WO2018058320A1 - 无人机控制方法及装置 - Google Patents

无人机控制方法及装置 Download PDF

Info

Publication number
WO2018058320A1
WO2018058320A1 PCT/CN2016/100385 CN2016100385W WO2018058320A1 WO 2018058320 A1 WO2018058320 A1 WO 2018058320A1 CN 2016100385 W CN2016100385 W CN 2016100385W WO 2018058320 A1 WO2018058320 A1 WO 2018058320A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
speed
acceleration
horizontal
control
Prior art date
Application number
PCT/CN2016/100385
Other languages
English (en)
French (fr)
Inventor
应佳行
周游
彭昭亮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201680004628.6A priority Critical patent/CN107438805B/zh
Priority to PCT/CN2016/100385 priority patent/WO2018058320A1/zh
Publication of WO2018058320A1 publication Critical patent/WO2018058320A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the present invention relates to the field of control, and in particular, to a drone control method and apparatus.
  • UAV Unmanned Aerial Vehicle
  • the UAV is a non-manned aircraft that is controlled by wireless remote control equipment and its own program control device.
  • the motor In the existing drone take-off mode, the motor is first unlocked and then taken off by the remote control. For portable drones, this type of takeoff is cumbersome.
  • the embodiment of the invention provides a drone control method and device for controlling the flight of the drone to the hovering position after the fly-off, and reducing the shock of the drone to fly to the hovering process.
  • a first aspect of the present invention provides a drone control method, including:
  • the drone is controlled to fly to the hovering position.
  • the status information includes at least one of the following: speed, acceleration, or current location.
  • the speed comprises a horizontal speed and a vertical speed, the acceleration comprising water Flat acceleration and vertical acceleration;
  • the fitting the hovering position of the drone according to the state information comprises: calculating the current position and the fitted hovering position according to the horizontal speed and the horizontal acceleration a horizontal displacement; calculating a height difference between the current position and the hovering position according to the horizontal displacement, the horizontal speed, and the vertical speed; according to the horizontal displacement, the height difference, and the current position , fitting the hover position of the drone.
  • the speed includes a horizontal speed and a vertical speed
  • the acceleration includes a horizontal acceleration and a vertical acceleration
  • the fitting the hovering position of the drone according to the state information comprises: according to the vertical Calculating a height difference between the current position and the fitted hovering position by the speed and the vertical acceleration; calculating the current position and the hanging according to the height difference, the vertical speed, and the horizontal speed a horizontal displacement of the stop position; fitting a hovering position of the drone according to the height difference, the horizontal displacement, and the current position.
  • controlling the flight of the drone to the hovering position comprises: controlling the drone to fly to the hovering position by using an automatic closed loop control strategy.
  • the automatic closed-loop control strategy includes at least one of the following: proportional-integral-differential control, or proportional-differential control.
  • the method further includes: controlling the drone to enter the attitude mode.
  • the method further includes: adjusting the drone to a preset attitude angle.
  • the preset attitude angle is less than or equal to 30 degrees.
  • the preset attitude angle is a braking limit angle of the drone, that is, a maximum braking attitude angle of the drone.
  • the preset attitude angle includes at least one of a preset pitch angle and a preset roll angle.
  • the user can configure the preset posture angle.
  • the method further includes: controlling the drone to a steady state in the attitude mode.
  • controlling the drone to the steady state in the attitude mode comprises:
  • the method further comprises: adjusting the drone to a preset direction.
  • the adjusting the drone to the preset direction comprises: facing the direction in which the drone carries the obstacle sensing system toward the throwing direction.
  • the obstacle sensing system comprises at least one of the following: a vision system, a TOF system, an ultrasonic wave, or a laser radar.
  • the emergency safety processing is performed in time by directing the direction of the obstacle sensing system toward the throwing direction so as to be able to sense the obstacle in the flying direction.
  • An unmanned aerial vehicle control method obtains state information of a drone, and fits a hovering position of the drone according to the state information, and controls the drone to fly to the hovering position. .
  • the drone When the drone is thrown, the drone has different states (including speed, acceleration and position) after being thrown due to different throwing directions and throwing forces.
  • the hovering position is fitted, and the automatic closed-loop control strategy is adopted to control the drone to smoothly fly to the hovering position, thereby reducing the fluctuation of the drone from the throwing to the hovering process.
  • a second aspect of the present invention provides a drone control apparatus, including:
  • a fitting module configured to fit a hovering position of the drone according to the state information
  • control module configured to control the drone to fly to the hovering position.
  • the status information includes at least one of the following: speed, acceleration, or current location.
  • the speed includes a horizontal speed and a vertical speed
  • the acceleration includes a horizontal acceleration and a vertical acceleration
  • the fitting module is specifically configured to calculate the current according to the horizontal speed and the horizontal acceleration a horizontal displacement of the position and the fitted hovering position; calculating a height difference between the current position and the hovering position according to the horizontal displacement, the horizontal speed, and the vertical speed; according to the horizontal displacement, The height difference and the current position fit the hovering position.
  • the speed includes a horizontal speed and a vertical speed
  • the acceleration includes a horizontal acceleration and a vertical acceleration
  • the fitting module is specifically configured to calculate, according to the vertical speed and the vertical acceleration, Determining a height difference between the current position and the hovering position; calculating a horizontal displacement of the current position and the hovering position according to the height difference, the vertical speed, and the horizontal speed; according to the height difference , the horizontal displacement and the current position, fitting a hovering position.
  • control module is specifically configured to control the drone to fly to the hovering position by using an automatic closed loop control strategy.
  • the automatic closed-loop control strategy includes at least one of the following: proportional-integral-derivative (PID) control, or proportional-derivative (PD) control.
  • PID proportional-integral-derivative
  • PD proportional-derivative
  • control module is further configured to control the UAV to enter the posture mode.
  • control module is further configured to adjust the drone to a preset attitude angle after controlling the drone to enter the attitude mode.
  • the preset attitude angle is less than or equal to 30 degrees.
  • the preset attitude angle is a braking limit angle of the drone, that is, a maximum braking attitude angle of the drone.
  • the preset attitude angle includes at least one of a preset pitch angle and a preset roll angle.
  • control module is further configured to control the drone to a steady state in the attitude mode after adjusting the drone to a preset attitude angle.
  • control module is specifically configured to control, in the attitude mode, the stable preset duration of the drone.
  • control module is further configured to adjust the UAV to a preset direction.
  • control module is specifically configured to move the direction of the UAV carrying the obstacle sensing system toward the throwing direction.
  • the obstacle sensing system includes at least one of the following: a vision system, a TOF System, ultrasound, or lidar.
  • the emergency safety processing is performed in time by directing the direction of the obstacle sensing system toward the throwing direction so as to be able to sense the obstacle in the flying direction.
  • the unmanned aerial vehicle control device includes: an acquisition module, configured to acquire state information of the drone; and a fitting module, configured to fit the hovering position of the drone according to the state information; and the control module And for controlling the drone to fly to the hovering position.
  • an acquisition module configured to acquire state information of the drone
  • a fitting module configured to fit the hovering position of the drone according to the state information
  • the control module And for controlling the drone to fly to the hovering position.
  • the drone is flying, due to different throwing directions and throwing force, the drone has different states (including speed, acceleration and position) after the flying, and the hovering position is fitted according to the state, and the automatic position is adopted.
  • the closed-loop control strategy controls the drone to fly smoothly to the hovering position, reducing the turbulence of the drone from throwing to hovering.
  • FIG. 1 is a schematic diagram of a mobile device 100 according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for controlling a drone according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of control of a drone according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for controlling a drone according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a drone control device according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a drone control device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a UAV system according to an embodiment of the present invention.
  • the embodiment of the invention provides a drone control method, a device and a drone system, and simulates a hovering position according to the state information of the unmanned aerial vehicle, and adopts an automatic closed-loop control strategy to control the drone to smoothly fly to the hovering Position, reduce the shock of the drone from throwing to hovering.
  • FIG. 1 is a schematic diagram of a mobile device 100 according to an embodiment of the present invention.
  • the mobile device 100 includes a carrier 102 and a load 104.
  • the mobile device 100 is described as an aircraft, such description is not limiting and any type of mobile device is suitable. Those skilled in the art will appreciate that any of the embodiments described herein with respect to an aircraft system are applicable to any movable device (such as an unmanned aerial vehicle).
  • the load 104 can be located directly on the mobile device 100 without the carrier 102 being required.
  • the mobile device 100 can include a power mechanism 106, a sensing system 108, and a communication system 110.
  • the power mechanism 106 can include one or more rotating bodies, propellers, blades, engines, motors, wheels, bearings, magnets, nozzles.
  • the rotating body of the power mechanism may be a self-tightening rotating body, a rotating body assembly, or other rotating body power unit.
  • the mobile device can have one or more power mechanisms. All power mechanisms can be of the same type. Alternatively, one or more of the power mechanisms can be of different types.
  • the power mechanism 106 can be mounted to the movable device by suitable means, such as by a support member (such as a drive shaft).
  • the power mechanism 106 can be mounted at any suitable location on the movable device 100, such as a top end, a lower end, a front end, a rear end, a side, or any combination thereof.
  • the power mechanism 106 can cause the movable device to take off vertically from the surface, or land vertically on the surface without requiring any horizontal movement of the moveable device 100 (eg, without taxiing on the runway).
  • the power mechanism 106 can allow the mobile device 100 to hover in a preset position and/or direction in the air.
  • One or more of the power mechanisms 106 can be independent of other power mechanisms when controlled.
  • one or more of the power mechanisms 106 can be simultaneously controlled.
  • the mobile device 100 can have multiple horizontally rotating bodies to track the lifting and/or pushing of the target. The horizontally rotating body can be actuated to provide the ability of the movable device 100 to take off vertically, vertically, and spiral.
  • one or more of the horizontally rotating bodies may be rotated in a clockwise direction, while the other one or more of the horizontally rotating bodies may be rotated in a counterclockwise direction.
  • a rotating body rotating clockwise and a rotating body rotating counterclockwise The same amount.
  • the rate of rotation of each horizontally-oriented rotating body can be varied independently to achieve lifting and/or pushing operations caused by each rotating body, thereby adjusting the spatial orientation, velocity, and/or acceleration of the movable device 100 (eg, relative to Three degrees of freedom of rotation and translation).
  • Sensing system 108 may include one or more sensors to sense the spatial orientation, velocity, and/or acceleration of movable device 100 (eg, relative to rotation and translation of up to three degrees of freedom).
  • the one or more sensors include any of the sensors described above, including GPS sensors, motion sensors, inertial sensors, proximity sensors, or image sensors.
  • Sensing data provided by sensing system 108 can be used to track the spatial orientation, velocity, and/or acceleration of target 100 (using suitable processing units and/or control units as described below).
  • the sensing system 108 can be used to collect data for the environment of the mobile device, such as climatic conditions, potential obstacles to be approached, location of geographic features, location of the man-made structure, and the like.
  • Communication system 110 is capable of communicating with terminal 112 having communication system 114 via wireless signal 116.
  • Communication systems 110, 114 may include any number of transmitters, receivers, and/or transceivers for wireless communication.
  • the communication can be one-way communication so that data can be sent from one direction.
  • one-way communication can include that only mobile device 100 transmits data to terminal 112, or vice versa.
  • One or more transmitters of communication system 110 can transmit data to one or more receivers of communication system 112, and vice versa.
  • the communication may be two-way communication such that data may be transmitted between the mobile device 100 and the terminal 112 in both directions.
  • Two-way communication includes one or more transmitters of communication system 110 that can transmit data to communication system 114 One or more receivers, and vice versa.
  • terminal 112 can provide control data to one or more of mobile device 100, carrier 102, and load 104, and from one or more of mobile device 100, carrier 102, and load 104.
  • Receive information such as mobile device, carrier or load location and / or motion information, load sensing data, such as camera captured image data).
  • the terminal's control data may include instructions regarding position, motion, actuation, or control of the mobile device, carrier, and/or load.
  • the control data may result in a change in the position and/or orientation of the moveable device (e.g., by controlling the power mechanism 106) or result in movement of the carrier relative to the moveable device (e.g., by control of the carrier 102).
  • Terminal control data can lead to load control, such as controlling the operation of a camera or other image capture device (capturing still or moving images, zooming, turning on or off, switching imaging modes, changing image resolution, changing focus, changing depth of field, changing exposure) Time, change the viewing angle or field of view).
  • the communication of the mobile device, carrier, and/or load may include information from one or more sensors, such as sensing system 108 or load 104.
  • the communication may include sensing information transmitted from one or more different types of sensors, such as GPS sensors, motion sensors, inertial sensors, proximity sensors, or image sensors.
  • the sensing information relates to the position (eg, direction, position), motion, or acceleration of the movable device, the carrier, and/or the load.
  • the sensing information transmitted from the load includes the data captured by the load or the state of the load.
  • the control data transmitted by terminal 112 can be used to track the status of one or more of mobile device 100, carrier 102, or load 104.
  • the carrier 102 and the load 104 may each include a communication module for The terminal 112 communicates so that the terminal can communicate or track the mobile device 100, the carrier 102, and the load 104 separately.
  • the mobile device 100 can communicate with other remote devices than the terminal 112, and the terminal 112 can also communicate with other remote devices than the mobile device 100.
  • the mobile device and/or terminal 112 can communicate with a carrier or load of another mobile device or another mobile device.
  • the additional remote device can be a second terminal or other computing device (such as a computer, desktop, tablet, smartphone, or other mobile device) when needed.
  • the remote device can transmit data to the mobile device 100, receive data from the mobile device 100, transmit data to the terminal 112, and/or receive data from the terminal 112.
  • the remote device can be connected to the Internet or other telecommunications network to upload data received from the mobile device 100 and/or terminal 112 to a website or server.
  • the movement of the movable device, the movement of the carrier, and the movement of the load relative to a fixed reference (such as an external environment), and/or movements between each other, can be controlled by the terminal.
  • the terminal may be a remote control terminal located remotely from the mobile device, the carrier and/or the load.
  • the terminal can be located or affixed to the support platform.
  • the terminal may be handheld or wearable.
  • the terminal may include a smartphone, tablet, desktop, computer, glasses, gloves, helmet, microphone, or any combination thereof.
  • the terminal can include a user interface such as a keyboard, mouse, joystick, touch screen or display. Any suitable user input can interact with the terminal, such as manual input commands, sound control, gesture control, or position control (eg, by motion, position, or tilt of the terminal).
  • FIG. 2 is a flowchart of a method for controlling a drone according to an embodiment of the present invention. include:
  • the drone is idling.
  • the motor idling different models of the UAV, the motor speed can be different at idle speed, it can be 1000 ⁇ 3000 rev / min, for example 2000 rev / min.
  • the inertial measurement unit IMU starts to work, and the IMU is used to observe the acceleration and angular velocity of the drone, and then the attitude of the drone is obtained. Rely on the visual system to observe the speed.
  • This phase is the preparation phase, where each sensor starts working and provides observations, but the control loop does not output.
  • the drone can determine whether the drone has been thrown away from the user by detecting the speed change of the drone or by sensing the sensing system.
  • the drone's throwing direction meets the preset conditions.
  • a test is made for the speed to determine whether the throwing direction satisfies the preset condition. If the detection speed direction is obliquely upward with respect to the horizontal direction (for example, the detection speed is between 0° and 90° in the horizontal direction), the preset condition is satisfied; if the detection speed is obliquely downward with respect to the horizontal direction, The preset conditions are not met.
  • the detection speed is oblique downward, it may be a user operation error. If the rotation motor is easy to injure people at this time, in order to ensure safety, it is determined that the flyback fails at this time, and the drone can be controlled to land smoothly or stop the motor.
  • the preset attitude angle may be the braking limit angle of the drone, that is, the maximum braking attitude angle of the drone.
  • the preset attitude angle may include at least one of a preset pitch angle and a preset roll angle. Specifically, the preset attitude angle can be small At or equal to 45°, it may be less than or equal to 30°, for example, may be 30°, so that it has a certain reverse acceleration in the horizontal direction, and starts to decelerate in the horizontal direction.
  • the obstacle sensing system may be at least one of a vision system, a TOF (time of fight) system, an ultrasonic wave, or a laser radar.
  • a vision system a TOF (time of fight) system
  • the nose is oriented in the current speed direction so that the obstacles in front can be detected and emergency safety treatment can be made in time.
  • the drone is controlled to the steady state in the attitude mode.
  • the UAV can be controlled to maintain a preset preset duration in the attitude mode. After the drone is thrown away, enter the attitude mode, adjust the attitude angle, and stabilize the preset duration, which can reduce the shock of the drone and smoothly transition to the next flight state.
  • UAV state at this time is detected, e.g., velocity V z in the vertical direction, the acceleration a z, in the horizontal direction and the velocity V x.
  • the unmanned opportunity plans the flight direction based on the initial speed at which it was thrown away, for example, continuing the direction of the throw. Specifically, based on the vertical velocity V z, the vertical acceleration a z, and a horizontal velocity V x, calculated hover position.
  • the drone is adjusted to the preset attitude angle ⁇ , and the initial velocity V 0 detected at this time is ⁇ with the horizontal direction.
  • UAV having an initial velocity in the vertical direction V z, with an initial horizontal velocity V x, V x and V z vector and an initial velocity V 0 is obtained the drone detected.
  • V z Affected by gravity, there is a vertical downward acceleration g.
  • the UAV lift F vertical component produces vertical acceleration Among them, m is the quality of the drone.
  • the acceleration in the vertical direction can be expressed as:
  • the height difference ⁇ H between the current position (ie, the position at which the state of the drone is detected) and the fitted hover position is:
  • the vertical direction velocity V z and the vertical direction acceleration a z can be obtained by detecting the state of the drone, and thus ⁇ H can be calculated from V z and a z .
  • the horizontal displacement of the current position and the fitted hover position is:
  • the horizontal velocity V x can also be obtained by detecting the state of the drone, and in combination with V x , V z and a z , ⁇ S can be calculated.
  • the drone is adjusted to the preset attitude angle, the horizontal speed V x , the vertical speed V z , and the horizontal acceleration a x of the current drone are detected, and the current position and the fitted hover position can be calculated.
  • the fitted hover position is:
  • H now is the current height, that is, the height when detecting the state of the drone, and can be obtained by a height sensor, and the height sensor can be at least one of an ultrasonic wave, a TOF, a vision system, a GPS, and a barometer.
  • S now is the current horizontal position, which can be obtained by the position sensor, and the position sensor can be at least one of a visual odometer and a GPS. Combined with the calculated ⁇ H and ⁇ S, the height and horizontal position of the fitted hover position can be obtained.
  • the fitted hover position and the actual parabola may have a small height difference ⁇ , which can be corrected based on the measured empirical value:
  • is a correction parameter, which can be measured and adjusted by multiple experiments to obtain empirical values.
  • ⁇ H and ⁇ S are preset convergence parameters, which can be pre-configured in the product, optional, and can be modified by the user.
  • an automatic closed loop control strategy is employed to control the drone to fly to the hovering position.
  • the automatic closed loop control strategy includes at least one of the following: proportional-integral-differential control, or proportional-differential control.
  • FIG. 4 is a flowchart of another method for controlling a drone according to an embodiment of the present invention. Includes:
  • the user throws the drone and detects the status information of the drone when the drone detects that it has been thrown away.
  • the status information includes at least one of the following: speed, acceleration, or current location.
  • the speed includes a horizontal speed and a vertical speed
  • the acceleration includes a horizontal acceleration and a vertical acceleration.
  • the speed includes a horizontal speed and a vertical speed
  • the acceleration includes a horizontal acceleration and a vertical acceleration.
  • an automatic closed loop control strategy is employed to control the drone to fly to the hovering position.
  • the automatic closed loop control strategy includes at least one of the following: proportional-integral-derivative Control, or proportional-differential control.
  • the drone is controlled to enter the pose module after the drone detects that the drone has been thrown, and before acquiring the drone state.
  • the drone is adjusted to a preset attitude angle after controlling the drone to enter the attitude mode.
  • the preset attitude angle includes at least one of a preset pitch angle and a preset roll angle.
  • the preset attitude angle is less than or equal to 30 degrees.
  • the brake limit angle can be selected, for example, 30 degrees.
  • the drone is controlled to a steady state in the attitude mode after adjusting the drone to a preset attitude angle.
  • the UAV is controlled to stabilize the preset duration in the attitude mode.
  • the preset duration may be pre-configured or may be empirical data obtained by multiple test flights.
  • the drone is adjusted to a preset direction after the drone detects that the aircraft has been thrown away and before acquiring the drone state.
  • the direction of the UAV carrying the obstacle sensing system is toward the throwing direction
  • the obstacle sensing module may be at least one of a vision system, a TOF system, an ultrasonic system, or a laser radar. If there is no obstacle sensing module in the direction of the throwing, the heading of the drone can be adjusted. For example, when only the front vision system is used, the nose can be directed toward the current throwing direction so that the obstacles in front can be detected and emergency safety treatment can be made in time.
  • FIG. 5 is a schematic diagram of a drone control device according to an embodiment of the present invention. include:
  • the obtaining module 501 is configured to acquire status information of the drone.
  • Status information can include At least one of the following: speed, acceleration, or current position.
  • the fitting module 502 is configured to fit the hovering position of the drone according to the state information.
  • the state information acquired by the acquisition module 501 includes a horizontal speed and a vertical speed
  • the acceleration includes a horizontal acceleration and a vertical acceleration.
  • the fitting module 502 calculates a horizontal displacement of the current position and the fitted hovering position according to the acquired horizontal speed and horizontal acceleration; calculates the current position and hovering according to the calculated horizontal displacement, the acquired horizontal speed, and the vertical speed.
  • the height difference of the position fit the hover position based on the calculated horizontal displacement, height difference, and current position.
  • the state information acquired by the acquisition module 501 includes a horizontal speed and a vertical speed
  • the acceleration includes a horizontal acceleration and a vertical acceleration.
  • the fitting module 502 calculates a height difference between the current position and the fitted hovering position according to the obtained vertical speed and vertical acceleration; and calculates the current position according to the calculated height difference, the obtained vertical speed and the horizontal speed.
  • the horizontal displacement of the hovering position fits the hovering position based on the calculated height difference, horizontal displacement, and current position.
  • the control module 503 is configured to control the drone to fly to the hovering position.
  • control module 503 employs an automatic closed loop control strategy to control the drone to fly to the hovering position.
  • the automatic closed loop control strategy includes at least one of the following: proportional-integral-differential control, or proportional-differential control.
  • control module 503 controls the drone to enter the pose module before the acquisition module 501 acquires the drone state.
  • control module 503 Adjust the drone to the preset attitude angle.
  • the preset attitude angle is less than or equal to 30 degrees.
  • the brake limit angle can be selected, for example, 30 degrees.
  • the preset attitude angle may be a braking limit angle of the drone, that is, a maximum braking attitude angle of the drone.
  • the preset attitude angle includes at least one of a preset pitch angle and a preset roll angle.
  • control module 503 is further configured to control the drone to a steady state in the attitude mode after adjusting the drone to a preset attitude angle.
  • the control module 503 is specifically configured to control the drone to stabilize the preset duration in the attitude mode.
  • the preset duration may be pre-configured or may be empirical data obtained through multiple trial flights.
  • the control module 503 adjusts the drone to a preset direction.
  • the control module 503 directs the direction of the UAV carrying the obstacle sensing system toward the throwing direction, and the obstacle sensing module may be at least one of a vision system, a TOF system, and an ultrasonic system.
  • the drone orientation can be adjusted. For example, when only the front vision system is used, the nose can be oriented toward the current speed direction so that the obstacles in front can be detected and emergency safety treatment can be made in time.
  • the present invention also provides a drone control device, including:
  • a memory for storing a drone control program
  • the drone is controlled to fly to the hovering position.
  • the present invention also provides a drone system including a power unit, and the drone control unit in the foregoing embodiment.
  • the powerplant includes at least one of: a motor, an ESC, or a propeller.
  • the present invention also provides a storage medium for storing instructions for performing the steps of the drone control method provided by the present invention.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented directly in hardware, a software module executed by a processor, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机的控制方法、装置及无人机系统,方法包括:获取无人机的状态信息(S401),根据状态信息拟合无人机的悬停位置(S402),控制无人机飞行到悬停位置(S403)。无人机抛飞时,不同的抛飞方向及抛飞力度,使得无人机在抛飞后具有不同的状态(包括速度、加速度和位置),依据该状态拟合悬停位置,采用自动闭环控制策略控制无人机平稳飞行至该悬停位置,减少无人机从抛飞到悬停过程中的震荡。

Description

无人机控制方法及装置 技术领域
本发明涉及控制领域,尤其涉及一种无人机控制方法及装置。
背景技术
无人驾驶飞机(Unmanned Aerial Vehicle,UAV),简称无人机,其是利用无线遥控设备和自备的程序控制装置操控的不载人飞机。现有的无人机起飞方式,是先解锁电机起转,然后通过遥控器控制起飞。对于便携式无人机,这种起飞方式很繁琐。
发明内容
本发明实施例提供了一种无人机控制方法及装置,用以控制无人机抛飞后飞行至悬停位置,减少无人机抛飞到悬停过程中的震荡。
本发明第一方面提供一种无人机控制方法,包括:
获取无人机的状态信息;
根据所述状态信息拟合所述无人机的悬停位置;
控制所述无人机飞行到所述悬停位置。
可选的,所述状态信息包括以下至少一项:速度、加速度、或当前位置。
可选的,所述速度包括水平速度和竖直速度,所述加速度包括水 平加速度和竖直加速度;所述根据所述状态信息拟合无人机的悬停位置,包括:根据所述水平速度及所述水平加速度,计算所述当前位置与拟合的悬停位置的水平位移;根据所述水平位移、所述水平速度及所述竖直速度,计算所述当前位置与所述悬停位置的高度差;根据所述水平位移、所述高度差及所述当前位置,拟合无人机的悬停位置。
可选的,所述速度包括水平速度和竖直速度,所述加速度包括水平加速度和竖直加速度;所述根据所述状态信息拟合无人机的悬停位置,包括:根据所述竖直速度及所述竖直加速度,计算所述当前位置与拟合的悬停位置的高度差;根据所述高度差、所述竖直速度及所述水平速度,计算所述当前位置与所述悬停位置的水平位移;根据所述高度差、所述水平位移及所述当前位置,拟合无人机的悬停位置。
可选的,所述控制所述无人机飞行到所述悬停位置包括:采用自动闭环控制策略,控制所述无人机飞行到所述悬停位置。
可选的,所述自动闭环控制策略包括以下至少一种:比例-积分-微分控制、或比例-微分控制。
可选的,在所述无人机抛飞之后,且在获取无人机状态之前,所述方法还包括:控制所述无人机进入姿态模式。
可选的,在控制所述无人机进入姿态模式之后,所述方法还包括:调整所述无人机至预设姿态角。
可选的,所述预设姿态角小于或等于30度。
可选的,所述预设姿态角为所述无人机的刹车限制角度,即所述无人机的最大刹车姿态角。
可选的,所述预设姿态角包括预设俯仰角、预设横滚角中至少一种。
可选的,用户可以配置所述预设姿态角。
可选的,在调整所述无人机至预设姿态角之后,所述方法还包括:在姿态模式下控制所述无人机至稳定状态。
可选的,所述在姿态模式下控制所述无人机至稳定状态,包括:
在姿态模式下控制所述无人机稳定预设时长。
无人机抛飞后,进入姿态模式,调整姿态角,并稳定预设时长,可以减少无人机的震荡,并平滑的过渡到下一个飞行状态。
可选的,在所述无人机抛飞之后,且在获取无人机状态之前,所述方法还包括:调整无人机至预设方向。
可选的,所述调整无人机至预设方向包括:将无人机携带障碍物感知系统的方向朝向抛飞方向。
可选的,所述障碍物感知系统包括以下至少一项:视觉系统、TOF系统、超声波、或激光雷达。
在不具备全向避障功能的无人机中,通过将具有障碍物感知系统的方向朝向抛飞方向,以便能感知抛飞方向上的障碍物,及时作出应急安全处理。
本发明实施例提供的一种无人机控制方法,获取无人机的状态信息,根据所述状态信息拟合无人机的悬停位置,控制所述无人机飞行到所述悬停位置。无人机抛飞时,由于不同的抛飞方向及抛飞力度,使得无人机在抛飞后具有不同的状态(包括速度、加速度和位置), 依据该状态拟合悬停位置,采用自动闭环控制策略控制无人机平稳飞行至该悬停位置,减少无人机从抛飞到悬停过程中的震荡。
本发明第二方面提供一种无人机控制装置,包括:
获取模块,用获取无人机的状态信息;
拟合模块,用于根据所述状态信息拟合所述无人机的悬停位置;
控制模块,用于控制所述无人机飞行到所述悬停位置。
可选的,所述状态信息包括以下至少一项:速度、加速度、或当前位置。
可选的,所述速度包括水平速度和竖直速度,所述加速度包括水平加速度和竖直加速度;所述拟合模块具体用于,根据所述水平速度及所述水平加速度,计算所述当前位置与拟合的悬停位置的水平位移;根据所述水平位移、所述水平速度及所述竖直速度,计算所述当前位置与所述悬停位置的高度差;根据所述水平位移、所述高度差及所述当前位置,拟合悬停位置。
可选的,所述速度包括水平速度和竖直速度,所述加速度包括水平加速度和竖直加速度;所述拟合模块具体用于,根据所述竖直速度及所述竖直加速度,计算所述当前位置与所述悬停位置的高度差;根据所述高度差、所述竖直速度及所述水平速度,计算所述当前位置与所述悬停位置的水平位移;根据所述高度差、所述水平位移及所述当前位置,拟合悬停位置。
可选的,所述控制模块具体用于,采用自动闭环控制策略,控制所述无人机飞行到所述悬停位置。
可选的,所述自动闭环控制策略包括以下至少一种:比例-积分-微分(PID)控制、或比例-微分(PD)控制。
可选的,在所述无人机抛飞后,且在所述获取模块获取无人机状态信息之前,所述控制模块还用于控制所述无人机进入姿态模式。
可选的,所述控制模块,在控制所述无人机进入姿态模式之后,还用于调整所述无人机至预设姿态角。
可选的,所述预设姿态角小于或等于30度。
可选的,预设姿态角为所述无人机的刹车限制角度,即所述无人机的最大刹车姿态角。
可选的,所述预设姿态角包括预设俯仰角、预设横滚角中至少一种。
可选的,所述控制模块,在调整所述无人机至预设姿态角之后,还用于在姿态模式下控制所述无人机至稳定状态。
可选的,所述控制模块,具体用于在姿态模式下控制所述无人机稳定预设时长。
无人机抛飞后,进入姿态模式,调整姿态角,并稳定预设时长,可以减少无人机的震荡,能平滑的过渡到下一个飞行状态。
可选的,在所述无人机抛飞后,且在所述获取模块获取无人机状态信息之前,所述控制模块还用于调整无人机至预设方向。
可选的,所述控制模块具体用于,将无人机携带障碍物感知系统的方向朝向抛飞方向。
可选的,所述障碍物感知系统包括以下至少一项:视觉系统、TOF 系统、超声波、或激光雷达。
在不具备全向避障功能的无人机中,通过将具有障碍物感知系统的方向朝向抛飞方向,以便能感知抛飞方向上的障碍物,及时作出应急安全处理。
本发明实施例提供的无人机控制装置,包括:获取模块,用于获取无人机的状态信息;拟合模块,用于根据所述状态信息拟合无人机的悬停位置;控制模块,用于控制所述无人机飞行到所述悬停位置。无人机抛飞时,由于不同的抛飞方向及抛飞力度,使得无人机在抛飞后具有不同的状态(包括速度、加速度和位置),依据该状态拟合悬停位置,采用自动闭环控制策略控制无人机平稳飞行至该悬停位置,减少无人机从抛飞到悬停过程中的震荡。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的一种可移动装置100的示意图;
图2为本发明实施例提供的一种无人机控制方法流程图;
图3为本发明实施例提供的一种无人机控制示意图;
图4为本发明实施例提供的一种无人机控制方法流程图;
图5为本发明实施例提供的一种无人机控制装置示意图;
图6为本发明实施例提供的一种无人机控制装置示意图;
图7为本发明实施例提供的一种无人机系统示意图。
具体实施方式
本发明实施例提供了一种无人机控制方法、装置及无人机系统,根据无人机抛飞后状态信息模拟悬停位置,采用自动闭环控制策略控制无人机平稳飞行至该悬停位置,减少无人机从抛飞到悬停过程中的震荡。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
下面通过具体实施例,分别进行详细说明。
可移动装置
图1为本发明实施例提供的一种可移动装置100的示意图。该可移动装置100包括承载体102及负载104。尽管可移动装置100被描述为飞行器,然而这样的描述并不是限制,任何类型的可移动装置都适用。本领域技术人员应该了解,本文所描述的任何关于飞行器系统的实施例适用于任何可移动装置(如无人飞行器)。在某些实施例中, 负载104可以直接位于可移动装置100上,而不需要承载体102。可移动装置100可以包括动力机构106,传感系统108以及通讯系统110。
动力机构106可以包括一个或者多个旋转体、螺旋桨、桨叶、引擎、电机、轮子、轴承、磁铁、喷嘴。例如,所述动力机构的旋转体可以是自紧固(self-tightening)旋转体、旋转体组件、或者其它的旋转体动力单元。可移动装置可以有一个或多个动力机构。所有的动力机构可以是相同的类型。可选的,一个或者多个动力机构可以是不同的类型。动力机构106可以通过合适的手段安装在可移动装置上,如通过支撑元件(如驱动轴)。动力机构106可以安装在可移动装置100任何合适的位置,如顶端、下端、前端、后端、侧面或者其中的任意结合。
在某些实施例中,动力机构106能够使可移动装置垂直地从表面起飞,或者垂直地降落在表面上,而不需要可移动装置100任何水平运动(如不需要在跑道上滑行)。可选的,动力机构106可以允许可移动装置100在空中预设位置和/或方向盘旋。一个或者多个动力机构106在受到控制时可以独立于其它的动力机构。可选的,一个或者多个动力机构106可以同时受到控制。例如,可移动装置100可以有多个水平方向的旋转体,以追踪目标的提升及/或推动。水平方向的旋转体可以被致动以提供可移动装置100垂直起飞、垂直降落、盘旋的能力。在某些实施例中,水平方向的旋转体中的一个或者多个可以顺时针方向旋转,而水平方向的旋转体中的其它一个或者多个可以逆时针方向旋转。例如,顺时针旋转的旋转体与逆时针旋转的旋转体的 数量一样。每一个水平方向的旋转体的旋转速率可以独立变化,以实现每个旋转体导致的提升及/或推动操作,从而调整可移动装置100的空间方位、速度及/或加速度(如相对于多达三个自由度的旋转及平移)。
传感系统108可以包括一个或者多个传感器,以感测可移动装置100的空间方位、速度及/或加速度(如相对于多达三个自由度的旋转及平移)。所述一个或者多个传感器包括前述描述的任何传感器,包括GPS传感器、运动传感器、惯性传感器、近程传感器或者影像传感器。传感系统108提供的感测数据可以用于追踪目标100的空间方位、速度及/或加速度(如下所述,利用适合的处理单元及/或控制单元)。可选的,传感系统108可以用于采集可移动装置的环境的数据,如气候条件、要接近的潜在的障碍、地理特征的位置、人造结构的位置等。
通讯系统110能够实现与具有通讯系统114的终端112通过无线信号116进行通讯。通讯系统110、114可以包括任何数量的用于无线通讯的发送器、接收器、及/或收发器。所述通讯可以是单向通讯,这样数据可以从一个方向发送。例如,单向通讯可以包括,只有可移动装置100传送数据给终端112,或者反之亦然。通讯系统110的一个或者多个发送器可以发送数据给通讯系统112的一个或者多个接收器,反之亦然。可选的,所述通讯可以是双向通讯,这样,数据可以在可移动装置100与终端112之间在两个方向传输。双向通讯包括通讯系统110的一个或者多个发送器可以发送数据给通讯系统114的 一个或者多个接收器,及反之亦然。
在某些实施例中,终端112可以向可移动装置100、承载体102及负载104中的一个或者多个提供控制数据,并且从可移动装置100、承载体102及负载104中的一个或者多个中接收信息(如可移动装置、承载体或者负载的位置及/或运动信息,负载感测的数据,如相机捕获的影像数据)。在某些实施例中,终端的控制数据可以包括关于位置、运动、致动的指令,或者对可移动装置、承载体及/或负载的控制。例如,控制数据可以导致可移动装置位置及/或方向的改变(如通过控制动力机构106),或者导致承载体相对于可移动装置的运动(如通过对承载体102的控制)。终端的控制数据可以导致负载控制,如控制相机或者其它影像捕获设备的操作(捕获静止或者运动的影像、变焦、开启或关闭、切换成像模式、改变影像分辨率、改变焦距、改变景深、改变曝光时间、改变可视角度或者视场)。在某些实施例中,可移动装置、承载体及/或负载的通讯可以包括一个或者多个传感器(如传感系统108或者负载104)发出的信息。所述通讯可以包括从一个或者多个不同类型的传感器(如GPS传感器、运动传感器、惯性传感器、近程传感器或者影像传感器)传送的感应信息。所述感应信息是关于可移动装置、承载体及/或负载的位置(如方向、位置)、运动、或者加速度。从负载传送的感应信息包括负载捕获的数据或者负载的状态。终端112传送提供的控制数据可以用于追踪可移动装置100、承载体102或者负载104中一个或者多个的状态。可选的或者同时地,承载体102及负载104每一个都可以包括通讯模块,用于与 终端112通讯,以便终端可以单独地通讯或者追踪可移动装置100、承载体102及负载104。
在某些实施例中,可移动装置100可以与除了终端112之外的其它远程设备通讯,终端112也可以与除可移动装置100之外的其它远程设备进行通讯。例如,可移动装置及/或终端112可以与另一个可移动装置或者另一个可移动装置的承载体或负载通讯。当有需要的时候,所述另外的远程设备可以是第二终端或者其它计算设备(如计算机、桌上型电脑、平板电脑、智能手机、或者其它移动设备)。该远程设备可以向可移动装置100传送数据,从可移动装置100接收数据,传送数据给终端112,及/或从终端112接收数据。可选的,该远程设备可以连接到因特网或者其它电信网络,以使从可移动装置100及/或终端112接收的数据上传到网站或者服务器上。
在某些实施例中,可移动装置的运动、承载体的运动及负载相对固定参照物(如外部环境)的运动,及/或者彼此间的运动,都可以由终端所控制。所述终端可以是远程控制终端,位于远离可移动装置、承载体及/或负载的地方。终端可以位于或者粘贴于支撑平台上。可选的,所述终端可以是手持的或者穿戴式的。例如,所述终端可以包括智能手机、平板电脑、桌上型电脑、计算机、眼镜、手套、头盔、麦克风或者其中任意的结合。所述终端可以包括用户界面,如键盘、鼠标、操纵杆、触摸屏或者显示器。任何适合的用户输入可以与终端交互,如手动输入指令、声音控制、手势控制或者位置控制(如通过终端的运动、位置或者倾斜)。
图2为本发明实施例提供的一种无人机控制方法流程图。包括:
无人机怠速。无人机上电解锁后,电机怠速,不同型号无人机,怠速时电机转速可以不同,可以是1000~3000转/分钟,例如2000转/分钟。此时惯性测量单元(inertial measurement unit,IMU)开始工作,利用IMU观测无人机的加速度、角速度,进而获得无人机的姿态。依靠视觉系统观测速度。这一阶段是准备阶段,各传感器开始工作,提供观测数据,但控制环路并不输出。
检测无人机是否已经抛飞。用户在抛飞无人机时,无人机可以通过检测无人机速度变化、或通过传感系统感测等方式,判断无人机是否已抛离用户。
无人机抛飞方向是否满足预设条件。无人机抛离用户时,针对速度做一个检测,以判断抛飞方向是否满足预设条件。如果检测速度方向是相对于水平方向斜向上的(例如,检测速度与水平方向夹角为0°~90°),则满足预设条件;如果检测速度是相对于水平方向斜向下的,则不满足预设条件。当检测速度是斜向下时,可能是用户操作失误,若此时起转电机容易伤到人,为保证安全,判定此时抛飞失败,可以控制无人机平稳降落,或者停转电机。
调整无人机姿态和朝向。当无人机抛飞方向满足预设条件后,进入姿态模式,将无人机控制到预设姿态角。预设姿态角可以是无人机的刹车限制角度,即无人机的最大刹车姿态角。预设姿态角可以包括预设俯仰角、预设横滚角中至少一种。具体的,预设姿态角可以是小 于或等于45°,可以是小于或等于30°,例如,可以是30°,使之在水平方向上有一定的反向加速度,水平方向上开始减速。如果检测到抛飞的方向上没有障碍物感知系统,那么也可以调整无人机朝向,使得抛飞方向上有障碍物感知模块。障碍物感知系统可以是视觉系统、TOF(time of fight)系统、超声波、或激光雷达中至少一种。例如,只有前视视觉系统的时候,把机头朝向当前速度方向,以便能够检测前方障碍物,及时作出应急安全处理。可选的,调整无人机至预设姿态角后,在姿态模式下控制无人机至稳定状态。具体的,可以在姿态模式下控制所述无人机稳定预设时长。无人机抛飞后,进入姿态模式,调整姿态角,并稳定预设时长,可以减少无人机的震荡,并平滑的过渡到下一个飞行状态。
检测无人机状态,并拟合无人机悬停位置。当无人机调整到预设姿态角后,检测此时无人机的状态,例如,垂直方向上的速度Vz,加速度az,以及水平方向上的速度Vx。无人机会根据抛离时的初始速度来规划飞行方向,例如,延续抛飞方向。具体地,依据垂直方向速度Vz、垂直加速度az、以及水平速度Vx,计算悬停位置。
如图3所示,无人机调整至预设姿态角θ,此时检测得到的初始速度V0与水平方向夹角为α。无人机在竖直方向上具有初始速度Vz,水平方向具有初始速度Vx,Vz与Vx的矢量和为无人机的检测得到的初始速度V0。受到重力影响,有个竖直向下的加速度g。同时无人机升力F竖直方向分量产生竖直加速度
Figure PCTCN2016100385-appb-000001
其中,m为无人机质量。因抛飞无人机时,初始速度较小,此时空气阻力可以忽略不计,因此, 在竖直方向上加速度可以表示为:
Figure PCTCN2016100385-appb-000002
如果想尽可能快的减速,需要az接近g,即需要取较大的θ角度,例如,选取θ为30°。
可以沿着此时V0方向,做延长线,拟合出悬停位置。当前位置(即检测无人机状态的位置)与拟合悬停位置的高度差ΔH为:
Figure PCTCN2016100385-appb-000003
其中,竖直方向速度Vz以及竖直方向加速度az,可以通过检测无人机状态获得,因此可以根据Vz和az计算出ΔH。
当前位置与拟合悬停位置的水平位移为:
Figure PCTCN2016100385-appb-000004
其中,水平速度Vx,也可以通过检测无人机状态获得,结合Vx、Vz和az,可以计算出ΔS。
可选的,无人机调整至预设姿态角后,检测得到当前无人机的水平速度Vx、竖直速度Vz以及水平加速度ax,可以计算得到当前位置与拟合悬停位置的水平位移ΔS、高度差ΔH,
Figure PCTCN2016100385-appb-000005
Figure PCTCN2016100385-appb-000006
依据计算得到的ΔS和ΔH,得出拟合悬停位置为:
Htargetnow+ΔH
Stargetnow+ΔS
其中,Hnow为当前高度,即检测无人机状态时的高度,可以通过高度传感器得到,高度传感器可以是超声波、TOF、视觉系统、GPS、气压计中至少一种。Snow为当前水平方向上的位置,可以通过位置传感器获取,位置传感器可以是视觉里程计、GPS中至少一种。再结合计算得到的ΔH和ΔS,就可以得到拟合悬停位置的高度与水平位置。
拟合出来的悬停位置和实际抛物线可能有一个小的高度差δ,可以根据实测的经验值,对拟合位置的高度进行修正:
Htargetnow+ΔH+δ
δ是修正参数,可通过多次实验测量、调整得到经验值。
控制无人机飞行至悬停位置。得到了Htarget和Starget,控制无人机平稳的飞到拟合悬停位置。到达拟合悬停位置一定范围内,即可认为已收敛,完成定点悬停。
||H-Htarget||<εH
||S-Starget||<εS
其中,εH和εS为预设的收敛参数,可以在产品中预配置好,可选的,可以允许用户修改。
在一些实施例中,采用自动闭环控制策略,控制所述无人机飞行到所述悬停位置。可选的,自动闭环控制策略包括以下至少一种:比例-积分-微分控制、或比例-微分控制。
图4为本发明实施例提供的另一种无人机控制方法流程图。包括:
S401,获取无人机的状态信息。
用户将无人机抛飞,当无人机检测到已经抛飞后,检测无人机的状态信息。
可选的,状态信息包括以下至少一项:速度、加速度、或当前位置。
S402,根据所述状态信息拟合无人机的悬停位置。
在一些实施例中,获取的状态信息中,速度包括水平速度和竖直速度,加速度包括水平加速度和竖直加速度。根据获取的水平速度及水平加速度,计算当前位置与拟合的悬停位置的水平位移;根据计算得到的水平位移、获取的水平速度及竖直速度,计算当前位置与悬停位置的高度差;根据计算得到的水平位移、高度差及当前位置,拟合悬停位置。
在一些实施例中,获取的状态信息中,速度包括水平速度和竖直速度,加速度包括水平加速度和竖直加速度。根据获取的竖直速度及竖直加速度,计算当前位置与拟合的悬停位置的高度差;根据计算得到的高度差、获取的竖直速度及水平速度,计算当前位置与悬停位置的水平位移;根据计算得到的高度差、水平位移及当前位置,拟合悬停位置。
S403,控制所述无人机飞行到所述悬停位置。
在一些实施例中,采用自动闭环控制策略,控制所述无人机飞行到所述悬停位置。
可选的,自动闭环控制策略包括以下至少一种:比例-积分-微分 控制、或比例-微分控制。
在一些实施例中,在无人机检测到已经抛飞之后,且在获取无人机状态之前,控制无人机进入姿态模块。
在一些实施例中,在控制无人机进入姿态模式之后,调整无人机至预设姿态角。
所述预设姿态角包括预设俯仰角、预设横滚角中至少一种。
可选的,预设姿态角小于或等于30度。具体的,可以选取刹车限制角度,例如30度。
在一些实施例中,在调整所述无人机至预设姿态角之后,在姿态模式下控制所述无人机至稳定状态。具体的,在姿态模式下控制所述无人机稳定预设时长。该预设时长可以是预先配置好,也可以是通过多次试验飞行获得的经验数据。
在一些实施例中,在无人机检测到已经抛飞之后,且在获取无人机状态之前,调整无人机至预设方向。可选的,将无人机携带障碍物感知系统的方向朝向抛飞方向,障碍物感知模块可以是视觉系统、TOF系统、超声波系统、或激光雷达中的至少一种。如果检测到抛飞的方向上没有障碍物感知模块,可以调整无人机朝向。例如,只有前视视觉系统的时候,可以把机头朝向当前抛飞方向,以便能够检测前方障碍物,及时作出应急安全处理。
图5为本发明实施例提供的一种无人机控制装置示意图。包括:
获取模块501,用于获取无人机的状态信息。状态信息可以包括 以下至少一项:速度、加速度、或当前位置。
拟合模块502,用于根据所述状态信息拟合无人机的悬停位置。
在一些实施例中,获取模块501获取的状态信息中,速度包括水平速度和竖直速度,加速度包括水平加速度和竖直加速度。拟合模块502,根据获取的水平速度及水平加速度,计算当前位置与拟合的悬停位置的水平位移;根据计算得到的水平位移、获取的水平速度及竖直速度,计算当前位置与悬停位置的高度差;根据计算得到的水平位移、高度差及当前位置,拟合悬停位置。
在一些实施例中,获取模块501获取的状态信息中,速度包括水平速度和竖直速度,加速度包括水平加速度和竖直加速度。拟合模块502,根据获取的竖直速度及竖直加速度,计算当前位置与拟合的悬停位置的高度差;根据计算得到的高度差、获取的竖直速度及水平速度,计算当前位置与悬停位置的水平位移;根据计算得到的高度差、水平位移及当前位置,拟合悬停位置。
控制模块503,用于控制所述无人机飞行到所述悬停位置。
在一些实施例中,控制模块503采用自动闭环控制策略,控制所述无人机飞行到所述悬停位置。
可选的,自动闭环控制策略包括以下至少一种:比例-积分-微分控制、或比例-微分控制。
在一些实施例中,在无人机检测到已经抛飞之后,获取模块501获取无人机状态之前,控制模块503控制无人机进入姿态模块。
在一些实施例中,在控制无人机进入姿态模式之后,控制模块503 调整无人机至预设姿态角。
可选的,预设姿态角小于或等于30度。具体的,可以选取刹车限制角度,例如30度。
可选的,预设姿态角可以是无人机的刹车限制角度,即无人机的最大刹车姿态角。
可选的,预设姿态角包括预设俯仰角、预设横滚角中至少一种。
在一些实施例中,控制模块503,还用于调整无人机至预设姿态角后,在姿态模式下控制所述无人机至稳定状态。控制模块503,具体用于在姿态模式下控制所述无人机稳定预设时长。该预设时长可以是预先配置好,也可以是通过多次试验飞行获取的经验数据。可选的,在无人机检测到已经抛飞之后,且在获取模块501获取无人机状态之前,控制模块503调整无人机至预设方向。可选的,控制模块503将无人机携带障碍物感知系统的方向朝向抛飞方向,障碍物感知模块可以是视觉系统、TOF系统、超声波系统中的至少一种。如果检测到抛飞的方向上没有障碍物感知系统,可以调整无人机朝向。例如,只有前视视觉系统的时候,可以把机头朝向当前速度方向,以便能够检测前方障碍物,及时作出应急安全处理。
如图6所示,本发明还提供了一种无人机控制装置,包括:
存储器,用于存储无人机控制程序;
一个或多个处理器,用于调用所述程序执行以下步骤:
获取无人机的状态信息;
根据所述状态信息拟合所述无人机的悬停位置;
控制所述无人机飞行到所述悬停位置。
如图7所示,本发明还提供了一种无人机系统,包括动力装置,以及前述实施例中的无人机控制装置。
在一些实施例中,动力装置包括以下至少一项:电机、电调、或螺旋桨。
本发明还提供了一种存储介质,用于存储指令,其指令用于执行本发明所提供的无人机控制方法的步骤。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上对本发明所提供的联网验证方法及装置、无人机系统、及存储介质进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (32)

  1. 一种无人机控制方法,其特征在于,包括:
    获取无人机的状态信息;
    根据所述状态信息拟合所述无人机的悬停位置;
    控制所述无人机飞行到所述悬停位置。
  2. 根据权利要求1所述的方法,其特征在于,所述状态信息包括以下至少一项:速度、加速度、或当前位置。
  3. 根据权利要求2所述的方法,其特征在于,所述速度包括水平速度和竖直速度,所述加速度包括水平加速度和竖直加速度;
    所述根据所述状态信息拟合无人机的悬停位置,包括:
    根据所述水平速度及所述水平加速度,计算所述当前位置与悬停位置的水平位移;根据所述水平位移、水平速度及竖直速度,计算所述当前位置与悬停位置的高度差;根据所述水平位移、所述高度差及所述当前位置,拟合悬停位置。
  4. 根据权利要求2所述的方法,其特征在于,所述速度包括水平速度和竖直速度,所述加速度包括水平加速度和竖直加速度;
    所述根据所述状态信息计算无人机的悬停位置,包括:
    根据所述竖直速度及所述竖直加速度,计算所述当前位置与悬停位置的高度差;根据所述高度差、所述竖直速度及所述水平速度,计算所述当前位置与所述悬停位置的水平位移;根据所述高度差、所述水平位移及所述当前位置,拟合悬停位置。
  5. 根据权利要求1所述的方法,其特征在于,所述控制所述无人机飞行到所述悬停位置包括:采用自动闭环控制策略,控制所述无人机飞行到所述悬停位置。
  6. 根据权利要求5所述的方法,其特征在于,所述自动闭环控制策略包括以下至少一种:比例-积分-微分控制、或比例-微分控制。
  7. 根据权利要求1所述的方法,其特征在于,在所述无人机抛飞之后,且在获取无人机状态之前,所述方法还包括:控制无人机进入姿态模式。
  8. 根据权利要求7所述的方法,其特征在于,在控制所述无人机进入姿态模式后,所述方法还包括:调整无人机至预设姿态角。
  9. 根据权利要求8所述的方法,其特征在于,所述预设姿态角小于或等于30度。
  10. 根据权利要求8所述的方法,其特征在于,在调整所述无人机至预设姿态角之后,所述方法还包括:在姿态模式下控制所述无人机至稳定状态。
  11. 根据权利要求10所述的方法,其特征在于,所述在姿态模式下控制所述无人机至稳定状态,包括:在姿态模式下控制所述无人机稳定预设时长。
  12. 根据权利要求1所述的方法,其特征在于,在所述无人机抛飞之后,且在获取无人机状态之前,所述方法还包括:调整所述无人机至预设方向。
  13. 根据权利要求12所述的方法,其特征在于,所述调整所述无 人机至预设方向包括:将所述无人机携带障碍物感知系统的方向朝向抛飞方向。
  14. 根据权利要求13所述的方法,其特征在于,所述障碍物感知系统包括以下至少一项:视觉系统、TOF系统、超声波、或激光雷达。
  15. 一种无人机控制装置,其特征在于,包括:
    获取模块,用于获取无人机的状态信息;
    拟合模块,用于根据所述状态信息拟合所述无人机的悬停位置;
    控制模块,用于控制所述无人机飞行到所述悬停位置。
  16. 根据权利要求15所述的装置,其特征在于,所述状态信息包括以下至少一项:速度、加速度、或当前位置。
  17. 根据权利要求16所述的装置,其特征在于,所述速度包括水平速度和竖直速度,所述加速度包括水平加速度和竖直加速度;
    所述拟合模块具体用于,根据所述水平速度及所述水平加速度,计算所述当前位置与拟合的悬停位置的水平位移;根据所述水平位移、所述水平速度及所述竖直速度,计算所述当前位置与所述悬停位置的高度差;根据所述位移、所述高度差及所述当前位置,拟合悬停位置。
  18. 根据权利要求16所述的装置,其特征在于,所述速度包括水平速度和竖直速度,所述加速度包括水平加速度和竖直加速度;
    所述拟合模块具体用于,根据所述竖直速度及所述竖直加速度,计算所述当前位置与所述悬停位置的高度差;根据所述高度差、所述竖直速度及所述水平速度,计算所述当前位置与所述悬停位置的水平位移;根据所述高度差、所述水平位移及所述当前位置,拟合悬停位 置。
  19. 根据权利要求15所述的装置,其特征在于,所述控制模块具体用于,采用自动闭环控制策略,控制所述无人机飞行到所述悬停位置。
  20. 根据权利要求19所述的装置,其特征在于,所述自动闭环控制策略包括以下至少一种:比例-积分-微分控制、或比例-微分控制。
  21. 根据权利要求15所述的装置,其特征在于,在无人机抛飞之后,且在所述获取模块获取无人机状态信息之前,所述控制模块还用于控制所述无人机进入姿态模式。
  22. 根据权利要求21所述的装置,其特征在于,所述控制模块,在控制所述无人机进入姿态模式之后,还用于调整所述无人机至预设姿态角。
  23. 根据权利要求22所述的装置,其特征在于,所述预设姿态角小于或等于30度。
  24. 根据权利要求22所述的装置,其特征在于,所述控制模块,在调整所述无人机至预设姿态角之后,还用于在姿态模式下控制所述无人机至稳定状态。
  25. 根据权利要求24所述的装置,其特征在于,所述控制模块具体用于,在姿态模式下控制所述无人机稳定预设时长。
  26. 根据权利要求15所述的装置,其特征在于,在所述无人机抛飞之后,且在所述获取模块获取无人机状态信息之前,所述控制模块还用于调整无人机至预设方向。
  27. 根据权利要求26所述的装置,其特征在于,所述控制模块具体用于,将无人机携带障碍物感知系统的方向朝向抛飞方向。
  28. 根据权利要求27所述的装置,其特征在于,所述障碍物感知系统包括以下至少一项:视觉系统、TOF系统、超声波、或激光雷达。
  29. 一种无人机控制装置,包括:
    存储器,用于存储程序;
    一个或多个处理器,用于执行所述程序完成以下步骤:
    获取无人机的状态信息;
    根据所述状态信息拟合所述无人机的悬停位置;
    控制所述无人机飞行到所述悬停位置。
  30. 一种无人机系统,其特征在于,包括如权利要求15至29任一项所述的无人机控制装置,还包括动力装置。
  31. 根据权利要求30所述的系统,其特征在于,所述动力装置包括以下至少一项:电机、电调、或螺旋桨。
  32. 一种存储介质,其特征在于,用于存储指令,所述指令用于执行如权利要求1至14任一项所述的无人机控制方法的步骤。
PCT/CN2016/100385 2016-09-27 2016-09-27 无人机控制方法及装置 WO2018058320A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680004628.6A CN107438805B (zh) 2016-09-27 2016-09-27 无人机控制方法及装置
PCT/CN2016/100385 WO2018058320A1 (zh) 2016-09-27 2016-09-27 无人机控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100385 WO2018058320A1 (zh) 2016-09-27 2016-09-27 无人机控制方法及装置

Publications (1)

Publication Number Publication Date
WO2018058320A1 true WO2018058320A1 (zh) 2018-04-05

Family

ID=60459081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100385 WO2018058320A1 (zh) 2016-09-27 2016-09-27 无人机控制方法及装置

Country Status (2)

Country Link
CN (1) CN107438805B (zh)
WO (1) WO2018058320A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116828132A (zh) * 2023-07-05 2023-09-29 广州磐碟塔信息科技有限公司 一种虚拟摄影的控制方法及其系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108124472B (zh) * 2017-12-26 2022-03-29 深圳市道通智能航空技术股份有限公司 一种闪避障碍物的方法、装置及飞行器
JP6751935B2 (ja) * 2018-02-28 2020-09-09 株式会社ナイルワークス 安全性を向上した農業用ドローン
CN108839808A (zh) * 2018-07-05 2018-11-20 上海歌尔泰克机器人有限公司 飞行控制装置和无人飞行器
CN108803645B (zh) * 2018-08-03 2021-07-13 成都纵横自动化技术股份有限公司 无人机迫降方法、装置、自动驾驶仪及无人机
CN111307144B (zh) * 2018-12-11 2022-02-08 杭州海康机器人技术有限公司 检测无人机歪斜的方法、装置及系统
CN109828274B (zh) * 2019-01-07 2022-03-04 深圳市道通智能航空技术股份有限公司 调整机载雷达的主探测方向的方法、装置和无人机
CN110531617B (zh) * 2019-07-30 2021-01-08 北京邮电大学 多无人机3d悬停位置联合优化方法、装置和无人机基站
CN111552307A (zh) * 2020-05-15 2020-08-18 航迅信息技术有限公司 一种无人机快速悬停方法
CN112304312B (zh) * 2020-09-17 2022-09-13 合肥赛为智能有限公司 一种基于最小二乘法与ekf的无人机姿态解算方法及系统
CN112462798B (zh) * 2020-12-04 2021-05-28 三生万物(北京)人工智能技术有限公司 一种无人机及提高无人机航线飞行性能的方法
CN114902151A (zh) * 2020-12-30 2022-08-12 深圳市大疆创新科技有限公司 无人机控制方法、装置、无人机、终端、系统及存储介质
CN113485445A (zh) * 2021-08-11 2021-10-08 深圳微希科技有限公司 无人机减速悬停控制方法、装置、电子设备及存储介质
CN114089777A (zh) * 2021-11-22 2022-02-25 广州市华科尔科技股份有限公司 一种抛飞无人机的控制方法及装置
CN114460967B (zh) * 2022-02-09 2022-12-02 沃飞长空科技(成都)有限公司 无人机的起飞方法、系统、终端设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110320068A1 (en) * 2010-06-24 2011-12-29 Hon Hai Precision Industry Co., Ltd. Electronic device and method for controlling unmanned aerial vehicle using the same
CN103365297A (zh) * 2013-06-29 2013-10-23 天津大学 基于光流的四旋翼无人机飞行控制方法
CN104044734A (zh) * 2014-06-20 2014-09-17 中国科学院合肥物质科学研究院 具有可倾斜机翼和旋翼的多旋翼无人机及控制系统和方法
CN204390044U (zh) * 2015-01-29 2015-06-10 北京中科遥数信息技术有限公司 一种优化无人机飞行记录的装置
CN105045286A (zh) * 2015-09-16 2015-11-11 北京中科遥数信息技术有限公司 一种基于自驾仪和遗传算法的监测无人机悬停范围的方法
CN105527974A (zh) * 2016-01-31 2016-04-27 中国人民解放军国防科学技术大学 一种缺失径向控制的欠驱动航天器悬停渐近控制方法
CN105527972A (zh) * 2016-01-13 2016-04-27 深圳一电航空技术有限公司 无人机飞行控制方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2964573B1 (fr) * 2010-09-15 2012-09-28 Parrot Procede de pilotage d'un drone a voilure tournante a rotors multiples
CN105446356A (zh) * 2015-12-17 2016-03-30 小米科技有限责任公司 无人机控制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110320068A1 (en) * 2010-06-24 2011-12-29 Hon Hai Precision Industry Co., Ltd. Electronic device and method for controlling unmanned aerial vehicle using the same
CN103365297A (zh) * 2013-06-29 2013-10-23 天津大学 基于光流的四旋翼无人机飞行控制方法
CN104044734A (zh) * 2014-06-20 2014-09-17 中国科学院合肥物质科学研究院 具有可倾斜机翼和旋翼的多旋翼无人机及控制系统和方法
CN204390044U (zh) * 2015-01-29 2015-06-10 北京中科遥数信息技术有限公司 一种优化无人机飞行记录的装置
CN105045286A (zh) * 2015-09-16 2015-11-11 北京中科遥数信息技术有限公司 一种基于自驾仪和遗传算法的监测无人机悬停范围的方法
CN105527972A (zh) * 2016-01-13 2016-04-27 深圳一电航空技术有限公司 无人机飞行控制方法及装置
CN105527974A (zh) * 2016-01-31 2016-04-27 中国人民解放军国防科学技术大学 一种缺失径向控制的欠驱动航天器悬停渐近控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116828132A (zh) * 2023-07-05 2023-09-29 广州磐碟塔信息科技有限公司 一种虚拟摄影的控制方法及其系统

Also Published As

Publication number Publication date
CN107438805A (zh) 2017-12-05
CN107438805B (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2018058320A1 (zh) 无人机控制方法及装置
US11188101B2 (en) Method for controlling aircraft, device, and aircraft
US10824149B2 (en) System and method for automated aerial system operation
US11604479B2 (en) Methods and system for vision-based landing
WO2018107419A1 (zh) 控制方法、装置、设备及可移动平台
JP6816156B2 (ja) Uav軌道を調整するシステム及び方法
WO2018209702A1 (zh) 无人机的控制方法、无人机以及机器可读存储介质
WO2018094583A1 (zh) 无人机避障控制方法、飞行控制器及无人飞行器
US9625907B2 (en) Velocity control for an unmanned aerial vehicle
CN106200681B (zh) 可移动物体的起飞辅助的方法以及系统
WO2018098784A1 (zh) 无人机的控制方法、装置、设备和无人机的控制系统
CN110347171B (zh) 一种飞行器控制方法及飞行器
WO2018098704A1 (zh) 控制方法、设备、系统、无人机和可移动平台
WO2018116028A1 (en) System and method for controller-free user drone interaction
JP2019537306A (ja) 撮像装置により取得された画像を制御するためのシステム及び方法
WO2018094626A1 (zh) 无人飞行器的避障控制方法及无人飞行器
CN112650267B (zh) 一种飞行器的飞行控制方法、装置及飞行器
CN105159321B (zh) 一种基于无人飞行器的拍照方法和无人飞行器
WO2017201698A1 (zh) 一种追踪目标的方法及装置
US10331120B2 (en) Remote control device, control system and method of controlling
KR102220394B1 (ko) 자동 항공 시스템 동작을 위한 시스템 및 방법
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
WO2021238743A1 (zh) 一种无人机飞行控制方法、装置及无人机
WO2020014930A1 (zh) 无人机的控制方法、装置和无人机
WO2020062024A1 (zh) 基于无人机的测距方法、装置及无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917080

Country of ref document: EP

Kind code of ref document: A1