WO2016000193A1 - 一种云台参数调整方法、装置及云台设备 - Google Patents

一种云台参数调整方法、装置及云台设备 Download PDF

Info

Publication number
WO2016000193A1
WO2016000193A1 PCT/CN2014/081313 CN2014081313W WO2016000193A1 WO 2016000193 A1 WO2016000193 A1 WO 2016000193A1 CN 2014081313 W CN2014081313 W CN 2014081313W WO 2016000193 A1 WO2016000193 A1 WO 2016000193A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
pan
angular velocity
time point
rotational angular
Prior art date
Application number
PCT/CN2014/081313
Other languages
English (en)
French (fr)
Inventor
陈发展
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201480003069.8A priority Critical patent/CN104838325A/zh
Priority to JP2016531663A priority patent/JP6113365B2/ja
Priority to PCT/CN2014/081313 priority patent/WO2016000193A1/zh
Publication of WO2016000193A1 publication Critical patent/WO2016000193A1/zh
Priority to US15/394,127 priority patent/US10060576B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/04Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or holding steady relative to, a person, e.g. by chains, e.g. rifle butt or pistol grip supports, supports attached to the chest or head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2071Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction for panning and rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/044Balancing means for balancing rotational movement of the undercarriage

Definitions

  • the present invention relates to the field of cloud platform control technology, and in particular, to a cloud platform parameter adjustment method, device and cloud platform device.
  • the PTZ device is a carrier device for mounting and fixing the camera. It can be coupled to the motor through the gimbal arm to complete the rotation of the camera it carries in one or more directions to capture a wide range of images.
  • the fixed bearing and control of different styles and sizes can be realized by adjusting the fixing parts.
  • the control parameters of the PTZ need to be re-adjusted to make the PTZ work normally.
  • the camera on the gimbal is equipped with a large inertia camera.
  • the inertia becomes smaller.
  • the pan/tilt will oscillate.
  • the user needs to adjust and test the camera to obtain the appropriate pan/tilt.
  • the control parameters are used to make the PTZ work normally. Not only the PTZ parameter adjustment is cumbersome, but also the non-professionals cannot even complete the PTZ parameter adjustment.
  • the embodiment of the invention provides a cloud platform parameter adjustment method, device and a cloud platform device, which can easily and quickly complete the parameter adjustment of the cloud platform device.
  • the embodiment of the invention provides a method for adjusting a cloud platform parameter, including:
  • the control supplies power to the motor, and records the rotational angular velocity data of the pan/tilt axis controlled by the motor at each time point;
  • the angular acceleration data at each time point is calculated according to the rotational angular velocity data at each time point, and after the frequency conversion is performed on the angular acceleration data, the peak frequency in the preset frequency band is determined;
  • the peak frequency is configured as the notch frequency of the motor to filter out the signal that the motor is the transmission target and the frequency is the notch frequency.
  • controlling the power supply to the motor, and recording the rotational angular velocity data of the pan/tilt axis controlled by the motor at each time point including:
  • the supply current of the motor is controlled to be zero; Starting from controlling the supply current to zero, when the timing duration reaches the preset first duration threshold, the preset standard current value is selected to supply power to the motor;
  • the rotational angular velocity data of the pan/tilt axis controlled by the motor at each time point during the power supply process is recorded.
  • controlling the power supply to the motor, and recording the rotational angular velocity data of the pan/tilt axis controlled by the motor at each time point including:
  • the preset standard current value is selected to supply power to the motor, and the pan/tilt axis controlled by the motor during the power supply process is recorded.
  • the initial rotational angular velocity data at each time point obtained in each power supply process is averaged, and the average calculated result is used as the rotational angular velocity data at each time point in the power supply process.
  • the method further includes:
  • the change speed value of the rotational angular velocity is calculated:
  • the actual proportional gain of the control loop of the pan/tilt axis currently controlled by the motor is calculated.
  • the method before detecting the pan/tilt parameter adjustment event, controlling the power supply to the motor, and recording the rotational angular velocity data of the pan/tilt axis controlled by the motor at each time point, the method further includes:
  • pan/tilt parameter adjustment button It is detected whether the set pan/tilt parameter adjustment button is triggered by pressing, and if so, the pan/tilt parameter adjustment event is detected.
  • an embodiment of the present invention further provides a cloud platform parameter adjustment apparatus, including:
  • a processing module configured to control power supply to the motor when detecting a pan/tilt parameter adjustment event, and record rotational angular velocity data of the pan/tilt axis controlled by the motor at each time point;
  • a calculation module configured to calculate angular acceleration data at each time point according to the rotational angular velocity data at each time point, and perform frequency conversion on the angular acceleration data to determine a peak frequency in the preset frequency band;
  • a configuration module configured to configure a peak frequency as a notch frequency of the motor, so as to filter out
  • the motor is a signal that transmits a target and has a frequency of the notch frequency.
  • the processing module includes:
  • a first control unit configured to control a supply current of the motor to zero when detecting a pan/tilt parameter adjustment event
  • a first processing unit configured to start timing when the supply current is controlled to be zero, and when the timing duration reaches a preset first duration threshold, select a preset standard current value to supply power to the motor;
  • the first recording unit is configured to record rotational angular velocity data of the pan/tilt axis controlled by the motor during each time of the power supply.
  • the processing module includes:
  • a second control unit configured to control the supply current of the motor to zero when the pan/tilt parameter adjustment event is detected
  • a second processing unit configured to start timing when the supply current is controlled to be zero, and when the timing duration reaches a preset first duration threshold, select a preset standard current value to supply power to the motor, and record the control of the motor during the power supply process
  • the initial rotational angular velocity data of the pan/tilt axis at each time point, when the power supply duration reaches the preset second duration threshold, the supply current of the motor is again controlled to zero, and the recording of the preset number of times is repeated;
  • the second recording unit is configured to perform an average calculation on the initial rotational angular velocity data at each time point obtained in each power supply process, and use the average calculation result as the rotational angular velocity data at each time point in the power supply process.
  • the device further includes:
  • a change calculation module configured to calculate a change speed value of the rotational angular velocity according to the rotational angular velocity data and the recording duration at each time point recorded;
  • An acquisition module configured to obtain a preset standard angular velocity change speed value and a standard control loop proportional gain; a gain calculation module, configured to calculate a calculated change speed value of the rotational angular velocity, a standard angular velocity change velocity value, and a standard control loop ratio according to the calculation Gain, calculate the actual proportional gain of the control loop of the pan/tilt axis currently controlled by the motor.
  • the device further includes:
  • the detecting module is configured to detect whether the set pan-tilt parameter adjustment button is triggered by pressing, and if yes, detecting the pan-tilt parameter adjustment event.
  • the embodiment of the present invention further provides a pan/tilt head device, including each pan/tilt head, and further includes: a motor and a controller for controlling rotation of the pan/tilt axis, wherein The controller is configured to control power supply to the motor when detecting a pan/tilt parameter adjustment event, and record rotational angular velocity data of the pan/tilt axis controlled by the motor at each time point; calculate according to the rotational angular velocity data at each time point Obtaining angular acceleration data at each time point, and performing frequency conversion on the angular acceleration data to determine a peak frequency in the preset frequency band; configuring a peak frequency as a notch frequency of the motor to filter out the motor A signal that is a target and whose frequency is the notch frequency.
  • the controller is further configured to calculate a change speed value of the rotational angular velocity according to the recorded rotational angular velocity data and the recording duration at each time point; obtain a preset standard angular velocity change velocity value and a standard control loop ratio.
  • Gain Calculate the actual example gain of the control loop of the pan/tilt axis currently controlled by the motor based on the calculated change speed value of the rotational angular velocity, the standard angular velocity change velocity value, and the standard control loop proportional gain.
  • the pan/tilt device further includes: a parameter adjustment button;
  • the controller is further configured to detect whether the set pan/tilt parameter adjustment button is triggered, and if so, determine that the pan/tilt parameter adjustment event is detected.
  • the notch frequency parameter is automatically obtained according to the device detects the rotational angular velocity of the relevant pan/tilt axis after the power is turned on, and the trap frequency is newly obtained based on the newly obtained notch frequency.
  • the parameter can be used to stably control the posture of the mounted load during the use of the new load.
  • the parameter configuration adjustment is simple and the configuration process does not require user participation, saving user time and reducing manpower. The cost meets the needs of users for automation and intelligence.
  • FIG. 1 is a schematic flow chart of a method for adjusting a parameter of a cloud platform according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a power supply and angular velocity response curve according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of another method for adjusting a cloud platform parameter according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of one of the methods for obtaining rotational angular velocity data in the embodiment of the present invention
  • FIG. 5 is a schematic diagram of another method for obtaining rotational angular velocity data in the embodiment of the present invention
  • FIG. 6 is a cloud according to an embodiment of the present invention. Schematic diagram of the structure of the parameter adjustment device;
  • FIG. 7 is a schematic structural diagram of another cloud platform parameter adjusting device according to an embodiment of the present invention.
  • Figure 8 is a schematic structural view of one of the processing modules of Figure 7;
  • FIG. 9 is a schematic structural diagram of a cloud platform device according to an embodiment of the present invention. ⁇ detailed description ⁇
  • the rotation of the pan-tilt axis is recorded during the power supply process.
  • the angular velocity response data, and then the angular acceleration data is processed for the recorded angular velocity response data, and the angular acceleration data is frequency-converted (such as Fourier transform, etc.), and the peak frequency in the transformed high frequency band is used as the notch frequency parameter, and The adjustment of this parameter is finally completed.
  • the control loop proportional gain of the PTZ control loop can be further adjusted.
  • FIG. 1 is a schematic flowchart of a method for adjusting a parameter of a cloud platform according to an embodiment of the present invention.
  • the method of the embodiment of the present invention may be implemented by a controller in various electronically controlled cloud platform devices.
  • the method includes:
  • the controller of the PTZ can be notified to perform parameter adjustment. At this time, the controller of the PTZ device can detect the corresponding user operation or command, and determine the parameter adjustment of the PTZ.
  • the motor is a rotation control motor of any axis of the pan/tilt device.
  • the motors for parameter adjustment are: a motor that controls the rotation of the pan/tilt axis, and a control pan/tilt roll. a rotating motor, and a motor that controls the rotation of the gimbal's lateral axis.
  • the current of the motor can be first controlled to zero, and after waiting for a period of time to ensure that the motor does not rotate, the motor is supplied with power, and the motor drives the corresponding pan/tilt axis to rotate under the power supply. After the power is supplied to the preset time, the power supply is stopped. The angular velocity of the pan/tilt axis rotation is recorded during power supply for subsequent processing based on the recorded angular velocity data.
  • power supply of multiple power supply cycles may be performed in succession, and relatively accurate rotational angular velocity data is obtained by calculating an average.
  • the motor when the user presses the parameter adjustment button at the time of TO, the motor is supplied.
  • the electric current is controlled to zero.
  • the motor's supply current is controlled to a standard value, and the angular velocity response data of the gyroscope set on the relevant pan/tilt axis can be recorded.
  • Power is stopped at time T2. Then, the motor supply current is again controlled to zero, and the rotational angular velocity data of the next cycle is recorded to obtain the final angular velocity data after the pan/tilt axis is powered up.
  • S102 Calculate angular acceleration data at each time point according to the rotational angular velocity data at each time point, and perform frequency conversion on the angular acceleration data to determine a peak frequency in the preset frequency band.
  • the angular acceleration response data can be obtained by directly differentiating the rotational angular velocity data obtained in S101 in time.
  • the frequency transform in the S102 may adopt a fast Fourier transform, and correspondingly find a peak frequency of a high frequency band (for example, a portion larger than 30 Hz) after performing frequency conversion on the angular acceleration response data.
  • S103 Configure a peak frequency as a notch frequency for the motor to filter out a signal that the motor is a transmission target and the frequency is the notch frequency.
  • the notch capable of filtering the output signal of the controller in the pan-tilt device can be based on The notch frequency eliminates the signal of the control signal sent to the motor and whose frequency is the notch frequency, so that the control of the new load after the parameter configuration is completed can be stably realized. Attitude control of the loaded load.
  • the notch frequency parameter is automatically obtained according to the device detects the rotational angular velocity of the relevant pan/tilt axis after the power is turned on, and the trap frequency is newly obtained based on the newly obtained notch frequency.
  • the parameter can be used to stably control the posture of the mounted load during the use of the new load.
  • the parameter configuration adjustment is simple and the configuration process does not require user participation, saving user time and reducing manpower. The cost meets the needs of users for automation and intelligence.
  • FIG. 3 it is a schematic flowchart of another cloud platform parameter adjustment method according to an embodiment of the present invention.
  • the method in the embodiment of the present invention can be implemented in a controller in various electronically controlled cloud platform devices. Specifically, the method includes:
  • the pan/tilt parameter adjustment button may be a mechanical button preset on the pan-tilt device.
  • the controller receives the trigger signal of the mechanical button press, it may determine that the pan-tilt parameter adjustment event has occurred, and the pan-tilt user needs to
  • the PTZ device performs parameter adjustment to achieve stable control of the new load.
  • S202 When detecting the pan/tilt parameter adjustment event, control the power supply to the motor, and record the rotational angular velocity data of the pan/tilt axis controlled by the motor at each time point.
  • S203 Calculate angular acceleration data at each time point according to the rotational angular velocity data at each time point, and perform frequency conversion on the angular acceleration data to determine a peak frequency in the preset frequency band.
  • S204 Configure a peak frequency as a notch frequency of the motor to filter out a signal to be sent to the motor at a frequency of the notch frequency.
  • the determination of the notch frequency parameter and the configuration process are performed after the rotational angular velocity data at each time point is obtained, and S205 to S207 described below are also performed.
  • S205 Calculate the change speed value of the rotational angular velocity based on the rotational angular velocity data and the recording duration at each time point recorded.
  • the change speed value of the rotational angular velocity may be the ratio of the angular velocity change amount to the duration in a certain period of time.
  • the schematic diagram of FIG. 2 is taken as an example. At the time when the angular velocity exists (recorded as T time) to T2, the angular velocity is rotated.
  • the formula for calculating the rate of change can be:
  • V is a change velocity value of the rotational angular velocity
  • 2 is a rotational angular velocity at the time of ⁇ 2
  • ⁇ 2 and ⁇ are two different time points.
  • S206 Acquire a preset standard angular velocity change speed value and a standard control loop proportional gain.
  • S207 Calculate the actual proportional gain of the control loop of the pan/tilt axis currently controlled by the motor according to the calculated change speed value of the rotational angular velocity, the standard angular velocity change velocity value, and the standard control loop proportional gain.
  • the standard angular velocity change speed value is: for the same pan/tilt motor and its controlled pan/tilt axis, the standard rotational mass is used to calibrate the standard rotational angular velocity, and the standard control loop proportional gain is standard.
  • one of the ways to calculate the actual proportional gain of the control loop may be: the ratio of the calculated velocity value V of the rotational angular velocity to the rate of change of the standard rotational angular velocity, and multiplied by the standard control loop. Proportional gain. , you can get the actual proportional gain ⁇ ⁇ .
  • FIG. 4 is a schematic diagram of a method for obtaining rotational angular velocity data according to an embodiment of the present invention.
  • the method in the embodiment of the present invention may correspond to the foregoing S101 or S202. Specifically, the method includes:
  • S302 Starting from controlling the supply current to zero, when the timing duration reaches a preset first duration threshold, selecting a preset standard current value to supply power to the motor;
  • the time from TO to T1 in Fig. 2 is the first time threshold, which ensures that the rotational angular velocity of the pan/tilt axis is caused by the motor power supply rotation.
  • the power supply process is in the time range from T1 to T2.
  • FIG. 5 is a schematic diagram of another method for obtaining rotational angular velocity data according to an embodiment of the present invention.
  • the method of the embodiment of the present invention may correspond to the foregoing S101 or S202. Specifically, the method includes:
  • S402 Starting from controlling the supply current to zero, when the timing duration reaches a preset first duration threshold, selecting a preset standard current value to supply power to the motor;
  • the time from TO to T1 in Fig. 2 is the first time threshold, which ensures that the rotational angular velocity of the pan/tilt axis is caused by the motor power supply rotation.
  • S403 Record initial rotation angular velocity data of the pan/tilt axis controlled by the motor at each time point during power supply;
  • S404 The supply current of the motor is again controlled to zero when the power supply duration reaches the preset second duration threshold.
  • the above-described S402 to S404 are repeatedly executed until the number of recordings of the completed initial rotational angular velocity data reaches the preset number of times threshold, for example, the recording of the initial rotational angular velocity data of the four time periods (four times) is completed.
  • S405 Perform an average calculation on the initial rotational angular velocity data at each time point obtained in each power supply process, and use the average calculation result as the rotational angular velocity data at each time point in the power supply process.
  • the rotational angular velocity data can be obtained relatively accurately for subsequent processing to obtain the notch frequency parameter and the actual control loop proportional gain.
  • the embodiment of the invention can automatically obtain the notch frequency parameter and the actual control loop proportional gain according to the rotational angular velocity of the relevant pan/tilt axis detected by the device such as the gyroscope when the user needs to perform parameter adjustment for the new load, thereby ensuring After the new load is mounted on the PTZ, the attitude control of the attached load can be stably performed.
  • the parameter configuration adjustment is implemented in a simple manner, and the configuration process does not require user participation, saving user time and reducing labor costs. , to meet the needs of user automation, intelligent.
  • pan/tilt parameter adjustment device and the pan/tilt device according to the embodiment of the present invention are described in detail below.
  • FIG. 6 is a schematic structural diagram of a cloud platform parameter adjustment device according to an embodiment of the present invention.
  • the device in the embodiment of the present invention may be configured in a cloud platform device.
  • the device includes:
  • the processing module 10 is configured to control power supply to the motor when detecting the pan/tilt parameter adjustment event, and record rotational angular velocity data of the pan/tilt axis controlled by the motor at each time point;
  • the calculation module 20 is configured to calculate angular acceleration data at each time point according to the rotational angular velocity data at each time point, and perform frequency conversion on the angular acceleration data to determine a peak frequency in the preset frequency band;
  • the configuration module 30 is configured to configure a peak frequency as a notch frequency of the motor to filter out a signal that is sent to the motor and the frequency is the notch frequency.
  • the user mounts a new load on the PTZ device and needs to adjust the parameters such as the notch frequency of the PTZ, it can be set by a mechanical button or a touch button set on the PTZ in advance, or by issuing a voice command, or The controller of the PTZ is notified to perform parameter adjustment by issuing a control command or the like by the assistant terminal.
  • the processing module 10 can detect the corresponding user operation or command, and determine to perform the PTZ parameter adjustment.
  • the motor is a rotary control motor that needs to be parameterized on any axis of the pan-tilt device.
  • the motors for parameter adjustment are: a motor that controls the rotation of the pan/tilt axis, and control The motor that rotates the pan-tilt axis and the motor that controls the rotation of the pan-tilt axis.
  • the processing module 10 can first control the current of the motor to zero, and wait for a period of time to ensure that the motor does not rotate, and then supply power to the motor, and the motor drives the corresponding pan/tilt axis to rotate under the power source driving. After the power is supplied to the preset time, the power supply is stopped. The angular velocity of the pan/tilt axis rotation is recorded during power supply for subsequent processing based on the recorded angular velocity data.
  • the processing module 10 can also perform power supply of multiple power supply cycles in succession, and obtain more accurate rotational angular velocity data by averaging.
  • the calculation module 20 can specifically obtain the angular acceleration response curve by directly differentiating the rotational angular velocity data obtained by the processing module 10 in time.
  • the frequency used in the calculation module 20 The transform may employ a fast Fourier transform, and the calculation module 20 correspondingly finds a peak frequency of a high frequency band (for example, a portion larger than 30 Hz) after performing frequency conversion on the angular acceleration response data.
  • the determined peak frequency is the structural resonance point frequency
  • the configuration module 30 configures the peak frequency as the notch frequency parameter of the motor, and then can filter the output signal of the controller in the PTZ device.
  • the wave device can eliminate the signal of the frequency of the trapping frequency of the control signal sent by the controller to the motor based on the notch frequency, thereby realizing the control process of the new hanging load after the parameter configuration is completed.
  • the attitude control of the mounted load is relatively stable.
  • the notch frequency parameter is automatically obtained according to the device detects the rotational angular velocity of the relevant pan/tilt axis after the power is turned on, and the trap frequency is newly obtained based on the newly obtained notch frequency.
  • the parameter can be used to stably control the posture of the mounted load during the use of the new load.
  • the parameter configuration adjustment is simple and the configuration process does not require user participation, saving user time and reducing manpower. The cost meets the needs of users for automation and intelligence.
  • FIG. 7 is a schematic structural diagram of another cloud platform parameter adjustment apparatus according to an embodiment of the present invention.
  • the apparatus of the embodiment of the present invention may be disposed in a cloud platform device.
  • the device includes the foregoing embodiment.
  • the processing module 10, the calculation module 20, and the configuration module 30, in the embodiment of the present invention, the device further includes:
  • the change calculation module 40 is configured to calculate a change speed value of the rotational angular velocity according to the rotational angular velocity data and the recording duration at each time point recorded;
  • the obtaining module 50 is configured to obtain a preset standard angular velocity change speed value and a standard control loop proportional gain
  • the gain calculation module 60 is configured to calculate the actual control loop of the pan/tilt axis controlled by the motor according to the calculated change speed value of the rotational angular velocity, the standard angular velocity change velocity value, and the standard control loop proportional gain. Proportional gain.
  • the method further includes: a detecting module 70, configured to detect whether the set pan/tilt parameter adjustment button is triggered, and if yes, detect the pan/tilt parameter adjustment event.
  • a detecting module 70 configured to detect whether the set pan/tilt parameter adjustment button is triggered, and if yes, detect the pan/tilt parameter adjustment event.
  • the pan/tilt parameter adjustment button may be a mechanical button that is set in advance on the pan-tilt device.
  • the detection module 70 receives the trigger signal that the mechanical button is pressed, it may determine that the pan-tilt parameter adjustment has occurred. For the whole incident, the PTZ user needs to adjust the parameters of the PTZ device in order to achieve stable control of the new hanging load.
  • the detecting module 70 causes the processing module 10 to perform a corresponding function by transmitting a trigger signal.
  • the processing module 10 may specifically include:
  • the first control unit 101 is configured to control the power supply current of the motor to zero when the pan/tilt parameter adjustment event is detected;
  • the first processing unit 102 is configured to start timing when the power supply current is controlled to be zero, and when the timing duration reaches a preset first duration threshold, select a preset standard current value to supply power to the motor;
  • the first recording unit 103 is configured to record rotational angular velocity data of the pan/tilt axis controlled by the motor during each power supply at each time point.
  • the rotational angular velocity data for the subsequent processing to obtain the notch frequency parameter and the actual control loop proportional gain can be obtained relatively quickly.
  • the processing module may further include:
  • the second control unit 104 is configured to control the power supply current of the motor to zero when the pan/tilt parameter adjustment event is detected;
  • the second processing unit 105 is configured to start timing when the power supply current is controlled to be zero, and when the timing duration reaches a preset first duration threshold, select a preset standard current value to supply power to the motor, and record the motor in the power supply process.
  • the initial rotational angular velocity data of the controlled pan/tilt axis at each time point is controlled to zero again when the power supply duration reaches a preset second duration threshold, and the recording of the preset number of times is repeated;
  • the second recording unit 106 is configured to perform an average calculation on the initial rotational angular velocity data at each time point obtained in each power supply process, and use the average calculation result as the rotational angular velocity data at each time point in the power supply process.
  • the processing module 10 may include the first control unit 101, the first processing preferred 102, and the first recording unit 103, and the second control unit 104, the second processing unit 105, and the second.
  • the combination of the recording units 106 is such that the acquisition of the rotational angular velocity data is accomplished by selecting different combinations according to the actual needs of the user (quick or accurate).
  • the notch frequency parameter and the actual control loop proportional gain can be automatically obtained according to the rotational angular velocity of the relevant pan/tilt axis detected by the gyroscope or the like.
  • the posture control of the mounted load can be stably performed during the use of the PTZ after the new load is mounted, and the implementation is simple, and the configuration process does not require user participation, saving user time, reducing labor costs, and satisfying The need for user automation and intelligence.
  • FIG. 9 is a schematic structural diagram of a cloud platform device according to an embodiment of the present invention.
  • the cloud platform device includes a plurality of pan/tilt axes.
  • a three-axis pan/tilt is taken as an example.
  • the gimbal apparatus of the embodiment of the invention is described.
  • the pan/tilt axis includes: a transverse axis 4001, a roll axis 4002, and a pitch axis 4003. It also includes a motor and controller that controls the rotation of the pan/tilt axis.
  • the motor includes a motor 3001 connected between a transverse shaft 4001 and an external handheld device, a motor 3002 connected between the rolling shaft 4002 and the lateral shaft 4001, and a motor 3003 connected between the rolling shaft 4002 and the pitch axis 4003. .
  • the controller is configured to control power supply to the motor when detecting a pan/tilt parameter adjustment event, and record rotational angular velocity data of the pan/tilt axis controlled by the motor at each time point; calculate according to the rotational angular velocity data at each time point Obtaining angular acceleration data at each time point, and performing frequency conversion on the angular acceleration data to determine a peak frequency in the preset frequency band; configuring a peak frequency as a notch frequency of the motor to filter out the motor A signal that is a target and whose frequency is the notch frequency.
  • the rotational angular velocity data of the pan/tilt axis controlled by the motor at each time point can be detected by the gyroscope and transmitted to the controller.
  • the gyroscopes are respectively disposed on the lateral axis 4001, the roll axis 4002, and the pitch axis 4003, for detecting the rotational angular velocity data of each axis according to the control of the controller, and performing the same acquisition and processing on the rotational angular velocity data on the pan/tilt axis. In this way, the notch frequency parameter and the control loop proportional gain on each axis are finally obtained.
  • the controller is further configured to calculate a change speed value of the rotational angular velocity according to the recorded rotational angular velocity data and the recording duration at each time point; obtain a preset standard angular velocity change velocity value and a standard control loop ratio Gain; Calculate the actual proportional gain of the control loop of the pan/tilt axis currently controlled by the motor based on the calculated change velocity value of the rotational angular velocity, the standard angular velocity change velocity value, and the standard control loop proportional gain.
  • the pan/tilt setting further comprises: a parameter adjustment button; the adjustment parameter button may be a mechanical button.
  • the controller is further configured to detect whether the set pan-tilt parameter adjustment button is triggered by pressing, and if yes, determine that the pan-tilt parameter adjustment event is detected.
  • the embodiment of the invention can automatically adjust when the user needs to perform parameter adjustment for the new load According to the rotational angular velocity of the relevant pan/tilt axis detected by the gyroscope and other devices, the notch frequency parameter and the actual control loop proportional gain are obtained, thereby ensuring a relatively stable operation during the use of the gimbal after loading a new load.
  • the posture control of the mounted load is simple and simple, and the configuration process does not require user participation, saves user time, reduces labor costs, and satisfies the needs of user automation and intelligence.
  • the related apparatus and method disclosed may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as the units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Gyroscopes (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种云台参数调整方法、装置及云台设备,其中,所述方法包括:在检测到云台参数调整事件时,控制向电机供电,并记录该电机所控制的云台轴在各时间点的转动角速度数据(S101);根据各时间点的转动角速度数据计算得到在各个时间点下的角加速度数据,对角加速度数据进行频率变换后,确定出预设频段内的峰值频率(S102);将峰值频率配置为所述电机的陷波频率(S103),以便滤除掉即将发送给该电机且频率为所述陷波频率的信号。可确保在云台挂载新的负载后的使用过程中,能够较为稳定地对所挂负载的姿态控制,实现方式简捷,并且配置过程不需要用户参与,节省用户时间,降低了人力成本,满足了用户自动化、智能化的需求。

Description

一种云台参数调整方法、 装置及云台设备
【技术领域】
本发明涉及云台控制技术领域, 尤其涉及一种云台参数调整方法、 装置及 云台设备。
【背景技术】
云台设备是一种安装和固定相机的承载设备, 其可以通过云台臂与电机配 合, 完成其承载的相机在一个或者多个方向上的转动, 以拍摄较大范围的图像。 一般情况下, 云台设备中可以通过调节固定件的方式, 实现对不同款式、 大小 的相机固定承载以及控制。
在可更换相机的云台设备中, 由于不同的相机惯量不一样, 当更换相机时, 需要重新调整云台的控制参数才能让云台正常工作。 比如云台上之前装的是大 惯量的相机, 当将相机更换成小惯量相机时, 由于惯量变小, 开机后云台会震 荡, 用户需要自行通过多次调整和测试来得到合适的云台控制参数来使云台能 够正常工作, 不仅云台参数调节比较繁琐, 而且对于非专业人士甚至无法完成 云台参数调整。
【发明内容】
本发明实施例提供了一种云台参数调整方法、 装置及云台设备, 可简便、 快捷地完成云台设备的参数调整。
本发明实施例提供了一种云台参数调整方法, 包括:
在检测到云台参数调整事件时, 控制向电机供电, 并记录该电机所控制的 云台轴在各时间点的转动角速度数据;
根据各时间点的转动角速度数据计算得到在各个时间点下的角加速度数 据, 对角加速度数据进行频率变换后, 确定出预设频段内的峰值频率;
将峰值频率配置为所述电机的陷波频率, 以便滤除掉以该电机为发送目标 且频率为所述陷波频率的信号。
其中可选地, 所述在检测到云台参数调整事件时, 控制向电机供电, 并记 录该电机所控制的云台轴在各时间点的转动角速度数据, 包括:
在检测到云台参数调整事件时, 将对电机的供电电流控制为零; 从将供电电流控制为零开始计时, 当计时时长达到预设的第一时长阈值时, 选择预设的标准电流值向电机供电;
记录供电过程中该电机所控制的云台轴在各时间点的转动角速度数据。 其中可选地, 所述在检测到云台参数调整事件时, 控制向电机供电, 并记 录该电机所控制的云台轴在各时间点的转动角速度数据, 包括:
在检测到云台参数调整事件时, 将对电机的供电电流控制为零;
从将供电电流控制为零开始计时, 当计时时长达到预设的第一时长阔值时, 选择预设的标准电流值向电机供电, 并记录供电过程中该电机所控制的云台轴 在各时间点的初始转动角速度数据, 在供电时长达到预设的第二时长阈值时再 次将对电机的供电电流控制为零, 重复执行本步骤直至完成的记录次数达到预 设的次数阔值;
对每次供电过程中得到的各时间点的初始转动角速度数据进行平均计算, 将平均计算结果作为供电过程中各时间点的转动角速度数据。
其中可选地, 所述方法还包括:
根据记录的各时间点的转动角速度数据和记录时长, 计算得到转动角速度 的变化速度值:
获取预置的标准角速度变化速度值和标准控制环比例增益;
根据计算得到的所述转动角速度的变化速度值、 标准角速度变化速度值以 及标准控制环比例增益, 计算得到当前对该电机所控制的云台轴的控制环路的 实际比例增益。
其中可选地, 所述在检测到云台参数调整事件时, 控制向电机供电, 并记 录该电机所控制的云台轴在各时间点的转动角速度数据之前, 还包括:
检测已设置的云台参数调整按钮是否被按动触发, 若是, 则检測到云台参 数调整事件。
相应地, 本发明实施例还提供了一种云台参数调整装置, 包括:
处理模块, 用于在检测到云台参数调整事件时, 控制向电机供电, 并记录 该电机所控制的云台轴在各时间点的转动角速度数据;
计算模块, 用于根据各时间点的转动角速度数据计算得到在各个时间点下 的角加速度数据, 对角加速度数据进行频率变换后, 确定出预设频段内的峰值 频率;
配置模块, 用于将峰值频率配置为所述电机的陷波频率, 以便滤除掉以该 电机为发送目标且频率为所述陷波频率的信号。
其中可选地, 所述处理模块包括:
第一控制单元, 用于在检测到云台参数调整事件时, 将对电机的供电电流 控制为零;
第一处理单元, 用于从将供电电流控制为零开始计时, 当计时时长达到预 设的第一时长阈值时, 选择预设的标准电流值向电机供电;
第一记录单元, 用于记录供电过程中该电机所控制的云台轴在各时间点的 转动角速度数据。
其中可选地, 所述处理模块包括:
第二控制单元, 用于在检测到云台参数调整事件时, 将对电机的供电电流 控制为零;
第二处理单元, 用于从将供电电流控制为零开始计时, 当计时时长达到预 设的第一时长阈值时, 选择预设的标准电流值向电机供电, 并记录供电过程中 该电机所控制的云台轴在各时间点的初始转动角速度数据, 在供电时长达到预 设的第二时长阈值时再次将对电机的供电电流控制为零, 重复完成预设次数的 记录;
第二记录单元, 用于对每次供电过程中得到的各时间点的初始转动角速度 数据进行平均计算, 将平均计算结果作为供电过程中各时间点的转动角速度数 据。
其中可选地, 所述装置还包括:
变化计算模块, 用于根据记录的各时间点的转动角速度数据和记录时长, 计算得到转动角速度的变化速度值;
获取模块, 用于获取预置的标准角速度变化速度值和标准控制环比例增益; 增益计算模块, 用于根据计算得到的所述转动角速度的变化速度值、 标准 角速度变化速度值以及标准控制环比例增益, 计算得到当前对该电机所控制的 云台轴的控制环路的实际比例增益。
其中可选地, 所述装置还包括:
检测模块, 用于检测已设置的云台参数调整按钮是否被按动触发, 若是, 则检测到云台参数调整事件。
相应地, 本发明实施例还提供了一种云台设备, 包括各个云台轴, 还包括: 控制云台轴转动的电机和控制器, 其中, 所述控制器, 用于在检测到云台参数调整事件时, 控制向电机供电, 并记 录该电机所控制的云台轴在各时间点的转动角速度数据; 根据各时间点的转动 角速度数据计算得到在各个时间点下的角加速度数据, 对角加速度数据进行频 率变换后, 确定出预设频段内的峰值频率; 将峰值频率配置为所述电机的陷波 频率, 以便滤除掉以该电机为发送目标且频率为所述陷波频率的信号。
其中可选地, 所述控制器, 还用于根据记录的各时间点的转动角速度数据 和记录时长, 计算得到转动角速度的变化速度值; 获取预置的标准角速度变化 速度值和标准控制环比例增益; 根据计算得到的所述转动角速度的变化速度值、 标准角速度变化速度值以及标准控制环比例增益, 计算得到当前对该电机所控 制的云台轴的控制环路的实际 例增益。
其中可选地, 所述云台设备还包括: 调参按钮;
所述控制器, 还用于检测已设置的云台参数调整按钮是否被按动触发, 若 是, 则确定检测到云台参数调整事件。
本发明实施例能够在用户新挂负载需要进行参数调整的时候, 自动地根据 陀螺仪等装置检测到上电后相关云台轴的转动角速度情况得到陷波频率参数, 基于新得到的陷波频率参数可以在挂载新的负载后的使用过程中, 能够较为稳 定地实现对所挂负载的姿态控制, 参数配置调整的实现方式简捷, 并且配置过 程不需要用户参与, 节省用户时间, 降低了人力成本, 满足了用户自动化、 智 能化的需求。
【附图说明】
图 1是本发明实施例的一种云台参数调整方法的流程示意图;
图 2是本发明实施例的供电与角速度响应曲线示意图;
图 3是本发明实施例的另一种云台参数调整方法的流程示意图;
图 4是本发明实施例中得到转动角速度数据的其中一种方法示意图; 图 5是本发明实施例中得到转动角速度数据的其中另一种方法示意图; 图 6是本发明实施例的一种云台参数调整装置的结构示意图;
图 7是本发明实施例的另一种云台参数调整装置的结构示意图;
图 8是图 7中的处理模块的其中一种结构示意图;
图 9是本发明实施例的云台设备的结构示意图。 【具体实施方式】
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例在用户挂载了新负载 (如新的相机等), 需要进行云台陷波器 的陷波频率等云台相关参数的调节时, 通过在供电过程中记录云台轴的转动角 速度响应数据, 然后对记录的角速度响应数据处理得到角加速度数据, 并对角 加速度数据进行频率变换 (如傅里叶变换等), 将变换后高频段内的峰值频率作 为陷波频率参数, 并最终完成该参数的调节。 同时, 还可以进一步地进行云台 控制环路的控制环比例增益进行调节。
具体的, 请参见图 1, 是本发明实施例的一种云台参数调整方法的流程示意 图, 本发明实施例的所述方法可以由各种电控云台设备中的控制器中实现。 具 体的, 所述方法包括:
S101 : 在检测到云台参数调整事件时, 控制向电机供电, 并记录该电机所 控制的云台轴在各时间点的转动角速度数据。
用户在云台设备上挂载新负载后, 需要对云台的如陷波频率等参数进行调 整时, 可以通过预先在云台上设置的机械按钮、 或触控按钮, 或通过发出声控 指令, 或通过调参终端发出控制指令等方式, 通知云台的控制器进行参数调整, 此时云台设备的控制器可以检测到相应的用户搡作或指令, 确定进行云台参数 调整。
所述的电机为云台设备任意一轴的转动控制电机, 例如, 对于三轴云台设 备来讲, 进行参数调整的电机分别为: 控制云台俯仰轴转动的电机、 控制云台 横滚轴转动的电机, 以及控制云台横向轴转动的电机。
在所述 S101中可以先将该电机的电流控制为零, 在等待一段时间确保电机 没有转动后, 再向该电机供电, 该电机在电源驱动下会带动其对应的云台轴转 动。 在供电到预设时长后, 停止供电。 在供电期间会记录云台轴转动的角速度, 以便于根据记录的角速度数据进行后续处理。
当然, 在所述 S101中可以先后执行多个供电周期的供电, 并通过求平均等 计算方式来得到较为准确的转动角速度数据。
具体如图 2所示的示意图, TO时刻用户按下参数调整按钮时, 将电机的供 电电流控制为零, 等待一段时间后, 在 T1时刻, 将电机的供电电流控制在一个 标准值, 即可开始记录设置在相关云台轴上的陀螺仪的角速度响应数据。 在 T2 时刻停止供电。 再重新将电机的供电电流控制为零, 进行下一周期的转动角速 度数据的记录, 以得到最终的能够较为准确地得到云台轴上电后的角速度数据。
S102 : 根据各时间点的转动角速度数据计算得到在各个时间点下的角加速 度数据, 对角加速度数据进行频率变换后, 确定出预设频段内的峰值频率。
具体可以直接通过对在 S101 中得到转动角速度数据在时间上微分, 即可得 到角加速度响应数据。 所述 S102中的频率变换可以采用快速傅里叶变换, 并在 对所述角加速度响应数据进行频率变换后对应找出高频段(例如大于 30Hz的部 分) 的峰值频率。
S103 : 将峰值频率配置为对所述电机的陷波频率, 以便滤除掉以该电机为 发送目标且频率为所述陷波频率的信号。
实际上, 确定的峰值频率为结构共振点频率, 将峰值频率配置为所述电机 的陷波频率参数后, 那么, 能够对云台设备中控制器的输出信号进行过滤的陷 波器则可以基于该陷波频率, 消除掉控制器输出的发送给该电机的控制信号中 频率为该陷波频率的信号, 从而实现在参数配置完成后对新挂负载的控制过程 中, 能够较为稳定地实现对所挂负载的姿态控制。
本发明实施例能够在用户新挂负载需要进行参数调整的时候, 自动地根据 陀螺仪等装置检测到上电后相关云台轴的转动角速度情况得到陷波频率参数, 基于新得到的陷波频率参数可以在挂载新的负载后的使用过程中, 能够较为稳 定地实现对所挂负载的姿态控制, 参数配置调整的实现方式简捷, 并且配置过 程不需要用户参与, 节省用户时间, 降低了人力成本, 满足了用户自动化、 智 能化的需求。
再请参见图 3, 是本发明实施例的另一种云台参数调整方法的流程示意图, 本发明实施例的所述方法可以在各种电控云台设备中的控制器中实现。 具体的, 所述方法包括:
S201 : 检测已设置的云台参数调整按钮是否被按动触发, 若是, 则检测到 云台参数调整事件。
云台参数调整按钮可以是预先在云台设备上设置的机械按钮, 控制器在接 收到该机械按钮本按下的触发信号时, 则可以确定已发生云台参数调整事件, 云台用户需要对云台设备进行参数调整, 以便于实现对新挂负载的稳定控制。 S202 : 在检测到云台参数调整事件时, 控制向电机供电, 并记录该电机所 控制的云台轴在各时间点的转动角速度数据。
S203: 根据各时间点的转动角速度数据计算得到在各个时间点下的角加速 度数据, 对角加速度数据进行频率变换后, 确定出预设频段内的峰值频率。
S204 : 将峰值频率配置为所述电机的陷波频率, 以便滤除掉即将发送给该 电机且频率为所述陷波频率的信号。
得到陷波频率参数的过程可参考图 1 对应实施例中的相关描述。 在本发明 实施例中, 在得到各个时间点的转动角速度数据后执行陷波频率参数的确定以 及配置过程的同时, 还执行下述的 S205至 S207。
S205 : 根据记录的各时间点的转动角速度数据和记录时长, 计算得到转动 角速度的变化速度值。
转动角速度的变化速度值可以是某个时间段内的角速度变化量与时长的比 值, 同样以图 2的示意图为例, 在存在角速度的时刻 (记作 T时刻) 到 T2时刻 间, 转动角速度的变化速度值的计算公式可以为:
v = ~― ―;
T2 - T
其中, V为转动角速度的变化速度值, 2为 Τ2时刻的转动角速度, 是 Τ 时刻的转动角速度, 本发明实施例中为 0, Γ2和 Γ为两个不同的时间点。
S206 : 获取预置的标准角速度变化速度值和标准控制环比例增益。
S207 : 根据所述计算得到的转动角速度的变化速度值、 标准角速度变化速 度值以及标准控制环比例增益, 计算得到当前对该电机所控制的云台轴的控制 环路的实际比例增益。
所述标准角速度变化速度值为: 对于同一个云台电机及其控制的云台轴, 在生产时使用标准质量块标定的标准转动角速度的变化速度 ,而所述标准控制 环比例增益则为标准质量块时所使用的比例参数 。。
在本发明实施例中, 其中一种计算得到控制环的实际比例增益 的方式可 以为:将计算得到的转动角速度的变化速度值 V与标准转动角速度的变化速度的 比值 , 再乘以标准控制环比例增益 。, 即可得到实际比例增益^ ^。
根据 S207计算得到的实际比例增益对控制器到电机 (云台轴) 的控制环进 行控制, 可以进一步使得挂载新负载的云台更稳定地完成对负载的姿态控制。 具体再请参见图 4,是本发明实施例中得到转动角速度数据的其中一种方法 示意图, 本发明实施例的所述方法可对应于上述的 S101或 S202, 具体的, 所述 方法包括:
S301 : 在检测到云台参数调整事件时, 将对电机的供电电流控制为零;
S302 : 从将供电电流控制为零开始计时, 当计时时长达到预设的第一时长 阈值时, 选择预设的标准电流值向电机供电;
例如图 2中 TO至 T1时刻为第一时长阈值, 以此可确保云台轴的转动角速 度是由电机供电转动后引起的。
S303: 记录供电过程中该电机所控制的云台轴在各时间点的转动角速度数 据。
供电过程即为 T1至 T2的时间范围内。
通过上述的 S301至 S303 ,可以较为快速地得到用于后续处理得到陷波频率 参数和实际控制环比例增益的转动角速度数据。
具体再请参见图 5,是本发明实施例中得到转动角速度数据的其中另一种方 法示意图, 本发明实施例的所述方法可对应于上述的 S101或 S202 , 具体的, 所 述方法包括:
S401 : 在检测到云台参数调整事件时, 将对电机的供电电流控制为零;
S402 : 从将供电电流控制为零开始计时, 当计时时长达到预设的第一时长 阈值时, 选择预设的标准电流值向电机供电;
例如图 2中 TO至 T1时刻为第一时长阈值, 以此可确保云台轴的转动角速 度是由电机供电转动后引起的。
S403: 记录供电过程中该电机所控制的云台轴在各时间点的初始转动角速 度数据;
S404 : 在供电时长达到预设的第二时长阈值时再次将对电机的供电电流控 制为零。重复执行上述 S402至 S404, 直至完成的初始转动角速度数据的记录次 数达到预设的次数阈值, 例如, 完成 4个时段 (4次) 的初始转动角速度数据的 记录。
S405: 对每次供电过程中得到的各时间点的初始转动角速度数据进行平均 计算, 将平均计算结果作为供电过程中各时间点的转动角速度数据。
通过上述的 S401至 S405 , 可以较为准确地得到转动角速度数据, 以用于后 续处理得到陷波频率参数和实际控制环比例增益。 本发明实施例能够在用户新挂负载需要进行参数调整的时候, 自动地根据 陀螺仪等装置检测到的相关云台轴的转动角速度情况得到陷波频率参数和实际 的控制环比例增益, 从而确保在云台挂载新的负载后的使用过程中, 能够较为 稳定地对所挂负载的姿态控制, 参数配置调整的实现方式简捷, 并且配置过程 不需要用户参与, 节省用户时间, 降低了人力成本, 满足了用户自动化、 智能 化的需求。
下面对本发明实施例的云台参数调整装置及云台设备进行详细描述。
具体请参见图 6, 是本发明实施例的一种云台参数调整装置的结构示意图, 本发明实施例的所述装置可设置在云台设备中, 具体的, 所述装置包括:
处理模块 10, 用于在检测到云台参数调整事件时, 控制向电机供电, 并记 录该电机所控制的云台轴在各时间点的转动角速度数据;
计算模块 20, 用于根据各时间点的转动角速度数据计算得到在各个时间点 下的角加速度数据, 对角加速度数据进行频率变换后, 确定出预设频段内的峰 值频率;
配置模块 30, 用于将峰值频率配置为所述电机的陷波频率, 以便滤除掉即 将发送给该电机且频率为所述陷波频率的信号。
用户在云台设备上挂载新负载, 需要对云台的如陷波频率等参数进行调整 时, 可通过预先在云台上设置的机械按钮、 或触控按钮, 或通过发出声控指令, 或通过调参终端发出控制指令等方式, 通知云台的控制器进行参数调整, 此时 所述处理模块 10可以检测到相应的用户搡作或指令, 确定进行云台参数调整。
所述的电机为云台设备任意一轴的需要进行参数设置的转动控制电机, 例 如, 对于三轴云台设备来讲, 进行参数调整的电机分别为: 控制云台俯仰轴转 动的电机、 控制云台横滚轴转动的电机以及控制云台横向轴转动的电机。
所述处理模块 10可以先将该电机的电流控制为零, 在等待一段时间确保电 机没有转动后, 再向该电机供电, 该电机在电源驱动下会带动其对应的云台轴 转动。 在供电到预设时长后, 停止供电。 在供电期间会记录云台轴转动的角速 度, 以便于根据记录的角速度数据进行后续处理。
当然, 所述处理模块 10也可以先后执行多个供电周期的供电, 并通过求平 均的方式来得到较为准确的转动角速度数据。
所述计算模块 20具体可以直接通过对所述处理模块 10得到转动角速度数 据在时间上微分, 即可得到角加速度响应曲线。 所述计算模块 20中采用的频率 变换可以采用快速傅里叶变换, 所述计算模块 20在对所述角加速度响应数据进 行频率变换后对应找出高频段 (例如大于 30Hz的部分) 的峰值频率。
实际上, 确定的峰值频率为结构共振点频率, 所述配置模块 30将峰值频率 配置为所述电机的陷波频率参数后, 那么, 能够对云台设备中控制器的输出信 号进行过滤的陷波器则可以基于该陷波频率, 消除掉控制器输出的发送给该电 机的控制信号中频率为该陷波频率的信号, 从而实现在参数配置完成后对新挂 负载的控制过程中, 能够较为稳定地实现对所挂负载的姿态控制。
本发明实施例能够在用户新挂负载需要进行参数调整的时候, 自动地根据 陀螺仪等装置检测到上电后相关云台轴的转动角速度情况得到陷波频率参数, 基于新得到的陷波频率参数可以在挂载新的负载后的使用过程中, 能够较为稳 定地实现对所挂负载的姿态控制, 参数配置调整的实现方式简捷, 并且配置过 程不需要用户参与, 节省用户时间, 降低了人力成本, 满足了用户自动化、 智 能化的需求。
具体请参见图 7, 是本发明实施例的另一种云台参数调整装置的结构示意 图, 本发明实施例的所述装置可设置在云台设备中, 具体的, 所述装置包括上 述实施例中的处理模块 10、 计算模块 20以及配置模块 30, 在本发明实施例中, 所述装置还包括:
变化计算模块 40,用于根据记录的各时间点的转动角速度数据和记录时长, 计算得到转动角速度的变化速度值;
获取模块 50, 用于获取预置的标准角速度变化速度值和标准控制环比例增 益;
增益计算模块 60, 用于根据计算得到的所述转动角速度的变化速度值、 标 准角速度变化速度值以及标准控制环比例增益, 计算得到当前对该电机所控制 的云台轴的控制环路的实际比例增益。
所述变化计算模块 40、 以及增益计算模块 60计算所述处理模块 10得到的 转动角速度的变化速度值的具体计算方式可参考上述方法项实施例中的计算方 法及公式。
进一步可选地, 还包括: 检测模块 70, 用于检测已设置的云台参数调整按 钮是否被按动触发, 若是, 则检测到云台参数调整事件。
云台参数调整按钮可以是预先在云台设备上设置的机械按钮, 所述检测模 块 70在接收到该机械按钮本按下的触发信号时, 则可以确定已发生云台参数调 整事件, 云台用户需要对云台设备进行参数调整, 以便于实现对新挂负载的稳 定控制。 所述检测模块 70通过发送触发信号的方式使所述处理模块 10执行相 应的功能。
其中可选地, 如图 8所示, 所述处理模块 10具体可以包括:
第一控制单元 101, 用于在检测到云台参数调整事件时, 将对电机的供电电 流控制为零;
第一处理单元 102, 用于从将供电电流控制为零开始计时, 当计时时长达到 预设的第一时长阈值时, 选择预设的标准电流值向电机供电;
第一记录单元 103, 用于记录供电过程中该电机所控制的云台轴在各时间点 的转动角速度数据。
基于上的第一控制单元 101、 第一处理都宁愿 102以及第一记录单元 103, 可以较为快速地得到用于后续处理得到陷波频率参数和实际控制环比例增益的 转动角速度数据。
所述处理模块进一步还可以包括:
第二控制单元 104, 用于在检测到云台参数调整事件时, 将对电机的供电电 流控制为零;
第二处理单元 105, 用于从将供电电流控制为零开始计时, 当计时时长达到 预设的第一时长阈值时, 选择预设的标准电流值向电机供电, 并记录供电过程 中该电机所控制的云台轴在各时间点的初始转动角速度数据, 在供电时长达到 预设的第二时长阈值时再次将对电机的供电电流控制为零, 重复完成预设次数 的记录;
第二记录单元 106, 用于对每次供电过程中得到的各时间点的初始转动角速 度数据进行平均计算, 将平均计算结果作为供电过程中各时间点的转动角速度 数据。
基于上述的第二控制单元 104、第二处理单元 105以及第二记录单元 106可 以得到较为准确地得到用于后续处理得到陷波频率参数和实际控制环比例增益 的转动角速度数据。
在具体实施时, 所述处理模块 10可以同时包括上述的第一控制单元 101、 第一处理都宁愿 102以及第一记录单元 103的組合和第二控制单元 104、第二处 理单元 105 以及第二记录单元 106的组合, 以便于根据用户的实际需要 (快速 或准确) 选择不同的組合完成转动角速度数据的获取。 本发明实施例能够在用户新挂负载需要进行参数调整的时候, 即可自动地 根据陀螺仪等装置检测到的相关云台轴的转动角速度情况得到陷波频率参数和 实际的控制环比例增益, 从而确保在云台挂载新的负载后的使用过程中, 能够 较为稳定地对所挂负载的姿态控制, 实现方式简捷, 并且配置过程不需要用户 参与, 节省用户时间, 降低了人力成本, 满足了用户自动化、 智能化的需求。
再请参见图 9, 是本发明实施例的云台设备的结构示意图, 本发明实施例的 所述云台设备包括各个云台轴, 在本发明实施例中, 以三轴云台为例对本发明 实施例的云台设备进行说明, 云台轴包括: 横向轴 4001、 横滚轴 4002以及俯仰 轴 4003。还包括:控制云台轴转动的电机和控制器。其中电机包括:横向轴 4001 与外部手持设备等部件之间连接的电机 3001, 横滚轴 4002与横向轴 4001之间 连接的电机 3002, 以及横滚轴 4002与俯仰轴 4003之间连接的电机 3003。
所述控制器, 用于在检测到云台参数调整事件时, 控制向电机供电, 并记 录该电机所控制的云台轴在各时间点的转动角速度数据; 根据各时间点的转动 角速度数据计算得到在各个时间点下的角加速度数据, 对角加速度数据进行频 率变换后, 确定出预设频段内的峰值频率; 将峰值频率配置为所述电机的陷波 频率, 以便滤除掉以该电机为发送目标且频率为所述陷波频率的信号。
该电机所控制的云台轴在各时间点的转动角速度数据可以通过陀螺仪检测 并传输给所述控制器的。 陀螺仪分别设置在横向轴 4001、横滚轴 4002以及俯仰 轴 4003上, 用以根据控制器的控制检测每一个轴的转动角速度数据, 对于云台 轴上的转动角速度数据进行相同的获取以及处理方式, 最终得到每一个轴上的 陷波频率参数和控制环比例增益。
进一步可选地, 所述控制器, 还用于根据记录的各时间点的转动角速度数 据和记录时长, 计算得到转动角速度的变化速度值; 获取预置的标准角速度变 化速度值和标准控制环比例增益; 根据计算得到的所述转动角速度的变化速度 值、 标准角速度变化速度值以及标准控制环比例增益, 计算得到当前对该电机 所控制的云台轴的控制环路的实际比例增益。
进一步可选地, 所述云台设别还包括: 调参按钮; 该调参按钮可以为一个 机械按钮。 所述控制器, 还用于检测已设置的云台参数调整按钮是否被按动触 发, 若是, 则确定检测到云台参数调整事件。
所述控制器的具体实现可参考上述图 1至图 8对应实施例中的相关描述。 本发明实施例能够在用户新挂负载需要进行参数调整的时候, 即可自动地 根据陀螺仪等装置检测到的相关云台轴的转动角速度情况得到陷波频率参数和 实际的控制环比例增益, 从而确保在云台挂载新的负载后的使用过程中, 能够 较为稳定地对所挂负载的姿态控制, 实现方式简捷, 并且配置过程不需要用户 参与, 节省用户时间, 降低了人力成本, 满足了用户自动化、 智能化的需求。
在本发明所提供的几个实施例中, 应该理解到, 所揭露的相关装置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有 另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或 直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元 中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能单元的 形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或 使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或 部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得计算机处理器 (processor)执行本发明各个实施例所 述方法的全部或部分步骤。 而前述的存储介质包括: U 盘、 移动硬盘、 只读存 储器 (ROM, Read-Only Memory)、 随机存取存储器 (RAM, Random Access Memory)、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运 用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权 利 要 求
1、 一种云台参数调整方法, 其特征在于, 包括:
在检测到云台参数调整事件时, 控制向电机供电, 并记录该电机所控制的 云台轴在各时间点的转动角速度数据;
根据各时间点的转动角速度数据计算得到在各个时间点下的角加速度数 据, 对角加速度数据进行频率变换后, 确定出预设频段内的峰值频率;
将峰值频率配置为对所述电机的陷波频率, 以便滤除掉以该电机为发送目 标且频率为所述陷波频率的信号。
2、 如权利要求 1所述的方法, 其特征在于, 所述在检测到云台参数调整事 件时, 控制向电机供电, 并记录该电机所控制的云台轴在各时间点的转动角速 度数据, 包括:
在检测到云台参数调整事件时, 将对电机的供电电流控制为零:
从将供电电流控制为零开始计时, 当计时时长达到预设的第一时长阈值时, 选择预设的标准电流值向电机供电;
记录供电过程中该电机所控制的云台轴在各时间点的转动角速度数据。
3、 如权利要求 1所述的方法, 其特征在于, 所述在检测到云台参数调整事 件时, 控制向电机供电, 并记录该电机所控制的云台轴在各时间点的转动角速 度数据, 包括:
在检测到云台参数调整事件时, 将对电机的供电电流控制为零;
从将供电电流控制为零开始计时, 当计时时长达到预设的第一时长阈值时, 选择预设的标准电流值向电机供电, 并记录供电过程中该电机所控制的云台轴 在各时间点的初始转动角速度数据, 在供电时长达到预设的第二时长阈值时再 次将对电机的供电电流控制为零, 重复执行本步骤直至完成的记录次数达到预 设的次数阈值;
对每次供电过程中得到的各时间点的初始转动角速度数据进行平均计算, 将平均计算结果作为供电过程中各时间点的转动角速度数据。
4、 如权利要求 1至 3任一项所述的方法, 其特征在于, 还包括: 根据记录的各时间点的转动角速度数据和记录时长, 计算得到转动角速度 的变化速度值:
获取预置的标准角速度变化速度值和标准控制环比例增益;
根据所述计算得到的转动角速度的变化速度值、 标准角速度变化速度值以 及标准控制环比例增益, 计算得到当前对该电机所控制的云台轴的控制环路的 实际比例增益。
5、 如权利要求 4所述的方法, 其特征在于, 所述在检测到云台参数调整事 件时, 控制向电机供电, 并记录该电机所控制的云台轴在各时间点的转动角速 度数据之前, 还包括:
检测已设置的云台参数调整按钮是否被按动触发, 若是, 则检測到云台参 数调整事件。
6、 一种云台参数调整装置, 其特征在于, 包括:
处理模块, 用于在检测到云台参数调整事件时, 控制向电机供电, 并记录 该电机所控制的云台轴在各时间点的转动角速度数据;
计算模块, 用于根据各时间点的转动角速度数据计算得到在各个时间点下 的角加速度数据, 对角加速度数据进行频率变换后, 确定出预设频段内的峰值 频率;
配置模块, 用于将峰值频率配置为所述电机的陷波频率, 以便滤除掉以该 电机为发送目标且频率为所述陷波频率的信号。
7、 如权利要求 6所述的装置, 其特征在于, 所述处理模块包括: 第一控制单元, 用于在检测到云台参数调整事件时, 将对电机的供电电流 控制为零;
第一处理单元, 用于从将供电电流控制为零开始计时, 当计时时长达到预 设的第一时长阈值时, 选择预设的标准电流值向电机供电;
第一记录单元, 用于记录供电过程中该电机所控制的云台轴在各时间点的 转动角速度数据。
8、 如权利要求 6所述的装置, 其特征在于, 所述处理模块包括: 第二控制单元, 用于在检测到云台参数调整事件时, 将对电机的供电电流 控制为零;
第二处理单元, 用于从将供电电流控制为零开始计时, 当计时时长达到预 设的第一时长阈值时, 选择预设的标准电流值向电机供电, 并记录供电过程中 该电机所控制的云台轴在各时间点的初始转动角速度数据, 在供电时长达到预 设的第二时长阈值时再次将对电机的供电电流控制为零, 重复完成预设次数的 记录;
第二记录单元, 用于对每次供电过程中得到的各时间点的初始转动角速度 数据进行平均计算, 将平均计算结果作为供电过程中各时间点的转动角速度数 据。
9、 如权利要求 6至 8任一项所述的装置, 其特征在于, 还包括:
变化计算模块, 用于根据记录的各时间点的转动角速度数据和记录时长, 计算得到转动角速度的变化速度值;
获取模块, 用于获取预置的标准角速度变化速度值和标准控制环比例增益; 增益计算模块, 用于根据计算得到的所述转动角速度的变化速度值、 标准 角速度变化速度值以及标准控制环比例增益, 计算得到当前对该电机所控制的 云台轴的控制环路的实际比例增益。
10、 如权利要求 9所述的装置, 其特征在于, 还包括:
检测模块, 用于检测已设置的云台参数调整按钮是否被按动触发, 若是, 则检测到云台参数调整事件。
11、 一种云台设备, 包括各个云台轴, 其特征在于, 还包括: 控制云台轴 转动的电机和控制器, 其中,
所述控制器, 用于在检测到云台参数调整事件时, 控制向电机供电, 并记 录该电机所控制的云台轴在各时间点的转动角速度数据; 根据各时间点的转动 角速度数据计算得到在各个时间点下的角加速度数据, 对角加速度数据进行频 率变换后, 确定出预设频段内的峰值频率; 将峰值频率配置为所述电机的陷波 频率, 以便滤除掉以该电机为发送目标且频率为所述陷波频率的信号。
12、 如权利要求 11所述的云台设备, 其特征在于,
所述控制器, 还用于根据记录的各时间点的转动角速度数据和记录时长, 计算得到转动角速度的变化速度值; 获取预置的标准角速度变化速度值和标准 控制环比例增益; 根据计算得到的所述转动角速度的变化速度值、 标准角速度 变化速度值以及标准控制环比例增益, 计算得到当前对该电机所控制的云台轴 的控制环路的实际比例增益。
13、 如权利要求 11 或 12所述的云台设备, 其特征在于, 还包括: 调参按 钮;
所述控制器, 还用于检测已设置的云台参数调整按钮是否被按动触发, 若 是, 则确定检测到云台参数调整事件。
PCT/CN2014/081313 2014-06-30 2014-06-30 一种云台参数调整方法、装置及云台设备 WO2016000193A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480003069.8A CN104838325A (zh) 2014-06-30 2014-06-30 一种云台参数调整方法、装置及云台设备
JP2016531663A JP6113365B2 (ja) 2014-06-30 2014-06-30 雲台パラメータの調整方法、装置及び雲台機器
PCT/CN2014/081313 WO2016000193A1 (zh) 2014-06-30 2014-06-30 一种云台参数调整方法、装置及云台设备
US15/394,127 US10060576B2 (en) 2014-06-30 2016-12-29 Method, device, and apparatus for gimbal parameter adjustment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/081313 WO2016000193A1 (zh) 2014-06-30 2014-06-30 一种云台参数调整方法、装置及云台设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/394,127 Continuation US10060576B2 (en) 2014-06-30 2016-12-29 Method, device, and apparatus for gimbal parameter adjustment

Publications (1)

Publication Number Publication Date
WO2016000193A1 true WO2016000193A1 (zh) 2016-01-07

Family

ID=53814891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081313 WO2016000193A1 (zh) 2014-06-30 2014-06-30 一种云台参数调整方法、装置及云台设备

Country Status (4)

Country Link
US (1) US10060576B2 (zh)
JP (1) JP6113365B2 (zh)
CN (1) CN104838325A (zh)
WO (1) WO2016000193A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109922259A (zh) * 2016-05-31 2019-06-21 深圳市大疆灵眸科技有限公司 云台控制方法、装置和云台

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3650932B1 (en) * 2015-05-27 2023-02-08 GoPro, Inc. Camera system using stabilizing gimbal
CN105116926B (zh) * 2015-08-20 2018-05-04 深圳一电航空技术有限公司 云台控制方法和装置
CN105912028A (zh) * 2015-12-30 2016-08-31 东莞市青麦田数码科技有限公司 云台控制系统和控制方法
CN105607653A (zh) * 2016-01-05 2016-05-25 深圳一电航空技术有限公司 云台控制方法和系统
CN106227240B (zh) * 2016-07-28 2019-06-18 纳恩博(北京)科技有限公司 一种云台控制方法和装置
CN106249761A (zh) * 2016-08-11 2016-12-21 零度智控(北京)智能科技有限公司 地面云台控制方法、装置及地面云台
CN110362121B (zh) * 2016-12-01 2022-08-02 广州亿航智能技术有限公司 一种云台姿态控制方法及系统
US10254632B2 (en) * 2016-12-29 2019-04-09 Haoxiang Electric Energy (Kunshan) Co., Ltd. Handheld stand for shooting and method for adjusting center of gravity thereof
CN108496139A (zh) * 2017-02-16 2018-09-04 深圳市大疆灵眸科技有限公司 云台参数的配置方法、装置及云台
CN113485464A (zh) * 2017-06-27 2021-10-08 深圳市大疆灵眸科技有限公司 手持云台装置及其控制方法与计算机可读存储介质
JP6488521B2 (ja) * 2017-07-24 2019-03-27 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 制御装置、支持システム、撮像システム、移動体、制御方法、及びプログラム
CN108700896A (zh) * 2017-07-31 2018-10-23 深圳市大疆创新科技有限公司 数据转换与拍摄控制方法、系统、云台组件及无人机系统
WO2019119201A1 (zh) * 2017-12-18 2019-06-27 深圳市大疆灵眸科技有限公司 一种云台控制方法、无人机、云台及存储介质
EP3737082A4 (en) * 2018-01-05 2020-12-23 SZ DJI Technology Co., Ltd. METHOD OF CONTROL OF TILT-TILT, TILT-TILT, AND MACHINE-READABLE STORAGE MEDIUM
US10827123B1 (en) 2018-01-05 2020-11-03 Gopro, Inc. Modular image capture systems
CN108322642A (zh) * 2018-01-09 2018-07-24 青岛海信移动通信技术股份有限公司 一种图像数据的处理方法和装置
CN110383198B (zh) * 2018-02-02 2023-09-12 深圳市大疆创新科技有限公司 可更换镜头的云台控制方法及云台
CN108375992B (zh) * 2018-02-09 2019-01-22 桂林智神信息技术有限公司 手持云台的控制方法和控制装置
CN110300136B (zh) * 2018-03-22 2021-12-24 杭州萤石软件有限公司 一种云台控制优化方法和系统
CN110637266A (zh) * 2018-04-28 2019-12-31 深圳市大疆创新科技有限公司 云台的控制方法和云台
WO2019210467A1 (zh) * 2018-05-02 2019-11-07 深圳市大疆创新科技有限公司 云台控制方法与装置、云台系统、无人机和计算机可读存储介质
CN110832423A (zh) * 2018-11-28 2020-02-21 深圳市大疆创新科技有限公司 云台的控制方法、云台、移动平台和计算机可读存储介质
WO2021102645A1 (zh) * 2019-11-25 2021-06-03 深圳市大疆创新科技有限公司 云台的控制方法、云台、无人飞行器和存储介质
WO2022087977A1 (zh) * 2020-10-29 2022-05-05 深圳市大疆创新科技有限公司 云台的控制方法、云台、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078958A (zh) * 1992-05-13 1993-12-01 金星产电株式会社 用于控制电梯速度的装置和方法
CN101668190A (zh) * 2009-09-15 2010-03-10 中兴通讯股份有限公司 云台控制方法及云台控制系统
CN103001563A (zh) * 2012-11-28 2013-03-27 天津市亚安科技股份有限公司 一种云台垂直电机的驱动方法
CN103024343A (zh) * 2011-09-21 2013-04-03 天津市亚安科技股份有限公司 一种摄像机参数后端调节的方法
CN103841313A (zh) * 2012-11-27 2014-06-04 华为技术有限公司 云台摄像机控制方法、系统及设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100499904B1 (ko) * 2001-04-20 2005-07-05 세이코 엡슨 가부시키가이샤 제어 대상의 방향 제어 장치
JP2007183356A (ja) * 2006-01-05 2007-07-19 Casio Comput Co Ltd 防振装置
JP5191224B2 (ja) 2007-12-07 2013-05-08 イーストマン コダック カンパニー 画像処理装置
EP3770480A1 (en) * 2014-06-27 2021-01-27 SZ DJI Osmo Technology Co., Ltd. Tripod head structure and gear adjustment mechanism thereof
JP6219543B2 (ja) * 2014-06-27 2017-10-25 エスゼット ディージェイアイ オスモ テクノロジー カンパニー リミテッドSZ DJI Osmo Technology Co., Ltd. 雲台
JP6194444B2 (ja) * 2014-07-04 2017-09-13 エスゼット ディージェイアイ オスモ テクノロジー カンパニー リミテッドSZ DJI Osmo Technology Co., Ltd. 雲台
EP3505808B1 (en) * 2014-07-29 2021-08-11 SZ DJI Osmo Technology Co., Ltd. Systems and methods for payload stabilization
WO2016065624A1 (zh) * 2014-10-31 2016-05-06 深圳市大疆创新科技有限公司 横滚轴组件及其使用的云台
JP6637050B2 (ja) * 2015-01-06 2020-01-29 エスゼット ディージェイアイ オスモ テクノロジー カンパニー リミテッドSZ DJI Osmo Technology Co., Ltd. 手持ちジンバル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078958A (zh) * 1992-05-13 1993-12-01 金星产电株式会社 用于控制电梯速度的装置和方法
CN101668190A (zh) * 2009-09-15 2010-03-10 中兴通讯股份有限公司 云台控制方法及云台控制系统
CN103024343A (zh) * 2011-09-21 2013-04-03 天津市亚安科技股份有限公司 一种摄像机参数后端调节的方法
CN103841313A (zh) * 2012-11-27 2014-06-04 华为技术有限公司 云台摄像机控制方法、系统及设备
CN103001563A (zh) * 2012-11-28 2013-03-27 天津市亚安科技股份有限公司 一种云台垂直电机的驱动方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109922259A (zh) * 2016-05-31 2019-06-21 深圳市大疆灵眸科技有限公司 云台控制方法、装置和云台
US10890830B2 (en) 2016-05-31 2021-01-12 Sz Dji Osmo Technology Co., Ltd. Gimbal control method, gimbal control apparatus, and gimbal

Also Published As

Publication number Publication date
JP6113365B2 (ja) 2017-04-12
CN104838325A (zh) 2015-08-12
US20170138534A1 (en) 2017-05-18
US10060576B2 (en) 2018-08-28
JP2017504818A (ja) 2017-02-09

Similar Documents

Publication Publication Date Title
WO2016000193A1 (zh) 一种云台参数调整方法、装置及云台设备
WO2016000194A1 (zh) 一种摄像控制方法、装置及云台设备
CN105227824B (zh) 一种云台参数调整方法、装置及云台设备
EP2944078B1 (en) Wireless video camera
WO2018120012A1 (zh) 云台控制方法、装置及云台
US11472038B2 (en) Multi-device robot control
WO2018191963A1 (zh) 遥控器、云台及云台控制方法、装置、系统
JP6711565B2 (ja) 通信装置、その制御方法、プログラム
WO2015103835A1 (zh) 一种对云台摄像设备进行方位控制的方法和装置
WO2017177369A1 (zh) 一种稳定器的跟踪拍摄控制方法及系统
WO2015100964A1 (zh) 显示器观看角度自动调节的方法、系统及显示器
WO2019126932A1 (zh) 云台的控制方法和控制设备
WO2021081843A1 (zh) 云台系统的校准方法、装置、云台系统和计算机可读介质
KR20160123885A (ko) 비행이 가능한 전자 장치를 이용한 촬영 방법 및 장치
JP2023539800A (ja) 撮影装置用スタビライザー
CN105721834B (zh) 控制平衡车停靠的方法及装置
WO2019148348A1 (zh) 云台控制方法和装置
CN105450905A (zh) 摄像装置、信息输送装置、摄像控制方法及信息输送方法
WO2020000423A1 (zh) 云台的控制方法、云台、飞行器和计算机可读存储介质
WO2019061029A1 (zh) 云台的控制方法、控制设备及云台
WO2022257771A1 (zh) 受控设备的控制方法、装置、系统、终端设备及uwb组件
CN106161929B (zh) 一种自拍杆控制方法、装置及自拍杆
CN113261273B (zh) 参数自适应方法、手持云台、系统及计算机可读存储介质
WO2019222966A1 (zh) 云台控制方法和装置
WO2021007697A1 (zh) 云台及其控制方法、外置控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896624

Country of ref document: EP

Kind code of ref document: A1