WO2024040466A1 - 飞行控制方法、装置、无人机及存储介质 - Google Patents

飞行控制方法、装置、无人机及存储介质 Download PDF

Info

Publication number
WO2024040466A1
WO2024040466A1 PCT/CN2022/114501 CN2022114501W WO2024040466A1 WO 2024040466 A1 WO2024040466 A1 WO 2024040466A1 CN 2022114501 W CN2022114501 W CN 2022114501W WO 2024040466 A1 WO2024040466 A1 WO 2024040466A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
attitude
uav
fuselage
pitch attitude
Prior art date
Application number
PCT/CN2022/114501
Other languages
English (en)
French (fr)
Inventor
李翔
隋企
蒋李
商志猛
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2022/114501 priority Critical patent/WO2024040466A1/zh
Publication of WO2024040466A1 publication Critical patent/WO2024040466A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras

Definitions

  • the present application relates to the technical field of drones, and in particular to a flight control method, device, drone and storage medium.
  • An abnormal situation that may occur is that after the drone hits an obstacle (such as a wall), the drone will roll over and eventually be firmly attached to the obstacle.
  • Another abnormal situation that may occur is: due to wind disturbance and control errors of the drone, the pitch attitude difference between the drone's body and the drone's shooting device will drift and cannot be maintained constant.
  • Embodiments of the present application provide a flight control method, device, drone and storage medium to solve the problem in the existing technology of how to reduce the occurrence of abnormal situations during the flight of the drone.
  • embodiments of the present application provide a flight control method applied to a drone, wherein the drone includes a power system, and the power system includes a plurality of motors that provide flight lift, including:
  • the rotational speed of all motors in the power system of the UAV is reduced to reduce the flight height of the UAV, and the attitude of the UAV is adjusted to a normal attitude.
  • embodiments of the present application provide a flight control method applied to a drone.
  • the drone includes a shooting device, a platform and a fuselage for installing and adjusting the pitch attitude of the shooting device.
  • the gimbal is installed on the fuselage, including:
  • the pitch attitude of the fuselage is adjusted according to the error, so that the pitch attitude deviation between the shooting device and the fuselage approaches the reference pitch attitude deviation.
  • embodiments of the present application provide a flight control device applied to a drone, wherein the drone includes a power system, the power system includes a plurality of motors that provide flight lift, and the device includes: memory and processor;
  • the memory is used to store program code
  • the processor calls the program code, and when the program code is executed, is used to perform the following operations:
  • the rotation speed of all motors in the power system of the drone is reduced to reduce the flight height of the drone, and the attitude of the drone is adjusted to a normal attitude.
  • embodiments of the present application provide a flight control device applied to a drone.
  • the drone includes a shooting device, a platform and a fuselage for installing and adjusting the pitch attitude of the shooting device.
  • the cloud platform is installed on the fuselage, and the device includes: a memory and a processor;
  • the memory is used to store program code
  • the processor calls the program code, and when the program code is executed, is used to perform the following operations:
  • the pitch attitude of the fuselage is adjusted according to the error, so that the pitch attitude deviation between the shooting device and the fuselage approaches the reference pitch attitude deviation.
  • embodiments of the present application provide a drone, which includes a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor executes the The computer program implements the steps of the method according to any one of the first aspects, or the steps of the method according to any one of the second aspects.
  • embodiments of the present application provide a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, any one of the first aspect or the second aspect is implemented. The steps of the method.
  • embodiments of the present application provide a drone, which includes a power system and a flight control device as described in any one of the third aspect or the fourth aspect.
  • An embodiment of the present application also provides a computer program, which when the computer program is executed by a computer, is used to implement the method described in any one of the above first or second aspects.
  • Embodiments of the present application provide a flight control method, device, UAV and storage medium.
  • determining whether the UAV collides in the flight state when it is determined that a collision occurs, all motors in the power system of the UAV are reduced. to reduce the flying height of the UAV and adjust the UAV's attitude to the normal attitude.
  • the UAV's flying altitude is first lowered and then the UAV's attitude is adjusted to the normal attitude.
  • Figure 1 is a schematic diagram of the application scenario of the flight control method of this application.
  • Figure 2A and Figure 2B are schematic diagrams of the drone flipping over after hitting the wall and adhering to the wall;
  • FIG. 3 is a schematic flowchart of a flight control method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a flight control method provided by another embodiment of the present application.
  • Figure 5A is a schematic diagram of the reference pitch attitude deviation provided by an embodiment of the present application.
  • Figure 5B is a schematic diagram of a control device sending control instructions according to an embodiment of the present application.
  • Figure 5C is a schematic diagram of the actual pitch attitude deviation provided by an embodiment of the present application.
  • Figure 5D is a schematic diagram of adjustment based on errors provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a flight control device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a flight control device provided by another embodiment of the present application.
  • the flight control system can include a drone 11 and a control device 12.
  • the drone 11 and the control device 12 can carry out wireless communication.
  • the drone includes a power system that includes a plurality of motors that provide flight lift.
  • the drone includes a plurality of propellers, each of the motors driving a propeller.
  • the UAV includes a shooting device, a platform for installing and adjusting the pitch attitude of the shooting device, and a fuselage.
  • the platform is installed on the fuselage.
  • the power system as mentioned above can be installed on the fuselage. on the fuselage. It should be noted that this application does not limit the number, type, and equipment form of the drones 11 and the control equipment 12.
  • control device 12 may be a terminal device.
  • the terminal device may include at least one of a remote control, a smart phone, a tablet, a laptop, a smart wearable device, etc.
  • the terminal device may be installed with a device for controlling unmanned systems.
  • the application program Application, APP controlled by the machine 11.
  • control device 12 may be a remote control.
  • the remote control and the terminal device can also communicate by wire or wirelessly.
  • the remote control can be provided with a fixed bracket for fixing the terminal device.
  • control device may also be an augmented reality (Augmented Reality, AR) device, a virtual reality (Virtual Reality, VR) device, etc.
  • AR Augmented Reality
  • VR Virtual Reality
  • An abnormal situation that a drone may encounter during flight is that the drone rolls over after hitting an obstacle (such as a wall) and is eventually firmly attached to the obstacle.
  • the root cause of this abnormal situation is that due to the collision between the obstacle and the drone, the attitude of the drone will tilt in the direction closer to the obstacle.
  • the motor of the drone close to the obstacle will accelerate. As shown in Figure 2A, the acceleration of the motor close to the obstacle, area X The air will be quickly pumped away, which will reduce the air pressure in area The air pressure is lower than the air pressure in the area below the drone.
  • the air pressure difference between the bottom of the drone and the top of the drone will "press" the drone in the direction of the obstacle (as shown by the arrow in Figure 2A).
  • the acceleration of the motor that causes the UAV to approach an obstacle not only fails to generate a moment to balance the posture, but will intensify the UAV's attraction to the inside of the obstacle, forming a positive feedback that ultimately causes the UAV to be firmly sucked by the obstacle, such as As shown in Figure 2B.
  • embodiments of the present application provide a flight control method as shown in Figure 3.
  • FIG 3 is a schematic flowchart of a flight control method provided by an embodiment of the present application.
  • the method provided by this embodiment can be applied to the UAV 11 in Figure 1.
  • the UAV includes a power system, and the power system includes a plurality of devices to provide flight lift.
  • the method of this embodiment may include:
  • Step 31 In the flight state, determine whether the UAV collides.
  • the attitude control after the UAV hits the obstacle triggers the UAV to roll over and is finally firmly attached to the obstacle, because it can be controlled by the UAV after it hits the obstacle.
  • the process is used to reduce the occurrence of the abnormal situation that the drone rolls over and is eventually firmly attached to the obstacle, so that it can be determined whether the drone has collided during flight. For example, it may be determined whether the UAV collides based on the acceleration value and/or the disturbance size.
  • step 32 can be further performed.
  • Step 32 When it is determined that a collision has occurred, reduce the rotational speed of all motors in the power system of the drone to reduce the flying height of the drone, and adjust the attitude of the drone to a normal attitude.
  • the flying height of the drone can be reduced. Since the speed of the motors of the drone close to obstacles is also reduced, the attitude of the drone can be lowered. The air pressure difference between area size.
  • the air pressure difference between the area After flying to a high altitude can reduce the probability that the drone will be firmly sucked by obstacles due to the large air pressure difference between area X and the area below the drone. This can reduce the occurrence of abnormal situations in which the drone rolls over after hitting an obstacle and is eventually firmly attached to the obstacle.
  • the flight control method provided by this embodiment determines whether a collision occurs with the UAV in the flight state. When it is determined that a collision occurs, the rotation speed of all motors in the power system of the UAV is reduced to reduce the flight height of the UAV. Adjusting the attitude of the UAV to the normal attitude allows us to first reduce the flying height of the UAV when a collision is determined, and then adjust the attitude of the UAV to the normal attitude, which can reduce the risk of direct collision when a collision is determined to occur. Adjusting the attitude of the drone to the normal attitude can reduce the occurrence of abnormal situations in which the drone rolls over after hitting an obstacle and is eventually firmly attached to the obstacle.
  • Figure 3 considering that the propeller protection components surrounding the outside of the propeller may form a duct, and the duct will hinder the gas interaction between the upper and lower parts of the UAV, therefore in one embodiment, Figure The method provided by the embodiment shown in 3 can be applied to a drone that includes a propeller driven by a motor and a propeller protection component surrounding the outside of the propeller, with the propeller protection component forming a duct.
  • the aforementioned power system may also include A propeller driven by a motor, the drone includes a propeller protection component surrounding the outside of the propeller.
  • the propeller can be part of the fuselage of the UAV, that is, the fuselage can include the propeller, or the propeller can also be a component installed on the fuselage.
  • the drone can be configured with a sensor, and whether the drone collides can be determined based on the measurement value of the sensor.
  • the sensor may include an accelerometer, and the measured value of the accelerometer may be used to determine whether the UAV has collided. Determining whether the UAV has collided may specifically include: determining whether the measured value of the accelerometer of the UAV has collided. Exceeding the first threshold; if it exceeds the first threshold, it means that the UAV collided; if it does not exceed the first threshold, it means that the UAV did not collide.
  • the first threshold may be, for example, 5g, where g represents the acceleration of gravity.
  • the sensor may include an attitude sensor, and the measurement value of the attitude sensor may be used to determine whether the UAV has collided. Determining whether the UAV has collided may specifically include: determining the measurement value of the UAV's attitude sensor. Whether the attitude threshold is exceeded; if the attitude threshold is exceeded, it means that the UAV collided; if the attitude threshold is not exceeded, it means that the UAV did not collide.
  • the posture threshold may be, for example, 40, 45, 50, 60 or 70 degrees.
  • the observer can be designed to observe the disturbance of the attitude of the UAV to determine whether the UAV has collided. Determining whether the UAV has collided may specifically include: observing the attitude disturbance of the UAV through the observer, and determining whether the UAV has collided. Whether the attitude disturbance exceeds the second threshold; if it exceeds the second threshold, it means that the UAV collided; if it does not exceed the second threshold, it means that the UAV did not collide. Thus, once the attitude disturbance exceeds a certain threshold, it can be considered that the disturbance is caused by a collision with an obstacle.
  • the speed reduction range of all motors may be substantially the same.
  • the substantially consistent reduction amplitude of the rotational speed may include: the reduction amplitude of the motor's rotational speed is consistent, or the reduction amplitude of the motor's rotational speed is less than or equal to the set threshold.
  • the tilt angle of the drone caused by the collision can be kept basically unchanged, that is, when the drone is lowering its flight altitude, , the tilt angle of the drone is basically the tilt angle caused by the collision.
  • the inclination angle of the drone can be kept basically unchanged by controlling the speed control amount, which is beneficial to improving the stability of the flight.
  • the control quantity of the power system can be divided into the ascending speed control quantity and the attitude control quantity.
  • the ascending speed control quantity can be used to control the movement of the UAV in the vertical direction, thereby controlling the ascent and attitude of the UAV.
  • the attitude control amount can be used to control the rotation of the UAV's rotation axis (such as the pitch axis, roll axis, and yaw axis), thereby controlling the UAV's attitude.
  • reducing the rotation speed of all motors in the power system of the UAV may specifically include: reducing the ascent speed control amount and attitude control amount provided to the power system. .
  • reducing the ascent speed control amount and attitude control amount provided to the power system may specifically include: when using the PID control algorithm to calculate the control amount, clearing the integral amount used to calculate the ascent speed control amount to reduce the amount provided to the power system. The rising speed control amount of the power system and clearing the integral amount used to calculate the attitude control amount to reduce the attitude control amount provided to the power system.
  • the flight controller will immediately clear the vertical control and attitude control integrals, so that the UAV will not cause the control amount to become larger and larger due to positive feedback.
  • the drone's propeller enters the low-throttle segment, the drone still has weak attitude control capabilities. Once the drone leaves area X, normal control can be restored immediately.
  • the UAV collision is small, when the UAV's attitude is slightly uncontrollable, for example, when it is less than 45 degrees, once the collision detection takes effect, the vertical control and attitude control points will be cleared when it is determined that the UAV has collided.
  • the drone Under the action of the algorithm, the drone will ensure a certain attitude control strength under low throttle, and can also control the attitude back, so that the attitude returns to normal. If it is a very violent collision that causes the drone to roll over 90 degrees directly and stick to the obstacle, this algorithm will still take effect and the drone will fall down under the action of gravity. If the obstacle is not completely vertical, such as collision Once the drone is a certain distance from the trunk, it will immediately resume normal attitude control and vertical control.
  • the method of the embodiment shown in FIG. 3 may further include: determining whether the collision is caused by the user's manual control operation.
  • the reduction of the rotation speed of all motors in the power system of the drone may specifically include: if not, reducing the speed of all motors in the power system of the drone. For example, it can be determined whether the collision is caused by the user's manual control operation by determining whether the user's control instruction is received when the collision occurs. If the user's control instruction is received when the collision occurs, it can be determined that the collision is caused by It is caused by the user's manual control operation. If no control instructions from the user are received when a collision occurs, it can be determined that the collision was not caused by the user's manual control operation.
  • the speed of all the motors in the drone's power system can be reduced to avoid the user needing to hit the obstacle, and the obstacle is not correctly hit by the drone.
  • the reduced flight height is conducive to improving the user experience. For example, if the user controls the wall where the drone is hovering, but the drone collides with the wall due to interference or inaccurate positioning, the speed of all motors in the drone's power system can be reduced to reduce the speed of the drone.
  • the flight altitude of the aircraft is conducive to improving the user experience.
  • the method of the embodiment shown in FIG. 3 may further include: determining whether the collision was caused by the user's manual control operation; if so, controlling all motors to accelerate and rotate according to the user's manual control operation. Therefore, when it is determined that the collision is caused by the user's manual control operation, the obstacle can be correctly impacted according to the user's control instructions, so that the control of the drone flight can comply with the user's wishes, which is beneficial to improving the user's use. experience. For example, if there are branches that hinder the flight of the drone, the user can control the drone to accelerate. At this time, all the motors can be controlled to accelerate and rotate according to the user's manual control operation to knock away the branches and fly over.
  • Another abnormal situation that may be encountered during the flight of the drone is: due to wind disturbance and control errors, the pitch attitude difference between the drone's body and the drone's shooting device will appear. Drift cannot be maintained constant.
  • the main scenario where this abnormal situation occurs is: in a drone control mode, the user can adjust the pitch attitude of the shooting device (for example, the user adjusts the shooting of the drone through the terminal device as mentioned above).
  • the pitch attitude deviation between the shooting device and the fuselage is used as the reference pitch attitude deviation.
  • the user operates the joystick of the terminal device to send flight control instructions to the drone.
  • the drone flies according to the received Control instructions to fly. During the flight, the pitch attitude of the drone's fuselage will change.
  • the pitch attitude deviation between the shooting device and the fuselage should always be the reference pitch attitude deviation, so that Users can feel and understand the pitch attitude of the drone's body through the images collected by the shooting device displayed on the terminal device, and then decide how to operate the joystick of the terminal device to control the flight of the drone.
  • the pitch attitude difference between the drone's body and the drone's shooting device will drift and cannot be maintained constant, that is, it cannot be maintained at the reference pitch attitude deviation. This As a result, it is difficult for users to feel and understand the pitch attitude of the drone's body through the images collected by the shooting device displayed on the terminal device, which in turn affects the user's flight control of the drone.
  • embodiments of the present application provide a flight control method as shown in Figure 4.
  • FIG 4 is a schematic flow chart of a flight control method provided by another embodiment of the present application.
  • the method provided by this embodiment can be applied to the UAV 11 in Figure 1.
  • the UAV includes a shooting device and is used to install and adjust the shooting device.
  • the gimbal and the fuselage are in a pitching attitude, and the gimbal is installed on the fuselage, as shown in Figure 4.
  • the method in this embodiment may include:
  • Step 41 Obtain the reference pitch attitude deviation between the shooting device and the fuselage, where the reference pitch attitude deviation is set by the user.
  • the reference pitch attitude deviation between the shooting device and the fuselage refers to the attitude deviation between the shooting device and the fuselage in the pitch direction of the fuselage set by the user.
  • the reference pitch attitude deviation between the shooting device and the fuselage is The deviation may be as shown in Figure 5A, for example.
  • the reference pitch attitude deviation between the shooting device and the fuselage can be set by the user by setting the attitude of the pan/tilt. That is, adjusting (for example, setting) the attitude of the pan/tilt can adjust the deviation between the shooting device and the fuselage. Attitude deviation in the pitch direction.
  • the reference pitch attitude deviation between the shooting device and the body can be determined based on the attitude of the pan/tilt set by the user.
  • the reference pitch attitude deviation between the shooting device and the body can also be determined in other ways, which is not limited in this application.
  • Step 42 Obtain the actual pitch attitude deviation between the shooting device and the fuselage.
  • the control device will send control instructions for adjusting the pitch attitude of the fuselage to the UAV and the gimbal, so that both the fuselage and the gimbal can follow the instructions.
  • the control device controls the pitch attitude to perform the action.
  • the attitude changes of the shooting device and the fuselage in the pitch direction of the fuselage are completely consistent, so that the picture can reflect the attitude changes of the drone in the pitch direction.
  • the actual pitch attitude deviation between the shooting device and the fuselage can be obtained.
  • the actual pitch attitude deviation refers to the actual attitude deviation between the shooting device and the fuselage in the pitch direction of the fuselage.
  • the actual pitch attitude deviation between the shooting device and the fuselage can be, for example, as shown in FIG. 5C .
  • the actual pitch attitude deviation between the shooting device and the body can be determined based on the current attitude of the gimbal.
  • the actual pitch attitude deviation between the shooting device and the fuselage can also be determined in other ways, which is not limited in this application.
  • Step 43 Determine the error between the reference pitch attitude deviation and the actual pitch attitude deviation.
  • the error between the reference pitch attitude deviation and the actual pitch attitude deviation can be determined.
  • the difference between the reference pitch attitude deviation and the actual pitch attitude deviation may be determined as the error between the reference pitch attitude deviation and the actual pitch attitude deviation.
  • Step 44 Adjust the pitch attitude of the fuselage according to the error so that the pitch attitude deviation between the shooting device and the fuselage approaches the reference pitch attitude deviation.
  • the drone in order to lock the attitude of the shooting device and the fuselage in the direction of the pitch axis of the fuselage, the drone can follow the shooting device (which can also be understood as following the pan/tilt). Therefore, after determining the error between the reference pitch attitude deviation and the actual pitch attitude deviation, the pitch attitude of the fuselage can be adjusted according to the error, so that the pitch attitude deviation term between the shooting device and the fuselage approaches the reference pitch attitude deviation, Thereby locking the attitude of the shooting device and the fuselage in the direction of the fuselage's pitch axis.
  • the method of adjusting the pitch attitude of the fuselage according to the error may be as shown in FIG. 5D , for example.
  • the direction shown by the arrow in Figure 5D can indicate the direction in which the pitch attitude of the fuselage is adjusted.
  • the pitch axis of the fuselage rotates in the direction of the arrow shown in Figure 5D, the distance between the shooting device and the machine can be reduced.
  • the deviation of the pitch attitude between the two bodies is so that the pitch attitude deviation approaches the reference pitch attitude deviation.
  • the UAV represented by the solid line in Figure 5D is the UAV before adjustment, and the UAV represented by the dotted line is the UAV after adjustment.
  • Man-machine Man-machine.
  • the gimbal can theoretically be controlled to adjust based on the error
  • the pitch attitude of the shooting device is adjusted so that the pitch attitude deviation between the shooting device and the body approaches the reference pitch attitude deviation.
  • this method will cause the shooting device to shake or shift, and the user will see the picture displayed by the terminal device shake or shift. This method will cause confusion for the user and a poor interactive experience. Therefore, in this embodiment, the pitch attitude of the fuselage is adjusted according to the error, so that the pitch attitude deviation between the shooting device and the fuselage approaches the reference pitch attitude deviation, so that the user sees that the picture displayed by the terminal device is stable.
  • the flight control method obtained in this embodiment obtains the reference pitch attitude deviation between the shooting device and the fuselage, obtains the actual pitch attitude deviation between the shooting device and the fuselage, and determines the difference between the reference pitch attitude deviation and the actual pitch attitude deviation.
  • error the pitch attitude of the fuselage is adjusted according to the error, so that the pitch attitude deviation between the shooting device and the fuselage approaches the reference pitch attitude deviation, and the UAV follows the shooting device to lock the shooting device and the fuselage.
  • the attitude of the fuselage in the direction of the pitch axis is such that the pitch attitude deviation between the shooting device and the fuselage should always be the reference pitch attitude deviation.
  • adjusting the attitude of the fuselage according to the error may specifically include: adjusting the attitude of the fuselage in real time according to the error. This ensures real-time adjustment.
  • adjusting the attitude of the fuselage according to the error may specifically include: when the error is greater than a preset error threshold, adjusting the pitch attitude of the fuselage according to the error. This can reduce the workload of adjustment.
  • adjusting the pitch attitude of the fuselage according to the error may specifically include: controlling the power system according to the error to adjust the pitch attitude of the fuselage. Pitch attitude.
  • the power system is installed on the fuselage.
  • the fuselage may include a machine arm, and the power system is installed on the machine arm.
  • the control mode of the drone when performing flight control based on errors, can be distinguished.
  • the method of the embodiment shown in Figure 4 may further include: determining the control mode of the drone.
  • the adjustment of the pitch attitude of the fuselage according to the error may specifically include: if the control mode of the drone is the first control mode, adjusting the pitch attitude of the fuselage according to the error.
  • the first control mode may be any type of control mode that requires the image to reflect the attitude change of the drone in the pitch direction.
  • the first control mode may be, for example, a First Person View (FPV) mode. Or ride-through mode.
  • FPV First Person View
  • ride-through mode When the drone is in FPV mode or ride-through mode, it is necessary to keep the gimbal and the drone relatively stationary. Therefore, in a mode where the attitude change of the drone in the pitch direction needs to be reflected on the screen, the body can follow the shooting device, so that the control mode of the drone can be flexibly implemented, which is beneficial to improving the user experience.
  • the method of the embodiment shown in Figure 4 may also include: if the control mode of the drone is the second control mode, obtaining the initial pitch attitude of the shooting device, and controlling the gimbal to adjust the pitch attitude of the shooting device. Approach the initial pitch attitude.
  • the second control mode may be any type of control mode that requires the gimbal to control the posture of the shooting device to be stable.
  • the second control mode may be a locking mode, for example. When the drone is in the locking mode, the gimbal needs to be kept relatively The posture on the ground remains unchanged. Therefore, the user can use the control mode in which the posture of the shooting device is stabilized by the pan/tilt as needed, which is beneficial to improving the user's experience.
  • the initial pitch attitude can be set by the user, so that the user can flexibly set the field of view of the shooting device according to shooting needs, which is beneficial to improving the user experience.
  • FIG. 6 is a schematic structural diagram of a flight control device provided by an embodiment of the present application.
  • the flight control device is applied to a drone.
  • the drone includes a power system, and the power system includes a plurality of motors that provide flight lift.
  • the device 60 may include: a processor 61 and a memory 62 .
  • the memory 62 is used to store program codes
  • the processor 61 calls the program code, and when the program code is executed, is used to perform the following operations:
  • the rotation speed of all motors in the power system of the drone is reduced to reduce the flight height of the drone, and the attitude of the drone is adjusted to a normal attitude.
  • the flight control device provided in this embodiment can be used to execute the technical solution of the method embodiment shown in Figure 3. Its implementation principles and technical effects are similar to those of the method embodiment and will not be described again here.
  • FIG. 7 is a schematic structural diagram of a flight control device provided by another embodiment of the present application.
  • the flight control device is applied to a drone.
  • the drone includes a shooting device, a gimbal and a machine for installing and adjusting the pitch attitude of the shooting device.
  • body, the gimbal is installed on the body.
  • the device 70 may include: a processor 71 and a memory 72 .
  • the memory 72 is used to store program codes
  • the processor 71 calls the program code, and when the program code is executed, is used to perform the following operations:
  • the pitch attitude of the fuselage is adjusted according to the error, so that the pitch attitude deviation between the shooting device and the fuselage approaches the reference pitch attitude deviation.
  • the flight control device provided in this embodiment can be used to execute the technical solution of the method embodiment shown in Figure 4. Its implementation principles and technical effects are similar to those of the method embodiment and will not be described again here.
  • an embodiment of the present application also provides an unmanned aerial vehicle, including the flight control device shown in Figure 6 or Figure 7 .
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is executed by a processor, the method described in the embodiment shown in Figure 3 or Figure 4 is implemented.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the steps including the above-mentioned method embodiments are executed; and the aforementioned storage media include: ROM, RAM, magnetic disks, optical disks and other media that can store program codes.

Abstract

一种飞行控制方法、装置、无人机及存储介质。该方法包括:在飞行状态中,确定无人机是否发生碰撞(31);当确定发生碰撞时,降低所述无人机的动力系统中全部电机的转速以降低所述无人机的飞行高度,将所述无人机的姿态调整为正常姿态(32)。本申请能够减少无人机在撞击到障碍物后侧翻并最终牢牢吸附于障碍物上的异常情况的发生。

Description

飞行控制方法、装置、无人机及存储介质 技术领域
本申请涉及无人机技术领域,尤其涉及一种飞行控制方法、装置、无人机及存储介质。
背景技术
随着科学技术的飞速发展,无人机由于其稳定性好、抗干扰能力强的特点,取得了较为广泛的发展和应用。
目前,虽然无人机的飞行控制技术越来越成熟,但是在无人机飞行过程中还是可能发生异常情况。一种可能发生的异常情况是:无人机在撞击到障碍物(例如墙壁)后,无人机会侧翻并最终牢牢吸附于障碍物上。另一种可能发生的异常情况下是:由于无人机遇到风扰、控制误差,无人机的机身和无人机的拍摄装置之间的俯仰姿态差会出现漂移,不能维持恒定。
因此,如何减少无人机飞行过程中异常情况的发生,成为目前亟待解决的问题。
发明内容
本申请实施例提供一种飞行控制方法、装置、无人机及存储介质,用以解决现有技术中如何减少无人机飞行过程中异常情况发生的问题。
第一方面,本申请实施例提供一种飞行控制方法,应用于无人机,其中,所述无人机包括动力系统,所述动力系统包括多个提供飞行升力的电机,包括:
在飞行状态中,确定无人机是否发生碰撞;
当确定发生碰撞时,降低所述无人机的动力系统中全部电机的转速以降 低所述无人机的飞行高度,将所述无人机的姿态调整为正常姿态。
第二方面,本申请实施例提供一种飞行控制方法,应用于无人机,所述无人机包括拍摄装置、用于安装并调节所述拍摄装置的俯仰姿态的云台和机身,所述云台安装在所述机身上,包括:
获取所述拍摄装置和所述机身之间的基准俯仰姿态偏差,其中,所述基准俯仰姿态偏差是由用户设置的;
获取所述拍摄装置和所述机身之间的实际俯仰姿态偏差;
确定所述基准俯仰姿态偏差和所述实际俯仰姿态偏差之间的误差;
根据所述误差调整所述机身的俯仰姿态,以使所述拍摄装置和所述机身之间的俯仰姿态偏差向所述基准俯仰姿态偏差趋近。
第三方面,本申请实施例提供一种飞行控制装置,应用于无人机,其中,所述无人机包括动力系统,所述动力系统包括多个提供飞行升力的电机,所述装置包括:存储器和处理器;
所述存储器,用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
在飞行状态中,确定无人机是否发生碰撞;
当确定发生碰撞时,降低所述无人机的动力系统中全部电机的转速以降低所述无人机的飞行高度,将所述无人机的姿态调整为正常姿态。
第四方面,本申请实施例提供一种飞行控制装置,应用于无人机,所述无人机包括拍摄装置、用于安装并调节所述拍摄装置的俯仰姿态的云台和机身,所述云台安装在所述机身上,所述装置包括:存储器和处理器;
所述存储器,用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
获取所述拍摄装置和所述机身之间的基准俯仰姿态偏差,其中,所述基准俯仰姿态偏差是由用户设置的;
获取所述拍摄装置和所述机身之间的实际俯仰姿态偏差;
确定所述基准俯仰姿态偏差和所述实际俯仰姿态偏差之间的误差;
根据所述误差调整所述机身的俯仰姿态,以使所述拍摄装置和所述机身之间的俯仰姿态偏差向所述基准俯仰姿态偏差趋近。
第五方面,本申请实施例提供一种无人机,所述无人机包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现第一方面中任一项所述方法的步骤,或者第二方面中任一项所述方法的步骤。
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现第一方面或第二方面中任一项所述方法的步骤。
第七方面,本申请实施例提供一种无人机,所述无人机包括动力系统和如第三方面或第四方面中任一项所述的飞行控制装置。
本申请实施例还提供一种计算机程序,当所述计算机程序被计算机执行时,用于实现上述第一方面或第二方面中任一项所述的方法。
本申请实施例提供一种飞行控制方法、装置、无人机及存储介质,通过在飞行状态中,确定无人机是否发生碰撞,当确定发生碰撞时,降低无人机的动力系统中全部电机的转速以降低无人机的飞行高度,将无人机的姿态调整为正常姿态,实现了当确定发生碰撞时,先降低无人机的飞行高度,再将无人机的姿态调整为正常姿态,能够减少出现由于当确定发生碰撞时直接将无人机的姿态调整为正常姿态所带来的侧翻,从而能够减少无人机在撞击到障碍物后侧翻并最终牢牢吸附于障碍物上的异常情况的发生。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请飞行控制方法的应用场景示意图;
图2A和图2B为无人机在撞击到墙壁后侧翻并吸附于墙壁上的示意图;
图3为本申请一实施例提供的飞行控制方法的流程示意图;
图4为本申请另一实施例提供的飞行控制方法的流程示意图;
图5A为本申请一实施例提供的基准俯仰姿态偏差的示意图;
图5B为本申请一实施例提供的控制设备发送控制指令的示意图;
图5C为本申请一实施例提供的实际俯仰姿态偏差的示意图;
图5D为本申请一实施例提供的根据误差进行调整的示意图;
图6为本申请一实施例提供的飞行控制装置的结构示意图;
图7为本申请另一实施例提供的飞行控制装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的飞行控制方法可以应用于图1所示的飞行控制系统,如图1所示,该飞行控制系统中可以包括无人机11和控制设备12,无人机11与控制设备12可以进行无线通信。无人机包括动力系统,动力系统包括多个提供飞行升力的电机,在某些实施例中,所述无人机包括多个螺旋桨,所述每一个电机驱动一个螺旋桨。所述无人机包括拍摄装置、用于安装并调节所述拍摄装置的俯仰姿态的云台和机身,所述云台安装在所述机身上,如前所述的动力系统可以安装在所述机身上。需要说明的是,对于无人机11、控制设备12的数量、类型、设备形态,本申请不做限定。
示例性的,控制设备12可以为终端设备,终端设备可以包括遥控器、智能手机、平板电脑、膝上型电脑、智能穿戴式设备等中的至少一个,终端设备上可以安装有用于对无人机11进行控制的应用程序(Application,APP)。
示例性的,控制设备12可以为遥控器。遥控器与终端设备还可以进行有线通信或者无线通信,可选的,遥控器上可以设置有用于固定终端设备的固定支架。
示例性的,控制设备还可以为增强现实(Augmented Reality,AR)设备、虚拟现实(Virtual Reality,VR)设备等。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
无人机飞行的过程中可能碰到的一种异常情况是:无人机在撞击到障碍 物(例如墙壁)后侧翻并最终牢牢吸附于障碍物上。通过分析发现,出现这种异常情况的根本原因是:在障碍物与无人机碰撞的作用下,无人机的姿态会朝靠近障碍物的方向倾斜。通常,为了将无人机的姿态调整为正常姿态,在无人机发生碰撞后,无人机靠近障碍物的电机就会加速,如图2A所示,靠近障碍物的电机的加速,区域X的空气会被迅速抽走,这样会使得区域X的气压降低,且靠近障碍物的电机转速越快,区域X中的气压越低,从而在障碍物内侧形成一个低压区,即区域X中的气压低于无人机下方区域中的气压,无人机下方与无人机上方之间的气压差会将无人机向障碍物的方向“压”(如图2A中的箭头所示),导致无人机靠近障碍物电机的加速不仅产生不了让姿态平衡的力矩,反而会让无人机加剧被障碍物内侧吸,形成正反馈,最终导致无人机被障碍物牢牢吸住,如图2B所示。
为了减少无人机在撞击到障碍物后侧翻并最终牢牢吸附于障碍物上的异常情况的发生,本申请实施例提供了如图3所示的飞行控制方法。
图3为本申请一实施例提供的飞行控制方法的流程示意图,本实施例提供的方法可以应用于图1中的无人机11,无人机包括动力系统,动力系统包括多个提供飞行升力的电机,如图3所示,本实施例的方法可以包括:
步骤31,在飞行状态中,确定无人机是否发生碰撞。
本步骤中,考虑到是由于无人机撞击到障碍物后的姿态控制,触发无人机侧翻并最终牢牢吸附于障碍物上,因为可以通过在无人机撞击到障碍物后的控制过程来减少无人机侧翻并最终牢牢吸附于障碍物这一异常情况的发生,从而可以在飞行状态中,确定无人机是否发生碰撞。示例性的,可以基于加速度值和/或扰动大小确定无人机是否发生碰撞。
当确定无人机未发生碰撞时,可以结束本流程;在确定无人机发生碰撞时,可以进一步执行步骤32。
步骤32,当确定发生碰撞时,降低无人机的动力系统中全部电机的转速以降低无人机的飞行高度,将无人机的姿态调整为正常姿态。
在本步骤中,当确定发生碰撞时,退出姿态控制模式,不再控制动力系统将无人机的姿态调整为正常姿态(即悬停时对应的姿态),而是降低无人机的动力系统中全部电机的转速,在降低无人机的飞行高度之后,再将无人机的姿态调整为正常姿态。
通过降低无人机的动力系统中全部电机的转速,可以实现降低无人机的 飞行高度,并且由于无人机靠近障碍物的电机的转速也被降低了,因此可以降低将无人机的姿态调整为正常姿态(需要对靠近障碍物的电机加速)所带来的区域X与无人机下方区域之间的气压差,即可以降低将无人机向障碍物的方向“压”的力的大小。
进一步的,由于通过降低无人机的飞行高度,可以降低将无人机的姿态调整为正常姿态所带来的区域X与无人机下方区域之间的气压差,因此在降低无人机的飞行高度后,再将无人机的姿态调整为正常姿态,可以减少出现由于区域X与无人机下方区域之间的气压差较大,导致无人机被障碍物牢牢吸住的概率,因此可以减少出现无人机在撞击到障碍物后侧翻并最终牢牢吸附于障碍物上的异常情况的发生。
本实施例提供的飞行控制方法,通过在飞行状态中,确定无人机是否发生碰撞,当确定发生碰撞时,降低无人机的动力系统中全部电机的转速以降低无人机的飞行高度,将无人机的姿态调整为正常姿态,实现了当确定发生碰撞时,先降低无人机的飞行高度,再将无人机的姿态调整为正常姿态,能够减少出现由于当确定发生碰撞时直接将无人机的姿态调整为正常姿态所带来的侧翻,从而能够减少无人机在撞击到障碍物后侧翻并最终牢牢吸附于障碍物上的异常情况的发生。
在图3所示实施例的基础上,考虑到包围在螺旋桨外侧的桨保部件可能形成涵道,而涵道会阻碍无人机的上下方之间的气体交互,因此一个实施例中,图3所示实施例提供的方法可以应用于包括由电机驱动的螺旋桨以及包围在螺旋桨外侧的桨保部件且浆保部件形成了涵道的无人机,在此情况下,前述动力系统还可以包括由电机驱动的螺旋桨,无人机包括包围在螺旋桨外侧的桨保部件。其中,浆保可以是无人机的机身的一部分,即机身可以包括桨保,或者,浆保也可以是安装在机身上的部件。
在图3所示实施例的基础上,无人机可以配置传感器,可以根据所述传感器的测量值确定无人机是否发生碰撞。一个实施例中,所述传感器可以包括加速度计,可以通过加速度计的测量值确定无人机是否发生碰撞,确定无人机是否发生碰撞具体可以包括:判断无人机的加速度计的测量值是否超出第一阈值;如果超过第一阈值,则表示无人机发生碰撞;如果未超过第一阈值,则表示无人机未发生碰撞。其中,第一阈值例如可以为5g,g表示重力加速度。从而可以实现一旦加速度计的测量值超过某一阈值,就可以认为加 速是由碰撞障碍物引起的。另一个实施例中,所述传感器可以包括姿态传感器,可以通过姿态传感器的测量值确定无人机是否发生碰撞,确定无人机是否发生碰撞具体可以包括:判断无人机的姿态传感器的测量值是否超出姿态阈值;如果超过姿态阈值,则表示无人机发生碰撞;如果未超过姿态阈值,则表示无人机未发生碰撞。其中,姿态阈值例如可以为40、45、50、60或者70度。从而可以实现一旦姿态传感器的测量值超过某一阈值,就可以认为加速是由碰撞障碍物引起的。
另一个实施例中,可以通过设计观测器观测无人机姿态的扰动确定无人机是否发生碰撞,确定无人机是否发生碰撞具体可以包括:通过观测器观测无人机的姿态扰动,并判断姿态扰动是否超过第二阈值;如果超过第二阈值,则表示无人机发生碰撞;如果未超过第二阈值,则表示无人机未发生碰撞。从而可以实现一旦姿态扰动超过某一阈值,就可以认为扰动是由碰撞障碍物引起的。
又一个实施例中,可以通过模型计算外界扰动确定无人机是否发生碰撞,确定无人机是否发生碰撞具体可以包括:根据无人机的控制系统模型的逆模型以及测量得到的电机的角速度,计算得到控制系统模型的总输入;将总输入减去计算得到的控制量得到外界扰动;判断外界扰动是否超过第三阈值;如果超过第三阈值,则表示无人机发生碰撞;如果未超过第三阈值,则表示无人机未发生碰撞。从而可以实现一旦外界扰动超过某一阈值,就可以认为扰动是由碰撞障碍物引起的。
在图3所示实施例的基础上,一个实施例中,全部电机的转速降低幅度可以基本一致。其中,转速降低幅度基本一致可以包括:电机的转速降低幅度一致,或者电机的转速降低幅度小于或等于设定阈值。通过全部电机的转速降低幅度基本一致,可以在降低无人机的高度的过程中,保持无人机的姿态基本不变。
在图3所示实施例的基础上,一个实施例中,无人机在降低飞行高度的过程中,可以保持由碰撞引起的无人机的倾斜角度基本不变,即降低飞行高度的过程中,无人机的倾斜角度基本还是由碰撞引起的倾斜角度。其中,可以通过控制速度控制量的方式,保持无人机的倾斜角度基本不变,有利于提高飞行的平稳性。
在实际应用中,动力系统的控制量可以分为上升速度控制量和姿态控制 量,其中,上升速度控制量可以用于控制无人机在垂直方向上的运动,从而控制无人机的上升和下降,姿态控制量可以用于控制无人机扰旋转轴(例如俯仰轴、横滚轴和偏航轴)转动,从而可以控制无人机的姿态。基于此,在图3所示实施例的基础上,一个实施例中,降低无人机的动力系统中全部电机的转速,具体可以包括:降低提供给动力系统的上升速度控制量和姿态控制量。
在采用比例积分微分(Proportional Integral Derivative,PID)控制算法计算控制量的情况下,可以采用清除积分量的方式,来降低速度控制量,基于此,在图3所示实施例的基础上,一个实施例中,降低提供给动力系统的上升速度控制量和姿态控制量,具体可以包括:在采用PID控制算法计算控制量时,清除用于计算得到上升速度控制量的积分量,以降低提供给动力系统的上升速度控制量,并清除用于计算得到姿态控制量的积分量,以降低提供给动力系统的姿态控制量。从而,可以实现一旦无人机碰撞到障碍物,飞行控制器会可以立刻清除垂直控制和姿态控制的积分量,使得无人机不会因为正反馈导致控制量越来越大,由于清除积分后无人机的桨进入低油门段,此时无人机仍有微弱的姿态控制能力,一旦无人机脱离区域X,立马就可以恢复正常的控制。
如果无人机碰撞较小,在无人机姿态稍微有点控不住的时候,例如小于45度的时候,一旦碰撞检测生效,在确定无人机发生碰撞时清除垂直控制和姿态控制的积分量的算法的作用下,无人机将会在低油门下保证一定的姿态控制力度,还能把姿态控制回来,从而姿态恢复正常。如果是非常剧烈的碰撞,导致无人机直接姿态侧翻90度贴到障碍物上,该算法仍然会生效,无人机在重力作用下往下掉,如果障碍物不是完全垂直的,例如撞到树干,那么无人机一旦离树干有一段距离后,立马就会恢复正常的姿态控制和垂直控制。
在图3所示实施例的基础上,可选的,在根据碰撞进行飞行控制时,可以对是否是由用户的手动控制操作引起的碰撞进行区分。
基于此,一个实施例中,图3所示实施例的方法还可以包括:确定碰撞是否是由用户的手动控制操作引起的。所述降低无人机的动力系统中全部电机的转速,具体可以包括:若否时,降低无人机的动力系统中全部电机的转速。示例性的,可以通过判断发生碰撞时是否接收到用户的控制指令的方式来确定碰撞是否是由用户的手动控制操作引起的,如果发生碰撞时接收到用 户的控制指令,则可以确定碰撞是由用户的手动控制操作引起的,如果发生碰撞时没有接收到用户的控制指令,则可以确定碰撞不是由用户的手动控制操作引起的。从而,可以实现在确定碰撞不是由用户的手动控制操作引起时,再降低无人机的动力系统中全部电机的转速,能够避免出现用户需要撞击障碍物,障碍物没有被无人机正确撞击,反而飞行高度降低的情况,有利于提高用户的使用体验。例如,用户控制无人机悬停的墙边,但是由于干扰或者定位不准等原因导致无人机碰撞到墙壁,此时可以降低无人机的动力系统中全部电机的转速,以降低无人机的飞行高度。
另一个实施例中,图3所示实施例的方法还可以包括:确定碰撞是否是由用户的手动控制操作引起的;若是时,根据用户的手动控制操作控制全部的电机加速转动。从而,可以实现在确定碰撞是由用户的手动控制操作引起时,按照用户的控制指令对障碍物进行正确撞击,以使对于无人机飞行的控制能够符合用户的意愿,有利于提高用户的使用体验。例如,有树枝阻碍无人机的飞行,用户可以控制无人机加速,此时可以根据用户的手动控制操作控制全部的电机加速转动,以撞开树枝飞过去。
无人机飞行的过程中可能碰到的另一种异常情况是:由于无人机遇到风扰、控制误差,无人机的机身和无人机的拍摄装置之间的俯仰姿态差会出现漂移,不能维持恒定。通过分析发现出现这一异常情况的主要场景是:在一种无人机的控制模式中,用户可以通过调节拍摄装置的俯仰姿态(例如用户通过如前所述的终端设备调整无人机的拍摄装置的俯仰姿态)来将拍摄装置和所述机身之间的俯仰姿态偏差为基准俯仰姿态偏差,用户操作终端设备的摇杆向无人机发送飞行控制指令,无人机根据接收到的飞行控制指令来飞行,在飞行的过程中,无人机的机身的俯仰姿态会发生改变,理想情况下,拍摄装置和所述机身之间的俯仰姿态偏差应该始终为基准俯仰姿态偏差,这样用户可以通过终端设备显示的拍摄装置采集到的画面感受和了解无人机的机身的俯仰姿态,进而来决定如何操作终端装置的摇杆来操控无人机的飞行。然而,由于无人机遇到风扰、控制误差,无人机的机身和无人机的拍摄装置之间的俯仰姿态差会出现漂移,不能维持恒定,即不能维持在基准俯仰姿态偏差,这导致用户难以通过终端设备显示的拍摄装置采集到的画面感受和了解无人机的机身的俯仰姿态,进而影响用户对无人机的飞行控制。
为了解决这种异常情况的发生,本申请实施例提供了如图4所示的飞行控制方法。
图4为本申请另一实施例提供的飞行控制方法的流程示意图,本实施例提供的方法可以应用于图1中的无人机11,无人机包括拍摄装置、用于安装并调节拍摄装置的俯仰姿态的云台和机身,云台安装在机身上,如图4所示,本实施例的方法可以包括:
步骤41,获取拍摄装置和机身之间的基准俯仰姿态偏差,其中,基准俯仰姿态偏差是由用户设置的。
本步骤中,拍摄装置和机身之间的基准俯仰姿态偏差是指用户设置的拍摄装置和机身之间在机身的俯仰方向上的姿态偏差,拍摄装置和机身之间的基准俯仰姿态偏差例如可以如图5A所示。其中,拍摄装置和机身之间的基准俯仰姿态偏差可以是用户通过设置云台的姿态来进行设置,即调节(例如设置)云台的姿态可以调节拍摄装置和机身之间的在机身的俯仰方向上的姿态偏差。
示例性的,可以根据用户设置的云台的姿态,确定拍摄装置和机身之间的基准俯仰姿态偏差。当然,在其他实施例中也可以通过其他方式确定拍摄装置和机身之间的基准俯仰姿态偏差,本申请对此不做限定。
步骤42,获取拍摄装置和机身之间的实际俯仰姿态偏差。
如图5B所示,在对无人机进行控制的过程中,控制设备会将用于调整机身的俯仰姿态的控制指令发送给无人机和云台,使得机身和云台均能够按照控制设备控制的俯仰姿态进行动作,理想情况下,拍摄装置和机身在机身的俯仰方向上的姿态变化完全一致,从而画面能够反映无人机在俯仰方向上的姿态变化。
但是由于机身和云台调整姿态的速度是不同的,进行一段时间的控制之后会出现拍摄装置和机身之间的实际俯仰姿态偏差与基准俯仰姿态偏差之间存在误差的情况,因此在本步骤中可以获取拍摄装置和机身之间的实际俯仰姿态偏差。其中,实际俯仰姿态偏差是指拍摄装置和机身之间在机身的俯仰方向上实际的姿态偏差,拍摄装置和机身之间的实际俯仰姿态偏差例如可以如图5C所示。
示例性的,可以根据云台当前的姿态,确定拍摄装置和机身之间的实际俯仰姿态偏差。当然,在其他实施例中也可以通过其他方式确定拍摄装置和 机身之间的实际俯仰姿态偏差,本申请对此不做限定。
步骤43,确定基准俯仰姿态偏差和实际俯仰姿态偏差之间的误差。
本步骤中,在获取到基准俯仰姿态偏差和实际俯仰姿态偏差之后,可以确定基准俯仰姿态偏差和实际俯仰姿态偏差之间的误差。示例性的,可以将基准俯仰姿态偏差与实际俯仰姿态偏差之差,确定为基准俯仰姿态偏差和实际俯仰姿态偏差之间的误差。
步骤44,根据误差调整机身的俯仰姿态,以使拍摄装置和机身之间的俯仰姿态偏差向基准俯仰姿态偏差趋近。
本步骤中,为了锁定拍摄装置和机身在机身的俯仰轴方向上的姿态,可以由无人机跟随拍摄装置(也可以理解为跟随云台)。因此,在确定基准俯仰姿态偏差和实际俯仰姿态偏差之间的误差之后,可以根据误差调整机身的俯仰姿态,以使拍摄装置和机身之间的俯仰姿态偏差项基准俯仰姿态偏差趋近,从而锁定拍摄装置和机身在机身的俯仰轴方向上的姿态。在图5A和图5C的基础上,根据误差调整机身的俯仰姿态的方式例如可以如图5D所示。
需要说明的是,图5D中箭头所示的方向可以表示对机身的俯仰姿态进行调整的方向,在机身扰俯仰轴按照图5D所示的箭头方向转动时,可以减小拍摄装置和机身之间俯仰姿态的偏差,以使俯仰姿态偏差向基准俯仰姿态偏差趋近,图5D中实线表示的无人机是调整前的无人机,虚线表示的无人机是调整后的无人机。
在获取到基准俯仰姿态偏差和实际俯仰姿态偏差之间的误差,为了使得拍摄装置和所述机身之间的俯仰姿态偏差应该始终为基准俯仰姿态偏差,理论上可以根据误差控制云台以调整拍摄装置的俯仰姿态,以使拍摄装置和机身之间的俯仰姿态偏差向基准俯仰姿态偏差趋近。然而,这种方式会使得拍摄装置抖动或者发生偏移,用户会看到终端设备显示的画面抖动或者发生偏移,这种方式会引起用户的困惑,交互体验差。因此,本实施例中,根据误差调整机身的俯仰姿态,以使拍摄装置和机身之间的俯仰姿态偏差向基准俯仰姿态偏差趋近,这样用户看到终端设备显示的画面是稳定的,同时又能保证使拍摄装置和机身之间的俯仰姿态偏差向基准俯仰姿态偏差趋近。本实施例提供的飞行控制方法,通过获取拍摄装置和机身之间的基准俯仰姿态偏差,获取拍摄装置和机身之间的实际俯仰姿态偏差,确定基准俯仰姿态偏差和实际俯仰姿态偏差之间的误差,根据误差调整机身的俯仰姿态,以使拍摄装置 和机身之间的俯仰姿态偏差向基准俯仰姿态偏差趋近,实现了由无人机跟随拍摄装置来锁定拍摄装置和机身在机身的俯仰轴方向上的姿态,使得拍摄装置和所述机身之间的俯仰姿态偏差应该始终为基准俯仰姿态偏差。
在图4所示实施例的基础上,一个实施例中,根据误差调整机身的姿态,具体可以包括:根据误差实时调整机身的姿态。从而能够确保调整的实时性。
另一个实施例中,根据误差调整机身的姿态,具体可以包括:在误差大于预设误差阈值时,根据误差调整机身的俯仰姿态。从而能够降低调整的工作量。
在图4所示实施例的基础上,示例性的,在无人机包括动力系统的情况下,根据误差调整机身的俯仰姿态,具体可以包括:根据误差控制动力系统,以调整机身的俯仰姿态。其中,动力系统安装在机身上,在某些实施例中,机身可以包括机臂,动力系统安装在机臂上。
可选的,在根据误差进行飞行控制时,可以对无人机所处的控制模式进行区分。基于此,一个实施例中,图4所示实施例的方法还可以包括:确定无人机的控制模式。所述根据误差调整机身的俯仰姿态,具体可以包括:若无人机的控制模式为第一控制模式时,根据误差调整机身的俯仰姿态。其中,第一控制模式具体可以是需要由画面反映无人机在俯仰方向上的姿态变化的任意类型的控制模式,第一控制模式例如可以为是第一人称主视角(First Person View,FPV)模式或者穿越机模式,当无人机处于FPV模式或者穿越机模式时,需要保持云台与无人机的相对静止。从而,可以实现在需要由画面反映无人机在俯仰方向上的姿态变化的模式下,再由机身跟随拍摄装置,使得无人机的控制模式可以灵活实现,有利于提高用户的使用体验。
另一个实施例中,图4所示实施例的方法还可以包括:若无人机的控制模式为第二控制模式时,获取拍摄装置的初始俯仰姿态,控制云台以使拍摄装置的俯仰姿态趋近初始俯仰姿态。其中,第二控制模式具体可以是需要由云台控制拍摄装置的姿态稳定的任意类型的控制模式,第二控制模式例如可以为锁定模式,当无人机处于锁定模式时,需要保持云台相对于地面的姿态不变。从而,使得用户可以根据需要使用由云台控制拍摄装置的姿态稳定的控制模式,有利于提高用户的使用体验。
可选的,初始俯仰姿态可以是由用户设置的,使得用户可以根据拍摄需求灵活设置拍摄装置的视野,有利于提高用户的使用体验。
图6为本申请一实施例提供的飞行控制装置的结构示意图,该飞行控制装置应用于无人机,无人机包括动力系统,动力系统包括多个提供飞行升力的电机。如图6所示,该装置60可以包括:处理器61和存储器62。
所述存储器62,用于存储程序代码;
所述处理器61,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
在飞行状态中,确定无人机是否发生碰撞;
当确定发生碰撞时,降低所述无人机的动力系统中全部电机的转速以降低所述无人机的飞行高度,将所述无人机的姿态调整为正常姿态。
本实施例提供的飞行控制装置,可以用于执行前述图3所示方法实施例的技术方案,其实现原理和技术效果与方法实施例类似,在此不再赘述。
图7为本申请另一实施例提供的飞行控制装置的结构示意图,该飞行控制装置应用于无人机,无人机包括拍摄装置、用于安装并调节拍摄装置的俯仰姿态的云台和机身,云台安装在机身上。如图7所示,该装置70可以包括:处理器71和存储器72。
所述存储器72,用于存储程序代码;
所述处理器71,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
获取所述拍摄装置和所述机身之间的基准俯仰姿态偏差,其中,所述基准俯仰姿态偏差是由用户设置的;
获取所述拍摄装置和所述机身之间的实际俯仰姿态偏差;
确定所述基准俯仰姿态偏差和所述实际俯仰姿态偏差之间的误差;
根据所述误差调整所述机身的俯仰姿态,以使所述拍摄装置和所述机身之间的俯仰姿态偏差向所述基准俯仰姿态偏差趋近。
本实施例提供的飞行控制装置,可以用于执行前述图4所示方法实施例的技术方案,其实现原理和技术效果与方法实施例类似,在此不再赘述。
另外,本申请实施例还提供一种无人机,包括图6或图7所示的飞行控制装置。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现图3或图4所示实施例所述的方法。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (37)

  1. 一种飞行控制方法,应用于无人机,其中,所述无人机包括动力系统,所述动力系统包括多个提供飞行升力的电机,其特征在于,包括:
    在飞行状态中,确定无人机是否发生碰撞;
    当确定发生碰撞时,降低所述无人机的动力系统中全部电机的转速以降低所述无人机的飞行高度,将所述无人机的姿态调整为正常姿态。
  2. 根据权利要求1所述的方法,其特征在于,所述全部电机的转速降低幅度基本一致。
  3. 根据权利要求1所述的方法,其特征在于,所述无人机在降低飞行高度的过程中,保持由碰撞引起的所述无人机的倾斜角度基本不变。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述动力系统还包括由所述电机驱动的螺旋桨,所述无人机包括包围在所述螺旋桨外侧的桨保部件。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    确定所述碰撞是否是由用户的手动控制操作引起的;
    所述降低所述无人机的动力系统中全部电机的转速,包括:
    若否时,降低所述无人机的动力系统中全部电机的转速。
  6. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    确定所述碰撞是否是由用户的手动控制操作引起的;
    若是时,根据用户的手动控制操作控制全部的电机加速转动。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述确定所述无人机是否发生碰撞,包括:判断所述无人机的加速度计的测量值是否超出第一阈值;如果超过所述第一阈值,则表示所述无人机发生碰撞;如果未超过所述第一阈值,则表示所述无人机未发生碰撞。
  8. 根据权利要求1-6中任一项所述的方法,其特征在于,所述确定所述无人机是否发生碰撞,包括:通过观测器观测所述无人机的姿态扰动,并判断所述姿态扰动是否超过第二阈值;如果超过所述第二阈值,则表示所述无人机发生碰撞;如果未超过所述第二阈值,则表示所述无人机未发生碰撞。
  9. 根据权利要求1-6中任一项所述的方法,其特征在于,所述确定所述 无人机是否发生碰撞,包括:
    根据所述无人机的控制系统模型的逆模型以及测量得到的所述电机的角速度,计算得到所述控制系统模型的总输入;
    将所述总输入减去计算得到的控制量得到外界扰动;
    判断所述外界扰动是否超过第三阈值;
    如果超过所述第三阈值,则表示所述无人机发生碰撞;
    如果未超过所述第三阈值,则表示所述无人机未发生碰撞。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述降低所述无人机的动力系统中全部电机的转速,包括:降低提供给所述动力系统的上升速度控制量和姿态控制量。
  11. 根据权利要求10所述的方法,其特征在于,所述降低提供给所述动力系统的上升速度控制量和姿态控制量,包括:
    在采用PID控制算法计算控制量时,清除用于计算得到上升速度控制量的积分量,以降低提供给所述动力系统的上升速度控制量,并清除用于计算得到姿态控制量的积分量,以降低提供给所述动力系统的姿态控制量。
  12. 一种飞行控制方法,应用于无人机,所述无人机包括拍摄装置、用于安装并调节所述拍摄装置的俯仰姿态的云台和机身,所述云台安装在所述机身上,其特征在于,包括:
    获取所述拍摄装置和所述机身之间的基准俯仰姿态偏差,其中,所述基准俯仰姿态偏差是由用户设置的;
    获取所述拍摄装置和所述机身之间的实际俯仰姿态偏差;
    确定所述基准俯仰姿态偏差和所述实际俯仰姿态偏差之间的误差;
    根据所述误差调整所述机身的俯仰姿态,以使所述拍摄装置和所述机身之间的俯仰姿态偏差向所述基准俯仰姿态偏差趋近。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述误差调整所述机身的俯仰姿态,包括:在所述误差大于预设误差阈值时,根据所述误差调整所述机身的俯仰姿态。
  14. 根据权利要求12所述的方法,其特征在于,无人机包括动力系统,所述动力系统安装在机身上;
    所述根据所述误差调整所述机身的俯仰姿态,包括:
    根据所述误差控制所述动力系统,以调整所述机身的俯仰姿态。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,所述方法还包括:
    确定所述无人机的控制模式;
    所述根据所述误差调整所述机身的俯仰姿态,包括:
    若所述无人机的控制模式为第一控制模式时,根据所述误差调整所述机身的俯仰姿态。
  16. 根据权利要求12-14中任一项所述的方法,其特征在于,所述方法还包括:
    若所述无人机的控制模式为第二控制模式时,获取拍摄装置的初始俯仰姿态,控制云台以使所述拍摄装置的俯仰姿态趋近所述初始俯仰姿态。
  17. 根据权利要求16所述的方法,其特征在于,所述初始俯仰姿态是用户设置的。
  18. 一种飞行控制装置,应用于无人机,其中,所述无人机包括动力系统,所述动力系统包括多个提供飞行升力的电机,其特征在于,所述装置包括:存储器和处理器;
    所述存储器,用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    在飞行状态中,确定无人机是否发生碰撞;
    当确定发生碰撞时,降低所述无人机的动力系统中全部电机的转速以降低所述无人机的飞行高度,将所述无人机的姿态调整为正常姿态。
  19. 根据权利要求18所述的装置,其特征在于,所述全部电机的转速降低幅度基本一致。
  20. 根据权利要求18所述的装置,其特征在于,所述无人机在降低飞行高度的过程中,保持由碰撞引起的所述无人机的倾斜角度基本不变。
  21. 根据权利要求18-20中任一项所述的装置,其特征在于,所述动力系统还包括由所述电机驱动的螺旋桨,所述无人机包括包围在所述螺旋桨外侧的桨保部件。
  22. 根据权利要求18-20中任一项所述的装置,其特征在于,所述处理器还用于:
    确定所述碰撞是否是由用户的手动控制操作引起的;
    所述处理器降低所述无人机的动力系统中全部电机的转速时,具体用于:
    若否时,降低所述无人机的动力系统中全部电机的转速。
  23. 根据权利要求18-20中任一项所述的装置,其特征在于,所述处理器还用于:
    确定所述碰撞是否是由用户的手动控制操作引起的;
    若是时,根据用户的手动控制操作控制全部的电机加速转动。
  24. 根据权利要求18-23中任一项所述的装置,其特征在于,所述处理器用于确定所述无人机是否发生碰撞时,具体用于:判断所述无人机的加速度计的测量值是否超出第一阈值;如果超过所述第一阈值,则表示所述无人机发生碰撞;如果未超过所述第一阈值,则表示所述无人机未发生碰撞。
  25. 根据权利要求18-23中任一项所述的装置,其特征在于,所述处理器用于确定所述无人机是否发生碰撞时,具体用于:通过观测器观测所述无人机的姿态扰动,并判断所述姿态扰动是否超过第二阈值;如果超过所述第二阈值,则表示所述无人机发生碰撞;如果未超过所述第二阈值,则表示所述无人机未发生碰撞。
  26. 根据权利要求18-23中任一项所述的装置,其特征在于,所述处理器用于确定所述无人机是否发生碰撞时,具体用于:
    根据所述无人机的控制系统模型的逆模型以及测量得到的所述电机的角速度,计算得到所述控制系统模型的总输入;
    将所述总输入减去计算得到的控制量得到外界扰动;
    判断所述外界扰动是否超过第三阈值;
    如果超过所述第三阈值,则表示所述无人机发生碰撞;
    如果未超过所述第三阈值,则表示所述无人机未发生碰撞。
  27. 根据权利要求18-26中任一项所述的装置,其特征在于,所述处理器用于降低所述无人机的动力系统中全部电机的转速时,具体用于:降低提供给所述动力系统的上升速度控制量和姿态控制量。
  28. 根据权利要求27所述的装置,其特征在于,所述处理器用于降低提供给所述动力系统的上升速度控制量和姿态控制量时,具体用于:
    在采用PID控制算法计算控制量时,清除用于计算得到上升速度控制量的积分量,以降低提供给所述动力系统的上升速度控制量,并清除用于计算得到姿态控制量的积分量,以降低提供给所述动力系统的姿态控制量。
  29. 一种飞行控制装置,应用于无人机,所述无人机包括拍摄装置、用于安装并调节所述拍摄装置的俯仰姿态的云台和机身,所述云台安装在所述机身上,其特征在于,所述装置包括:存储器和处理器;
    所述存储器,用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    获取所述拍摄装置和所述机身之间的基准俯仰姿态偏差,其中,所述基准俯仰姿态偏差是由用户设置的;
    获取所述拍摄装置和所述机身之间的实际俯仰姿态偏差;
    确定所述基准俯仰姿态偏差和所述实际俯仰姿态偏差之间的误差;
    根据所述误差调整所述机身的俯仰姿态,以使所述拍摄装置和所述机身之间的俯仰姿态偏差向所述基准俯仰姿态偏差趋近。
  30. 根据权利要求29所述的装置,其特征在于,所述处理器用于根据所述误差调整所述机身的俯仰姿态时,具体用于:在所述误差大于预设误差阈值时,根据所述误差调整所述机身的俯仰姿态。
  31. 根据权利要求29所述的装置,其特征在于,无人机包括用于动力系统,所述动力系统安装在机身上;
    所述处理器用于根据所述误差调整所述机身的俯仰姿态时,具体用于:
    根据所述误差控制所述动力系统,以调整所述机身的俯仰姿态。
  32. 根据权利要求29-31中任一项所述的装置,其特征在于,所述处理器还用于:
    确定所述无人机的控制模式;
    所述处理器根据所述误差调整所述机身的俯仰姿态时,具体用于:
    若所述无人机的控制模式为第一控制模式时,根据所述误差调整所述机身的俯仰姿态。
  33. 根据权利要求29-31中任一项所述的装置,其特征在于,所述处理器还用于:
    若所述无人机的控制模式为第二控制模式时,获取拍摄装置的初始俯仰姿态,控制云台以使所述拍摄装置的俯仰姿态趋近所述初始俯仰姿态。
  34. 根据权利要求33所述的装置,其特征在于,所述初始俯仰姿态是用户设置的。
  35. 一种无人机,其特征在于,所述无人机包括存储器和处理器其中,所述存储器上存储可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1至11中任一项所述方法的步骤,或者权利要求12至17中任一项所述方法的步骤。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至17中任一项所述方法的步骤。
  37. 一种无人机,其特征在于,所述无人机包括动力系统和如权利要求18-34任一项所述的飞行控制装置。
PCT/CN2022/114501 2022-08-24 2022-08-24 飞行控制方法、装置、无人机及存储介质 WO2024040466A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114501 WO2024040466A1 (zh) 2022-08-24 2022-08-24 飞行控制方法、装置、无人机及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114501 WO2024040466A1 (zh) 2022-08-24 2022-08-24 飞行控制方法、装置、无人机及存储介质

Publications (1)

Publication Number Publication Date
WO2024040466A1 true WO2024040466A1 (zh) 2024-02-29

Family

ID=90011978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114501 WO2024040466A1 (zh) 2022-08-24 2022-08-24 飞行控制方法、装置、无人机及存储介质

Country Status (1)

Country Link
WO (1) WO2024040466A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130024067A1 (en) * 2011-07-18 2013-01-24 The Boeing Company Holonomic Motion Vehicle for Travel on Non-Level Surfaces
CN106215430A (zh) * 2016-08-04 2016-12-14 奥飞娱乐股份有限公司 玩具飞行器碰撞状态下的自动保护系统
CN107074348A (zh) * 2016-12-30 2017-08-18 深圳市大疆创新科技有限公司 控制方法、装置、设备及无人飞行器
CN109074087A (zh) * 2017-12-25 2018-12-21 深圳市大疆创新科技有限公司 偏航姿态控制方法、无人机、计算机可读存储介质
CN111655581A (zh) * 2018-03-27 2020-09-11 株式会社尼罗沃克 无人飞行器及其控制系统以及控制程序
CN112389640A (zh) * 2020-11-27 2021-02-23 东莞火萤科技有限公司 一种无人机停桨控制系统
CN113359806A (zh) * 2015-08-20 2021-09-07 深圳市大疆创新科技有限公司 无人机自动停桨控制系统、控制方法及无人机
CN114625152A (zh) * 2022-02-25 2022-06-14 北京航空航天大学杭州创新研究院 一种四旋翼无人机快速碰撞检测与恢复方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130024067A1 (en) * 2011-07-18 2013-01-24 The Boeing Company Holonomic Motion Vehicle for Travel on Non-Level Surfaces
CN113359806A (zh) * 2015-08-20 2021-09-07 深圳市大疆创新科技有限公司 无人机自动停桨控制系统、控制方法及无人机
CN106215430A (zh) * 2016-08-04 2016-12-14 奥飞娱乐股份有限公司 玩具飞行器碰撞状态下的自动保护系统
CN107074348A (zh) * 2016-12-30 2017-08-18 深圳市大疆创新科技有限公司 控制方法、装置、设备及无人飞行器
CN109074087A (zh) * 2017-12-25 2018-12-21 深圳市大疆创新科技有限公司 偏航姿态控制方法、无人机、计算机可读存储介质
CN111655581A (zh) * 2018-03-27 2020-09-11 株式会社尼罗沃克 无人飞行器及其控制系统以及控制程序
CN112389640A (zh) * 2020-11-27 2021-02-23 东莞火萤科技有限公司 一种无人机停桨控制系统
CN114625152A (zh) * 2022-02-25 2022-06-14 北京航空航天大学杭州创新研究院 一种四旋翼无人机快速碰撞检测与恢复方法

Similar Documents

Publication Publication Date Title
US11771076B2 (en) Flight control method, information processing device, program and recording medium
CN110347171B (zh) 一种飞行器控制方法及飞行器
WO2018058320A1 (zh) 无人机控制方法及装置
JP5837376B2 (ja) 複数のローターを有する回転翼無人機を操縦する方法
NL2017971B1 (en) Unmanned aerial vehicle
US20230182898A1 (en) Methods and Systems for Energy-Efficient Take-Offs and Landings for Vertical Take-Off and Landing (VTOL) Aerial Vehicles
JP2011511736A (ja) 自動ホバリング飛行安定化を備えた回転翼無人機を操縦する方法
US11920999B2 (en) Unmanned aerial vehicle control method and device, and unmanned aerial vehicle
WO2022037376A1 (zh) 一种无人机保护方法及无人机
EP3560824B1 (en) System and method for automatic rotorcraft tail strike protection
EP3384361A1 (en) Multirotor aircraft control systems
WO2020088094A1 (zh) 一种旋翼机协调转弯控制方法及系统
WO2021237481A1 (zh) 无人飞行器的控制方法和设备
EP3170746A1 (de) Verfahren zur steuerung eines multicopters und vorrichtungen zur ausführung des verfahrens
CN113135285A (zh) 一种旋翼无人机的喷气辅助装置
WO2024040466A1 (zh) 飞行控制方法、装置、无人机及存储介质
US11858626B2 (en) Autonomous air vehicle delivery system incorporating deployment
CN110554710A (zh) 一种飞行器的航向控制方法
CN113064447A (zh) 安全检测方法、装置、系统、无人飞行器及其控制设备
CN117018494A (zh) 一种高空灭火飞行机器人、控制系统及控制方法
WO2020051757A1 (zh) 风速计算方法、装置、无人机和无人机组件
WO2020014930A1 (zh) 无人机的控制方法、装置和无人机
WO2022134036A1 (zh) 可移动平台及其控制方法、装置
WO2022134321A1 (zh) 可移动平台的控制方法、体感遥控器及存储介质
WO2021238743A1 (zh) 一种无人机飞行控制方法、装置及无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956015

Country of ref document: EP

Kind code of ref document: A1