WO2019126958A1 - 偏航姿态控制方法、无人机、计算机可读存储介质 - Google Patents

偏航姿态控制方法、无人机、计算机可读存储介质 Download PDF

Info

Publication number
WO2019126958A1
WO2019126958A1 PCT/CN2017/118361 CN2017118361W WO2019126958A1 WO 2019126958 A1 WO2019126958 A1 WO 2019126958A1 CN 2017118361 W CN2017118361 W CN 2017118361W WO 2019126958 A1 WO2019126958 A1 WO 2019126958A1
Authority
WO
WIPO (PCT)
Prior art keywords
yaw attitude
yaw
attitude
amount
pan
Prior art date
Application number
PCT/CN2017/118361
Other languages
English (en)
French (fr)
Inventor
刘帅
王映知
林光远
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/118361 priority Critical patent/WO2019126958A1/zh
Priority to CN201780004700.XA priority patent/CN109074087A/zh
Publication of WO2019126958A1 publication Critical patent/WO2019126958A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability

Definitions

  • the present invention relates to the field of drone technology, and in particular, to a yaw attitude control method, a drone, and a computer readable storage medium.
  • the UAV is equipped with a PTZ for fixing the shooting device (such as a camera, a camera, etc.).
  • a PTZ for fixing the shooting device
  • the shooting device can capture images of different viewing angles under different yaw attitudes.
  • the user wants the drone to enter the landing state from the flight state after landing in flight mode (falling to the user's hand, and the user continues to shoot with the drone) to continue shooting stably.
  • the effect of the mirror In the process of switching the drone from the flight state to the landing state, the gimbal will deviate from the expected orientation, that is, the yaw attitude of the gimbal cannot be kept stable, and the shooting picture cannot be kept stable.
  • the invention provides a yaw attitude control method, a drone, and a computer readable storage medium to ensure the stability of a picture during a process of switching from a flight state to a landing state.
  • a first aspect of the embodiments of the present invention provides a yaw attitude control method, where the method includes:
  • the expected yaw attitude difference is a yaw attitude difference between a fuselage of the drone and a pan/tilt carried on the fuselage, the first lever amount being used to decoupleably control a yaw attitude of the pan/tilt or the fuselage Yaw posture
  • a second aspect of the embodiments of the present invention provides a yaw attitude control method, where the method includes:
  • the yaw attitude of the pan/tilt is controlled according to the yaw attitude difference such that the pan/tilt follows the fuselage in a yaw direction.
  • a third aspect of the embodiments of the present invention provides a drone, including: a memory and a processor;
  • the memory is configured to store program code
  • the processor calls the program code to perform the following operations when the program code is executed:
  • the expected yaw attitude difference is a yaw attitude difference between a fuselage of the drone and a pan/tilt carried on the fuselage, the first lever amount being used to decoupleably control a yaw attitude of the pan/tilt or the fuselage Yaw posture
  • a fourth aspect of the embodiments of the present invention provides a drone, including: a memory and a processor;
  • the memory is configured to store program code
  • the processor calls the program code to perform the following operations when the program code is executed:
  • the yaw attitude of the pan/tilt is controlled according to the yaw attitude difference such that the pan/tilt follows the fuselage in a yaw direction.
  • a fifth aspect of the embodiments of the present invention provides a computer readable storage medium, where the computer readable storage medium stores computer instructions, and when the computer instructions are executed, implementing the first aspect of the embodiment of the present invention A yaw attitude control method.
  • a sixth aspect of the embodiments of the present invention provides a computer readable storage medium, where the computer readable storage medium stores computer instructions, and when the computer instructions are executed, implementing the second aspect of the embodiment of the present invention A yaw attitude control method.
  • the expected yaw attitude difference caused by the first control lever amount received from the control terminal in the first control mode, or the yaw attitude of the airframe and the yaw of the pan/tilt The yaw attitude difference between the attitudes can be used to control the yaw attitude of the gimbal using the expected yaw attitude difference or the yaw attitude difference, so that the pan/tilt follows the fuselage in the yaw direction in the second control mode.
  • Figure 1 is a schematic structural view of a drone
  • FIG. 2 is a schematic diagram of a yaw attitude of a fuselage of a drone and a yaw attitude of a gimbal;
  • FIG. 3 is another schematic diagram of a yaw attitude of a fuselage of a drone and a yaw attitude of the gimbal;
  • FIG. 4 is another schematic diagram of a yaw attitude of a fuselage of a drone and a yaw attitude of the head;
  • FIG. 5 is another schematic diagram of a yaw attitude of a fuselage of a drone and a yaw attitude of the head;
  • FIG. 6 is another schematic diagram of a yaw attitude of a fuselage of a drone and a yaw attitude of the pan/tilt;
  • FIG. 7 is a schematic diagram of an embodiment of a yaw attitude control method
  • Figure 8 is another schematic view of the yaw attitude of the fuselage of the drone and the yaw attitude of the gimbal;
  • Figure 9 is another schematic view of the yaw attitude of the fuselage of the drone and the yaw attitude of the gimbal;
  • FIG. 10 is a schematic diagram of another embodiment of a yaw attitude control method
  • Figure 11 is another schematic view of the yaw attitude of the fuselage of the drone and the yaw attitude of the gimbal;
  • Figure 12 is a schematic illustration of an embodiment of a drone.
  • first, second, third, etc. may be used to describe various information in the present invention, such information should not be limited to these terms. These terms are used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information without departing from the scope of the invention.
  • second information may also be referred to as the first information.
  • word “if” may be interpreted as "at time”, or "when", or "in response to determination.”
  • a yaw attitude control method is proposed, which can be applied to a system including a drone and a control terminal.
  • the drone is equipped with a pan/tilt, and a shooting device (such as a camera, a camera, etc.) is fixed on the pan/tilt.
  • Control terminals may include, but are not limited to, remote controls, smart phones/mobile phones, tablets, personal digital assistants (PDAs), laptop computers, desktop computers, media content players, video game stations/systems, virtual reality systems, augmented reality System, wearable devices (eg, watches, glasses, gloves, headwear (eg, hats, helmets, virtual reality headsets, augmented reality headsets, head mounted devices (HMD), headbands), pendants, armbands , leg loops, shoes, vests, gesture recognition devices, microphones, any electronic device capable of providing or rendering image data.
  • PDAs personal digital assistants
  • laptop computers desktop computers
  • media content players eg.g, video game stations/systems
  • virtual reality systems e.g., augmented reality System
  • wearable devices eg, watches, glasses, gloves, headwear (eg, hats, helmets, virtual reality headsets, augmented reality headsets, head mounted devices (HMD), headbands), pendants, armbands , leg loops, shoes, vests
  • FIG. 1 for a schematic diagram of the structure of the drone.
  • 10 indicates the nose of the drone
  • 11 indicates the propeller of the drone
  • 12 indicates the fuselage of the drone
  • 13 indicates the tripod of the drone
  • 14 indicates the gimbal on the drone
  • 15 indicates the mount of the gimbal 14
  • the photographing apparatus 15 is connected to the body 12 of the drone through the pan/tilt head 14
  • 16 denotes a photographing lens of the photographing apparatus
  • 20 denotes a target object 20 .
  • the pan/tilt head 14 may be a three-axis pan/tilt head, that is, the pan/tilt head 14 is rotated by the Roller axis, the Pitch axis, and the Yaw axis of the pan/tilt. As shown in Fig. 1, 1 indicates the Roll axis of the pan/tilt head, 2 indicates the Pitch axis of the pan/tilt head, and 3 indicates the Yaw axis of the pan/tilt head.
  • the roll attitude of the pan/tilt changes; when the pan/tilt is rotated with the Pitch axis as the axis, the pitch attitude of the pan/tilt changes; when the pan/tilt head rotates with the Yaw axis as the axis, The yaw attitude of the gimbal has changed.
  • the photographing device 15 rotates following the rotation of the pan-tilt 14, so that the photographing device 15 can be taken from different photographing directions and photographing angles.
  • the target object 20 is photographed.
  • the fuselage 12 of the drone can also be rotated by the Roll axis, the Pitch axis, and the Yaw axis of the fuselage.
  • the roll attitude of the fuselage changes;
  • the body of the drone rotates with the Yaw axis as the axis the yaw attitude of the fuselage changes.
  • the pan/tilt can be controlled to rotate with one or more of the Roll axis, the Pitch axis, and the Yaw axis.
  • the control of the gimbal with the Yaw axis as the axis rotation is taken as an example. That is to say, the yaw angle of the control gimbal changes, that is, the yaw attitude of the gimbal is controlled.
  • the body of the drone can also be controlled to rotate with one or more of the Roll axis, the Pitch axis and the Yaw axis.
  • the control body is rotated by the Yaw axis as an example. That is to say, the yaw angle of the control body changes, that is, controls the yaw attitude of the fuselage.
  • the drone When the drone is in flight, the drone can be in the first control mode, wherein the yaw attitude of the pan/tilt and the yaw attitude of the fuselage of the drone in the first control mode include the following control modes:
  • a control method decouples the yaw attitude of the gimbal or the yaw attitude of the fuselage. Specifically, in some cases, the user may perform a first operation on the control terminal of the drone, for example, operating a PTZ pulsator on the control terminal, at which time the control terminal may generate a first lever amount and The first lever amount is sent to the drone, and the first lever amount is used to adjust the yaw attitude of the pan/tilt. As shown in Fig.
  • the yaw attitude change of the photographing device is used to characterize the yaw attitude change of the gimbal
  • the yaw attitude of the airframe of the drone and the yaw attitude of the gimbal (201) may be as shown in FIG. 2(a).
  • the drone adjusts the yaw attitude of the pan/tilt according to the first lever amount, and the adjusted attitude of the fuselage and the yaw attitude of the pan/tilt (202) are as shown in Fig. 2(b). Shown.
  • the user may perform a first operation on the control terminal of the drone, for example, operating the fuselage pulsator on the control terminal, at which time the control terminal may generate a first lever amount and The first lever amount is sent to the drone, and the first lever amount is used to adjust the yaw attitude of the airframe of the drone.
  • the yaw attitude (301) of the airframe of the drone and the yaw attitude of the gimbal can be as shown in FIG. 3(a).
  • the drone After receiving the first lever amount, the drone adjusts the yaw attitude of the fuselage according to the first lever amount, and the adjusted yaw attitude of the airframe (302) and the pan/tilt The yaw attitude is shown in Figure 3(b).
  • the first lever amount can individually control the yaw attitude of the gimbal or the yaw attitude of the fuselage. For example, under the action of the first lever amount, the gimbal rotates in the yaw direction, and the fuselage does not rotate as the gimbal rotates in the yaw direction. Or, for example, under the action of the first amount of the lever, the fuselage rotates in the yaw direction, and the pan/tilt does not rotate as the fuselage rotates in the yaw direction.
  • Another control method is to control the yaw attitude of the gimbal and instruct the fuselage to follow the yaw attitude of the gimbal.
  • the user can perform a second operation on the control terminal of the drone, for example, operating the yaw joystick on the control terminal, at which time the control terminal can generate the second lever amount and send the second lever amount
  • the second lever amount is used to adjust the yaw attitude of the gimbal
  • the second lever amount is also used to indicate that the body follows the attitude of the gimbal. For example, as shown in FIG.
  • the yaw attitude (401) of the head of the drone and the yaw attitude (402) of the fuselage can be as shown in FIG. 4 (a).
  • the pan/tilt rotates in the yaw direction, and a yaw attitude change occurs (403).
  • the drone When the drone is in a falling state, the drone may be in the second control mode, wherein the yaw attitude of the pan/tilt and the yaw attitude of the airframe of the drone in the second control mode include the following control modes:
  • a control method when the yaw attitude of the fuselage is adjusted, the yaw attitude of the gimbal follows the yaw attitude of the fuselage. Specifically, when the yaw attitude of the fuselage is adjusted, the yaw attitude of the pan-tilt needs to follow the adjustment of the yaw attitude of the fuselage.
  • the pan-tilt when the pan-tilt is rotated in the yaw direction, The gimbal is to follow the fuselage to rotate in the yaw direction, and the angle at which the fuselage rotates in the yaw direction is the angle at which the gimbal rotates in the yaw direction. For example, as shown in FIG.
  • the yaw attitude (501) of the head of the drone and the yaw attitude (502) of the fuselage may be as shown in FIG. 5(a). It can be shown that the user can continue to shoot by holding the frame of the drone or the body of the hand-held drone.
  • the yaw posture of the fuselage changes (503). Then, the gimbal will rotate (504) following the rotation of the fuselage, as shown in Fig.
  • the angle of rotation of the gimbal is the same as the angle of rotation of the fuselage, and the yaw attitude of the adjusted fuselage (506) and the yaw attitude of the gimbal (505) are shown in Figure 5(c).
  • the user when the drone is in the flight state and in the first control mode, the user can perform the first operation on the control terminal, and the control terminal sends the first lever amount to the drone, so that the cloud can be decoupledly controlled.
  • the yaw attitude of the station or the yaw attitude of the fuselage is decoupledly controlled; the user can perform a second operation on the control terminal, and the control terminal sends the second lever amount to the drone, so that the yaw attitude of the gimbal can be controlled.
  • the fuselage follows the yaw attitude of the gimbal.
  • the yaw attitude of the fuselage can be controlled, and the pan-tilt follows the yaw attitude of the fuselage.
  • the drone when the drone is in flight state and enters the first control mode, after completing the shooting in the flight state, it may enter the landing state from the flight state, for example, landing on the user's hand and entering the second control mode, The user continues to shoot with the drone, and the yaw attitude of the gimbal follows the yaw attitude of the fuselage. In some scenarios, it is necessary to ensure the shooting effect of a mirror. When the drone switches from the first control mode to the second control mode, it is necessary to ensure that the pan/tilt remains stable to ensure the stability of the captured image.
  • the drone when the drone is in the first control mode, if the yaw attitude of the airframe of the drone and the yaw attitude of the gimbal are both 601, the drone receives the second When the lever amount is controlled, the yaw attitude of the pan/tilt is controlled according to the second lever amount, and the second lever amount is such that the attitude of the pan/tilt is 602, that is, the pan/tilt is rotated by the angle A, and the second lever amount indicates the fuselage Following the yaw attitude of the gimbal, the fuselage will also rotate the angle A, and the yaw attitude of the fuselage reaches 602.
  • the second control lever amount causes the yaw attitude of the pan/tilt to reach the yaw attitude 603 from 602.
  • the pan/tilt will rotate the angle B under the action of the first lever. If the drone switches from the first control mode to the second control mode, the attitude difference between the yaw attitude of the fuselage and the yaw attitude of the gimbal should be the attitude difference corresponding to the angle B.
  • the first lever amount and the second lever amount are not distinguished. It is considered that the first lever amount and the second lever amount both cause a bias between the fuselage and the pan/tilt.
  • the aerodynamic attitude difference that is, the existing control strategy does not take into account that the second lever amount will indicate the attitude of the fuselage to follow the yaw attitude of the gimbal.
  • the attitude difference between the yaw attitude of the gimbal and the yaw attitude of the fuselage should be the attitude difference corresponding to the sum of the angle A and the angle B, And controlling the yaw attitude of the gimbal according to the attitude difference to follow the yaw attitude of the fuselage.
  • the actual yaw attitude of the gimbal is at 602, in order to make the yaw attitude and the fuselage of the gimbal
  • the yaw attitude maintains the attitude difference between the angle A and the angle B.
  • the pan/tilt will rotate the angle A more on the yaw attitude 603 and reach the yaw attitude 604. This will cause the gimbal to deviate from the expected orientation, making the picture unstable and affecting the quality of the shot.
  • FIG. 7 is a flowchart of a yaw attitude control method according to an embodiment of the present invention.
  • the method may include:
  • Step 701 When switching from the first control mode to the second control mode, determining an expected yaw attitude difference caused by the first lever amount received from the control terminal in the first control mode.
  • the expected yaw attitude difference is a yaw attitude difference between the fuselage of the drone and the pan/tilt carried on the fuselage, the first lever amount being used to decoupleably control the yaw attitude of the gimbal or Decoupledly controls the yaw attitude of the fuselage.
  • the drone When the drone is in flight, the drone can be controlled to enter the first control mode.
  • the ground control terminal (such as a remote controller, a smart phone, etc.) can send a first lever amount to the drone for decoupling the yaw attitude of the pan/tilt (ie, separately controlling the pan/tilt)
  • the yaw attitude or decoupledly controls the yaw attitude of the fuselage (ie, separately controlling the yaw attitude of the fuselage), and may also send a second lever amount to the drone to control the yaw attitude of the gimbal, and Instruct the fuselage to follow the yaw attitude of the gimbal (ie, control the yaw attitude of the gimbal and the fuselage).
  • the first lever amount individually controls the yaw attitude of the fuselage, or separately controls the yaw attitude of the gimbal, the yaw attitude difference between the fuselage and the pan/tilt is caused;
  • the amount of the joystick adjusts the yaw attitude of the gimbal and also indicates that the fuselage follows the yaw attitude of the gimbal. Therefore, it can be considered that the second lever amount does not cause the yaw attitude between the gimbal and the fuselage. difference.
  • the first lever amount causes a yaw attitude difference between the pan/tilt and the airframe, and the expected yaw caused by the first lever amount received from the control terminal can be determined. Poor posture. Further, when the first control mode is switched to the second control mode, the expected yaw attitude difference caused by the first lever amount received from the control terminal may be determined.
  • the determining the expected yaw attitude difference caused by the first control lever amount received from the control terminal in the first control mode may include, but is not limited to, the following:
  • One possible way is to determine the expected yaw attitude difference based on the first amount of joystick received from the control terminal of the drone in the first control mode.
  • the control terminal sends the first lever amount to the drone, and the drone can analyze and identify the first lever amount, that is, determine the first lever amount to decouple the pan/tilt.
  • the amount of control rod for the yaw attitude or the yaw attitude of the fuselage After the analysis and identification are completed, the drone can determine the expected yaw attitude difference between the gimbal and the fuselage caused by the first lever amount according to the first lever amount. As shown in FIG. 8, if the yaw attitude of the airframe and the yaw attitude of the pan/tilt are both located at 801, after receiving the first lever amount, the expected yaw attitude of the pan/tilt or the fuselage is located at 802.
  • the expected yaw attitude difference is 803.
  • the expected attitude difference may be represented by an expected yaw angle difference A.
  • the expected yaw angle difference may be an angle A of the first lever amount to cause the pan/tilt to rotate in the yaw direction;
  • the expected yaw angle difference A may be an angle at which the first lever amount causes the fuselage to rotate in the yaw direction.
  • the determining, based on the first amount of joystick received from the control terminal of the drone, determining an expected yaw attitude difference caused by the first amount of joystick received from the control terminal in the first control mode includes : Integrating the amount of the first angular velocity control lever received from the control terminal; then, the angle obtained by the integral can be determined as the expected yaw attitude difference.
  • the generated first control lever amount may be the first angular speed control lever amount, and the control terminal transmits the first angular velocity control lever amount to the unmanned machine.
  • the first angular speed control lever amount can be integrated. After integrating the first angular speed control lever amount, an angle can be obtained, and then the integral acquired angle can be determined as the expected yaw attitude difference.
  • Another feasible manner is: determining an amount of the first yaw received from the control terminal in the first control mode and an expected yaw attitude change caused by the second control lever amount; wherein the second control lever amount It is used to control the yaw attitude of the gimbal and instruct the fuselage to follow the yaw attitude of the gimbal. Then, the expected yaw attitude change amount of the airframe caused by the second lever amount received from the control terminal in the first control mode is determined. The expected yaw attitude difference is determined according to the expected yaw attitude change amount of the pan/tilt caused by the first control lever amount and the second control lever amount, and the expected yaw attitude change amount of the airframe caused by the second control lever amount.
  • the control terminal may send the first lever amount and the second lever amount to the drone, and the drone may control the pan/tilt according to the received first lever amount and the second lever amount.
  • the drone may determine the expected yaw attitude change amount of the gimbal caused by the first lever amount and the second lever amount according to the first lever amount and the second lever amount.
  • the pan-tilt expected yaw attitude is located at 902.
  • the expected yaw attitude change amount of the pan/tilt caused by the first lever amount and the second lever amount is 903
  • the expected yaw attitude change amount may be expressed by an expected yaw angle difference A, the expected yaw angle The difference may be the first lever amount and the second lever amount such that the pan/tilt is expected to rotate in the yaw direction.
  • the drone can analyze the amount of the received lever and determine the amount of the second lever from the received amount of the lever. After determining the second lever amount, the drone may determine an expected yaw attitude change amount of the airframe caused by the second lever amount according to the second lever amount, for example, receiving the second lever After the quantity, the expected yaw attitude of the fuselage is located at 904, and the expected yaw attitude change amount of the airframe caused by the second control lever amount is 905, and the expected yaw attitude change amount may be expected yaw The angle difference B is indicated.
  • the expected yaw attitude change amount of the airframe caused by the second control lever amount may be an expected yaw attitude change amount of the pan/tilt caused by the second control lever amount, and the expected yaw attitude
  • the amount of change can be expressed as the angle at which the second control lever rotates the gimbal in the yaw direction.
  • the expected yaw attitude change amount of the gimbal caused by the first lever amount and the second lever amount, and the expected yaw posture change amount of the airframe caused by the second lever amount determine the expected yaw attitude difference, and further, Subtracting the expected yaw attitude change amount of the gimbal caused by the first control lever amount and the second control lever amount, and the expected yaw posture change amount of the airframe caused by the second control lever amount to determine the expected yaw attitude difference
  • the expected yaw attitude difference can be determined according to the difference between the attitude angle difference A and the attitude angle difference B.
  • the determining the amount of the first yaw received from the control terminal in the first control mode and the amount of the second yaw caused by the amount of the second yaw caused by the yaw attitude change includes: receiving from the control terminal The first angular speed control lever amount is integrated with the second angular speed control lever amount, and then the first angle obtained by the integral can be determined as the first control lever amount and the second control lever amount caused by the pan-tilt expected yaw The amount of change in posture.
  • the generated first lever amount may be the first angular speed control lever amount, and the first angular speed control lever amount is sent to the drone.
  • the generated second lever amount may be the second angular speed control lever amount, and the second angular speed control lever amount is sent.
  • the drone After receiving the first angular speed control lever amount and the second angular velocity control lever amount, the drone integrates the sum of the first angular speed control lever amount and the second angular velocity control lever amount.
  • an angle (referred to as a first angle) can be obtained, and then the first angle obtained by the integral can be determined as the first control.
  • the determining an expected yaw attitude change amount of the airframe caused by the second lever amount received from the control terminal in the first control mode comprises: a second angular speed control lever received from the control terminal The amount is integrated, and then the second angle obtained by the integral is determined as the expected yaw posture change amount of the body caused by the second lever amount.
  • the second lever amount generated by the control terminal may be the second angular speed control lever amount, and the second angular velocity control lever amount is sent to the drone.
  • the drone After receiving the second angular speed control lever amount, the drone integrates the second angular speed control lever amount. After integrating the second angular speed control lever amount, an angle can be obtained (referred to as a second angle), and then the second angle obtained by the integral can be determined as the expected bias of the airframe caused by the second control lever amount. The amount of change in attitude.
  • the expected bias is determined for "the expected yaw attitude change amount of the gimbal caused by the first control lever amount and the second control lever amount, and the expected yaw posture change amount of the airframe caused by the second control lever amount"
  • the process of aeronautical attitude difference may include, but is not limited to, determining an expected yaw attitude difference according to the first angle and the second angle, that is, the expected yaw attitude difference is a difference between the first angle and the second angle.
  • Step 702 Control the yaw attitude of the pan/tilt according to the expected yaw attitude difference, so that the pan/tilt follows the fuselage in the yaw direction.
  • the drone when the drone enters the landing state from the flight state, the drone can be controlled to enter the second control mode, and when the drone enters the second control mode, the drone can control the cloud according to the expected yaw attitude difference.
  • the yaw attitude of the station further, controlling the gimbal to follow the fuselage in the yaw direction according to the expected yaw attitude difference.
  • the drone needs to follow the yaw attitude of the unmanned aerial vehicle to control the yaw attitude of the airframe to follow the yaw attitude of the airframe in response to the expected yaw attitude difference. User's operation.
  • the controlling the yaw attitude of the gimbal according to the expected yaw attitude difference, so that the gimbal follows the yaw in the yaw direction comprises: controlling the pylon bias according to the expected yaw attitude difference
  • the attitude of the vehicle is such that the attitude difference between the yaw attitude of the gimbal and the yaw attitude of the fuselage is the expected yaw attitude difference.
  • controlling the attitude of the gimbal to follow the yaw attitude of the airframe such that the attitude difference between the yaw attitude of the gimbal and the yaw attitude of the airframe is The yaw attitude is expected to be poor.
  • controlling the yaw attitude of the gimbal such that the attitude difference between the yaw attitude of the gimbal and the yaw attitude of the airframe is an expected yaw attitude difference comprises: acquiring a yaw attitude of the fuselage, and Controlling the yaw attitude of the gimbal according to the yaw attitude of the fuselage and the expected yaw attitude difference, so that the attitude difference between the yaw attitude of the gimbal and the yaw attitude of the fuselage is the expected yaw attitude difference .
  • the drone acquires the yaw attitude of the fuselage, that is, acquires the actual yaw attitude of the fuselage, and controls the yaw of the gimbal after obtaining the actual yaw attitude of the fuselage.
  • the attitude is such that the difference in attitude between the yaw attitude of the gimbal and the yaw attitude of the fuselage is the expected yaw attitude difference.
  • the drone when the drone enters the flight state from the landing state, the drone can be controlled to enter the first control mode, and when the drone enters the first control mode, the yaw attitude of the gimbal can be controlled and indicated
  • the fuselage follows the yaw attitude of the gimbal (ie, controls the yaw attitude of the gimbal and the fuselage).
  • step 701 is used to regain the expected yaw attitude difference, and so on.
  • the yaw of the pan-tilt can be controlled by using the expected yaw attitude difference. Gesture, so that the gimbal follows the fuselage in the yaw direction. In this way, when the drone enters the landing state from the flight state, that is, it drops to the user's hand, when the user holds the drone to continue shooting, the effect of the mirror can be achieved, and the shooting picture of the photographing device carried on the gimbal can be maintained. Stable, thus improving the stability of the shooting picture.
  • FIG. 10 is a flowchart of the method, the method may include:
  • Step 1001 When switching from the first control mode to the second control mode, acquiring a yaw attitude of the airframe of the drone and a yaw attitude of the pan/tilt carried on the fuselage.
  • the drone when the drone is in a flight state, the drone can be controlled to enter the first control mode; when the drone enters the landing state from the flight state, the drone can be controlled to enter the second control mode.
  • the yaw attitude 1101 of the airframe of the drone when the drone is switched from the first control mode to the second control mode, as shown in FIG. 11, the yaw attitude 1101 of the airframe of the drone can be acquired, that is, the fuselage of the drone is acquired.
  • the actual yaw attitude and the yaw attitude 1102 of the gimbal carried on the fuselage that is, the actual yaw attitude of the gimbal of the drone is obtained.
  • the attitude measuring sensor can be configured on the body of the drone, and when the drone is switched from the first control mode to the second control mode, the attitude measuring sensor can measure the yaw attitude of the airframe of the drone, the cloud
  • the attitude sensor can also be configured on the stage and the yaw attitude of the gimbal can be measured.
  • the attitude measuring sensor may be a gyroscope, an accelerometer or an inertial measuring unit, and the type of the attitude measuring sensor is not limited.
  • Step 1002 Determine a yaw attitude difference according to a yaw attitude of the airframe and a yaw attitude of the pan/tilt.
  • the yaw attitude difference 1103 of the gimbal and the fuselage may be determined, wherein the yaw attitude difference may be in a yaw attitude
  • the angle A indicates that the difference between the actual yaw attitude angles between the fuselage and the pan/tilt is the yaw attitude angle A when switching from the first control mode to the second control mode.
  • the determining manner of the yaw attitude difference may be: in step 1002, determining the yaw attitude difference according to the actually measured yaw attitude of the airframe and the yaw attitude of the pan/tilt. And in step 701, the expected yaw attitude difference calculated from the amount of joystick, which may be an expected value rather than an actual measured value.
  • Step 1003 Control the yaw attitude of the gimbal according to the yaw attitude difference, so that the gimbal follows the fuselage in the yaw direction.
  • the drone when the drone enters the landing state from the flight state, the drone can be controlled to enter the second control mode, and when the drone enters the second control mode, the drone can control the gimbal according to the yaw attitude difference.
  • the yaw attitude further, controls the pan/tilt to follow the fuselage in the yaw direction according to the yaw attitude difference.
  • the drone needs to control the yaw attitude of the airframe of the drone according to the yaw attitude difference to follow the yaw attitude of the fuselage in response to the user. Operation.
  • controlling the yaw attitude of the gimbal according to the yaw attitude difference, so that the gimbal follows the yaw in the yaw direction comprises: controlling the yaw attitude of the gimbal to make the yaw of the gimbal
  • the difference in attitude between the attitude and the yaw attitude of the fuselage is the yaw attitude difference.
  • controlling the attitude of the gimbal to follow the yaw attitude of the fuselage so that the attitude difference between the yaw attitude of the gimbal and the yaw attitude of the fuselage is The yaw attitude is poor.
  • controlling the yaw attitude of the gimbal such that the attitude difference between the yaw attitude of the gimbal and the yaw attitude of the airframe is a yaw attitude difference comprises: acquiring a yaw attitude of the fuselage, and according to The yaw attitude of the fuselage and the yaw attitude difference control the yaw attitude of the pan/tilt such that the attitude difference between the yaw attitude of the gimbal and the yaw attitude of the fuselage is the yaw attitude difference.
  • the drone can acquire the yaw attitude of the fuselage, that is, obtain the actual yaw attitude of the fuselage, and control the partiality of the gimbal after obtaining the actual yaw attitude of the fuselage.
  • the attitude of the vehicle is such that the attitude difference between the yaw attitude of the gimbal and the yaw attitude of the fuselage is a yaw attitude difference.
  • the yaw attitude of the pan-tilt can be controlled by the yaw attitude difference, so that the cloud The station follows the fuselage in the yaw direction.
  • the drone enters the landing state from the flight state, that is, it drops to the user's hand, when the user holds the drone to continue shooting, the effect of the mirror can be achieved, and the shooting picture of the photographing device carried on the gimbal can be maintained. Stable, thus improving the stability of the shooting picture.
  • an embodiment of the present invention further provides a drone 1200 including a memory 1201 and a processor 1202 (such as one or more processors).
  • the memory is for storing program code; the processor, the program code is called, when the program code is executed, for performing the following operations: when switching from the first control mode to the second control In the mode, determining an expected yaw attitude difference caused by the first amount of the joystick received from the control terminal in the first control mode; wherein the expected yaw attitude difference is a fuselage of the drone and the fuselage a yaw attitude difference between the upper and lower pan/tilts, the first lever amount being used to decoupleably control a yaw attitude of the pan/tilt or a yaw attitude of the airframe; according to the expected yaw The attitude difference controls the yaw attitude of the pan/tilt to cause the pan/tilt to follow the fuselage in the yaw direction.
  • the processor is configured to determine, according to the expected yaw attitude difference caused by the first lever amount received from the control terminal in the first control mode, according to the first received from the control terminal of the drone The lever amount is determined to determine the expected yaw attitude difference caused by the first lever amount received from the control terminal in the first control mode.
  • the processor determines the expected yaw attitude caused by the first amount of control lever received from the control terminal in the first control mode based on the first amount of control lever received from the control terminal of the drone
  • the difference time is specifically used to: integrate the first angular velocity control lever amount received from the control terminal; and determine the angle obtained by the integral as the expected yaw attitude difference.
  • the processor determines, when determining the expected yaw attitude difference caused by the first lever amount received from the control terminal in the first control mode, to determine that the control terminal receives the first control mode.
  • the yaw attitude is followed; determining an expected yaw attitude change amount of the airframe caused by the second control lever amount received from the control terminal in the first control mode; causing the first control lever amount and the second control lever amount
  • the expected yaw attitude change amount of the fuselage and the expected yaw attitude change amount of the airframe caused by the second control lever amount determine the expected yaw attitude difference.
  • the processor determines, when the first control lever amount and the second control lever amount received from the control terminal in the first control mode, the expected yaw attitude change amount of the gimbal is used for: slave control
  • the first angular speed control lever amount received by the terminal is integrated with the second angular speed control lever amount, and the first angle obtained by the integral is determined as the first control lever amount and the second control lever amount caused by the pan-tilt expected yaw a posture change amount
  • the processor determining, when the second yoke amount received from the control terminal in the first control mode, the expected yaw posture change amount of the airframe is used for: receiving the first received from the control terminal
  • the two-angle speed control lever amount is integrated, and the second angle obtained by the integral is determined as the expected yaw posture change amount of the airframe caused by the second control lever amount;
  • the processor is based on the first control lever amount and the second control lever amount The induced yaw attitude change amount of the pan/tilt head and the expected
  • the processor controls the yaw attitude of the pan/tilt according to the expected yaw attitude difference, so that the pan-tilt is used to control the yaw attitude of the gimbal when the gyro is followed in the yaw direction.
  • the attitude difference between the yaw attitude of the gimbal and the yaw attitude of the fuselage is such that the expected yaw attitude is poor.
  • the processor controls a yaw attitude of the pan/tilt so that the difference between the yaw attitude of the pan-tilt and the yaw attitude of the airframe is specific to the expected yaw attitude difference.
  • a yaw attitude of the airframe controlling a yaw attitude of the pan/tilt according to a yaw attitude of the airframe and the expected yaw attitude difference, so that a yaw attitude of the pan/tilt is The attitude difference between the yaw attitudes of the fuselage is the expected yaw attitude difference.
  • the memory is configured to store program code; the processor, the program code is called, when the program code is executed, to perform the following operations: when switching from the first control mode to the second In the control mode, acquiring a yaw attitude of the airframe of the drone and a yaw attitude of the pan/tilt carried on the fuselage; determining a bias according to the yaw attitude of the fuselage and the yaw attitude of the pan/tilt The flight attitude difference; controlling the yaw attitude of the pan/tilt according to the yaw attitude difference, so that the pan/tilt follows the fuselage in the yaw direction.
  • the processor controls the yaw attitude of the pan/tilt according to the yaw attitude difference, so that the pan/tilt is used to control the yaw attitude of the gimbal when the gyro is followed in the yaw direction.
  • the attitude difference between the yaw attitude of the pan/tilt and the yaw attitude of the fuselage is the yaw attitude difference.
  • the processor controls a yaw attitude of the pan/tilt, so that the difference between the yaw attitude of the pan-tilt and the yaw attitude of the airframe is specifically used when the yaw attitude is poor Obtaining a yaw attitude of the airframe, and controlling a yaw attitude of the pan/tilt according to a yaw attitude of the airframe and the yaw attitude difference, so as to make a yaw attitude of the pan/tilt
  • the difference in attitude between the yaw attitudes of the fuselage is the yaw attitude difference.
  • the embodiment of the present invention further provides a computer readable storage medium storing computer instructions.
  • the computer instructions When the computer instructions are executed, the yaw attitude control method described in FIG. 7 is implemented. Alternatively, the yaw attitude control method described in FIG. 10 is implemented.
  • the system, apparatus, module or unit set forth in the above embodiments may be implemented by a computer chip or an entity, or by a product having a certain function.
  • a typical implementation device is a computer, and the specific form of the computer may be a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email transceiver, and a game control.
  • embodiments of the invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, embodiments of the invention may take the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • these computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the instruction means implements the functions specified in one or more blocks of the flowchart or in a flow or block diagram of the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明实施例一种偏航姿态控制方法、无人机、计算机可读存储介质,所述方法包括:当从第一控制模式切换到第二控制模式时,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差;所述预期偏航姿态差是无人机的机身与所述机身上承载的云台之间的偏航姿态差,第一控制杆量用于解耦地控制所述云台的偏航姿态或者所述机身的偏航姿态;根据所述预期偏航姿态差控制云台的偏航姿态,以使云台在偏航方向上对机身进行跟随。应用本发明实施例,云台上承载的拍摄设备的拍摄画面可以保持稳定,提高了拍摄画面的稳定性。

Description

偏航姿态控制方法、无人机、计算机可读存储介质 技术领域
本发明涉及无人机技术领域,尤其是涉及一种偏航姿态控制方法、无人机、计算机可读存储介质。
背景技术
无人机上配置有用于固定拍摄设备(如相机、摄像机等)的云台,通过调整云台的偏航姿态,使得拍摄设备在不同的偏航姿态下,拍摄到不同视角的影像。在某些应用场景下,用户希望无人机在处于飞行状态拍摄后,可以从飞行状态进入降落状态(降落到用户手上,由用户手持无人机继续拍摄)继续稳定地拍摄,以达到一镜到底的效果。但是,在无人机从飞行状态切换到降落状态的过程中,云台会出现偏离预期朝向的现象,即云台的偏航姿态不能保持稳定,导致拍摄画面无法保持稳定。
发明内容
本发明提供一种偏航姿态控制方法、无人机、计算机可读存储介质,以保证无人机在从飞行状态切换到降落状态的过程中,拍摄画面的稳定性。
本发明实施例第一方面,提供一种偏航姿态控制方法,所述方法包括:
当从第一控制模式切换到第二控制模式时,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差;其中,所述预期偏航姿态差是无人机的机身与所述机身上承载的云台之间的偏航姿态差,所述第一控制杆量用于解耦地控制所述云台的偏航姿态或者所述机身的偏航姿态;
根据所述预期偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随。
本发明实施例第二方面,提供一种偏航姿态控制方法,所述方法包括:
当从第一控制模式切换到第二控制模式时,获取无人机的机身的偏航姿态和所述机身上承载的云台的偏航姿态;
根据所述机身的偏航姿态和所述云台的偏航姿态确定偏航姿态差;
根据所述偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随。
本发明实施例第三方面,提供一种无人机,包括:存储器和处理器;
所述存储器,用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
当从第一控制模式切换到第二控制模式时,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差;其中,所述预期偏航姿态差是无人机的机身与所述机身上承载的云台之间的偏航姿态差,所述第一控制杆量用于解耦地控制所述云台的偏航姿态或者所述机身的偏航姿态;
根据所述预期偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随。
本发明实施例第四方面,提供一种无人机,包括:存储器和处理器;
所述存储器,用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
当从第一控制模式切换到第二控制模式时,获取无人机的机身的偏航姿态和所述机身上承载的云台的偏航姿态;
根据所述机身的偏航姿态和所述云台的偏航姿态确定偏航姿态差;
根据所述偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随。
本发明实施例第五方面,提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机指令,所述计算机指令被执行时,实现如本发明实施例第一方面所述的一种偏航姿态控制方法。
本发明实施例第六方面,提供一种计算机可读存储介质,所述计算机可 读存储介质上存储有计算机指令,所述计算机指令被执行时,实现如本发明实施例第二方面所述的一种偏航姿态控制方法。
基于上述技术方案,本发明实施例中,通过确定第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差,或机身的偏航姿态和云台的偏航姿态之间的偏航姿态差,可以使用预期偏航姿态差或者偏航姿态差控制云台的偏航姿态,以使在第二控制模式中云台在偏航方向上对机身进行跟随。这样,在无人机从飞行状态进入降落状态,即降落到用户手上,由用户手持无人机继续拍摄时,可以达到一镜到底的效果,云台上承载的拍摄设备的拍摄画面可以保持稳定,从而提高拍摄画面的稳定性。
附图说明
为了更加清楚地说明本发明实施例或者现有技术中的技术方案,下面将对本发明实施例或者现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据本发明实施例的这些附图获得其它的附图。
图1是一个无人机的结构示意图;
图2是无人机的机身的偏航姿态和云台的偏航姿态的示意图;
图3是无人机的机身的偏航姿态和云台的偏航姿态的另一示意图;
图4是无人机的机身的偏航姿态和云台的偏航姿态的另一示意图;
图5是无人机的机身的偏航姿态和云台的偏航姿态的另一示意图;
图6是无人机的机身的偏航姿态和云台的偏航姿态的另一示意图;
图7是一个偏航姿态控制方法的实施例示意图;
图8是无人机的机身的偏航姿态和云台的偏航姿态的另一示意图;
图9是无人机的机身的偏航姿态和云台的偏航姿态的另一示意图;
图10是另一个偏航姿态控制方法的实施例示意图;
图11是无人机的机身的偏航姿态和云台的偏航姿态的另一示意图;
图12是一个无人机的实施例示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。另外,在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明使用的术语仅仅是出于描述特定实施例的目的,而非限制本发明。本发明和权利要求书所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。应当理解的是,本文中使用的术语“和/或”是指包含一个或多个相关联的列出项目的任何或所有可能组合。
尽管在本发明可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语用来将同一类型的信息彼此区分开。例如,在不脱离本发明范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,此外,所使用的词语“如果”可以被解释成为“在……时”,或者,“当……时”,或者,“响应于确定”。
本发明实施例中提出一种偏航姿态控制方法,该方法可以应用于包括无人机和控制终端的系统。无人机安装有云台,云台上固定有拍摄设备(如相机、摄像机等)。控制终端可以包括但不限于:遥控器、智能电话/手机、平板电脑、个人数字助理(PDA)、膝上计算机、台式计算机、媒体内容播放器、视频游戏站/系统、虚拟现实系统、增强现实系统、可穿戴式装置(例如,手表、眼镜、手套、头饰(例如,帽子、头盔、虚拟现实头戴耳机、增强现实头戴耳机、头装式装置(HMD)、头带)、挂件、臂章、腿环、鞋子、马甲)、 手势识别装置、麦克风、能够提供或渲染图像数据的任意电子装置。
参见图1所示,为无人机的结构示意图。10表示无人机的机头,11表示无人机的螺旋桨,12表示无人机的机身,13表示无人机的脚架,14表示无人机上的云台,15表示云台14搭载的拍摄设备,拍摄设备15通过云台14与无人机的机身12连接,16表示拍摄设备的拍摄镜头,20表示目标物体20。
云台14可以是三轴云台,即云台14以云台的Roll轴、Pitch轴、Yaw轴为轴线转动。如图1所示,1表示云台的Roll轴,2表示云台的Pitch轴,3表示云台的Yaw轴。当云台以Roll轴为轴线转动时,云台的横滚姿态发生变化;当云台以Pitch轴为轴线转动时,云台的俯仰姿态发生变化;当云台以Yaw轴为轴线转动时,云台的偏航姿态发生变化。而且,当云台以Yaw轴、Pitch轴、Yaw轴中的一个或多个为轴线转动时,拍摄设备15跟随云台14的转动而转动,使得拍摄设备15可以从不同的拍摄方向和拍摄角度对目标物体20进行拍摄。
与云台14类似的是,无人机的机身12也可以以机身的Roll轴、Pitch轴、Yaw轴为轴线转动。当无人机的机身以Roll轴为轴线转动时,则机身的横滚姿态发生变化;当无人机的机身以Pitch轴为轴线转动时,则机身的俯仰姿态发生变化;当无人机的机身以Yaw轴为轴线转动时,则机身的偏航姿态发生变化。
在一个例子中,可以控制云台以Roll轴、Pitch轴、Yaw轴中的一个或多个为轴线转动,为了方便描述,本文中,以控制云台以Yaw轴为轴线转动为例进行说明,也就是说,控制云台的偏航角发生变化,即控制云台的偏航姿态。还可以控制无人机的机身以Roll轴、Pitch轴、Yaw轴中的一个或多个为轴线转动,为了方便描述,本文中,以控制机身以Yaw轴为轴线转动为例进行说明,也就是说,控制机身的偏航角发生变化,即控制机身的偏航姿态。
当无人机处于飞行状态时,无人机可以处于第一控制模式,其中,在第 一控制模式中云台的偏航姿态、无人机的机身的偏航姿态包括如下控制方式:
一种控制方式:解耦地控制云台的偏航姿态或者机身的偏航姿态。具体地,在某些情况中,用户可以对无人机的控制终端进行第一操作,例如操作控制终端上的云台波轮,此时控制终端可以产生第一控制杆量,并将所述第一控制杆量发送给无人机,第一控制杆量用于调整云台的偏航姿态。如图2所示,由于云台的偏航姿态与云台上承载的拍摄设备的偏航姿态相同,为了方便说明,以拍摄设备的偏航姿态变化来表征云台的偏航姿态变化,无人机在接收到所述第一控制杆量之前,无人机的机身的偏航姿态和云台的偏航姿态(201)可以如图2(a)所示,在接收到所述第一控制杆量之后,无人机根据所述第一控制杆量对云台的偏航姿态进行调整,调整后的机身的姿态和云台的偏航姿态(202)如图2(b)所示。
或者,在某些情况中,用户可以对无人机的控制终端进行第一操作,例如,操作控制终端上的机身波轮,此时控制终端可以产生第一控制杆量,并将所述第一控制杆量发送给无人机,第一控制杆量用于调整无人机的机身的偏航姿态。如图3所示,无人机在接收到所述第一控制杆量之前,无人机的机身的偏航姿态(301)和云台的偏航姿态可以如图3(a)所示,在接收到所述第一控制杆量之后,无人机根据所述第一控制杆量对机身的偏航姿态进行调整,调整后的机身的偏航姿态(302)和云台的偏航姿态如图3(b)所示。
即第一控制杆量可以单独地控制云台的偏航姿态或者机身的偏航姿态。例如,在第一控制杆量的作用下,云台在偏航方向上转动,机身不会随着云台在偏航方向的转动而转动。或者,例如,在第一控制杆量的作用下,机身在偏航方向上转动,云台不会随着机身在偏航方向的转动而转动。
另一种控制方式:控制云台的偏航姿态,并指示机身对云台的偏航姿态进行跟随。具体地,用户可以对无人机的控制终端进行第二操作,例如操作控制终端上的偏航摇杆,此时控制终端可以产生第二控制杆量,并将所述第二控制杆量发送给无人机,第二控制杆量用于调整云台的偏航姿态,另外第 二控制杆量还用于指示机身对云台的姿态进行跟随。例如,如图4所示,无人机在收到第二控制杆量之前,无人机的云台的偏航姿态(401)和机身的偏航姿态(402)可以如图4(a)所示,在接收到第二控制杆量之后,在第二控制杆量的作用下,如图4(b)所示,云台在偏航方向上转动,发生偏航姿态的改变(403),然后,机身会跟随云台的转动而转动(404),最终使得机身转动的角度与云台在第二控制杆量作用下转动的角度相同,即,调整后的机身的偏航姿态(406)和云台的偏航姿态(405)如图4(c)所示。
当无人机处于降落状态时,无人机可以处于第二控制模式,其中,在第二控制模式中云台的偏航姿态、无人机的机身的偏航姿态包括如下控制方式:
一种控制方式:在机身的偏航姿态调整时,云台的偏航姿态对机身的偏航姿态进行跟随。具体地,当机身的偏航姿态调整时,云台的偏航姿态需要对机身的偏航姿态的调整进行跟随,在这种控制方式中,当云台在偏航方向上转动时,云台要跟随机身在偏航方向上转动,机身在偏航方向上转动的角度即为云台在偏航方向上转动的角度。例如,如图5所示,当无人机降落到用户手上时,无人机的云台的偏航姿态(501)与机身的偏航姿态(502)可以如图5(a)所示,用户可以手持无人机的脚架或者手持无人机的机身继续进行拍摄,当用户调整无人机的机身的偏航姿态,即机身的偏航姿态发生改变(503),然后,云台会跟随机身的转动而转动(504),如图5(b)所示,最终,使得云台转动的角度与机身转动的角度相同,调整后的机身的偏航姿态(506)和云台的偏航姿态(505)如图5(c)所示。
综上所述,在无人机处于飞行状态并且处于第一控制模式时,用户可以对控制终端进行第一操作,控制终端向无人机发送第一控制杆量,这样可以解耦地控制云台的偏航姿态或者解耦地控制机身的偏航姿态;用户可以对控制终端进行第二操作,控制终端向无人机发送第二控制杆量,这样可以控制云台的偏航姿态,且机身对云台的偏航姿态进行跟随。此外,在无人机降落到用户手上,由用户手持无人机进行拍摄时,可以控制机身的偏航姿态,且 云台对机身的偏航姿态进行跟随。
在实际应用中,无人机处于飞行状态并且进入了第一控制模式时,在处于飞行状态完成拍摄后,可能从飞行状态进入降落状态,例如降落到用户手上并进入第二控制模式,由用户手持无人机继续拍摄,云台的偏航姿态对机身的偏航姿态进行跟随。在某些场景中,需要保证一镜到底的拍摄效果,无人机从第一控制模式切换到第二控制模式时,需要保证云台保持稳定以确保拍摄画面的稳定性。但是,在无人机从第一控制模式切换到第二控制模式时,会存在云台偏航预期朝向的问题,导致拍摄画面无法保持稳定等问题,降低了拍摄质量。下面将具体阐述在无人机从第一控制模式切换到第二控制模式时,产生偏离云台偏航预期朝向问题的原因。
具体的,如图6所示,在无人机处于第一控制模式中时,如果无人机的机身的偏航姿态和云台的偏航姿态都处于601,无人机接收到第二控制杆量时,根据第二控制杆量控制云台的偏航姿态,第二控制杆量使得云台的姿态为602,即云台转动了角度A,由于第二控制杆量会指示机身对云台的偏航姿态进行跟随,机身也会转动角度A,机身的偏航姿态到达602。无人机在接收到第一控制杆量时,若第一控制杆量是解耦地控制云台的姿态,则第二控制杆量使得云台的偏航姿态从602到达偏航姿态603,云台会在第一控制杆量的作用下转动角度B。若无人机从第一控制模式切换到第二控制模式时,理论上机身的偏航姿态与云台的偏航姿态之间的姿态差,应该为角度B对应的姿态差。
然而,在现有的控制策略中,并没有对第一控制杆量和第二控制杆量进行区分,认为第一控制杆量和第二控制杆量都会引起机身和云台之间的偏航姿态差,即现有控制策略中并没有考虑到第二控制杆量会指示机身的姿态对云台的偏航姿态进行跟随。即按照现有的控制策略,认为在切换到第二控制模式时,云台的偏航姿态与机身的偏航姿态之间的姿态差应该为角度A与角度B之和对应的姿态差,并按照所述姿态差控制云台的偏航姿态以对机身的 偏航姿态进行跟随,此时,云台的实际偏航姿态是在602处,为了使云台的偏航姿态与机身的偏航姿态保持角度A与角度B之和的姿态差,云台会在偏航姿态603的基础上多转动角度A,并到达偏航姿态604处。这样会导致云台会偏离预期的朝向,使得拍摄画面不稳定,影响拍摄质量。
以下结合具体实施例,对本发明技术方案进行说明。参见图7所示,为本发明实施例提供的偏航姿态控制方法的流程图,该方法可以包括:
步骤701,当从第一控制模式切换到第二控制模式时,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差。其中,该预期偏航姿态差是无人机的机身与机身上承载的云台之间的偏航姿态差,该第一控制杆量用于解耦地控制云台的偏航姿态或解耦地控制机身的偏航姿态。
在无人机处于飞行状态时,可以控制无人机进入第一控制模式。在第一控制模式中,地面的控制终端(如遥控器、智能手机等)可以向无人机发送第一控制杆量用于解耦地控制云台的偏航姿态(即单独控制云台的偏航姿态)或者解耦地控制机身的偏航姿态(即单独控制机身的偏航姿态),还可以向无人机发送第二控制杆量用于控制云台的偏航姿态,并指示机身对云台的偏航姿态进行跟随(即控制云台和机身的偏航姿态)。
如前所述,由于第一控制杆量单独地控制机身的偏航姿态,或者单独地控制云台的偏航姿态,会引起机身与云台之间的偏航姿态差;由于第二控制杆量会调节云台的偏航姿态,同时会指示机身对云台的偏航姿态进行跟随,因而,可以认为第二控制杆量不会引起云台与机身之间的偏航姿态差。
通过分析可知,在第一控制模式中,只有第一控制杆量会引起云台与机身之间的偏航姿态差,可以确定从控制终端接收到的第一控制杆量引起的预期偏航姿态差。进一步地,可以在第一控制模式切换到第二控制模式时,确定从控制终端接收到的第一控制杆量引起的预期偏航姿态差。
在一个例子中,所述确定在第一控制模式中从控制终端接收到的第一控 制杆量引起的预期偏航姿态差可以包括但不限于如下方式:
一种可行的方式:根据在第一控制模式中从无人机的控制终端接收到的第一控制杆量,确定所述预期偏航姿态差。
具体地,控制终端将第一控制杆量发送给无人机,无人机可以对第一控制杆量进行分析和标识,即确定所述第一控制杆量为解耦地控制云台的偏航姿态或机身的偏航姿态的控制杆量。在完成分析和标识之后,无人机可以根据第一控制杆量确定由所述第一控制杆量引起的云台和机身之间的预期偏航姿态差。如图8所示,如果机身的偏航姿态和云台的偏航姿态都位于801处,在接收到第一控制杆量后,使得云台或者机身的预期偏航姿态位于802处,则所述预期偏航姿态差为803。在某些情况中,所述预期姿态差可以以预期偏航角度差A表示。当所述第一控制杆量是解耦地控制云台的偏航姿态时,所述预期偏航角度差可以为第一控制杆量使得云台在偏航方向上转动的角度A;当所述第一控制杆量是解耦地控制机身的偏航姿态时,所述预期偏航角度差A可以为第一控制杆量使得机身在偏航方向上转动的角度。
在一个例子中,所述根据从无人机的控制终端接收到的第一控制杆量,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差包括:对从控制终端接收到的第一角速度控制杆量进行积分;然后,可以将积分获取的角度确定为预期偏航姿态差。
具体的,控制终端在解耦地控制云台或者机身的偏航姿态时,生成的第一控制杆量可以为第一角速度控制杆量,控制终端将第一角速度控制杆量发送给无人机。无人机接收到第一角速度控制杆量后,可以对第一角速度控制杆量进行积分。在对第一角速度控制杆量进行积分后,可以得到一个角度,然后,可以将积分获取的角度确定为预期偏航姿态差。
另一种可行的方式:确定在第一控制模式中从控制终端接收到的第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量;其中,第二控制 杆量用于控制云台的偏航姿态,并指示机身对云台的偏航姿态进行跟随。然后,确定在第一控制模式中从控制终端接收到的第二控制杆量引起的机身的预期偏航姿态变化量。根据第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量、第二控制杆量引起的机身的预期偏航姿态变化量确定预期偏航姿态差。
在第一控制模式中,控制终端可以将第一控制杆量和第二控制杆量发送给无人机,无人机可以根据接收到第一控制杆量和第二控制杆量控制云台的偏航姿态,无人机可以根据第一控制杆量和第二控制杆量确定所述第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量。
如图9所示,如果机身的偏航姿态和云台的偏航姿态都位于901处,在接收到第一控制杆量和第二控制杆量后,使得云台预期偏航姿态位于902处,则第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量为903,预期偏航姿态变化量可以以预期偏航角度差A表示,所述预期偏航角度差可以为第一控制杆量和第二控制杆量使得云台在偏航方向上预期转动的角度。
另外,无人机可以对接收到的控制杆量进行分析,并从接收到的控制杆量中确定出第二控制杆量。在确定出第二控制杆量之后,无人机可以根据第二控制杆量确定由所述第二控制杆量引起的机身的预期偏航姿态变化量,例如,在接收到第二控制杆量后,使得机身的预期偏航姿态位于904处,则所述第二控制杆量引起的机身的预期偏航姿态变化量为905,所述预期偏航姿态变化量可以以预期偏航角度差B表示。在实际应用中,由所述第二控制杆量引起的机身的预期偏航姿态变化量,可以为第二控制杆量引起的云台的预期偏航姿态变化量,所述预期偏航姿态变化量可以以第二控制杆量使得云台在偏航方向上转动的角度表示。
在确定了由所述第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量、和由第二控制杆量引起的机身的预期偏航姿态变化量之后,根据第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量、第二控制 杆量引起的机身的预期偏航姿态变化量确定预期偏航姿态差,进一步地,可以将第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量、第二控制杆量引起的机身的预期偏航姿态变化量相减,以确定预期偏航姿态差,具体地,根据姿态角度差A和姿态角度差B相减可以确定预期偏航姿态差。
在一个例子中,所述确定在第一控制模式中从控制终端接收到的第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量包括:对从控制终端接收到的第一角速度控制杆量与第二角速度控制杆量之和进行积分,然后,可以将积分获取的第一角度确定为第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量。
具体的,控制终端在解耦地控制云台的偏航姿态时,生成的第一控制杆量可以为第一角速度控制杆量,并将第一角速度控制杆量发送给无人机。控制终端在控制云台的偏航姿态,指示机身对云台的偏航姿态进行跟随时,生成的第二控制杆量可以为第二角速度控制杆量,并将第二角速度控制杆量发送给无人机。无人机在接收到第一角速度控制杆量和第二角速度控制杆量后,对第一角速度控制杆量与第二角速度控制杆量之和进行积分。在对第一角速度控制杆量与第二角速度控制杆量之和进行积分后,可以得到一个角度(将其称为第一角度),然后,可以将积分获取的第一角度确定为第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量。
在一个例子中,所述确定在第一控制模式中从控制终端接收到的第二控制杆量引起的机身的预期偏航姿态变化量包括:对从控制终端接收到的第二角速度控制杆量进行积分,然后,将积分获取的第二角度确定为第二控制杆量引起的机身的预期偏航姿态变化量。
具体的,控制终端生成的第二控制杆量可以为第二角速度控制杆量,并将第二角速度控制杆量发送给无人机。无人机在接收到第二角速度控制杆量后,对第二角速度控制杆量进行积分。在对第二角速度控制杆量进行积分后,可以得到一个角度(将其称为第二角度),然后,可以将积分获取的第二角度 确定为第二控制杆量引起的机身的预期偏航姿态变化量。
在一个例子中,针对“根据第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量、第二控制杆量引起的机身的预期偏航姿态变化量确定预期偏航姿态差”的过程,可以包括但不限于如下方式:根据第一角度和第二角度确定预期偏航姿态差,即预期偏航姿态差为第一角度和第二角度的差。
步骤702,根据该预期偏航姿态差控制云台的偏航姿态,以使云台在偏航方向上对机身进行跟随。
具体地,在无人机从飞行状态进入降落状态时,可以控制无人机进入第二控制模式,在无人机进入第二控制模式时,则无人机可以根据预期偏航姿态差控制云台的偏航姿态,进一步地,根据所述预期偏航姿态差控制云台在偏航方向上对机身进行跟随。当用户改变无人机的机身的偏航姿态时,无人机需要根据所述预期偏航姿态差控制无人机的云台的偏航姿态对机身的偏航姿态进行跟随,以响应用户的操作。
在一个例子中,所述根据该预期偏航姿态差控制云台的偏航姿态,以使云台在偏航方向上对机身进行跟随包括:根据该预期偏航姿态差控制云台的偏航姿态,以使云台的偏航姿态与机身的偏航姿态之间的姿态差为预期偏航姿态差。具体地,在确定所述预期偏航姿态差之后,控制云台的姿态以对机身的偏航姿态进行跟随,使得云台的偏航姿态与机身的偏航姿态之间的姿态差为预期偏航姿态差。
进一步的,所述控制云台的偏航姿态,以使云台的偏航姿态与机身的偏航姿态之间的姿态差为预期偏航姿态差包括:获取机身的偏航姿态,并根据所述机身的偏航姿态与该预期偏航姿态差控制云台的偏航姿态,以使云台的偏航姿态与机身的偏航姿态之间的姿态差为预期偏航姿态差。具体地,在切换到第二控制模式后,无人机获取机身的偏航姿态,即获取机身的实际偏航姿态,在得到机身的实际偏航姿态后,控制云台的偏航姿态,以使云台的偏 航姿态与机身的偏航姿态之间的姿态差为预期偏航姿态差。
在一个例子中,在无人机从降落状态进入飞行状态时,可以控制无人机进入第一控制模式,在无人机进入第一控制模式时,可以控制云台的偏航姿态,并指示机身对云台的偏航姿态进行跟随(即控制云台和机身的偏航姿态)。
在无人机进入第一控制模式后,可以清空之前的预期偏航姿态差。在下次进入第二控制模式前,采用步骤701重新获得预期偏航姿态差,以此类推。
基于上述技术方案,本发明实施例中,通过确定第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差,可以使用预期偏航姿态差控制云台的偏航姿态,以使云台在偏航方向上对机身进行跟随。这样,在无人机从飞行状态进入降落状态,即降落到用户手上,由用户手持无人机继续拍摄时,可以达到一镜到底的效果,云台上承载的拍摄设备的拍摄画面可以保持稳定,从而提高拍摄画面的稳定性。
本发明实施例中还提出另一种偏航姿态控制方法,参见图10所示,为该方法的流程图,该方法可以包括:
步骤1001,当从第一控制模式切换到第二控制模式时,获取无人机的机身的偏航姿态和机身上承载的云台的偏航姿态。
具体地,在无人机处于飞行状态时,则可以控制无人机进入第一控制模式;在无人机从飞行状态进入降落状态时,则可以控制无人机进入第二控制模式。在此基础上,在无人机从第一控制模式切换到第二控制模式时,如图11所示,可以获取无人机的机身的偏航姿态1101,即获取无人机的机身的实际偏航姿态,并获取机身上承载的云台的偏航姿态1102,即获取无人机的云台的实际偏航姿态。其中,无人机的机身上可以配置姿态测量传感器,在无人机从第一控制模式切换到第二控制模式时,姿态测量传感器可以测量出无人机的机身的偏航姿态,云台上也可以配置姿态传感器,并测量出云台的偏航姿态。其中,姿态测量传感器可以为陀螺仪、加速度机或者惯性测量单元,对姿态测量传感器的种类不做限制。
步骤1002,根据机身的偏航姿态和云台的偏航姿态确定偏航姿态差。
具体地,在确定了机身的偏航姿态1101和云台的偏航姿态1102之后,可以确定云台与机身的偏航姿态差1103,其中,所述偏航姿态差可以以偏航姿态角A表示,则在从第一控制模式切换到第二控制模式时,机身与云台之间的实际偏航姿态角之差为偏航姿态角A。
与步骤701的确定方式相比,偏航姿态差的确定方式的区别可以在于:在步骤1002中,是根据实际测量的机身的偏航姿态和云台的偏航姿态,确定偏航姿态差,而在步骤701中,是根据控制杆量计算出的预期偏航姿态差,其可以是一个预期值,而不是实际的测量值。
步骤1003,根据该偏航姿态差控制云台的偏航姿态,以使云台在偏航方向上对机身进行跟随。
具体的,在无人机从飞行状态进入降落状态时,可以控制无人机进入第二控制模式,在无人机进入第二控制模式时,则无人机可以根据偏航姿态差控制云台的偏航姿态,进一步地,根据所述偏航姿态差控制云台在偏航方向上对机身进行跟随。当用户改变无人机的机身的偏航姿态时,无人机需要根据所述偏航姿态差控制无人机的云台的偏航姿态对机身的偏航姿态进行跟随,以响应用户的操作。
进一步地,所述根据该偏航姿态差控制云台的偏航姿态,以使云台在偏航方向上对机身进行跟随包括:控制云台的偏航姿态,以使云台的偏航姿态与机身的偏航姿态之间的姿态差为偏航姿态差。具体地,在确定所述偏航姿态差之后,控制云台的姿态以对机身的偏航姿态进行跟随,以使云台的偏航姿态与机身的偏航姿态之间的姿态差为该偏航姿态差。
进一步地,所述控制云台的偏航姿态,以使云台的偏航姿态与机身的偏航姿态之间的姿态差为偏航姿态差包括:获取机身的偏航姿态,并根据所述机身的偏航姿态与该偏航姿态差控制云台的偏航姿态,以使得云台的偏航姿 态与机身的偏航姿态之间的姿态差为该偏航姿态差。具体地,在切换到第二控制模式后,无人机可以获取机身的偏航姿态,即获取机身的实际偏航姿态,在得到机身的实际偏航姿态后,控制云台的偏航姿态,以使云台的偏航姿态与机身的偏航姿态之间的姿态差为偏航姿态差。
基于上述技术方案,本发明实施例中,通过确定机身的偏航姿态和云台的偏航姿态之间的偏航姿态差,可以偏航姿态差控制云台的偏航姿态,以使云台在偏航方向上对机身进行跟随。这样,在无人机从飞行状态进入降落状态,即降落到用户手上,由用户手持无人机继续拍摄时,可以达到一镜到底的效果,云台上承载的拍摄设备的拍摄画面可以保持稳定,从而提高拍摄画面的稳定性。
基于与上述方法同样的构思,参见图12所示,本发明实施例中还提供一种无人机1200,包括存储器1201和处理器1202(如一个或多个处理器)。
在一个例子中,所述存储器,用于存储程序代码;所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:当从第一控制模式切换到第二控制模式时,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差;其中,所述预期偏航姿态差是无人机的机身与所述机身上承载的云台之间的偏航姿态差,所述第一控制杆量用于解耦地控制所述云台的偏航姿态或者所述机身的偏航姿态;根据所述预期偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随。
优选的,所述处理器确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差时具体用于:根据从无人机的控制终端接收到的第一控制杆量,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的所述预期偏航姿态差。
优选的,所述处理器根据从无人机的控制终端接收到的第一控制杆量,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的所述预期偏航姿态差时具体用于:对从所述控制终端接收到的第一角速度控制杆量进行 积分;将积分获取的角度确定为所述预期偏航姿态差。
优选的,所述处理器确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差时具体用于:确定在第一控制模式中从控制终端接收到的第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量;其中,所述第二控制杆量用于控制云台的偏航姿态,并指示机身对云台的偏航姿态进行跟随;确定在第一控制模式中从控制终端接收到的第二控制杆量引起的机身的预期偏航姿态变化量;根据第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量、第二控制杆量引起的机身的预期偏航姿态变化量确定所述预期偏航姿态差。
优选的,所述处理器确定在第一控制模式中从控制终端接收到的第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量时具体用于:对从控制终端接收到的第一角速度控制杆量与第二角速度控制杆量之和进行积分,将积分获取的第一角度确定为第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量;所述处理器确定在第一控制模式中从控制终端接收到的第二控制杆量引起的机身的预期偏航姿态变化量时具体用于:对从控制终端接收到的第二角速度控制杆量进行积分,将积分获取的第二角度确定为第二控制杆量引起的机身的预期偏航姿态变化量;所述处理器根据第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量、第二控制杆量引起的机身的预期偏航姿态变化量确定所述预期偏航姿态差时具体用于:根据所述第一角度和所述第二角度确定所述预期偏航姿态差。
优选的,所述处理器根据所述预期偏航姿态差控制云台的偏航姿态,以使云台在偏航方向上对机身进行跟随时具体用于:控制云台的偏航姿态,以使云台的偏航姿态与机身的偏航姿态之间的姿态差为所述预期偏航姿态差。
优选的,所述处理器控制云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述预期偏航姿态差时具体用于:获取所述机身的偏航姿态,根据所述机身的偏航姿态与所述预期偏航姿态差控制所述云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间 的姿态差为所述预期偏航姿态差。
在另一个例子中,所述存储器,用于存储程序代码;所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:当从第一控制模式切换到第二控制模式时,获取无人机的机身的偏航姿态和所述机身上承载的云台的偏航姿态;根据所述机身的偏航姿态和所述云台的偏航姿态确定偏航姿态差;根据所述偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随。
所述处理器根据所述偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随时具体用于:控制云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述偏航姿态差。
优选的,所述处理器控制云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述偏航姿态差时具体用于:获取所述机身的偏航姿态,并根据所述机身的偏航姿态与所述偏航姿态差控制所述云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述偏航姿态差。
基于与上述方法同样的发明构思,本发明实施例中还提供一种计算机可读存储介质上存储有计算机指令,所述计算机指令被执行时,实现图7所述的偏航姿态控制方法。或者,实现图10所述的偏航姿态控制方法。
上述实施例阐明的系统、装置、模块或单元,可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机,计算机的具体形式可以是个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件收发设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任意几种设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本发明时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本发明实施例可提供为方法、系统、或计 算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可以由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其它可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其它可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
而且,这些计算机程序指令也可以存储在能引导计算机或其它可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或者多个流程和/或方框图一个方框或者多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其它可编程数据处理设备,使得在计算机或者其它可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其它可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本发明实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进,均应包含在本发明的权利要求范围之内。

Claims (24)

  1. 一种偏航姿态控制方法,其特征在于,所述方法包括:
    当从第一控制模式切换到第二控制模式时,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差;其中,所述预期偏航姿态差是无人机的机身与所述机身上承载的云台之间的偏航姿态差,所述第一控制杆量用于解耦地控制所述云台的偏航姿态或者所述机身的偏航姿态;
    根据所述预期偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随。
  2. 根据权利要求1所述的方法,其特征在于,所述确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差包括:
    根据从无人机的控制终端接收到的第一控制杆量,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的所述预期偏航姿态差。
  3. 根据权利要求2所述的方法,其特征在于,
    所述根据从无人机的控制终端接收到的第一控制杆量,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的所述预期偏航姿态差包括:
    对从所述控制终端接收到的第一角速度控制杆量进行积分;
    将积分获取的角度确定为所述预期偏航姿态差。
  4. 根据权利要求1所述的方法,其特征在于,所述确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差包括:
    确定在第一控制模式中从控制终端接收到的第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量;其中,所述第二控制杆量用于控制云台的偏航姿态,并指示机身对云台的偏航姿态进行跟随;
    确定在第一控制模式中从控制终端接收到的第二控制杆量引起的机身的预期偏航姿态变化量;
    根据第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量、第二控制杆量引起的机身的预期偏航姿态变化量确定所述预期偏航姿态差。
  5. 根据权利要求4所述的方法,其特征在于,
    所述确定在第一控制模式中从控制终端接收到的第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量包括:对从控制终端接收到的第一角速度控制杆量与第二角速度控制杆量之和进行积分,将积分获取的第一角度确定为第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量;
    所述确定在第一控制模式中从控制终端接收到的第二控制杆量引起的机身的预期偏航姿态变化量包括:对从控制终端接收到的第二角速度控制杆量进行积分,将积分获取的第二角度确定为第二控制杆量引起的机身的预期偏航姿态变化量;
    所述根据第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量、第二控制杆量引起的机身的预期偏航姿态变化量确定所述预期偏航姿态差包括:根据所述第一角度和所述第二角度确定所述预期偏航姿态差。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,
    所述根据所述预期偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随包括:
    控制云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述预期偏航姿态差。
  7. 根据权利要求6所述的方法,其特征在于,
    所述控制云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述预期偏航姿态差包括:
    获取所述机身的偏航姿态,并根据所述机身的偏航姿态与所述预期偏航姿态差控制所述云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述预期偏航姿态差。
  8. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    在无人机处于飞行状态时,控制无人机进入第一控制模式;
    在无人机从飞行状态进入降落状态时,控制无人机进入第二控制模式。
  9. 一种偏航姿态控制方法,其特征在于,所述方法包括:
    当从第一控制模式切换到第二控制模式时,获取无人机的机身的偏航姿 态和所述机身上承载的云台的偏航姿态;
    根据所述机身的偏航姿态和所述云台的偏航姿态确定偏航姿态差;
    根据所述偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随。
  10. 根据权利要求9所述的方法,其特征在于,
    所述根据所述偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随包括:
    控制云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述偏航姿态差。
  11. 根据权利要求10所述的方法,其特征在于,
    所述控制云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述偏航姿态差包括:
    在切换到第二控制模式之后,获取所述机身的偏航姿态,并根据所述机身的偏航姿态与所述偏航姿态差控制所述云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述偏航姿态差。
  12. 根据权利要求9-11任一所述的方法,其特征在于,所述方法还包括:
    在无人机处于飞行状态时,控制无人机进入第一控制模式;
    在无人机从飞行状态进入降落状态时,控制无人机进入第二控制模式。
  13. 一种无人机,其特征在于,包括:存储器和处理器;
    所述存储器,用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    当从第一控制模式切换到第二控制模式时,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差;其中,所述预期偏航姿态差是无人机的机身与所述机身上承载的云台之间的偏航姿态差,所述第一控制杆量用于解耦地控制所述云台的偏航姿态或者所述机身的偏航姿态;
    根据所述预期偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方 向上对所述机身进行跟随。
  14. 根据权利要求13所述的无人机,其特征在于,所述处理器确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差时具体用于:根据从无人机的控制终端接收到的第一控制杆量,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的所述预期偏航姿态差。
  15. 根据权利要求14所述的无人机,其特征在于,
    所述处理器根据从无人机的控制终端接收到的第一控制杆量,确定在第一控制模式中从控制终端接收到的第一控制杆量引起的所述预期偏航姿态差时具体用于:对从所述控制终端接收到的第一角速度控制杆量进行积分;将积分获取的角度确定为所述预期偏航姿态差。
  16. 根据权利要求13所述的无人机,其特征在于,所述处理器确定在第一控制模式中从控制终端接收到的第一控制杆量引起的预期偏航姿态差时具体用于:确定在第一控制模式中从控制终端接收到的第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量;其中,所述第二控制杆量用于控制云台的偏航姿态,并指示机身对云台的偏航姿态进行跟随;确定在第一控制模式中从控制终端接收到的第二控制杆量引起的机身的预期偏航姿态变化量;根据第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量、第二控制杆量引起的机身的预期偏航姿态变化量确定所述预期偏航姿态差。
  17. 根据权利要求16所述的无人机,其特征在于,所述处理器确定在第一控制模式中从控制终端接收到的第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量时具体用于:对从控制终端接收到的第一角速度控制杆量与第二角速度控制杆量之和进行积分,将积分获取的第一角度确定为第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量;
    所述处理器确定在第一控制模式中从控制终端接收到的第二控制杆量引起的机身的预期偏航姿态变化量时具体用于:对从控制终端接收到的第二角速度控制杆量进行积分,将积分获取的第二角度确定为第二控制杆量引起的机身的预期偏航姿态变化量;
    所述处理器根据第一控制杆量和第二控制杆量引起的云台的预期偏航姿态变化量、第二控制杆量引起的机身的预期偏航姿态变化量确定所述预期偏航姿态差时具体用于:根据所述第一角度和所述第二角度确定所述预期偏航姿态差。
  18. 根据权利要求13-17任一项所述的无人机,其特征在于,所述处理器根据所述预期偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随时具体用于:控制云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述预期偏航姿态差。
  19. 根据权利要求18所述的无人机,其特征在于,所述处理器控制云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述预期偏航姿态差时具体用于:获取所述机身的偏航姿态,根据所述机身的偏航姿态与所述预期偏航姿态差控制所述云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述预期偏航姿态差。
  20. 一种无人机,其特征在于,包括:存储器和处理器;
    所述存储器,用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    当从第一控制模式切换到第二控制模式时,获取无人机的机身的偏航姿态和所述机身上承载的云台的偏航姿态;
    根据所述机身的偏航姿态和所述云台的偏航姿态确定偏航姿态差;
    根据所述偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随。
  21. 根据权利要求20所述的无人机,其特征在于,所述处理器根据所述偏航姿态差控制云台的偏航姿态,以使所述云台在偏航方向上对所述机身进行跟随时具体用于:控制云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述偏航姿态差。
  22. 根据权利要求21所述的无人机,其特征在于,所述处理器控制云台 的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述偏航姿态差时具体用于:在切换到第二控制模式之后,获取所述机身的偏航姿态,并根据所述机身的偏航姿态与所述偏航姿态差控制所述云台的偏航姿态,以使所述云台的偏航姿态与所述机身的偏航姿态之间的姿态差为所述偏航姿态差。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机指令,所述计算机指令被执行时,实现权利要求1-8任一项所述的偏航姿态控制方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机指令,所述计算机指令被执行时,实现权利要求9-12任一项所述的偏航姿态控制方法。
PCT/CN2017/118361 2017-12-25 2017-12-25 偏航姿态控制方法、无人机、计算机可读存储介质 WO2019126958A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/118361 WO2019126958A1 (zh) 2017-12-25 2017-12-25 偏航姿态控制方法、无人机、计算机可读存储介质
CN201780004700.XA CN109074087A (zh) 2017-12-25 2017-12-25 偏航姿态控制方法、无人机、计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118361 WO2019126958A1 (zh) 2017-12-25 2017-12-25 偏航姿态控制方法、无人机、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2019126958A1 true WO2019126958A1 (zh) 2019-07-04

Family

ID=64676049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118361 WO2019126958A1 (zh) 2017-12-25 2017-12-25 偏航姿态控制方法、无人机、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN109074087A (zh)
WO (1) WO2019126958A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699340B (zh) * 2019-05-30 2021-10-26 深圳市大疆创新科技有限公司 云台的控制方法、设备、手持云台及存储介质
CN112292650A (zh) * 2019-11-28 2021-01-29 深圳市大疆创新科技有限公司 一种云台控制方法、控制装置及控制系统
CN113632037A (zh) * 2020-02-28 2021-11-09 深圳市大疆创新科技有限公司 可移动平台的控制方法和设备
CN112180962A (zh) * 2020-09-30 2021-01-05 苏州臻迪智能科技有限公司 无人机的飞行控制方法及装置、电子设备、存储介质
WO2022134034A1 (zh) * 2020-12-25 2022-06-30 深圳市大疆创新科技有限公司 云台的控制方法和移动平台
CN114641746A (zh) * 2020-12-25 2022-06-17 深圳市大疆创新科技有限公司 可移动平台及其控制方法、装置
WO2022141122A1 (zh) * 2020-12-29 2022-07-07 深圳市大疆创新科技有限公司 无人机的控制方法、无人机及存储介质
CN113978724B (zh) * 2021-12-24 2022-03-11 普宙科技(深圳)有限公司 一种飞行器跟随云台控制方法及系统
CN117677914A (zh) * 2022-03-28 2024-03-08 深圳市大疆创新科技有限公司 控制方法、装置、无人飞行器、控制系统及存储介质
WO2024000189A1 (zh) * 2022-06-28 2024-01-04 深圳市大疆创新科技有限公司 控制方法、头戴式显示设备、控制系统及存储介质
WO2024040466A1 (zh) * 2022-08-24 2024-02-29 深圳市大疆创新科技有限公司 飞行控制方法、装置、无人机及存储介质
CN116767520B (zh) * 2023-06-30 2024-03-08 北京极目智尚科技有限公司 一种多旋翼飞行器及飞行控制方法、系统、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959110A (zh) * 2017-04-06 2017-07-18 亿航智能设备(广州)有限公司 一种云台姿态检测方法及装置
CN107077146A (zh) * 2016-12-30 2017-08-18 深圳市大疆灵眸科技有限公司 用于云台的控制方法、控制系统、云台和无人飞行器
CN107074348A (zh) * 2016-12-30 2017-08-18 深圳市大疆创新科技有限公司 控制方法、装置、设备及无人飞行器
US20170341776A1 (en) * 2016-05-25 2017-11-30 Skydio, Inc. Perimeter structure for unmanned aerial vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3195292B1 (en) * 2015-07-10 2019-01-09 SZ DJI Technology Co., Ltd. Systems and methods for gimbal simulation
CN105554480B (zh) * 2016-03-01 2018-03-16 深圳市大疆创新科技有限公司 无人机拍摄图像的控制方法、装置、用户设备及无人机
CN105739544B (zh) * 2016-03-24 2020-02-04 北京臻迪机器人有限公司 云台航向跟随方法及装置
CN107238373B (zh) * 2017-05-18 2019-08-27 诺优信息技术(上海)有限公司 无人机航摄测量基站天线工程参数的方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170341776A1 (en) * 2016-05-25 2017-11-30 Skydio, Inc. Perimeter structure for unmanned aerial vehicle
CN107077146A (zh) * 2016-12-30 2017-08-18 深圳市大疆灵眸科技有限公司 用于云台的控制方法、控制系统、云台和无人飞行器
CN107074348A (zh) * 2016-12-30 2017-08-18 深圳市大疆创新科技有限公司 控制方法、装置、设备及无人飞行器
CN106959110A (zh) * 2017-04-06 2017-07-18 亿航智能设备(广州)有限公司 一种云台姿态检测方法及装置

Also Published As

Publication number Publication date
CN109074087A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2019126958A1 (zh) 偏航姿态控制方法、无人机、计算机可读存储介质
CN107074348B (zh) 控制方法、装置、设备及无人飞行器
US11649052B2 (en) System and method for providing autonomous photography and videography
US10674062B2 (en) Control method for photographing using unmanned aerial vehicle, photographing method using unmanned aerial vehicle, mobile terminal, and unmanned aerial vehicle
US10551834B2 (en) Method and electronic device for controlling unmanned aerial vehicle
WO2019242553A1 (zh) 控制拍摄装置的拍摄角度的方法、控制装置及可穿戴设备
CN109071034A (zh) 切换云台工作模式的方法、控制器和图像增稳设备
WO2018053877A1 (zh) 控制方法、控制设备和运载系统
WO2018098704A1 (zh) 控制方法、设备、系统、无人机和可移动平台
WO2019195991A1 (zh) 运动轨迹确定、延时摄影方法、设备及机器可读存储介质
EP3273318A1 (fr) Système autonome de prise de vues animées par un drone avec poursuite de cible et localisation améliorée de la cible
US20210004005A1 (en) Image capture method and device, and machine-readable storage medium
CN113875222B (zh) 拍摄控制方法和装置、无人机及计算机可读存储介质
WO2019051640A1 (zh) 云台的控制方法、控制器和云台
US20200374470A1 (en) Image photographing method of electronic device and same electronic device
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制系统
WO2019127341A1 (zh) 云台控制方法、设备及计算机可读存储介质
WO2019140688A1 (zh) 图像处理方法、设备及计算机可读存储介质
WO2021251441A1 (ja) 方法、システムおよびプログラム
WO2021168821A1 (zh) 可移动平台的控制方法和设备
WO2020168519A1 (zh) 拍摄参数的调整方法、拍摄设备以及可移动平台
WO2018214015A1 (zh) 一种航向修正方法、设备及飞行器
CN108319295B (zh) 避障控制方法、设备及计算机可读存储介质
WO2020014929A1 (zh) 地图构建方法、可移动平台及计算机可读存储介质
JP2023083072A (ja) 方法、システムおよびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936881

Country of ref document: EP

Kind code of ref document: A1