WO2021237481A1 - 无人飞行器的控制方法和设备 - Google Patents

无人飞行器的控制方法和设备 Download PDF

Info

Publication number
WO2021237481A1
WO2021237481A1 PCT/CN2020/092419 CN2020092419W WO2021237481A1 WO 2021237481 A1 WO2021237481 A1 WO 2021237481A1 CN 2020092419 W CN2020092419 W CN 2020092419W WO 2021237481 A1 WO2021237481 A1 WO 2021237481A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
unmanned aerial
aerial vehicle
amount
speed
Prior art date
Application number
PCT/CN2020/092419
Other languages
English (en)
French (fr)
Inventor
王璐
贾向华
闫光
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/092419 priority Critical patent/WO2021237481A1/zh
Priority to CN202080025928.9A priority patent/CN113994292A/zh
Publication of WO2021237481A1 publication Critical patent/WO2021237481A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the embodiments of the present application relate to the technical field of unmanned aerial vehicles, and in particular to a control method and equipment of an unmanned aerial vehicle.
  • the unmanned aerial vehicle can either fly autonomously according to a planned trajectory in advance, or it can be manually controlled by the user to fly.
  • the plant protection drone can automatically fly and operate according to a pre-planned route, or it can be controlled by the user's manual operation in real time to fly and operate.
  • the operation content can include spraying, sowing and so on.
  • the embodiments of the present application provide a control method and equipment for an unmanned aerial vehicle, which are used to avoid the control deviation of the unmanned aerial vehicle and are easy for users to operate.
  • an embodiment of the present application provides a control method of an unmanned aerial vehicle, including:
  • an embodiment of the present application provides a control method of an unmanned aerial vehicle, including:
  • the first target speed of the UAV is determined according to at least one control stick amount received within the preset time period
  • an embodiment of the present application provides a control device for an unmanned aerial vehicle, including:
  • the communication device is used to receive the lock instruction sent by the control terminal;
  • the communication device When the communication device receives the pitch control lever amount sent by the control terminal, it controls the UAV along the first yaw direction or the second yaw direction indicated by the nose of the UAV according to the pitch control lever amount Flying, wherein the second yaw direction deviates from the first yaw direction;
  • an embodiment of the present application provides a control device for an unmanned aerial vehicle, including:
  • the communication device is used to receive the control rod amount sent by the control terminal;
  • the processor is configured to: if the communication device continuously receives the control lever amount sent by the control terminal within a preset time period after the first moment, determine the control lever amount according to the at least one control lever amount received within the preset time period The first target speed of the unmanned aerial vehicle; controlling the unmanned aerial vehicle to keep flying at the first target speed.
  • an embodiment of the present application provides an unmanned aerial vehicle, including the control device of the unmanned aerial vehicle described in the embodiment of the present application in the third aspect or the fourth aspect.
  • an embodiment of the present application provides a computer-readable storage medium that stores a computer program that, when executed, realizes the implementation of the present application as in the first aspect or the second aspect The control method of the unmanned aerial vehicle described in the example.
  • an embodiment of the present application provides a computer program product, the computer program product includes a computer program, the computer program is stored in a readable storage medium, and at least one processor can read from the readable storage medium The computer program, and the at least one processor executes the computer program to implement the control method of the unmanned aerial vehicle according to the embodiment of the present application in the first aspect or the second aspect.
  • control method and equipment for the unmanned aerial vehicle provided in the embodiments of the present application can ensure that the unmanned aerial vehicle maintains the horizontal direction indicated by the nose and flies straight forward/backward, avoiding misoperation of the control lever and causing flight deviation, so that The flight of human aircraft is more in line with user expectations and improves user experience. Especially when it is applied to the plant protection industry, it can ensure that the unmanned aerial vehicle keeps flying along the planting direction of agricultural operations and improve the accuracy of operations.
  • Fig. 1 is a schematic architecture diagram of an unmanned aerial system according to an embodiment of the present application
  • Figure 2 is a schematic diagram of an application scenario provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of a remote control provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of an unmanned aerial vehicle provided by an embodiment of the application.
  • FIG. 5 is a flowchart of a control method of an unmanned aerial vehicle provided by an embodiment of the application
  • FIG. 6 is a flowchart of a control method of an unmanned aerial vehicle provided by another embodiment of the application.
  • FIG. 7 is a flowchart of a control method of an unmanned aerial vehicle provided by another embodiment of the application.
  • FIG. 8 is a flowchart of a control method of an unmanned aerial vehicle according to another embodiment of the application.
  • Fig. 9 is a schematic structural diagram of a control device for an unmanned aerial vehicle provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of an unmanned aerial vehicle provided by another embodiment of the application.
  • FIG. 11 is a schematic structural diagram of a control system of an unmanned aerial vehicle provided by an embodiment of the application.
  • a component when referred to as being "fixed to” another component, it can be directly on the other component or a centered component may also exist. When a component is considered to be “connected” to another component, it can be directly connected to the other component or there may be a centered component at the same time.
  • the embodiments of the present application provide a control method and equipment for an unmanned aerial vehicle.
  • the embodiments of the present application can be applied to various types of unmanned aerial vehicles.
  • the drone can be a small or large unmanned aerial vehicle.
  • the unmanned aerial vehicle may be a rotorcraft, for example, a multi-rotor unmanned aerial vehicle propelled by a plurality of propelling devices through the air, and the embodiments of the present application are not limited thereto.
  • Fig. 1 is a schematic architecture diagram of an unmanned aerial system according to an embodiment of the present application.
  • a rotary wing unmanned aerial vehicle is taken as an example for description.
  • the unmanned aerial vehicle system 100 may include an unmanned aerial vehicle 110, a display device 130 and a control terminal 140.
  • the unmanned aerial vehicle 110 may include a power system 150, a flight control system 160, a frame, and a pan/tilt 120 carried on the frame.
  • the UAV 110 can wirelessly communicate with the control terminal 140 and the display device 130.
  • the UAV 110 further includes a battery (not shown in the figure), and the battery provides electrical energy for the power system 150.
  • the unmanned aerial vehicle 110 may be an agricultural unmanned aerial vehicle or an industrial application unmanned aerial vehicle, and there is a need for cyclic operation.
  • the battery also has the need for cyclic operation.
  • the frame may include a fuselage and a tripod (also called a landing gear).
  • the fuselage may include a center frame and one or more arms connected to the center frame, and the one or more arms extend radially from the center frame.
  • the tripod is connected to the fuselage, and is used for supporting the UAV 110 when it lands.
  • the power system 150 may include one or more electronic speed governors (referred to as ESCs) 151, one or more propellers 153, and one or more motors 152 corresponding to the one or more propellers 153, wherein the motors 152 are connected to Between the electronic governor 151 and the propeller 153, the motor 152 and the propeller 153 are arranged on the arm of the unmanned aerial vehicle 110; the electronic governor 151 is used to receive the driving signal generated by the flight control system 160 and provide driving according to the driving signal Current is supplied to the motor 152 to control the speed of the motor 152.
  • ESCs electronic speed governors
  • the motor 152 is used to drive the propeller to rotate, so as to provide power for the flight of the unmanned aerial vehicle 110, and the power enables the unmanned aerial vehicle 110 to realize movement of one or more degrees of freedom.
  • UAV 110 may rotate about one or more rotation axes.
  • the aforementioned rotation axis may include a roll axis (Roll), a yaw axis (Yaw), and a pitch axis (pitch).
  • the motor 152 may be a DC motor or an AC motor.
  • the motor 152 may be a brushless motor or a brushed motor.
  • the flight control system 160 may include a flight controller 161 and a sensing system 162.
  • the sensing system 162 is used to measure the attitude information of the UAV, that is, the position information and state information of the UAV 110 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system 162 may include, for example, at least one of sensors such as a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the flight controller 161 is used to control the flight of the unmanned aerial vehicle 110.
  • the flight of the unmanned aerial vehicle 110 can be controlled according to the attitude information measured by the sensor system 162. It should be understood that the flight controller 161 can control the unmanned aerial vehicle 110 according to pre-programmed instructions, and can also control the unmanned aerial vehicle 110 by responding to one or more remote control signals from the control terminal 140.
  • the pan/tilt head 120 may include a motor 122.
  • the pan/tilt is used to carry a load, and the load may be, for example, the camera 123.
  • the flight controller 161 can control the movement of the pan-tilt 120 through the motor 122.
  • the pan/tilt head 120 may further include a controller for controlling the movement of the pan/tilt head 120 by controlling the motor 122.
  • the pan-tilt 120 may be independent of the unmanned aerial vehicle 110 or a part of the unmanned aerial vehicle 110.
  • the motor 122 may be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brushed motor.
  • the pan/tilt may be located on the top of the unmanned aerial vehicle or on the bottom of the unmanned aerial vehicle.
  • the photographing device 123 may be, for example, a device for capturing images, such as a camera or a video camera, and the photographing device 123 may communicate with the flight controller and take pictures under the control of the flight controller.
  • the imaging device 123 of this embodiment at least includes a photosensitive element, and the photosensitive element is, for example, a Complementary Metal Oxide Semiconductor (CMOS) sensor or a Charge-coupled Device (CCD) sensor. It can be understood that the camera 123 can also be directly fixed on the UAV 110, so the pan/tilt 120 can be omitted.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the display device 130 is located at the ground end of the unmanned aerial vehicle 100, can communicate with the unmanned aerial vehicle 110 in a wireless manner, and can be used to display the attitude information of the unmanned aerial vehicle 110.
  • the image photographed by the photographing device 123 may also be displayed on the display device 130. It should be understood that the display device 130 may be an independent device or integrated in the control terminal 140.
  • the control terminal 140 is located on the ground end of the unmanned aerial vehicle 100 and can communicate with the unmanned aerial vehicle 110 in a wireless manner for remote control of the unmanned aerial vehicle 110.
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the application.
  • an unmanned aerial vehicle 201 and a control terminal 202 of the unmanned aerial vehicle are shown in FIG. 2.
  • the control terminal 202 of the unmanned aerial vehicle 201 may be one or more of a remote control, a smart phone, a desktop computer, a laptop computer, and a wearable device (watch, bracelet).
  • the control terminal 202 is the remote controller 2021 and the terminal device 2022 as an example for schematic description.
  • the terminal device 2022 is, for example, a smart phone, a wearable device, a tablet computer, etc., but the embodiment of the present application is not limited thereto.
  • the remote controller 2021 can communicate with the unmanned aerial vehicle 201, and the user can control the flight status of the unmanned aerial vehicle 201 by manipulating the control lever on the remote control.
  • the control levers are generally divided into pitch control lever, yaw control lever, and roll.
  • the control lever and the throttle control lever respectively control the aircraft to fly forward and backward, turn heading, fly left and right and fly up and down, and the amount of sticks in each direction are independent of each other, and the control is decoupled.
  • the remote control 2021 can be equipped with 4 physical control levers, namely the pitch control lever, the yaw control lever, the roll control lever and the throttle control lever are 4 physically independent control levers; or, on the remote control 2021 Two physical control rods can be set, and each physical control rod can realize the functions of two kinds of control rods. Several physical control rods are specifically set on the remote controller 2021, which is not limited in this embodiment.
  • the two physical control rods are the left control rod 2021a and the right control rod 2021b, respectively.
  • the control lever 2021a on the left is used to implement the functions of the roll control lever and the throttle control lever.
  • the control lever 2021a is a roll control lever.
  • the control lever 2021a is Throttle lever.
  • the control lever 2021b on the right is used to realize the functions of the pitch control lever and the yaw control lever.
  • the control lever 2021b is the yaw control lever.
  • the control lever 2021a is Pitch control lever.
  • the remote controller can detect the user's operation of the pitch lever to generate a pitch control lever amount, and the UAV controls the unmanned aerial vehicle according to the pitch control lever amount.
  • the pitch attitude of the aircraft At this time, the UAV controls the UAV to fly along the first yaw direction or the second yaw direction indicated by the nose of the UAV, wherein the second yaw direction is away from the first yaw direction.
  • a yaw direction For example, when the user pushes the control stick 2021b forward, it means that the UAV 201 is controlled to fly forward.
  • the remote controller 2021 sends the pitch control lever amount to the UAV 201, and the UAV 201 pitches according to the pitch control stick amount.
  • Rotating in direction 401 makes the nose 2011 of the unmanned aerial vehicle rotate downward to be lower than the tail, so that the unmanned aerial vehicle 201 flies forward.
  • the amount of the nose 2011 of the unmanned aerial vehicle below the tail is equal to the amount of the pitch control lever.
  • the amount of the pitch control lever is related to the degree to which the user pushes the control lever 2021b forward. Among them, the user can refer to the implementation scheme of pushing the control rod 2021b forward to make the UAV 201 fly forward by pushing the control rod 2021b backward to make the UAV 201 fly forward, which will not be repeated here.
  • the remote controller can detect the operation of the yaw lever by the user to generate a yaw control lever amount, and the unmanned aerial vehicle controls the yaw attitude of the unmanned aerial vehicle according to the yaw control lever amount to adjust the yaw direction of the unmanned aerial vehicle. For example, when the user moves the control lever 2021b to the right, it means that the UAV 201 is controlled to the right. At this time, the remote controller 2021 sends the yaw control lever amount to the UAV 201, and the UAV 201 performs the operation according to the yaw control lever amount.
  • the yaw direction 402 rotates so that the nose 2011 of the unmanned aerial vehicle 201 rotates to the right, so that the heading of the unmanned aerial vehicle 201 is deviated to the right.
  • the degree to the right of the unmanned aerial vehicle 201 is related to the amount of the yaw control lever.
  • the amount of the yaw control lever is related to the degree to which the user pushes the control lever 2021b to the right.
  • the user pushes the control rod 2021b to the left to make the UAV 201 fly to the left, and can refer to the implementation scheme of pushing the control rod 2021b to the right to make the UAV 201 fly to the right, which will not be repeated here.
  • the remote controller 2021 sends the amount of the throttle control lever to the UAV 201, and the UAV 201 increases according to the amount of the throttle control lever.
  • the height of the UAV is related to the amount of the throttle control lever
  • the amount of the throttle control lever is related to the degree to which the user pushes the control lever 2021a forward.
  • the user can refer to the implementation scheme of pushing the control rod 2021a forward to raise the UAV 201 by pushing the control rod 2021a backward to make the UAV aircraft 201 descend, which will not be repeated here.
  • the remote controller can detect the user's operation of the roll lever to generate a roll control lever amount.
  • the unmanned aerial vehicle controls the roll attitude of the unmanned aerial vehicle according to the roll control lever amount.
  • the unmanned aerial vehicle controls the unmanned aerial vehicle.
  • the aircraft flies along the third yaw direction or the fourth yaw direction indicated by the nose of the unmanned aerial vehicle, wherein the third yaw direction deviates from the fourth yaw direction, the third yaw direction and the fourth yaw direction
  • the heading is perpendicular to the first yaw heading. For example, when the user pushes the control lever 2021a to the right, it means that the UAV 201 is controlled to turn right to fly.
  • the remote controller 2021 sends the amount of the roll control lever to the UAV 201, and the UAV 201 responds to the amount of the roll control lever.
  • the roll direction 403 is turned, so that it rolls to the right along the first yaw direction indicated by the nose of the UAV 201, that is, it flies along the right side of the first yaw direction indicated by the nose of the UAV 201, wherein,
  • the degree of the unmanned aerial vehicle's rightward roll is related to the amount of the roll control lever
  • the size of the roll control lever is related to the degree to which the user pushes the control lever 2021a to the right.
  • the user pushes the control rod 2021a to the left to make the UAV 201 roll to the left, and can refer to the implementation scheme of pushing the control rod 2021a to the right to roll the UAV to the left, which will not be repeated here.
  • the unmanned aerial vehicle 201 is in the manual mode, that is, the flight of the unmanned aerial vehicle 201 is controlled by the user operating the control stick.
  • the control stick 2021a or the control stick 2021b to control a certain direction of the UAV 201
  • the control stick 2021b forward and backward to generate a pitch control stick amount to control the UAV 201 to fly forward and backward
  • unmanned aerial vehicles are used in the agricultural industry, crops are generally planted along a straight line.
  • the unmanned aerial vehicle 201 can be used as a plant protection drone to spray and sow a row of crops, it needs to be straight forward or facing along the planting direction of the crops.
  • the spraying and dissemination of agricultural operations will be inaccurate, and resources will be wasted.
  • this application provides a lock mode to avoid the problem of coupling of the control levers in other directions when the user is manipulating the control sticks, so that the heading of the UAV is no longer interfered by the control sticks in other directions, so that the unmanned The flight path of the aircraft flew straight.
  • the unmanned aerial vehicle 201 is in manual mode, which requires the user to manipulate the control stick for a long time, which is prone to fatigue and misoperation, and when flying beyond the visual range, the user needs to stare at the display of the control terminal for a long time, so that the control can be controlled.
  • the focus of the lever is weakened, and it is easy to mishandle and cause a bomber accident. Therefore, this application proposes a constant speed mode to prevent the user from directly releasing the control stick when the flying speed of the unmanned aerial vehicle is appropriate, without the need to keep pushing the control stick, thereby reducing flight fatigue and continuous control of over-the-horizon flight.
  • the unmanned aerial vehicle 201 is in the manual mode. Due to the unskilled control of the novice user, bombing accidents occur from time to time. For example, in manual mode, the user needs to pay attention to the UAV's flight speed, flight trajectory, and whether there are obstacles around it at the same time. Therefore, this application proposes a speed limit mode, which effectively avoids the situation that the control lever is manipulated too strongly in an emergency during flight, and it is easier for novice users to get started.
  • a speed limit mode which effectively avoids the situation that the control lever is manipulated too strongly in an emergency during flight, and it is easier for novice users to get started.
  • the method of each embodiment of the present application can be applied to a control device of an unmanned aerial vehicle.
  • the control equipment of the unmanned aerial vehicle may be arranged on the unmanned aerial vehicle; or, a part of the control equipment of the unmanned aerial vehicle is arranged on the unmanned aerial vehicle, and the other part is arranged on the control terminal of the unmanned aerial vehicle.
  • the control device of the unmanned aerial vehicle is set in the unmanned aerial vehicle as an example.
  • Fig. 5 is a flowchart of a control method of an unmanned aerial vehicle provided by an embodiment of the application. As shown in Fig. 5, the method of this embodiment may include:
  • the control terminal detects the user's locking operation, and the control terminal includes One or more of remote control, smart phone, tablet computer, laptop computer, and wearable device will not be repeated here.
  • the user controls the lock control displayed on the display device of the terminal through touch control (for example, clicking the icon of the lock control).
  • the control terminal generates a lock instruction and sends it to the unmanned aerial vehicle according to the detection of the user's touch operation on the lock control.
  • the user operates the physical button of the control terminal for controlling the UAV to enter the lock mode (the physical button can be a button on the remote control of the control terminal, or a button on the terminal device of the control terminal), the physical button Can be set as a shortcut key for entering the lock mode.
  • the control terminal generates a lock instruction and sends it to the unmanned aerial vehicle based on detecting the operation of the physical button by the user.
  • the UAV receives the lock instruction sent by the control terminal, and enters the lock mode according to the lock instruction.
  • a lock mode flag is set in advance, and the lock mode flag is used to indicate whether the UAV is in the lock mode.
  • the lock mode flag bit when the UAV is in the lock mode is different from the lock mode flag bit when the UAV is not in the lock mode. For example, when the lock mode flag is 0, it means that the UAV is not in the lock mode.
  • the UAV sets the lock mode flag to 1, which indicates that the UAV enters the lock mode.
  • the UAV responds to the pitch control lever amount sent by the control terminal, but does not respond to the yaw control lever amount and roll control lever amount sent by the control terminal.
  • the user when the unmanned aerial vehicle is in the locked mode, the user can operate the pitch control lever of the remote controller of the control terminal to control the unmanned aerial vehicle to fly forward and backward.
  • the control terminal detects the user's operation of the pitch control lever, it obtains the corresponding pitch control lever amount according to the user's operation of the pitch control lever, and sends the pitch control lever amount to the unmanned aerial vehicle.
  • the horizontal direction indicated by the nose of the unmanned aerial vehicle can be called the yaw direction of the unmanned aerial vehicle. There are two yaw directions indicated by the nose of the unmanned aerial vehicle. The horizontal direction away from the machine head toward the background.
  • the UAV receives the pitch control lever amount, and controls the UAV to fly in the first yaw direction indicated by the nose of the UAV according to the pitch control lever amount, or controls the UAV according to the pitch control lever amount.
  • the human aircraft flies along the second yaw direction indicated by the nose of the unmanned aerial vehicle, and the second yaw direction deviates from the second yaw direction.
  • the user pushes the pitch control lever forward, and accordingly, the UAV controls the UAV to fly along the nose toward the indicated horizontal direction according to the amount of the pitch control lever.
  • the user pushes the pitch control lever backward, and accordingly, the UAV controls the UAV to fly in the horizontal direction indicated by the back of the nose according to the amount of the pitch control lever.
  • the control terminal sends a yaw to the UAV The amount of control lever and/or the amount of roll control lever.
  • the UAV receives the yaw control lever amount and/or roll control lever amount sent by the control terminal
  • the unmanned aerial vehicle will not control the yaw direction of the unmanned aerial vehicle according to the amount of the yaw control lever, that is, it will not control the unmanned aerial vehicle to fly to the left or right; the unmanned aerial vehicle will not be controlled according to the roll control lever.
  • the roll direction of the volume control UAV is changed, that is, the UAV will not be controlled to roll to the left or roll to the right. This can ensure that the unmanned aerial vehicle keeps flying toward the horizontal direction indicated by the nose (the horizontal direction the nose is facing or the direction away from it).
  • the unmanned aerial vehicle after the unmanned aerial vehicle enters the lock mode, it responds to the received pitch control lever to control the unmanned aerial vehicle toward the first yaw direction indicated by the nose or with the first yaw direction indicated by the nose. Flying in a second yaw direction that deviates from a yaw direction, it no longer responds to the received yaw control lever amount and roll control lever amount to ensure that the UAV maintains the horizontal direction indicated by the nose to fly straight forward/backward , To avoid misoperation of the control lever to cause flight deviation, so that the flight of the unmanned aerial vehicle is more in line with the user's expectation, and the user experience is improved. Especially when it is applied to the plant protection industry, it can ensure that the unmanned aerial vehicle keeps flying along the planting direction of agricultural operations and improve the accuracy of operations.
  • the flight state may refer to the state when the current flight speed of the unmanned aerial vehicle is not 0, then the unmanned aerial vehicle The aircraft obtains the horizontal speed direction indicated by the current speed direction, and adjusts the yaw direction of the nose of the unmanned aerial vehicle to the horizontal speed direction. Then execute the above S502. Keep the yaw direction of the nose consistent with the horizontal speed direction indicated by the current speed direction to avoid flight deviations and improve the accuracy of the unmanned aerial vehicle during flight.
  • the hovering state can refer to the state when the current flying speed of the unmanned aerial vehicle is 0, and the user can determine the heading of the unmanned aerial vehicle through the auxiliary line on the nose of the unmanned aerial vehicle. Or, there is no need to adjust the heading of the unmanned aerial vehicle, and then perform the above-mentioned S502.
  • the UAV when the UAV is in the locked mode, the UAV may respond to the received throttle stick amount. If the user manipulates the throttle stick, the control terminal sends the corresponding throttle stick amount to the UAV.
  • the unmanned aerial vehicle receives the amount of the throttle control lever, and the unmanned aerial vehicle controls the unmanned aerial vehicle to fly according to the amount of the throttle control lever.
  • the horizontal direction indicated by the head will not cause the unmanned aerial vehicle's heading to deviate. Therefore, under the premise that the heading of the unmanned aerial vehicle is not deviated, the diversified and flexible control of the unmanned aerial vehicle is realized, and the user experience is improved.
  • FIG. 6 is a flowchart of an unmanned aerial vehicle control method provided by another embodiment of this application. As shown in FIG. 6, the method of this embodiment further includes after performing the above S501 as follows:
  • the unmanned aerial vehicle when the unmanned aerial vehicle is in the locked mode, if an unlocking instruction is obtained, the unmanned aerial vehicle is controlled to exit the locked mode.
  • the unmanned aerial vehicle receives the unlocking instruction sent by the control terminal.
  • the control terminal detects the unlocking operation of the user. For example, the user controls the unlocking control displayed on the display device of the terminal through touch control (for example, clicking the icon of the unlocking control).
  • the control terminal generates an unlock instruction and sends it to the unmanned aerial vehicle based on the detection of the user's touch operation on the unlock control.
  • the user operates the physical button of the control terminal for controlling the unlocking mode of the UAV (the physical button may be a button on the remote control of the control terminal, or a button on the terminal device of the control terminal), the physical button Can be set as a shortcut key for unlocking the mode.
  • the control terminal generates an unlocking instruction and sends it to the unmanned aerial vehicle based on detecting the operation of the physical button by the user.
  • the UAV receives the unlocking instruction sent by the control terminal. Therefore, the user can control the UAV to exit the locked mode at any time, which improves the flexibility of operation and improves the user experience.
  • an unlocking instruction is generated.
  • the preset state can be the braking state of the UAV, or the emergency state such as the obstacle avoidance state of the UAV. In these states, the UAV does not need to maintain a straight flight, and the UAV needs to exit the lock mode to ensure The flight safety of the unmanned aerial vehicle is to avoid damage to the unmanned aerial vehicle.
  • the locked mode flag can be set to indicate that the unmanned aerial vehicle is not in the locked mode.
  • the unmanned aerial vehicle sets the locked mode flag to 0 to indicate that the unmanned aerial vehicle is not in the locked mode.
  • the aircraft exits the locked mode.
  • the UAV After exiting the lock mode, the UAV not only responds to the pitch control lever amount and fuel consumption control lever amount sent by the control terminal, but also responds to the yaw control lever amount and roll control lever amount sent by the control terminal.
  • the user can operate the yaw control lever of the control terminal to control the UAV to fly left and right.
  • the control terminal detects the operation of the yaw control lever by the user, it acquires the corresponding yaw control lever amount according to the user's yaw control lever, and sends the yaw control lever amount to the unmanned aerial vehicle.
  • the unmanned aerial vehicle controls the unmanned aerial vehicle to fly according to the amount of the yaw control lever, such as controlling the unmanned aerial vehicle to fly to the left or to the right to change the heading of the unmanned aerial vehicle.
  • the user can also operate the roll control lever of the control terminal to control the unmanned aerial vehicle to fly left and right.
  • the control terminal detects the operation of the roll control lever by the user, it obtains the corresponding roll control lever amount according to the user's roll control lever, and sends the roll control lever amount to the unmanned aerial vehicle.
  • the unmanned aerial vehicle controls the unmanned aerial vehicle to fly according to the amount of the roll control lever, such as controlling the unmanned aerial vehicle to turn to the left or to the right to fly.
  • the unmanned aerial vehicle after the unmanned aerial vehicle enters the locked mode, the unmanned aerial vehicle exits the locked mode according to the unlocking instruction sent by the control terminal, and after exiting the locked mode, it can respond to receiving
  • the amount of yaw control stick and roll control stick can be used to change the heading of the unmanned aerial vehicle, control the unmanned aerial vehicle to turn left/right, so as to control the unmanned aerial vehicle to fly in any direction, and improve the flexibility of controlling the unmanned aerial vehicle. Improve user experience.
  • FIG. 7 is a flowchart of a control method of an unmanned aerial vehicle provided by another embodiment of the application. As shown in FIG. 7, the method of this embodiment may include:
  • the first target speed of the unmanned aerial vehicle is determined according to the at least one control stick amount received within the preset time period.
  • the control terminal includes a control stick.
  • the control terminal detects the operation of the control stick by the user, and according to the detection The received user’s operation of the control stick generates a corresponding control stick amount, and sends the control stick amount to the unmanned aerial vehicle.
  • the UAV receives the control stick amount sent by the control terminal.
  • one of the moments when the UAV receives the amount of control sticks sent by the control terminal is called the first moment, and from this first moment, the unmanned aerial vehicle continuously receives the amount of control sticks sent by the control terminal.
  • the length of the lever amount is timed.
  • the preset time is, for example, 3s, which means that the amount of control stick sent by the control terminal is continuously received within the preset time from the first moment.
  • the human aerial vehicle determines the target speed of the unmanned aerial vehicle according to at least one lever amount received within the preset time period, which is referred to herein as the first target speed.
  • the unmanned aerial vehicle is controlled to keep flying at the first target speed. Specifically, after the aforementioned preset time period from the first moment, the unmanned aerial vehicle is controlled to keep flying at the first target speed.
  • the user when the user wants to control the unmanned aerial vehicle to fly at a constant speed, the user can keep the control stick at a certain position for a preset period of time, and accordingly, the unmanned aerial vehicle will fly at a constant speed at a corresponding speed.
  • the control terminal After determining the first target speed of the unmanned aerial vehicle, while controlling the unmanned aerial vehicle to keep flying at the first target speed, if the user operates the joystick to return to the zero position, the control terminal sends the zero position corresponding to the unmanned aerial vehicle The amount of control stick, the UAV does not respond to the amount of control stick corresponding to the zero position, but keeps flying at the first target speed.
  • the unmanned aerial vehicle when the user wants to control the unmanned aerial vehicle to fly at a constant speed, the user can continue to control the control stick for a preset period of time at the first moment.
  • the unmanned aerial vehicle continuously receives the control stick amount sent by the control terminal within a preset time after the first moment, and then determines the first target speed of the unmanned aerial vehicle according to the at least one control stick quantity received within the preset time , And keep flying at the first target speed to achieve the goal of flying at a constant speed.
  • the aforementioned control lever amount includes at least one of a pitch control lever amount and a roll control lever amount.
  • the amount of pitch control stick is the amount of stick that the control terminal detects that the user is manipulating the pitch control stick
  • the amount of roll control stick is the amount of stick that the control terminal detects that the user is manipulating the roll control stick.
  • the flying speed of the aircraft is the amount of pitch control lever amount and a roll control lever amount.
  • control lever amount may include a throttle control lever amount.
  • a possible implementation of the above S701 is: if the control lever amount sent by the control terminal is continuously received within a preset time period after the first moment, and multiple controls received within the preset time period are received When the rod amount meets a preset convergence condition, the first target speed is determined according to at least one control rod amount received within the preset time period.
  • the unmanned aerial vehicle continuously receives the amount of control sticks sent by the control terminal within a preset period of time after the first moment, and determines whether the amount of control sticks received within the preset period of time meets the preset Convergence conditions. If the multiple control levers received within the preset time length meet the preset convergence condition, it means that the user basically did not push the control rod during the preset time period, and the control rod basically remained at the same position for the preset time period. It is expected that the flying speed of the unmanned aerial vehicle does not change, and the unmanned aerial vehicle determines the first target speed according to at least one control stick amount received within the preset time period.
  • the unmanned aerial vehicle determines the flying speed according to the current amount of control sticks in real time.
  • judging whether the plurality of control lever amounts received within the preset time period meets a preset convergence condition for example: judging that the difference between the plurality of control lever amounts received within the preset time period is less than Preset difference threshold. If the difference is less than the preset difference threshold, it means that the multiple control lever amounts received within the preset time period meet the preset convergence condition. If the difference is not less than the preset difference threshold, it means that the multiple control lever amounts received within the preset time period do not meet the preset convergence condition.
  • one possible implementation manner of determining the first target speed according to at least one control lever amount received within a preset time period is to determine an average control lever amount among a plurality of control lever amounts within a preset time period, and according to the average The amount of control lever determines the first target speed.
  • Another possible implementation manner of determining the first target speed according to the at least one control lever amount received within the preset time period described above is: determining the middle control lever amount among the plurality of control lever amounts within the preset time period, and according to the middle position control lever amount. The amount of the position control lever determines the first target speed.
  • Another possible implementation manner of determining the first target speed according to the at least one control lever amount received within the preset time period described above the first target speed is determined according to the last control lever amount received within the preset time period.
  • the determined first target speed is closer to the user's desired speed.
  • the user can start to control the terminal at the second moment.
  • the control lever is operated, and accordingly, the control terminal detects the operation of the control lever by the user, and generates a corresponding control lever amount according to the detected operation of the control lever by the user, and sends the control lever amount to the unmanned aerial vehicle.
  • the UAV receives the control stick amount sent by the control terminal. And since the second moment, the UAV continuously receives the amount of control sticks sent by the control terminal.
  • the unmanned aerial vehicle will follow the preset
  • the at least one control stick amount received within the time period determines the target speed of the unmanned aerial vehicle, which is referred to herein as the second target speed, and then the unmanned aerial vehicle controls the unmanned aerial vehicle to fly at the second target speed. In this way, the purpose of changing the speed of the unmanned aerial vehicle at a fixed speed is achieved, and the flexibility of the user's control during the constant-speed flight of the unmanned aerial vehicle is improved, and the user experience is improved.
  • the control terminal sends the corresponding amount of the control stick to the unmanned aerial vehicle, and the unmanned aerial vehicle does not respond to the reception.
  • the amount of control stick still keeps flying at the first target speed. Therefore, in the process of controlling the unmanned aerial vehicle to keep flying at the first target speed, it is avoided that the user mistakenly manipulates the control lever and affects the effect of the constant speed flight.
  • the user before the unmanned aerial vehicle executes the above S701, the user can make the unmanned aerial vehicle enter the constant speed mode by operating the control terminal.
  • the user wants to control the unmanned aerial vehicle to enter the constant speed mode
  • the control terminal detects that the user's constant speed mode enters the operation.
  • the user controls the constant speed mode entry control (for example, clicking the icon of the constant speed mode entry control) displayed on the display device of the terminal by touch control.
  • the control terminal generates the first constant speed information and sends it to the unmanned aerial vehicle according to the detection of the user's touch operation on the constant speed mode entry control.
  • the user operates the physical button of the control terminal used to control the unmanned aerial vehicle to enter the constant speed mode
  • the physical button can be a button on the remote control of the control terminal, or a button on the terminal device of the control terminal.
  • the key can be set as a shortcut key to enter the constant speed mode.
  • the control terminal generates the first constant speed mode information instruction and sends it to the unmanned aerial vehicle based on the detection of the user's operation on the physical button.
  • the unmanned aerial vehicle receives the first constant speed mode information sent by the control terminal, and responds to the first constant speed mode information to control the unmanned aerial vehicle to enter the constant speed mode.
  • how to control the unmanned aerial vehicle to enter the constant speed mode can refer to the implementation scheme of controlling the unmanned aerial vehicle to enter the locked mode, and will not be repeated here.
  • the unmanned aerial vehicle After the unmanned aerial vehicle is in the constant speed mode, the unmanned aerial vehicle then executes the embodiment shown in FIG. 7 and related embodiments. The specific implementation process will not be repeated here.
  • the unmanned aerial vehicle is controlled to exit the constant speed mode.
  • the unmanned aerial vehicle receives the second constant speed mode information sent by the control terminal.
  • the control terminal detects the user's constant speed mode exit operation.
  • the user controls the constant speed mode exit control displayed on the display device of the terminal through touch control (for example, clicking the icon of the constant speed mode exit control).
  • the control terminal generates the second constant speed information and sends it to the unmanned aerial vehicle according to the detection of the user's touch operation on the constant speed mode exit control.
  • the user operates the physical button of the control terminal used to control the exit of the unmanned aerial vehicle constant speed mode (the physical button can be a button on the remote control of the control terminal, or a button on the terminal device of the control terminal).
  • the key can be set as a shortcut key for exiting from the fixed speed mode.
  • the control terminal generates the second constant speed information and sends it to the unmanned aerial vehicle based on detecting the operation of the physical button by the user.
  • the UAV receives the second constant speed information sent by the control terminal. Therefore, the user can control the UAV to exit the fixed speed mode at any time, which improves the flexibility of operation and improves the user experience.
  • the second constant speed information is generated.
  • the preset state can be the braking state of the unmanned aerial vehicle, or the emergency state such as the obstacle avoidance state of the unmanned aerial vehicle. In these states, in order to determine the flight safety of the unmanned aerial vehicle, there is no need for the unmanned aerial vehicle to maintain a constant speed. Avoid damage to unmanned aerial vehicles.
  • the unmanned aerial vehicle controls the unmanned aerial vehicle to exit the constant speed mode.
  • the UAV can update the flight speed in real time in response to the received control stick amount.
  • the control terminal detects the target speed confirmation operation, generates a target speed confirmation instruction and sends it to the unmanned aerial vehicle.
  • the unmanned aerial vehicle receives the target speed confirmation command, and in response to the target speed confirmation command, determines that the current flying speed of the unmanned aerial vehicle is the target speed.
  • the target speed is determined according to the currently received control lever amount. Then the unmanned aerial vehicle controls the unmanned aerial vehicle to keep flying at the target speed to achieve the goal of the unmanned aerial vehicle to continue to fly at the current speed.
  • FIG. 8 is a flowchart of a control method of an unmanned aerial vehicle provided by another embodiment of this application. As shown in FIG. 8, the method of this embodiment may include:
  • the control terminal detects the user's limit Speed setting operation. For example, the user controls the speed limit setting control displayed on the display device of the terminal through touch control (for example, clicking the icon of the speed limit setting control).
  • the control terminal generates the flight limit speed and sends it to the unmanned aerial vehicle according to the detection of the user's touch operation on the speed limit setting control.
  • the physical button can be a button on the remote control of the control terminal, or a button on the terminal device of the control terminal
  • the physical button can be Set as a shortcut key to limit the speed setting.
  • the control terminal generates the flight limit speed and sends it to the unmanned aerial vehicle based on the detection of the user's operation on the physical button.
  • the flight limit speed can be pre-stored in the control terminal, or the flight limit speed can be set by the user.
  • the flight limit speed may be generated by the control terminal according to the current control lever amount when the control terminal detects the speed limit setting operation, or the flight limit speed may be generated according to the speed value set by the user through the interactive device of the control terminal.
  • the unmanned aerial vehicle receives the flight limit speed sent by the control terminal.
  • the unmanned aerial vehicle in response to the received flight limit speed, limits the maximum flight speed of the unmanned aerial vehicle during flight to the received flight limit speed, so that the unmanned aerial vehicle's actual flight speed during flight is The maximum value of is not greater than the above-mentioned flight speed limit.
  • the user when the user wants to limit the maximum flight speed of the unmanned aerial vehicle in the control method of the unmanned aerial vehicle provided in this embodiment, the user can limit the speed setting operation on the control terminal.
  • the control terminal After the control terminal detects the speed limit setting operation, it sends the flight limit speed to the unmanned aerial vehicle.
  • the unmanned aerial vehicle limits the maximum flight speed of the unmanned aerial vehicle during the flight to the flight restricted speed in response to the received flight limit speed, so as to achieve the purpose of limiting the speed of the unmanned aerial vehicle.
  • this embodiment limits the maximum flight speed of the unmanned aerial vehicle to the flight limit speed, even if the user accidentally manipulates the control stick too hard, it will not cause the flying speed to be too fast, avoiding mismanipulation and explosion accidents, and ensuring no The flight safety of human aircraft improves user experience.
  • the unmanned aerial vehicle may continue to respond to the received control stick amount.
  • the user wants to control the flying speed of the unmanned aerial vehicle
  • the user can manipulate the control stick of the control terminal.
  • the control terminal detects that the user has manipulated the control stick, and generates the corresponding control stick amount, and then sends the control stick amount to the controller.
  • the human aerial vehicle and the unmanned aerial vehicle determine the flight speed corresponding to the amount of control sticks based on the above-mentioned flight limit speed and the received control stick amount.
  • the maximum flight speed of the UAV before receiving the flight speed limit is 20m/s
  • the corresponding flight speed of the UAV is 20m/s. s.
  • the flight speed limit received by the UAV from the control terminal is 10m/s
  • the flight speed limit it means that when the user manipulates the control stick so that the corresponding control stick amount is the maximum control stick amount
  • the corresponding flight speed of the UAV is 10m/s. Therefore, according to the maximum control stick amount and the flight speed limit, the corresponding relationship between the control stick amount and the flight speed in the speed limit mode can be determined.
  • the unmanned aerial vehicle receives the control stick amount of the control terminal, and determines the flight speed corresponding to the control stick amount according to the received control stick amount and the corresponding relationship between the control stick amount and the flight speed in the speed limit mode. Then, control the unmanned aerial vehicle to fly at the flight speed. For example, if the received control rod amount is 1/2 of the maximum control rod amount, the determined flight speed is 1/2 of 10m/s (that is, 5m/s) instead of 1/2 of 20m/s (that is, 10m/s). s), therefore, the limit of the flight speed to half of the original speed is reached. It should be noted that the above-mentioned speed values are used for illustration and are not used to limit the scope of the embodiments of the present application.
  • this embodiment not only restricts the maximum flight speed, but also restricts the flight speed within the entire range of the control stick, so that the user can more accurately adjust the flight speed of the unmanned aerial vehicle.
  • the unmanned aerial vehicle also obtains a speed limit release instruction, and in response to the speed limit release instruction, limits the maximum flight speed of the unmanned aerial vehicle during flight to the limit release of the flight limit speed.
  • the unmanned aerial vehicle receives the speed limit release instruction sent by the control terminal.
  • the control terminal detects the user's speed limit release operation.
  • the user controls the speed limit release control displayed on the display device of the terminal through touch control (for example, clicks on the icon of the speed limit release control control).
  • the control terminal generates and sends the speed limit release instruction to the unmanned aerial vehicle based on the detection of the user's touch operation on the speed limit release control.
  • the user operates the physical button of the control terminal used to control the unmanned aerial vehicle to release the flight speed limit (the physical button can be a button on the remote control of the control terminal, or a button on the terminal device of the control terminal).
  • the key can be set as a shortcut key for removing the flight speed limit.
  • the control terminal generates an unlocking instruction and sends it to the unmanned aerial vehicle based on detecting the operation of the physical button by the user.
  • the UAV receives the speed limit release instruction sent by the control terminal. Therefore, the user can control the UAV at any time to lift the flight speed limit, improve the flexibility of operation, improve the user experience, and make the operation easier for novice users.
  • the unmanned aerial vehicle when the unmanned aerial vehicle is in a preset state, an instruction to release the speed limit is generated.
  • the preset state can be the braking state of the unmanned aerial vehicle, or the emergency state such as the obstacle avoidance state of the unmanned aerial vehicle. In these states, the unmanned aerial vehicle does not need to continue to limit the flight speed, and the unmanned aerial vehicle needs to lift the flight speed limit. To ensure the flight safety of the unmanned aerial vehicle and avoid damage to the unmanned aerial vehicle.
  • the unmanned aerial vehicle after the unmanned aerial vehicle obtains the speed limit release instruction, it limits the maximum flight speed of the unmanned aerial vehicle during flight to the limit of the flight limit speed. Then the unmanned aerial vehicle receives the amount of control stick and is no longer restricted by the above-mentioned flight speed limit. For example, when the user manipulates the control stick to make the control stick amount reach the maximum control stick amount, the corresponding unmanned flying speed is no longer 10m/s. , But 20m/s.
  • any of the foregoing embodiments can be implemented separately, or can be implemented in any combination of at least two of the foregoing embodiments, which is not limited.
  • any one of the embodiments shown in FIG. 5 and related embodiments can be implemented in combination with any one of the embodiments shown in FIG. 7 and related embodiments.
  • Any one of the embodiments shown in FIG. 5 and related embodiments can be implemented in combination with any one of the embodiments shown in FIG. 8 and related embodiments.
  • Any one of the embodiments shown in FIG. 7 and related embodiments can be implemented in combination with any one of the embodiments shown in FIG. 8 and related embodiments.
  • Any one of the embodiment shown in FIG. 5 and related embodiments, any one of the embodiment shown in FIG. 7 and related embodiments, and any one of the embodiments shown in FIG. 8 and related embodiments are combined Implement. In a scenario where the embodiments are combined with each other, the execution order of the embodiments is not limited.
  • this application can use three manual enhancement modes: lock mode, fixed speed mode, and speed limit mode, which effectively solves the problem that the user’s control lever is easy to couple in manual control mode, the flight path is not straight, the control is easy to be fatigued, and the accidental touch is easy to explode.
  • lock mode fixed speed mode
  • speed limit mode which effectively solves the problem that the user’s control lever is easy to couple in manual control mode, the flight path is not straight, the control is easy to be fatigued, and the accidental touch is easy to explode.
  • the three major pain points that are difficult to handle by aircraft/novices and more attention in flight greatly improve the flight safety and flight experience of manual control, greatly reduce the difficulty of manual control and the risk of accidental bombing, and make the unmanned aerial vehicle easier to control , Easy to use, easy to fly.
  • the lock mode, the fixed speed mode, and the speed limit mode can be independent of each other, and can cooperate with each other according to the actual situation, and a variety of manual enhancement modes can be activated at the same time.
  • An embodiment of the present application also provides a computer storage medium.
  • the computer storage medium stores program instructions.
  • the program execution may include some or all of the steps of the control method of the unmanned aerial vehicle in any of the above embodiments. .
  • FIG. 9 is a schematic structural diagram of a control device for an unmanned aerial vehicle provided by an embodiment of the application.
  • the control device 900 for an unmanned aerial vehicle in this embodiment may include a communication device 901 and a processor 902.
  • the communication device 901 is configured to receive a locking instruction sent by a control terminal, and receive a pitch control lever amount, a yaw control lever amount, and a roll control lever amount sent by the control terminal.
  • the processor 902 is configured to control the UAV to enter the lock mode when the communication device 901 receives the lock instruction sent by the control terminal, where the lock instruction is generated by the control terminal detecting the user's lock operation; In the lock mode:
  • the communication device 901 When the communication device 901 receives the pitch control lever amount sent by the control terminal, it controls the UAV along the first yaw direction or the second yaw direction indicated by the nose of the UAV according to the pitch control lever amount Heading flight, wherein the second yaw direction deviates from the first yaw direction;
  • the communication device 901 is further configured to receive the throttle lever amount sent by the control terminal.
  • the processor 902 is also configured to control the unmanned aerial vehicle to fly according to the throttle stick amount when the communication device 901 receives the throttle stick amount sent by the control terminal.
  • the processor 902 is further configured to obtain an unlocking instruction, and control the UAV to exit the locked mode. After exiting the lock mode:
  • the communication device 901 When the communication device 901 receives the roll control lever amount sent by the control terminal, it controls the unmanned aerial vehicle to fly according to the roll control lever amount.
  • the processor 902 obtains the unlocking instruction, it is specifically configured to:
  • the unlocking instruction sent by the control terminal is received through the communication device 901, where the unlocking instruction is generated by the control terminal detecting a user's unlocking operation.
  • the processor 902 obtains the unlocking instruction, it is specifically configured to:
  • the processor 902 is further configured to, when the communication device 901 receives the lock instruction sent by the control terminal, if the unmanned aerial vehicle is in flight, obtain the current speed and direction indication of the unmanned aerial vehicle. In the horizontal speed direction, the yaw direction of the nose of the unmanned aerial vehicle is adjusted to the horizontal speed direction.
  • processor 902 is further configured to:
  • the communication device 901 continuously receives the amount of control sticks sent by the control terminal within a preset period of time after the first moment, it determines the unmanned aerial vehicle's performance based on at least one amount of control sticks received within the preset period of time.
  • the first target speed Controlling the unmanned aerial vehicle to keep flying at the first target speed.
  • control lever amount includes at least one of a pitch control lever amount and a roll control lever amount.
  • processor 902 is specifically configured to:
  • the communication device 901 continuously receives the control lever amount sent by the control terminal within a preset time period after the first moment, and the received multiple control lever amounts within the preset time period meet the preset convergence condition, then The first target speed is determined according to at least one control lever amount received within the preset time period.
  • the processor 902 determines the first target speed according to at least one lever amount received within the preset time period, it is specifically configured to:
  • the first target speed is determined according to the average control lever amount or the neutral control lever amount.
  • the processor 902 is specifically configured to determine the first target speed according to a lever amount last received by the communication device within the preset time period.
  • processor 902 is further configured to:
  • the communication device 901 continuously receives the amount of control sticks sent by the control terminal within a preset period of time after the second moment, it will determine the unmanned aerial vehicle's performance according to at least one amount of control sticks received within the preset period of time. Second target speed;
  • the processor 902 is further configured to no longer respond to the received control stick amount of the unmanned aerial vehicle during the process of controlling the unmanned aerial vehicle to keep flying at the first target speed.
  • the communication device 901 is further configured to obtain the first constant speed mode information sent by the control terminal, where the first constant speed mode information is generated by the control terminal detecting the user's constant speed mode entry operation.
  • the processor 902 is further configured to control the UAV to enter the constant speed mode in response to the first constant speed mode information.
  • the processor 902 determines that if the communication device 901 continuously receives the amount of control stick sent by the control terminal within a preset time period after the first moment, the processor 902 determines according to at least one amount of control stick received within the preset time period.
  • the target speed of the UAV is specifically used for:
  • the communication device 901 continuously receives the control stick amount sent by the control terminal within a preset time period after the first moment of The amount of control stick determines the target speed of the UAV.
  • the processor 902 is further configured to obtain second constant speed mode information sent by the control terminal, where the second constant speed mode information is generated by the control terminal detecting the user's constant speed mode exit operation, or When the unmanned aerial vehicle is in a preset state, generate second constant speed mode information; in response to the second constant speed mode information, control the unmanned aerial vehicle to exit the constant speed mode.
  • the communication device 901 is further configured to receive a flight limit speed sent by a control terminal, where the flight limit speed is generated by the control terminal detecting a user's speed limit setting operation.
  • the processor 902 is further configured to limit the maximum flight speed of the unmanned aerial vehicle during flight to the flight limit speed in response to the flight limit speed received by the communication device 901.
  • processor 902 is further configured to:
  • processor 902 is further configured to:
  • the maximum flight speed of the unmanned aerial vehicle during flight is limited to the limit release of the flight speed limit.
  • processor 902 obtains the speed limit release instruction, it is specifically configured to:
  • the speed limit release instruction sent by the control terminal is received through the communication device 901, where the speed limit release instruction is generated by the control terminal detecting a user's speed limit release operation.
  • the processor 902 when the processor 902 obtains the speed limit release instruction, it is specifically configured to generate the speed limit release instruction when the UAV is in a preset state.
  • the communication device 901 is used to receive the lever amount sent by the control terminal.
  • the processor 902 is configured to, if the communication device 901 continuously receives the amount of control sticks sent by the control terminal within a preset time period after the first moment, determine according to at least one amount of control sticks received within the preset time period The first target speed of the unmanned aerial vehicle; controlling the unmanned aerial vehicle to keep flying at the first target speed.
  • control lever amount includes at least one of a pitch control lever amount and a roll control lever amount.
  • processor 902 is specifically configured to:
  • the communication device 901 continuously receives the control lever amount sent by the control terminal within a preset time period after the first moment, and the received multiple control lever amounts within the preset time period meet the preset convergence condition, then The first target speed is determined according to at least one control lever amount received within the preset time period.
  • the processor 902 determines the target speed according to at least one lever amount received within the preset time period, it is specifically configured to:
  • the target speed is determined according to the average control lever amount or the neutral control lever amount.
  • the processor 902 determines the target speed according to at least one lever amount received within the preset time period, it is specifically configured to: according to the last control lever received within the preset time period The amount determines the target speed.
  • processor 902 is further configured to:
  • the communication device 901 continuously receives the amount of control sticks sent by the control terminal within a preset period of time after the second moment, it will determine the unmanned aerial vehicle's performance according to at least one amount of control sticks received within the preset period of time.
  • a second target speed controlling the unmanned aerial vehicle to keep flying at the second target speed.
  • the processor 902 is further configured to no longer respond to the obtained control lever amount of the unmanned aerial vehicle during the process of controlling the unmanned aerial vehicle to keep flying at the target speed.
  • the processor 902 is further configured to: obtain first constant speed mode information sent by the control terminal, where the first constant speed mode information is generated by the control terminal detecting the user's constant speed mode entry operation; In response to the first constant speed mode, controlling the UAV to enter the constant speed mode.
  • the processor 902 determines that if the communication device 901 continuously receives the amount of control stick sent by the control terminal within a preset time period after the first moment, the processor 902 determines according to at least one amount of control stick received within the preset time period.
  • the target speed of the UAV is specifically used for:
  • the communication device 901 continuously receives the control stick amount sent by the control terminal within a preset time period after the first moment of The amount of control stick determines the target speed of the UAV.
  • processor 902 is further configured to:
  • the second constant speed mode information sent by the control terminal is acquired through the communication device 901, where the second constant speed mode information is generated by the control terminal detecting the user's constant speed mode exit operation, or when the unmanned aerial vehicle When in the preset state, generate the second constant speed mode information;
  • controlling the unmanned aerial vehicle to exit the constant speed mode In response to the second constant speed mode information, controlling the unmanned aerial vehicle to exit the constant speed mode.
  • the communication device 901 is also used to receive a lock instruction, a pitch control lever amount, a yaw control lever amount, and a roll control lever amount sent by the control terminal.
  • the processor 902 is further configured to control the UAV to enter the lock mode when the communication device 901 receives the lock instruction sent by the control terminal, wherein the lock instruction is generated by the control terminal detecting the user's lock operation ; In the lock mode:
  • the communication device 901 When the communication device 901 receives the pitch control lever amount sent by the control terminal, it controls the UAV along the first yaw direction or the second yaw direction indicated by the nose of the UAV according to the pitch control lever amount Heading flight, wherein the second yaw direction deviates from the first yaw direction;
  • the communication device 901 is further configured to receive the throttle lever amount sent by the control terminal.
  • the processor 902 is further configured to, when the communication device 901 receives the throttle stick amount sent by the control terminal, control the unmanned aerial vehicle to fly according to the throttle stick amount.
  • the processor 902 is further configured to: obtain an unlocking instruction, and control the UAV to exit the locked mode; after exiting the locked mode:
  • the communication device 901 When the communication device 901 receives the roll control lever amount sent by the control terminal, it controls the unmanned aerial vehicle to fly according to the roll control lever amount.
  • the processor 902 obtains the unlocking instruction, it is specifically configured to:
  • the unlocking instruction sent by the control terminal is received through the communication device 901, where the unlocking instruction is generated by the control terminal detecting a user's unlocking operation.
  • the processor 902 obtains the unlocking instruction, it is specifically configured to:
  • the processor 902 is further configured to: when the communication device 901 receives the lock instruction sent by the control terminal, if the unmanned aerial vehicle is in flight, obtain the current speed direction indication of the unmanned aerial vehicle Adjust the yaw direction of the nose of the unmanned aerial vehicle to the horizontal speed direction.
  • the communication device 901 is further configured to receive a flight limit speed sent by a control terminal, where the flight limit speed is generated by the control terminal detecting a user's speed limit setting operation.
  • the processor 902 is further configured to limit the maximum flight speed of the unmanned aerial vehicle during flight to the flight limit speed in response to the flight limit speed received by the communication device 901.
  • the processor 902 is further configured to: determine the flight speed corresponding to the control stick amount according to the flight limit speed and the control stick amount received from the control terminal through the communication device 901; Controlling the unmanned aerial vehicle to fly at the flying speed.
  • the processor 902 is further configured to: obtain a speed limit release instruction; in response to the speed limit release instruction, limit the maximum flight speed of the unmanned aerial vehicle during flight to the flight limit speed The restrictions are lifted.
  • the processor 902 when the processor 902 obtains the speed limit release instruction, it is specifically configured to: receive, through the communication device 901, the speed limit release instruction sent by the control terminal, where the speed limit release instruction is the It is generated when the control terminal detects the user's operation to release the speed limit.
  • the processor 902 when the processor 902 obtains the speed limit release instruction, it is specifically configured to generate the speed limit release instruction when the UAV is in a preset state.
  • control device 900 of the unmanned aerial vehicle in this embodiment may further include a memory (not shown in the figure).
  • the memory is used to store program codes.
  • the processor 902 calls the program code, and when the program code is executed, it is used to implement the foregoing methods.
  • control device of the unmanned aerial vehicle in this embodiment can be used to implement the technical solutions of the foregoing method embodiments of the present application, and the implementation principles and technical effects are similar, and will not be repeated here.
  • the embodiment of the application provides an unmanned aerial vehicle, which includes a control device of the unmanned aerial vehicle.
  • the control device of the unmanned aerial vehicle can adopt the structure of the embodiment shown in FIG.
  • the technical solution provided by the example will not be repeated here.
  • FIG. 10 is a schematic structural diagram of an unmanned aerial vehicle provided by another embodiment of this application.
  • the unmanned aerial vehicle 1000 of this embodiment includes: a communication device 1001 and a processor 1002.
  • the communication device 1001 is configured to receive a locking instruction sent by a control terminal, and receive a pitch control lever amount, a yaw control lever amount, and a roll control lever amount sent by the control terminal.
  • the processor 1002 is configured to control the UAV 1000 to enter the lock mode when the communication device 1001 receives the lock instruction sent by the control terminal, where the lock instruction is generated by the control terminal detecting the user's lock operation; In the lock mode:
  • the communication device 1001 When the communication device 1001 receives the pitch control lever amount sent by the control terminal, it controls the UAV 1000 along the first yaw direction or the second yaw direction indicated by the nose of the UAV 1000 according to the pitch control lever amount. Flying in a yaw direction, wherein the second yaw direction deviates from the first yaw direction;
  • the communication device 1001 is further configured to receive the throttle lever amount sent by the control terminal.
  • the processor 1002 is further configured to control the UAV 1000 to fly according to the throttle stick amount when the communication device 1001 receives the throttle stick amount sent by the control terminal.
  • the processor 1002 is further configured to obtain an unlocking instruction, and control the UAV 1000 to exit the locked mode. After exiting the lock mode:
  • the communication device 1001 When the communication device 1001 receives the roll control lever amount sent by the control terminal, it controls the UAV 1000 to fly according to the roll control lever amount.
  • the processor 1002 obtains the unlocking instruction, it is specifically configured to:
  • the unlocking instruction sent by the control terminal is received through the communication device 1001, where the unlocking instruction is generated by the control terminal detecting a user's unlocking operation.
  • the processor 1002 obtains the unlocking instruction, it is specifically configured to:
  • the processor 1002 is further configured to obtain the current speed direction of the unmanned aerial vehicle 1000 if the unmanned aerial vehicle 1000 is in flight when the communication device 1001 receives the lock instruction sent by the control terminal For the indicated horizontal speed direction, the yaw direction of the nose of the UAV 1000 is adjusted to the horizontal speed direction.
  • processor 1002 is further configured to:
  • the UAV 1000 is determined according to the at least one amount of control sticks received within the preset period of time.
  • the first target speed The UAV 1000 is controlled to keep flying at the first target speed.
  • control lever amount includes at least one of a pitch control lever amount and a roll control lever amount.
  • the processor 1002 is specifically configured to:
  • the first target speed is determined according to at least one control lever amount received within the preset time period.
  • the processor 1002 determines the first target speed according to at least one lever amount received within the preset time period, it is specifically configured to:
  • the first target speed is determined according to the average control lever amount or the neutral control lever amount.
  • the processor 1002 is specifically configured to determine the first target speed according to a lever amount last received by the communication device within the preset time period.
  • processor 1002 is further configured to:
  • the UAV 1000 is determined according to at least one amount of control sticks received within the preset time period.
  • the UAV 1000 is controlled to keep flying at the second target speed.
  • the processor 1002 is further configured to no longer respond to the received control lever amount of the unmanned aerial vehicle 1000 during the process of controlling the unmanned aerial vehicle 1000 to keep flying at the first target speed.
  • the communication device 1001 is further configured to obtain the first constant speed mode information sent by the control terminal, where the first constant speed mode information is generated by the control terminal detecting the user's constant speed mode entry operation.
  • the processor 1002 is further configured to control the UAV 1000 to enter the constant speed mode in response to the first constant speed mode information.
  • the processor 1002 determines if the communication device 1001 continuously receives the amount of control rods sent by the control terminal within a preset time period after the first time starts, then determines according to at least one amount of control rods received within the preset time period
  • the target speed of the UAV 1000 is specifically used for:
  • the communication device 1001 continuously receives the control stick amount sent by the control terminal within a preset time period after the first moment, then at least the amount of joystick received within the preset time period One control lever determines the target speed of the UAV 1000.
  • the processor 1002 is further configured to obtain second constant speed mode information sent by the control terminal, where the second constant speed mode information is generated by the control terminal detecting the user's constant speed mode exit operation, or When the unmanned aerial vehicle 1000 is in a preset state, second constant speed mode information is generated; in response to the second constant speed mode information, the unmanned aerial vehicle 1000 is controlled to exit the constant speed mode.
  • the communication device 1001 is further configured to receive a flight limit speed sent by a control terminal, where the flight limit speed is generated by the control terminal detecting a user's speed limit setting operation.
  • the processor 1002 is further configured to limit the maximum flight speed of the unmanned aerial vehicle 1000 during flight to the flight limit speed in response to the flight limit speed received by the communication device 1001.
  • processor 1002 is further configured to:
  • processor 1002 is further configured to:
  • the maximum flight speed of the unmanned aerial vehicle 1000 during flight is limited to the limit release of the flight speed limit.
  • the processor 1002 obtains the speed limit release instruction, it is specifically configured to:
  • the speed limit release instruction sent by the control terminal is received through the communication device 1001, where the speed limit release instruction is generated by the control terminal detecting a user's speed limit release operation.
  • the processor 1002 when the processor 1002 obtains the speed limit release instruction, it is specifically configured to generate the speed limit release instruction when the UAV 1000 is in a preset state.
  • the communication device 1001 is used to receive the lever amount sent by the control terminal.
  • the processor 1002 is configured to, if the communication device 1001 continuously receives the amount of control sticks sent by the control terminal within a preset time period after the first moment, determine according to at least one amount of control sticks received within the preset time period The first target speed of the unmanned aerial vehicle 1000; controlling the unmanned aerial vehicle 1000 to keep flying at the first target speed.
  • control lever amount includes at least one of a pitch control lever amount and a roll control lever amount.
  • the processor 1002 is specifically configured to:
  • the first target speed is determined according to at least one control lever amount received within the preset time period.
  • the processor 1002 determines the target speed according to at least one lever amount received within the preset time period, it is specifically configured to:
  • the target speed is determined according to the average control lever amount or the neutral control lever amount.
  • the processor 1002 determines the target speed according to at least one lever amount received within the preset time period, it is specifically configured to: according to the last control lever received within the preset time period The amount determines the target speed.
  • processor 1002 is further configured to:
  • the UAV 1000 is determined according to at least one amount of control sticks received within the preset time period.
  • the second target speed control the UAV 1000 to keep flying at the second target speed.
  • the processor 1002 is further configured to no longer respond to the obtained control lever amount of the UAV 1000 during the process of controlling the UAV 1000 to keep flying at the target speed.
  • the processor 1002 is further configured to: obtain first constant speed mode information sent by the control terminal, where the first constant speed mode information is generated by the control terminal detecting the user's constant speed mode entry operation; In response to the first constant speed mode, the UAV 1000 is controlled to enter the constant speed mode.
  • the processor 1002 determines if the communication device 1001 continuously receives the amount of control rods sent by the control terminal within a preset time period after the first time starts, then determines according to at least one amount of control rods received within the preset time period
  • the target speed of the UAV 1000 is specifically used for:
  • the communication device 1001 continuously receives the control stick amount sent by the control terminal within a preset time period after the first moment, then at least the amount of joystick received within the preset time period One control lever determines the target speed of the UAV 1000.
  • processor 1002 is further configured to:
  • the second constant speed mode information sent by the control terminal is acquired through the communication device 1001, where the second constant speed mode information is generated by the control terminal detecting the user's constant speed mode exit operation, or when the unmanned aerial vehicle When 1000 is in the preset state, generate the second constant speed mode information;
  • control the UAV 1000 In response to the second constant speed mode information, control the UAV 1000 to exit the constant speed mode.
  • the communication device 1001 is further configured to receive a locking instruction, a pitch control lever amount, a yaw control lever amount, and a roll control lever amount sent by the control terminal.
  • the processor 1002 is further configured to control the UAV 1000 to enter the lock mode when the communication device 1001 receives the lock instruction sent by the control terminal, wherein the lock instruction is generated by the control terminal detecting the user's lock operation ⁇ ; In the lock mode:
  • the communication device 1001 When the communication device 1001 receives the pitch control lever amount sent by the control terminal, it controls the UAV 1000 along the first yaw direction or the second yaw direction indicated by the nose of the UAV 1000 according to the pitch control lever amount. Flying in a yaw direction, wherein the second yaw direction deviates from the first yaw direction;
  • the communication device 1001 is further configured to receive the throttle lever amount sent by the control terminal.
  • the processor 1002 is further configured to control the UAV 1000 to fly according to the throttle stick amount when the communication device 1001 receives the throttle stick amount sent by the control terminal.
  • the processor 1002 is further configured to: obtain an unlocking instruction, and control the UAV 1000 to exit the locked mode; after exiting the locked mode:
  • the communication device 1001 When the communication device 1001 receives the roll control lever amount sent by the control terminal, it controls the UAV 1000 to fly according to the roll control lever amount.
  • the processor 1002 obtains the unlocking instruction, it is specifically configured to:
  • the unlocking instruction sent by the control terminal is received through the communication device 1001, where the unlocking instruction is generated by the control terminal detecting a user's unlocking operation.
  • the processor 1002 obtains the unlocking instruction, it is specifically configured to:
  • the processor 1002 is further configured to: when the communication device 1001 receives a lock instruction sent by the control terminal, if the unmanned aerial vehicle 1000 is in flight, obtain the current speed of the unmanned aerial vehicle 1000 The horizontal speed direction indicated by the direction adjusts the yaw direction of the nose of the UAV 1000 to the horizontal speed direction.
  • the communication device 1001 is further configured to receive a flight limit speed sent by a control terminal, where the flight limit speed is generated by the control terminal detecting a user's speed limit setting operation.
  • the processor 1002 is further configured to limit the maximum flight speed of the unmanned aerial vehicle 1000 during flight to the flight limit speed in response to the flight limit speed received by the communication device 1001.
  • the processor 1002 is further configured to: determine the flight speed corresponding to the control stick amount according to the flight limit speed and the control stick amount received from the control terminal through the communication device 1001;
  • the unmanned aerial vehicle 1000 is controlled to fly at the flight speed.
  • the processor 1002 is further configured to: obtain a speed limit release instruction; in response to the speed limit release instruction, limit the maximum flight speed of the UAV 1000 during flight to the flight limit The speed limit is lifted.
  • the processor 1002 acquires the speed limit release instruction, it is specifically configured to: receive the speed limit release instruction sent by the control terminal through the communication device 1001, where the speed limit release instruction is the It is generated when the control terminal detects the user's operation to release the speed limit.
  • the processor 1002 when the processor 1002 obtains the speed limit release instruction, it is specifically configured to generate the speed limit release instruction when the UAV 1000 is in a preset state.
  • the unmanned aerial vehicle 1000 of this embodiment may further include a memory (not shown in the figure).
  • the memory is used to store program codes.
  • the processor 1002 calls the program code, and when the program code is executed, it is used to implement the foregoing methods.
  • the unmanned aerial vehicle of this embodiment can be used to implement the technical solutions of the foregoing method embodiments of the present application, and the implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 11 is a schematic structural diagram of an unmanned aerial vehicle control system provided by an embodiment of this application.
  • the unmanned aerial vehicle control system 1100 of this embodiment may include: an unmanned aerial vehicle 1101 and a control terminal 1102.
  • the unmanned aerial vehicle 1101 may include the control device of the unmanned aerial vehicle as shown in FIG. 9, and correspondingly, the technical solution provided by any of the foregoing method embodiments may be implemented, and details are not described herein again.
  • the unmanned aerial vehicle 1101 may adopt the structure shown in FIG. 10, and correspondingly, it may implement the technical solutions provided by any of the foregoing method embodiments, which will not be repeated here.
  • a person of ordinary skill in the art can understand that all or part of the steps in the above method embodiments can be implemented by a program instructing relevant hardware.
  • the foregoing program can be stored in a computer readable storage medium. When the program is executed, the program is executed. Including the steps of the foregoing method embodiment; and the foregoing storage medium includes: read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks, etc., which can store program codes Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人飞行器的控制方法和设备,包括:当接收到控制终端发送的锁定指令,控制无人飞行器进入锁定模式,其中,锁定指令是控制终端检测用户的锁定操作生成的(S501);在锁定模式中:当接收到控制终端发送的俯仰控制杆量时,根据俯仰控制杆量控制无人飞行器沿无人飞行器的机头指示的第一偏航朝向或者第二偏航朝向飞行,其中,第二偏航朝向背离第一偏航朝向;以及不响应控制终端发送的偏航控制杆量和横滚控制杆量(S502)。以保证无人飞行器保持机头指示的水平方向直线朝前/后飞行,避免误操作控制杆产生飞行偏差,使得无人飞行器的飞行更符合用户的期望,提高用户体验。

Description

无人飞行器的控制方法和设备 技术领域
本申请实施例涉及无人飞行器技术领域,尤其涉及一种无人飞行器的控制方法和设备。
背景技术
无人飞行器既可以根据提前规划好的轨迹自主飞行,也可以是由用户手动控制无人飞行器飞行。以无人飞行器为植保无人机为例,植保无人机可以按照预先规划的航线自动飞行及作业,也可以实时受控于用户的手动操作来飞行及作业。其中,作业内容可以包括喷洒、播撒等。在植保无人机受控于用户的手动操作的过程中,要保证植保无人机受控的精确度,需要用户熟练且准确地操控,否则容易出现操控偏差,使得植保无人机偏离用户的期望。
发明内容
本申请实施例提供一种无人飞行器的控制方法和设备,用于避免出现对无人飞行器的操控偏差,易于用户操作。
第一方面,本申请实施例提供一种无人飞行器的控制方法,包括:
当接收到控制终端发送的锁定指令,控制所述无人飞行器进入锁定模式,其中,所述锁定指令是控制终端检测用户的锁定操作生成的;
在所述锁定模式中:
当接收到所述控制终端发送的俯仰控制杆量时,根据所述俯仰控制杆量控制无人飞行器沿无人飞行器的机头指示的第一偏航朝向或者第二偏航朝向飞行,其中,所述第二偏航朝向背离所述第一偏航朝向;
不响应所述控制终端发送的偏航控制杆量和横滚控制杆量。
第二方面,本申请实施例提供一种无人飞行器的控制方法,包括:
若在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第一目标速度;
控制所述无人飞行器保持以所述第一目标速度飞行。
第三方面,本申请实施例提供一种无人飞行器的控制设备,包括:
通信装置,用于接收控制终端发送的锁定指令;
处理器,用于:
当所述通信装置接收到控制终端发送的锁定指令,控制所述无人飞行器进入锁定模式,其中,所述锁定指令是控制终端检测用户的锁定操作生成的;
在所述锁定模式中:
当所述通信装置接收到所述控制终端发送的俯仰控制杆量时,根据所述俯仰控制杆量控制无人飞行器沿无人飞行器的机头指示的第一偏航朝向或者第二偏航朝向飞行,其中,所述第二偏航朝向背离所述第一偏航朝向;
不响应所述通信装置接收到的所述控制终端发送的偏航控制杆量和横滚控制杆量。
第四方面,本申请实施例提供一种无人飞行器的控制设备,包括:
通信装置,用于接收控制终端发送的控制杆量;
处理器,用于:若所述通信装置在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第一目标速度;控制所述无人飞行器保持以所述第一目标速度飞行。
第五方面,本申请实施例提供一种无人飞行器,包括如第三方面或第四方面本申请实施例所述的无人飞行器的控制设备。
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序在被执行时,实现如第一方面或第二方面本申请实施例所述的无人飞行器的控制方法。
第七方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序以实施如第一方面或第二方面本申请实施例所述的无人飞行器的控制方法。
综上所述,本申请实施例提供的无人飞行器的控制方法和设备,可以保证无人飞行器保持机头指示的水平方向直线朝前/后飞行,避免误操作控制杆产生飞行偏差,使得无人飞行器的飞行更符合用户的期望,提高用户体验。尤其在应用于植保行业,可以保证无人飞行器保持沿农作业的种植方向飞行,提高作业精度。以及达到定速飞行的目的,无需用户长时间操控控制杆,无须持续推杆,减轻飞行疲劳感和超视距飞行的持续操纵,避免误操控而发生炸机事故,保障无人飞行器的飞行安全,提高用户体验。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请的实施例的无人飞行系统的示意性架构图;
图2为本申请实施例提供的应用场景示意图;
图3为本申请一实施例提供的遥控器的一种示意图;
图4为本申请一实施例提供的无人飞行器的一种示意图;
图5为本申请一实施例提供的无人飞行器的控制方法的流程图;
图6为本申请另一实施例提供的无人飞行器的控制方法的流程图;
图7为本申请另一实施例提供的无人飞行器的控制方法的流程图;
图8为本申请另一实施例提供的无人飞行器的控制方法的流程图;
图9为本申请一实施例提供的无人飞行器的控制设备的结构示意图;
图10为本申请另一实施例提供的无人飞行器的结构示意图;
图11为本申请一实施例提供的无人飞行器的控制系统的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请的实施例提供了无人飞行器的控制方法和设备。其中,本申请的实施例可以应用于各种类型的无人飞行器。例如,无人机可以是小型或大型的无人飞行器。在某些实施例中,无人飞行器可以是旋翼无人飞行器(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼无人飞行器,本申请的实施例并不限于此。
图1是根据本申请的实施例的无人飞行系统的示意性架构图。本实施例以旋翼无人飞行器为例进行说明。
无人飞行系统100可以包括无人飞行器110、显示设备130和控制终端140。其中,无人飞行器110可以包括动力系统150、飞行控制系统160、机架和承载在机架上的云台120。无人飞行器110可以与控制终端140和显示设备130进行无线通信。其中,无人飞行器110还包括电池(图中未示出),电池为动力系统150提供电能。无人飞行器110可以是农业无人机或行业应用无人机,有循环作业的需求。相应的,电池也有循环作业的需求。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在无人飞行器110着陆时起支撑作用。
动力系统150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨153设置在无人飞行器110的机臂上;电子调速器151用于接收飞行控制系统160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为无人飞行器110的飞行提供动力,该动力使得无人飞行器110能够实现一个或多个自由度的运动。在某些实施例中,无人飞行器110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴(Roll)、偏航轴(Yaw)和俯仰轴(pitch)。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以是有刷电机。
飞行控制系统160可以包括飞行控制器161和传感系统162。传感系统162用于测量无人机的姿态信息,即无人飞行器110在空间的位置信息和状态信息,例如,三维位 置、三维角度、三维速度、三维加速度和三维角速度等。传感系统162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。飞行控制器161用于控制无人飞行器110的飞行,例如,可以根据传感系统162测量的姿态信息控制无人飞行器110的飞行。应理解,飞行控制器161可以按照预先编好的程序指令对无人飞行器110进行控制,也可以通过响应来自控制终端140的一个或多个遥控信号对无人飞行器110进行控制。
云台120可以包括电机122。云台用于携带负载,负载例如可以是拍摄装置123。飞行控制器161可以通过电机122控制云台120的运动。可选的,作为另一实施例,云台120还可以包括控制器,用于通过控制电机122来控制云台120的运动。应理解,云台120可以独立于无人飞行器110,也可以为无人飞行器110的一部分。应理解,电机122可以是直流电机,也可以是交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。还应理解,云台可以位于无人飞行器的顶部,也可以位于无人飞行器的底部。
拍摄装置123例如可以是照相机或摄像机等用于捕获图像的设备,拍摄装置123可以与飞行控制器通信,并在飞行控制器的控制下进行拍摄。本实施例的拍摄装置123至少包括感光元件,该感光元件例如为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器或电荷耦合元件(Charge-coupled Device,CCD)传感器。可以理解,拍摄装置123也可直接固定于无人飞行器110上,从而云台120可以省略。
显示设备130位于无人飞行系统100的地面端,可以通过无线方式与无人飞行器110进行通信,并且可以用于显示无人飞行器110的姿态信息。另外,还可以在显示设备130上显示拍摄装置123拍摄的图像。应理解,显示设备130可以是独立的设备,也可以集成在控制终端140中。
控制终端140位于无人飞行系统100的地面端,可以通过无线方式与无人飞行器110进行通信,用于对无人飞行器110进行远程操纵。
应理解,上述对于无人飞行系统各组成部分的命名仅是出于标识的目的,并不应理解为对本申请的实施例的限制。
图2为本申请实施例提供的应用场景示意图,如图2所示,图2中示出了无人飞行器201、无人飞行器的控制终端202。无人飞行器201的控制终端202可以是遥控器、智能手机、台式电脑、膝上型电脑、穿戴式设备(手表、手环)中的一种或多种。本申请实施例以控制终端202为遥控器2021和终端设备2022为例来进行示意性说明。该终端设备2022例如是智能手机、可穿戴设备、平板电脑等,但本申请实施例并限于此。
其中,遥控器2021可以与无人飞行器201进行通信,用户可以通过操纵遥控器上的控制杆来控制无人飞行器201的飞行状态,控制杆一般分为俯仰控制杆、偏航控制杆、横滚控制杆和油门控制杆,分别控制飞机前后飞、转航向、左右飞和上下飞,且各方向的杆量都相互独立,控制解耦。遥控器2021上可以设置4个实体的控制杆,也就是俯仰控制杆、偏航控制杆、横滚控制杆和油门控制杆分别为4个物理上相互独立的控制杆;或者,遥控器2021上可以设置2个实体的控制杆,每个实体的控制杆可以实现两种控制杆的功 能,遥控器2021上具体设置几个实体的控制杆,本实施例不做限定。
如图3所示,以遥控器2021上设置2个实体的控制杆为例,2个实体的控制杆分别为左边的控制杆2021a和右边的控制杆2021b。左边的控制杆2021a用于实现横滚控制杆和油门控制杆的功能,当用户左右推动控制杆2021a时,控制杆2021a为横滚控制杆,当用户前后推动控制杆2021a时,控制杆2021a为油门控制杆。右边的控制杆2021b用于实现俯仰控制杆和偏航控制杆的功能,当用户左右推动控制杆2021b时,控制杆2021b为偏航控制杆,当用户前后推动控制杆2021b时,控制杆2021a为俯仰控制杆。
如图4所示,以无人飞行器201为多旋翼无人飞行器为例,遥控器可以检测用户对俯仰杆的操作以生成俯仰控制杆量,无人飞行器根据所述俯仰控制杆量控制无人飞行器的俯仰姿态,此时,无人飞行器控制无人飞行器沿无人飞行器的机头指示的第一偏航朝向或者第二偏航朝向飞行,其中,所述第二偏航朝向背离所述第一偏航朝向。例如,当用户朝前推动控制杆2021b时,表示控制无人飞行器201朝前飞行,此时遥控器2021向无人飞行器201发送俯仰控制杆量,无人飞行器201根据该俯仰控制杆量进行俯仰方向401旋转,使得无人飞行器的机头2011朝下旋转以低于机尾,从而使得无人飞行器201朝前飞行,其中,无人飞行器的机头2011低于机尾多少与俯仰控制杆量的大小有关,而俯仰控制杆量的大小与用户朝前推动控制杆2021b的程度有关。其中,用户朝后推动控制杆2021b使无人飞行器201朝后飞行可以参考朝前推动控制杆2021b使无人飞行器201朝前飞行的实现方案,此处不再赘述。
其中,遥控器可以检测用户对偏航杆的操作以生成偏航控制杆量,无人飞行器根据所述偏航控制杆量控制无人飞行器的偏航姿态以调整无人飞行器的偏航朝向。例如,当用户朝右动控制杆2021b时,表示控制无人飞行器201朝右,此时遥控器2021向无人飞行器201发送偏航控制杆量,无人飞行器201根据该偏航控制杆量进行偏航方向402旋转,使得无人飞行器201的机头2011朝右旋转,从而使得无人飞行器的航向偏右,其中,无人飞行器201的航向偏右的程度与偏航控制杆量的大小有关,而偏航控制杆量的大小与用户朝右推动控制杆2021b的程度有关。用户朝左推动控制杆2021b使无人飞行器201朝左飞行可以参考朝右推动控制杆2021b使无人飞行器201朝右飞行的实现方案,此处不再赘述。
其中,当用户朝前推动控制杆2021a时,表示控制无人飞行器201上升,此时遥控器2021向无人飞行器201发送油门控制杆量,无人飞行器201根据该油门控制杆量升高,其中,无人飞行器升高多少与油门控制杆量的大小有关,而油门控制杆量的大小与用户朝前推动控制杆2021a的程度有关。其中,用户朝后推动控制杆2021a使无人机飞行器201下降可以参考朝前推动控制杆2021a使无人飞行器201上升的实现方案,此处不再赘述。
其中,遥控器可以检测用户对横滚杆的操作以生成横滚控制杆量,无人飞行器根据所述横滚控制杆量控制无人飞行器的横滚姿态,此时,无人飞行器控制无人飞行器沿无人飞行器的机头指示的第三偏航朝向或者第四偏航朝向飞行,其中,所述第三偏航朝向背离所述第四偏航朝向,第三偏航朝向和第四偏航朝向与第一偏航朝向垂直。例如,当用户朝右推动控制杆2021a时,表示控制无人飞行器201右翻转飞行,此时遥控器2021向无人飞行器201发送横滚控制杆量,无人飞行器201根据该横滚控制杆量进行横滚方向403翻转,从而使得沿无人飞行器201的机头指示的第一偏航朝向往右翻滚,即沿无人飞行器 201的机头指示的第一偏航朝向的右边飞行,其中,无人飞行器的往右翻滚的程度与横滚控制杆量的大小有关,而横滚控制杆量的大小与用户朝右推动控制杆2021a的程度有关。用户朝左推动控制杆2021a使无人飞行器201往左翻滚可以参考朝右推动控制杆2021a使无人机飞行器往左翻滚的实现方案,此处不再赘述。
其中,无人飞行器201处于手动模式下,即无人飞行器201的飞行由用户操作控制杆来控制。当用户操控控制杆2021a或控制杆2021b,以控制无人飞行器201的某一方向时,容易将其它方向的控制杆量耦合进来,从而造成无人飞行器201的实际飞行方向航离用户的期望控制方向。比如当用户前后操控控制杆2021b以产生俯仰控制杆量来控制无人飞行器201前后飞行时,容易将偏航控制杆量耦合进来,导致无人飞行器边飞边转航向,使得航线飞不直。尤其在无人飞行器应用于农业行业,农作物一般沿着一条直线种植,无人飞行器201可以作为植保无人机对一排农作物进行喷洒、播撒时,需要沿着农作物的种植方向直线朝前或朝后飞行,但是由于上述问题的存在,会使得农作业喷洒、播散不精确,浪费资源。
因此,本申请提供出一种锁定模式,避免用户在操控控制杆时避免其它方向控制杆量耦合的问题,使得无人飞行器的航向,不再受其它方向的控制杆量的干扰,使无人飞行器的飞行航线飞直。具体实现方案可以参见下述相关各实施例所述。
另外,无人飞行器201处于手动模式下,需要用户长时间操控控制杆,易操纵疲劳,容易误操作,且当超视距飞行时,需要用户长时间盯着控制终端的显示屏,使得操控控制杆的注意力减弱,容易误操控而发生炸机事故。因此,本申请提出一种定速模式,避免当无人飞行器的飞行速度合适后,用户可直接松开控制杆,无须持续推控制杆,减轻飞行疲劳感和超视距飞行的持续操控。具体实现方案可以参见下述相关各实施例所述。
另外,无人飞行器201处于手动模式下,由于新手用户操控不熟练,炸机事故时有发生。比如在手动模式下,用户需要同时关注无人飞行器的飞行速度、飞行轨迹、周围是否有障碍物等多项注意事项,飞行过程中遇紧急情况时,用户操作控制杆过猛导致炸机。因此,本申请提出一种限速模式,有效避免飞行过程中遇紧急事故操纵控制杆过猛的情况,新手用户上手更容易。具体实现方案可以参见下述相关各实施例所述。
本申请的各实施例的方法可以应用于无人飞行器的控制设备中。该无人飞行器的控制设备可以设置在无人飞行器;或者,该无人飞行器的控制设备的一部分设置在无人飞行器上,另一部分设置在无人飞行器的控制终端上。下述各实施例以无人飞行器的控制设备设置在无人飞行器为例。
图5为本申请一实施例提供的无人飞行器的控制方法的流程图,如图5所示,本实施例的方法可以包括:
S501、当接收到控制终端发送的锁定指令,控制无人飞行器进入锁定模式,其中,锁定指令是控制终端检测用户的锁定操作生成的。
本实施例中,当用户想要控制无人飞行器进入锁定模式时,比如锁定无人飞行器的航向,用户可以对控制终端执行锁定操作,相应地,控制终端检测到用户的锁定操作,控制终端包括遥控器、智能手机、平板电脑、膝上型电脑、穿戴式设备中的一种或多种,此处不再赘述。比如,用户通过触控控制终端的显示装置上显示的锁定控件(比如点击锁定控件的图标)。相应地,控制终端根据检测到用户对锁定控件的触控操作,生 成锁定指令并发送给无人飞行器。又比如,用户操作控制终端的用于控制无人飞行器进入锁定模式的物理按键(该物理按键可以为控制终端的遥控器上的按键,或者,控制终端的终端设备上的按键),该物理按键可以设定为用于进入锁定模式的快捷键。相应地,控制终端根据检测到用户对该物理按键的操作,生成锁定指令并发送给无人飞行器。
相应地,无人飞行器接收控制终端发送的锁定指令,并根据该锁定指令进入锁定模式,比如预先设置有锁定模式标志位,该锁定模式标志位用于标示无人飞行器是否处于锁定模式中,其中,无人飞行器处于锁定模式时锁定模式标志位与不处于锁定模式时锁定模式标志位不同。比如锁定模式标志位为0时表示无人飞行器未处于锁定模式,当无人飞行器接收到锁定指令,无人飞行器将锁定模式标志位置为1,以表示无人飞行器进入锁定模式。
在锁定模式中,无人飞行器响应控制终端发送的俯仰控制杆量,但不响应控制终端发送的偏航控制杆量和横滚控制杆量。
S502、在锁定模式中:当接收到控制终端发送的俯仰控制杆量时,根据俯仰控制杆量控制无人飞行器沿无人飞行器的机头指示的第一偏航朝向或者第二偏航朝向飞行,其中,第二偏航朝向背离第一偏航朝向;以及不响应控制终端发送的偏航控制杆量和横滚控制杆量。
本实施例中,在无人飞行器处于锁定模式时,用户可以操作控制终端的遥控器的俯仰控制杆来控制无人飞行器前后飞行。当控制终端检测到用户对俯仰控制杆的操作时,根据该用户对俯仰控制杆获取到对应的俯仰控制杆量,并将该俯仰控制杆量发送给无人飞行器。其中,无人飞行器的机头指示的水平方向可以称为无人飞行器的偏航方向,无人飞行器的机头指示的偏航方向为两个,一个为机头朝向的水平方向,另一个为与机头朝向背景离的水平方向。相应地,无人飞行器接收到俯仰控制杆量,并根据该俯仰控制杆量控制无人飞行器沿无人飞行器的机头指示的第一偏航方向飞行,或者,根据该俯仰控制杆量控制无人飞行器沿无人飞行器的机头指示的第二偏航方向飞行,第二偏航朝向背离第二偏航朝向。比如,用户往前推俯仰控制杆,相应地,无人飞行器根据俯仰控制杆量控制无人飞行器沿机头朝向所指示的水平方向飞行。比如,用户往后推俯仰控制杆,相应地,无人飞行器根据俯仰控制杆量控制无人飞行器沿机头背向所指示的水平方向飞行。
如果用户操纵偏航控制杆和横滚控制杆中的至少一个,比如用户不小心使得偏航控制杆和横滚控制杆中的至少一个产生了控制杆量,控制终端向无人飞行器发送偏航控制杆量和/或横滚控制杆量。又由于无人飞行器当前处于锁定模式,在该模式下不响应偏航控制杆量和横滚控制杆量,所以无人飞行器接收到控制终端发送的偏航控制杆量和/或横滚控制杆量,无人飞行器既不会根据偏航控制杆量控制无人飞行器的偏航方向发生变更,即不会控制无人飞行器朝左或朝右飞行;无人飞行器也不会根据横滚控制杆量控制无人飞行器的横滚方向发生变更,即不会控制无人飞行器往左翻滚或往右翻滚。这样可以保证无人飞行器保持朝机头指示的水平方向(机头朝向的水平方向或与其背离的方向)飞行。
因此,本实施例提供的无人飞行器的控制方法,在无人飞行器在进入锁定模式后,响应于接收到的俯仰控制杆量控制无人飞行器朝机头指示的第一偏航方向或与第一偏航方向背离的第二偏航方向飞行,不再响应于接收到的偏航控制杆量和横滚控制杆量,以保证无人飞行器保持机头指示的水平方向直线朝前/后飞行,避免误操作控制杆产生飞行偏差, 使得无人飞行器的飞行更符合用户的期望,提高用户体验。尤其在应用于植保行业,可以保证无人飞行器保持沿农作业的种植方向飞行,提高作业精度。
在一些实施例中,当无人飞行器接收到控制终端发送的锁定指令时,若无人飞行器处于飞行状态,飞行状态可以是指无人飞行器的当前飞行速度不为0时的状态,则无人飞行器获取当前的速度方向指示的水平速度方向,将无人飞行器的机头的偏航朝向调整至该水平速度方向。然后再执行上述S502。保持机头的偏航朝向与当前的速度方向指示的水平速度方向一致,避免出现飞行偏差,提高无人飞行器飞行过程中的准确性。
如果无人飞行器处于悬停状态,悬停状态可以是指无人飞行器的当前飞行速度为0时的状态,则用户可以通过无人飞行器的上的机头辅助线来确定无人飞行器的航向,或者,无需调整无人飞行器的航向,然后再执行上述S502。
在一些实施例中,在无人飞行器处于锁定模式时,无人飞行器可以响应于接收到的油门控制杆量。如果用户操控油门控制杆,控制终端向无人飞行器发送相应的油门控制杆量。相应地,无人飞行器接收到油门控制杆量,无人飞行器根据该油门控制杆量控制无人飞行器飞行,比如控制无人飞行器上升或下降,在此过程中也不会影响无人飞行器的机头指示的水平方向,也不会使无人飞行器的航向产生偏差。因此在保证无人飞行器的航向不产生偏差的前提下,实现无人飞行器的多样化、灵活控制,提高用户体验。
在图5所示实施例的基础上,图6为本申请另一实施例提供的无人飞行器的控制方法的流程图,如图6所示,本实施例的方法在执行上述S501之后还包括如下:
S601、获取解除锁定指令,控制无人飞行器退出锁定模式。
本实施例中,当无人飞行器处于锁定模式时,如果获取到解除锁定指令,则控制无人飞行器退出锁定模式。
在一种实现方式中,无人飞行器接收控制终端发送的解除锁定指令。当用户想要控制无人飞行器退出上述锁定模式时,用户可以对控制终端执行解除锁定操作,相应地,控制终端检测到用户的解除锁定操作。比如,用户通过触控控制终端的显示装置上显示的解除锁定控件(比如点击解除锁定控件的图标)。相应地,控制终端根据检测到用户对解除锁定控件的触控操作,生成解除锁定指令并发送给无人飞行器。又比如,用户操作控制终端的用于控制无人飞行器解除锁定模式的物理按键(该物理按键可以为控制终端的遥控器上的按键,或者,控制终端的终端设备上的按键),该物理按键可以设定为用于解除锁定模式的快捷键。相应地,控制终端根据检测到用户对该物理按键的操作,生成解除锁定指令并发送给无人飞行器。相应地,无人飞行器接收控制终端发送的解除锁定指令。因此,用户可以随时控制无人飞行器退出锁定模式,提高操作的灵活性,提高用户体验。
在另一种实现方式,当无人飞行器处于预设的状态时,生成解除锁定指令。该预设的状态可以为无人飞行器的刹车状态,或者,无人飞行器的避障状态等紧急状态,在这些状态下,无人飞行器无需保持直线飞行,需要无人飞行器退出锁定模式,以确保无人飞行器的飞行安全,避免无人飞行器损坏。
可选的,无人飞行器获取到解除锁定指令后,可以将锁定模式标志位设置为用于标示无人飞行器不处于锁定模式中,比如无人飞行器将锁定模式标志位置为0,以表示无人飞行器退出锁定模式。
在退出锁定模式后,无人飞行器不仅响应控制终端发送的俯仰控制杆量和油耗控制杆量,还可以响应控制终端发送的偏航控制杆量和横滚控制杆量。
S602、在退出锁定模式后:当接收到控制终端发送的偏航控制杆量时,根据偏航控制杆量控制无人飞行器飞行;当接收到控制终端发送的横滚控制杆量时,根据横滚控制杆量控制无人飞行器飞行。
本实施例中,在无人飞行器退出锁定模式后,用户可以操作控制终端的偏航控制杆来控制无人飞行器左右飞行。当控制终端检测到用户对偏航控制杆的操作时,根据该用户对偏航控制杆获取到对应的偏航控制杆量,并将该偏航控制杆量发送给无人飞行器。无人飞行器根据该偏航控制杆量控制无人飞行器飞行,比如控制无人飞行器朝左飞行或者朝右飞行,以改变无人飞行器的航向。
用户也可以操作控制终端的横滚控制杆来控制无人飞行器左右飞行。当控制终端检测到用户对横滚控制杆的操作时,根据该用户对横滚控制杆获取到对应的横滚控制杆量,并将该横滚控制杆量发送给无人飞行器。无人飞行器根据该横滚控制杆量控制无人飞行器飞行,比如控制无人飞行器往左翻转飞行或者往右翻转飞行。
因此,本实施例提供的无人飞行器的控制方法,在无人飞行器在进入锁定模式后,无人飞行器根据控制终端发送的解除锁定指令,退出锁定模式,在退出锁定模式后,可以响应于接收到的偏航控制杆量和横滚控制杆量,以改变无人飞行器的航向、控制无人飞行器左/右翻转,以便在任一方向上控制无人飞行器飞行,提高控制无人飞行器的灵活性,提高用户体验。
图7为本申请另一实施例提供的无人飞行器的控制方法的流程图,如图7所示,本实施例的方法可以包括:
S701、若在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据预设时长内接收到的至少一个控制杆量确定无人飞行器的第一目标速度。
本实施例,控制终端包括控制杆,当用户想要控制无人飞行器的飞行速度,用户可以对控制终端的控制杆进行操作,相应地,控制终端检测到用户对控制杆的操作,并根据检测到的用户对控制杆的操作生成相应的控制杆量,并将该控制杆量发送给无人飞行器。相应地,无人飞行器接收控制终端发送的控制杆量。此处以无人飞行器接收到控制终端发送的控制杆量的其中一时刻称为第一时刻,并从该第一时刻开始无人飞行器连续接收到控制终端发送的控制杆量,可以对连续接收到控制杆量的时长进行计时。如果从第一时刻开始连接接收到控制杆量的时长等于预设时长,预设时长比如为3s,表示从第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则无人飞行器根据预设时长内接收到的至少一个控制杆量确定无人飞行器的目标速度,此处称为第一目标速度。
S702、控制无人飞行器保持以第一目标速度飞行。
本实施例中,在确定无人飞行器的第一目标速度之后,控制无人飞行器保持以第一目标速度飞行。具体的,是在第一时刻起上述预设时长之后,控制无人飞行器保持以第一目标速度飞行。
也就是当用户想要控制无人飞行器定速飞行时,用户可以保持控制杆在某一位置停留达到预设时长,相应地,无人飞行器以相应的速度定速飞行。
其中,在确定无人飞行器的第一目标速度之后,控制无人飞行器保持以第一目标速度 飞行的过程中,如果用户操作控制杆回到零位,控制终端向无人飞行器发送零位对应的控制杆量,无人飞行器也不响应于该零位对应的控制杆量,而是保持以第一目标速度继续飞行。
因此,本实施例提供的无人飞行器的控制方法,当用户想要控制无人飞行器定速飞行时,用户可以在第一时刻开始持续操控控制杆达到预设时长。相应地,无人飞行器在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,然后根据预设时长内接收到的至少一个控制杆量确定无人飞行器的第一目标速度,并保持以该第一目标速度飞行,达到定速飞行的目的。无需用户长时间操控控制杆,无须持续推杆,减轻飞行疲劳感和超视距飞行的持续操纵,避免误操控而发生炸机事故,保障无人飞行器的飞行安全,提高用户体验。
可选的,上述的控制杆量包括俯仰控制杆量和横滚控制杆量中的至少一种。俯仰控制杆量为控制终端检测到用户操控俯仰控制杆而产生的杆量,横滚控制杆量为控制终端检测到用户操控横滚控制杆而产生的杆量,这些杆量均为影响无人飞行器的飞行速度。
可选的,上述的控制杆量可以包括油门控制杆量。
在一些实施例中,上述S701的一种可能的实现方式为:若在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量且预设时长内的接收到的多个控制杆量满足预设的收敛度条件时,则根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度。
本实施例中,无人飞行器在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,并判断该预设时长内的接收到的多个控制杆量是否满足预设的收敛度条件。如果预设时长内的接收到的多个控制杆量满足预设的收敛度条件,说明用户在预设时长基本上没有推控制杆,控制杆在预设时长内基本上维持在同一位置,用户期望无人飞行器的飞行速度不变,则无人飞行器根据预设时长内接收到的至少一个控制杆量确定第一目标速度。如果预设时长内的接收到的多个控制杆量不满足预设的收敛度条件,说明用户在预设时长仍然在推控制杆,控制杆在预设时长内没有维持在同一位置,用户仍然在调整无人飞行器的飞行速度,则无人飞行器实时根据当前的控制杆量确定飞行速度。
可选的,判断该预设时长内的接收到的多个控制杆量是否满足预设的收敛度条件例如是:判断该预设时长内的接收到的多个控制杆量之间的差异小于预设差异阈值。如果差异小于预设差异阈值,表示预设时长内的接收到的多个控制杆量满足预设的收敛度条件。如果差异不小于预设差异阈值,表示预设时长内的接收到的多个控制杆量不满足预设的收敛度条件。
其中,上述根据预设时长内接收到的至少一个控制杆量确定第一目标速度的一种可能的实现方式:确定预设时长内的多个控制杆量中的平均控制杆量,并根据平均控制杆量确定第一目标速度。
上述根据预设时长内接收到的至少一个控制杆量确定第一目标速度的另一种可能的实现方式:确定预设时长内的多个控制杆量中的中位控制杆量,并根据中位控制杆量确定第一目标速度。
上述根据预设时长内接收到的至少一个控制杆量确定第一目标速度的另一种可能的实现方式:根据预设时长内最后接收到的一个控制杆量确定第一目标速度。
因此,通过上述各方式,使得确定的第一目标速度更趋近用户的期望速度。
在一些实施例中,在控制无人飞行器保持以第一目标速度飞行的过程中,如果用户想要控制无人飞行器以另一速度定速飞行,则用户可以在第二时刻开始对控制终端的控制杆进行操作,相应地,控制终端检测到用户对控制杆的操作,并根据检测到的用户对控制杆的操作生成相应的控制杆量,并将该控制杆量发送给无人飞行器。相应地,无人飞行器接收控制终端发送的控制杆量。并且从该第二时刻开始无人飞行器连续接收到控制终端发送的控制杆量,如果从第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则无人飞行器根据预设时长内接收到的至少一个控制杆量确定无人飞行器的目标速度,此处称为第二目标速度,然后无人飞行器控制无人飞行器以第二目标速度飞行。从而达到无人飞行器更改定速飞行的速度的目的,提高用户在无人飞行器定速飞行过程时操控的灵活性,提高用户体验。
在另一些实施例中,在控制无人飞行器保持以第一目标速度飞行的过程中,不再响应接收的无人飞行器的控制杆量。在本实施例中,在控制无人飞行器保持以第一目标速度飞行的过程中,无论用户如何操控控制杆,控制终端将相应的控制杆量发送给无人飞行器,无人飞行器也不响应接收的控制杆量,仍然保持以第一目标速度飞行。因此,在控制无人飞行器保持以第一目标速度飞行的过程中,避免用户误操作控制杆而影响定速飞行的效果。
在图7所示实施例及相关实施例的基础上,无人飞行器在执行上述S701之前,用户可以通过操作控制终端使得无人飞行器进入定速模式。当用户想要控制无人飞行器进入定速模式时,用户可以对控制终端执行定速模式进入操作,相应地,控制终端检测到用户的定速模式进入操作。比如,用户通过触控控制终端的显示装置上显示的定速模式进入控件(比如点击定速模式进入控件的图标)。相应地,控制终端根据检测到用户对定速模式进入控件的触控操作,生成第一定速信息并发送给无人飞行器。又比如,用户操作控制终端的用于控制无人飞行器进入定速模式的物理按键(该物理按键可以为控制终端的遥控器上的按键,或者,控制终端的终端设备上的按键),该物理按键可以设定为用于进入定速模式的快捷键。相应地,控制终端根据检测到用户对该物理按键的操作,生成第一定速模式信息指令并发送给无人飞行器。
相应地,无人飞行器接收控制终端发送的第一定速模式信息,响应于该第一定速模式信息,控制无人飞行器进入定速模式。其中,如何控制无人飞行器进入定速模式可以参见控制无人飞行器进入锁定模式的实现方案,此处不再赘述。
在无人飞行器处于定速模式后,无人飞行器再执行上述图7所示实施例及相关实施例,具体实现过程,此处不再赘述。
在一些实施例中,在无人飞行器处于定速模式之后,如果获取到第二定速模式信息,则控制无人飞行器退出定速模式。
在一种实现方式中,无人飞行器接收控制终端发送的第二定速模式信息。当用户想要控制无人飞行器退出上述定速模式时,用户可以对控制终端执行定速模式退出操作,相应地,控制终端检测到用户的定速模式退出操作。比如,用户通过触控控制终端的显示装置上显示的定速模式退出控件(比如点击定速模式退出控件的图标)。相应地,控制终端根据检测到用户对定速模式退出控件的触控操作,生成第二定速信息并发送给无人飞行器。又比如,用户操作控制终端的用于控制无人飞行器定速模式退出的物理按 键(该物理按键可以为控制终端的遥控器上的按键,或者,控制终端的终端设备上的按键),该物理按键可以设定为用于定速模式退出的快捷键。相应地,控制终端根据检测到用户对该物理按键的操作,生成第二定速信息并发送给无人飞行器。相应地,无人飞行器接收控制终端发送的第二定速信息。因此,用户可以随时控制无人飞行器退出定速模式,提高操作的灵活性,提高用户体验。
在另一种实现方式,当无人飞行器处于预设的状态时,生成第二定速信息。该预设的状态可以为无人飞行器的刹车状态,或者,无人飞行器的避障状态等紧急状态,在这些状态下,为了确定无人飞行器的飞行安全,无需无人飞行器保持定速飞行,避免无人飞行器损坏。
然后,无人飞行器响应于第二定速模式信息,控制无人飞行器退出定速模式。在退出锁定模式后,无人飞行器可以响应于接收到的控制杆量实时更新飞行速度。
与上述图7所示实施例及相关实施例不同的是,在另一些实施例中,当用户操纵控制杆来控制无人飞行器的速度时,如果用户期望控制无人飞行器以当前速度定速飞行,则用户对控制终端执行目标速度确认操作。其中,用户执行目标速度确认操作可以参见上述用户执行的锁定操作等操作的实现方案,此处不再赘述。相应地,控制终端检测到目标速度确认操作,生成目标速度确认指令并发送给无人飞行器。无人飞行器接收到目标速度确认指令,响应于该目标速度确认指令,确定无人飞行器的当前飞行速度为目标速度。比如响应于目标速度确认指令,根据当前接收的控制杆量确定目标速度。然后无人飞行器控制无人飞行器保持以该目标速度飞行,实现无人飞行器持续以当前速度飞行的目的。
图8为本申请另一实施例提供的无人飞行器的控制方法的流程图,如图8所示,本实施例的方法可以包括:
S801、接收控制终端发送的飞行限制速度,其中,飞行限制速度是控制终端检测用户的限制速度设置操作生成的。
本实施例中,当用户想要控制无人飞行器进入退速模式时,比如限制无人飞行器的最大飞行速度,用户可以对控制终端执行限制速度设置操作,相应地,控制终端检测到用户的限制速度设置操作。比如,用户通过触控控制终端的显示装置上显示的限制速度设置控件(比如点击限制速度设置控件的图标)。相应地,控制终端根据检测到用户对限制速度设置控件的触控操作,生成飞行限制速度并发送给无人飞行器。又比如,用户操作控制终端的用于无人飞行器限制速度设置的物理按键(该物理按键可以为控制终端的遥控器上的按键,或者,控制终端的终端设备上的按键),该物理按键可以设定为用于限制速度设置的快捷键。相应地,控制终端根据检测到用户对该物理按键的操作,生成飞行限制速度并发送给无人飞行器。飞行限制速度可以是预先保存在控制终端,或者,飞行限制速度可以是用户设置的。比如飞行限制速度可以是控制终端在检测到的限制速度设置操作时根据当前的控制杆量生成的,或者,飞行限制速度是根据用户通过控制终端的交互装置设置的速度值生成的。
相应地,无人飞行器接收控制终端发送的飞行限制速度。
S802、响应于接收到的飞行限制速度,将无人飞行器在飞行过程中的最大飞行速度限制为飞行限制速度。
本实施例中,无人飞行器响应于接收到的飞行限制速度,将无人飞行器在飞行过程中 的最大飞行速度限制为上述接收到的飞行限制速度,使得无人飞行器在飞行过程中实际飞行速度的最大值不大于上述飞行限制速度。
因此,本实施例提供的无人飞行器的控制方法,当用户想要限制无人飞行器的最大飞行速度时,用户可以对控制终端限制速度设置操作。控制终端检测到限制速度设置操作后,向无人飞行器发送飞行限制速度。相应地,无人飞行器响应于接收到的飞行限制速度,将无人飞行器在飞行过程式中的最大飞行速度限制为飞行限制速度,达到限制无人飞行器的速度的目的。由于本实施例将无人飞行器的最大飞行速度限制为飞行限制速度,因此,即使用户不小心操纵控制杆过猛,也不会造成飞行速度过快,避免误操控而发生炸机事故,保障无人飞行器的飞行安全,提高用户体验。
在一些实施例中,在无人飞行器接收到控制终端发送的飞行限制速度之后,无人飞行器可以继续响应接收到的控制杆量。当用户想要操控无人飞行器的飞行速度时,用户可以操纵控制终端的控制杆,相应地,控制终端检测到用户操纵控制杆,并生成对应的控制杆量,然后将控制杆量发送给无人飞行器,无人飞行器响应于该控制杆量,根据上述的飞行限制速度和接收到的控制杆量确定该控制杆量对应的飞行速度。
比如:如果无人飞行器在接收到飞行限制速度之前的最大飞行速度为20m/s,表示用户操作控制杆使得对应的控制杆量为最大控制杆量时,无人飞行器对应的飞行速度为20m/s。如果无人飞行器从控制终端接收到的飞行限制速度为10m/s,则说明用户操作控制杆使得对应的控制杆量为最大控制杆量时,无人飞行器对应的飞行速度为10m/s。因此,根据最大控制杆量与飞行限制速度可以确定限速模式下控制杆量与飞行速度之间的对应关系。然后无人飞行器接收到控制终端的控制杆量,根据接收的控制杆量与限速模式下控制杆量与飞行速度之间的对应关系,确定该控制杆量对应的飞行速度。然后,控制无人飞行器按照该飞行速度飞行。比如接收的控制杆量为最大控制杆量的1/2,则确定出的飞行速度为10m/s的1/2(即5m/s),而不是20m/s的1/2(即10m/s),因此,达到了将飞行速度限制为原来的一半。需要说明的是,上述速度数值用于举例说明,不用于限定本申请实施例的范围。
因此,本实施例不仅限制了最大飞行速度,还在整个控制杆量的范围内对飞行速度进行限速,使得用户更准确的调整无人飞行器的飞行速度。
在一些实施例中,无人飞行器还获取解除速度限制指令,响应于解除速度限制指令,将无人飞行器在飞行过程中的最大飞行速度限制为飞行限制速度的限制解除。
在一种实现方式中,无人飞行器接收控制终端发送的解除速度限制指令。当用户想要控制无人飞行器解除飞行速度限制时,用户可以对控制终端执行解除速度限制操作,相应地,控制终端检测到用户的解除速度限制操作。比如,用户通过触控控制终端的显示装置上显示的解除速度限制控件(比如点击解除速度限制控件的图标)。相应地,控制终端根据检测到用户对解除速度限制控件的触控操作,生成解除速度限制指令并发送给无人飞行器。又比如,用户操作控制终端的用于控制无人飞行器解除飞行速度限制的物理按键(该物理按键可以为控制终端的遥控器上的按键,或者,控制终端的终端设备上的按键),该物理按键可以设定为用于解除飞行速度限制的快捷键。相应地,控制终端根据检测到用户对该物理按键的操作,生成解除锁定指令并发送给无人飞行器。相应地,无人飞行器接收控制终端发送的解除速度限制指令。因此,用户可以随时控制 无人飞行器解除飞行速度限制,提高操作的灵活性,提高用户体验,新手用户更易操作。
在另一种实现方式,当无人飞行器处于预设的状态时,生成解除速度限制指令。该预设的状态可以为无人飞行器的刹车状态,或者,无人飞行器的避障状态等紧急状态,在这些状态下,无人飞行器无需继续限制飞行速度,需要无人飞行器解除飞行速度限制,以确保无人飞行器的飞行安全,避免无人飞行器损坏。
相应地,无人飞行器获取到解除速度限制指令之后,将无人飞行器在飞行过程中的最大飞行速度限制为飞行限制速度的限制解除。然后无人飞行器接收到控制杆量,不再受上述飞行限制速度的限制,比如当用户操作控制杆使控制杆量达到最大控制杆量,此时对应的无人飞行速度不再是10m/s,而是20m/s。
需要说明的是,上述任一实施例可以单独实施,也可以是上述各实施例中至少两个任意结合来实施,对此不做限定。比如:图5所示实施例及相关实施例中任一实施例可以与图7所示实施例及相关实施例中任一实施例结合来实施。图5所示实施例及相关实施例中任一实施例可以与图8所示实施例及相关实施例中任一实施例结合来实施。图7所示实施例及相关实施例中任一实施例可以与图8所示实施例及相关实施例中任一实施例结合来实施。图5所示实施例及相关实施例中任一实施例、图7所示实施例及相关实施例中任一实施例、与图8所示实施例及相关实施例中任一实施例结合来实施。在各实施例相互结合的场景中,对各实施例的执行顺序不做限定。
综上,本申请可以通过锁定模式、定速模式、限速模式三种手动增强模式,有效解决了手动操纵模式下用户操作控制杆易耦合,航线飞不直/操纵易疲劳,误触易炸机/新手上手难,飞行注意多的三大痛点问题,极大提高了手动操纵的飞行安全性和飞行体验感,大幅降低了手动操纵难度和误操纵炸机风险,使无人飞行器更加易操纵,易上手,易飞行。
其中,锁定模式、定速模式、限速模式可相互独立,可以根据实际情况互相配合,同时开启多种手动增强模式。
本申请实施例中还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序执行时可包括如上述任一实施例中的无人飞行器的控制方法的部分或全部步骤。
图9为本申请一实施例提供的无人飞行器的控制设备的结构示意图,如图9所示,本实施例的无人飞行器的控制设备900可以包括:通信装置901和处理器902。
在一些实施例中,通信装置901,用于接收控制终端发送的锁定指令,以及接收所述控制终端发送的俯仰控制杆量、偏航控制杆量和横滚控制杆量。
处理器902,用于当所述通信装置901接收到控制终端发送的锁定指令,控制所述无人飞行器进入锁定模式,其中,所述锁定指令是控制终端检测用户的锁定操作生成的;在所述锁定模式中:
当所述通信装置901接收到所述控制终端发送的俯仰控制杆量时,根据所述俯仰控制杆量控制无人飞行器沿无人飞行器的机头指示的第一偏航朝向或者第二偏航朝向飞行,其中,所述第二偏航朝向背离所述第一偏航朝向;
不响应所述通信装置901接收到的所述控制终端发送的偏航控制杆量和横滚控制杆量。
可选的,所述通信装置901,还用于接收所述控制终端发送的油门控制杆量。所述处 理器902,还用于当所述通信装置901接收到所述控制终端发送的油门控制杆量时,根据所述油门控制杆量控制无人飞行器飞行。
可选的,所述处理器902,还用于获取解除锁定指令,控制所述无人飞行器退出锁定模式。在退出所述锁定模式后:
当所述通信装置901接收到所述控制终端发送的偏航控制杆量时,根据所述偏航控制杆量控制无人飞行器飞行;
当所述通信装置901接收到所述控制终端发送的横滚控制杆量时,根据所述横滚控制杆量控制无人飞行器飞行。
可选的,所述处理器902,在获取解除锁定指令时,具体用于:
通过所述通信装置901接收所述控制终端发送的解除锁定指令,其中,所述解除锁定指令为所述控制终端检测用户的解除锁定操作生成的。
可选的,所述处理器902,在获取解除锁定指令时,具体用于:
当所述无人飞行器处于预设的状态时,生成解除锁定指令。
可选的,所述处理器902,还用于当所述通信装置901接收到控制终端发送的锁定指令时,若所述无人飞行器处于飞行状态,则获取无人飞行器当前的速度方向指示的水平速度方向,将所述无人飞行器的机头的偏航朝向调整至所述水平速度方向。
可选的,所述处理器902,还用于:
若所述通信装置901在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第一目标速度。控制所述无人飞行器保持以所述第一目标速度飞行。
可选的,所述控制杆量包括俯仰控制杆量和横滚控制杆量中的至少一种。
可选的,所述处理器902,具体用于:
若所述通信装置901在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量且预设时长内的接收到的多个控制杆量满足预设的收敛度条件时,则根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度。
可选的,所述处理器902在根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度时,具体用于:
确定所述预设时长内的多个控制杆量中的平均控制杆量或者中位控制杆量;
根据所述平均控制杆量或者中位控制杆量确定所述第一目标速度。
可选的,所述处理器902,具体用于:根据所述预设时长内所述通信装置最后接收到的一个控制杆量确定所述第一目标速度。
可选的,所述处理器902,还用于:
若所述通信装置901在第二时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第二目标速度;
控制所述无人飞行器保持以所述第二目标速度飞行。
可选的,所述处理器902还用于在控制所述无人飞行器保持以所述第一目标速度飞行的过程中,不再响应接收的无人飞行器的控制杆量。
可选的,所述通信装置901,还用于获取控制终端发送的第一定速模式信息,其中, 所述第一定速模式信息是控制终端检测用户的定速模式进入操作生成的。所述处理器902,还用于响应于所述第一定速模式信息,控制所述无人飞行器进入定速模式。
所述处理器902在若所述通信装置901在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的目标速度时,具体用于:
若所述无人飞行器处于定速模式且所述通信装置901在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的目标速度。
可选的,所述处理器902,还用于获取控制终端发送的第二定速模式信息,其中,所述第二定速模式信息是控制终端检测用户的定速模式退出操作生成的,或者,当所述无人飞行器处于预设的状态时,生成第二定速模式信息;响应于所述第二定速模式信息,控制所述无人飞行器退出定速模式。
可选的,所述通信装置901,还用于接收控制终端发送的飞行限制速度,其中,所述飞行限制速度是所述控制终端检测用户的限制速度设置操作生成的。
所述处理器902,还用于响应于所述通信装置901接收到的飞行限制速度,将所述无人飞行器在飞行过程中的最大飞行速度限制为所述飞行限制速度。
可选的,所述处理器902,还用于:
根据所述飞行限制速度和从所述控制终端接收到的控制杆量确定所述控制杆量对应的飞行速度;
控制所述无人飞行器按照所述飞行速度飞行。
可选的,所述处理器902,还用于:
获取解除速度限制指令;
响应于所述解除速度限制指令,将所述无人飞行器在飞行过程中的最大飞行速度限制为所述飞行限制速度的限制解除。
可选的,所述处理器902在获取解除速度限制指令时,具体用于:
通过所述通信装置901接收所述控制终端发送的解除速度限制指令,其中,所述解除速度限制指令为所述控制终端检测用户的解除速度限制操作生成的。
可选的,所述处理器902在获取解除速度限制指令时,具体用于:当所述无人飞行器处于预设的状态时,生成解除速度限制指令。
在另一些实施例中,通信装置901,用于接收控制终端发送的控制杆量。处理器902,用于若所述通信装置901在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第一目标速度;控制所述无人飞行器保持以所述第一目标速度飞行。
可选的,所述控制杆量包括俯仰控制杆量和横滚控制杆量中的至少一种。
可选的,所述处理器902,具体用于:
若所述通信装置901在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量且预设时长内的接收到的多个控制杆量满足预设的收敛度条件时,则根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度。
可选的,所述处理器902在根据所述预设时长内接收到的至少一个控制杆量确定所述 目标速度时,具体用于:
确定所述预设时长内的多个控制杆量中的平均控制杆量或者中位控制杆量;
根据所述平均控制杆量或者中位控制杆量确定所述目标速度。
可选的,所述处理器902在根据所述预设时长内接收到的至少一个控制杆量确定所述目标速度时,具体用于:根据所述预设时长内最后接收到的一个控制杆量确定所述目标速度。
可选的,所述处理器902,还用于:
若所述通信装置901在第二时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第二目标速度;控制所述无人飞行器保持以所述第二目标速度飞行。
可选的,所述处理器902,还用于在控制所述无人飞行器保持以所述目标速度飞行的过程中,不再响应获得的无人飞行器的控制杆量。
可选的,所述处理器902,还用于:获取控制终端发送的第一定速模式信息,其中,所述第一定速模式信息是控制终端检测用户的定速模式进入操作生成的;响应于所述第一定速模式,控制所述无人飞行器进入定速模式。
所述处理器902在若所述通信装置901在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的目标速度时,具体用于:
若所述无人飞行器处于定速模式且所述通信装置901在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的目标速度。
可选的,所述处理器902,还用于:
通过所述通信装置901获取控制终端发送的第二定速模式信息,其中,所述第二定速模式信息是控制终端检测用户的定速模式退出操作生成的,或者,当所述无人飞行器处于预设的状态时,生成第二定速模式信息;
响应于所述第二定速模式信息,控制所述无人飞行器退出定速模式。
可选的,所述通信装置901,还用于接收控制终端发送的锁定指令、俯仰控制杆量、偏航控制杆量和横滚控制杆量。
所述处理器902,还用于当所述通信装置901接收到控制终端发送的锁定指令,控制所述无人飞行器进入锁定模式,其中,所述锁定指令是控制终端检测用户的锁定操作生成的;在所述锁定模式中:
当所述通信装置901接收到所述控制终端发送的俯仰控制杆量时,根据所述俯仰控制杆量控制无人飞行器沿无人飞行器的机头指示的第一偏航朝向或者第二偏航朝向飞行,其中,所述第二偏航朝向背离所述第一偏航朝向;
不响应所述通信装置901接收到的所述控制终端发送的偏航控制杆量和横滚控制杆量。
可选的,所述通信装置901,还用于接收所述控制终端发送的油门控制杆量。
所述处理器902,还用于当所述通信装置901接收到所述控制终端发送的油门控制杆量时,根据所述油门控制杆量控制无人飞行器飞行。
可选的,所述处理器902,还用于:获取解除锁定指令,控制所述无人飞行器退出锁定模式;在退出所述锁定模式后:
当所述通信装置901接收到所述控制终端发送的偏航控制杆量时,根据所述偏航控制杆量控制无人飞行器飞行;
当所述通信装置901接收到所述控制终端发送的横滚控制杆量时,根据所述横滚控制杆量控制无人飞行器飞行。
可选的,所述处理器902在获取解除锁定指令时,具体用于:
通过所述通信装置901接收所述控制终端发送的解除锁定指令,其中,所述解除锁定指令为所述控制终端检测用户的解除锁定操作生成的。
可选的,所述处理器902在获取解除锁定指令时,具体用于:
当所述无人飞行器处于预设的状态时,生成解除锁定指令。
可选的,所述处理器902,还用于:当所述通信装置901接收到控制终端发送的锁定指令时,若所述无人飞行器处于飞行状态,则获取无人飞行器当前的速度方向指示的水平速度方向,将所述无人飞行器的机头的偏航朝向调整至所述水平速度方向。
可选的,所述通信装置901,还用于接收控制终端发送的飞行限制速度,其中,所述飞行限制速度是所述控制终端检测用户的限制速度设置操作生成的。所述处理器902,还用于响应于所述通信装置901接收到的飞行限制速度,将无人飞行器在飞行过程中的最大飞行速度限制为所述飞行限制速度。
可选的,所述处理器902,还用于:根据所述飞行限制速度和通过所述通信装置901从所述控制终端接收到的控制杆量,确定所述控制杆量对应的飞行速度;控制所述无人飞行器按照所述飞行速度飞行。
可选的,所述处理器902,还用于:获取解除速度限制指令;响应于所述解除速度限制指令,将所述无人飞行器在飞行过程中的最大飞行速度限制为所述飞行限制速度的限制解除。
可选的,所述处理器902在获取解除速度限制指令时,具体用于:通过所述通信装置901接收所述控制终端发送的解除速度限制指令,其中,所述解除速度限制指令为所述控制终端检测用户的解除速度限制操作生成的。
可选的,所述处理器902在获取解除速度限制指令时,具体用于:当所述无人飞行器处于预设的状态时,生成解除速度限制指令。
可选的,本实施例的无人飞行器的控制设备900还可以包括存储器(图中未示出)。存储器,用于存储程序代码。所述处理器902,调用所述程序代码,当程序代码被执行时,用于实施上述各方法。
本实施例的无人飞行器的控制设备,可以用于执行本申请上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本申请实施例提供一种无人飞行器,该无人飞行器包括无人飞行器的控制设备,无人飞行器的控制设备可以采用图9所示实施例的结构,对应的,可以执行上述任一方法实施例提供的技术方案,此处不再赘述。
图10为本申请另一实施例提供的无人飞行器的结构示意图,如图10所示,本实施例的无人飞行器1000包括:通信装置1001和处理器1002。
在一些实施例中,通信装置1001,用于接收控制终端发送的锁定指令,以及接收所述控制终端发送的俯仰控制杆量、偏航控制杆量和横滚控制杆量。
处理器1002,用于当所述通信装置1001接收到控制终端发送的锁定指令,控制所述无人飞行器1000进入锁定模式,其中,所述锁定指令是控制终端检测用户的锁定操作生成的;在所述锁定模式中:
当所述通信装置1001接收到所述控制终端发送的俯仰控制杆量时,根据所述俯仰控制杆量控制无人飞行器1000沿无人飞行器1000的机头指示的第一偏航朝向或者第二偏航朝向飞行,其中,所述第二偏航朝向背离所述第一偏航朝向;
不响应所述通信装置1001接收到的所述控制终端发送的偏航控制杆量和横滚控制杆量。
可选的,所述通信装置1001,还用于接收所述控制终端发送的油门控制杆量。所述处理器1002,还用于当所述通信装置1001接收到所述控制终端发送的油门控制杆量时,根据所述油门控制杆量控制无人飞行器1000飞行。
可选的,所述处理器1002,还用于获取解除锁定指令,控制所述无人飞行器1000退出锁定模式。在退出所述锁定模式后:
当所述通信装置1001接收到所述控制终端发送的偏航控制杆量时,根据所述偏航控制杆量控制无人飞行器1000飞行;
当所述通信装置1001接收到所述控制终端发送的横滚控制杆量时,根据所述横滚控制杆量控制无人飞行器1000飞行。
可选的,所述处理器1002,在获取解除锁定指令时,具体用于:
通过所述通信装置1001接收所述控制终端发送的解除锁定指令,其中,所述解除锁定指令为所述控制终端检测用户的解除锁定操作生成的。
可选的,所述处理器1002,在获取解除锁定指令时,具体用于:
当所述无人飞行器1000处于预设的状态时,生成解除锁定指令。
可选的,所述处理器1002,还用于当所述通信装置1001接收到控制终端发送的锁定指令时,若所述无人飞行器1000处于飞行状态,则获取无人飞行器1000当前的速度方向指示的水平速度方向,将所述无人飞行器1000的机头的偏航朝向调整至所述水平速度方向。
可选的,所述处理器1002,还用于:
若所述通信装置1001在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器1000的第一目标速度。控制所述无人飞行器1000保持以所述第一目标速度飞行。
可选的,所述控制杆量包括俯仰控制杆量和横滚控制杆量中的至少一种。
可选的,所述处理器1002,具体用于:
若所述通信装置1001在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量且预设时长内的接收到的多个控制杆量满足预设的收敛度条件时,则根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度。
可选的,所述处理器1002在根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度时,具体用于:
确定所述预设时长内的多个控制杆量中的平均控制杆量或者中位控制杆量;
根据所述平均控制杆量或者中位控制杆量确定所述第一目标速度。
可选的,所述处理器1002,具体用于:根据所述预设时长内所述通信装置最后接收到的一个控制杆量确定所述第一目标速度。
可选的,所述处理器1002,还用于:
若所述通信装置1001在第二时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器1000的第二目标速度;
控制所述无人飞行器1000保持以所述第二目标速度飞行。
可选的,所述处理器1002还用于在控制所述无人飞行器1000保持以所述第一目标速度飞行的过程中,不再响应接收的无人飞行器1000的控制杆量。
可选的,所述通信装置1001,还用于获取控制终端发送的第一定速模式信息,其中,所述第一定速模式信息是控制终端检测用户的定速模式进入操作生成的。所述处理器1002,还用于响应于所述第一定速模式信息,控制所述无人飞行器1000进入定速模式。
所述处理器1002在若所述通信装置1001在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器1000的目标速度时,具体用于:
若所述无人飞行器1000处于定速模式且所述通信装置1001在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器1000的目标速度。
可选的,所述处理器1002,还用于获取控制终端发送的第二定速模式信息,其中,所述第二定速模式信息是控制终端检测用户的定速模式退出操作生成的,或者,当所述无人飞行器1000处于预设的状态时,生成第二定速模式信息;响应于所述第二定速模式信息,控制所述无人飞行器1000退出定速模式。
可选的,所述通信装置1001,还用于接收控制终端发送的飞行限制速度,其中,所述飞行限制速度是所述控制终端检测用户的限制速度设置操作生成的。
所述处理器1002,还用于响应于所述通信装置1001接收到的飞行限制速度,将所述无人飞行器1000在飞行过程中的最大飞行速度限制为所述飞行限制速度。
可选的,所述处理器1002,还用于:
根据所述飞行限制速度和从所述控制终端接收到的控制杆量确定所述控制杆量对应的飞行速度;
控制所述无人飞行器1000按照所述飞行速度飞行。
可选的,所述处理器1002,还用于:
获取解除速度限制指令;
响应于所述解除速度限制指令,将所述无人飞行器1000在飞行过程中的最大飞行速度限制为所述飞行限制速度的限制解除。
可选的,所述处理器1002在获取解除速度限制指令时,具体用于:
通过所述通信装置1001接收所述控制终端发送的解除速度限制指令,其中,所述解除速度限制指令为所述控制终端检测用户的解除速度限制操作生成的。
可选的,所述处理器1002在获取解除速度限制指令时,具体用于:当所述无人飞行器1000处于预设的状态时,生成解除速度限制指令。
在另一些实施例中,通信装置1001,用于接收控制终端发送的控制杆量。处理器1002,用于若所述通信装置1001在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器1000的第一目标速度;控制所述无人飞行器1000保持以所述第一目标速度飞行。
可选的,所述控制杆量包括俯仰控制杆量和横滚控制杆量中的至少一种。
可选的,所述处理器1002,具体用于:
若所述通信装置1001在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量且预设时长内的接收到的多个控制杆量满足预设的收敛度条件时,则根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度。
可选的,所述处理器1002在根据所述预设时长内接收到的至少一个控制杆量确定所述目标速度时,具体用于:
确定所述预设时长内的多个控制杆量中的平均控制杆量或者中位控制杆量;
根据所述平均控制杆量或者中位控制杆量确定所述目标速度。
可选的,所述处理器1002在根据所述预设时长内接收到的至少一个控制杆量确定所述目标速度时,具体用于:根据所述预设时长内最后接收到的一个控制杆量确定所述目标速度。
可选的,所述处理器1002,还用于:
若所述通信装置1001在第二时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器1000的第二目标速度;控制所述无人飞行器1000保持以所述第二目标速度飞行。
可选的,所述处理器1002,还用于在控制所述无人飞行器1000保持以所述目标速度飞行的过程中,不再响应获得的无人飞行器1000的控制杆量。
可选的,所述处理器1002,还用于:获取控制终端发送的第一定速模式信息,其中,所述第一定速模式信息是控制终端检测用户的定速模式进入操作生成的;响应于所述第一定速模式,控制所述无人飞行器1000进入定速模式。
所述处理器1002在若所述通信装置1001在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器1000的目标速度时,具体用于:
若所述无人飞行器1000处于定速模式且所述通信装置1001在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器1000的目标速度。
可选的,所述处理器1002,还用于:
通过所述通信装置1001获取控制终端发送的第二定速模式信息,其中,所述第二定速模式信息是控制终端检测用户的定速模式退出操作生成的,或者,当所述无人飞行器1000处于预设的状态时,生成第二定速模式信息;
响应于所述第二定速模式信息,控制所述无人飞行器1000退出定速模式。
可选的,所述通信装置1001,还用于接收控制终端发送的锁定指令、俯仰控制杆量、 偏航控制杆量和横滚控制杆量。
所述处理器1002,还用于当所述通信装置1001接收到控制终端发送的锁定指令,控制所述无人飞行器1000进入锁定模式,其中,所述锁定指令是控制终端检测用户的锁定操作生成的;在所述锁定模式中:
当所述通信装置1001接收到所述控制终端发送的俯仰控制杆量时,根据所述俯仰控制杆量控制无人飞行器1000沿无人飞行器1000的机头指示的第一偏航朝向或者第二偏航朝向飞行,其中,所述第二偏航朝向背离所述第一偏航朝向;
不响应所述通信装置1001接收到的所述控制终端发送的偏航控制杆量和横滚控制杆量。
可选的,所述通信装置1001,还用于接收所述控制终端发送的油门控制杆量。
所述处理器1002,还用于当所述通信装置1001接收到所述控制终端发送的油门控制杆量时,根据所述油门控制杆量控制无人飞行器1000飞行。
可选的,所述处理器1002,还用于:获取解除锁定指令,控制所述无人飞行器1000退出锁定模式;在退出所述锁定模式后:
当所述通信装置1001接收到所述控制终端发送的偏航控制杆量时,根据所述偏航控制杆量控制无人飞行器1000飞行;
当所述通信装置1001接收到所述控制终端发送的横滚控制杆量时,根据所述横滚控制杆量控制无人飞行器1000飞行。
可选的,所述处理器1002在获取解除锁定指令时,具体用于:
通过所述通信装置1001接收所述控制终端发送的解除锁定指令,其中,所述解除锁定指令为所述控制终端检测用户的解除锁定操作生成的。
可选的,所述处理器1002在获取解除锁定指令时,具体用于:
当所述无人飞行器1000处于预设的状态时,生成解除锁定指令。
可选的,所述处理器1002,还用于:当所述通信装置1001接收到控制终端发送的锁定指令时,若所述无人飞行器1000处于飞行状态,则获取无人飞行器1000当前的速度方向指示的水平速度方向,将所述无人飞行器1000的机头的偏航朝向调整至所述水平速度方向。
可选的,所述通信装置1001,还用于接收控制终端发送的飞行限制速度,其中,所述飞行限制速度是所述控制终端检测用户的限制速度设置操作生成的。所述处理器1002,还用于响应于所述通信装置1001接收到的飞行限制速度,将无人飞行器1000在飞行过程中的最大飞行速度限制为所述飞行限制速度。
可选的,所述处理器1002,还用于:根据所述飞行限制速度和通过所述通信装置1001从所述控制终端接收到的控制杆量,确定所述控制杆量对应的飞行速度;控制所述无人飞行器1000按照所述飞行速度飞行。
可选的,所述处理器1002,还用于:获取解除速度限制指令;响应于所述解除速度限制指令,将所述无人飞行器1000在飞行过程中的最大飞行速度限制为所述飞行限制速度的限制解除。
可选的,所述处理器1002在获取解除速度限制指令时,具体用于:通过所述通信装置1001接收所述控制终端发送的解除速度限制指令,其中,所述解除速度限制指令为所 述控制终端检测用户的解除速度限制操作生成的。
可选的,所述处理器1002在获取解除速度限制指令时,具体用于:当所述无人飞行器1000处于预设的状态时,生成解除速度限制指令。
可选的,本实施例的无人飞行器1000还可以包括存储器(图中未示出)。存储器,用于存储程序代码。所述处理器1002,调用所述程序代码,当程序代码被执行时,用于实施上述各方法。
本实施例的无人飞行器,可以用于执行本申请上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图11为本申请一实施例提供的无人飞行器的控制系统的结构示意图,如图11所示,本实施例的无人飞行器的控制系统1100可以包括:无人飞行器1101和控制终端1102。
在一种实现方式中,无人飞行器1101可以包括如图9所示的无人飞行器的控制设备,对应的,可以执行上述任一方法实施例提供的技术方案,此处不再赘述。
在另一种实现方式中,无人飞行器1101可以采用如图10所示的结构,对应的,可以执行上述任一方法实施例提供的技术方案,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (82)

  1. 一种无人飞行器的控制方法,其特征在于,包括:
    当接收到控制终端发送的锁定指令,控制所述无人飞行器进入锁定模式,其中,所述锁定指令是控制终端检测用户的锁定操作生成的;
    在所述锁定模式中:
    当接收到所述控制终端发送的俯仰控制杆量时,根据所述俯仰控制杆量控制无人飞行器沿无人飞行器的机头指示的第一偏航朝向或者第二偏航朝向飞行,其中,所述第二偏航朝向背离所述第一偏航朝向;
    不响应所述控制终端发送的偏航控制杆量和横滚控制杆量。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    当接收到所述控制终端发送的油门控制杆量时,根据所述油门控制杆量控制无人飞行器飞行。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    获取解除锁定指令,控制所述无人飞行器退出锁定模式;
    在退出所述锁定模式后:
    当接收到所述控制终端发送的偏航控制杆量时,根据所述偏航控制杆量控制无人飞行器飞行;
    当接收到所述控制终端发送的横滚控制杆量时,根据所述横滚控制杆量控制无人飞行器飞行。
  4. 根据权利要求3所述的方法,其特征在于,
    所述获取解除锁定指令包括:
    接收所述控制终端发送的解除锁定指令,其中,所述解除锁定指令为所述控制终端检测用户的解除锁定操作生成的。
  5. 根据权利要求3所述的方法,其特征在于,
    所述获取解除锁定指令包括:
    当所述无人飞行器处于预设的状态时,生成解除锁定指令。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    当接收到控制终端发送的锁定指令时,若所述无人飞行器处于飞行状态,则获取无人飞行器当前的速度方向指示的水平速度方向,将所述无人飞行器的机头的偏航朝向调整至所述水平速度方向。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,还包括:
    若在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第一目标速度;
    控制所述无人飞行器保持以所述第一目标速度飞行。
  8. 根据权利要求7所述的方法,其特征在于,所述控制杆量包括俯仰控制杆量和横滚控制杆量中的至少一种。
  9. 根据权利要求7或8所述的方法,其特征在于,所述若在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制 杆量确定所述无人飞行器的第一目标速度,包括:
    若在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量且预设时长内的接收到的多个控制杆量满足预设的收敛度条件时,则根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度,包括:
    确定所述预设时长内的多个控制杆量中的平均控制杆量或者中位控制杆量;
    根据所述平均控制杆量或者中位控制杆量确定所述第一目标速度。
  11. 根据权利要求7-9任一项所述的方法,其特征在于,所述根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度,包括:
    根据所述预设时长内最后接收到的一个控制杆量确定所述第一目标速度。
  12. 根据权利要求7-11任一项所述的方法,其特征在于,还包括:
    若在第二时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第二目标速度;
    控制所述无人飞行器保持以所述第二目标速度飞行。
  13. 根据权利要求7-11任一项所述的方法,其特征在于,在控制所述无人飞行器保持以所述第一目标速度飞行的过程中,不再响应接收的无人飞行器的控制杆量。
  14. 根据权利要求7-13任一项所述的方法,其特征在于,所述方法还包括:
    获取控制终端发送的第一定速模式信息,其中,所述第一定速模式信息是控制终端检测用户的定速模式进入操作生成的;
    响应于所述第一定速模式信息,控制所述无人飞行器进入定速模式;
    所述若在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的目标速度,包括:
    若所述无人飞行器处于定速模式且在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的目标速度。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    获取控制终端发送的第二定速模式信息,其中,所述第二定速模式信息是控制终端检测用户的定速模式退出操作生成的,或者,当所述无人飞行器处于预设的状态时,生成第二定速模式信息;
    响应于所述第二定速模式信息,控制所述无人飞行器退出定速模式。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,所述方法还包括:
    接收控制终端发送的飞行限制速度,其中,所述飞行限制速度是所述控制终端检测用户的限制速度设置操作生成的;
    响应于所述接收到的飞行限制速度,将所述无人飞行器在飞行过程中的最大飞行速度限制为所述飞行限制速度。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    根据所述飞行限制速度和从所述控制终端接收到的控制杆量确定所述控制杆量对应的飞行速度;
    控制所述无人飞行器按照所述飞行速度飞行。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    获取解除速度限制指令;
    响应于所述解除速度限制指令,将所述无人飞行器在飞行过程中的最大飞行速度限制为所述飞行限制速度的限制解除。
  19. 根据权利要求18所述的方法,其特征在于,
    所述获取解除速度限制指令包括:
    接收所述控制终端发送的解除速度限制指令,其中,所述解除速度限制指令为所述控制终端检测用户的解除速度限制操作生成的。
  20. 根据权利要求18所述的方法,其特征在于,
    所述获取解除速度限制指令包括:
    当所述无人飞行器处于预设的状态时,生成解除速度限制指令。
  21. 一种无人飞行器的控制方法,其特征在于,包括:
    若在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第一目标速度;
    控制所述无人飞行器保持以所述第一目标速度飞行。
  22. 根据权利要求21所述的方法,其特征在于,所述控制杆量包括俯仰控制杆量和横滚控制杆量中的至少一种。
  23. 根据权利要求21或22所述的方法,其特征在于,所述若在预设时长内连续接收到控制终端发送的控制杆量,根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第一目标速度,包括:
    若在预设时长内连续接收到控制终端发送的控制杆量且预设时长内的接收到的多个控制杆量满足预设的收敛度条件时,则根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度。
  24. 根据权利要求21-23任一项所述的方法,其特征在于,所述根据所述预设时长内接收到的至少一个控制杆量确定所述目标速度,包括:
    确定所述预设时长内的多个控制杆量中的平均控制杆量或者中位控制杆量;
    根据所述平均控制杆量或者中位控制杆量确定所述目标速度。
  25. 根据权利要求21-23任一项所述的方法,其特征在于,所述根据所述预设时长内接收到的至少一个控制杆量确定所述目标速度,包括:
    根据所述预设时长内最后接收到的一个控制杆量确定所述目标速度。
  26. 根据权利要求21-25任一项所述的方法,其特征在于,还包括:
    若在第二时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第二目标速度;
    控制所述无人飞行器保持以所述第二目标速度飞行。
  27. 根据权利要求21-25任一项所述的方法,其特征在于,在控制所述无人飞行器保持以所述目标速度飞行的过程中,不再响应获得的无人飞行器的控制杆量。
  28. 根据权利要求21-27任一项所述的方法,其特征在于,所述方法还包括:
    获取控制终端发送的第一定速模式信息,其中,所述第一定速模式信息是控制终端检 测用户的定速模式进入操作生成的;
    响应于所述第一定速模式,控制所述无人飞行器进入定速模式;
    所述若在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的目标速度,包括:
    若所述无人飞行器处于定速模式且在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的目标速度。
  29. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    获取控制终端发送的第二定速模式信息,其中,所述第二定速模式信息是控制终端检测用户的定速模式退出操作生成的,或者,当所述无人飞行器处于预设的状态时,生成第二定速模式信息;
    响应于所述第二定速模式信息,控制所述无人飞行器退出定速模式。
  30. 根据权利要求21-29任一项所述的方法,其特征在于,还包括:
    当接收到控制终端发送的锁定指令,控制所述无人飞行器进入锁定模式,其中,所述锁定指令是控制终端检测用户的锁定操作生成的;
    在所述锁定模式中:
    当接收到所述控制终端发送的俯仰控制杆量时,根据所述俯仰控制杆量控制无人飞行器沿无人飞行器的机头指示的第一偏航朝向或者第二偏航朝向飞行,其中,所述第二偏航朝向背离所述第一偏航朝向;
    不响应所述控制终端发送的偏航控制杆量和横滚控制杆量。
  31. 根据权利要求30所述的方法,其特征在于,还包括:
    当接收到所述控制终端发送的油门控制杆量时,根据所述油门控制杆量控制无人飞行器飞行。
  32. 根据权利要求30或31所述的方法,其特征在于,所述方法还包括:
    获取解除锁定指令,控制所述无人飞行器退出锁定模式;
    在退出所述锁定模式后:
    当接收到所述控制终端发送的偏航控制杆量时,根据所述偏航控制杆量控制无人飞行器飞行;
    当接收到所述控制终端发送的横滚控制杆量时,根据所述横滚控制杆量控制无人飞行器飞行。
  33. 根据权利要求32所述的方法,其特征在于,
    所述获取解除锁定指令包括:
    接收所述控制终端发送的解除锁定指令,其中,所述解除锁定指令为所述控制终端检测用户的解除锁定操作生成的。
  34. 根据权利要求33所述的方法,其特征在于,
    所述获取解除锁定指令包括:
    当所述无人飞行器处于预设的状态时,生成解除锁定指令。
  35. 根据权利要求30-34任一项所述的方法,其特征在于,所述方法还包括:
    当接收到控制终端发送的锁定指令时,若所述无人飞行器处于飞行状态,则获取无人 飞行器当前的速度方向指示的水平速度方向,将所述无人飞行器的机头的偏航朝向调整至所述水平速度方向。
  36. 根据权利要求21-35任一项所述的方法,其特征在于,所述方法还包括:
    接收控制终端发送的飞行限制速度,其中,所述飞行限制速度是所述控制终端检测用户的限制速度设置操作生成的;
    响应于所述接收到的飞行限制速度,将无人飞行器在飞行过程中的最大飞行速度限制为所述飞行限制速度。
  37. 根据权利要求36所述的方法,其特征在于,所述方法还包括:
    根据所述飞行限制速度和从所述控制终端接收到的控制杆量确定所述控制杆量对应的飞行速度;
    控制所述无人飞行器按照所述飞行速度飞行。
  38. 根据权利要求36或37所述的方法,其特征在于,所述方法还包括:
    获取解除速度限制指令;
    响应于所述解除速度限制指令,将所述无人飞行器在飞行过程中的最大飞行速度限制为所述飞行限制速度的限制解除。
  39. 根据权利要求38所述的方法,其特征在于,
    所述获取解除速度限制指令包括:
    接收所述控制终端发送的解除速度限制指令,其中,所述解除速度限制指令为所述控制终端检测用户的解除速度限制操作生成的。
  40. 根据权利要求38所述的方法,其特征在于,
    所述获取解除速度限制指令包括:
    当所述无人飞行器处于预设的状态时,生成解除速度限制指令。
  41. 一种无人飞行器的控制设备,其特征在于,包括:通信装置,用于接收控制终端发送的锁定指令;
    处理器,用于:
    当所述通信装置接收到控制终端发送的锁定指令,控制所述无人飞行器进入锁定模式,其中,所述锁定指令是控制终端检测用户的锁定操作生成的;
    在所述锁定模式中:
    当所述通信装置接收到所述控制终端发送的俯仰控制杆量时,根据所述俯仰控制杆量控制无人飞行器沿无人飞行器的机头指示的第一偏航朝向或者第二偏航朝向飞行,其中,所述第二偏航朝向背离所述第一偏航朝向;
    不响应所述通信装置接收到的所述控制终端发送的偏航控制杆量和横滚控制杆量。
  42. 根据权利要求41所述的设备,其特征在于,
    所述处理器,还用于当所述通信装置接收到所述控制终端发送的油门控制杆量时,根据所述油门控制杆量控制无人飞行器飞行。
  43. 根据权利要求41或42所述的设备,其特征在于,
    所述处理器,还用于获取解除锁定指令,控制所述无人飞行器退出锁定模式;
    在退出所述锁定模式后:
    当所述通信装置接收到所述控制终端发送的偏航控制杆量时,根据所述偏航控制杆量 控制无人飞行器飞行;
    当所述通信装置接收到所述控制终端发送的横滚控制杆量时,根据所述横滚控制杆量控制无人飞行器飞行。
  44. 根据权利要求43所述的设备,其特征在于,
    所述处理器,在获取解除锁定指令时,具体用于:
    通过所述通信装置接收所述控制终端发送的解除锁定指令,其中,所述解除锁定指令为所述控制终端检测用户的解除锁定操作生成的。
  45. 根据权利要求43所述的设备,其特征在于,所述处理器,在获取解除锁定指令时,具体用于:
    当所述无人飞行器处于预设的状态时,生成解除锁定指令。
  46. 根据权利要求41-45任一项所述的设备,其特征在于,所述处理器,还用于:当所述通信装置接收到控制终端发送的锁定指令时,若所述无人飞行器处于飞行状态,则获取无人飞行器当前的速度方向指示的水平速度方向,将所述无人飞行器的机头的偏航朝向调整至所述水平速度方向。
  47. 根据权利要求41-46任一项所述的设备,其特征在于,所述处理器,还用于:
    若所述通信装置在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第一目标速度;
    控制所述无人飞行器保持以所述第一目标速度飞行。
  48. 根据权利要求47所述的设备,其特征在于,所述控制杆量包括俯仰控制杆量和横滚控制杆量中的至少一种。
  49. 根据权利要求47或48所述的设备,其特征在于,所述处理器,具体用于:
    若所述通信装置在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量且预设时长内的接收到的多个控制杆量满足预设的收敛度条件时,则根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度。
  50. 根据权利要求47-49任一项所述的设备,其特征在于,所述处理器在根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度时,具体用于:
    确定所述预设时长内的多个控制杆量中的平均控制杆量或者中位控制杆量;
    根据所述平均控制杆量或者中位控制杆量确定所述第一目标速度。
  51. 根据权利要求47-49任一项所述的设备,其特征在于,所述处理器,具体用于:根据所述预设时长内所述通信装置最后接收到的一个控制杆量确定所述第一目标速度。
  52. 根据权利要求47-51任一项所述的设备,其特征在于,所述处理器,还用于:
    若所述通信装置在第二时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第二目标速度;
    控制所述无人飞行器保持以所述第二目标速度飞行。
  53. 根据权利要求47-51任一项所述的设备,其特征在于,所述处理器还用于在控制所述无人飞行器保持以所述第一目标速度飞行的过程中,不再响应接收的无人飞行器的控制杆量。
  54. 根据权利要求47-53任一项所述的设备,其特征在于,
    所述通信装置,还用于获取控制终端发送的第一定速模式信息,其中,所述第一定速 模式信息是控制终端检测用户的定速模式进入操作生成的;
    所述处理器,还用于响应于所述第一定速模式信息,控制所述无人飞行器进入定速模式;
    所述处理器在若所述通信装置在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的目标速度时,具体用于:
    若所述无人飞行器处于定速模式且所述通信装置在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的目标速度。
  55. 根据权利要求54所述的设备,其特征在于,所述处理器,还用于:
    获取控制终端发送的第二定速模式信息,其中,所述第二定速模式信息是控制终端检测用户的定速模式退出操作生成的,或者,当所述无人飞行器处于预设的状态时,生成第二定速模式信息;
    响应于所述第二定速模式信息,控制所述无人飞行器退出定速模式。
  56. 根据权利要求41-55任一项所述的设备,其特征在于,所述通信装置,还用于接收控制终端发送的飞行限制速度,其中,所述飞行限制速度是所述控制终端检测用户的限制速度设置操作生成的;
    所述处理器,还用于:响应于所述通信装置接收到的飞行限制速度,将所述无人飞行器在飞行过程中的最大飞行速度限制为所述飞行限制速度。
  57. 根据权利要求56所述的设备,其特征在于,所述处理器,还用于:
    根据所述飞行限制速度和从所述控制终端接收到的控制杆量确定所述控制杆量对应的飞行速度;
    控制所述无人飞行器按照所述飞行速度飞行。
  58. 根据权利要求57所述的设备,其特征在于,所述处理器,还用于:
    获取解除速度限制指令;
    响应于所述解除速度限制指令,将所述无人飞行器在飞行过程中的最大飞行速度限制为所述飞行限制速度的限制解除。
  59. 根据权利要求58所述的设备,其特征在于,
    所述处理器在获取解除速度限制指令时,具体用于:
    通过所述通信装置接收所述控制终端发送的解除速度限制指令,其中,所述解除速度限制指令为所述控制终端检测用户的解除速度限制操作生成的。
  60. 根据权利要求58所述的设备,其特征在于,所述处理器在获取解除速度限制指令时,具体用于:
    当所述无人飞行器处于预设的状态时,生成解除速度限制指令。
  61. 一种无人飞行器的控制设备,其特征在于,包括:
    通信装置,用于接收控制终端发送的控制杆量;
    处理器,用于:
    若所述通信装置在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第一目标速度;
    控制所述无人飞行器保持以所述第一目标速度飞行。
  62. 根据权利要求61所述的设备,其特征在于,所述控制杆量包括俯仰控制杆量和横滚控制杆量中的至少一种。
  63. 根据权利要求61或62所述的设备,其特征在于,所述处理器,具体用于:
    若所述通信装置在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量且预设时长内的接收到的多个控制杆量满足预设的收敛度条件时,则根据所述预设时长内接收到的至少一个控制杆量确定所述第一目标速度。
  64. 根据权利要求61-63任一项所述的设备,其特征在于,所述处理器在根据所述预设时长内接收到的至少一个控制杆量确定所述目标速度时,具体用于:
    确定所述预设时长内的多个控制杆量中的平均控制杆量或者中位控制杆量;
    根据所述平均控制杆量或者中位控制杆量确定所述目标速度。
  65. 根据权利要求61-63任一项所述的设备,其特征在于,所述处理器在根据所述预设时长内接收到的至少一个控制杆量确定所述目标速度时,具体用于:
    根据所述预设时长内最后接收到的一个控制杆量确定所述目标速度。
  66. 根据权利要求61-65任一项所述的设备,其特征在于,所述处理器,还用于:
    若所述通信装置在第二时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的第二目标速度;
    控制所述无人飞行器保持以所述第二目标速度飞行。
  67. 根据权利要求61-65任一项所述的设备,其特征在于,所述处理器,还用于在控制所述无人飞行器保持以所述目标速度飞行的过程中,不再响应获得的无人飞行器的控制杆量。
  68. 根据权利要求61-67任一项所述的设备,其特征在于,所述处理器,还用于:
    获取控制终端发送的第一定速模式信息,其中,所述第一定速模式信息是控制终端检测用户的定速模式进入操作生成的;
    响应于所述第一定速模式,控制所述无人飞行器进入定速模式;
    所述处理器在若所述通信装置在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的目标速度时,具体用于:
    若所述无人飞行器处于定速模式且所述通信装置在第一时刻开始后预设时长内连续接收到控制终端发送的控制杆量,则根据所述预设时长内接收到的至少一个控制杆量确定所述无人飞行器的目标速度。
  69. 根据权利要求68所述的设备,其特征在于,所述处理器,还用于:
    通过所述通信装置获取控制终端发送的第二定速模式信息,其中,所述第二定速模式信息是控制终端检测用户的定速模式退出操作生成的,或者,当所述无人飞行器处于预设的状态时,生成第二定速模式信息;
    响应于所述第二定速模式信息,控制所述无人飞行器退出定速模式。
  70. 根据权利要求61-69任一项所述的设备,其特征在于,所述通信装置,还用于接收控制终端发送的锁定指令;
    所述处理器,还用于:
    当所述通信装置接收到控制终端发送的锁定指令,控制所述无人飞行器进入锁定模式,其中,所述锁定指令是控制终端检测用户的锁定操作生成的;
    在所述锁定模式中:
    当所述通信装置接收到所述控制终端发送的俯仰控制杆量时,根据所述俯仰控制杆量控制无人飞行器沿无人飞行器的机头指示的第一偏航朝向或者第二偏航朝向飞行,其中,所述第二偏航朝向背离所述第一偏航朝向;
    不响应所述通信装置接收到的所述控制终端发送的偏航控制杆量和横滚控制杆量。
  71. 根据权利要求70所述的设备,其特征在于,所述通信装置,还用于接收所述控制终端发送的油门控制杆量;
    所述处理器,还用于当所述通信装置接收到所述控制终端发送的油门控制杆量时,根据所述油门控制杆量控制无人飞行器飞行。
  72. 根据权利要求70或71所述的设备,其特征在于,所述处理器,还用于:
    获取解除锁定指令,控制所述无人飞行器退出锁定模式;
    在退出所述锁定模式后:
    当所述通信装置接收到所述控制终端发送的偏航控制杆量时,根据所述偏航控制杆量控制无人飞行器飞行;
    当所述通信装置接收到所述控制终端发送的横滚控制杆量时,根据所述横滚控制杆量控制无人飞行器飞行。
  73. 根据权利要求72所述的设备,其特征在于,
    所述处理器在获取解除锁定指令时,具体用于:
    通过所述通信装置接收所述控制终端发送的解除锁定指令,其中,所述解除锁定指令为所述控制终端检测用户的解除锁定操作生成的。
  74. 根据权利要求73所述的设备,其特征在于,
    所述处理器在获取解除锁定指令时,具体用于:
    当所述无人飞行器处于预设的状态时,生成解除锁定指令。
  75. 根据权利要求70-74任一项所述的设备,其特征在于,所述处理器,还用于:当所述通信装置接收到控制终端发送的锁定指令时,若所述无人飞行器处于飞行状态,则获取无人飞行器当前的速度方向指示的水平速度方向,将所述无人飞行器的机头的偏航朝向调整至所述水平速度方向。
  76. 根据权利要求61-75任一项所述的设备,其特征在于,所述通信装置,还用于:接收控制终端发送的飞行限制速度,其中,所述飞行限制速度是所述控制终端检测用户的限制速度设置操作生成的;
    所述处理器,还用于:响应于所述通信装置接收到的飞行限制速度,将无人飞行器在飞行过程中的最大飞行速度限制为所述飞行限制速度。
  77. 根据权利要求76所述的设备,其特征在于,所述处理器,还用于:
    根据所述飞行限制速度和通过所述通信装置从所述控制终端接收到的控制杆量,确定所述控制杆量对应的飞行速度;
    控制所述无人飞行器按照所述飞行速度飞行。
  78. 根据权利要求76或77所述的设备,其特征在于,所述处理器,还用于:
    获取解除速度限制指令;
    响应于所述解除速度限制指令,将所述无人飞行器在飞行过程中的最大飞行速度限制为所述飞行限制速度的限制解除。
  79. 根据权利要求78所述的设备,其特征在于,
    所述处理器在获取解除速度限制指令时,具体用于:
    通过所述通信装置接收所述控制终端发送的解除速度限制指令,其中,所述解除速度限制指令为所述控制终端检测用户的解除速度限制操作生成的。
  80. 根据权利要求78所述的设备,其特征在于,
    所述处理器在获取解除速度限制指令时,具体用于:
    当所述无人飞行器处于预设的状态时,生成解除速度限制指令。
  81. 一种无人飞行器,其特征在于,包括如权利要求41-80任一项所述的无人飞行器的控制设备。
  82. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序;所述计算机程序在被执行时,实现如权利要求1-40任一项所述的无人飞行器的控制方法。
PCT/CN2020/092419 2020-05-26 2020-05-26 无人飞行器的控制方法和设备 WO2021237481A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/092419 WO2021237481A1 (zh) 2020-05-26 2020-05-26 无人飞行器的控制方法和设备
CN202080025928.9A CN113994292A (zh) 2020-05-26 2020-05-26 无人飞行器的控制方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092419 WO2021237481A1 (zh) 2020-05-26 2020-05-26 无人飞行器的控制方法和设备

Publications (1)

Publication Number Publication Date
WO2021237481A1 true WO2021237481A1 (zh) 2021-12-02

Family

ID=78745252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092419 WO2021237481A1 (zh) 2020-05-26 2020-05-26 无人飞行器的控制方法和设备

Country Status (2)

Country Link
CN (1) CN113994292A (zh)
WO (1) WO2021237481A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115980742A (zh) * 2023-03-20 2023-04-18 成都航空职业技术学院 一种用于无人飞行器的雷达探测方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114610059B (zh) * 2022-03-03 2023-06-02 广东汇天航空航天科技有限公司 偏航控制方法、装置、旋翼飞行器及存储介质
WO2024000189A1 (zh) * 2022-06-28 2024-01-04 深圳市大疆创新科技有限公司 控制方法、头戴式显示设备、控制系统及存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794960B2 (ja) * 1988-12-19 1995-10-11 三菱電機株式会社 制御装置
CA2055089C (fr) * 1990-11-06 2001-01-09 Jacques Farineau Systeme pour la commande integree en profondeur et en poussee d'un aeronef
CN104714556A (zh) * 2015-03-26 2015-06-17 清华大学 无人机智能航向控制方法
CN105938371A (zh) * 2016-06-21 2016-09-14 深圳市博飞航空科技有限公司 无人飞行器飞行控制系统、方法及遥控器
CN106094865A (zh) * 2016-07-15 2016-11-09 陈昊 无人飞行器拍摄系统及其拍摄方法
CN106155073A (zh) * 2016-07-22 2016-11-23 珠海卡特瑞科农林航空装备研究所有限公司 一种具有飞行高度锁定功能的无人机
CN106444834A (zh) * 2016-10-10 2017-02-22 上海拓攻机器人有限公司 一种植保无人机的喷药方法及植保无人机
CN106527479A (zh) * 2016-11-29 2017-03-22 广州极飞科技有限公司 一种无人机的控制方法及装置
CN106647788A (zh) * 2016-12-01 2017-05-10 北京奇虎科技有限公司 无人机飞行控制方法及装置
CN106950991A (zh) * 2017-04-27 2017-07-14 广东容祺智能科技有限公司 一种基于图像识别的无人机返航方法
CN107544548A (zh) * 2017-10-20 2018-01-05 广州极飞科技有限公司 控制无人机作业的方法、装置及无人机
CN107656536A (zh) * 2016-07-26 2018-02-02 上海俏动智能化科技有限公司 一种用于植保无人机的自动喷洒方法
CN109782808A (zh) * 2016-04-29 2019-05-21 深圳市大疆创新科技有限公司 无人机的喷洒控制方法和无人机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106940564A (zh) * 2017-03-29 2017-07-11 高域(北京)智能科技研究院有限公司 无人飞行器飞行控制装置、系统和控制方法
CN110771137A (zh) * 2018-05-28 2020-02-07 深圳市大疆创新科技有限公司 延时拍摄控制方法和设备
CN110069078B (zh) * 2019-05-21 2021-06-01 深圳市道通智能航空技术股份有限公司 一种飞行控制方法、装置、系统及无人机

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794960B2 (ja) * 1988-12-19 1995-10-11 三菱電機株式会社 制御装置
CA2055089C (fr) * 1990-11-06 2001-01-09 Jacques Farineau Systeme pour la commande integree en profondeur et en poussee d'un aeronef
CN104714556A (zh) * 2015-03-26 2015-06-17 清华大学 无人机智能航向控制方法
CN109782808A (zh) * 2016-04-29 2019-05-21 深圳市大疆创新科技有限公司 无人机的喷洒控制方法和无人机
CN105938371A (zh) * 2016-06-21 2016-09-14 深圳市博飞航空科技有限公司 无人飞行器飞行控制系统、方法及遥控器
CN106094865A (zh) * 2016-07-15 2016-11-09 陈昊 无人飞行器拍摄系统及其拍摄方法
CN106155073A (zh) * 2016-07-22 2016-11-23 珠海卡特瑞科农林航空装备研究所有限公司 一种具有飞行高度锁定功能的无人机
CN107656536A (zh) * 2016-07-26 2018-02-02 上海俏动智能化科技有限公司 一种用于植保无人机的自动喷洒方法
CN106444834A (zh) * 2016-10-10 2017-02-22 上海拓攻机器人有限公司 一种植保无人机的喷药方法及植保无人机
CN106527479A (zh) * 2016-11-29 2017-03-22 广州极飞科技有限公司 一种无人机的控制方法及装置
CN106647788A (zh) * 2016-12-01 2017-05-10 北京奇虎科技有限公司 无人机飞行控制方法及装置
CN106950991A (zh) * 2017-04-27 2017-07-14 广东容祺智能科技有限公司 一种基于图像识别的无人机返航方法
CN107544548A (zh) * 2017-10-20 2018-01-05 广州极飞科技有限公司 控制无人机作业的方法、装置及无人机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115980742A (zh) * 2023-03-20 2023-04-18 成都航空职业技术学院 一种用于无人飞行器的雷达探测方法及装置

Also Published As

Publication number Publication date
CN113994292A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2021237481A1 (zh) 无人飞行器的控制方法和设备
JP6816156B2 (ja) Uav軌道を調整するシステム及び方法
US9563200B2 (en) Method for piloting a rotary wing drone for taking an exposure through an onboard camera with minimization of the disturbing movements
US20180039271A1 (en) Fixed-wing drone, in particular of the flying-wing type, with assisted manual piloting and automatic piloting
WO2018098784A1 (zh) 无人机的控制方法、装置、设备和无人机的控制系统
WO2018107419A1 (zh) 控制方法、装置、设备及可移动平台
WO2018058320A1 (zh) 无人机控制方法及装置
EP3274779B1 (en) Path-based flight maneuvering system
JP2011511736A (ja) 自動ホバリング飛行安定化を備えた回転翼無人機を操縦する方法
WO2021168819A1 (zh) 无人机的返航控制方法和设备
WO2018040006A1 (zh) 控制方法、装置和系统、飞行器、载体及操纵装置
JP6213968B2 (ja) 撮影ユニット
WO2020154942A1 (zh) 无人机的控制方法和无人机
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制系统
US20230305556A1 (en) Method of controlling movable platform, motion sensing remote controller and storage medium
US20230341875A1 (en) Unmanned aerial vehicle, control method and control system thereof, handheld control device, and head-mounted device
WO2021168821A1 (zh) 可移动平台的控制方法和设备
WO2020014930A1 (zh) 无人机的控制方法、装置和无人机
WO2021223176A1 (zh) 无人机的控制方法和设备
WO2022134321A1 (zh) 可移动平台的控制方法、体感遥控器及存储介质
EP3288828B1 (en) Unmanned aerial vehicle system and method for controlling an unmanned aerial vehicle
WO2021238743A1 (zh) 一种无人机飞行控制方法、装置及无人机
WO2022134036A1 (zh) 可移动平台及其控制方法、装置
WO2021237500A1 (zh) 飞行控制方法和设备
WO2022134301A1 (zh) 无人机及其控制方法、系统、手持控制设备、头戴设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938459

Country of ref document: EP

Kind code of ref document: A1