WO2020088094A1 - 一种旋翼机协调转弯控制方法及系统 - Google Patents

一种旋翼机协调转弯控制方法及系统 Download PDF

Info

Publication number
WO2020088094A1
WO2020088094A1 PCT/CN2019/104397 CN2019104397W WO2020088094A1 WO 2020088094 A1 WO2020088094 A1 WO 2020088094A1 CN 2019104397 W CN2019104397 W CN 2019104397W WO 2020088094 A1 WO2020088094 A1 WO 2020088094A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
difference
actual
speed
attitude angle
Prior art date
Application number
PCT/CN2019/104397
Other languages
English (en)
French (fr)
Inventor
马越
项昌乐
林露
黄楠
阮书敏
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Publication of WO2020088094A1 publication Critical patent/WO2020088094A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the invention relates to the technical field of aircraft control, in particular to a method and system for coordinated turning control of a rotorcraft.
  • Turning flight refers to a flight mode where the target position is not in the current heading and the flight direction needs to be adjusted. Especially when circling and reconnaissance the ground target, it is more necessary.
  • the fuselage rolls and tilts, so that the heading adjustment also affects the longitudinal attitude; on the other hand, the tilt of the fuselage produces a side-sliding motion, which creates lateral resistance to the fuselage, which is not conducive
  • the flight is stable, so the aircraft generally adopts the coordinated turn flight mode during the turn flight.
  • the present invention provides the following solutions:
  • a coordinated turning control method for a rotorcraft including:
  • the actual flight parameter value includes the actual altitude value, the actual speed value, the actual attitude angle value and the actual angular speed value;
  • the reference parameter value includes a reference altitude value, a reference speed value and a reference attitude angle value;
  • the attitude angle correction value includes the roll angle correction value and Correction value of pitch angle
  • a robust control method is used to obtain a control torque; the control torque Including roll moment, pitch moment and yaw moment;
  • control torque and the engine thrust are used as inputs of a land-air vehicle flight dynamics model to control the flight status of the rotorcraft when turning.
  • the use of the actual altitude value and the reference altitude value as the input of the altitude controller uses a PID algorithm to obtain a speed correction value, which specifically includes:
  • the first difference value is used as an input of the height controller, and a PID algorithm is used to obtain a speed correction value.
  • the actual speed value, the reference speed value and the speed correction value are used as inputs of a speed controller, and a PID algorithm is used to obtain a posture angle correction value and an engine thrust, specifically including:
  • the second difference value, the third difference value and the fifth difference value are used as the input of the speed controller, and the PID algorithm is used to obtain the pitch angle correction value, the roll angle correction value and the engine thrust.
  • control Torque specifically including:
  • the seventh difference value the reference attitude angle transformation value, the actual attitude angle value and the actual angular velocity value as the input of the inner-loop attitude controller, using a robust control method, Get the roll moment, pitch moment and yaw moment.
  • the present invention also provides a coordinated turning control system for a rotorcraft.
  • the system includes:
  • the first obtaining module is used to obtain the actual flight parameter value of the rotorcraft when turning;
  • the actual flight parameter value includes an actual altitude value, an actual speed value, an actual attitude angle value and an actual angular speed value;
  • a second obtaining module configured to obtain a reference parameter value corresponding to the actual flight parameter value;
  • the reference parameter value includes a reference altitude value, a reference speed value, and a reference attitude angle value;
  • a correction value acquisition module which is configured to use the actual height value and the reference height value as input of a height controller, and adopt a PID algorithm to obtain a speed correction value;
  • the third acquisition module is used to take the actual speed value, the reference speed value and the speed correction value as the input of the speed controller, and use the PID algorithm to obtain the posture angle correction value and the engine thrust;
  • the posture angle correction Values include roll angle correction value and pitch angle correction value;
  • the moment acquisition module is used to take the actual attitude angle value, the actual angular velocity value, the reference attitude angle value and the attitude angle correction value as the input of the inner loop attitude controller, and adopt the robust control method to obtain the control Moment;
  • the control moment includes roll moment, pitch moment and yaw moment;
  • the flight control module is configured to use the control torque and the engine thrust as the input of a land-air vehicle flight dynamics model to control the flight status of the rotorcraft when turning.
  • correction value acquisition module specifically includes:
  • a first difference value acquiring unit configured to make a difference between the actual height value and the reference height value to obtain a first difference value
  • the speed correction value acquisition unit is configured to use the first difference value as an input of a height controller and use a PID algorithm to obtain a speed correction value.
  • the third obtaining module specifically includes:
  • a second difference acquiring unit configured to make a difference between the actual speed value in the x-axis direction and the reference speed value in the x-axis direction in the reference speed value to obtain a second difference value
  • a third difference value acquiring unit configured to make a difference between the actual speed value in the y-axis direction in the actual speed value and the reference speed value in the y-axis direction in the reference speed value to obtain a third difference value;
  • a fourth difference obtaining unit configured to make a difference between the actual speed value in the z-axis direction and the reference speed value in the z-axis direction in the reference speed value to obtain a fourth difference value
  • a fifth difference acquiring unit configured to make a difference between the fourth difference and the speed correction value to obtain a fifth difference
  • the third obtaining unit is configured to use the second difference, the third difference, and the fifth difference as inputs to the speed controller, and use a PID algorithm to obtain a pitch angle correction value, a roll angle correction value, and Engine thrust.
  • the torque acquisition module specifically includes:
  • a sixth difference obtaining unit configured to make a difference between the reference roll angle value in the reference attitude angle value and the roll angle correction value to obtain a sixth difference value
  • a seventh difference value acquiring unit configured to make a difference between the reference pitch angle value in the reference attitude angle value and the pitch angle correction value to obtain a seventh difference value
  • a transformation value acquiring unit configured to integrally transform the reference yaw angle value in the reference attitude angle value to obtain a reference attitude angle transformation value
  • a moment acquiring unit configured to use the sixth difference value, the seventh difference value, the reference attitude angle transformation value, the actual attitude angle value and the actual angular velocity value as the input of the inner loop attitude controller, Using the robust control method, the roll torque, pitch torque and yaw moment are obtained.
  • the present invention provides a method and system for coordinated turning control of a rotorcraft.
  • the method includes: acquiring actual flight parameter values and corresponding reference parameter values of the rotorcraft when turning; using the actual altitude values and reference altitude values as altitude controllers
  • the PID algorithm is used to obtain the speed correction value; the actual speed value, the reference speed value and the speed correction value are used as the input of the speed controller, and the PID algorithm is used to obtain the attitude angle correction value and the engine thrust; the actual attitude angle value, The actual angular velocity value, the reference attitude angle value and the attitude angle correction value are used as the input of the inner-loop attitude controller.
  • the robust control method is used to obtain the control torque; The flight status of the gyroplane when turning is controlled.
  • the invention can improve the stability and speed of the rotary flight of the rotorcraft, accurately control the course, and reduce hidden dangers.
  • FIG. 1 is a flowchart of a method for controlling coordinated turning of a rotorcraft according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a coordinated turning control method of a rotorcraft according to an embodiment of the present invention
  • Figure 3 is the force analysis diagram of the rotorcraft
  • FIG. 4 is a schematic structural diagram of a coordinated turning control system for a rotorcraft according to an embodiment of the present invention.
  • Gyroplane fixed-height hovering flight control includes two aspects: plane flight control and altitude flight control, but these two aspects are not split, but are related to each other. Therefore, all control loops, including altitude control loop, speed control loop and The heading control loop is integrated, and the control loops that are coupled with each other are integrated into a whole.
  • the altitude loop is compared with the given altitude by the control system according to the height value measured by the altitude sensor, and the control command is obtained to manipulate the engine thrust and the pitch of the propeller to maintain the altitude stability;
  • plane control requires the unmanned rotorcraft to align the circle in a fixed altitude plane
  • the arc track can achieve a good tracking effect, requiring the rotorcraft to follow the given course to make the body axis and the arc tangent as consistent as possible; when the rotorcraft deviates from the track due to the disturbance, the current measured position and speed vector are calculated and corrected Strategy to return the rotorcraft to its intended course.
  • FIG. 1 is a flowchart of a method for controlling a coordinated turn of a rotorcraft according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a method for controlling a coordinated turn of a rotorcraft according to an embodiment of the present invention.
  • the rotorcraft coordinated turning control method of the embodiment includes:
  • Step S1 Obtain the actual flight parameter value of the rotorcraft when turning.
  • the actual flight parameter value includes an actual altitude value h, an actual speed value, an actual attitude angle value and an actual angular speed value.
  • the actual flight parameter value is obtained by a sensor corresponding to the parameter, for example, the actual altitude value h is obtained by measuring with an altitude sensor.
  • Step S2 Obtain the reference parameter value corresponding to the actual flight parameter value.
  • the reference parameter value includes a reference height value h ref , a reference speed value and a reference attitude angle value.
  • Step S3 Use the actual height value h and the reference height value h ref as the input of the height controller, and use the PID algorithm to obtain the speed correction value.
  • the step S3 specifically includes:
  • the first difference value is used as an input of the height controller, and a PID algorithm is used to obtain a speed correction value.
  • Step S4 The actual speed value, the reference speed value and the speed correction value are used as the input of the speed controller, and the PID algorithm is used to obtain the attitude angle correction value and the engine thrust.
  • the attitude angle correction value includes a roll angle correction value and a pitch angle correction value.
  • the step S4 specifically includes:
  • the actual speed value V x in the x-axis direction of the actual speed value is different from the reference speed value V x_ref in the x-axis direction of the reference speed value to obtain a second difference value;
  • the second difference value, the third difference value and the fifth difference value are used as the input of the speed controller, and the PID algorithm is used to obtain the pitch angle correction value, the roll angle correction value and the engine thrust.
  • Step S5 Use the actual attitude angle value, the actual angular velocity value, the reference attitude angle value and the attitude angle correction value as the input of the inner loop attitude controller, and use a robust control method to obtain a control torque.
  • the actual attitude angle value includes an actual roll angle value ⁇ , an actual pitch angle value ⁇ , and an actual yaw angle value ⁇ ;
  • the actual angular speed value includes an actual roll angle speed value p, an actual pitch angle speed value q, and an actual yaw angle speed value r;
  • the reference attitude angle value includes a reference roll angle value ⁇ ref , a reference pitch angle value ⁇ ref and a reference yaw angle value ⁇ ref ;
  • the control torque includes a roll torque, a pitch torque and a yaw moment.
  • the step S5 specifically includes:
  • the seventh difference value the reference attitude angle transformation value, the actual attitude angle value and the actual angular velocity value as the input of the inner-loop attitude controller, using a robust control method, Get the roll moment, pitch moment and yaw moment.
  • Step S6 Use the control torque and the engine thrust as the input of a land-air vehicle flight dynamics model to control the flight status of the rotorcraft when turning.
  • the land-air vehicle flight dynamics model is based on the analysis of the longitudinal force of the rotorcraft and the analysis of the lateral force of the rotorcraft. Use the control torque and the engine thrust as the input of a land-air vehicle flight dynamics model to control the rotorcraft's roll, pitch, and yaw, thereby controlling the flight status of the rotorcraft when turning .
  • Fig. 3 is a force analysis diagram of the rotorcraft, wherein Fig. 3 (a) is a longitudinal force analysis diagram of the rotorcraft, and Fig. 3 (b) is a lateral force analysis diagram of the rotorcraft.
  • the yaw angle and track deflection angle are the main control targets.
  • the control of the track deflection angle is to keep the speed direction consistent with the planned track to achieve the track tracking effect. Knowing from the physics uniform rate circular motion, the unmanned rotorcraft must meet the following requirements: (1) The vertical component of the rotor pull force is equal to the gravity of the rotorcraft; (2) The rotor pull force is on the trajectory The component force in the speed direction is balanced with the air resistance and the engine thrust; (3) The component force of the rotor pull force in the horizontal direction should point to the center of the arc track, which is equal to the centrifugal force received by the aircraft when turning.
  • is the roll angle, because the magnitude of the rotor's pulling force depends on the flight speed and the angle of attack of the propeller disk, so during the hovering process, the flight speed and the angle of attack of the propeller disk need to be stabilized, but the rotorcraft continuously Change the heading, and the fuselage has a roll angle relative to the center of the circle, so that the body's pitch attitude and heading affect each other.
  • forward channel compensation can be used to achieve vertical and horizontal decoupling in the design of the control law.
  • the calculation of each difference is obtained by a difference calculator, and the integral transformation of the yaw angle value ⁇ ref is achieved by an integrator.
  • the rotorcraft coordinated turning control method of this embodiment can improve the stability and speed of the rotorcraft's turning flight, accurately control the course, and reduce potential safety hazards; it can improve the accuracy of the forward flight speed tracking of the rotorcraft when turning, and improve the tracking performance of altitude .
  • FIG. 4 is a schematic structural diagram of a rotorcraft coordinated turn control system according to an embodiment of the present invention.
  • the rotorcraft coordinated turning control system of the embodiment includes:
  • the first obtaining module 401 is used to obtain the actual flight parameter value of the rotorcraft when turning; the actual flight parameter value includes an actual altitude value, an actual speed value, an actual attitude angle value and an actual angular speed value.
  • the second obtaining module 402 is configured to obtain a reference parameter value corresponding to the actual flight parameter value; the reference parameter value includes a reference altitude value, a reference speed value, and a reference attitude angle value.
  • the correction value acquisition module 403 is configured to use the actual height value and the reference height value as inputs of a height controller, and use a PID algorithm to obtain a speed correction value.
  • the correction value acquisition module 403 specifically includes:
  • a first difference value acquiring unit configured to make a difference between the actual height value and the reference height value to obtain a first difference value
  • the speed correction value acquisition unit is configured to use the first difference value as an input of a height controller and use a PID algorithm to obtain a speed correction value.
  • the third obtaining module 404 is used to take the actual speed value, the reference speed value and the speed correction value as the input of the speed controller, and use the PID algorithm to obtain the attitude angle correction value and the engine thrust; the attitude angle
  • the correction value includes a roll angle correction value and a pitch angle correction value.
  • the third obtaining module 404 specifically includes:
  • a second difference acquiring unit configured to make a difference between the actual speed value in the x-axis direction and the reference speed value in the x-axis direction in the reference speed value to obtain a second difference value
  • a third difference value acquiring unit configured to make a difference between the actual speed value in the y-axis direction in the actual speed value and the reference speed value in the y-axis direction in the reference speed value to obtain a third difference value;
  • a fourth difference obtaining unit configured to make a difference between the actual speed value in the z-axis direction and the reference speed value in the z-axis direction in the reference speed value to obtain a fourth difference value
  • a fifth difference acquiring unit configured to make a difference between the fourth difference and the speed correction value to obtain a fifth difference
  • the third obtaining unit is configured to use the second difference, the third difference, and the fifth difference as inputs to the speed controller, and use a PID algorithm to obtain a pitch angle correction value, a roll angle correction value, and Engine thrust.
  • the moment acquisition module 405 is used to take the actual attitude angle value, the actual angular velocity value, the reference attitude angle value and the attitude angle correction value as the input of the inner-loop attitude controller, using a robust control method to obtain Control torque; the control torque includes roll torque, pitch torque and yaw moment.
  • the torque acquisition module 405 specifically includes:
  • a sixth difference obtaining unit configured to make a difference between the reference roll angle value in the reference attitude angle value and the roll angle correction value to obtain a sixth difference value
  • a seventh difference value acquiring unit configured to make a difference between the reference pitch angle value in the reference attitude angle value and the pitch angle correction value to obtain a seventh difference value
  • a transformation value acquiring unit configured to integrally transform the reference yaw angle value in the reference attitude angle value to obtain a reference attitude angle transformation value
  • a moment acquiring unit configured to use the sixth difference value, the seventh difference value, the reference attitude angle transformation value, the actual attitude angle value and the actual angular velocity value as the input of the inner loop attitude controller, Using the robust control method, the roll torque, pitch torque and yaw moment are obtained.
  • the flight control module 406 is configured to use the control torque and the engine thrust as the input of a land-air vehicle flight dynamics model to control the flight status of the rotorcraft when turning.
  • the rotorcraft coordinated turning control system of this embodiment can improve the stability and speed of the rotorcraft's turning flight, accurately control the course, and reduce potential safety hazards.

Abstract

一种旋翼机协调转弯控制方法及系统,该方法包括:获取旋翼机在转弯时的实际飞行参量值(S1);获取实际飞行参量值对应的参考参量值(S2);将实际高度值和参考高度值作为高度控制器的输入,采用PID算法,得到速度修正值(S3);将实际速度值、参考速度值和速度修正值作为速度控制器的输入,采用PID算法,得到姿态角修正值和发动机推力(S4);将实际姿态角值、实际角速度值、参考姿态角值和姿态角修正值作为内环姿态控制器的输入,采用鲁棒控制方法,得到控制力矩(S5);将控制力矩和发动机推力作为陆空车辆飞行动力学模型的输入,对旋翼机在转弯时的飞行状态进行控制(S6)。采用该方法或系统能够提高旋翼机转弯飞行的平稳性和速度,准确控制航向,减少安全隐患。

Description

一种旋翼机协调转弯控制方法及系统
本申请要求于2018年10月29日提交中国专利局、申请号为201811264139.1、发明名称为“一种旋翼机协调转弯控制方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及飞行器控制技术领域,特别是涉及一种旋翼机协调转弯控制方法及系统。
背景技术
转弯飞行是指目标位置不在当前航向,需要对飞行方向进行调整的一种飞行模式,尤其在对地面目标进行盘旋侦察时,更显其必要性。飞行器在转弯飞行过程中,机身产生了滚转倾斜,使得航向的调整对纵向姿态也有影响;另一方面,机身的倾斜产生了侧滑运动,对机身形成了侧向阻力,不利于飞行稳定,故飞行器在转弯飞行过程中一般采用协调转弯飞行方式。
目前,对飞行器转弯飞行的研究,大多集中在对直升机转弯飞行控制的研究,几乎没有对旋翼机转弯飞行控制进行专门研究。随着旋翼机在陆空领域的广泛应用,对其转弯飞行进行控制,以提高转弯飞行的平稳性和速度,准确控制航向,进而减少安全隐患,显得尤其重要。
发明内容
基于此,有必要提供一种旋翼机协调转弯控制方法及系统,以提高旋翼机转弯飞行的平稳性和速度,准确控制航向,减少安全隐患。
为实现上述目的,本发明提供了如下方案:
一种旋翼机协调转弯控制方法,包括:
获取旋翼机在转弯时的实际飞行参量值;所述实际飞行参量值包括实际高度值、实际速度值、实际姿态角值和实际角速度值;
获取所述实际飞行参量值对应的参考参量值;所述参考参量值包括参 考高度值、参考速度值和参考姿态角值;
将所述实际高度值和所述参考高度值作为高度控制器的输入,采用PID算法,得到速度修正值;
将所述实际速度值、所述参考速度值和所述速度修正值作为速度控制器的输入,采用PID算法,得到姿态角修正值和发动机推力;所述姿态角修正值包括滚转角修正值和俯仰角修正值;
将所述实际姿态角值、所述实际角速度值、所述参考姿态角值和所述姿态角修正值作为内环姿态控制器的输入,采用鲁棒控制方法,得到控制力矩;所述控制力矩包括滚转力矩、俯仰力矩和偏航力矩;
将所述控制力矩和所述发动机推力作为陆空车辆飞行动力学模型的输入,对所述旋翼机在转弯时的飞行状态进行控制。
可选的,所述将所述实际高度值和所述参考高度值作为高度控制器的输入,采用PID算法,得到速度修正值,具体包括:
将所述实际高度值和所述参考高度值做差,得到第一差值;
将所述第一差值作为高度控制器的输入,采用PID算法,得到速度修正值。
可选的,所述将所述实际速度值、所述参考速度值和所述速度修正值作为速度控制器的输入,采用PID算法,得到姿态角修正值和发动机推力,具体包括:
将所述实际速度值中x轴方向的实际速度值和所述参考速度值中x轴方向的参考速度值做差,得到第二差值;
将所述实际速度值中y轴方向的实际速度值和所述参考速度值中y轴方向的参考速度值做差,得到第三差值;
将所述实际速度值中z轴方向的实际速度值和所述参考速度值中z轴方向的参考速度值做差,得到第四差值;
将所述第四差值与所述速度修正值做差,得到第五差值;
将所述第二差值、所述第三差值和所述第五差值作为速度控制器的输入,采用PID算法,得到俯仰角修正值、滚转角修正值和发动机推力。
可选的,所述将所述实际姿态角值、所述实际角速度值、所述参考姿态角值和所述姿态角修正值作为内环姿态控制器的输入,采用鲁棒控制方 法,得到控制力矩,具体包括:
将所述参考姿态角值中的参考滚转角值与所述滚转角修正值做差,得到第六差值;
将所述参考姿态角值中的参考俯仰角值与所述俯仰角修正值做差,得到第七差值;
将所述参考姿态角值中的参考偏航角值进行积分变换,得到参考姿态角变换值;
将所述第六差值、所述第七差值、所述参考姿态角变换值、所述实际姿态角值和所述实际角速度值作为内环姿态控制器的输入,采用鲁棒控制方法,得到滚转力矩、俯仰力矩和偏航力矩。
本发明还提供了一种旋翼机协调转弯控制系统,所述系统包括:
第一获取模块,用于获取旋翼机在转弯时的实际飞行参量值;所述实际飞行参量值包括实际高度值、实际速度值、实际姿态角值和实际角速度值;
第二获取模块,用于获取所述实际飞行参量值对应的参考参量值;所述参考参量值包括参考高度值、参考速度值和参考姿态角值;
修正值获取模块,用于将所述实际高度值和所述参考高度值作为高度控制器的输入,采用PID算法,得到速度修正值;
第三获取模块,用于将所述实际速度值、所述参考速度值和所述速度修正值作为速度控制器的输入,采用PID算法,得到姿态角修正值和发动机推力;所述姿态角修正值包括滚转角修正值和俯仰角修正值;
力矩获取模块,用于将所述实际姿态角值、所述实际角速度值、所述参考姿态角值和所述姿态角修正值作为内环姿态控制器的输入,采用鲁棒控制方法,得到控制力矩;所述控制力矩包括滚转力矩、俯仰力矩和偏航力矩;
飞行控制模块,用于将所述控制力矩和所述发动机推力作为陆空车辆飞行动力学模型的输入,对所述旋翼机在转弯时的飞行状态进行控制。
可选的,所述修正值获取模块,具体包括:
第一差值获取单元,用于将所述实际高度值和所述参考高度值做差,得到第一差值;
速度修正值获取单元,用于将所述第一差值作为高度控制器的输入,采用PID算法,得到速度修正值。
可选的,所述第三获取模块,具体包括:
第二差值获取单元,用于将所述实际速度值中x轴方向的实际速度值和所述参考速度值中x轴方向的参考速度值做差,得到第二差值;
第三差值获取单元,用于将所述实际速度值中y轴方向的实际速度值和所述参考速度值中y轴方向的参考速度值做差,得到第三差值;
第四差值获取单元,用于将所述实际速度值中z轴方向的实际速度值和所述参考速度值中z轴方向的参考速度值做差,得到第四差值;
第五差值获取单元,用于将所述第四差值与所述速度修正值做差,得到第五差值;
第三获取单元,用于将所述第二差值、所述第三差值和所述第五差值作为速度控制器的输入,采用PID算法,得到俯仰角修正值、滚转角修正值和发动机推力。
可选的,所述力矩获取模块,具体包括:
第六差值获取单元,用于将所述参考姿态角值中的参考滚转角值与所述滚转角修正值做差,得到第六差值;
第七差值获取单元,用于将所述参考姿态角值中的参考俯仰角值与所述俯仰角修正值做差,得到第七差值;
变换值获取单元,用于将所述参考姿态角值中的参考偏航角值进行积分变换,得到参考姿态角变换值;
力矩获取单元,用于将所述第六差值、所述第七差值、所述参考姿态角变换值、所述实际姿态角值和所述实际角速度值作为内环姿态控制器的输入,采用鲁棒控制方法,得到滚转力矩、俯仰力矩和偏航力矩。
与现有技术相比,本发明的有益效果是:
本发明提出了一种旋翼机协调转弯控制方法及系统,所述方法包括:获取旋翼机在转弯时的实际飞行参量值和对应的参考参量值;将实际高度值和参考高度值作为高度控制器的输入,采用PID算法,得到速度修正值;将实际速度值、参考速度值和速度修正值作为速度控制器的输入,采用PID算法,得到姿态角修正值和发动机推力;将实际姿态角值、实际 角速度值、参考姿态角值和姿态角修正值作为内环姿态控制器的输入,采用鲁棒控制方法,得到控制力矩;将控制力矩和发动机推力作为陆空车辆飞行动力学模型的输入,对旋翼机在转弯时的飞行状态进行控制。本发明能够提高旋翼机转弯飞行的平稳性和速度,准确控制航向,减少安全隐患。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例旋翼机协调转弯控制方法的流程图;
图2为本发明实施例旋翼机协调转弯控制方法的原理图;
图3为旋翼机的受力分析图;
图4为本发明实施例旋翼机协调转弯控制系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
旋翼机固定高度盘旋飞行控制包括平面飞行控制和高度飞行控制两个方面,但是这两方面并不是割裂的,而是互相关联的整体,因此应对所有控制回路,包括高度控制回路、速度控制回路和航向控制回路进行综合,将相互之间存在耦合的控制回路合为一个整体。
高度回路由控制系统根据高度传感器测量的高度值与给定高度比较,解算得出控制指令操纵发动机推力和桨盘俯仰,以保持高度稳定;平面控 制要求无人旋翼机在固定高度平面内对圆弧航迹能达到较好的跟踪效果,要求旋翼机能够按照给定航向,使机体轴与圆弧切线尽量保持一致;当受到扰动旋翼机偏离航迹时,根据当前实测位置与速度矢量计算修正策略,使旋翼机回到预定航迹。
图1为本发明实施例旋翼机协调转弯控制方法的流程图;图2为本发明实施例旋翼机协调转弯控制方法的原理图。
参见图1-2,实施例的旋翼机协调转弯控制方法,包括:
步骤S1:获取旋翼机在转弯时的实际飞行参量值。
所述实际飞行参量值包括实际高度值h、实际速度值、实际姿态角值和实际角速度值。所述实际飞行参量值是通过参量对应的传感器获得的,例如采用高度传感器测量得到实际高度值h。
步骤S2:获取所述实际飞行参量值对应的参考参量值。
所述参考参量值包括参考高度值h ref、参考速度值和参考姿态角值。
步骤S3:将所述实际高度值h和所述参考高度值h ref作为高度控制器的输入,采用PID算法,得到速度修正值。
所述步骤S3具体包括:
将所述实际高度值h和所述参考高度值h ref做差,得到第一差值;
将所述第一差值作为高度控制器的输入,采用PID算法,得到速度修正值。
步骤S4:将所述实际速度值、所述参考速度值和所述速度修正值作为速度控制器的输入,采用PID算法,得到姿态角修正值和发动机推力。
所述姿态角修正值包括滚转角修正值和俯仰角修正值。
所述步骤S4具体包括:
将所述实际速度值中x轴方向的实际速度值V x和所述参考速度值中x轴方向的参考速度值V x_ref做差,得到第二差值;
将所述实际速度值中y轴方向的实际速度值V y和所述参考速度值中y轴方向的参考速度值V y_ref做差,得到第三差值;
将所述实际速度值中z轴方向的实际速度值V z和所述参考速度值中z轴方向的参考速度值V z_ref做差,得到第四差值;
将所述第四差值与所述速度修正值做差,得到第五差值;
将所述第二差值、所述第三差值和所述第五差值作为速度控制器的输入,采用PID算法,得到俯仰角修正值、滚转角修正值和发动机推力。
步骤S5:将所述实际姿态角值、所述实际角速度值、所述参考姿态角值和所述姿态角修正值作为内环姿态控制器的输入,采用鲁棒控制方法,得到控制力矩。
所述实际姿态角值包括实际滚转角值φ、实际俯仰角值θ和实际偏航角值ψ;所述实际角速度值包括实际滚转角速度值p、实际俯仰角速度值q和实际偏航角速度值r;所述参考姿态角值包括参考滚转角值φ ref、参考俯仰角值θ ref和参考偏航角值ψ ref;所述控制力矩包括滚转力矩、俯仰力矩和偏航力矩。
所述步骤S5具体包括:
将所述参考姿态角值中的参考滚转角值φ ref与所述滚转角修正值做差,得到第六差值;
将所述参考姿态角值中的参考俯仰角值θ ref与所述俯仰角修正值做差,得到第七差值;
将所述参考姿态角值中的参考偏航角值ψ ref进行积分变换,得到参考姿态角变换值;
将所述第六差值、所述第七差值、所述参考姿态角变换值、所述实际姿态角值和所述实际角速度值作为内环姿态控制器的输入,采用鲁棒控制方法,得到滚转力矩、俯仰力矩和偏航力矩。
步骤S6:将所述控制力矩和所述发动机推力作为陆空车辆飞行动力学模型的输入,对所述旋翼机在转弯时的飞行状态进行控制。
所述陆空车辆飞行动力学模型是依据对旋翼机纵向受力分析和对旋翼机横向受力分析建立的。将所述控制力矩和所述发动机推力作为陆空车辆飞行动力学模型的输入,对旋翼机的滚转、俯仰和偏航进行操纵,进而实现对所述旋翼机在转弯时的飞行状态进行控制。
图3为旋翼机的受力分析图,其中图3(a)为旋翼机纵向受力分析图,其中图3(b)为旋翼机横向受力分析图。
参见图3(a),θ R为旋翼桨盘与机体轴的夹角,若机身迎角为α,则桨盘迎角为α R=α+θ R;旋翼拉力T R垂直于桨盘向上;发动机推力T ρ在机 体纵向对称面内与机体轴平行;G为飞机重力;L和D分别为机身所受的气动升力与阻力,其大小取决于飞行速度V。
无人旋翼机在作转弯飞行过程中,偏航角及航迹偏转角是主要控制目标,控制航迹偏转角是为了控制速度方向与规划航迹保持一致,以达到航迹跟踪效果。由物理学匀速率圆周运动知,无人旋翼机实现协调转弯飞行须满足:(1)旋翼拉力在竖直方向上的分力与旋翼机所受重力相等;(2)旋翼拉力在航迹线速度方向上的分力与空气阻力及发动机推力平衡;(3)旋翼拉力在水平方向的分力应指向圆弧航迹的圆心,与飞机转弯受到的离心力相等。
参见图3(b),φ为滚转角,因旋翼拉力大小取决于飞行速度和桨盘迎角,故在盘旋过程中,需稳定飞行速度和桨盘迎角,但旋翼机在盘旋过程中不断改变航向,而且机身相对盘旋圆心有个滚转角,使机体俯仰姿态与航向之间相互影响。针对该情况,在控制律设计中可采用前向通道补偿实现纵横向解耦。由上述分析,无人旋翼机实现固定高度转弯飞行需满足:
Figure PCTCN2019104397-appb-000001
其中,m为旋翼机质量;g为重力加速度。
本实施例中,各个差值的计算均是通过差值运算器得到的,偏航角值ψ ref的积分变换是通过积分器实现的。
本实施例的旋翼机协调转弯控制方法,能够提高旋翼机转弯飞行的平稳性和速度,准确控制航向,减少安全隐患;能够提高旋翼机在转弯时前飞速度跟踪精度,提高对高度的跟踪性能。
本实施例还提供了一种旋翼机协调转弯控制系统,图4为本发明实施例旋翼机协调转弯控制系统的结构示意图。
参见图4,实施例的旋翼机协调转弯控制系统包括:
第一获取模块401,用于获取旋翼机在转弯时的实际飞行参量值;所述实际飞行参量值包括实际高度值、实际速度值、实际姿态角值和实际角 速度值。
第二获取模块402,用于获取所述实际飞行参量值对应的参考参量值;所述参考参量值包括参考高度值、参考速度值和参考姿态角值。
修正值获取模块403,用于将所述实际高度值和所述参考高度值作为高度控制器的输入,采用PID算法,得到速度修正值。
所述修正值获取模块403,具体包括:
第一差值获取单元,用于将所述实际高度值和所述参考高度值做差,得到第一差值;
速度修正值获取单元,用于将所述第一差值作为高度控制器的输入,采用PID算法,得到速度修正值。
第三获取模块404,用于将所述实际速度值、所述参考速度值和所述速度修正值作为速度控制器的输入,采用PID算法,得到姿态角修正值和发动机推力;所述姿态角修正值包括滚转角修正值和俯仰角修正值。
所述第三获取模块404,具体包括:
第二差值获取单元,用于将所述实际速度值中x轴方向的实际速度值和所述参考速度值中x轴方向的参考速度值做差,得到第二差值;
第三差值获取单元,用于将所述实际速度值中y轴方向的实际速度值和所述参考速度值中y轴方向的参考速度值做差,得到第三差值;
第四差值获取单元,用于将所述实际速度值中z轴方向的实际速度值和所述参考速度值中z轴方向的参考速度值做差,得到第四差值;
第五差值获取单元,用于将所述第四差值与所述速度修正值做差,得到第五差值;
第三获取单元,用于将所述第二差值、所述第三差值和所述第五差值作为速度控制器的输入,采用PID算法,得到俯仰角修正值、滚转角修正值和发动机推力。
力矩获取模块405,用于将所述实际姿态角值、所述实际角速度值、所述参考姿态角值和所述姿态角修正值作为内环姿态控制器的输入,采用鲁棒控制方法,得到控制力矩;所述控制力矩包括滚转力矩、俯仰力矩和偏航力矩。
所述力矩获取模块405,具体包括:
第六差值获取单元,用于将所述参考姿态角值中的参考滚转角值与所述滚转角修正值做差,得到第六差值;
第七差值获取单元,用于将所述参考姿态角值中的参考俯仰角值与所述俯仰角修正值做差,得到第七差值;
变换值获取单元,用于将所述参考姿态角值中的参考偏航角值进行积分变换,得到参考姿态角变换值;
力矩获取单元,用于将所述第六差值、所述第七差值、所述参考姿态角变换值、所述实际姿态角值和所述实际角速度值作为内环姿态控制器的输入,采用鲁棒控制方法,得到滚转力矩、俯仰力矩和偏航力矩。
飞行控制模块406,用于将所述控制力矩和所述发动机推力作为陆空车辆飞行动力学模型的输入,对所述旋翼机在转弯时的飞行状态进行控制。
本实施例的旋翼机协调转弯控制系统,能够提高旋翼机转弯飞行的平稳性和速度,准确控制航向,减少安全隐患。
本说明书中对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (8)

  1. 一种旋翼机协调转弯控制方法,其特征在于,包括:
    获取旋翼机在转弯时的实际飞行参量值;所述实际飞行参量值包括实际高度值、实际速度值、实际姿态角值和实际角速度值;
    获取所述实际飞行参量值对应的参考参量值;所述参考参量值包括参考高度值、参考速度值和参考姿态角值;
    将所述实际高度值和所述参考高度值作为高度控制器的输入,采用PID算法,得到速度修正值;
    将所述实际速度值、所述参考速度值和所述速度修正值作为速度控制器的输入,采用PID算法,得到姿态角修正值和发动机推力;所述姿态角修正值包括滚转角修正值和俯仰角修正值;
    将所述实际姿态角值、所述实际角速度值、所述参考姿态角值和所述姿态角修正值作为内环姿态控制器的输入,采用鲁棒控制方法,得到控制力矩;所述控制力矩包括滚转力矩、俯仰力矩和偏航力矩;
    将所述控制力矩和所述发动机推力作为陆空车辆飞行动力学模型的输入,对所述旋翼机在转弯时的飞行状态进行控制。
  2. 根据权利要求1所述的一种旋翼机协调转弯控制方法,其特征在于,所述将所述实际高度值和所述参考高度值作为高度控制器的输入,采用PID算法,得到速度修正值,具体包括:
    将所述实际高度值和所述参考高度值做差,得到第一差值;
    将所述第一差值作为高度控制器的输入,采用PID算法,得到速度修正值。
  3. 根据权利要求1所述的一种旋翼机协调转弯控制方法,其特征在于,所述将所述实际速度值、所述参考速度值和所述速度修正值作为速度控制器的输入,采用PID算法,得到姿态角修正值和发动机推力,具体包括:
    将所述实际速度值中x轴方向的实际速度值和所述参考速度值中x轴方向的参考速度值做差,得到第二差值;
    将所述实际速度值中y轴方向的实际速度值和所述参考速度值中y轴方向的参考速度值做差,得到第三差值;
    将所述实际速度值中z轴方向的实际速度值和所述参考速度值中z 轴方向的参考速度值做差,得到第四差值;
    将所述第四差值与所述速度修正值做差,得到第五差值;
    将所述第二差值、所述第三差值和所述第五差值作为速度控制器的输入,采用PID算法,得到俯仰角修正值、滚转角修正值和发动机推力。
  4. 根据权利要求1所述的一种旋翼机协调转弯控制方法,其特征在于,所述将所述实际姿态角值、所述实际角速度值、所述参考姿态角值和所述姿态角修正值作为内环姿态控制器的输入,采用鲁棒控制方法,得到控制力矩,具体包括:
    将所述参考姿态角值中的参考滚转角值与所述滚转角修正值做差,得到第六差值;
    将所述参考姿态角值中的参考俯仰角值与所述俯仰角修正值做差,得到第七差值;
    将所述参考姿态角值中的参考偏航角值进行积分变换,得到参考姿态角变换值;
    将所述第六差值、所述第七差值、所述参考姿态角变换值、所述实际姿态角值和所述实际角速度值作为内环姿态控制器的输入,采用鲁棒控制方法,得到滚转力矩、俯仰力矩和偏航力矩。
  5. 一种旋翼机协调转弯控制系统,其特征在于,包括:
    第一获取模块,用于获取旋翼机在转弯时的实际飞行参量值;所述实际飞行参量值包括实际高度值、实际速度值、实际姿态角值和实际角速度值;
    第二获取模块,用于获取所述实际飞行参量值对应的参考参量值;所述参考参量值包括参考高度值、参考速度值和参考姿态角值;
    修正值获取模块,用于将所述实际高度值和所述参考高度值作为高度控制器的输入,采用PID算法,得到速度修正值;
    第三获取模块,用于将所述实际速度值、所述参考速度值和所述速度修正值作为速度控制器的输入,采用PID算法,得到姿态角修正值和发动机推力;所述姿态角修正值包括滚转角修正值和俯仰角修正值;
    力矩获取模块,用于将所述实际姿态角值、所述实际角速度值、所述参考姿态角值和所述姿态角修正值作为内环姿态控制器的输入,采用鲁棒 控制方法,得到控制力矩;所述控制力矩包括滚转力矩、俯仰力矩和偏航力矩;
    飞行控制模块,用于将所述控制力矩和所述发动机推力作为陆空车辆飞行动力学模型的输入,对所述旋翼机在转弯时的飞行状态进行控制。
  6. 根据权利要求5所述的一种旋翼机协调转弯控制系统,其特征在于,所述修正值获取模块,具体包括:
    第一差值获取单元,用于将所述实际高度值和所述参考高度值做差,得到第一差值;
    速度修正值获取单元,用于将所述第一差值作为高度控制器的输入,采用PID算法,得到速度修正值。
  7. 根据权利要求5所述的一种旋翼机协调转弯控制系统,其特征在于,所述第三获取模块,具体包括:
    第二差值获取单元,用于将所述实际速度值中x轴方向的实际速度值和所述参考速度值中x轴方向的参考速度值做差,得到第二差值;
    第三差值获取单元,用于将所述实际速度值中y轴方向的实际速度值和所述参考速度值中y轴方向的参考速度值做差,得到第三差值;
    第四差值获取单元,用于将所述实际速度值中z轴方向的实际速度值和所述参考速度值中z轴方向的参考速度值做差,得到第四差值;
    第五差值获取单元,用于将所述第四差值与所述速度修正值做差,得到第五差值;
    第三获取单元,用于将所述第二差值、所述第三差值和所述第五差值作为速度控制器的输入,采用PID算法,得到俯仰角修正值、滚转角修正值和发动机推力。
  8. 根据权利要求5所述的一种旋翼机协调转弯控制系统,其特征在于,所述力矩获取模块,具体包括:
    第六差值获取单元,用于将所述参考姿态角值中的参考滚转角值与所述滚转角修正值做差,得到第六差值;
    第七差值获取单元,用于将所述参考姿态角值中的参考俯仰角值与所述俯仰角修正值做差,得到第七差值;
    变换值获取单元,用于将所述参考姿态角值中的参考偏航角值进行积 分变换,得到参考姿态角变换值;
    力矩获取单元,用于将所述第六差值、所述第七差值、所述参考姿态角变换值、所述实际姿态角值和所述实际角速度值作为内环姿态控制器的输入,采用鲁棒控制方法,得到滚转力矩、俯仰力矩和偏航力矩。
PCT/CN2019/104397 2018-10-29 2019-09-04 一种旋翼机协调转弯控制方法及系统 WO2020088094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811264139.1A CN109343551A (zh) 2018-10-29 2018-10-29 一种旋翼机协调转弯控制方法及系统
CN201811264139.1 2018-10-29

Publications (1)

Publication Number Publication Date
WO2020088094A1 true WO2020088094A1 (zh) 2020-05-07

Family

ID=65310921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104397 WO2020088094A1 (zh) 2018-10-29 2019-09-04 一种旋翼机协调转弯控制方法及系统

Country Status (2)

Country Link
CN (1) CN109343551A (zh)
WO (1) WO2020088094A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109343551A (zh) * 2018-10-29 2019-02-15 北京理工大学 一种旋翼机协调转弯控制方法及系统
CN112306078B (zh) * 2020-11-16 2024-01-23 广东电网有限责任公司肇庆供电局 一种无人机自动避障导线的方法及系统
CN112904871B (zh) * 2021-01-22 2023-02-28 北京电子工程总体研究所 一种基于螺旋桨和俯仰缆绳复合控制的囊体高度控制系统
CN113031641B (zh) * 2021-05-21 2021-08-27 北京三快在线科技有限公司 无人机控制方法、装置、存储介质及无人机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104298109A (zh) * 2014-09-23 2015-01-21 南京航空航天大学 基于多控制器融合的无尾飞行器协调转弯控制方法
CN108622403A (zh) * 2017-03-20 2018-10-09 贝尔直升机德事隆公司 用于旋翼飞行器航向控制的系统和方法
CN109343551A (zh) * 2018-10-29 2019-02-15 北京理工大学 一种旋翼机协调转弯控制方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8235324B1 (en) * 2009-03-03 2012-08-07 Orbital Research Inc. Rotorcraft with electrically driven blade control
CN104699108B (zh) * 2013-12-10 2017-12-19 中国航空工业第六一八研究所 一种多旋翼飞行器的控制分配方法
US10253725B2 (en) * 2014-11-14 2019-04-09 United Technologies Corporation Optimal thrust control of an aircraft engine
CN104898429B (zh) * 2015-05-27 2017-09-22 北京工业大学 一种基于自抗扰控制的三旋翼姿态控制方法
US10647414B2 (en) * 2017-02-27 2020-05-12 Textron Innovations Inc. Rotorcraft fly-by-wire standard rate turn
CN108594840A (zh) * 2018-05-29 2018-09-28 中山星图航空航天技术有限公司 倾转控制装置及其控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104298109A (zh) * 2014-09-23 2015-01-21 南京航空航天大学 基于多控制器融合的无尾飞行器协调转弯控制方法
CN108622403A (zh) * 2017-03-20 2018-10-09 贝尔直升机德事隆公司 用于旋翼飞行器航向控制的系统和方法
CN109343551A (zh) * 2018-10-29 2019-02-15 北京理工大学 一种旋翼机协调转弯控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG, NAN: "Research on Flight Envelope of Ground and Air Vehicles", MASTER'S THESIS OF BEIJING INSTITUTE OF TECHNOLOGY, 1 June 2016 (2016-06-01) *

Also Published As

Publication number Publication date
CN109343551A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2020088094A1 (zh) 一种旋翼机协调转弯控制方法及系统
CN109614633B (zh) 一种复合式旋翼飞行器非线性建模及线性化配平方法
CN111123967B (zh) 一种基于自适应动态逆的固定翼无人机着舰控制方法
Wang et al. Mathematical modeling and control of a tilt-rotor aircraft
US20120286102A1 (en) Remotely controlled vtol aircraft, control system for control of tailless aircraft, and system using same
US20170371352A1 (en) Method for dynamically converting the attitude of a rotary-wing drone
CN108873929B (zh) 一种固定翼飞机自主着舰方法及系统
AU2013234603B2 (en) Altitude regulator
KR102294829B1 (ko) 가변 하중을 가지는 무인비행체 비행제어 시스템 및 방법
CN106970531B (zh) 倾转翼垂直起降无人机模态转换控制策略确定方法
CN109703768B (zh) 一种基于姿态/轨迹复合控制的软式空中加油对接方法
CN106043695B (zh) 一种油动多旋翼无人机定桨距变转速系统及控制技术
NL2017971A (en) Unmanned aerial vehicle
CN206050075U (zh) 一种油动多旋翼无人机定桨距变转速系统
CN109703769B (zh) 一种基于预瞄策略的空中加油对接控制方法
CN114942649B (zh) 一种基于反步法的飞机俯仰姿态与航迹角解耦控制方法
Xu et al. Full attitude control of an efficient quadrotor tail-sitter VTOL UAV with flexible modes
CN115933733A (zh) 一种固定翼无人机纵向高度速度解耦非线性控制方法
Wang et al. Modeling and simulation of a time-varying inertia aircraft in aerial refueling
Raj et al. Iterative learning based feedforward control for transition of a biplane-quadrotor tailsitter UAS
CN114489094A (zh) 一种基于加速度反馈增强的旋翼无人机抗风扰控制方法
CN115016514A (zh) 仿生扑翼飞行器的起飞、巡航及降落全自主飞行控制方法
CN116088549B (zh) 一种尾座式垂直起降无人机姿态控制方法
US10908618B2 (en) Rotor control law for multi-rotor vehicles systems and methods
CN113492971B (zh) 飞行装置及其控制方法和控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877841

Country of ref document: EP

Kind code of ref document: A1