(22)用于进行图像拍摄;云台控制方法包括:通过位置传感器获取拍摄装置的位置变化信息(S101);基于位置变化信息控制至少一个轴进行转动,以对拍摄装置的拍摄图像进行补偿(S102)。该方法通过获取位置传感器(23)获取拍摄装置(22)的位置变化信息,而后基于位置变化信息控制云台进行运动,从而有效地实现了通过云台上的位置传感器(23)来对拍摄装置(22)的拍摄图像进行补偿操作,保证了云台上拍摄装置(22)工作的质量和效果。

Description

云台控制方法、装置、云台和存储介质 技术领域
本发明实施例涉及云台技术领域,尤其涉及一种云台控制方法、装置、云台和存储介质。
背景技术
随着云台技术的飞速发展,三轴云台的应用越来越广泛,目前,三轴云台的增稳主要针对转动扰动,而对于除了目标运动方向之外的其他运动方向上的抖动则无法进行增稳操作。举例来说,在三轴云台中的手柄转动了俯仰轴pitch时,则在pitch轴的反方向转相同的角度即可抵消转动扰动,实现增稳操作。然而,在一些运动场景中,例如:爬楼梯、跑步等运动场景,三轴云台在竖直方向上则无法起到增稳效果,这样容易导致通过云台所采集到的画面晃动会非常厉害。
发明内容
本发明实施例提供了一种云台控制方法、装置、云台和存储介质,通过云台上的位置传感器实现了对拍摄装置的拍摄图像进行补偿操作,保证了云台上拍摄装置工作的质量和效果。
本发明的第一方面是为了提供一种云台控制方法,其中,云台包括:用于支撑拍摄装置的承载座、用于调整所述拍摄装置的角度的至少一个轴以及位置传感器,所述拍摄装置用于进行图像拍摄;所述方法包括:
通过所述位置传感器获取所述拍摄装置的位置变化信息;
基于所述位置变化信息控制所述至少一个轴进行转动,以对所述拍摄装置拍摄的图像进行补偿。
本发明的第二方面是为了提供一种云台控制装置,其中,云台包括:用于支撑拍摄装置的承载座、用于调整所述拍摄装置的角度的至少一个轴以及位置传感器,所述拍摄装置用于进行图像拍摄;所述控制装置包括:
存储器,用于存储计算机程序;
处理器,用于运行所述存储器中存储的计算机程序以实现:
通过所述位置传感器获取所述拍摄装置的位置变化信息;
基于所述位置变化信息控制所述至少一个轴进行转动,以对所述拍摄装置拍摄的图像进行补偿。
本发明的第三方面是为了提供一种云台,包括:
承载座,用于支撑拍摄装置;
至少一个轴,用于调整所述拍摄装置的角度;
位置传感器;
上述第二方面所述的云台控制装置,用于对所述云台进行控制。
本发明的第四方面是为了提供一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于第一方面所述的云台控制方法。
本发明实施例提供的技术方案,通过设置于云台上的位置传感器获取所述拍摄装置的位置变化信息;而后基于所述位置变化信息控制所述至少一个轴进行转动,以对所述拍摄装置拍摄的图像进行补偿;从而有效地实现了通过云台上的位置传感器来对拍摄装置拍摄的图像进行补偿操作,保证了云台上拍摄装置工作的质量和效果,进一步提高了该方法的实用性,有利于市场的推广与应用。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明实施例提供的一种云台控制方法的流程示意图;
图2为本发明实施例提供的一种云台的结构示意图一;
图3为本发明实施例提供的一种云台的结构示意图二;
图4为本发明实施例提供的拍摄装置相对于目标对象的运动幅度的示意图;
图5为本发明实施例提供的基于所述位置变化信息控制所述至少一个轴进行转动的流程示意图;
图6为本发明实施例提供的基于所述位置变化信息控制所述至少一个轴 进行转动的流程示意图;
图7为本发明实施例提供的另一种云台控制方法的流程示意图;
图8为本发明实施例提供的基于所述位置变化信息控制所述至少一个轴进行转动的流程示意图;
图9为本发明应用实施例提供的一种云台控制方法的原理示意图;
图10为本发明应用实施例提供的一种云台的结构示意图;
图11为本发明应用实施例提供的对云台进行控制的原理示意图;
图12为本发明应用实施例提供的确定与云台相对应的目标角度的示意图;
图13为本发明实施例提供的一种云台控制装置的结构示意图;
图14为本发明实施例提供的一种云台的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
为了便于理解本申请的技术方案和技术效果,下面对相关技术进行简要说明:
目前,对于云台而言,应用的主流结构为三轴云台,而三轴云台的增稳操作主要是针对转动扰动,而对于除了目标运动方向之外的其他运动方向上的抖动则无法进行增稳操作。举例来说,在三轴云台中的手柄转动了俯仰轴pitch时,则在pitch轴的反方向转相同的角度即可抵消转动扰动,实现增稳操作。然而,在一些运动场景中,例如:爬楼梯、跑步等云台进行运动的场景。三轴云台在竖直方向上无法起到增稳效果,这样容易导致通过云台所采集到的画面晃动会非常厉害。
为了改善目前三轴云台存在的对于除了目标运动方向之外的其他运动方向上的抖动无法进行增稳操作的问题,相关技术中提供了一种云台,该云台 中增加了第四轴,通过第四轴可以实现对除了目标运动方向之外的其他运动方向上的抖动进行增稳,改善位于云台上图像采集装置(例如:相机、具有图像采集功能的终端设备等)的画面采集质量。然而,上述所提供的云台结构由于增加第四轴,这样不仅会增加额外的执行器(用于对第四轴进行控制),并且还会增加云台的体积、重量和成本。
为了解决上述技术问题,本实施例提供了一种云台控制方法、装置、云台和存储介质,其中,云台包括:用于支撑拍摄装置的承载座、用于调整拍摄装置的角度的至少一个轴以及位置传感器,拍摄装置用于进行图像拍摄;云台控制方法包括:通过位置传感器获取拍摄装置的位置变化信息;基于位置变化信息控制至少一个轴进行转动,以对拍摄装置拍摄的图像进行补偿,这样有效地实现了基于位置传感器来对拍摄装置拍摄的图像进行补偿,保证了云台上拍摄装置工作的质量和效果。
下面结合附图,对本发明的一些实施方式作详细说明。在各实施例之间不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为本发明实施例提供的一种云台控制方法的流程示意图;参考附图1所示,本实施例提供了一种云台控制方法,其中,云台可以包括:用于支撑拍摄装置的承载座、用于调整拍摄装置的角度的至少一个轴以及位置传感器,拍摄装置用于进行图像拍摄;具体的,在需要进行图像采集操作的应用场景中,相机可以为照相机、摄像机、手机或者其他具有拍摄功能的任意设备。可以理解的是,云台上不仅可以设置拍摄装置,还可以设置其他类型的负载,例如:检测器、追光灯等等,检测器可以为温度传感器、湿度传感器、风速传感器、二氧化碳传感器等等。在需要针对某一目标进行追光操作时,负载可以为追光灯。可以理解的是,负载类型并不限于上述所描述的类型,本领域技术人员可以根据不同的应用场景或者应用需求对负载进行任意配置。
另外,本实施例中的云台可以为手持云台、车载云台、机载云台等等,本领域技术人员可以基于不同的应用场景或者应用需求选择不同的云台类型,在此不再赘述。为了便于理解本实施例中的云台控制方法的具体实现原理,下面以三轴云台为例,对云台和拍摄装置之间的连接关系进行说明,如图2所示,本实施例中的云台100可以包括:用于驱动拍摄装置200绕第一轴(偏航轴-yaw轴)旋转的第一电机107、用于驱动拍摄装置200绕第二轴(横滚轴-roll轴)旋转的第二电机108和用于驱动拍摄装置200绕第三轴(俯仰轴-pitch轴) 旋转的第三电机109,以及位于第一电机107与第二电机108之间的第一支架101、位于第二电机108与第三电机109之间的第二支架102,第三电机109的一端与拍摄装置200连接或与用于支撑拍摄装置200的第三支架103连接;其中,第三支架103可以为夹持件,用于夹持拍摄装置,也可以为诸如框架,用于至少包覆拍摄装置的一个面以稳固拍摄装置,还可以为诸如转接板。可以理解的是,第一支架101、第二支架102、第三支架103的形状以及结构可以根据需要设计,此处不做具体限定。
对于图2所描述的云台而言,云台为yaw-roll-pitch结构。可以理解的是,三轴云台的结构并不限于上述图2所描述的结构,云台还可以为yaw-pitch-roll结构,如图3所示,云台100可以包括:用于驱动拍摄装置200绕第一轴(偏航轴-yaw轴)旋转的第一电机107、用于驱动拍摄装置200绕第二轴(俯仰轴-pitch轴)旋转的第二电机108和用于驱动拍摄装置200绕第三轴(横滚轴-roll轴)旋转的第三电机109,以及位于第一电机107与第二电机108之间的第一支架101、位于第二电机108与第三电机109之间的第二支架102,第三电机109的一端与拍摄装置200连接或与用于支撑拍摄装置200的第三支架103连接。
承接上述陈述内容,本实施例所提供的云台控制方法可以对上述的云台进行控制,该控制方法的执行主体可以是云台控制装置,可以理解的是,该控制装置可以实现为软件、或者软件和硬件的组合;具体的,该方法可以包括:
步骤S101:通过位置传感器获取拍摄装置的位置变化信息。
步骤S102:基于位置变化信息控制至少一个轴进行转动,以对拍摄装置拍摄的图像进行补偿。
下面针对上述各个步骤的实现过程进行详细阐述:
步骤S101:通过位置传感器获取拍摄装置的位置变化信息。
其中,在拍摄装置设置于云台上时,拍摄装置可以随着云台的运动而进行运动,具体的,云台可以基于一目标运动方向进行运动,在不同的应用场景中,目标运动方向可以对应有不同的方向,例如:在用户手持云台在某一平面上进行移动时,目标运动方向可以为水平方向;在用户手持云台上楼梯时,目标运动方向可以为倾斜方向。在云台安装于无人机上时,无人机由高空直线下降或者由低空直线上升的过程中,目标运动方向可以为竖直方向。
在用户携带云台进行运动的过程中,位于云台上的拍摄装置可以随着云台的运动而进行运动。举例来说,在云台的目标运动方向为水平方向时,拍摄装置不仅在水平方向上存在位置变化,还会在其他方向(竖直上下方向)上存在位置变化,即此时的拍摄装置随着云台的运动相对于某一目标对象而言,在上下方向上存在一定的位置偏移情况。在云台的目标运动方向为倾斜方向,拍摄装置不仅在倾斜方向上存在位置变化,还会在其他方向(竖直上下方向)上存在位置变化,即此时的拍摄装置随着云台的运动相对于某一目标对象而言,在上下方向上存在一定的位置偏移情况。
另外,在云台带动拍摄装置进行运动的过程中,拍摄装置可以对某一目标对象进行图像拍摄操作,拍摄装置相对于目标对象而言存在一定的位置偏移情况,上述位置偏移情况所对应的方向是目标对象相对于拍摄装置往复运动的方向。在一些实例中,在云台处于运动状态时,抖动方向与云台的目标运动方向之间呈设定角度,设定角度大于0°,例如:设定角度可以为90°,即位置偏移方向可以与目标运动方向相垂直。
举例来说,在拍摄装置为相机时,若用户手持云台进行移动,以使得位于云台上的相机对某一目标对象进行拍摄操作时,云台的目标运动方向可以为水平方向,位置偏移方向可以为目标对象相对于相机进行往复运动的竖直方向,此时,位置偏移方向与目标运动方向相垂直。或者,在无人机搭载云台由高空直线下落的过程中,云台的目标运动方向可以为竖直方向,位置偏移方向可以为目标对象相对于相机进行往复运动的水平方向,此时,位置偏移方向与目标运动方向相垂直。或者,在用户手持云台爬楼梯的过程中,云台的目标运动方向可以为倾斜方向,位置偏移方向可以为目标对象相对于相机进行往复运动的竖直方向,此时,位置偏移方向与目标运动方向之间呈锐角角度或者钝角角度。
此外,云台上可以设置有用于获取拍摄装置的位置变化信息的位置传感器,为了能够准确地对云台进行控制,可以通过位置传感器获取拍摄装置的位置变化信息,以便基于位置变化信息控制至少一个轴进行转动,以对拍摄装置拍摄的图像进行补偿。在一些实例中,位置传感器可以安装于承载座,此时的位置传感器用于获取拍摄装置的位置变化信息,即通过安装于承载座上的位置传感器可以直接获取到拍摄装置的位置变化信息。
具体的,云台的承载座可以包括多个轴臂,位置传感器可以设置于任意 一个轴臂上,其中,位置传感器可以包括以下至少之一:双目传感器、惯性测量单元IMU、飞行时间传感器TOF。举例来说:对于yaw-pitch-roll结构的云台而言,位置传感器可以设置于靠近于roll轴的轴臂上;对于yaw-roll-pitch结构的云台而言,位置传感器可以设置于靠近于pitch轴的轴臂上,只要能够保证位置传感器设置于靠近拍摄装置所在的轴臂即可,这样可以保证对拍摄装置的位置变化信息进行准确、稳定地获取操作。
在又一些实例中,云台可以包括用于支撑承载座的云台手柄,位置传感器可以安装于云台手柄;此时,通过位置传感器获取拍摄装置的位置变化信息可以包括:通过位置传感器获取云台的云台位置变化;确定云台手柄与承载座之间的安装位置关系;基于云台位置变化和安装位置关系,确定拍摄装置的位置变化信息。
其中,由于位置传感器安装于云台手柄,而此时的拍摄装置设置于承载座上,云台手柄与承载座相连接,此时,在云台进行运动的过程中,通过位置传感器能够直接获取云台的位置变化信息(即为云台相对于目标对象的位置变化信息),而后基于云台结构可以确定云台手柄与承载座之间的安装位置关系,而后可以基于云台位置变化和安装位置关系来确定拍摄装置的位置变化信息。
当然的,本领域技术人员也可以采用其他的方式来通过位置传感器获取拍摄装置的位置变化信息,只要能够保证对拍摄装置的位置变化信息进行获取的准确可靠性即可,在此不再赘述。
步骤S102:基于位置变化信息控制至少一个轴进行转动,以对拍摄装置拍摄的图像进行补偿。
其中,图像中包括目标对象,而所获得的位置变化信息能够标识拍摄装置相对于目标对象所存在的位置偏移情况。由于通过对云台上至少一个轴的控制可以消除或者降低上述的位置偏移情况,因此,在获取到位置变化信息之后,可以基于位置变化信息控制至少一个轴进行转动,以对拍摄装置拍摄的图像进行补偿操作。
在一些实例中,在获取到拍摄装置相对于目标对象在抖动方向上的位置变化信息之后,可以对位置变化信息进行分析处理,以确定至少一个轴所对应的控制参数,控制参数可以为补偿角度,所获得的补偿角度用于降低或者消除拍摄装置相对于目标对象的位置偏移情况,而后可以基于补偿角度控制 至少一个轴进行转动。举例来说,可以通过位置变化信息确定至少一个轴所对应的补偿角度,具体的,预先设置有位置变化信息与补偿角度之间的映射关系,通过上述映射关系即可确定拍摄装置在抖动方向上的补偿角度。或者,预先设置有用于对位置变化信息和补偿角度进行分析处理的规则,在获取到位置变化信息之后,可以基于上述规则来确定拍摄装置在抖动方向上的补偿角度。当然的,本领域技术人员也可以采用其他的方式来确定拍摄装置在抖动方向上的补偿角度,只要能够保证对拍摄装置在抖动方向上的补偿角度进行确定的准确可靠性即可,在此不再赘述。
在获取到补偿角度之后,可以根据补偿角度来控制云台进行运动,以对拍摄装置拍摄的图像进行补偿。具体的,可以基于补偿角度确定电机控制参数,而后基于电机控制参数对电机进行控制,以实现控制云台上的轴臂进行运动,进而对拍摄装置拍摄的图像进行进行补偿。
可以理解的是,在不同的应用场景中,根据补偿角度可以控制云台上的不同轴臂进行运动,在一些实例中,根据补偿角度控制云台进行运动可以包括:在云台坐标系中,若抖动方向为云台的俯仰方向(也即竖直方向)时,则根据补偿角度控制云台的俯仰轴进行运动。在又一些实例中,根据补偿角度控制云台进行运动可以包括:在云台坐标系中,若抖动方向为云台的横滚方向(也即左右方向)时,根据补偿角度控制云台的横滚轴进行运动。
具体的,以相机作为拍摄装置为例,为了方便理解对云台进行控制的实现方式,预先建立一云台坐标系,该云台坐标系中的X轴方向平行于相机的镜头朝向,Z轴方向可以为与云台基座(或者云台手柄)的轴向相平行的方向,Y轴方向与Z轴方向和X轴方向相互垂直,并且X轴方向(食指方向)、Y轴方向(中指方向)与Z轴方向(拇指方向)之间的关系满足右手定则。
在云台坐标系中,若抖动方向为云台的俯仰方向时,此时需要对拍摄装置和目标对象在俯仰方向上的相对运动进行补偿,因此,则可以根据补偿角度控制云台的俯仰轴(pitch轴)进行运动。若抖动方向为云台的偏航方向时,此时需要对拍摄装置和目标对象在偏航方向上的相对运动进行补偿,因此,则可以根据补偿角度控制云台的偏航轴(yaw轴)进行运动。若抖动方向为云台的横滚方向时,此时需要对拍摄装置和目标对象在横滚方向上的相对运动进行补偿,因此,则可以根据补偿角度控制云台的横滚轴(roll轴)进行运动,从而有效地实现了当拍摄装置相对于目标对象在抖动方向上存在位置变 化信息时,则可以对拍摄装置和目标对象在抖动方向上的相对运动进行补偿,进而有效地保证了拍摄装置运行的质量和效果。
本实施例提供的云台控制方法,通过位置传感器获取拍摄装置的位置变化信息,而后基于位置变化信息控制至少一个轴进行转动,以对拍摄装置拍摄的图像进行补偿,从而有效地实现了通过云台上的位置传感器来对拍摄装置拍摄的图像进行补偿操作,保证了云台上拍摄装置工作的质量和效果,进一步提高了该方法的实用性,有利于市场的推广与应用。
图5为本发明实施例提供的基于位置变化信息控制至少一个轴进行转动的流程示意图;在上述实施例的基础上,继续参考附图5所示,在图像中包括目标对象时,本实施例中的基于位置变化信息控制至少一个轴进行转动可以包括:
步骤S501:获取拍摄装置采集的目标对象相对于拍摄装置的物距。
其中,在利用拍摄装置拍摄包括有目标对象的图像时,为了能够准确地对拍摄装置拍摄的图像进行补偿,可以确定拍摄装置与目标对象之间的物距,具体的,拍摄装置与目标对象之间的物距可以通过距离传感器测量获得。或者,也可以采用现有技术中的其他实现方式来确定拍摄装置与目标对象之间的物距。
步骤S502:基于物距和位置变化信息,控制至少一个轴进行转动。
在获取到物距和位置变化信息之后,可以对物距和位置变化信息进行分析处理,以基于分析处理结果来控制云台上的至少一个轴进行转动。在一些实例中,云台上的至少一个轴可以包括俯仰轴,此时,本实施例中的基于物距和位置变化信息,控制至少一个轴进行转动可以包括:基于位置变化信息确定拍摄装置与水平面之间的距离变化的第一距离和值;基于物距与第一距离和值确定拍摄装置在俯仰轴上的第一补偿角度;基于第一补偿角度,控制俯仰轴转动。
其中,为了保证对拍摄装置拍摄的图像进行补偿的质量和效率,在通过位置传感器获取拍摄装置的位置变化信息之后,可以对位置变化信息进行分析处理,以确定拍摄装置与水平面之间的距离变化的第一距离和值;上述的水平面可以是指与目标对象所在的与地平面相平行的平面。具体的,在通过位置传感器获取到拍摄装置的位置变化信息之后,可以统计拍摄装置与水平面之间的距离变化的位置变化和值,举例来说,参考附图4所示,以云台的目 标运动方向为X轴方向为例,此时,通过设置于云台上的位置传感器可以获取到拍摄装置的位置变化信息,位置变化信息可以包括:拍摄装置相对于目标对象在Y轴方向和Z轴方向上分别对应的振动幅度信息,之后,可以基于Y轴方向上的振动幅度信息和Z轴方向上的振动幅度信息来确定拍摄装置与水平面之间的距离变化的位置变化和值。在一些实例中,可以将Y轴方向上的振动幅度信息和Z轴方向上的振动幅度信息进行分析比较,将比较大的振动幅度信息确定为拍摄装置相与水平面之间的距离变化的位置变化和值。在又一些实例中,可以将Y轴方向上的振动幅度信息和Z轴方向上的振动幅度信息进行矢量合成,获得合成振幅信息,将合成振幅信息确定为拍摄装置与水平面之间的距离变化的位置变化和值。
在获取到物距和第一距离和值之后,可以对物距和第一距离和值进行分析处理,以确定拍摄装置在俯仰轴上的第一补偿角度,在一些实例中,基于物距与第一距离和值确定拍摄装置在俯仰轴上的第一补偿角度可以包括:当第一距离和值大于第一距离阈值时,则将第一距离阈值与物距的比值,确定为第一补偿角度;其中,第一距离阈值大于0。
在又一些实例中,基于物距与第一距离和值确定拍摄装置在俯仰轴上的第一补偿角度可以包括:当第一距离和值小于或等于第一距离阈值且大于或等于第二距离阈值时,则将第一距离和值与物距的比值确定为第一补偿角度;其中,第二距离阈值小于第一距离阈值,且第二距离阈值的绝对值等于第一距离阈值的绝对值。
在又一些实例中,基于物距与第一距离和值确定拍摄装置在俯仰轴上的第一补偿角度可以包括:当第一距离和值小于第二距离阈值时,则将第二距离阈值与物距的比值,确定为第一补偿角度;其中,第二距离阈值小于0。
具体的,预先设置有用于对第一距离和值进行分析处理的第一距离阈值和第二距离阈值,第二距离阈值可以小于第一距离阈值,在一些实例中,第一距离阈值与第二距离阈值的绝对值可以相同,第一距离阈值可以为大于0的正值,第二距离阈值可以为小于0的负值。在获取到第一距离和值之后,可以将第一距离和值分别与第一距离阈值和第二距离阈值进行分析比较,当第一距离和值大于第一距离阈值时,则说明拍摄装置和目标对象在抖动方向上的相对运动幅度较大,此时,为了避免控制云台的运动幅度较大,则可以将第一距离阈值与物距之间的比值确定为与拍摄装置相对应的第一补偿角度。
相类似的,在第一距离和值小于或等于第一距离阈值、且大于或等于第二距离阈值时,则说明拍摄装置和目标对象在抖动方向上的相对运动幅度不是很大,此时,则可以直接将第一距离和值与物距的比值确定为拍摄装置相对应的第一补偿角度。同理的,在第一距离和值小于第二距离阈值时,同样说明拍摄装置和目标对象在抖动方向上的相对运动幅度较大,此时,为了避免控制云台的运动幅度较大,则将第二距离阈值与物距的比值确定为拍摄装置相对应的第一补偿角度。
在又一些实例中,云台上的至少一个轴还可以包括偏航轴;此时,基于物距和位置变化信息,控制至少一个轴进行转动可以包括:基于位置变化信息确定拍摄装置相对于拍摄装置的横滚轴及偏航轴所确定的平面之间的距离变化的第二距离和值;基于物距与第二距离和值,确定拍摄装置在偏航轴上的第二补偿角度;基于第二补偿角度,控制偏航轴转动。
其中,基于物距与第二距离和值确定拍摄装置在偏航轴上的第二补偿角度可以包括:当第二距离和值大于第三距离阈值时,则将第二距离阈值与物距的比值,确定为第二补偿角度;其中,第三距离阈值大于0。
基于物距与第二距离和值确定拍摄装置在偏航轴上的第二补偿角度可以包括:当第二距离和值小于或等于第三距离阈值且大于或等于第四距离阈值时,则将第二距离和值与物距的比值确定为第二补偿角度;其中,第四距离阈值小于第三距离阈值,且第四距离阈值的绝对值等于第三距离阈值的绝对值。
基于物距与第二距离和值确定拍摄装置在偏航轴上的第二补偿角度可以包括:当第二距离和值小于第四距离阈值时,则将第四距离阈值与物距的比值,确定为第二补偿角度;其中,第四距离阈值小于0。
需要说明的是,本实施例中“至少一个轴包括偏航轴”来实现基于物距和位置变化信息,控制至少一个轴进行转动的实现方式、实现原理和实现效果与上述实施例中“至少一个轴包括俯仰轴”来实现基于物距和位置变化信息,控制至少一个轴进行转动的实现方式、实现原理和实现效果相类似,具体可参考上述陈述内容,在此不再赘述。
本实施例中,通过获取拍摄装置采集的目标对象相对于拍摄装置的物距,而后基于物距和位置变化信息,控制至少一个轴进行转动,有效地实现了通过对至少一个轴进行转动控制保证了对拍摄装置拍摄的图像进行补偿操作, 具体的,能够控制云台在一个设定的范围内进行增稳操作,避免了因云台需要进行增稳操作而出现的转动幅度过大的情况,进一步保证了对云台进行控制的质量和效果。
图6为本发明实施例提供的基于位置变化信息控制至少一个轴进行转动的流程示意图;在上述实施例的基础上,参考附图6所示,位置变化信息包括可以运动方向;此时,本实施例中的基于位置变化信息控制至少一个轴进行转动可以包括:
步骤S601:基于位置变化信息和运动方向,确定拍摄装置的补偿方向和补偿角度。
步骤S602:基于补偿方向和补偿角度控制云台进行运动。
其中,为了能够保证对云台进行控制的精确程度,在位置变化信息中包括运动方向时,可以对位置变化信息和运动方向进行分析处理,以确定拍摄装置的补偿方向和补偿角度。
需要说明的是,上述位置变化信息中所包括的运动方向即为目标对象相对于拍摄装置的运动方向,为了能够准确地获取到拍摄装置的补偿方向,则可以对运动方向进行分析处理,所获得的补偿方向即为用于对拍摄装置进行控制,以降低或者消除拍摄装置和目标对象在位置偏移方向上的相对运动幅度的方向。
在一些实例中,补偿方向可以与目标对象相对于拍摄装置的运动方向相同,例如:目标对象相对于拍摄装置向下移动时,此时,为了保证拍摄装置能够持续地对目标对象进行操作,拍摄装置需要相对于目标对象而言进行向下移动,以使得目标对象与拍摄装置之间的相对位置保持不变或者变化较小,从而有效地保证了对与拍摄装置相对应的补偿方向进行确定的准确可靠性。
当然的,本领域技术人员也可以采用其他的方式来确定拍摄装置的补偿方向,例如:可以通过图像采集装置中所采集画面来确定目标对象相对于拍摄装置的运动方向,具体通过目标对象在采集画面中的位置变化信息来确定目标对象相对于拍摄装置的运动方向,而后基于目标对象相对于拍摄装置的运动方向来确定拍摄装置的补偿方向。
在获取到补偿方向和补偿角度之后,可以基于补偿方向和补偿角度控制云台进行运动,具体的,可以基于补偿方向和补偿角度来确定云台电机控制参数,之后,基于云台电机控制参数来对云台进行控制,以实现对拍摄装置 和目标对象在抖动方向上的相对运动进行补偿。
本实施例中,基于位置变化信息和运动方向确定拍摄装置的补偿方向和补偿角度,而后基于补偿方向和补偿角度控制云台进行运动,有效地实现了在方向维度和角度维度对云台进行控制,进而保证了对云台进行控制的质量和效果,提高了该云台控制方法使用的稳定可靠性。
图7为本发明实施例提供的另一种云台控制方法的流程示意图;在上述任意一个实施例的基础上,参考附图7所示,在确定拍摄装置的补偿方向和补偿角度之后,本实施例中的方法还可以包括:
步骤S701:检测补偿角度是否大于预设的角度阈值。
步骤S702:在补偿角度大于角度阈值时,则获取用于控制云台进行运动的控制系数。
步骤S703:基于控制系数和补偿角度,确定目标补偿角度,其中,目标补偿角度小于或等于角度阈值。
其中,在获取到补偿角度之后,则可以基于补偿角度来控制云台进行运动。在补偿角度比较大时,若直接基于补偿角度对云台进行控制,则云台运动的幅度较大,而在某些应用场景中,为了避免云台运动的幅度过大,则可以根据实际场景和实际需求对所确定的补偿角度进行限定。在补偿角度比较小时,基于补偿角度控制云台进行运动的幅度较小,此时则可以直接基于补偿角度控制云台进行运动。
具体的,在获取到补偿角度之后,可以检测补偿角度是否大于预设的角度阈值,在补偿角度大于角度阈值时,则说明补偿角度比较大,此时基于补偿角度控制云台进行运动的幅度较大;因此,为了避免控制云台进行运动的幅度较大,则可以获取用于控制云台进行运动的控制系数,其中,控制系数存储在预设区域中,通过访问预设区域即可获取到用于控制云台进行运动的控制系数。
在获取到用于控制云台进行运动的控制系数之后,则可以基于控制系数和补偿角度来确定目标补偿角度,其中,目标补偿角度小于或等于角度阈值。在一些实例中,该控制系数可以为大于0、且小于1的系数。基于控制系数和补偿角度,确定目标补偿角度可以包括:将控制系数与补偿角度的乘积值,确定为目标补偿角度。
具体的,由于控制系数为大于0、且小于1的系数,因此,在获取到控制 系数和补偿角度之后,可以将控制系数与补偿角度的乘积值确定为目标补偿角度,此时的目标补偿角度小于或等于角度阈值,从而有效地保证了对目标补偿角度进行确定的准确可靠性。
在另一些实例中,控制系数可以为大于1的系数,基于控制系数和补偿角度,确定目标补偿角度可以包括:将补偿角度与控制系数的比值,确定为目标补偿角度。具体的,由于控制系数为大于1的系数,因此,在获取到控制系数和补偿角度之后,可以将补偿角度与控制系数的比值确定为目标补偿角度,此时的目标补偿角度小于或等于角度阈值,从而有效地保证了对目标补偿角度进行确定的准确可靠性。
本实施例中,通过检测补偿角度是否大于预设的角度阈值,在补偿角度大于角度阈值时,则获取用于控制云台进行运动的控制系数,而后基于控制系数和补偿角度来确定目标补偿角度,这样有效地实现了在补偿角度比较大时,可以将补偿角度调整为比较小的目标补偿角度,而后基于目标补偿角度对云台进行控制,有效地避免了出现控制云台运动的幅度过大,进一步提高了对云台进行控制的稳定可靠性。
图8为本发明实施例提供的基于所述位置变化信息控制所述至少一个轴进行转动的流程示意图;在上述任意一个实施例的基础上,参考附图8所示,本实施例提供了另一种根据补偿角度控制云台进行运动的实现方式,具体的,本实施例中的根据补偿角度控制云台进行运动可以包括:
步骤S801:获取拍摄装置相对于目标对象的速度信息。
步骤S802:基于速度信息,确定与拍摄装置相对应的角速度。
步骤S803:基于补偿角度和角速度,控制至少一个轴进行运动。
其中,在拍摄装置相对于目标对象存在往复运动时,则会存在一定的运动速度,为了能够进一步提高对云台进行控制的精确程度,则可以获取拍摄装置相对于目标对象在位置偏移方向上的速度信息。具体的,云台上可以设置有双目传感器或者惯性测量单元IMU,而后可以通过双目传感器或者IMU来获取到拍摄装置相对于目标对象在位置偏移方向上的速度信息。
在获取到速度信息之后,可以对速度信息进行分析处理,以确定与拍摄装置相对应的角速度,具体的,本实施例对于确定与拍摄装置相对应的角速度的具体实现方式不做限定,本领域技术人员可以根据具体的应用场景和应用需求进行设置,在一些实例中,预先配置有速度信息与角速度之间的映射 关系,基于上述映射关系即可确定与拍摄装置相对应的角速度。在又一些实例中,可以获取目标设定速度,而后基于所测量的速度信息和目标设定速度来确定速度偏差,而后基于速度偏差来确定与拍摄装置相对应的角速度,该角速度用于降低或者消除拍摄装置相对于目标对象在位置偏移方向上所存在的位置偏移情况。
在获取到与拍摄装置相对应的角速度之后,可以基于补偿角度和角速度来控制云台的至少一个轴进行运动,从而有效地实现了对云台进行控制的精确程度,进一步提供了该云台控制方法的实用性。
具体应用时,以照相机作为拍摄装置、云台为yaw-roll-pitch轴结构的三轴手持云台为例,本应用实施例提供了一种云台控制方法,该云台控制方法用于解决现有技术中的三轴云台只能在转动方向上进行增稳、而在竖直方向上无法进行增稳的问题,例如:在用户拿着手持云台进行奔跑、用户拿着手持云台上楼梯等场景中需要拍摄较近的物体时,都无法有效地在竖直方向上进行增稳。
为了方便理解本应用实施例所提供的云台控制方法,先对云台控制方法的实现原理进行说明,在利用照相机对拍摄物进行拍摄操作时,当拍摄物不动,而照相机在竖直方向上有一个移动时,拍摄物在照相机上的成像会有移动,如果照相机往复移动较快,那么,整个画面就会有剧烈的抖动,影响拍摄效果。
此时,如果将照相机转动一个角度,能够将拍摄物所对应的成像的移动补偿回来,从而减少画面的抖动,其中,转动方向与照相机的光路设计有关,例如,如图9所示,在照相机竖直向上移动时,即拍摄物相对于照相机向下移动,此时,为了能够保证对拍摄物进行拍摄的质量和效果,则需要控制相机向下转动一个角度,以保证拍摄物可以出现在照相机的采集画面中,并提高对拍摄物体进行拍摄的质量和效果。
为了能够实现上述技术方案,本应用实施例所提供的云台的pitch轴臂上可以设置有位置传感器,如图10所示,该位置传感器可以为TOF、双目、IMU、或者他们的组合。基于上述所提供的云台结构,参考附图11所示,本实施例所提供的云台控制方法可以包括如下步骤:
步骤1:通过位置传感器测量照相机在竖直方向上的位置变化信息和速度等信息。
步骤2:将位置变化信息和速度等信息映射为pitch轴的目标角度和角速度。
具体的,参考附图12所示,在将位置变化信息映射为目标角度的过程中,可以通过以下实现方式来实现,假设物距为l,位置传感器采集得到的竖直方向上的高度为h,在设定的控制频率(或者说位置传感器的更新频率)下,可以采用如下所示的映射关系来确定目标角度Δθ(以云台朝上转定义为正):
Figure PCTCN2021110480-appb-000001
其中,Δh i为位置传感器测量相机在竖直方向上的位置变化信息(以云台朝上转定义为正),H为一个位置变化值的阈值,表示竖直增稳补偿仅仅补偿一个范围内的竖直方向的位移,其中,H可以为正值,-H可以为负值;N代表一个时间段,
Figure PCTCN2021110480-appb-000002
是对这一时间段(N)内的位置变化值的和值,上述的时间段即为对云台进行控制的闭环频率。
步骤3:将目标角度和角速度输入至角度控制器,获得电机控制参数。
步骤4:基于电机控制参数对云台上的电机进行控制,以实现控制云台上的pitch轴转动设定角度,实现对照相机和拍摄物在竖直方向上的相对运动进行补偿操作。
本应用实施例所提供的云台控制方法,有效地实现了能够对除了目标运动方向之外的其他运动方向上的抖动进行增稳操作,进而保证了云台上照相机所拍摄画面的质量和效果,有效地避免了在对较近物体进行拍摄操作时,画面出现抖动或者模糊的情况,进一步提高了该方法的实用性,有利于市场的推广与应用。
图13为本发明实施例提供的一种云台控制装置的结构示意图;参考附图13所示,本实施例提供了一种云台控制装置,其中,云台包括:用于支撑拍摄装置的承载座、用于调整拍摄装置的角度的至少一个轴以及位置传感器,拍摄装置用于进行图像拍摄;具体的,该控制装置可以包括:
存储器12,用于存储计算机程序;
处理器11,用于运行存储器12中存储的计算机程序以实现:
通过位置传感器获取拍摄装置的位置变化信息;
基于位置变化信息控制至少一个轴进行转动,以对拍摄装置拍摄的图像进行补偿。
进一步的,处理器11还用于执行前述图1所示实施例中的全部或部分步骤。
其中,电子设备的结构中还可以包括通信接口13,用于电子设备与其他设备或通信网络通信。
在一些实例中,位置传感器安装于承载座,用于获取拍摄装置的位置变化信息。
在一些实例中,云台包括用于支撑承载座的云台手柄,位置传感器安装于云台手柄;在处理器11通过位置传感器获取拍摄装置的位置变化信息时,处理器11用于:通过位置传感器获取云台的云台位置变化;确定云台手柄与承载座之间的安装位置关系;基于云台位置变化和安装位置关系,确定拍摄装置的位置变化信息。
在一些实例中,图像中包括目标对象;在处理器11基于位置变化信息控制至少一个轴进行转动时,处理器11用于执行:获取拍摄装置采集的目标对象相对于拍摄装置的物距;基于物距和位置变化信息,控制至少一个轴进行转动。
在一些实例中,至少一个轴包括俯仰轴;在处理器11基于物距和位置变化信息,控制至少一个轴进行转动时,处理器11用于执行:基于位置变化信息确定拍摄装置与水平面之间的距离变化的第一距离和值;基于物距与第一距离和值确定拍摄装置在俯仰轴上的第一补偿角度;基于第一补偿角度,控制俯仰轴转动。
在一些实例中,在处理器11基于物距与第一距离和值确定拍摄装置在俯仰轴上的第一补偿角度时,处理器11用于:当第一距离和值大于第一距离阈值时,则将第一距离阈值与物距的比值,确定为第一补偿角度;其中,第一距离阈值大于0。
在一些实例中,在处理器11基于物距与第一距离和值确定拍摄装置在俯仰轴上的第一补偿角度时,处理器11用于:当第一距离和值小于或等于第一距离阈值、且大于或等于第二距离阈值时,则将第一距离和值与物距的比值 确定为第一补偿角度;其中,第二距离阈值小于第一距离阈值,且第二距离阈值的绝对值等于第一距离阈值的绝对值。
在一些实例中,在处理器11基于物距与第一距离和值确定拍摄装置在俯仰轴上的第一补偿角度时,处理器11用于:当第一距离和值小于第二距离阈值时,则将第二距离阈值与物距的比值,确定为第一补偿角度;其中,第二距离阈值小于0。
在一些实例中,至少一个轴包括偏航轴;在处理器11基于物距和位置变化信息,控制至少一个轴进行转动时,处理器11用于执行:基于位置变化信息确定拍摄装置相对于拍摄装置的横滚轴及偏航轴所确定的平面之间的距离变化的第二距离和值;基于物距与第二距离和值,确定拍摄装置在偏航轴上的第二补偿角度;基于第二补偿角度,控制偏航轴转动。
在一些实例中,在处理器11基于物距与第二距离和值,确定拍摄装置在偏航轴上的第二补偿角度时,处理器11用于:当第二距离和值大于第三距离阈值时,则将第二距离阈值与物距的比值,确定为第二补偿角度;其中,第三距离阈值大于0。
在一些实例中,在处理器11基于物距与第二距离和值,确定拍摄装置在偏航轴上的第二补偿角度时,处理器11用于:当第二距离和值小于或等于第三距离阈值,且大于或等于第四距离阈值时,则将第二距离和值与物距的比值确定为第二补偿角度;其中,第四距离阈值小于第三距离阈值,且第四距离阈值的绝对值等于第三距离阈值的绝对值。
在一些实例中,在处理器11基于物距与第二距离和值,确定拍摄装置在偏航轴上的第二补偿角度时,处理器11用于:当第二距离和值小于第四距离阈值时,则将第四距离阈值与物距的比值,确定为第二补偿角度;其中,第四距离阈值小于0。
在一些实例中,位置变化信息包括运动方向;在处理器11基于位置变化信息控制至少一个轴进行转动时,处理器11用于:基于位置变化信息和运动方向,确定拍摄装置的补偿方向和补偿角度;基于补偿方向和补偿角度控制云台进行运动。
在一些实例中,在确定拍摄装置的补偿方向和补偿角度之后,处理器11还用于:检测补偿角度是否大于预设的角度阈值;在补偿角度大于角度阈值时,则获取用于控制云台进行运动的控制系数;基于控制系数和补偿角度, 确定目标补偿角度,其中,目标补偿角度小于或等于角度阈值。
在一些实例中,在处理器11基于控制系数和补偿角度,确定目标补偿角度时,处理器11用于:将控制系数与补偿角度的乘积值,确定为目标补偿角度。
在一些实例中,在处理器11基于位置变化信息控制至少一个轴进行转动时,处理器11用于:获取拍摄装置相对于目标对象的速度信息;基于速度信息,确定与拍摄装置相对应的角速度;基于位置变化信息和角速度,控制至少一个轴进行转动。
图13所示装置可以执行图1-图12所示实施例的方法,本实施例未详细描述的部分,可参考对图1-图12所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1-图12所示实施例中的描述,在此不再赘述。
另外,本发明实施例提供了一种计算机存储介质,用于储存电子设备所用的计算机软件指令,其包含用于执行上述图1-图12所示方法实施例中云台控制方法所涉及的程序。
图14为本发明实施例提供的一种云台的结构示意图,参考附图14所示,本实施例提供了一种云台,包括:
承载座21,用于支撑拍摄装置22;
至少一个轴,用于调整拍摄装置22的角度;
位置传感器23;
上述图13实施例中的云台控制装置24,用于对云台进行控制。
其中,承载座21可以随平台的类型而不同,例如,当云台为手持云台时,承载座21可以为手柄,当云台为机载云台时,承载座21可以为用于搭载云台的机身。可以理解,云台包括但不限于上述说明的类型。
图14所示实施例提供的云台的具体实现原理和实现效果与图13所对应的云台控制装置22的具体实现原理和实现效果相一致,具体可参考上述陈述内容,在这里不再赘述。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关遥控装置 和方法,可以通过其它的方式实现。例如,以上所描述的遥控装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,遥控装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (34)

  1. 一种云台控制方法,其特征在于,其中,云台包括:用于支撑拍摄装置的承载座、用于调整所述拍摄装置的角度的至少一个轴以及位置传感器,所述拍摄装置用于进行图像拍摄;所述方法包括:
    通过所述位置传感器获取所述拍摄装置的位置变化信息;
    基于所述位置变化信息控制所述至少一个轴进行转动,以对所述拍摄装置拍摄的图像进行补偿。
  2. 根据权利要求1所述的方法,其特征在于,所述位置传感器安装于所述承载座,用于获取所述拍摄装置的位置变化信息。
  3. 根据权利要求1所述的方法,其特征在于,所述云台包括用于支撑承载座的云台手柄,所述位置传感器安装于所述云台手柄;通过所述位置传感器获取所述拍摄装置的位置变化信息,包括:
    通过所述位置传感器获取所述云台的云台位置变化信息;
    确定所述云台手柄与所述承载座之间的安装位置关系;
    基于所述云台位置变化和所述安装位置关系,确定所述拍摄装置的位置变化信息。
  4. 根据权利要求1所述的方法,其特征在于,所述图像中包括目标对象;所述基于所述位置变化信息控制所述至少一个轴进行转动,包括:
    获取所述目标对象相对于所述拍摄装置的物距;
    基于所述物距和所述位置变化信息,控制所述至少一个轴进行转动。
  5. 根据权利要求4所述的方法,其特征在于,所述至少一个轴包括俯仰轴;
    所述基于所述物距和所述位置变化信息,控制所述至少一个轴进行转动,包括:
    基于所述位置变化信息确定所述拍摄装置与水平面之间的距离变化的第一距离和值;
    基于所述物距与所述第一距离和值确定所述拍摄装置在俯仰轴上的第一补偿角度;
    基于所述第一补偿角度,控制所述俯仰轴转动。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述物距与所述第一距离和值确定所述拍摄装置在俯仰轴上的第一补偿角度,包括:
    当所述第一距离和值大于第一距离阈值时,则将所述第一距离阈值与所述物距的比值,确定为所述第一补偿角度;
    其中,所述第一距离阈值大于0。
  7. 根据权利要求5所述的方法,其特征在于,所述基于所述物距与所述第一距离和值确定所述拍摄装置在俯仰轴上的第一补偿角度,包括:
    当所述第一距离和值小于或等于第一距离阈值,且大于或等于第二距离阈值时,则将所述第一距离和值与所述物距的比值确定为所述第一补偿角度;
    其中,所述第二距离阈值小于所述第一距离阈值,且所述第二距离阈值的绝对值等于所述第一距离阈值的绝对值。
  8. 根据权利要求7所述的方法,其特征在于,所述基于所述物距与所述第一距离和值确定所述拍摄装置在俯仰轴上的第一补偿角度包括:
    当所述第一距离和值小于所述第二距离阈值时,则将所述第二距离阈值与所述物距的比值,确定为所述第一补偿角度;
    其中,所述第二距离阈值小于0。
  9. 根据权利要求4所述的方法,其特征在于,所述至少一个轴包括偏航轴;所述基于所述物距和所述位置变化信息,控制所述至少一个轴进行转动,包括:
    基于所述位置变化信息确定所述拍摄装置相对于所述拍摄装置的横滚轴及偏航轴所确定的平面之间的距离变化的第二距离和值;
    基于所述物距与所述第二距离和值,确定所述拍摄装置在偏航轴上的第二补偿角度;
    基于所述第二补偿角度,控制所述偏航轴转动。
  10. 根据权利要求9所述的方法,其特征在于,所述基于所述物距与所述第二距离和值确定所述拍摄装置在偏航轴上的第二补偿角度,包括:
    当所述第二距离和值大于第三距离阈值时,则将所述第二距离阈值与所述物距的比值,确定为所述第二补偿角度;
    其中,所述第三距离阈值大于0。
  11. 根据权利要求9所述的方法,其特征在于,所述基于所述物距与所述第二距离和值确定所述拍摄装置在偏航轴上的第二补偿角度,包括:
    当所述第二距离和值小于或等于第三距离阈值且大于或等于第四距离阈值时,则将所述第二距离和值与所述物距的比值确定为所述第二补偿角度;
    其中,所述第四距离阈值小于所述第三距离阈值,且所述第四距离阈值的绝对值等于所述第三距离阈值的绝对值。
  12. 根据权利要求11所述的方法,其特征在于,所述基于所述物距与所述第二距离和值确定所述拍摄装置在偏航轴上的第二补偿角度,包括:
    当所述第二距离和值小于所述第四距离阈值时,则将所述第四距离阈值与所述物距的比值,确定为所述第二补偿角度;
    其中,所述第四距离阈值小于0。
  13. 根据权利要求1所述的方法,其特征在于,所述位置变化信息包括运动方向;
    所述基于所述位置变化信息控制所述至少一个轴进行转动,包括:
    基于所述位置变化信息和所述运动方向,确定所述拍摄装置的补偿方向和补偿角度;
    基于所述补偿方向和补偿角度控制所述云台进行运动。
  14. 根据权利要求13所述的方法,其特征在于,在确定所述拍摄装置的补偿方向和补偿角度之后,所述方法还包括:
    检测所述补偿角度是否大于预设的角度阈值;
    在所述补偿角度大于所述角度阈值时,则获取用于控制所述云台进行运动的控制系数;
    基于所述控制系数和所述补偿角度,确定目标补偿角度,其中,所述目标补偿角度小于或等于所述角度阈值。
  15. 根据权利要求14所述的方法,其特征在于,所述基于所述控制系数和所述补偿角度,确定目标补偿角度,包括:
    将所述控制系数与所述补偿角度的乘积值,确定为所述目标补偿角度。
  16. 根据权利要求1-15中任意一项所述的方法,其特征在于,所述基于所述位置变化信息控制所述至少一个轴进行转动,包括:
    获取所述拍摄装置相对于目标对象的速度信息;
    基于所述速度信息,确定与所述拍摄装置相对应的角速度;
    基于所述位置变化信息和所述角速度,控制所述至少一个轴进行转动。
  17. 一种云台控制装置,其特征在于,其中,云台包括:用于支撑拍摄装置的承载座、用于调整所述拍摄装置的角度的至少一个轴以及位置传感器,所述拍摄装置用于进行图像拍摄;所述控制装置包括:
    存储器,用于存储计算机程序;
    处理器,用于运行所述存储器中存储的计算机程序以实现:
    通过所述位置传感器获取所述拍摄装置的位置变化信息;
    基于所述位置变化信息控制所述至少一个轴进行转动,以对所述拍摄装置拍摄的图像进行补偿。
  18. 根据权利要求17所述的装置,其特征在于,所述位置传感器安装于所述承载座,用于获取所述拍摄装置的位置变化信息。
  19. 根据权利要求17所述的装置,其特征在于,所述云台包括用于支撑承载座的云台手柄,所述位置传感器安装于所述云台手柄;在所述处理器通过所述位置传感器获取所述拍摄装置的位置变化信息时,所述处理器,用于:
    通过所述位置传感器获取所述云台的云台位置变化;
    确定所述云台手柄与所述承载座之间的安装位置关系;
    基于所述云台位置变化和所述安装位置关系,确定所述拍摄装置的位置变化信息。
  20. 根据权利要求17所述的装置,其特征在于,所述图像中包括目标对象;在所述处理器基于所述位置变化信息控制所述至少一个轴进行转动时,所述处理器用于执行:
    获取所述目标对象相对于所述拍摄装置的物距;
    基于所述物距和所述位置变化信息,控制所述至少一个轴进行转动。
  21. 根据权利要求20所述的装置,其特征在于,所述至少一个轴包括俯仰轴;在所述处理器基于所述物距和所述位置变化信息,控制所述至少一个轴进行转动时,所述处理器用于执行:
    基于所述位置变化信息确定所述拍摄装置与水平面之间的距离变化的第一距离和值;
    基于所述物距与所述第一距离和值确定所述拍摄装置在俯仰轴上的第一补偿角度;
    基于所述第一补偿角度,控制所述俯仰轴转动。
  22. 根据权利要求21所述的装置,其特征在于,在所述处理器基于所述物距与所述第一距离和值确定所述拍摄装置在俯仰轴上的第一补偿角度时,所述处理器用于:
    当所述第一距离和值大于第一距离阈值时,则将所述第一距离阈值与所 述物距的比值,确定为所述第一补偿角度;
    其中,所述第一距离阈值大于0。
  23. 根据权利要求21所述的装置,其特征在于,在所述处理器基于所述物距与所述第一距离和值确定所述拍摄装置在俯仰轴上的第一补偿角度时,所述处理器用于:
    当所述第一距离和值小于或等于第一距离阈值、且大于或等于第二距离阈值时,则将所述第一距离和值与所述物距的比值确定为所述第一补偿角度;
    其中,所述第二距离阈值小于第一距离阈值,且所述第二距离阈值的绝对值等于所述第一距离阈值的绝对值。
  24. 根据权利要求23所述的装置,其特征在于,在所述处理器基于所述物距与所述第一距离和值确定所述拍摄装置在俯仰轴上的第一补偿角度时,所述处理器用于:
    当所述第一距离和值小于所述第二距离阈值时,则将所述第二距离阈值与所述物距的比值,确定为所述第一补偿角度;
    其中,所述第二距离阈值小于0。
  25. 根据权利要求20所述的装置,其特征在于,所述至少一个轴包括偏航轴;在所述处理器基于所述物距和所述位置变化信息,控制所述至少一个轴进行转动时,所述处理器用于执行:
    基于所述位置变化信息确定所述拍摄装置相对于所述拍摄装置的横滚轴及偏航轴所确定的平面之间的距离变化的第二距离和值;
    基于所述物距与所述第二距离和值,确定所述拍摄装置在偏航轴上的第二补偿角度;
    基于所述第二补偿角度,控制所述偏航轴转动。
  26. 根据权利要求25所述的装置,其特征在于,在所述处理器基于所述物距与所述第二距离和值,确定所述拍摄装置在偏航轴上的第二补偿角度时,所述处理器用于:
    当所述第二距离和值大于第三距离阈值时,则将所述第二距离阈值与所述物距的比值,确定为所述第二补偿角度;
    其中,所述第三距离阈值大于0。
  27. 根据权利要求25所述的装置,其特征在于,在所述处理器基于所述物距与所述第二距离和值,确定所述拍摄装置在偏航轴上的第二补偿角度时, 所述处理器用于:
    当所述第二距离和值小于或等于第三距离阈值,且大于或等于第四距离阈值时,则将所述第二距离和值与所述物距的比值确定为所述第二补偿角度;
    其中,所述第四距离阈值小于所述第三距离阈值,且所述第四距离阈值的绝对值等于所述第三距离阈值的绝对值。
  28. 根据权利要求27所述的装置,其特征在于,在所述处理器基于所述物距与所述第二距离和值,确定所述拍摄装置在偏航轴上的第二补偿角度时,所述处理器用于:
    当所述第二距离和值小于所述第四距离阈值时,则将所述第四距离阈值与所述物距的比值,确定为所述第二补偿角度;
    其中,所述第四距离阈值小于0。
  29. 根据权利要求17所述的装置,其特征在于,所述位置变化信息包括运动方向;在所述处理器基于所述位置变化信息控制所述至少一个轴进行转动时,所述处理器用于:
    基于所述位置变化信息和所述运动方向,确定所述拍摄装置的补偿方向和补偿角度;
    基于所述补偿方向和补偿角度控制所述云台进行运动。
  30. 根据权利要求29所述的装置,其特征在于,在确定所述拍摄装置的补偿方向和补偿角度之后,所述处理器还用于:
    检测所述补偿角度是否大于预设的角度阈值;
    在所述补偿角度大于所述角度阈值时,则获取用于控制所述云台进行运动的控制系数;
    基于所述控制系数和所述补偿角度,确定目标补偿角度,其中,所述目标补偿角度小于或等于所述角度阈值。
  31. 根据权利要求30所述的装置,其特征在于,在所述处理器基于所述控制系数和所述补偿角度,确定目标补偿角度时,所述处理器用于:
    将所述控制系数与所述补偿角度的乘积值,确定为所述目标补偿角度。
  32. 根据权利要求17-31中任意一项所述的装置,其特征在于,在所述处理器基于所述位置变化信息控制所述至少一个轴进行转动时,所述处理器用于:
    获取所述拍摄装置相对于目标对象的速度信息;
    基于所述速度信息,确定与所述拍摄装置相对应的角速度;
    基于所述位置变化信息和所述角速度,控制所述至少一个轴进行转动。
  33. 一种云台,其特征在于,包括:
    承载座,用于支撑拍摄装置;
    至少一个轴,用于调整所述拍摄装置的角度;
    位置传感器;
    权利要求17-32中任意一项所述的云台控制装置,用于对所述云台进行控制。
  34. 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求1-16中任意一项所述的云台控制方法。
PCT/CN2021/110480 2021-08-04 2021-08-04 云台控制方法、装置、云台和存储介质 WO2023010318A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/110480 WO2023010318A1 (zh) 2021-08-04 2021-08-04 云台控制方法、装置、云台和存储介质
CN202180100194.0A CN117597532A (zh) 2021-08-04 2021-08-04 云台控制方法、装置、云台和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110480 WO2023010318A1 (zh) 2021-08-04 2021-08-04 云台控制方法、装置、云台和存储介质

Publications (1)

Publication Number Publication Date
WO2023010318A1 true WO2023010318A1 (zh) 2023-02-09

Family

ID=85155016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110480 WO2023010318A1 (zh) 2021-08-04 2021-08-04 云台控制方法、装置、云台和存储介质

Country Status (2)

Country Link
CN (1) CN117597532A (zh)
WO (1) WO2023010318A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117557167A (zh) * 2024-01-03 2024-02-13 微网优联科技(成都)有限公司 一种云台机的生产质量管理方法及系统
CN117953007B (zh) * 2024-03-13 2024-06-11 长春通视光电技术股份有限公司 一种基于图像匹配的线性运动补偿控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231371A (ja) * 1998-02-19 1999-08-27 Aiphone Co Ltd カメラパンチルト構造
US20100092165A1 (en) * 2008-10-03 2010-04-15 Cartoni S.P.A. Camera support head for motion picture, tv and like shootings
CN106375720A (zh) * 2016-09-12 2017-02-01 中国科学院自动化研究所 智能视觉云台系统及其实现方法
CN111866395A (zh) * 2020-08-07 2020-10-30 苏州臻迪智能科技有限公司 增稳处理模组、无人机摄像系统以及图像增稳处理方法
CN112145941A (zh) * 2020-06-30 2020-12-29 桂林智神信息技术股份有限公司 多功能手持摄影器材
CN112334698A (zh) * 2019-10-28 2021-02-05 深圳市大疆创新科技有限公司 竖向增稳机构、云台装置和感测设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231371A (ja) * 1998-02-19 1999-08-27 Aiphone Co Ltd カメラパンチルト構造
US20100092165A1 (en) * 2008-10-03 2010-04-15 Cartoni S.P.A. Camera support head for motion picture, tv and like shootings
CN106375720A (zh) * 2016-09-12 2017-02-01 中国科学院自动化研究所 智能视觉云台系统及其实现方法
CN112334698A (zh) * 2019-10-28 2021-02-05 深圳市大疆创新科技有限公司 竖向增稳机构、云台装置和感测设备
CN112145941A (zh) * 2020-06-30 2020-12-29 桂林智神信息技术股份有限公司 多功能手持摄影器材
CN111866395A (zh) * 2020-08-07 2020-10-30 苏州臻迪智能科技有限公司 增稳处理模组、无人机摄像系统以及图像增稳处理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117557167A (zh) * 2024-01-03 2024-02-13 微网优联科技(成都)有限公司 一种云台机的生产质量管理方法及系统
CN117557167B (zh) * 2024-01-03 2024-03-19 微网优联科技(成都)有限公司 一种云台机的生产质量管理方法及系统
CN117953007B (zh) * 2024-03-13 2024-06-11 长春通视光电技术股份有限公司 一种基于图像匹配的线性运动补偿控制方法

Also Published As

Publication number Publication date
CN117597532A (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
WO2020233683A1 (zh) 云台控制方法、装置、控制终端及飞行器系统
CN108259703B (zh) 一种云台的跟拍控制方法、装置及云台
CN109000612B (zh) 设备的角度估算方法、装置、摄像组件及飞行器
CN108399642B (zh) 一种融合旋翼无人机imu数据的通用目标跟随方法和系统
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
WO2018120012A1 (zh) 云台控制方法、装置及云台
CN109196266B (zh) 云台的控制方法、云台控制器及云台
WO2019227441A1 (zh) 可移动平台的拍摄控制方法和设备
TWI649721B (zh) 無人飛行機之全景拍照方法與使用其之無人飛行機
CN110622091A (zh) 云台的控制方法、装置、系统、计算机存储介质及无人机
WO2021098453A1 (zh) 目标跟踪方法及无人飞行器
WO2020227998A1 (zh) 图像增稳控制方法、拍摄设备和可移动平台
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
US20210097696A1 (en) Motion estimation methods and mobile devices
CN203204299U (zh) 空中360°全景照片拍摄装置
WO2023010318A1 (zh) 云台控制方法、装置、云台和存储介质
US11402730B2 (en) Camera mobile device holder with stablization
WO2018024239A1 (zh) 混合式图像稳定系统
WO2019183789A1 (zh) 无人机的控制方法、装置和无人机
KR101517824B1 (ko) 지형지물의 위치변화를 반영하는 공간이미지의 도화처리 시스템
WO2019205103A1 (zh) 云台姿态修正方法、云台姿态修正装置、云台、云台系统和无人机
WO2020244648A1 (zh) 一种飞行器控制方法、装置及飞行器
WO2021056411A1 (zh) 航线调整方法、地面端设备、无人机、系统和存储介质
CN110320934A (zh) 云台控制方法、装置、云台及移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100194.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE