WO2018148906A1 - 云台参数的配置方法、装置及云台 - Google Patents

云台参数的配置方法、装置及云台 Download PDF

Info

Publication number
WO2018148906A1
WO2018148906A1 PCT/CN2017/073791 CN2017073791W WO2018148906A1 WO 2018148906 A1 WO2018148906 A1 WO 2018148906A1 CN 2017073791 W CN2017073791 W CN 2017073791W WO 2018148906 A1 WO2018148906 A1 WO 2018148906A1
Authority
WO
WIPO (PCT)
Prior art keywords
pan
frequency
tilt
arm
control system
Prior art date
Application number
PCT/CN2017/073791
Other languages
English (en)
French (fr)
Inventor
谢文麟
蒋毅
陈子寒
Original Assignee
深圳市大疆灵眸科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆灵眸科技有限公司 filed Critical 深圳市大疆灵眸科技有限公司
Priority to CN201780005469.6A priority Critical patent/CN108496139A/zh
Priority to PCT/CN2017/073791 priority patent/WO2018148906A1/zh
Publication of WO2018148906A1 publication Critical patent/WO2018148906A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to the field of cloud platform technology, and in particular, to a method, a device and a cloud platform for configuring a cloud platform parameter.
  • the pan/tilt is a carrying device for mounting and fixing the camera device, and can cooperate with the motor through the arm of the pan/tilt to drive the camera device to move in one or more directions, thereby capturing images in a wide range.
  • the PTZ has been widely used in various special industries. For example, in the field of aerial photography, when the camera equipment is fixed on the PTZ, it can be photographed by the aircraft carrying the PTZ to the sky.
  • the above parameters are usually manually configured by the PTZ user, so the PTZ user needs to have strong experience of adjusting the participation; in addition, when the types of the imaging devices are different, the PTZ users are also required to adapt different types of imaging devices. parameter settings.
  • the PTZ user needs to repeatedly try to make parameters to achieve the target requirement, so the configuration process is cumbersome and the accuracy is not high.
  • the invention provides a method, a device and a cloud platform for configuring a cloud platform parameter.
  • a method for configuring a pan-tilt parameter includes a shaft arm and a motor, and the motor is configured to drive the arm to rotate, thereby driving the pan-tilt mounted on the pan/tilt
  • the camera device moves in one or more directions, the method comprising:
  • the correction parameters of the control system are configured by an identification model of the control system, and control parameters of the control system are configured.
  • a configuration apparatus for a pan/tilt head wherein the pan/tilt head includes a shaft arm and a motor, and the motor is configured to drive the arm arm to rotate, thereby driving the pan head mounted on the pan/tilt head
  • the camera device moves in one or more directions, the device comprising:
  • a receiving module configured to receive a parameter adjustment instruction
  • control module configured to control the axis arm to perform a frequency sweeping operation according to the parameter adjustment instruction
  • a generating module configured to generate an identification model of the control system of the pan/tilt according to a result of the frequency sweeping operation
  • a configuration module configured to configure a correction parameter of the control system by an identification model of the control system; and configure a control parameter of the control system.
  • a cloud platform includes: a fixing mechanism, one or more axle arms, a motor, an IMU, and a controller, wherein
  • the fixing mechanism is configured to fix an imaging device mounted on the pan/tilt;
  • the motor is configured to drive the corresponding axial arm to rotate, thereby driving the imaging device to move in one or more directions;
  • the controller is configured to receive a parameter adjustment instruction, and control the axis arm to perform a frequency sweep operation according to the parameter adjustment instruction, and generate an identification model of the control system of the pan/tilt according to a result of the frequency sweep operation,
  • the correction parameters of the control system are configured by an identification model of the control system, and control parameters of the control system are configured.
  • the pan/tilt can control the axis arm to perform the frequency sweep operation according to the received parameter adjustment instruction, thereby generating an identification model of the control system, and configuring the control system by using the identification model. Correction parameters and control parameters. It can be seen that, by adaptively adjusting the configuration of the PTZ parameters, the embodiment of the present invention can save the operation of the PTZ user's repeated parameter adjustment while improving the efficiency and accuracy of the parameter configuration while satisfying the shooting requirements of the PTZ work.
  • FIG. 1 is a schematic diagram of the working principle of a three-axis pan/tilt
  • FIG. 2 is a flow chart of an embodiment of a method for configuring a cloud platform parameter according to the present invention
  • 3A is a schematic diagram of a control principle of a PTZ control system according to an embodiment of the present invention.
  • 3B is a flow chart of another embodiment of a method for configuring a cloud platform parameter according to the present invention.
  • 3C is a schematic diagram of a Bode diagram in the embodiment of FIG. 3B:
  • 4A is a block diagram showing an embodiment of a device for configuring a cloud platform parameter according to the present invention.
  • FIG. 4B is a block diagram of an embodiment of the control module of FIG. 4A;
  • 4C is a block diagram of an embodiment of the generation module of FIG. 4A;
  • 4D is a block diagram of an embodiment of the configuration module of FIG. 4A;
  • 4E is a block diagram of another embodiment of the configuration module of FIG. 4A;
  • Figure 5 is a block diagram of an embodiment of a gimbal of the present invention.
  • the cloud platform in the embodiment of the present invention may be a handheld cloud platform, a vehicle cloud platform, or a flight cloud platform carried by an aircraft.
  • the pan/tilt head generally includes a shaft arm and a motor for driving the shaft arm to rotate.
  • the three-axis pan/tilt includes three axial arms and three motors that respectively drive the rotation of the three axial arms, wherein the three axial arms are respectively a pitch axis arm, a roll axis arm, and a partial Axle arm.
  • a load device such as a video camera or a camera
  • a three-axis pan/tilt head shown in Fig. 1 includes a controller, a three-axis motor, a three-axis shaft arm, an IMU (Inertial Measurement Unit), and an integrator.
  • the above three-axis pan/tilt can be used as a feedback original by a gyroscope that constitutes an IMU, and a three-axis motor is used as an output original to form a closed-loop PI (proportional, integral) control system.
  • PI Proportional, integral
  • the measurement attitude of the gimbal is obtained by the IMU, and the difference between the attitude and the target attitude is measured as the control deviation.
  • the controller controls the input current of the three-axis motor according to the input control deviation, thereby driving the three-axis motor to work, and the three-axis motor works.
  • the output torque drives the rotation of the three-axis arm.
  • the measurement attitude of the gimbal changes further.
  • the gimbal moves to the target attitude.
  • the types of camera equipment that can be adapted to the PTZ are different.
  • the quality of these camera devices varies from 0.5kg to 13kg.
  • the control system of the PTZ needs to provide stability control for the shooting of the camera device.
  • the parameters of the control system need to be configured to meet the shooting requirements in different situations.
  • the parameters are manually configured by the PTZ user.
  • the PTZ user needs to have strong experience of adjusting the parameters, and the parameters can be adjusted after repeated parameter adjustments, so that the PTZ can meet the shooting needs during work; Since the PTZ will change its own modality when it is loaded with different camera equipment, it is also necessary to manually correct the PTZ, so that the PTZ can work normally.
  • the configuration example of the pan/tilt parameter provided by the present invention can adjust the configuration of the pan-tilt parameter (such as setting filter parameters, lead compensation, lag compensation, etc.) to meet the shooting requirements of the gimbal work, and can save Go to the PTZ user to repeatedly adjust the operation to improve the efficiency and accuracy of parameter configuration.
  • FIG. 2 is a flow chart of an embodiment of a method for configuring a cloud platform parameter according to the present invention:
  • Step 201 Receive a parameter adjustment instruction.
  • the camera When the camera is equipped with a camera, you can enter the boot mode.
  • the pan/tilt When the pan/tilt is powered on, the parameter adjustment command can be received in different ways to enter the subsequent adaptive parameter adjustment configuration process.
  • the adjustment button can be set in advance on the pan/tilt, and when the PTZ user presses the adjustment button, the pan/tilt receives the parameter adjustment instruction.
  • the PTZ can receive the parameter adjustment instruction accordingly.
  • Step 202 Control the axis arm to perform a frequency sweep operation according to the parameter adjustment instruction.
  • the pan/tilt can trigger the axis arm to enter the automatic frequency sweep mode, and in the automatic frequency sweep mode, generate a continuous frequency sweep signal within a preset frequency range, for example, the generation range is from 30 Hz to 300 Hz. Continuous sinusoidal sweep signal between.
  • Step 203 Generate an identification model of the control system of the pan/tilt based on the result of the frequency sweep operation.
  • the Bode of the pan-tilt control system can be generated according to the frequency response information, and the Bode diagram is used as the control.
  • the identification model of the system which includes phase angle diagrams for characterizing frequency and phase relationships, and amplitude maps for characterizing frequency and amplitude relationships.
  • Step 204 Configure the correction parameters of the control system through the identification model of the control system, and configure the control parameters of the control system.
  • the configuration of the PTZ parameters may include the configuration of the correction parameters and the configuration of the control parameters.
  • the natural frequency of the gimbal can be obtained by analyzing the Bode diagram in step 203, and then the filtering parameters in the control system are set according to the natural frequency, so that the gimbal can filter the frequency during the working process. For The signal of this natural frequency.
  • the torque value of the axle arm can be obtained according to the current value of the motor corresponding to the axle arm, and the angular acceleration value of the axle arm is measured by the IMU set on the axle arm, and the ratio of the torque value to the angular acceleration value is calculated.
  • the moment of inertia of the gimbal, and then according to the moment of inertia, the velocity value parameter of the speed feedback control loop of the control system and the sensitivity value parameter of the position feedback control loop are configured.
  • the embodiment can adjust the configuration of the PTZ parameters to meet the shooting requirements of the PTZ work, and can save the operation of the PTZ user repeatedly adjusting parameters, thereby improving the efficiency and accuracy of the parameter configuration.
  • 3A is a schematic diagram of a control principle of a PTZ control system according to an embodiment of the present invention:
  • the feedback control principle of the PTZ control system is shown in FIG. 3A.
  • the system includes, from left to right, a position loop feedback controller Cp(s), a speed loop feedback controller Cv(s), and a control quantity filter filter2.
  • Motor drive module AMP dynamic model consisting of moment of inertia J(s) and integrator 1/s, gyroscope data filter filter1, attitude fusion module FUS.
  • the above system can realize double loop control according to different signal flow directions and feedback control objects, that is, a speed feedback control loop for controlling the attitude of the pan/tilt, and a position feedback control loop for controlling the displacement of the pan/tilt.
  • r is the reference input signal
  • e is the tracking error signal
  • a is the acceleration signal
  • v is the speed signal
  • y is the displacement signal
  • d is the equivalent disturbance signal
  • u is the control voltage
  • i is the current signal
  • n v is the measurement noise.
  • FIG. 3B is a flowchart of another embodiment of a method for configuring a cloud platform parameter according to the present invention.
  • Step 301 When the pan/tilt is powered on, receive a parameter adjustment instruction obtained by triggering a parameter adjustment button on the pan/tilt.
  • the pan/tilt can enter the boot mode in two states: one state is that the fixed mechanism of the pan/tilt (also referred to as the base of the pan/tilt) faces up. After the power is turned on, the pan/tilt can be hung on the carrier such as the rocker arm for shooting; the other state is that the fixed mechanism of the gimbal is facing downward, and the roll axis of the pan/tilt is rotated 180 degrees. After the boot, the pan/tilt can be installed. Shoot on the lifter.
  • the adjustment button can be set in advance on the pan/tilt.
  • the pan-tilt user can press the parameter adjustment button to issue a parameter adjustment command, thereby making the control
  • the system enters a subsequent adaptive parameter adjustment configuration process.
  • Step 302 Trigger the axis arm to enter the automatic frequency sweep mode.
  • Sweeping refers to the process in which a signal is in a frequency band, the frequency changes from high to low, or continuously changes from low to high.
  • the operation can test the frequency characteristics of the swept object.
  • the three axis arms of the pan/tilt can be triggered to enter the automatic frequency sweep mode, thereby testing the frequency characteristics of the pan/tilt.
  • Step 303 In the automatic frequency sweep mode, generate a continuous frequency sweep signal within a preset frequency range.
  • Step 304 Obtain frequency response information of the continuous frequency sweep signal.
  • the frequency response information of the continuous frequency sweep signal may include phase response information and amplitude response information.
  • Step 305 Generate a Bode diagram of the control system according to the frequency response information.
  • the identification model of the PTZ control system may be generated according to the phase response information and the amplitude response information obtained in the foregoing step 304.
  • the identification model may be presented by a Bode diagram.
  • the Bode diagram is a graphical representation of the system's frequency response, usually consisting of a magnitude plot that characterizes the relationship between frequency and amplitude, and a phase angle plot that characterizes the frequency and phase relationships, both plotted against the logarithm of the frequency. Therefore, the Bode diagram is often called a logarithmic graph.
  • the Bode diagram can be used to analyze the magnitude and phase of the system gain at different frequencies. It is also possible to analyze the trend of the gain and phase as a function of frequency, so that the stability of the system can be judged.
  • the software installed on the gimbal can directly draw the Bode diagram according to the frequency response information, or output the frequency response information to a specific terminal, and draw through the software installed in the terminal (such as MATLAB).
  • This embodiment is not limited.
  • FIG. 3C is a schematic diagram of a Bode diagram in the embodiment of FIG. 3B: the Bode diagram in FIG. 3C is composed of an upper amplitude map and a lower phase angle map, wherein the amplitude map shows the frequency and the amplitude.
  • Step 306 Analyze the Bode diagram to obtain the natural frequency of the gimbal.
  • the natural frequency can also be called the modal frequency or the natural frequency, which means that when the object is free to vibrate, the displacement changes with sine or cosine law with time.
  • the frequency of the above vibration is only related to the inherent characteristics of the object (such as mass, Shape, material, etc.).
  • the waveform of the frequency sweep signal near the frequency of 10 2 produces significant oscillation.
  • the natural frequency is the frequency corresponding to the amplitude or phase angle indicated by the arrow in FIG. 3B. .
  • Step 307 Set the filtering parameter according to the natural frequency, so that the pan/tilt filters out the signal whose frequency is the natural frequency during the working process.
  • the parameters of the gimbal are During configuration, when the natural frequency of the gimbal is obtained, corrective operations need to be performed to avoid interference of the natural frequency on the normal operation of the gimbal.
  • the filtering parameters of filter1 and filter2 as shown in FIG. 3A can be set according to the natural frequency, so that the gimbal can filter out the signal with the frequency of the natural frequency during the working process to ensure that the gimbal can normal work.
  • Step 308 Calculate the moment of inertia of the gimbal.
  • the Moment of Inertia is a measure of the inertia of a rigid body as it rotates around the axis, ie the form of rotation of the mass. Usually the moment of inertia can be calculated by the following formula:
  • J M / ⁇ , where J represents the moment of inertia, M represents the force, and ⁇ represents the angular acceleration.
  • the torque value of the arm arm can be obtained according to the current value of the motor corresponding to the arm arm.
  • the torque of the motor refers to the torque output by the motor from the crank end thereof, and the torque is the force that can make the corresponding arm of the motor rotate.
  • the current of the motor is proportional to the torque, as shown in the following formula:
  • M Ca ⁇ i; where M represents torque, Ca represents a constant, and i represents current;
  • the angular acceleration value of the axle arm can be obtained by measuring the IMU set on the axle arm, and then the ratio of the torque value M to the angular acceleration value can be calculated according to the above formula to obtain the moment of inertia of the gimbal.
  • Step 309 Configure a velocity value parameter of the speed feedback control loop of the control system according to the moment of inertia, and a sensitivity value parameter of the position feedback control loop.
  • the moment of inertia may be used to configure a velocity value parameter of the speed feedback control loop, such as a Cv(s) parameter, and a sensitivity value parameter of the position feedback control loop, such as a Cp(s) parameter.
  • a velocity value parameter of the speed feedback control loop such as a Cv(s) parameter
  • a sensitivity value parameter of the position feedback control loop such as a Cp(s) parameter.
  • the embodiment can adjust the configuration of the PTZ parameters to meet the shooting requirements of the PTZ work, and can save the operation of the PTZ user repeatedly adjusting parameters, thereby improving the efficiency and accuracy of the parameter configuration.
  • the present invention also provides an apparatus for configuring the cloud platform parameters and an embodiment of the cloud platform.
  • FIG. 4A is a block diagram of an embodiment of a device for configuring a cloud platform parameter according to the present invention:
  • the device includes a receiving module 410, a control module 420, a generating module 430, and a configuration module 440.
  • the receiving module 410 is configured to receive a parameter adjustment instruction
  • the control module 420 is configured to control the axis arm to perform a frequency sweeping operation according to the parameter adjustment instruction
  • a generating module 430 configured to generate an identification model of the control system of the pan/tilt according to a result of the frequency sweeping operation
  • a configuration module 440 configured to configure a correction parameter of the control system by using an identification model of the control system; And configuring the control parameters of the control system.
  • the receiving module 410 may include at least one of the following submodules:
  • a first receiving submodule configured to receive a parameter adjustment instruction obtained by triggering a parameter adjustment button on the pan/tilt when the pan/tilt head is in a power on state
  • a second receiving submodule configured to receive a parameter adjustment instruction sent by the remote controller corresponding to the pan/tilt when the pan/tilt is in a power on state.
  • FIG. 4B is a block diagram of one embodiment of the control module 420 of FIG. 4A:
  • the control module 420 can include:
  • the sweep mode triggering sub-module 421 is configured to trigger the arm arm to enter an automatic sweep mode
  • the frequency sweep signal generation sub-module 422 is configured to generate a continuous frequency sweep signal in a preset frequency range in the automatic frequency sweep mode.
  • the preset frequency range may include: a frequency range of 30 Hz to 300 Hz.
  • FIG. 4C is a block diagram of one embodiment of the generation module 430 of FIG. 4A:
  • the generating module 430 can include:
  • a frequency response obtaining submodule 431, configured to obtain frequency response information of the continuous frequency sweep signal
  • Bode diagram generation sub-module 432 for generating a Bode diagram of the control system according to the frequency response information, the Bode diagram including phase angle diagrams for characterizing frequency and phase relationships, and for characterizing frequencies A magnitude map of the relationship with the magnitude.
  • the Bode diagram of the control system includes a Bode diagram corresponding to each of the three axle arms.
  • FIG. 4D is a block diagram of one embodiment of the configuration module 440 of FIG. 4A:
  • the configuration module 440 can include:
  • a natural frequency obtaining submodule 441, configured to analyze the Bode diagram to obtain a natural frequency of the pan/tilt;
  • the correction parameter configuration sub-module 442 is configured to set a filter parameter according to the natural frequency, so that the pan/tilt filters out a signal having a frequency of the natural frequency during operation.
  • FIG. 4E is a block diagram of another embodiment of the configuration module 440 of FIG. 4B:
  • the configuration module 440 can include:
  • the control parameter configuration sub-module 444 is configured to configure a velocity value parameter of the speed feedback control loop of the control system according to the moment of inertia, and a sensitivity value parameter of the position feedback control loop.
  • the moment of inertia calculation sub-module 443 may be specifically configured to obtain a torque value of the axle arm according to a current value of the motor corresponding to the axle arm, and measure the axle by an IMU disposed on the axle arm. An angular acceleration value of the arm, and calculating a ratio of the torque value to the angular acceleration value to obtain a moment of inertia of the pan/tilt.
  • the control module controls the axis arm to perform a frequency sweep operation according to the received parameter adjustment command, so that the generation module generates an identification model of the control system, and the configuration module configures the correction parameter and the control parameter of the control system through the identification model. Because the device can adaptively adjust the configuration of the PTZ parameters, while meeting the shooting requirements of the PTZ work, the operation of repeatedly adjusting the parameters of the PTZ user can be omitted, and the efficiency and accuracy of the parameter configuration can be improved.
  • FIG. 5 a block diagram of an embodiment of a cloud platform according to the present invention is shown:
  • the pan/tilt head includes a fixing mechanism 510, a shaft arm 520, a motor 530, an IMU 540, and a controller 550.
  • the fixing mechanism 510 is configured to fix an imaging device mounted on the pan/tilt;
  • the motor 530 is configured to drive the corresponding axle arm 520 to rotate, thereby driving the imaging device to move in one or more directions;
  • the controller 550 is configured to receive a parameter adjustment instruction, and control the axis arm to perform a frequency sweep operation according to the parameter adjustment instruction, and generate an identification model of the control system of the pan/tilt according to the result of the frequency sweep operation Configuring a correction parameter of the control system by an identification model of the control system, and configuring a control parameter of the control system.
  • the controller 550 may be specifically configured to: when the pan/tilt is in a power-on state, receive a parameter adjustment instruction obtained by triggering a parameter adjustment button on the pan/tilt, or receive a remote control device corresponding to the pan-tilt Parameter adjustment command.
  • the controller 550 is specifically configured to trigger the axis arm to enter an automatic frequency sweep mode, and generate a continuous frequency sweep signal within a preset frequency range in the automatic frequency sweep mode.
  • the preset frequency range may include: a frequency range of 30 Hz to 300 Hz.
  • the controller 550 is specifically configured to obtain frequency response information of the continuous frequency-swept signal, and generate a Bode diagram of the control system according to the frequency response information, where the Bode diagram includes a frequency and a phase for characterizing A phase angle diagram of the relationship, as well as a magnitude map used to characterize the relationship between frequency and amplitude.
  • the Bode diagram of the control system includes a Bode diagram corresponding to the three axis arms respectively.
  • the controller 550 is specifically configured to analyze the Bode diagram to obtain a natural frequency of the PTZ, and set a filtering parameter according to the natural frequency, so that the PTZ filters the frequency during the working process to be the inherent Frequency signal
  • the controller 550 is specifically configured to calculate a moment of inertia of the pan/tilt, configure a velocity value parameter of the speed feedback control loop of the control system according to the moment of inertia, and a sensitivity value parameter of the position feedback control loop.
  • the control 550 may obtain the torque value of the axle arm according to the current value of the corresponding arm of the axle arm, and measure the axle by the inertial measurement unit IMU disposed on the axle arm. An angular acceleration value of the arm, and calculating a ratio of the torque value to the angular acceleration value to obtain a moment of inertia of the pan/tilt.
  • the pan/tilt controller can control the axis arm to perform the frequency sweeping operation according to the received parameter adjustment command, thereby generating an identification model of the control system, and then configuring the correction parameter and the control parameter of the control system through the identification model. Since the PTZ can adaptively adjust the configuration of the PTZ parameters, it can save the operation of the PTZ user's repeated adjustments while improving the efficiency and accuracy of the parameter configuration while meeting the shooting requirements of the PTZ work.
  • the system, device, module or unit illustrated in the above embodiments may be implemented by a computer chip or an entity, or by a product having a certain function.
  • the above devices are described separately by function into various units.
  • the functions of each unit may be implemented in the same software or software and/or hardware when implementing the present application.
  • Those skilled in the art will appreciate that embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.

Abstract

一种云台参数的配置方法、装置及云台,所述云台包括轴臂和电机,所述电机用于驱动所述轴臂转动,从而带动搭载于所述云台上的摄像设备在一个或者多个方向上运动,所述方法包括:接收参数调节指令;根据所述参数调节指令,控制所述轴臂执行扫频操作;根据所述扫频操作的结果,生成所述云台的控制系统的辨识模型;通过所述控制系统的辨识模型配置所述控制系统的矫正参数,以及配置所述控制系统的控制参数。本发明可以通过自适应调节云台参数的配置,在满足云台工作的拍摄需求的同时,可以省去云台用户反复调参的操作,提高参数配置的效率和精度。

Description

云台参数的配置方法、装置及云台 技术领域
本发明涉及云台技术领域,尤其涉及一种云台参数的配置方法、装置及云台。
背景技术
云台是用于安装和固定摄像设备的承载设备,其可以通过云台的轴臂与电机的配合,带动摄像设备在一个或者多个方向上运动,从而在较大范围内拍摄图像。目前,云台已被广泛应用于各种特殊行业,比如在航拍领域,当摄像设备固定在云台上后,可由飞行器携带云台至高空进行拍摄。
当云台上加载了摄像设备后,需要对云台的各种参数进行配置,从而保证云台控制系统可以给摄像设备提供增稳控制。相关技术中,上述参数通常由云台用户手动配置,因此需要云台用户具有较强的调参经验;另外,当摄像设备的类型不同时,也需要云台用户进行适配不同类型摄像设备的参数设置。但是,由于上述参数配置过程中,需要云台用户反复试凑参数才能达到目标需求,因此配置过程繁琐,且精度不高。
发明内容
本发明提供一种云台参数的配置方法、装置及云台。
依据本发明的第一方面,提供一种云台参数的配置方法,所述云台包括轴臂和电机,所述电机用于驱动所述轴臂转动,从而带动搭载于所述云台上的摄像设备在一个或者多个方向上运动,所述方法包括:
接收参数调节指令;
根据所述参数调节指令,控制所述轴臂执行扫频操作;
根据所述扫频操作的结果,生成所述云台的控制系统的辨识模型;
通过所述控制系统的辨识模型配置所述控制系统的矫正参数,以及配置所述控制系统的控制参数。
依据本发明的第二方面,提供一种云台参数的配置装置,所述云台包括轴臂和电机,所述电机用于驱动所述轴臂转动,从而带动搭载于所述云台上的摄像设备在一个或者多个方向上运动,所述装置包括:
接收模块,用于接收参数调节指令;
控制模块,用于根据所述参数调节指令,控制所述轴臂执行扫频操作;
生成模块,用于根据所述扫频操作的结果,生成所述云台的控制系统的辨识模型;
配置模块,用于通过所述控制系统的辨识模型配置所述控制系统的矫正参数;以及,配置所述控制系统的控制参数。
依据本发明的第三方面,提供一种云台,所述云台包括:固定机构,一个或多个轴臂,电机,IMU以及控制器,其中,
所述固定机构,用于固定搭载于所述云台上的摄像设备;
所述电机,用于驱动所对应的轴臂转动,从而带动所述摄像设备在一个或者多个方向上运动;
所述控制器,用于接收参数调节指令,并根据所述参数调节指令控制所述轴臂执行扫频操作,根据所述扫频操作的结果,生成所述云台的控制系统的辨识模型,通过所述控制系统的辨识模型配置所述控制系统的矫正参数,以及配置所述控制系统的控制参数。
由以上本发明实施例提供的技术方案可见,本发明实施例中云台可以根据接收的参数调节指令,控制轴臂执行扫频操作,从而生成控制系统的辨识模型,通过该辨识模型配置控制系统的矫正参数以及控制参数。由此可知,本发明实施例通过自适应调节云台参数的配置,在满足云台工作的拍摄需求的同时,可以省去云台用户反复调参的操作,提高参数配置的效率和精度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是一种三轴云台的工作原理示意图;
图2是本发明云台参数配置方法的一个实施例流程图;
图3A是本发明实施例中云台控制系统的控制原理示意图;
图3B是本发明云台参数配置方法的另一个实施例流程图;
图3C是图3B实施例中一种伯德图的示意图:
图4A是本发明云台参数的配置装置的实施例框图;
图4B是图4A中控制模块的一个实施例框图;
图4C是图4A中生成模块的一个实施例框图;
图4D是图4A中配置模块的一个实施例框图;
图4E是图4A中配置模块的另一个实施例框图;
图5是本发明云台的实施例框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。另外,在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例中的云台可以是手持云台,车载云台,也可以是由飞行器携带的飞行云台。上述云台通常包括轴臂和电机,电机用于驱动轴臂转动。以常见的三轴云台为例,三轴云台包括三个轴臂,以及分别驱动三个轴臂转动的电机,其中,三个轴臂分别为俯仰轴臂,横滚轴臂,以及偏航轴臂。当上述云台搭载了负载设备,例如摄像机或者照相机时,可以在一个或者多个方向上运动,从而实现大范围拍摄。
参见图1,为一种三轴云台的工作原理示意图:
图1所示的一种三轴云台包括:控制器,三轴电机,三轴轴臂,IMU(Inertial Measurement Unit,惯性测量单元),以及积分器。上述三轴云台可以通过组成IMU的陀螺仪作为反馈原件,三轴电机作为输出原件,形成闭环PI(比例、积分)控制系统。
其中,通过IMU获得云台的测量姿态,测量姿态与目标姿态的差值作为控制偏差,控制器根据输入的控制偏差,控制三轴电机的输入电流,从而驱动三轴电机工作,三轴电机工作过程中输出扭矩带动三轴轴臂转动,在转动过程中云台的测量姿态进一步发生变化,通过上述反馈控制过程,使得云台运动到目标姿态。
一般云台可以适配的摄像设备的种类不一,这些摄像设备的质量各不相同,通常在0.5kg至13kg之间,云台的控制系统需要给摄像设备的拍摄提供增稳控制,因此云台在搭 载摄像设备后,需要对控制系统的参数进行配置,从而满足不同情况下的拍摄需求。相关技术中,由云台用户对参数进行手动配置,此时需要云台用户具有较强的调参经验,并且经过反复参数调节才能完成配置,使云台可以在工作时满足拍摄需要;另外,由于云台在负载不同摄像设备时,自身固有模态会发生改变,因此还需要云台手动进行矫正,使得云台可以正常工作。由上述可知,相关技术中云台在负载不同摄像设备进行工作之前,云台参数的配置过程繁琐,配置精度不高。因此,本发明提供的云台参数的配置实施例通过自适应调节云台参数的配置(如设置滤波器参数、超前补偿、滞后补偿等),在满足云台工作的拍摄需求的同时,可以省去云台用户反复调参的操作,提高参数配置的效率和精度。
下面结合附图对本发明实施例进行详细说明。
参见图2,为本发明云台参数的配置方法的一个实施例流程图:
步骤201:接收参数调节指令。
当云台上搭载摄像设备后,可以进入开机模式。在云台处于开机状态时,可以通过不同方式接收参数调节指令,以便进入后续的自适应参数调节配置过程。
在一个可选的实现方式中,可以预先在云台上设置调参按钮,当云台用户按下该调参按钮,云台接收到参数调节指令。在另一个可选的实现方式中,当云台用户操作遥控器发出参数调节指令后,云台可以相应接收到该参数调节指令。
步骤202:根据参数调节指令控制轴臂执行扫频操作。
本步骤中,云台接收到参数调节指令后,可以触发轴臂进入自动扫频模式,在该自动扫频模式下,生成预设频率范围内的连续扫频信号,比如生成范围从30Hz至300Hz之间的连续正弦扫频信号。
步骤203:根据扫频操作的结果,生成云台的控制系统的辨识模型。
本步骤中,当云台获得在扫频操作下得到的连续扫频信号的频率响应信息后,可以根据这些频率响应信息生成云台控制系统的伯德图(bode),将伯德图作为控制系统的辨识模型,该伯德图中包括了用于表征频率和相位关系的相角图,以及用于表征频率和幅值关系的幅值图。
步骤204:通过控制系统的辨识模型配置控制系统的矫正参数,以及配置控制系统的控制参数。
本步骤中,对云台参数的配置可以包括矫正参数的配置,以及控制参数的配置。
其中,在配置矫正参数时,可以通过分析步骤203中的伯德图获得云台的固有频率,然后根据该固有频率设置控制系统中的滤波参数,以使云台在工作过程中可以滤除频率为 该固有频率的信号。
其中,在配置控制参数时,可以根据轴臂对应电机的电流值获得轴臂的扭矩值,通过设置在轴臂上的IMU测量轴臂的角加速度值,计算扭矩值与角加速度值的比值得到云台的转动惯量,然后根据该转动惯量配置控制系统的速度反馈控制环的力度值参数,以及位置反馈控制环的感度值参数。
由上述实施例可见,该实施例通过自适应调节云台参数的配置,在满足云台工作的拍摄需求的同时,可以省去云台用户反复调参的操作,提高参数配置的效率和精度。
参见图3A,为本发明实施例中云台控制系统的控制原理示意图:
图3A中示出了云台控制系统的反馈控制原理,该系统从左到右依次包括:位置环反馈控制器Cp(s)、速度环反馈控制器Cv(s),控制量滤波器filter2,电机驱动模块AMP,由转动惯量J(s)和积分器1/s组成的动力学模型,陀螺仪数据滤波器filter1,姿态融合模块FUS。上述系统根据信号流走向和反馈控制对象的不同,可以实现双环控制,即分别包括用于对云台姿态进行控制的速度反馈控制环,以及用于对云台位移进行控制的位置反馈控制环。其中,r表示参考输入信号,e表示跟踪误差信号,a表示加速度信号,v表示速度信号,y表示位移信号,d表示等效扰动信号,u表示控制电压,i表示电流信号,nv表示测量噪声。
参见图3B,为本发明云台参数的配置方法的另一个实施例流程图,该实施例结合图3A,详细示出了云台参数的配置过程:
步骤301:在云台处于开机状态时,接收通过触发云台上的调参按钮得到的参数调节指令。
当云台上搭载摄像设备后,可以进入开机模式。以三轴手持云台为例,根据拍摄需要的不同,云台可以在两种状态下进入开机模式:一种状态是云台的固定机构(也可称为云台的基座)朝上,开机后,云台可以挂在摇臂等载体上进行拍摄;另一种状态是云台的固定机构朝下,此时将云台的横滚轴旋转180度,开机后,云台可以安装在升降杆上进行拍摄。
本实施例中,可以预先在云台上设置调参按钮,当云台上搭载了新的摄像设备,并开机后,云台用户可以按下该调参按钮,发出参数调节指令,从而使控制系统在接收到该参数调节指令后,进入后续的自适应参数调节配置过程。
步骤302:触发轴臂进入自动扫频模式。
扫频是指信号在一个频段内,频率由高到低,或由低到高连续变化的过程,通常扫频 操作可以测试被扫频对象的频率特性。本步骤中,以三轴云台为例,在接收到参数调节指令后,可以触发云台的三个轴臂均进入自动扫频模式,从而测试云台的频率特性。
步骤303:在自动扫频模式下,生成预设频率范围内的连续扫频信号。
本步骤中,当三轴云台的横滚轴臂、俯仰轴臂和偏航轴臂均进入自动扫频模式后,可以生成频率范围在30Hz至300Hz之间的连续的扫频信号。
步骤304:获得连续扫频信号的频率响应信息。
本步骤中,连续扫频信号的频率响应信息可以包括相位响应信息和幅值响应信息。
步骤305:根据频率响应信息生成控制系统的伯德图。
本步骤中,可以根据前述步骤304中获得的相位响应信息和幅值响应信息生成云台控制系统的辨识模型,本实施例例中该辨识模型可以通过伯德(bode)图进行呈现。伯德图是系统频率响应的一种图示方法,通常由表征频率和幅值关系的幅值图和表征频率和相位关系的相角图组成,两者都按频率的对数分度进行绘制,因此伯德图常也称为对数坐标图。利用伯德图可以分析出在不同频率下,系统增益的大小及相位,也可以分析出增益大小及相位随频率变化的趋势,从而可以对系统稳定性进行判断。
本步骤中,可以由云台上安装的软件直接根据频率响应信息绘制伯德图,也可以将频率响应信息输出到某个特定终端,通过终端内安装的软件(如MATLAB)进行绘制,对此本实施例不进行限制。
参见图3C,为图3B实施例中一种伯德图的示意图:图3C中的伯德图由上部的幅值图和下部的相角图组成,其中,幅值图示出了频率与幅值的对应关系,频率的单位为Hz,幅值的单位为dB,相角图示出了频率与相位的对应关系,相位的单位为deg(角度)。
步骤306:分析伯德图获得云台的固有频率。
固有频率也可以称为模态频率或者自然频率(natural frequency),其指物体做自由振动时,位移随时间按正弦或余弦规律变化,上述振动的频率仅与物体的固有特性有关(如质量、形状、材质等)。
结合图3B示出的伯德图,在频率为102附近扫频信号的波形产生明显震荡,通过分析该波形图可知,固有频率为图3B中箭头所指的幅值或相位角对应的频率。
步骤307:根据固有频率设置滤波参数,以使云台在工作过程中滤除频率为该固有频率的信号。
由于云台的固有频率可能会引起共振,从而影响云台的正常工作,因此在对云台参数 配置时,当获得了云台的固有频率后,需要执行矫正操作,从而避免固有频率对云台的正常工作产生干扰。
本步骤在执行矫正操作时,可以根据固有频率设置如图3A中所示的filter1和filter2的滤波参数,从而使云台在工作过程中,滤除频率为该固有频率的信号,保证云台可以正常工作。
步骤308:计算云台的转动惯量。
转动惯量(Moment of Inertia)是刚体绕轴转动时惯性的量度,即质量的转动形式。通常转动惯量可以通过如下公式计算:
J=M/β,其中,J表示转动惯量,M表示力,β表示角加速度。
本步骤中,可以根据轴臂对应电机的电流值获得轴臂的扭矩值,电机的扭矩就是指电机从其曲轴端输出的力矩,扭矩是使电机对应轴臂可以发生转动的力。通常电机的电流与扭矩呈正比关系,如下公式所示:
M=Ca×i;其中,M表示扭矩,Ca表示一常数,i表示电流;
本步骤中,可以通过设置在轴臂上的IMU测量得到轴臂的角加速度值,然后按照前述公式计算扭矩值M与角加速度值的比值即可得到云台的转动惯量。
步骤309:根据转动惯量配置控制系统的速度反馈控制环的力度值参数,以及位置反馈控制环的感度值参数。
结合图3A,在获得转动惯量后,可以利用该转动惯量配置速度反馈控制环的力度值参数,比如Cv(s)参数,以及配置位置反馈控制环的感度值参数,比如Cp(s)参数。
由上述实施例可见,该实施例通过自适应调节云台参数的配置,在满足云台工作的拍摄需求的同时,可以省去云台用户反复调参的操作,提高参数配置的效率和精度。
与本发明云台参数的配置方法的实施例相对应,本发明还提供了云台参数的配置装置和云台的实施例。
参见图4A,为本发明云台参数的配置装置的实施例框图:
该装置包括:接收模块410、控制模块420、生成模块430和配置模块440。
接收模块410,用于接收参数调节指令;
控制模块420,用于根据所述参数调节指令,控制所述轴臂执行扫频操作;
生成模块430,用于根据所述扫频操作的结果,生成所述云台的控制系统的辨识模型;
配置模块440,用于通过所述控制系统的辨识模型配置所述控制系统的矫正参数;以 及,配置所述控制系统的控制参数。
在一个可选的实现方式中,所述接收模块410可以包括至少一个下述子模块:
第一接收子模块,用于在所述云台处于开机状态时,接收通过触发所述云台上的调参按钮得到的参数调节指令;
第二接收子模块,用于在所述云台处于开机状态时,接收所述云台对应的遥控器发出的参数调节指令。
在另一个可选的实现方式中,参见图4B,是图4A中控制模块420的一个实施例框图:
所述控制模块420可以包括:
扫频模式触发子模块421,用于触发所述轴臂进入自动扫频模式;
扫频信号生成子模块422,用于在所述自动扫频模式下,生成预设频率范围内的连续扫频信号。
其中,所述预设频率范围可以包括:30赫兹至300赫兹的频率范围。
在另一个可选的实现方式中,参见图4C,是图4A中生成模块430的一个实施例框图:
所述生成模块430可以包括:
频率响应获得子模块431,用于获得所述连续扫频信号的频率响应信息;
伯德图生成子模块432,用于根据所述频率响应信息生成所述控制系统的伯德图,所述伯德图中包括用于表征频率和相位关系的相角图,以及用于表征频率和幅值关系的幅值图。
在一个例子中,当所述轴臂包括横滚轴臂、俯仰轴臂和偏航轴臂时,所述控制系统的伯德图包括分别对应上述三个轴臂的伯德图。
在另一个可选的实现方式中,参见图4D,是图4A中配置模块440的一个实施例框图:
所述配置模块440可以包括:
固有频率获得子模块441,用于分析所述伯德图获得所述云台的固有频率;
矫正参数配置子模块442,用于根据所述固有频率设置滤波参数,以使所述云台在工作过程中滤除频率为所述固有频率的信号。
在另一个可选的实现方式中,参见图4E,是图4B中配置模块440的另一个实施例框图:
所述配置模块440可以包括:
转动惯量计算子模块443,用于计算所述云台的转动惯量;
控制参数配置子模块444,用于根据所述转动惯量配置所述控制系统的速度反馈控制环的力度值参数,以及位置反馈控制环的感度值参数。
在一个例子中,所述转动惯量计算子模块443,可以具体用于根据所述轴臂对应电机的电流值获得轴臂的扭矩值,以及通过设置在所述轴臂上的IMU测量所述轴臂的角加速度值,并计算所述扭矩值与所述角加速度值的比值得到所述云台的转动惯量。
由上述实施例可见,控制模块根据接收的参数调节指令,控制轴臂执行扫频操作,从而由生成模块生成控制系统的辨识模型,配置模块通过该辨识模型配置控制系统的矫正参数以及控制参数。由于该装置可以自适应调节云台参数的配置,在满足云台工作的拍摄需求的同时,可以省去云台用户反复调参的操作,提高参数配置的效率和精度。
参见图5,为本发明云台的实施例框图:
该云台包括:固定机构510、轴臂520、电机530、IMU540和控制器550。
其中,所述固定机构510,用于固定搭载于所述云台上的摄像设备;
所述电机530,用于驱动所对应的轴臂520转动,从而带动所述摄像设备在一个或者多个方向上运动;
所述控制器550,用于接收参数调节指令,并根据所述参数调节指令控制所述轴臂执行扫频操作,根据所述扫频操作的结果,生成所述云台的控制系统的辨识模型,通过所述控制系统的辨识模型配置所述控制系统的矫正参数,以及配置所述控制系统的控制参数。
在一个可选的实现方式中:
所述控制器550,可以具体用于在所述云台处于开机状态时,接收通过触发所述云台上的调参按钮得到的参数调节指令,或者接收所述云台对应的遥控器发出的参数调节指令。
在另一个可选的实现方式中:
所述控制器550,可以具体用于触发所述轴臂进入自动扫频模式,在所述自动扫频模式下,生成预设频率范围内的连续扫频信号。
其中,所述预设频率范围可以包括:30赫兹至300赫兹的频率范围。
在另一个可选的实现方式中:
所述控制器550,具体用于获得所述连续扫频信号的频率响应信息,根据所述频率响应信息生成所述控制系统的伯德图,所述伯德图中包括用于表征频率和相位关系的相角图,以及用于表征频率和幅值关系的幅值图。
其中,当所述轴臂520包括横滚轴臂、俯仰轴臂和偏航轴臂时,所述控制系统的伯德图包括分别对应上述三个轴臂的伯德图。
在另一个可选的实现方式中:
所述控制器550,具体用于分析所述伯德图获得所述云台的固有频率,根据所述固有频率设置滤波参数,以使所述云台在工作过程中滤除频率为所述固有频率的信号;
在另一个可选的实现方式中:
所述控制器550,具体用于计算所述云台的转动惯量,根据所述转动惯量配置所述控制系统的速度反馈控制环的力度值参数,以及位置反馈控制环的感度值参数。
其中,所述控制550在计算云台的转动惯量时,可以根据所述轴臂对应电机的电流值获得轴臂的扭矩值,通过设置在所述轴臂上的惯性测量单元IMU测量所述轴臂的角加速度值,计算所述扭矩值与所述角加速度值的比值得到所述云台的转动惯量。
由上述实施例可见,云台控制器可以根据接收的参数调节指令,控制轴臂执行扫频操作,从而生成控制系统的辨识模型,然后通过该辨识模型配置控制系统的矫正参数以及控制参数。由于云台可以自适应调节云台参数的配置,在满足云台工作的拍摄需求的同时,可以省去云台用户反复调参的操作,提高参数配置的效率和精度。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任 何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (27)

  1. 一种云台参数的配置方法,其特征在于,所述云台包括轴臂和电机,所述电机用于驱动所述轴臂转动,从而带动搭载于所述云台上的摄像设备在一个或者多个方向上运动,所述方法包括:
    接收参数调节指令;
    根据所述参数调节指令,控制所述轴臂执行扫频操作;
    根据所述扫频操作的结果,生成所述云台的控制系统的辨识模型;
    通过所述控制系统的辨识模型配置所述控制系统的矫正参数,以及配置所述控制系统的控制参数。
  2. 根据权利要求1所述的方法,其特征在于,通过下述任一方式,接收参数调节指令:
    在所述云台处于开机状态时,接收通过触发所述云台上的调参按钮得到的参数调节指令;
    在所述云台处于开机状态时,接收所述云台对应的遥控器发出的参数调节指令。
  3. 根据权利要求1所述的方法,其特征在于,所述控制所述轴臂执行扫频操作包括:
    触发所述轴臂进入自动扫频模式;
    在所述自动扫频模式下,生成预设频率范围内的连续扫频信号。
  4. 根据权利要求3所述的方法,其特征在于,所述预设频率范围包括:30赫兹至300赫兹的频率范围。
  5. 根据权利要求3所述的方法,其特征在于,所述根据所述扫频操作的结果,生成所述云台的控制系统的辨识模型包括:
    获得所述连续扫频信号的频率响应信息;
    根据所述频率响应信息生成所述控制系统的伯德图,所述伯德图中包括用于表征频率和相位关系的相角图,以及用于表征频率和幅值关系的幅值图。
  6. 根据权利要求5所述的方法,其特征在于,当所述轴臂包括横滚轴臂、俯仰轴臂和偏航轴臂时,所述控制系统的伯德图包括分别对应上述三个轴臂的伯德图。
  7. 根据权利要求5所述的方法,其特征在于,通过所述控制系统的辨识模型配置所述控制系统的矫正参数包括:
    分析所述伯德图获得所述云台的固有频率;
    根据所述固有频率设置滤波参数,以使所述云台在工作过程中滤除频率为所述固有频率的信号。
  8. 根据权利要求5所述的方法,其特征在于,所述配置所述控制系统的控制参数包括:
    计算所述云台的转动惯量;
    根据所述转动惯量配置所述控制系统的速度反馈控制环的力度值参数,以及位置反馈控制环的感度值参数。
  9. 根据权利要求8所述的方法,其特征在于,所述计算所述云台的转动惯量包括:
    根据所述轴臂对应电机的电流值获得轴臂的扭矩值;
    通过设置在所述轴臂上的惯性测量单元IMU测量所述轴臂的角加速度值;
    计算所述扭矩值与所述角加速度值的比值得到所述云台的转动惯量。
  10. 一种云台参数的配置装置,其特征在于,所述云台包括轴臂和电机,所述电机用于驱动所述轴臂转动,从而带动搭载于所述云台上的摄像设备在一个或者多个方向上运动,所述装置包括:
    接收模块,用于接收参数调节指令;
    控制模块,用于根据所述参数调节指令,控制所述轴臂执行扫频操作;
    生成模块,用于根据所述扫频操作的结果,生成所述云台的控制系统的辨识模型;
    配置模块,用于通过所述控制系统的辨识模型配置所述控制系统的矫正参数;以及,配置所述控制系统的控制参数。
  11. 根据权利要求10所述的装置,其特征在于,所述接收模块包括至少一个下述子模块:
    第一接收子模块,用于在所述云台处于开机状态时,接收通过触发所述云台上的调参按钮得到的参数调节指令;
    第二接收子模块,用于在所述云台处于开机状态时,接收所述云台对应的遥控器发出的参数调节指令。
  12. 根据权利要求10所述的装置,其特征在于,所述控制模块包括:
    扫频模式触发子模块,用于触发所述轴臂进入自动扫频模式;
    扫频信号生成子模块,用于在所述自动扫频模式下,生成预设频率范围内的连续扫频信号。
  13. 根据权利要求12所述的装置,其特征在于,所述预设频率范围包括:30赫兹至300赫兹的频率范围。
  14. 根据权利要求12所述的装置,其特征在于,所述生成模块包括:
    频率响应获得子模块,用于获得所述连续扫频信号的频率响应信息;
    伯德图生成子模块,用于根据所述频率响应信息生成所述控制系统的伯德图,所述伯德图中包括用于表征频率和相位关系的相角图,以及用于表征频率和幅值关系的幅值图。
  15. 根据权利要求14所述的装置,其特征在于,当所述轴臂包括横滚轴臂、俯仰轴臂和偏航轴臂时,所述控制系统的伯德图包括分别对应上述三个轴臂的伯德图。
  16. 根据权利要求14所述的装置,其特征在于,所述配置模块包括:
    固有频率获得子模块,用于分析所述伯德图获得所述云台的固有频率;
    矫正参数配置子模块,用于根据所述固有频率设置滤波参数,以使所述云台在工作过程中滤除频率为所述固有频率的信号。
  17. 根据权利要求14所述的装置,其特征在于,所述配置单元包括:
    转动惯量计算子模块,用于计算所述云台的转动惯量;
    控制参数配置子模块,用于根据所述转动惯量配置所述控制系统的速度反馈控制环的力度值参数,以及位置反馈控制环的感度值参数。
  18. 根据权利要求17所述的装置,其特征在于,
    所述转动惯量计算子模块,具体用于根据所述轴臂对应电机的电流值获得轴臂的扭矩值,以及通过设置在所述轴臂上的IMU测量所述轴臂的角加速度值,并计算所述扭矩值与所述角加速度值的比值得到所述云台的转动惯量。
  19. 一种云台,其特征在于,所述云台包括:固定机构,一个或多个轴臂,电机,IMU以及控制器,其中,
    所述固定机构,用于固定搭载于所述云台上的摄像设备;
    所述电机,用于驱动所对应的轴臂转动,从而带动所述摄像设备在一个或者多个方向上运动;
    所述控制器,用于接收参数调节指令,并根据所述参数调节指令控制所述轴臂执行扫频操作,根据所述扫频操作的结果,生成所述云台的控制系统的辨识模型,通过所述控制系统的辨识模型配置所述控制系统的矫正参数,以及配置所述控制系统的控制参数。
  20. 根据权利要求19所述云台,其特征在于,
    所述控制器,具体用于在所述云台处于开机状态时,接收通过触发所述云台上的调参按钮得到的参数调节指令,或者接收所述云台对应的遥控器发出的参数调节指令。
  21. 根据权利要求19所述的云台,其特征在于,
    所述控制器,具体用于触发所述轴臂进入自动扫频模式,在所述自动扫频模式下,生成预设频率范围内的连续扫频信号。
  22. 根据权利要求21所述的云台,其特征在于,所述预设频率范围包括:30赫兹至 300赫兹的频率范围。
  23. 根据权利要求21所述的云台,其特征在于,
    所述控制器,具体用于获得所述连续扫频信号的频率响应信息,根据所述频率响应信息生成所述控制系统的伯德图,所述伯德图中包括用于表征频率和相位关系的相角图,以及用于表征频率和幅值关系的幅值图。
  24. 根据权利要求23所述的云台,其特征在于,当所述轴臂包括横滚轴臂、俯仰轴臂和偏航轴臂时,所述控制系统的伯德图包括分别对应上述三个轴臂的伯德图。
  25. 根据权利要求23所述的云台,其特征在于,
    所述控制器,具体用于分析所述伯德图获得所述云台的固有频率,根据所述固有频率设置滤波参数,以使所述云台在工作过程中滤除频率为所述固有频率的信号。
  26. 根据权利要求23所述的云台,其特征在于,
    所述控制器,具体用于计算所述云台的转动惯量,根据所述转动惯量配置所述控制系统的速度反馈控制环的力度值参数,以及位置反馈控制环的感度值参数。
  27. 根据权利要求26所述的云台,其特征在于,
    所述控制器,具体用于根据所述轴臂对应电机的电流值获得轴臂的扭矩值,通过设置在所述轴臂上的惯性测量单元IMU测量所述轴臂的角加速度值,计算所述扭矩值与所述角加速度值的比值得到所述云台的转动惯量。
PCT/CN2017/073791 2017-02-16 2017-02-16 云台参数的配置方法、装置及云台 WO2018148906A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780005469.6A CN108496139A (zh) 2017-02-16 2017-02-16 云台参数的配置方法、装置及云台
PCT/CN2017/073791 WO2018148906A1 (zh) 2017-02-16 2017-02-16 云台参数的配置方法、装置及云台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/073791 WO2018148906A1 (zh) 2017-02-16 2017-02-16 云台参数的配置方法、装置及云台

Publications (1)

Publication Number Publication Date
WO2018148906A1 true WO2018148906A1 (zh) 2018-08-23

Family

ID=63169141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073791 WO2018148906A1 (zh) 2017-02-16 2017-02-16 云台参数的配置方法、装置及云台

Country Status (2)

Country Link
CN (1) CN108496139A (zh)
WO (1) WO2018148906A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859640A (zh) * 2020-12-31 2021-05-28 深圳市雷赛软件技术有限公司 驱动器的校正器参数的调试方法、装置及可读存储介质
CN114167901A (zh) * 2021-12-01 2022-03-11 重庆市亿飞智联科技有限公司 一种云台控制方法、装置、电子设备、吊舱及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109683468B (zh) * 2018-11-30 2020-08-04 中国矿业大学 一种基于系统辨识建立两轴云台控制系统的方法
EP3839691A1 (en) 2019-04-23 2021-06-23 SZ DJI Technology Co., Ltd. Gimbal control method and device, gimbal, system and storage medium
CN112292320A (zh) * 2019-11-25 2021-01-29 深圳市大疆创新科技有限公司 云台的控制方法、云台、无人飞行器和存储介质
CN113261273B (zh) * 2020-09-22 2023-07-11 深圳市大疆创新科技有限公司 参数自适应方法、手持云台、系统及计算机可读存储介质
CN113302569A (zh) * 2020-09-25 2021-08-24 深圳市大疆创新科技有限公司 云台控制方法、装置、可移动平台和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825642B1 (en) * 2007-05-09 2010-11-02 Zilker Labs, Inc. Control system optimization via independent parameter adjustment
CN102932601A (zh) * 2012-11-12 2013-02-13 天津市亚安科技股份有限公司 一种直接控制云台摄像机参数的方法
CN104838325A (zh) * 2014-06-30 2015-08-12 深圳市大疆创新科技有限公司 一种云台参数调整方法、装置及云台设备
CN105227824A (zh) * 2014-06-30 2016-01-06 深圳市大疆创新科技有限公司 一种云台参数调整方法、装置及云台设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4217721B2 (ja) * 2006-02-13 2009-02-04 キヤノン株式会社 現像装置
US8214063B2 (en) * 2009-09-29 2012-07-03 Kollmorgen Corporation Auto-tune of a control system based on frequency response
DE102013217093A1 (de) * 2013-08-28 2015-03-05 Robert Bosch Gmbh Verfahren zum Anpassen der Parameter eines Reglers für mikromechanische Aktoren und Vorrichtungen
CN204507286U (zh) * 2014-12-15 2015-07-29 优利科技有限公司 云台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825642B1 (en) * 2007-05-09 2010-11-02 Zilker Labs, Inc. Control system optimization via independent parameter adjustment
CN102932601A (zh) * 2012-11-12 2013-02-13 天津市亚安科技股份有限公司 一种直接控制云台摄像机参数的方法
CN104838325A (zh) * 2014-06-30 2015-08-12 深圳市大疆创新科技有限公司 一种云台参数调整方法、装置及云台设备
CN105227824A (zh) * 2014-06-30 2016-01-06 深圳市大疆创新科技有限公司 一种云台参数调整方法、装置及云台设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN, FENG ET AL.: "Control System Design for The Aerial Pan-title of Four-rotor UAV", JOURNAL OF SHENANG AEROSPACE UNIVERSITY, 25 October 2016 (2016-10-25) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859640A (zh) * 2020-12-31 2021-05-28 深圳市雷赛软件技术有限公司 驱动器的校正器参数的调试方法、装置及可读存储介质
CN112859640B (zh) * 2020-12-31 2024-02-23 深圳市雷赛软件技术有限公司 驱动器的校正器参数的调试方法、装置及可读存储介质
CN114167901A (zh) * 2021-12-01 2022-03-11 重庆市亿飞智联科技有限公司 一种云台控制方法、装置、电子设备、吊舱及存储介质

Also Published As

Publication number Publication date
CN108496139A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2018148906A1 (zh) 云台参数的配置方法、装置及云台
CN109000612B (zh) 设备的角度估算方法、装置、摄像组件及飞行器
CN109196266B (zh) 云台的控制方法、云台控制器及云台
CN109803088B (zh) 云台控制方法、装置和云台
WO2017206073A1 (en) Method and system for adaptive gimbal
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
US11156905B2 (en) Control method for gimbal, controller, and gimbal
WO2018120012A1 (zh) 云台控制方法、装置及云台
WO2021027638A1 (zh) 一种偏航角的融合方法、装置及飞行器
US20160301845A1 (en) Method, system, and device for controlling a stabilized camera remotely
CN203705964U (zh) 一种机载三自由度云台稳定闭环控制装置
WO2018191963A1 (zh) 遥控器、云台及云台控制方法、装置、系统
US20210041772A1 (en) Method for suppressing vibration of gimbal, and gimbal
WO2018191964A1 (zh) 云台的控制方法以及云台
JP2017522588A (ja) 撮像制御方法、装置および雲台装置
US10728454B2 (en) Imaging apparatus configured to perform image stabilization and control method thereof
WO2021037047A1 (zh) 一种飞行器的偏航角修正方法、装置及飞行器
WO2020042064A1 (zh) 云台的控制方法与装置、云台系统和无人机
WO2019210467A1 (zh) 云台控制方法与装置、云台系统、无人机和计算机可读存储介质
US20240118596A1 (en) Gimbal control method and device
WO2021102645A1 (zh) 云台的控制方法、云台、无人飞行器和存储介质
WO2022067548A1 (zh) 云台的控制方法及装置、云台以及可移动平台
WO2022077357A1 (zh) 云台的检测方法、装置、云台、可移动平台和存储介质
WO2020000423A1 (zh) 云台的控制方法、云台、飞行器和计算机可读存储介质
WO2019061029A1 (zh) 云台的控制方法、控制设备及云台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896975

Country of ref document: EP

Kind code of ref document: A1