WO2020087349A1 - 无人机及其云台控制方法 - Google Patents

无人机及其云台控制方法 Download PDF

Info

Publication number
WO2020087349A1
WO2020087349A1 PCT/CN2018/113018 CN2018113018W WO2020087349A1 WO 2020087349 A1 WO2020087349 A1 WO 2020087349A1 CN 2018113018 W CN2018113018 W CN 2018113018W WO 2020087349 A1 WO2020087349 A1 WO 2020087349A1
Authority
WO
WIPO (PCT)
Prior art keywords
gimbal
drone
yaw
control system
actual
Prior art date
Application number
PCT/CN2018/113018
Other languages
English (en)
French (fr)
Inventor
陈刚
张添保
蒋宪宏
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to PCT/CN2018/113018 priority Critical patent/WO2020087349A1/zh
Priority to CN201880055555.2A priority patent/CN111433702B/zh
Priority to CN202210261698.7A priority patent/CN114578841A/zh
Publication of WO2020087349A1 publication Critical patent/WO2020087349A1/zh
Priority to US17/244,137 priority patent/US11958604B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/40Control within particular dimensions
    • G05D1/46Control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/656Interaction with payloads or external entities
    • G05D1/689Pointing payloads towards fixed or moving targets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • the invention relates to the technical field of unmanned aerial vehicles, in particular to an unmanned aerial vehicle and its gimbal control method.
  • Aerial photography drones include consumer-grade aerial photography drones and professional-grade aerial photography drones. Whether it is a consumer-grade aerial photography drone or a professional-grade aerial photography drone, the aerial photography quality depends on the drone body and the gimbal Control effect.
  • Flight control system FLC
  • the gimbal control system GCS
  • the high-frequency vibration of the body has a control accuracy much higher than that of FCS.
  • GCS and FCS are independent, that is, the pitch and roll channels of GCS do not respond to changes in FCS attitude, and the first-order yaw angle of GCS converges to that of FCS.
  • This GCS / FCS independent control idea has the following disadvantages:
  • FCS does not have the control authority of GCS, GCS only obtains the actual yaw angle / yaw angle rate information of the drone, and does not have any feedback information to interact with FCS in real time;
  • FCS yaw control torque
  • the control of the yaw channel of the gimbal is affected by the yaw angle control of the drone, and the advantages of high-precision control of the GCS are not effectively exerted, resulting in an increase in FCS control pressure.
  • the UAV includes a flight control system and a PTZ control system for controlling the PTZ, including:
  • the flight control system generates a yaw rate command for the drone
  • the gimbal control system controls the yaw axis motor of the gimbal according to the yaw rate command of the drone.
  • the gimbal control system controlling the yaw axis motor of the gimbal according to the yaw angle rate command of the drone includes:
  • the gimbal control system obtains the actual yaw rate of the gimbal
  • the gimbal control system generates a yaw axis motor control command of the gimbal based on the yaw angular rate command input to the drone and the actual yaw angular rate of the gimbal;
  • the gimbal control system obtains an additional control instruction for the yaw axis motor of the gimbal, wherein the additional control instruction for the yaw axis motor is used to control the yaw axis motor of the gimbal so that the gimbal is mounted
  • the line of sight of the imaging equipment coincides with the course of the drone
  • the gimbal control system generates a control amount of the yaw axis motor of the gimbal according to the yaw axis motor control instruction of the gimbal and the yaw axis motor additional control instruction of the gimbal;
  • the yaw axis motor of the gimbal is controlled according to the control amount of the yaw axis motor of the gimbal.
  • the gimbal control system acquiring additional control instructions of the yaw axis motor of the gimbal includes:
  • the gimbal control system obtains the actual yaw angle of the gimbal and the actual yaw angle of the drone;
  • the gimbal control system generates an additional control instruction for the yaw axis motor of the gimbal according to the actual yaw angle of the gimbal and the actual yaw angle of the drone.
  • the method further includes:
  • the gimbal control system obtains the actual yaw angle of the drone and the actual yaw angle of the gimbal;
  • the gimbal control system generates a yaw angle rate control command of the gimbal according to the actual yaw angle of the drone and the actual yaw angle of the gimbal;
  • the gimbal control system obtains the actual yaw rate of the gimbal
  • the gimbal control system generates a yaw axis motor control amount of the gimbal according to the gimbal's yaw angular rate control instruction and the gimbal's actual yaw angular rate;
  • the gimbal control system controls the yaw axis motor of the gimbal according to the control amount of the yaw axis motor of the gimbal.
  • the flight control system generating the yaw rate command of the drone includes:
  • the flight control system obtains at least one of a position command and a line-of-sight command input to the drone;
  • the flight control system generates the yaw rate command of the drone according to at least one of the position command and the line-of-sight command input to the drone.
  • the flight control system generating the yaw rate command of the drone includes:
  • the flight control system obtains at least one of a speed command and a line-of-sight rate command input to the drone;
  • the flight control system generates the yaw angular rate command of the drone according to at least one of the speed command and the line-of-sight rate change command input to the drone.
  • the method further includes:
  • the gimbal control system controls the pitch axis motor and roll axis motor of the gimbal based on the input of the pan-tilt angle command of the gimbal and the output status information of the gimbal.
  • the output state information includes the actual attitude angle of the gimbal and the actual attitude angle rate.
  • the actual attitude angle of the gimbal includes the actual pitch angle of the gimbal
  • the actual attitude angle rate of the gimbal includes the actual pitch angle rate of the gimbal
  • the gimbal control system controls the pitch axis motor and the roll axis motor of the gimbal according to the input of the pitch angle command of the gimbal and the output status information of the gimbal, including:
  • the gimbal control system generates a control amount of the pitch axis motor of the gimbal according to the pitch angle command of the gimbal, the actual pitch angle of the gimbal, and the actual pitch angle rate;
  • the pitch axis motor of the gimbal is controlled according to the control amount of the pitch axis motor of the gimbal.
  • the actual attitude angle of the gimbal further includes the actual roll angle of the gimbal
  • the actual attitude angular rate of the gimbal also includes the actual roll of the gimbal Corner rate
  • the gimbal control system controls the pitch axis motor and the roll axis motor of the gimbal according to the input of the pitch angle command of the gimbal and the output status information of the gimbal, including:
  • the gimbal control system generates a control amount of the roll axis motor of the gimbal according to the tilt angle command of the gimbal, the actual roll angle of the gimbal, and the actual roll angle rate;
  • the gimbal control system controls the roll axis motor of the gimbal according to the control amount of the roll axis motor of the gimbal.
  • the gimbal control system acquiring the tilt angle command of the gimbal includes:
  • the gimbal control system obtains the tilt angle command of the gimbal issued by a remote controller or an intelligent terminal.
  • the method further includes:
  • the flight control system controls the attitude of the drone according to the output status information of the gimbal.
  • the flight control system controls the attitude of the drone according to the output status information of the gimbal, including:
  • the flight control system generates the attitude angle limit of the drone according to the actual attitude angle of the gimbal;
  • the flight control system obtains the actual attitude angle of the drone and inputs the attitude angle instruction of the drone;
  • the flight control system generates the drone according to the attitude angle limitation of the drone, the attitude angle command input to the drone, and the actual attitude angle of the drone
  • the attitude angular rate control command
  • the flight control system generates the attitude angular rate limit of the UAV according to the actual attitude angular rate of the gimbal;
  • the flight control system obtains the actual attitude angular rate of the drone and the yaw angular rate command input to the drone;
  • the flight control system is based on the attitude angular rate control command of the drone, the attitude angular rate limiting of the drone, the yaw angular rate command input of the drone, and all Generating the actual attitude angular rate of the drone to generate a motor control command of the drone;
  • the flight control system controls the attitude of the drone according to the motor control instructions of the drone.
  • the present invention also provides a drone, including:
  • a machine arm connected to the fuselage
  • the power device is provided on the arm;
  • PTZ connected to the fuselage
  • a flight control system located on the fuselage;
  • the gimbal control system is installed on the gimbal or the fuselage, and is used to control the gimbal;
  • the flight control system is used to generate a yaw rate command of the drone
  • the PTZ control system is used to:
  • the yaw axis motor of the gimbal is controlled according to the yaw rate command of the drone generated by the flight control system.
  • the PTZ control system is specifically used for:
  • the yaw axis motor of the gimbal is controlled according to the control amount of the yaw axis motor of the gimbal.
  • the PTZ control system is specifically used for:
  • an additional control instruction of the yaw axis motor of the gimbal is generated.
  • the PTZ control system when the yaw rate command input to the drone is zero, the PTZ control system is also used to:
  • the yaw axis motor of the gimbal is controlled according to the control amount of the yaw axis motor of the gimbal.
  • the flight control system is specifically used for:
  • the yaw rate command of the drone is generated according to at least one of the position command and the line-of-sight command of the drone.
  • the flight control system is specifically used for:
  • the yaw rate command of the drone is generated according to at least one of the speed command and the line-of-sight rate change command of the drone.
  • the PTZ control system is also used to:
  • the PTZ control system is specifically used for:
  • the pitch axis motor of the gimbal is controlled according to the control amount of the pitch axis motor of the gimbal.
  • the PTZ control system is also used to:
  • the roll axis motor of the gimbal is controlled according to the control amount of the roll axis motor of the gimbal.
  • the gimbal control system is specifically used to obtain the tilt angle command of the gimbal issued by a remote controller or an intelligent terminal.
  • the flight control system is also used to:
  • the attitude of the drone is controlled.
  • the flight control system is specifically used for:
  • the attitude angular rate control command of the drone According to the attitude angular rate control command of the drone, the attitude angular rate limit of the drone, the yaw angular rate command input to the drone, and the The actual attitude angular rate generates a motor control command of the drone;
  • the posture of the drone is controlled according to the motor control instruction of the drone.
  • the invention uses the flight control system and the gimbal control system to jointly control the gimbal yaw axis motor, which maximizes the advantages of high-precision control and quick response of the gimbal control system, and uses this advantage to compensate the flight control system for yaw control
  • the shortcomings of the system have realized the stabilization of the yaw channel of the gimbal, and completely solved the phenomenon that the aerial video is stuck when the drone is yawing at a low speed.
  • FIG. 1 is a schematic structural diagram of an embodiment of a drone according to the present invention.
  • FIG. 2 is a block diagram of the control principle of the flight control system and the gimbal control system in the UAV of the present invention
  • FIG. 3 is a block diagram of the control principle of the flight control system in the UAV of the present invention.
  • FIG. 4 is a block diagram of the control principle of the gimbal control system in the UAV of the present invention.
  • FIG. 5 is a functional block diagram of the joint control of the yaw axis motor of the gimbal by the flight control system and the gimbal control system in the drone of the present invention
  • FIG. 6 is a flowchart of an embodiment of a method for controlling a UAV pan / tilt according to the present invention
  • step S200 is a flowchart of one embodiment of step S200 in the method shown in FIG. 6;
  • FIG. 8 is a flowchart of controlling the pitch axis motor by the gimbal control system in step S300 in the method shown in FIG. 6;
  • FIG. 9 is a flowchart of the control of the roll axis motor in the step S300 of the method shown in FIG. 6;
  • FIG. 10 is a flowchart of the flight control system in step S400 of the method shown in FIG. 6 controlling the attitude of the drone according to the output status information of the gimbal control system.
  • a drone 30 proposed by the present invention includes a fuselage 31, an arm 32 connected to the fuselage 31, a power device 33 provided at one end of the arm 32, and a gimbal connected to the fuselage 31 35.
  • An imaging device 34 connected to the pan-tilt 35 and a flight control system, IMU, GPS and a pan-tilt control system for controlling the pan-tilt 35 in the fuselage 21.
  • the number of arms 32 is 4, that is, the drone 30 is a quadrotor aircraft. In other possible embodiments, the number of arms 32 may also be 3, 6, 8, 10, and so on.
  • the drone 30 can also be other movable objects that need to estimate or alarm the wind speed of its flying environment, such as industrial drones, manned aircraft, aeromodelling, unmanned airships, fixed-wing drones and unmanned heat Balloons etc.
  • the arm 32 may be fixedly connected to the body 31, integrally formed, or may be folded relative to the body 31.
  • the power device 33 includes a motor 332 provided at one end of the arm 32 and a propeller 331 connected to the rotating shaft of the motor 332.
  • the rotating shaft of the motor 332 rotates to drive the propeller 331 to provide the drone 30 with the necessary lifting force for flight.
  • the imaging device 34 may be a laser sensor, an RGBD depth camera, a video camera, or the like.
  • the vision system may include binocular and / or monocular cameras and vision chips.
  • the vision chip is located inside the fuselage and is in communication with the flight control system.
  • the binocular and / or monocular camera can be set at any one or two of the front, lower and rear of the fuselage, or any other suitable position.
  • An inertial measurement unit (not shown) is a device for measuring the three-axis attitude angle and acceleration of the UAV.
  • the IMU can include a three-axis gyroscope and an accelerometer in three directions to measure the attitude and acceleration information of the UAV in three-dimensional space.
  • the IMU may be installed inside the fuselage 31 of the drone 30, for example, may be installed at the center of gravity of the drone 30, or may be installed at another suitable location.
  • GPS global positioning system
  • the GPS may be installed on the fuselage 31 of the drone 30 or on the arm 32.
  • the fuselage 31 may further include a landing gear, and the GPS may also be disposed on the landing gear to avoid interference from other electronic devices.
  • a flight control system (not shown) is used to stabilize the flying attitude of the UAV 30 and control the UAV 30 to fly autonomously or semi-autonomously.
  • the flight control system can collect flight status data measured by various sensors of the UAV in real time, receive control commands and data sent from the control terminal, and output the control commands and data to the actuator (such as a power device) to realize the control of the UAV Flight attitude or mission control.
  • the flight control system may include other necessary units such as a flight control chip and a processor communicatively connected to the flight control chip.
  • the flight control system may be installed inside the fuselage 31 of the drone 30, or on the outer surface of the fuselage 31 or any other possible location.
  • the imaging device 34 is connected to the body 31 through a gimbal 35, and the gimbal control system controls the gimbal 35 to allow the imaging device 34 to rotate about at least one axis relative to the drone 30, and is used to reduce The vibration transmitted by the power device 33 to the imaging device 34 is eliminated to ensure that the imaging device 34 can shoot a stable and clear image or video.
  • the gimbal 35 is a three-axis gimbal, that is, the gimbal 35 allows the imaging device 34 to rotate around the yaw axis, roll axis, and pitch axis.
  • the gimbal 35 has correspondingly used to drive the image
  • the flight control system and the pan / tilt control system can cooperate with each other to improve the low-speed yaw of the drone in various states (hovering, normal flight, extreme flight, etc.).
  • the present invention provides a joint control scheme of a flight control system and a gimbal control system, which realizes high-precision control of aerial photography, achieves the aerial photography stabilization effect, and ensures that the drone has a low speed in the yaw channel.
  • the uniformity of the rotation speed of the yaw channel of the gimbal completely solves the video freeze phenomenon during low-speed aerial photography.
  • FIG. 2 shows a block diagram of the joint control structure of the UAV flight control system 36 and the gimbal control system 37 of the present invention.
  • the control mechanism given in Figure 2 will be described in the following sections.
  • the flight control system 36 includes a position control part and an attitude control part, so it can be considered that the flight control system 36 includes a position control module 361 and an attitude control module 362.
  • the position control module 361 is used to control the position and / or speed of the drone 30.
  • the attitude control module 362 is used to control the attitude of the drone 30.
  • the flight control system 36 obtains the control instructions 101 input to the drone 30 by the vision system, intelligent control terminal, remote control, or navigation system of the drone 30, and the position control module 361 according to the control instructions 101 and the output state of the drone 30 Information 108, output control command 102.
  • the control command 101 includes at least one of a position command and a speed command of the drone 30.
  • the control instruction 101 may further include at least one of a sight line instruction and a sight line rate of change instruction.
  • the control commands 102 include the attitude angle command 102.1 of the drone 30, the thrust command of the motor, and the yaw rate command 103 input to the drone.
  • the output state information 108 of the drone 30 includes the actual speed of the drone and the actual attitude angle of the drone 108.2 (including the actual roll angle, actual pitch angle and actual yaw angle 108.21 of the drone (see FIG. 4))
  • the actual attitude angular rate of the drone is 108.1 (including the actual roll angular rate, actual pitch angular rate and actual yaw angular rate of the drone).
  • the attitude control module 362 outputs the control command 104 according to the control command 102, the output state information 108 of the drone 30, and the output state information 109 of the pan / tilt 35, so as to execute the execution mechanism (ie, the power device 33) of the drone 30 Control, so as to control the attitude of the drone.
  • the control command 104 is a control signal for controlling the motor of the UAV 30.
  • the control command 104 may also be the thrust and rudder angle of the fixed-wing aircraft, or the hybrid control amount of the hybrid aircraft.
  • the output state information 109 of the gimbal 35 includes the actual attitude angle and actual attitude angle rate of the gimbal.
  • the output status information 109 of the PTZ 35 can be divided into status information 109.1 and status information 109.2 (as shown in FIG. 4).
  • the state information 109.1 includes the actual pitch angle, the actual pitch angle rate, the actual roll angle, and the actual roll angle rate of the gimbal 35.
  • the state information 109.2 includes the actual yaw angle 109.21 of the gimbal 35 and the actual yaw angle rate 109.22.
  • the sensitivity to the attitude of the drone 30 will be different.
  • the present invention can dynamically adjust the drone 30's aerial angle for different aerial angles Limit conditions of attitude angle and / or attitude angle rate to ensure high precision and stability of the gimbal. This is due to the different disturbances of the gimbal 35 due to different flight conditions. Especially in extreme flight situations, the disturbances to the gimbal 30 are extremely obvious. Therefore, the flight attitude of the drone 30 needs to be restricted, which is beneficial to the PTZ is stabilizing.
  • the pitch angle of the drone 30 is limited to ⁇ 20 °; when the aerial angle of the gimbal 35 is -10 ° ⁇ 0 °, there will be no
  • the pitch angle of the man-machine 30 is limited to ⁇ 25 °; in other cases, the pitch angle of the drone 30 is limited to ⁇ 30 °.
  • the flight control system 36 can automatically generate the attitude angle limit 111 of the drone and the attitude angle rate limit 112 of the drone according to the output status information 109 of the gimbal 35, so that The attitude of the man-machine 30 is restricted.
  • the attitude control module 362 generates the attitude angle rate control instruction 110 of the drone 30 according to the attitude angle instruction 102.1 of the control instruction 102, the actual attitude angle of the drone 108.2, and the attitude angle limiter 111 of the drone.
  • the attitude control module 362 generates a motor based on the drone's attitude angular rate control command 110, the drone's yaw angular rate command 103, the drone's attitude angular rate limiter 112, and the drone's actual attitude angular rate 108.1 Control instructions 104, and control the attitude of the drone according to the motor control instructions 104.
  • the attitude angle command 102.1 mainly includes a pitch angle command and a roll angle command. In other embodiments, the attitude angle command 102.1 may further include a yaw angle command.
  • the actual attitude angle of the UAV 108.2 mainly includes the actual pitch angle and the actual roll angle, and may also include the actual yaw angle.
  • the attitude angle limiter 111 of the UAV mainly includes a pitch angle limiter and a roll angle limiter. Among them, the attitude angle limitation 111 of the UAV can be generated according to the actual attitude angle of the gimbal in the gimbal output state information 109 (mainly including the actual pitch angle and actual roll angle of the gimbal).
  • the UAV's attitude angular rate control commands 110 mainly include pitch angle rate control commands and roll angle rate control commands
  • the UAV's attitude angular rate limits 112 mainly include pitch angle rate limits, roll angle rate limits and yaw Angular rate limiting.
  • the attitude angular rate limiter 112 of the UAV can be generated according to the actual attitude angular rate of the gimbal 35 in the gimbal output state information 109.
  • the control of the gimbal control system 37 by the gimbal control system 37 can be divided into two parts, one is the control of the yaw axis motor of the gimbal 35, and the other is the pitch axis motor and roll of the gimbal 35 Control of the shaft motor.
  • the control of the yaw axis motor of the gimbal 35 is performed jointly by the flight control system 36 and the gimbal control system 37.
  • 5 is a functional block diagram of the joint control of the yaw axis motor of the gimbal 35 by the flight control system 36 and the gimbal control system 37 in the present invention.
  • the flight control system 36 first sends the yaw angle rate command 103 input to the UAV in the control command 102 to the PTZ control system 37, and the PTZ control system 37 obtains the yaw angle rate input to the UAV After the instruction 103, a logical judgment is made. Determine whether the input yaw rate command 103 of the drone is zero.
  • the control authority of the yaw axis motor of the gimbal 35 is given to the flight control system 36.
  • the angle error is only used as compensation and the weight is lower.
  • the gimbal control system 37 selects the control rate 1 (control law), and the gimbal control system forms the algorithm of the control command , Describes the functional relationship between the controlled state variable and the system input signal.),
  • the gimbal control system 37 generates the gimbal according to the yaw rate command 103 of the drone and the actual yaw rate 109.22 of the gimbal 35 35 yaw axis motor control instructions.
  • the gimbal control system 37 generates an additional control command for the yaw axis motor of the gimbal 35, and finally generates a The control amount of the yaw axis motor, and the yaw axis motor of the gimbal is controlled according to the control amount of the yaw axis motor.
  • the additional control command of the yaw axis motor of the gimbal 35 refers to the difference between the actual yaw angle of the gimbal 109.21 and the actual yaw angle of the drone 108.21.
  • the additional control instruction of the yaw axis motor of the gimbal is introduced to make the line of sight of the imaging device 34 mounted on the gimbal 35 coincide with the course of the drone as much as possible or maintain the same.
  • the UAV's yaw rate command 103 reflects the flight control system's expectations of the UAV's yaw channel control.
  • the PTZ control system 37 uses its own high-precision control and fast response characteristics, combined with the flight control system to give
  • the yaw rate command 103 of the unmanned aerial vehicle is used to control the yaw axis motor of the gimbal, so it can maximize the advantages of high-precision control and fast response of the gimbal control system, and realize the yaw of the gimbal.
  • the stabilization of the axis further eliminates the jamming of the imaging equipment on the yaw axis.
  • the control authority of the yaw axis motor of the gimbal 35 is given to the gimbal control system 37, and the gimbal control system 37 selects the control rate 2 That is, the gimbal control system 37 directly controls the yaw axis motor of the gimbal 35, and the yaw axis motor of the gimbal 35 is not affected by the output command of the flight control system 36.
  • the gimbal control system 37 obtains the actual yaw angle 108.21 of the drone and the actual yaw angle 109.21 of the gimbal, and generates the gimbal's The yaw angle rate control command, and then obtain the actual yaw angle rate of the gimbal 109.22, and finally generate the yaw axis of the gimbal 35 according to the gimbal yaw rate control instruction and the actual yaw rate 109.22
  • the control amount of the motor controls the yaw axis motor of the gimbal 35.
  • the yaw angle of the gimbal first order converges to the yaw angle of the drone.
  • the control authority of the pitch axis motor and the roll axis motor of the gimbal 35 always belongs to the gimbal control system 37.
  • the control of the pitch axis motor and the roll axis motor by the gimbal control system 37 is specifically as follows: the gimbal control system 37 obtains the pitch angle command 100 input to the gimbal 35, the actual pitch angle and the actual pitch of the gimbal Angular rate, according to the pitch angle command 100 of the pan / tilt 35, the actual pitch angle of the pan / tilt and the actual pitch angle rate, generate the control amount of the pitch axis motor of the pan / tilt. 35 pitch axis motor.
  • the pan-tilt control system 37 obtains the input pan-tilt angle command 100 of the pan-tilt 35, the actual pan-tilt angle and the actual pan-angle rate, according to the pan-tilt angle command 100 of the pan-tilt, the pan-tilt actual roll angle and
  • the roll angular rate generates the control amount of the roll axis motor of the pan / tilt
  • the pan / tilt control system 37 controls the roll axis motor of the pan / tilt 35 according to the control amount of the roll axis motor.
  • the above-mentioned panning angle command 100 of the gimbal 35 may be issued by a remote controller or an intelligent terminal (such as an app on a mobile phone or a tablet computer).
  • the state information 109.1 in FIG. 4 includes the actual pitch angle, the actual pitch angle rate, the actual roll angle, and the actual roll angle rate of the gimbal 35.
  • the control command 107.1 includes the control amount of the pitch axis motor of the gimbal and the control amount of the roll axis motor of the gimbal.
  • the control command 107.2 is the control value of the yaw axis motor of the gimbal.
  • the above scheme of joint control of the yaw axis motor of the gimbal by the flight control system and the gimbal control system skillfully uses the high-precision and fast response characteristics of the gimbal control system to compensate for the lack of yaw control of the flight control system
  • the advantages of high-precision control and fast response of the gimbal control system are maximized, and the advantages are used to compensate for the lack of yaw control of the flight control system, and the stabilization of the gimbal yaw channel is realized, which completely solves the lack of Stuck phenomenon of aerial video when man-machine yaw at low speed.
  • the present invention also provides a PTZ control method, including:
  • the flight control system generates a yaw rate command for the UAV.
  • the yaw angular rate command of the drone may be generated by the flight control system of the drone according to at least one of the position command and the speed command of the input drone.
  • the flight control system may also generate the yaw rate command of the drone according to at least one of the line-of-sight command and the line-of-sight rate change command.
  • any of the position command, speed command, sight line command, and sight line rate of change command may be input by the UAV's vision system, intelligent control terminal, remote control, or navigation system.
  • the gimbal control system controls the yaw axis motor of the gimbal according to the yaw angular rate command of the drone.
  • this step includes:
  • the pan / tilt control system of the drone can determine whether the input yaw rate command of the drone is zero. Whether the yaw rate command of the UAV is zero determines the control rate adopted by the gimbal control system.
  • the control authority of the gimbal's yaw axis motor is given to the drone's flight control system, the gimbal's yaw rate error The weight is larger, the yaw angle error is only used as compensation, and the weight is lower.
  • the control authority of the yaw axis motor of the gimbal is given to the gimbal control system, that is, the gimbal control system directly controls the yaw axis motor of the gimbal, the cloud
  • the yaw axis motor of the platform is not affected by the flight control system. It is worth noting that regardless of whether the gimbal control system selects control rate 1 or control rate 2, the control authority of the pitch axis motor and roll axis motor of the gimbal has always belonged to the gimbal control system.
  • the actual yaw rate of the gimbal can be measured by the IMU of the gimbal, where the IMU of the gimbal is generally installed on the gimbal and is in communication with the gimbal control system. It can also be obtained from the output status information fed back by the gimbal, where the output status information of the gimbal includes the actual attitude angle and angular rate of the gimbal, that is, the actual pitch angle of the gimbal, the actual pitch angle rate, the actual roll angle, the actual Roll rate, actual yaw angle and actual yaw rate.
  • the additional control command of the yaw axis motor of the gimbal refers to the difference between the actual yaw angle of the gimbal and the actual yaw angle of the drone.
  • the line of sight of the imaging equipment is consistent with the course or line of sight of the drone.
  • the actual yaw angle of the gimbal can be measured by the IMU of the gimbal, or can be obtained from the output status information fed back by the gimbal.
  • the actual yaw angle of the drone can be measured by the IMU of the drone, or can be obtained from the output status information fed back by the drone.
  • the output status information of the drone includes the actual attitude angle and angular rate of the drone, that is, the actual pitch angle, actual pitch angle rate, actual roll angle, actual roll angle rate, actual yaw angle and actual deviation of the drone Yaw rate.
  • steps S207-S211 are executed:
  • the actual yaw angle of the drone can be measured by the IMU of the drone or the output status information fed back by the drone.
  • the actual yaw angle of the gimbal can be measured by the IMU of the gimbal or fed back by the gimbal The output status information is obtained.
  • the method further includes:
  • the gimbal control system controls the pitch axis motor and roll axis motor of the gimbal according to the input pan tilt angle command and the gimbal output status information, wherein the gimbal output status information includes the The actual attitude angle and actual attitude angle rate of the gimbal.
  • the actual attitude angle of the gimbal includes an actual pitch angle, an actual roll angle, and an actual yaw angle.
  • the actual attitude angular rate of the gimbal includes the actual pitch angular rate, the actual roll angular rate and the actual yaw angular rate.
  • the input pan tilt angle command can be issued by a remote controller or an intelligent terminal, where the remote controller is used to control the drone and communicate with the drone.
  • the smart terminal includes a mobile phone, a tablet computer, etc., and an app for controlling the drone is usually installed on the smart terminal.
  • the gimbal control system controls the pitch axis motor of the gimbal according to the input pan tilt angle command and the gimbal output status information, including:
  • control of the gimbal's roll axis motor by the gimbal control system includes:
  • the method further includes:
  • the flight control system controls the attitude of the drone according to the output status information of the gimbal.
  • the attitude of the drone includes the attitude angle of the drone and the attitude angular rate of the drone.
  • step S400 further includes:
  • the actual attitude angle of the gimbal mainly includes the actual pitch angle and actual roll angle of the gimbal.
  • the actual yaw angle of the gimbal may be further included.
  • the actual attitude angle of the gimbal can be obtained through the output information fed back by the gimbal.
  • the attitude angle limit of the UAV mainly includes the pitch angle limit and roll angle limit of the UAV, and may further include the yaw angle limit of the UAV.
  • the actual attitude angle of the drone can be obtained from the output state information (including the actual attitude angle and the actual attitude angle rate) fed back by the drone, or can also be measured by the IMU of the drone.
  • the attitude angle command of the UAV mainly includes the input of the pitch angle command and the roll angle command of the UAV.
  • the pitch angle command and roll angle command input to the UAV may be generated by the flight control system according to at least one of the position command, speed command, sight line command, and sight line rate of change command input to the drone.
  • the UAV's attitude angle control commands mainly include the UAV's pitch angle rate control commands and roll angle rate control commands.
  • the actual attitude angle rate of the gimbal includes the actual pitch angle rate and actual roll angle rate of the gimbal, that is, the actual yaw rate. Therefore, the UAV's attitude angular rate limit includes the UAV's pitch angle rate limit, roll angle rate limit and yaw angle rate limit.
  • the input yaw rate command of the drone can be obtained by step S100.
  • the gimbal control method of the present invention adopts the joint control of the gimbal control system and the flight control system to maximize the advantages of high-precision control and fast response of the gimbal control system.
  • the advantage is used to compensate the flight control system for yaw control.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机及其云台控制方法,其中,云台控制方法包括飞控系统(36)生成无人机(30)的偏航角速率指令(103),云台控制系统(37)根据无人机(30)的偏航角速率指令(103),控制云台(35)的偏航轴电机。由飞控系统(36)和云台控制系统(37)联合控制云台(35)的偏航轴电机,最大限度发挥了云台控制系统(37)高精度控制和快速响应的优点,利用该优点来补偿飞控系统(36)在偏航控制上的不足,实现了对云台(35)偏航通道的增稳,彻底解决了当无人机(30)低速偏航时,航拍视频的卡顿现象。

Description

无人机及其云台控制方法 技术领域
本发明涉及无人机技术领域,特别是涉及一种无人机及其云台控制方法。
背景技术
航拍无人机包括消费级航拍无人机和专业级航拍无人机,无论是消费级航拍无人机还是专业级航拍无人机,其航拍质量均取决于无人机机身和云台的控制效果。飞行控制系统(Flight Control System,FCS)是保证无人机稳定飞行的基本前提,云台控制系统(Gimbal Control System,GCS)用于改善航拍视频质量,并且通过云台的减振系统来隔离机身的高频振动,其控制精度远高于FCS的控制精度。现有的航拍无人机中,GCS和FCS是独立的,亦即,GCS的俯仰、滚转通道不响应FCS姿态的变化,且GCS的偏航角一阶收敛于FCS的偏航角。这种GCS/FCS独立控制思想存在以下缺点:
1、FCS没有GCS的控制权限,GCS只获取无人机实际的偏航角/偏航角速率信息,并且无任何反馈信息与FCS进行实时交互;
2、FCS的偏航控制力矩小,偏航控制与俯仰控制、滚转控制存在通道耦合,在受到外界干扰时,会造成FCS偏航通道转速不均匀,从而导致航拍视频不流畅,特别是在FCS控制无人机低转速偏航时,视频卡顿现象严重;
3、云台偏航通道的控制受到无人机偏航角控制的影响,并没有将GCS的高精度控制优点有效地发挥出来,造成FCS控制压力增大。
发明内容
基于此,有必要针对现有技术中的上述问题,提供一种飞控系统和云台控制系统联合控制云台的偏航轴电机,能够消除视频卡顿现象的无人机及其云台控制方法。
为解决上述问题,本发明提供了一种无人机云台控制方法,所述无人机包括飞控系统和用于控制所述云台的云台控制系统,包括:
所述飞控系统生成所述无人机的偏航角速率指令;
所述云台控制系统根据所述无人机的偏航角速率指令,控制所述云台的偏航轴电机。
在本发明的一实施例中,所述云台控制系统根据所述无人机的所述偏航角速率指令,控制所述云台的所述偏航轴电机,包括:
判断输入所述无人机的偏航角速率指令是否为零;
若否,则:
所述云台控制系统获取所述云台的实际偏航角速率;
所述云台控制系统根据输入所述无人机的所述偏航角速率指令和所述云台的所述实际偏航角速率,生成所述云台的偏航轴电机控制指令;
所述云台控制系统获取所述云台的偏航轴电机附加控制指令,其中,所述偏航轴电机附加控制指令用于控制所述云台的偏航轴电机以使得所述云台搭载的影像设备的视线与所述无人机的航向重合;
所述云台控制系统根据所述云台的所述偏航轴电机控制指令和所述云台的所述偏航轴电机附加控制指令,生成所述云台的偏航轴电机控制量;
根据所述云台的所述偏航轴电机控制量,控制所述云台的偏航轴电机。
在本发明的一实施例中,所述云台控制系统获取所述云台的所述偏航轴电机附加控制指令,包括:
所述云台控制系统获取所述云台的实际偏航角和所述无人机的实际偏航角;
所述云台控制系统根据所述云台的所述实际偏航角和所述无人机的所述实际偏航角,生成所述云台的所述偏航轴电机附加控制指令。
在本发明的一实施例中,该方法还包括:
若输入所述无人机的所述偏航角速率指令为零,则:
所述云台控制系统获取所述无人机的实际偏航角和所述云台的实际偏航角;
所述云台控制系统根据所述无人机的所述实际偏航角和所述云台的所述实际偏航角,生成所述云台的偏航角速率控制指令;
所述云台控制系统获取所述云台的实际偏航角速率;
所述云台控制系统根据所述云台的所述偏航角速率控制指令和所述云台的所述实际偏航角速率,生成所述云台的偏航轴电机控制量;
所述云台控制系统根据所述云台的所述偏航轴电机控制量,控制所述云台的偏航轴电机。
在本发明的一实施例中,所述飞控系统生成所述无人机的所述偏航角速率指令,包括:
所述飞控系统获取输入所述无人机的位置指令和视线指令中的至少一种;
所述飞控系统根据输入所述无人机的所述位置指令和所述视线指令中的至少一种,生成所述无人机的所述偏航角速率指令。
在本发明的一实施例中,所述飞控系统生成所述无人机的所述偏航角速率指令,包括:
所述飞控系统获取输入所述无人机的速度指令和视线变化率指令中的至少一种;
所述飞控系统根据输入所述无人机的所述速度指令和所述视线变化率指令中的至少一种,生成所述无人机的所述偏航角速率指令。
在本发明的一实施例中,该方法还包括:
所述云台控制系统根据输入所述云台的俯拍角度指令和所述云台的输出状态信息,控制所述云台的俯仰轴电机和滚转轴电机,其中,所述云台的所述输出状态信息包括所述云台的实际姿态角及实际姿态角速率。
在本发明的一实施例中,所述云台的所述实际姿态角包括所述云台的实际俯仰角,所述云台的所述实际姿态角速率包括所述云台的实际俯仰角速率;
所述云台控制系统根据输入所述云台的俯拍角度指令和所述云台的输出状态信息,控制所述云台的俯仰轴电机和滚转轴电机,包括:
所述云台控制系统根据所述云台的所述俯拍角度指令、所述云台的所述实际俯仰角和所述实际俯仰角速率,生成所述云台的俯仰轴电机控制量;
根据所述云台的所述俯仰轴电机控制量,控制所述云台的俯仰轴电机。
在本发明的一实施例中,所述云台的所述实际姿态角还包括所述云台的实际滚转角,所述云台的所述实际姿态角速率还包括所述云台的实际滚转角速率;
所述云台控制系统根据输入所述云台的俯拍角度指令和所述云台的输出状态信息,控制所述云台的俯仰轴电机和滚转轴电机,包括:
所述云台控制系统根据所述云台的所述俯拍角度指令、所述云台的所述实际滚转角和所述实际滚转角速率,生成所述云台的滚转轴电机控制量;
所述云台控制系统根据所述云台的所述滚转轴电机控制量,控制所述云台的滚转轴电机。
在本发明的一实施例中,所述云台控制系统获取所述云台的所述俯拍角度 指令,包括:
所述云台控制系统获取由遥控器或智能终端发出的所述云台的所述俯拍角度指令。
在本发明的一实施例中,该方法还包括:
所述飞控系统根据所述云台的所述输出状态信息,控制所述无人机的姿态。
在本发明的一实施例中,所述飞控系统根据所述云台的所述输出状态信息,控制所述无人机的姿态,包括:
所述飞控系统根据所述云台的所述实际姿态角,生成所述无人机的姿态角限幅;
所述飞控系统获取所述无人机的实际姿态角和输入所述无人机的姿态角指令;
所述飞控系统根据所述无人机的所述姿态角限幅、输入所述无人机的所述姿态角指令以及所述无人机的所述实际姿态角,生成所述无人机的姿态角速率控制指令;
所述飞控系统根据所述云台的所述实际姿态角速率,生成所述无人机的姿态角速率限幅;
所述飞控系统获取所述无人机的实际姿态角速率和输入所述无人机的所述偏航角速率指令;
所述飞控系统根据所述无人机的所述姿态角速率控制指令、所述无人机的所述姿态角速率限幅、输入所述无人机的所述偏航角速率指令以及所述无人机的所述实际姿态角速率,生成所述无人机的电机控制指令;
所述飞控系统根据所述无人机的所述电机控制指令,控制所述无人机的姿态。
为解决其技术问题,本发明还提供了一种无人机,包括:
机身;
机臂,与所述机身相连;
动力装置,设于所述机臂;
云台,与所述机身相连;
飞控系统,设于所述机身;以及
云台控制系统,设于所述云台或机身,且用于控制所述云台;
所述飞控系统用于生成所述无人机的偏航角速率指令;
所述云台控制系统用于:
根据所述飞控系统生成的所述无人机的所述偏航角速率指令,控制所述云台的偏航轴电机。
在本发明的一实施例中,所述云台控制系统具体用于:
判断所述无人机的偏航角速率是否为零;
当所述无人机的所述偏航角速率指令不为零,则:
获取所述云台的实际偏航角速率;
根据输入所述无人机的所述偏航角速率指令和所述云台的实际偏航角速率,生成所述云台的偏航轴电机控制指令;
获取所述云台的偏航轴电机附加控制指令,其中,所述偏航轴电机附加控制指令用于控制所述云台的偏航轴电机以使得所述云台搭载的影像设备的视线与所述无人机的航向重合;
根据所述云台的所述偏航轴电机控制指令和所述云台的所述偏航轴电机附加控制指令,生成所述云台的偏航轴电机控制量;以及
根据所述云台的所述偏航轴电机控制量,控制所述云台的偏航轴电机。
在本发明的一实施例中,所述云台控制系统具体用于:
获取所述云台的实际偏航角和所述无人机的实际偏航角;
根据所述云台的所述实际偏航角和所述无人机的所述实际偏航角,生成所述云台的所述偏航轴电机附加控制指令。
在本发明的一实施例中,当输入所述无人机的偏航角速率指令为零,则所述云台控制系统还用于:
获取所述无人机的实际偏航角和所述云台的实际偏航角;
根据所述无人机的所述实际偏航角和所述云台的所述实际偏航角,生成所述云台的偏航角速率控制指令;
获取所述云台的实际偏航角速率;
根据所述云台的所述偏航角速率控制指令和所述云台的所述实际偏航角速率,生成所述云台的偏航轴电机控制量;
根据所述云台的所述偏航轴电机控制量,控制所述云台的偏航轴电机。
在本发明的一实施例中,所述飞控系统具体用于:
获取所述无人机的位置指令和视线指令中的至少一种;以及
根据所述无人机的所述位置指令和所述视线指令中的至少一种,生成所述无人机的所述偏航角速率指令。
在本发明的一实施例中,所述飞控系统具体用于:
获取所述无人机的速度指令和视线变化率指令中的至少一种;
根据所述无人机的所述速度指令和所述视线变化率指令中的至少一种,生成所述无人机的所述偏航角速率指令。
在本发明的一实施例中,所述云台控制系统还用于:
根据输入所述云台的俯拍角度指令和所述云台的输出状态信息,控制所述云台的俯仰轴电机和滚转轴电机,其中,所述云台的所述输出状态信息包括所述云台的实际姿态角及实际姿态角速率。
在本发明的一实施例中,所述云台控制系统具体用于:
根据所述云台的所述俯拍角度指令、所述云台的所述实际俯仰角和所述实际俯仰角速率,生成所述云台的俯仰轴电机控制量;
根据所述云台的所述俯仰轴电机控制量,控制所述云台的俯仰轴电机。
在本发明的一实施例中,所述云台控制系统还用于:
根据所述云台的所述俯拍角度指令、所述云台的所述实际滚转角和所述实际滚转角速率,生成所述云台的滚转轴电机控制量;
根据所述云台的所述滚转轴电机控制量,控制所述云台的滚转轴电机。
在本发明的一实施例中,所述云台控制系统具体用于获取由遥控器或智能终端发出的所述云台的所述俯拍角度指令。
在本发明的一实施例中,所述飞控系统还用于:
根据所述云台的所述输出状态信息,控制所述无人机的姿态。
在本发明的一实施例中,所述飞控系统具体用于:
根据所述云台的所述实际姿态角,生成所述无人机的姿态角限幅;
获取所述无人机的实际姿态角和输入所述无人机的姿态角指令;
根据所述无人机的所述姿态角限幅、输入所述无人机的所述姿态角指令以及所述无人机的所述实际姿态角,生成所述无人机的姿态角速率控制指令;
根据所述云台的所述实际姿态角速率,生成所述无人机的姿态角速率限幅;
获取所述无人机的实际姿态角速率和输入所述无人机的偏航角速率指令;
根据所述无人机的所述姿态角速率控制指令、所述无人机的所述姿态角速率限幅、输入所述无人机的所述偏航角速率指令以及所述无人机的所述实际姿 态角速率,生成所述无人机的电机控制指令;
根据所述无人机的所述电机控制指令,控制所述无人机的姿态。
本发明由飞控系统和云台控制系统联合控制云台偏航轴电机,最大限度发挥了云台控制系统高精度控制和快速响应的优点,利用该优点来补偿飞控系统在偏航控制上的不足,实现了对云台偏航通道的增稳,彻底解决了当无人机低速偏航时,航拍视频的卡顿现象。
附图说明
图1为本发明一种无人机其中一实施例的结构示意图;
图2为本发明无人机中飞控系统和云台控制系统的控制原理框图;
图3为本发明无人机中飞控系统的控制原理框图;
图4为本发明无人机中云台控制系统的控制原理框图;
图5为本发明无人机中飞控系统和云台控制系统对云台的偏航轴电机进行联合控制的原理框图;
图6为本发明一种无人机云台控制方法的其中一实施例的流程图;
图7为图6所示方法中步骤S200其中一实施例的流程图;
图8为图6所示方法中步骤S300中云台控制系统控制俯仰轴电机的流程图;
图9为图6所示方法中步骤S300中云台控制系统控制滚转轴电机的流程图;
图10为图6所示方法中步骤S400中飞控系统根据云台控制系统的输出状态信息,控制无人机的姿态的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明提出的一种无人机30包括机身31、与机身31相连的机臂32、设置在机臂32一端的动力装置33、与机身31相连的云台35、与所述云台35相连的影像设备34以及设置在机身21内的飞控系统、IMU、GPS以及 用于控制所述云台35的云台控制系统。
在本实施例中,机臂32的数量为4,即该无人机30为四旋翼飞行器,在其他可能的实施例中,机臂32的数量也可以为3、6、8、10等。无人机30还可以是其他需要对其所处飞行环境进行风速估计或报警的可移动物体,例如行业无人机、载人飞行器、航模、无人飞艇、固定翼无人机和无人热气球等。机臂32可与所述机身31固定连接、一体成型或可相对于所述机身31折叠。
动力装置33包括设置在机臂32一端的电机332以及与电机332的转轴相连的螺旋桨331。电机332的转轴转动以带动螺旋桨331旋转从而给无人机30提供飞行所需的拉升力。
影像设备34可以为激光传感器、RGBD深度相机或者摄像机等。
视觉系统可以包括双目和/或单目摄像头以及视觉芯片。视觉芯片设于所述机身内部,与飞控系统通信连接。双目和/或单目摄像头可以设置在机身的前部、下部和后部中的任意一个或两个位置,也可以设置在任何其他合适的位置。
惯性测量单元(IMU)(图未示出)是用于测量无人机三轴姿态角以及加速度的装置。IMU可以包括三轴陀螺仪和三个方向的加速度计,以此来测量无人机在三维空间中的姿态角信息和加速度信息。IMU可以设置在无人机30的机身31的内部,例如,可以设置在无人机30的重心位置,也可以设置在其他合适的位置。
全球定位系统(GPS)(图未示出)用于测量无人机在三维空间中的位置信息和速度信息。GPS可以设置在无人机30的机身31上,也可以设置在机臂32上。在某些实施例中,机身31还可以包括起落架,GPS也可以设置在起落架上,以远离其他电子设备的干扰。
飞控系统(图未示出)用于稳定无人机30的飞行姿态并控制无人机30自主或半自主飞行。飞控系统可以实时采集无人机各传感器测量的飞行状态数据、接收控制终端发来的控制指令及数据,并将该控制指令和数据输出给执行机构(例如动力装置)以实现对无人机飞行姿态或执行任务的控制。在本发明的实施例中,飞控系统可以包括飞控芯片和与飞控芯片通信连接的处理器等其他必要的单元。飞控系统可以设置在无人机30的机身31内部,也可以设置在机身 31的外表面或任何其他可能的位置。
在本发明的实施例中,影像设备34通过云台35与机身31相连,云台控制系统控制云台35允许影像设备34相对于无人机30绕至少一个轴转动,且用于减轻甚至消除动力装置33传递给影像设备34的振动,以保证影像设备34能够拍摄出稳定清晰的图像或视频。在本发明的一实施例中,云台35为三轴云台,即云台35允许影像设备34绕偏航轴、滚转轴、俯仰轴转动,因此,云台35相应的具有用于驱动影像设备34绕偏航轴转动的偏航轴电机、用于驱动影像设备34绕滚转轴转动的滚转轴电机以及用于驱动影像设备34绕俯仰轴转动的俯仰轴电机。
在本发明的实施例中,飞控系统和云台控系统能够相互配合以提高无人机在各种状态下(悬停、正常飞行、极端飞行等)低速偏航时,云台35控制影像设备34绕偏航轴转动时影像设备34的航拍质量。
因此,本发明提供了一种飞控系统和云台控制系统的联合控制方案,实现了航拍的高精度控制,达到了航拍增稳效果,保证无人机在偏航通道低转速的情况下,云台偏航通道转速的均匀性,彻底解决了低转速航拍时的视频卡顿现象。
图2给出了本发明无人机飞控系统36和云台控制系统37的联合控制结构框图。以下将分为几个部分对图2给出的控制机制进行描述。
飞控系统对无人机的控制:
如图2和图3所示,飞控系统36包括位置控制部分和姿态控制部分,因此可以认为飞控系统36包括位置控制模块361和姿态控制模块362。其中,位置控制模块361用于控制所述无人机30的位置和/或速度。姿态控制模块362用于控制所述无人机30的姿态。
飞控系统36获取由无人机30的视觉系统、智能控制终端、遥控器、或导航系统输入无人机30的控制指令101,位置控制模块361根据控制指令101和无人机30的输出状态信息108,输出控制指令102。
其中,控制指令101包括无人机30的位置指令和速度指令中的至少一种。在其他可能的实施例中,控制指令101还可以包括视线指令和视线变化率指令 中至少一种。控制指令102包括无人机30的姿态角指令102.1、电机的推力指令和输入无人机的偏航角速率指令103。无人机30的输出状态信息108包括无人机的实际速度、无人机的实际姿态角108.2(包括无人机的实际滚转角、实际俯仰角和实际偏航角108.21(如图4))以及无人机的实际姿态角速率108.1(包括无人机的实际滚转角速率、实际俯仰角速率和实际偏航角速率)。
姿态控制模块362根据控制指令102、无人机30的输出状态信息108以及云台35的输出状态信息109,输出控制指令104,以对无人机30的执行机构(即,动力装置33)进行控制,从而实现对无人机姿态的控制。
在本发明的一实施例中,控制指令104为用于控制无人机30电机的控制信号。在其他实施例中,当无人机为固定翼飞机或混合翼飞机时,控制指令104也可以是固定翼飞机的推力及舵偏角,或者混合翼飞机的混合控制量。云台35的输出状态信息109包括云台的实际姿态角和实际姿态角速率。具体地,云台35的输出状态信息109可以分为状态信息109.1和状态信息109.2(如图4所示)。其中,状态信息109.1包括云台35的实际俯仰角、实际俯仰角速率、实际滚转角及实际滚转角速率。状态信息109.2包括云台35实际偏航角109.21及实际偏航角速率109.22。
值得注意的是,当云台35处于不同的航拍角度时,对无人机30姿态的敏感度会有所不同,本发明可针对云台35不同的航拍角度,来动态调整无人机30的姿态角度和/或姿态角速率的限制条件,以保证云台的高精度和稳定性。这是由于不同的飞行状态,云台35受到的扰动不同,尤其在极端飞行情况下,云台30受到的扰动极为明显,因此需要对无人机30的飞行姿态进行限制,此举有利于对云台进行增稳。例如,当云台35的航拍角度为-90°~75°时,将无人机30的俯仰角限制为±20°;当云台35的航拍角度为-10°~0°时,将无人机30的俯仰角限制为±25°;其他情况均将无人机30的俯仰角限制在±30°。
具体来说,如图3所示,飞控系统36可根据云台35的输出状态信息109自动生成无人机的姿态角限幅111和无人机的姿态角速率限幅112,从而对无人机30的姿态进行限制。
姿态控制模块362根据控制指令102中的姿态角指令102.1、无人机的实际 姿态角108.2,以及无人机的姿态角限幅111生成无人机30的姿态角速率控制指令110。
姿态控制模块362根据无人机的姿态角速率控制指令110、无人机的偏航角速率指令103、无人机的姿态角速率限幅112和无人机的实际姿态角速率108.1,生成电机控制指令104,并根据该电机控制指令104控制无人机的姿态。
在本发明的一实施例中,所述姿态角指令102.1主要包括俯仰角指令和滚转角指令,在其他实施例中个,姿态角指令102.1还可以包括偏航角指令。无人机的实际姿态角108.2主要包括实际俯仰角和实际滚转角,还可以包括实际偏航角。无人机的姿态角限幅111主要包括俯仰角限幅和滚转角限幅。其中,无人机的姿态角限幅111可以根据云台输出状态信息109中的云台的实际姿态角(主要包括云台的实际俯仰角和实际滚转角生成)。无人机的姿态角速率控制指令110主要包括俯仰角速率控制指令和滚转角速率控制指令,无人机的姿态角速率限幅112主要包括俯仰角速率限幅、滚转角速率限幅和偏航角速率限幅。无人机的姿态角速率限幅112可根据云台输出状态信息109中云台35的实际姿态角速率生成。
飞控系统和云台控制系统对云台的联合控制:
如图4所示,云台控制系统37对云台35的控制可以分为两个部分,一是对云台35的偏航轴电机的控制,二是对云台35的俯仰轴电机和滚转轴电机的控制。其中,对云台35的偏航轴电机的控制是由飞控系统36和云台控制系统37共同完成的。图5为本发明中飞控系统36和云台控制系统37对云台35的偏航轴电机进行联合控制的原理框图。
如图5所示,飞控系统36首先将控制指令102中输入无人机的偏航角速率指令103发送给云台控制系统37,云台控制系统37获取输入无人机的偏航角速率指令103后进行逻辑判断。判断输入无人机的偏航角速率指令103是否为零。
当输入无人机的偏航角速率指令103不为零时,将云台35的偏航轴电机的控制权限交给飞控系统36,云台35的偏航角速率误差权重较大,偏航角误差只作为补偿,权重较低。具体说来,此时,由于输入无人机的偏航角速率指令103不为零,则云台控制系统37选择控制率1(控制律(control law),云台控制 系统形成控制指令的算法,描述了受控状态变量与系统输入信号之间的函数关系。),云台控制系统37根据无人机的偏航角速率指令103和云台35的实际偏航角速率109.22,生成云台35的偏航轴电机控制指令。然后,云台控制系统37生成云台35的偏航轴电机附加控制指令,最后根据云台35的偏航轴电机控制指令和云台35的偏航轴电机附加控制指令,生成云台35的偏航轴电机控制量,并根据该偏航轴电机控制量控制云台的偏航轴电机。
在本发明的一实施例中,云台35的偏航轴电机附加控制指令是指云台的实际偏航角109.21与无人机的实际偏航角108.21之间的差值。引入云台的偏航轴电机附加控制指令是为了使得云台35搭载的影像设备34的视线与无人机的航向尽量重合或保持一致。
无人机的偏航角速率指令103反应了飞控系统对无人机偏航通道的控制期望,云台控制系统37利用其自身具有的高精度控制和快速响应的特点,结合飞控系统给出的无人机的偏航角速率指令103,来对云台的偏航轴电机进行控制,因此能够最大限度地发挥云台控制系统高精度控制和快速响应的优点,实现对云台偏航轴的增稳,进而消除其搭载的影像设备在偏航轴方向上的卡顿。
如图5所示,当输入无人机的偏航角速率指令103为零时将云台35的偏航轴电机的控制权限交给云台控制系统37,云台控制系统37选择控制率2,即由云台控制系统37直接控制云台35的偏航轴电机,云台35的偏航轴电机不受飞控系统36输出指令的影响。此时云台控制系统37获取无人机的实际偏航角108.21和云台的实际偏航角109.21,根据无人机的实际偏航角108.21和云台的实际偏航角109.21生成云台的偏航角速率控制指令,然后再获取云台的实际偏航角速率109.22,最后根据云台的偏航角速率控制指令和云台的实际偏航角速率109.22,生成云台35的偏航轴电机的控制量,控制云台35的偏航轴电机。此时,云台的偏航角一阶收敛于无人机的偏航角。
值得注意的是,不论云台控制系统37选择控制率1还是控制率2,云台35的俯仰轴电机和滚转轴电机的控制权限一直属于云台控制系统37。
如图4所示,云台控制系统37对俯仰轴电机和滚转轴电机的控制具体为:云台控制系统37获取输入云台35的俯拍角度指令100、云台的实际俯仰角和实 际俯仰角速率,根据云台35的俯拍角度指令100、云台的实际俯仰角和实际俯仰角速率生成云台的俯仰轴电机控制量,云台控制系统37根据该俯仰轴电机控制量控制云台35的俯仰轴电机。
相似的,云台控制系统37获取输入云台35的俯拍角度指令100,云台的实际滚转角和实际滚转角速率,根据云台的俯拍角度指令100、云台的实际滚转角和实际滚转角速率生成云台的滚转轴电机控制量,云台控制系统37根据该滚转轴电机控制量控制云台35的滚转轴电机。
在本发明的一实施例中,上述云台35的俯拍角度指令100可以由遥控器或智能终端(如手机或平板电脑上的app)发出。
其中,图4中的状态信息109.1包括云台35的实际俯仰角、实际俯仰角速率、实际滚转角及实际滚转角速率。控制指令107.1包括云台的俯仰轴电机控制量和云台的滚转轴电机控制量。控制指令107.2为云台的偏航轴电机控制量。
以上这种由飞控系统和云台控制系统联合控制云台偏航轴电机的方案,巧妙地利用云台控制系统高精度、快速响应的特性来补偿飞控系统在偏航控制上的不足,最大限度发挥了云台控制系统高精度控制和快速响应的优点,利用该优点来补偿飞控系统在偏航控制上的不足,实现了对云台偏航通道的增稳,彻底解决了当无人机低速偏航时,航拍视频的卡顿现象。
如图6所示,本发明还提供了一种云台控制方法,包括:
S100、飞控系统生成无人机的偏航角速率指令。
在本发明的一实施例中,无人机的偏航角速率指令可以由无人机的飞控系统根据输入无人机的位置指令和速度指令中的至少一种生成。在其他可能的实施例中,飞控系统还可以根据视线指令和视线变化率指令中至少一种,生成无人机的偏航角速率指令。在本发明的一实施例中,位置指令、速度指令、视线指令和视线变化率指令中的任意一种均可以为由无人机的视觉系统、智能控制终端、遥控器、或导航系统输入。
S200、云台控制系统根据无人机的所述偏航角速率指令,控制云台的偏航轴电机。
如图7所示,在本发明的一实施例中,该步骤又包括:
S201、判断输入无人机的偏航角速率指令是否为零。
在本发明的一实施例中,可以由无人机的云台控制系统判断输入无人机的偏航角速率指令是否为零。无人机的偏航角速率指令是否为零,决定了云台控制系统采用的控制率。可参考图5,当输入无人机的偏航角速率指令不为零时,将云台的偏航轴电机的控制权限交给无人机的飞控系统,云台的偏航角速率误差权重较大,偏航角误差只作为补偿,权重较低。当输入无人机的偏航角速率指令为零时,将云台的偏航轴电机的控制权限交给云台控制系统,即由云台控制系统直接控制云台的偏航轴电机,云台的偏航轴电机不受飞控系统的影响。值得注意的是,不论云台控制系统选择控制率1还是控制率2,云台的俯仰轴电机和滚转轴电机的控制权限一直属于云台控制系统。
当输入无人机的偏航角速率指令不为零时,由云台控制系统执行步骤S202-S206:
S202:获取云台的实际偏航角速率。
在本发明的一实施例中,云台的实际偏航角速率可以由云台的IMU测量得到,其中,云台的IMU一般安装于云台,并与云台控制系统通信连接。也可以由云台反馈的输出状态信息得到,其中,云台的输出状态信息包括云台的实际姿态角及其角速率,即,云台的实际俯仰角、实际俯仰角速率、实际滚转角、实际滚转角速率、实际偏航角及实际偏航角速率。
S203、根据输入无人机的偏航角速率指令和云台的实际偏航角速率,生成云台的偏航轴电机控制指令。
S204、获取云台的偏航轴电机附加控制指令。
在本发明的一实施例中,云台的偏航轴电机附加控制指令是指云台的实际偏航角与无人机的实际偏航角之间的差值,该指令可保证云台搭载的影像设备的视线与无人机的航向或视线保持一致。其中,云台的实际偏航角可以由云台的IMU测量得到,或由云台反馈的输出状态信息得到。无人机的实际偏航角则可由无人机的IMU测量得到,或者由无人机反馈的输出状态信息得到。无人机的输出状态信息包括无人机的实际姿态角及其角速率,即,无人机的实际俯仰 角、实际俯仰角速率、实际滚转角、实际滚转角速率、实际偏航角及实际偏航角速率。
S205、根据云台的偏航轴电机控制指令和云台的偏航轴电机附加控制指令,生成云台的偏航轴电机控制量。
S206、根据云台的偏航轴电机控制量,控制云台的偏航轴电机。
当输入无人机的偏航角速率指令为零时,执行步骤S207-S211:
S207、获取无人机的实际偏航角和云台的实际偏航角。
同样的,无人机的实际偏航角可以由无人机的IMU测量得到或无人机反馈的输出状态信息得到,云台的实际偏航角可由云台的IMU测量得到或云台反馈的输出状态信息得到。
S208、根据无人机的实际偏航角和云台的实际偏航角,生成云台的偏航角速率控制指令。
S209、获取云台的实际偏航角速率。
S210、根据云台的偏航角速率控制指令和云台的实际偏航角速率,生成云台的偏航轴电机控制量。
S211、根据云台的偏航轴电机控制量,控制云台的偏航轴电机。
在本发明的一实施例中,该方法还包括:
S300、云台控制系统根据输入云台的俯拍角度指令和云台的输出状态信息,控制云台的俯仰轴电机和滚转轴电机,其中,所述云台的所述输出状态信息包括所述云台的实际姿态角和实际姿态角速率。
在本发明的一实施例中,云台的实际姿态角包括实际俯仰角、实际滚转角和实际偏航角。云台的实际姿态角速率包括实际俯仰角速率、实际滚转角速率和实际偏航角速率。
在本发明的一实施例中,输入云台的俯拍角度指令可以由遥控器或智能终端发出,其中,遥控器用于控制无人机,与无人机通信连接。智能终端包括手机、平板电脑等,智能终端上通常安装有用于控制无人机的app。
如图8所示,云台控制系统根据输入云台的俯拍角度指令和云台的输出状 态信息,控制云台的俯仰轴电机包括:
S301、根据云台的俯拍角度指令、云台的实际俯仰角和实际俯仰角速率,生成云台的俯仰轴电机控制量。
S302、根据上述云台的俯仰轴电机控制量,控制云台的俯仰轴电机。
类似的,云台控制系统对云台的滚转轴电机的控制包括:
S303、根据输入云台的俯拍角度指令、云台的实际滚转角和实际滚转角速率,生成云台的滚转轴电机控制量。
S304、根据上述云台的滚转轴电机控制量,控制云台的滚转轴电机。
在本发明的一实施例中,该方法还包括:
S400、飞控系统根据云台的输出状态信息,控制无人机的姿态。
其中,所述无人机的姿态包括无人机的姿态角和无人机的姿态角速率。
如图10所示,步骤S400进一步包括:
S401、根据云台的实际姿态角,生成无人机的姿态角限幅。
在本发明的一实施例中,云台的实际姿态角主要包括云台的实际俯仰角和实际滚转角,在其他可能的实施例中,还可以进一步包括云台的实际偏航角。云台的实际姿态角均可以通过云台反馈的输出信息得到。对应的,无人机的姿态角限幅主要包括无人机的俯仰角限幅和滚转角限幅,还可以进一步包括无人机的偏航角限幅。
S402、获取无人机的实际姿态角和输入无人机的姿态角指令。
在本发明的一实施例中,无人机的实际姿态角可以通过无人机反馈的输出状态信息(包括实际姿态角和实际姿态角速率)得到,也可以通过无人机的IMU测量得到。无人机的姿态角指令主要包括输入无人机的俯仰角指令和滚转角指令。其中,输入无人机的俯仰角指令和滚转角指令可以由飞控系统根据输入无人机的位置指令、速度指令、视线指令和视线变化率指令中的至少一种生成。
S403、根据无人机的姿态角限幅、输入无人机的姿态角指令、以及无人机的实际姿态角,生成无人机的姿态角速率控制指令。
其中,无人机的姿态角控制指令主要包括无人机的俯仰角速率控制指令和 滚转角速率控制指令。
S404、根据云台的实际姿态角速率,生成无人机的姿态角速率限幅。
云台的实际姿态角速率包括云台的实际俯仰角速率、实际滚转角速率即实际偏航角速率。因此,无人机的姿态角速率限幅包括无人机的俯仰角速率限幅、滚转角速率限幅及偏航角速率限幅。
S405、获取无人机的实际姿态角速率和输入无人机的偏航角速率指令。
输入无人机的偏航角速率指令可以通过步骤S100的方式获取。
S406、根据无人机的姿态角速率控制指令、无人机的姿态角速率限幅、输入无人机的偏航角速率指令以及无人机的实际姿态角速率,生成无人机的电机控制指令。
S407、根据上述无人机的电机控制指令,控制无人机的姿态。
本发明一种云台控制方法的详细描述可参考对无人机实施例的详细描述。
本发明的云台控制方法,采用云台控制系统与飞控系统联合控制,最大限度发挥了云台控制系统高精度控制和快速响应的优点,利用该优点来补偿飞控系统在偏航控制上的不足,实现了对云台偏航通道的增稳,彻底解决了当无人机低速偏航时,航拍视频的卡顿现象。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权 利要求为准。

Claims (24)

  1. 一种无人机云台控制方法,所述无人机包括飞控系统和用于控制所述云台的云台控制系统,其特征在于,包括:
    所述飞控系统生成所述无人机的偏航角速率指令;
    所述云台控制系统根据所述无人机的偏航角速率指令,控制所述云台的偏航轴电机。
  2. 根据权利要求1所述的云台控制方法,其特征在于,所述云台控制系统根据所述无人机的所述偏航角速率指令,控制所述云台的所述偏航轴电机,包括:
    判断输入所述无人机的偏航角速率指令是否为零;
    若否,则:
    所述云台控制系统获取所述云台的实际偏航角速率;
    所述云台控制系统根据输入所述无人机的所述偏航角速率指令和所述云台的所述实际偏航角速率,生成所述云台的偏航轴电机控制指令;
    所述云台控制系统获取所述云台的偏航轴电机附加控制指令偏航轴电机附加控制指令,其中,所述偏航轴电机附加控制指令用于控制所述云台的偏航轴电机以使得所述云台搭载的影像设备的视线与所述无人机的航向重合;
    所述云台控制系统根据所述云台的所述偏航轴电机控制指令和所述云台的所述偏航轴电机附加控制指令,生成所述云台的偏航轴电机控制量;
    根据所述云台的所述偏航轴电机控制量,控制所述云台的偏航轴电机。
  3. 根据权利要求2所述的方法,其特征在于,所述云台控制系统获取所述云台的所述偏航轴电机附加控制指令,包括:
    所述云台控制系统获取所述云台的实际偏航角和所述无人机的实际偏航角;
    所述云台控制系统根据所述云台的所述实际偏航角和所述无人机的所述实际偏航角,生成所述云台的所述偏航轴电机附加控制指令。
  4. 根据权利要求2或3所述的方法,其特征在于,该方法还包括:
    若输入所述无人机的所述偏航角速率指令为零,则:
    所述云台控制系统获取所述无人机的实际偏航角和所述云台的实际偏航角;
    所述云台控制系统根据所述无人机的所述实际偏航角和所述云台的所述实际偏航角,生成所述云台的偏航角速率控制指令;
    所述云台控制系统获取所述云台的实际偏航角速率;
    所述云台控制系统根据所述云台的所述偏航角速率控制指令和所述云台的所述实际偏航角速率,生成所述云台的偏航轴电机控制量;
    所述云台控制系统根据所述云台的所述偏航轴电机控制量,控制所述云台的偏航轴电机。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述飞控系统生成所述无人机的所述偏航角速率指令,包括:
    所述飞控系统获取输入所述无人机的位置指令和视线指令中的至少一种;
    所述飞控系统根据输入所述无人机的所述位置指令和所述视线指令中的至少一种,生成所述无人机的所述偏航角速率指令。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述飞控系统生成所述无人机的所述偏航角速率指令,包括:
    所述飞控系统获取输入所述无人机的速度指令和视线变化率指令中的至少一种;
    所述飞控系统根据输入所述无人机的所述速度指令和所述视线变化率指令中的至少一种,生成所述无人机的所述偏航角速率指令。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,该方法还包括:
    所述云台控制系统根据输入所述云台的俯拍角度指令和所述云台的输出状态信息,控制所述云台的俯仰轴电机和滚转轴电机,其中,所述云台的所述输出状态信息包括所述云台的实际姿态角及所述实际姿态角速率。
  8. 根据权利要求7所述的方法,其特征在于,所述云台的所述实际姿态角包括所述云台的实际俯仰角,所述云台的所述实际姿态角速率包括所述云台的实际俯仰角速率;
    所述云台控制系统根据输入所述云台的俯拍角度指令和所述云台的输出状态信息,控制所述云台的俯仰轴电机和滚转轴电机,包括:
    所述云台控制系统根据所述云台的所述俯拍角度指令、所述云台的所述实际俯仰角和所述实际俯仰角速率,生成所述云台的俯仰轴电机控制量;
    根据所述云台的所述俯仰轴电机控制量,控制所述云台的俯仰轴电机。
  9. 根据权利要求8所述的方法,其特征在于,所述云台的所述实际姿态角还包括所述云台的实际滚转角,所述云台的所述实际姿态角速率还包括所述云台的实际滚转角速率;
    所述云台控制系统根据输入所述云台的俯拍角度指令和所述云台的输出状 态信息,控制所述云台的俯仰轴电机和滚转轴电机,包括:
    所述云台控制系统根据所述云台的所述俯拍角度指令、所述云台的所述实际滚转角和所述实际滚转角速率,生成所述云台的滚转轴电机控制量;
    所述云台控制系统根据所述云台的所述滚转轴电机控制量,控制所述云台的滚转轴电机。
  10. 根据权利要求7-9中任一项所述的方法,其特征在于,所述云台控制系统获取所述云台的所述俯拍角度指令,包括:
    所述云台控制系统获取由遥控器或智能终端发出的所述云台的所述俯拍角度指令。
  11. 根据权利要求7-10中任一项所述的方法,其特征在于,该方法还包括:
    所述飞控系统根据所述云台的所述输出状态信息,控制所述无人机的姿态。
  12. 根据权利要求11所述的方法,其特征在于,所述飞控系统根据所述云台的所述输出状态信息,控制所述无人机的姿态,包括:
    所述飞控系统根据所述云台的所述实际姿态角,生成所述无人机的姿态角限幅;
    所述飞控系统获取所述无人机的实际姿态角和输入所述无人机的姿态角指令;
    所述飞控系统根据所述无人机的所述姿态角限幅、输入所述无人机的所述姿态角指令以及所述无人机的所述实际姿态角,生成所述无人机的姿态角速率控制指令;
    所述飞控系统根据所述云台的所述实际姿态角速率,生成所述无人机的姿态角速率限幅;
    所述飞控系统获取所述无人机的实际姿态角速率和输入所述无人机的所述偏航角速率指令;
    所述飞控系统根据所述无人机的所述姿态角速率控制指令、所述无人机的所述姿态角速率限幅、输入所述无人机的所述偏航角速率指令以及所述无人机的所述实际姿态角速率,生成所述无人机的电机控制指令;
    所述飞控系统根据所述无人机的所述电机控制指令,控制所述无人机的姿态。
  13. 一种无人机,其特征在于,包括:
    机身;
    机臂,与所述机身相连;
    动力装置,设于所述机臂;
    云台,与所述机身相连;
    飞控系统,设于所述机身;以及
    云台控制系统,设于所述云台或机身,且用于控制所述云台;
    所述飞控系统用于生成所述无人机的偏航角速率指令;
    所述云台控制系统用于:
    根据所述飞控系统生成的所述无人机的所述偏航角速率指令,控制所述云台的偏航轴电机。
  14. 根据权利要求13所述的无人机,其特征在于,所述云台控制系统具体用于:
    判断所述无人机的偏航角速率是否为零;
    当所述无人机的所述偏航角速率指令不为零,则:
    获取所述云台的实际偏航角速率;
    根据输入所述无人机的所述偏航角速率指令和所述云台的实际偏航角速率,生成所述云台的偏航轴电机控制指令;
    获取所述云台的偏航轴电机附加控制指令,其中,所述偏航轴电机附加控制指令用于控制所述云台的偏航轴电机以使得所述云台搭载的影像设备的视线与所述无人机的航向重合;
    根据所述云台的所述偏航轴电机控制指令和所述云台的所述偏航轴电机附加控制指令,生成所述云台的偏航轴电机控制量;以及
    根据所述云台的所述偏航轴电机控制量,控制所述云台的偏航轴电机。
  15. 根据权利要求14所述的无人机,其特征在于,所述云台控制系统具体用于:
    获取所述云台的实际偏航角和所述无人机的实际偏航角;
    根据所述云台的所述实际偏航角和所述无人机的所述实际偏航角,生成所述云台的所述偏航轴电机附加控制指令。
  16. 根据权利要求14或15所述的无人机,其特征在于,当输入所述无人机的偏航角速率指令为零,则所述云台控制系统还用于:
    获取所述无人机的实际偏航角和所述云台的实际偏航角;
    根据所述无人机的所述实际偏航角和所述云台的所述实际偏航角,生成所述云台的偏航角速率控制指令;
    获取所述云台的实际偏航角速率;
    根据所述云台的所述偏航角速率控制指令和所述云台的所述实际偏航角速率,生成所述云台的偏航轴电机控制量;
    根据所述云台的所述偏航轴电机控制量,控制所述云台的偏航轴电机。
  17. 根据权利要求13-16中任一项所述的无人机,其特征在于,所述飞控系统具体用于:
    获取所述无人机的位置指令和视线指令中的至少一种;以及
    根据所述无人机的所述位置指令和所述视线指令中的至少一种,生成所述无人机的所述偏航角速率指令。
  18. 根据权利要求13-17中任一项所述的无人机,其特征在于,所述飞控系统具体用于:
    获取所述无人机的速度指令和视线变化率指令中的至少一种;
    根据所述无人机的所述速度指令和所述视线变化率指令中的至少一种,生成所述无人机的所述偏航角速率指令。
  19. 根据权利要求13-18中任一项所述的无人机,其特征在于,所述云台控制系统还用于:
    根据输入所述云台的俯拍角度指令和所述云台的输出状态信息,控制所述云台的俯仰轴电机和滚转轴电机,其中,所述云台的所述输出状态信息包括所述云台的实际姿态角及所述实际姿态角速率。
  20. 根据权利要求19所述的无人机,其特征在于,所述云台控制系统具体用于:
    根据所述云台的所述俯拍角度指令、所述云台的所述实际俯仰角和所述实际俯仰角速率,生成所述云台的俯仰轴电机控制量;
    根据所述云台的所述俯仰轴电机控制量,控制所述云台的俯仰轴电机。
  21. 根据权利要求20所述的无人机,其特征在于,所述云台控制系统还用于:
    根据所述云台的所述俯拍角度指令、所述云台的所述实际滚转角和所述实际滚转角速率,生成所述云台的滚转轴电机控制量;
    根据所述云台的所述滚转轴电机控制量,控制所述云台的滚转轴电机。
  22. 根据权利要求19-21中任一项所述的无人机,其特征在于,所述云台控制系统具体用于获取由遥控器或智能终端发出的所述云台的所述俯拍角度指令。
  23. 根据权利要求19-22中任一项所述的无人机,其特征在于,所述飞控系统还用于:
    根据所述云台的所述输出状态信息,控制所述无人机的姿态。
  24. 根据权利要求23所述的无人机,其特征在于,所述飞控系统具体用于:
    根据所述云台的所述实际姿态角,生成所述无人机的姿态角限幅;
    获取所述无人机的实际姿态角和输入所述无人机的姿态角指令;
    根据所述无人机的所述姿态角限幅、输入所述无人机的所述姿态角指令以及所述无人机的所述实际姿态角,生成所述无人机的姿态角速率控制指令;
    根据所述云台的所述实际姿态角速率,生成所述无人机的姿态角速率限幅;
    获取所述无人机的实际姿态角速率和输入所述无人机的偏航角速率指令;
    根据所述无人机的所述姿态角速率控制指令、所述无人机的所述姿态角速率限幅、输入所述无人机的所述偏航角速率指令以及所述无人机的所述实际姿态角速率,生成所述无人机的电机控制指令;
    根据所述无人机的所述电机控制指令,控制所述无人机姿态。
PCT/CN2018/113018 2018-10-31 2018-10-31 无人机及其云台控制方法 WO2020087349A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/113018 WO2020087349A1 (zh) 2018-10-31 2018-10-31 无人机及其云台控制方法
CN201880055555.2A CN111433702B (zh) 2018-10-31 2018-10-31 无人机及其云台控制方法
CN202210261698.7A CN114578841A (zh) 2018-10-31 2018-10-31 无人机及其云台控制方法
US17/244,137 US11958604B2 (en) 2018-10-31 2021-04-29 Unmanned aerial vehicle and method for controlling gimbal thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113018 WO2020087349A1 (zh) 2018-10-31 2018-10-31 无人机及其云台控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/244,137 Continuation US11958604B2 (en) 2018-10-31 2021-04-29 Unmanned aerial vehicle and method for controlling gimbal thereof

Publications (1)

Publication Number Publication Date
WO2020087349A1 true WO2020087349A1 (zh) 2020-05-07

Family

ID=70462090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113018 WO2020087349A1 (zh) 2018-10-31 2018-10-31 无人机及其云台控制方法

Country Status (3)

Country Link
US (1) US11958604B2 (zh)
CN (2) CN111433702B (zh)
WO (1) WO2020087349A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117234070A (zh) * 2023-11-13 2023-12-15 西安现代控制技术研究所 一种基于角度控制指令的btt分配方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669013B2 (en) * 2018-02-13 2020-06-02 The Boeing Company Split gimbal
CN116723981A (zh) * 2021-03-19 2023-09-08 深圳市大疆创新科技有限公司 无人机的云台控制方法、无人机及存储介质
CN113282095B (zh) * 2021-04-08 2022-11-22 南京航空航天大学苏州研究院 一种复合翼无人机起降阶段航向控制方法
CN114779826B (zh) * 2022-06-20 2022-09-16 中国人民解放军国防科技大学 一种适用于非零滚转角的轴对称飞行器侧向控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106791354A (zh) * 2015-11-20 2017-05-31 广州亿航智能技术有限公司 控制无人机云台转动的智能显示设备及其控制系统
CN106828958A (zh) * 2017-02-22 2017-06-13 青岛微翌创新航空科技有限公司 无人机vr拍摄系统
CN106878613A (zh) * 2017-01-13 2017-06-20 重庆零度智控智能科技有限公司 数据通信装置、方法及无人机
CN106873641A (zh) * 2017-03-20 2017-06-20 普宙飞行器科技(深圳)有限公司 三轴微型云台及其控制方法
CN206394875U (zh) * 2016-11-16 2017-08-11 三峡大学 工程结构表面缺陷无人巡检仪
US20180155024A1 (en) * 2016-12-01 2018-06-07 Samsung Electronics Co., Ltd. Unmanned aerial vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103878613A (zh) * 2014-04-03 2014-06-25 湖北三江航天红阳机电有限公司 一种大尺寸薄板类零件的快速夹紧机构
EP3335204B1 (en) * 2015-05-18 2020-01-15 Booz Allen Hamilton Inc. Portable aerial reconnaissance targeting intelligence device
EP3722902B1 (en) * 2015-07-10 2021-09-15 SZ DJI Technology Co., Ltd. Systems and methods for gimbal simulation
CN107074348B (zh) * 2016-12-30 2021-06-15 深圳市大疆创新科技有限公司 控制方法、装置、设备及无人飞行器
CN106959110B (zh) * 2017-04-06 2020-08-11 亿航智能设备(广州)有限公司 一种云台姿态检测方法及装置
CN108549399B (zh) * 2018-05-23 2020-08-21 深圳市道通智能航空技术有限公司 飞行器偏航角修正方法、装置及飞行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106791354A (zh) * 2015-11-20 2017-05-31 广州亿航智能技术有限公司 控制无人机云台转动的智能显示设备及其控制系统
CN206394875U (zh) * 2016-11-16 2017-08-11 三峡大学 工程结构表面缺陷无人巡检仪
US20180155024A1 (en) * 2016-12-01 2018-06-07 Samsung Electronics Co., Ltd. Unmanned aerial vehicle
CN106878613A (zh) * 2017-01-13 2017-06-20 重庆零度智控智能科技有限公司 数据通信装置、方法及无人机
CN106828958A (zh) * 2017-02-22 2017-06-13 青岛微翌创新航空科技有限公司 无人机vr拍摄系统
CN106873641A (zh) * 2017-03-20 2017-06-20 普宙飞行器科技(深圳)有限公司 三轴微型云台及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117234070A (zh) * 2023-11-13 2023-12-15 西安现代控制技术研究所 一种基于角度控制指令的btt分配方法
CN117234070B (zh) * 2023-11-13 2024-03-19 西安现代控制技术研究所 一种基于角度控制指令的btt分配方法

Also Published As

Publication number Publication date
CN111433702B (zh) 2022-04-15
US11958604B2 (en) 2024-04-16
US20210245879A1 (en) 2021-08-12
CN114578841A (zh) 2022-06-03
CN111433702A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2020087349A1 (zh) 无人机及其云台控制方法
US20220137643A1 (en) Aircraft control method and aircraft
US9938005B2 (en) Thrust vectoring on a rotor-based remote vehicle
US10447912B2 (en) Systems, methods, and devices for setting camera parameters
US11156905B2 (en) Control method for gimbal, controller, and gimbal
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
WO2018107419A1 (zh) 控制方法、装置、设备及可移动平台
US20200319642A1 (en) Gimbal control method and device, gimbal, and unmanned aerial vehicle
WO2021027638A1 (zh) 一种偏航角的融合方法、装置及飞行器
WO2018040006A1 (zh) 控制方法、装置和系统、飞行器、载体及操纵装置
WO2013158050A1 (en) Stabilization control system for flying or stationary platforms
CN203845021U (zh) 飞行器全景航拍装置系统
WO2021052334A1 (zh) 一种无人飞行器的返航方法、装置及无人飞行器
WO2020019331A1 (zh) 气压计的高度测量补偿方法以及无人机
CN110377058B (zh) 一种飞行器的偏航角修正方法、装置及飞行器
WO2018059295A1 (zh) 多旋翼飞行器的控制方法、装置和系统
WO2021259253A1 (zh) 一种轨迹跟踪方法及无人机
WO2018011402A1 (en) Unmanned aerial or submarine vehicle
US20210165388A1 (en) Gimbal rotation control method and apparatus, control device, and movable platform
WO2020154942A1 (zh) 无人机的控制方法和无人机
US20220244744A1 (en) Geometric control envelope system and method for limiting commands to actuator mapping function
CN110291013B (zh) 云台的控制方法、云台及无人飞行器
WO2020051757A1 (zh) 风速计算方法、装置、无人机和无人机组件
WO2021237500A1 (zh) 飞行控制方法和设备
WO2019178827A1 (zh) 无人机的通信控制方法、系统和无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938712

Country of ref document: EP

Kind code of ref document: A1