WO2018105907A1 - 내열성과 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품 - Google Patents

내열성과 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품 Download PDF

Info

Publication number
WO2018105907A1
WO2018105907A1 PCT/KR2017/012713 KR2017012713W WO2018105907A1 WO 2018105907 A1 WO2018105907 A1 WO 2018105907A1 KR 2017012713 W KR2017012713 W KR 2017012713W WO 2018105907 A1 WO2018105907 A1 WO 2018105907A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
formula
group
polycarbonate
compound
Prior art date
Application number
PCT/KR2017/012713
Other languages
English (en)
French (fr)
Inventor
정승필
박정업
최진식
허성현
신경무
Original Assignee
주식회사 삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양사 filed Critical 주식회사 삼양사
Priority to US16/467,891 priority Critical patent/US10934431B2/en
Priority to EP17878940.0A priority patent/EP3553131A4/en
Priority to CN201780076231.2A priority patent/CN110062792B/zh
Priority to JP2019530667A priority patent/JP6860671B2/ja
Publication of WO2018105907A1 publication Critical patent/WO2018105907A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6854Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6856Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • C08L69/005Polyester-carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/186Block or graft polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
    • C08G77/448Block-or graft-polymers containing polysiloxane sequences containing polyester sequences containing polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a polycarbonate resin composition excellent in heat resistance and fluidity, and a molded article comprising the same, and more particularly, by including a polycarbonate copolymer together with a compound and a specific resin of a specific structure, a conventional high heat-resistant polycarbonate resin
  • the present invention relates to a polycarbonate resin composition and a molded article comprising the same, which exhibit remarkably excellent heat resistance and excellent balance of physical properties such as fluidity.
  • Polycarbonate resins are widely used as electrical components, mechanical components and industrial resins because of their excellent heat resistance, mechanical properties (particularly impact strength) and transparency.
  • polycarbonate resin is used as a case material of a TV housing, a computer monitor housing, a copier, a printer, a notebook battery, a lithium battery, etc., which generate a lot of heat in the electric and electronic fields, not only mechanical properties but also excellent heat resistance are required.
  • the present invention is to solve the problems of the prior art as described above, to provide a polycarbonate resin composition and a molded article comprising the same, which is significantly improved in heat resistance compared to the conventional high heat-resistant polycarbonate resin, and also excellent balance of physical properties such as fluidity It is a technical problem.
  • the present invention to solve the above technical problem, (1) a polyester compound having a structure of formula (1) or a phenyl-arylene ether sulfone compound having a structure of formula (2); (2) polycarbonate block copolymers; And (3) a thermoplastic aromatic polycarbonate resin or a polysiloxane-polycarbonate resin.
  • R 1 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms;
  • X represents an oxygen atom or NR 2 , wherein R 2 represents a hydrogen atom; An alkyl group having 1 to 4 carbon atoms; A cycloalkyl group having 3 to 10 carbon atoms unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms; Or an aryl group having 6 to 10 carbon atoms unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms;
  • y is an integer from 2 to 50.
  • R 4 and R 5 are each independently a hydrocarbon group having 1 to 10 carbon atoms
  • n are each independently an integer from 0 to 4.
  • y is an integer from 2 to 150;
  • X represents an oxygen atom or NR 2 , wherein R 2 represents a hydrogen atom; An alkyl group having 1 to 4 carbon atoms; A cycloalkyl group having 3 to 10 carbon atoms unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms; Or an aryl group having 6 to 10 carbon atoms unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • a molded article comprising the polycarbonate resin composition according to the present invention.
  • the polycarbonate resin composition according to the present invention is excellent in heat resistance and at the same time excellent in the balance of physical properties such as impact resistance, transparency and fluidity is useful for products requiring heat resistance such as housings of office equipment and electrical and electronic products, automotive interior and exterior parts, etc. It can be used to make a molded article, especially because of the high flowability can be produced a molded article excellent in moldability.
  • the polycarbonate resin composition of the present invention is (1) a polyester compound having a structure of formula (1) or a phenyl-arylene ether sulfone compound having a structure of formula (2); (2) polycarbonate block copolymers; And (3) thermoplastic aromatic polycarbonate resins or polysiloxane-polycarbonate resins.
  • (1) 10 parts by weight to 80 parts by weight of a polyester compound having a structure of Formula 1 or a phenyl-arylene ether sulfone compound having a structure of Formula 2 is preferable. It may be included in an amount of 20 to 70 parts by weight, more preferably 30 to 60 parts by weight.
  • the content of the polyester compound or the phenyl-arylene ether sulfone compound is less than 10 parts by weight, the heat resistance may be lowered, and if it is more than 80 parts by weight, the impact strength may be lowered.
  • the polycarbonate block copolymer is 5 to 60 parts by weight, preferably 10 to 50 parts by weight, more preferably 10 to 40 parts by weight. It may be included in the amount of parts.
  • the content of the polycarbonate block copolymer is less than 5 parts by weight, the heat resistance may be lowered, and if it is more than 60 parts by weight, the impact strength may be lowered.
  • thermoplastic aromatic polycarbonate resin or a polysiloxane-polycarbonate resin within 100 parts by weight of the polycarbonate resin composition of the present invention, (3) 10 parts by weight to 60 parts by weight, preferably 15 parts by weight to 50 parts by weight, and more preferably, a thermoplastic aromatic polycarbonate resin or a polysiloxane-polycarbonate resin. It may be included in an amount of 20 parts by weight to 40 parts by weight. If the content of the thermoplastic aromatic polycarbonate resin or polysiloxane-polycarbonate resin is less than 10 parts by weight, the impact strength may be lowered, and if it is more than 60 parts by weight, heat resistance may be reduced.
  • the polycarbonate resin composition of the present invention may include a polyester compound having a structure of Formula 1 below.
  • R 1 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms;
  • X represents an oxygen atom or NR 2 , wherein R 2 represents a hydrogen atom; Alkyl groups of 1 to 4 carbon atoms (which may be for example methyl, ethyl, propyl or butyl); A cycloalkyl group having 3 to 10 carbon atoms unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms (e.g., cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane , Chlorocyclohexane, methylcyclopentane, 1-bromo-2-methyl-cyclopentane or 1-chloro-1-ethyl-cyclohexane); Or an aryl group having 6 to 10 carbon atoms (eg, may be phenyl, benzyl, tolyl or
  • y is an integer from 2 to 50.
  • a polyester compound having a structure of Formula 1 may be prepared by condensation reaction of a compound represented by Formula 1-1 with a compound represented by Formula 1-2 below.
  • R 1 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms;
  • X represents an oxygen atom or NR 2 , wherein R 2 represents a hydrogen atom; Alkyl groups of 1 to 4 carbon atoms (which may be for example methyl, ethyl, propyl or butyl); A cycloalkyl group having 3 to 10 carbon atoms unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms (e.g., cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane , Chlorocyclohexane, methylcyclopentane, 1-bromo-2-methyl-cyclopentane or 1-chloro-1-ethyl-cyclohexane); Or an aryl group having 6 to 10 carbon atoms (eg, may be phenyl, benzyl, tolyl or
  • Each Y independently represents a hydroxy group or a halogen atom (eg Cl, F or Br); R 3 represents a benzene ring.
  • the polyester compound having the structure of Formula 1 may have a number average molecular weight (Mn) of 500 to 30,000 g / mol measured by gel permeation chromatography (GPC), but is not limited thereto.
  • Mn number average molecular weight
  • the polycarbonate resin composition of the present invention may include a phenyl-arylene ether sulfone compound having a structure represented by the following formula (2).
  • R 4 and R 5 are each independently a hydrocarbon group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms (for example, may be methyl, ethyl, propyl or butyl), an alkoxy group having 1 to 10 carbon atoms (For example, it may be methoxy, ethoxy, propoxy or butoxy) and an aryl group having 6 to 10 carbon atoms (for example, it may be phenyl, benzyl, tolyl or chlorophenyl) FORM; m and n are each independently an integer of 0 to 4, preferably 0 or 1; y is an integer of 2 to 150, Preferably it is an integer of 10-100, More preferably, it is an integer of 15-100.
  • X represents an oxygen atom or NR 2 , wherein R 2 represents a hydrogen atom; Alkyl groups of 1 to 4 carbon atoms (which may be for example methyl, ethyl, propyl or butyl); A cycloalkyl group having 3 to 10 carbon atoms unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms (e.g., cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane , Chlorocyclohexane, methylcyclopentane, 1-bromo-2-methyl-cyclopentane or 1-chloro-1-ethyl-cyclohexane); Or an aryl group having 6 to 10 carbon atoms (eg, may be phenyl, benzyl, tolyl or
  • the phenyl-arylene ether sulfone compound having the structure of Chemical Formula 2 may be a polymer prepared by polycondensation reaction of the compound represented by Chemical Formula 2-1 and the compound represented by Chemical Formula 2-2 in the presence of an alkali metal or an alkali metal salt. Can be.
  • the polycondensation reactions can be carried out in a solvent commonly used, for example N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • X represents an oxygen atom or NR 2 , wherein R 2 represents a hydrogen atom; Alkyl groups of 1 to 4 carbon atoms (which may be for example methyl, ethyl, propyl or butyl); A cycloalkyl group having 3 to 10 carbon atoms which is unsubstituted or substituted with a substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms (e.g., cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane , Chlorocyclohexane, methylcyclopentane, 1-bromo-2-methyl-cyclopentane or 1-chloro-1-ethyl-cyclohexane); Or an aryl group having 6 to 10 carbon atoms (eg, may be phenyl, benzyl, toly
  • R 4 and R 5 are each independently a hydrocarbon group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms (for example, may be methyl, ethyl, propyl or butyl), an alkoxy group having 1 to 10 carbon atoms (For example, it may be methoxy, ethoxy, propoxy or butoxy) and an aryl group having 6 to 10 carbon atoms (for example, it may be phenyl, benzyl, tolyl or chlorophenyl) Clearly; Z is a halogen atom or a hydroxy group, wherein the halogen atom may preferably be Cl, F or Br; m and n are each independently an integer of 0 to 4, preferably 0 or 1.
  • the polycondensation reactions for preparing the phenyl-arylene ether sulfone compound having the structure of Chemical Formula 2 may be performed through a conventional polycondensation reaction, and are not particularly limited.
  • NMP N-methyl-2-pyrrolidone
  • dimethyl sulfoxide under an alkali metal or alkali metal salt (e.g. potassium carbonate) catalyst, at temperature conditions of 160 to 200 ° C and pressure conditions of atmospheric pressure.
  • alkali metal or alkali metal salt e.g. potassium carbonate
  • reaction solvents selected from the group consisting of chlorobenzene and tetra
  • a cosolvent selected from the group consisting of hydrofuran (THF), or a mixed solvent of the reaction solvent and the cosolvent.
  • the polycondensation reaction product is diluted with a dilution solvent (in this case, the same solvent as the dilution solvent can be used), and the alkali metal halide produced during the reaction from the diluted reaction product ( Generated from a salt of an alkali metal derived from an alkali metal salt catalyst and a halogen derived from a dihalogenodiaryl sulfone compound, for example KCl).
  • the alkali metal halide may be removed by passing the diluted reaction mixture through a celite filter or by using a decanter centrifuge using a specific gravity difference.
  • the reaction molar ratio of the compound of Formula 2-1 to the compound of Formula 2-2 may be 1: 0.7 to 1: 1, and preferably 1: 0.8 to 1: 0.9.
  • a phenyl-arylene ether sulfone compound having the structure of Chemical Formula 2 can be obtained in high yield.
  • the phenyl-arylene ether sulfone compound having the structure of Chemical Formula 2 may have a number average molecular weight (Mn) of 500 to 30,000 g / mol measured by gel permeation chromatography (GPC), but is not limited thereto.
  • the polycarbonate block included in the polycarbonate block copolymer described later as a repeating unit is a polyester compound having a structure represented by Formula 1 or a phenyl-arylene ether having a structure represented by Formula 2 It is introduced into a polycarbonate block copolymer by reacting a sulfone compound with a polycarbonate oligomer.
  • the method of preparing the polycarbonate oligomer may also be prepared by the phosgene method of mixing a dihydric phenol compound and phosgene together, but is not limited thereto.
  • the dihydric phenol compounds used for producing the polycarbonate oligomer may be, for example, compounds represented by the following formula (3).
  • L is a straight, branched or cyclic alkylene group having no functional group; Or a straight, branched or cyclic alkylene group comprising a functional group selected from the group consisting of sulfides, ethers, sulfoxides, sulfones, ketones, phenyls, isobutylphenyls and naphthyls, preferably L is from 1 to 10 carbon atoms May be a straight, branched or cyclic alkylene group;
  • R 6 and R 7 are each independently a halogen atom; Or a straight, branched or cyclic alkyl group;
  • n and n are each independently an integer of 0-4, Preferably it is 0 or 1.
  • the compound of Formula 3 may be, for example, bis (4-hydroxyphenyl) methane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) naphthylmethane, bis (4-hydroxy Phenyl)-(4-isobutylphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1-ethyl-1,1-bis (4-hydroxyphenyl) propane, 1-phenyl-1, 1-bis (4-hydroxyphenyl) ethane, 1-naphthyl-1,1-bis (4-hydroxyphenyl) ethane, 1,2-bis (4-hydroxyphenyl) ethane, 1,10-bis (4-hydroxyphenyl) decane, 2-methyl-1,1-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy Hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis
  • 2,2-bis (4-hydroxyphenyl) propane bisphenol A
  • Other difunctional phenols may refer to US Patents US 2,999,835, US 3,028,365, US 3,153,008, US 3,334,154, US 4,131,575, and the like. Can be used in combination.
  • the dihydric phenol compounds eg, bisphenol A
  • an organic solvent eg, dichloromethane
  • the molar ratio of the phosgene: divalent phenolic compound can be maintained in the range of about 1: 1 to 1.5: 1, preferably about 1: 1 to 1.2: 1,
  • the molecular weight of the oligomeric polycarbonate prepared may be 1,000 to 2,000.
  • the dihydric phenol compound eg, bisphenol A
  • an organic solvent eg, dichloromethane
  • the molar ratio of the phosgene: dihydric phenolic compound can be maintained in the range of about 1: 1 to 1.5: 1, preferably about 1: 1 to 1.2: 1.
  • the polycarbonate oligomer formation reaction may generally be carried out at a temperature in the range of about 15 to 60 ° C.
  • Alkali metal hydroxides may be introduced into the reaction mixture for pH adjustment of the reaction mixture.
  • the alkali metal hydroxide may be, for example, sodium hydroxide.
  • a monofunctional compound similar to the monomer used for preparing polycarbonate may be used.
  • Such monofunctional materials include, for example, p-isopropylphenol, p-tert-butylphenol (PTBP), p-cumylphenol, p-isooctylphenol, and p- Phenol-based derivatives or aliphatic alcohols such as isononylphenol.
  • PTBP p-tert-butylphenol
  • PTBP p-tert-butylphenol
  • a polymerization catalyst and / or a phase transfer catalyst may be used.
  • the polymerization catalyst may be, for example, triethylamine (TEA), and the phase transfer catalyst may be a compound of Formula 4 below.
  • R 8 independently represents an alkyl group having 1 to 10 carbon atoms; Q represents nitrogen or phosphorus; Z represents a halogen atom or -OR 9 .
  • R 9 may represent a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an aryl group having 6 to 18 carbon atoms.
  • the phase transfer catalyst is, for example, [CH 3 (CH 2 ) 3 ] 4 NZ, [CH 3 (CH 2 ) 3 ] 4 PZ, [CH 3 (CH 2 ) 5 ] 4 NZ, [CH 3 (CH 2) ) 6 ] 4 NZ, [CH 3 (CH 2 ) 4 ] 4 NZ, CH 3 [CH 3 (CH 2 ) 3 ] 3 NZ, CH 3 [CH 3 (CH 2 ) 2 ] 3 NZ.
  • Z may be Cl, Br or -OR 9 .
  • R 9 may be a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an aryl group having 6 to 18 carbon atoms.
  • the content of the phase transfer catalyst is preferably about 0.1 to 10% by weight of the reaction mixture. If the content of the phase transfer catalyst is less than 0.1% by weight, the reactivity may decrease, and if the content of the phase change catalyst exceeds 10% by weight, it may precipitate as a precipitate, and the transparency of the resulting copolymer may be reduced.
  • the organic phase dispersed in methylene chloride is alkali washed and then separated. Subsequently, the organic phase is washed with 0.1 N hydrochloric acid solution and then washed twice with distilled water.
  • the concentration of the organic phase dispersed in methylene chloride is constantly adjusted to granulate using a certain amount of secondary distilled water in the range of 40 to 80 °C. If the temperature of the secondary distilled water is less than 40 ° C, the granulation speed may be excessive, and the granulation time may be excessively exceeded. If it is more than 80 ° C, it is difficult to obtain a polycarbonate having a constant particle size. When the assembly is completed, it is preferable to dry for 5 hours to 10 hours at 100 to 110 ° C firstly and 5 to 10 hours at 110 to 120 ° C secondly.
  • the viscosity average molecular weight (Mv) of the prepared polycarbonate oligomer may preferably be 1,000 to 30,000, more preferably 1,000 to 15,000. If the viscosity average molecular weight is less than 1,000, mechanical properties may be significantly reduced, and if the viscosity average molecular weight exceeds 30,000, there may be a problem that the copolymerization reactivity is lowered.
  • the polycarbonate block copolymer included in the polycarbonate resin composition of the present invention may be a compound selected from a polyester compound having a structure of Formula 1 and a phenyl-arylene ether sulfone compound having a structure of Formula 2; And the aforementioned polycarbonate block as a repeating unit.
  • the polycarbonate block copolymer may be obtained by copolymerizing a compound selected from a polyester compound having a structure of Formula 1 and a phenyl-arylene ether sulfone compound having a structure of Formula 2 with the polycarbonate oligomer described above.
  • the polycarbonate block includes both linear polycarbonate blocks, branched polycarbonate blocks, and combinations thereof. According to one embodiment of the invention, linear polycarbonate blocks are predominant, but branched polycarbonate blocks are possible, and both may be used in combination.
  • the amount of the compound selected from the polyester compound having the structure of Formula 1 and the phenyl-arylene ether sulfone compound having the structure of Formula 2 contained in the polycarbonate block copolymer of the present invention is the polycarbonate block copolymer. Based on the total weight of the monomer compound constituting the 100% by weight, preferably from 0.5 to 50% by weight, more preferably from 5 to 50% by weight, most preferably from 10 to 50% by weight. When the relative content of the compound selected from the polyester compound having the structure of Formula 1 and the phenyl-arylene ether sulfone compound having the structure of Formula 2 in the polycarbonate block copolymer is less than this, heat resistance may be lowered. On the contrary, if more than this, physical properties such as transparency, fluidity, and impact strength may be lowered and manufacturing cost may increase.
  • Polycarbonate block copolymers used in the present invention when measured in methylene chloride solution, preferably has a viscosity average molecular weight (Mv) of 10,000 to 200,000, more preferably 10,000 to 150,000, even more preferably 15,000 to 70,000
  • Mv viscosity average molecular weight
  • the mechanical properties can be significantly reduced, if it exceeds 200,000 may cause problems in the processing of the resin due to the rise of the melt viscosity.
  • the polycarbonate block copolymer used in the present invention is, after preparing the polycarbonate oligomer as described above, the polycarbonate oligomer and the polyester compound having the structure of Formula 1 and the phenyl having the structure of Formula 2 It can be prepared by copolymerizing a compound selected from arylene ether sulfone compounds.
  • the polycarbonate block copolymer is a polycarbonate oligomer and a poly having a structure of formula (1)
  • the polycarbonate block copolymer may be prepared by copolymerizing an ester compound, and when the polycarbonate resin composition of the present invention includes a phenyl-arylene ether sulfone compound having the structure of formula (2) as the component (1), the polycarbonate block copolymer is polycarbonate It may be prepared by copolymerizing an oligomer and a phenyl-arylene ether sulfone compound having the structure of Chemical Formula 2.
  • a basic catalyst such as alkali metal hydroxide, alkyl ammonium salt, alkyl amine, or the like can be used.
  • the polycarbonate block copolymer of the present invention can be prepared by adding a compound selected from sulfone compounds and adding a molecular weight regulator and a polymerization catalyst step by step.
  • the molecular weight modifier and polymerization catalyst are as described above.
  • the polycarbonate block copolymer prepared above is alkali-washed and separated from the organic phase dispersed in methylene chloride, and then the organic phase is washed with 0.1 N hydrochloric acid solution, followed by distilled water. After repeated washing three times, and when the washing is complete, the concentration of the organic phase dispersed in methylene chloride is constantly adjusted to granulate with a certain amount of pure water in the range of 40 to 80 °C. If the temperature of the pure water is less than 40 °C assembling rate is slow can be very long, and if the temperature of the pure water exceeds 80 °C it may be difficult to obtain the shape of the polycarbonate block copolymer to a certain size. When the assembly is completed, it is preferable to dry for 5 hours to 10 hours at 100 to 110 ° C first, and 5 to 10 hours at 110 to 120 ° C secondly.
  • thermoplastic aromatic polycarbonate resin that may be included in the polycarbonate resin composition of the present invention may be prepared from a dihydric phenol, a carbonate precursor, and a molecular weight modifier.
  • the dihydric phenols may be, for example, a compound having a structure of the following Chemical Formula 5 as a monomer of the thermoplastic aromatic polycarbonate resin.
  • A is a straight, branched or cyclic alkylene group having no functional group; Or a straight, branched or cyclic alkylene group comprising a functional group selected from the group consisting of sulfides, ethers, sulfoxides, sulfones, ketones, naphthyl and isobutylphenyl, preferably A has 1 to 10 carbon atoms Linear or branched alkylene groups, or cyclic alkylene groups having 3 to 6 carbon atoms;
  • R 10 and R 11 each independently represent a hydrogen atom, a halogen atom, or an alkyl group (for example, a straight or branched alkyl group having 1 to 20 carbon atoms, or a cyclic alkyl group having 3 to 20 carbon atoms, preferably 3 to 6 carbon atoms). );
  • n and m are each independently an integer of 0 to 4, preferably 0 or 1.
  • Non-limiting examples of the dihydric phenols include bis (4-hydroxyphenyl) methane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) naphthylmethane, bis (4-hydroxy Phenyl)-(4-isobutylphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1-ethyl-1,1-bis (4-hydroxyphenyl) propane, 1-phenyl-1, 1-bis (4-hydroxyphenyl) ethane, 1-naphthyl-1,1-bis (4-hydroxyphenyl) ethane, 1,2-bis (4-hydroxyphenyl) ethane, 1,10-bis (4-hydroxyphenyl) decane, 2-methyl-1,1-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) and the like, Representative of these is bisphenol A.
  • the carbonate precursor is preferably a phosgene (carbonyl chloride) as the comonomer of the thermoplastic aromatic polycarbonate resin.
  • carbonate precursors include carbonyl bromide, bis halo formate, diphenyl carbonate or dimethyl carbonate and the like.
  • a monofunctional compound similar to a monomer known in the manufacture of a thermoplastic aromatic polycarbonate resin may be used.
  • derivatives based on phenols e.g., para-isopropylphenol, para-tert-butylphenol, para-cumylphenol, para-isoctylphenol, para-isononylphenol, etc.
  • various kinds of substances such as aliphatic alcohols may be used, and among them, para-tert-butylphenol (PTBP) is most preferably applied.
  • phenols e.g., para-isopropylphenol, para-tert-butylphenol, para-cumylphenol, para-isoctylphenol, para-isononylphenol, etc.
  • PTBP para-tert-butylphenol
  • thermoplastic aromatic polycarbonate resins prepared from such dihydric phenols, carbonate precursors, and molecular weight modifiers include linear polycarbonate resins, branched polycarbonate resins, copolycarbonate resins, polyestercarbonate resins, and the like. have.
  • the thermoplastic aromatic polycarbonate resin may have a viscosity average molecular weight (Mv) measured in a methylene chloride solution at 25 ° C. of 10,000 to 50,000, preferably 10,000 to 30,000. Good to do.
  • Mv viscosity average molecular weight
  • the viscosity average molecular weight is less than 10,000, mechanical properties such as impact strength and tensile strength may be greatly reduced.
  • the viscosity average molecular weight is greater than 50,000, a problem may occur in processing of the resin due to an increase in melt viscosity.
  • the viscosity average molecular weight is more preferably 20,000 or more in terms of excellent mechanical properties such as impact strength and tensile strength, and more preferably 30,000 or less in terms of processability.
  • the polysiloxane-polycarbonate resin that may be included in the polycarbonate resin composition of the present invention is not particularly limited as long as it includes siloxane and polycarbonate blocks as repeating units, but preferably, hydroxy-terminated siloxane of the following Chemical Formula 6 and The polycarbonate block may be included as a repeating unit.
  • Each R 12 independently represents a hydrogen atom, a halogen atom, a hydroxy group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
  • R 13 each independently represent a hydrocarbon group or a hydroxyl group having 1 to 13 carbon atoms
  • Each R 14 independently represents an alkylene group having 2 to 8 carbon atoms
  • n each independently represents an integer of 0 to 4,
  • n an integer of 2 to 1,000 independently.
  • Each R 12 is independently a hydrogen atom, a halogen atom (which may be eg Cl or Br), a hydroxy group, an alkyl group having 1 to 13 carbon atoms (eg may be methyl, ethyl or propyl), 1 to 13 carbon atoms
  • An alkoxy group (which may be for example methoxy, ethoxy or protoxy) or an aryl group having 6 to 10 carbon atoms (which may be for example phenyl, chlorophenyl or tolyl),
  • R 13 is each independently a hydroxy group, an alkyl group having 1 to 13 carbon atoms, an alkoxy group having 1 to 13 carbon atoms, an alkenyl group having 2 to 13 carbon atoms, an alkenyloxy group having 2 to 13 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and carbon atoms
  • a cycloalkoxy group of 3 to 6, an aryloxy group of 6 to 10 carbon atoms, an aralkyl group of 7 to 13 carbon atoms, an alkoxy group of 7 to 13 carbon atoms, an alkaryl group of 7 to 13 carbon atoms or an alkah of 7 to 13 carbon atoms Represents a ryloxy group,
  • Each R 14 independently represents an alkylene group having 2 to 8 carbon atoms
  • n each independently represents 0 or 1
  • n independently represents an integer of 2 to 500, preferably an integer of 5 to 100.
  • the hydroxy-terminated siloxane of the formula (6) for example, a compound of the formula (6-1) containing a hydroxy group and a carbon double bond and the following formula (6-2) containing silicon in a molar ratio of 2: 1 under a platinum catalyst Can be prepared by reaction.
  • R 12 and m are as defined in Formula 6,
  • k represents the integer of 1-7.
  • R 13 and n are as defined in the formula (6).
  • Dow Corning's siloxane monomer represented by the following Chemical Formula 6-3 may be used, but is not limited thereto.
  • n represents an integer of 2 to 1,000, preferably an integer of 2 to 500, more preferably an integer of 5 to 100.
  • R 15 is substituted with an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 13 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkenyl group having 2 to 13 carbon atoms, an alkoxy group having 1 to 13 carbon atoms, a halogen atom, or a nitro group Or an unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, wherein the aromatic hydrocarbon group may be derived from a compound represented by the following formula (8).
  • B is a straight, branched or cyclic alkylene group having no functional group; Or a straight, branched or cyclic alkylene group comprising a functional group selected from the group consisting of sulfides, ethers, sulfoxides, sulfones, ketones, naphthyl and isobutylphenyl, preferably B is straight Or branched alkylene group; Or a cyclic alkylene group having 3 to 6 carbon atoms,
  • R 16 each independently represents a hydrogen atom, a halogen atom, or an alkyl group (for example, a straight or branched alkyl group having 1 to 20 carbon atoms, or a cyclic alkyl group having 3 to 20 carbon atoms, preferably 3 to 6 carbon atoms) ,
  • n and n are each independently an integer of 0-4, Preferably it is 0 or 1.
  • the compound of Formula 8 may be, for example, bis (4-hydroxyphenyl) methane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) naphthylmethane, bis (4-hydroxyphenyl )-(4-isobutylphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1-ethyl-1,1-bis (4-hydroxyphenyl) propane, 1-phenyl-1,1 -Bis (4-hydroxyphenyl) ethane, 1-naphthyl-1,1-bis (4-hydroxyphenyl) ethane, 1,2-bis (4-hydroxyphenyl) ethane, 1,10-bis (4-hydroxyphenyl) decane, 2-methyl-1,1-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy Hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) pentane,
  • 2,2-bis (4-hydroxyphenyl) propane bisphenol A
  • Other functional dihydric phenols may refer to US Pat. Nos. 2,999,835, 3,028,365, 3,153,008, 3,334,154, and the like. The dihydric phenols may be used alone or in combination of two or more. Can be used.
  • the content ratio of hydroxy-terminated siloxane: polycarbonate block is preferably 50 to 99:50 to 1 with a middle ratio.
  • the relative content of the hydroxy-terminated siloxane moiety in the polysiloxane-polycarbonate resin is less than this, flame retardancy and low temperature impact strength may be lowered.
  • the relative content of the hydroxy-terminated siloxane moiety is higher, transparency, Physical properties such as fluidity, heat resistance, and impact resistance at room temperature may decrease, and manufacturing costs may increase.
  • the polysiloxane-polycarbonate resin as measured in methylene chloride solution, preferably has a viscosity average molecular weight (Mv) of 15,000 to 200,000, more preferably 15,000 to 70,000. If the viscosity average molecular weight of the polysiloxane-polycarbonate resin is less than 15,000, the mechanical properties can be significantly reduced, if the viscosity exceeds 200,000 may cause problems in the processing of the resin due to the rise of the melt viscosity.
  • Mv viscosity average molecular weight
  • the polysiloxane-polycarbonate resin may be a homopolymer, a copolymer, or a mixture thereof.
  • the polysiloxane-polycarbonate resin may be partially or entirely replaced with a copolycarbonate copolymerized with an aromatic polyester-carbonate resin or a silicone-based resin obtained by polymerization in the presence of an ester precursor such as a bifunctional carboxylic acid.
  • N-phenyl 3,3-bis- (4-hydroxyphenyl) phthalimidine (N-phenyl 3,3-bis (4-hydroxyphenyl) phthalimidine, PBHPP) (0.6 mol) of the formula 9-1 was distilled water 1,657. After dissolving in g, it was put into a 20L four-necked reactor, and then dissolved in 6,000 g of terephthaloyl chloride (0.5 mol) of methylene chloride (Methylene Chloride) of Formula 9-2, and then charged into the four-necked reactor. .
  • a condenser was mounted on a 20 L four-necked flask, and in a nitrogen atmosphere, N-phenyl 3,3-bis- (4-hydroxyphenyl) phthalimidine (N-phenyl 3,3-bis (4) -hydroxyphenyl) phthalimidine (PBHPP) (1.2 mol), 4,4'-dichlorodiphenyl sulfone (DCDPS) (1.0 mol) of formula 10-2, Potassium carbonate ( 1.1 mole), N-Methyl-2-pyrrolidone (NMP) (10.1 mole) and chlorobenzene (1.11 mole) were fed to the four neck flask.
  • NMP N-Methyl-2-pyrrolidone
  • NMP 10.1 mole
  • chlorobenzene (1.11 mole
  • the reaction mixture was rapidly heated to 170 ° C., which was a reaction temperature, and it was confirmed that chlorobenzene, which was added as a co-solvent, was azeotropically reacted with H 2 O as a reaction by-product over time. After reacting at a temperature of 192 ° C. for 2 hours, the final reaction mixture turned dark brown and visually confirmed the viscosity of the reaction mixture. After cooling the final reaction mixture at room temperature, hydrochloric acid was added to replace both ends of the final product with a hydroxy group and diluted in dilution solvent NMP prepared in advance. The diluted reaction mixture was filtered through a celite filter and then precipitated in methanol.
  • n value of the formula (10) was 10.
  • the polycarbonate block copolymer was prepared by first drying at 110 ° C. for 8 hours and secondly at 120 ° C. for 10 hours.
  • a linear polycarbonate having a viscosity average molecular weight of 20,000 was prepared by interfacial polymerization.
  • a linear polycarbonate having a viscosity average molecular weight of 50,000 was prepared by interfacial polymerization.
  • Branched polycarbonate having a viscosity average molecular weight of 26,000 was prepared using 0.009 mol of 1.1.1-tris (4-hydroxyphenyl) ethane (THPE) as the interfacial polymerization method.
  • THPE 1.1.1-tris (4-hydroxyphenyl) ethane
  • 4L of an oligomeric polycarbonate mixture having a viscosity average molecular weight of about 1,000 was prepared by interfacial reaction between bisphenol A in an aqueous solution and phosgene gas in the presence of methylene chloride.
  • PTBP p-tert-butylphenol
  • the prepared pellets were hot-air dried at a temperature of 90 to 100 ° C. for at least 4 hours, and then injection molded at a temperature of 280 to 300 ° C. to prepare specimens.
  • the physical properties of the prepared specimens were measured and evaluated, and the results are shown in Table 2 below.
  • Pellets and specimens were prepared in the same manner. The physical properties of the prepared specimens were measured and evaluated, and the results are shown in Table 2 below.
  • the physical properties of the prepared specimens were measured and evaluated, and the results are shown in Table 2 below.
  • Polycarbonate block copolymer prepared by the method of Preparation Example 14 using the phthalimide-based phenyl-arylene ether sulfone compound (number average molecular weight 6,000) obtained in Preparation Example 5, and the phthalimidine-based phenyl obtained in Preparation Example 7.
  • Pellets and specimens were prepared in the same manner as in Example 10. The physical properties of the prepared specimens were measured and evaluated, and the results are shown in Table 2 below.
  • Polycarbonate block copolymer prepared by the method of Preparation Example 14 using the phthalimide-based phenyl-arylene ether sulfone compound (number average molecular weight 6,000) obtained in Preparation Example 5, and the phthalimidine-based phenyl obtained in Preparation Example 7.
  • Pellets and specimens were prepared in the same manner as in Example 10. The physical properties of the prepared specimens were measured and evaluated, and the results are shown in Table 2 below.
  • the glass transition temperature was measured using a differential scanning calorimeter (DSC-7 & Robotic, Perkin-Elmer).
  • Examples 1 to 18 As shown in Table 2, in Examples 1 to 18 according to the present invention, a polyester compound of a specific structure or a phenyl-arylene ether sulfone compound of a specific structure; Polycarbonate block copolymers; And thermoplastic aromatic polycarbonate resins or polysiloxane-polycarbonate resins, which are excellent in heat resistance and excellent in physical properties such as fluidity.
  • the resin or the polycarbonate block copolymer alone it can be seen that the heat resistance is poor (Comparative Examples 1 to 3) or the fluidity is significantly reduced (Comparative Examples 4 to 6).

Abstract

본 발명은 내열성과 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품에 관한 것으로, 더욱 상세하게는, 특정 구조의 화합물 및 특정 수지와 함께 폴리카보네이트 공중합체를 포함함으로써, 종래의 고내열성 폴리카보네이트 수지와 대비하여 현저히 우수한 내열성을 나타내고, 유동성 등의 물성 밸런스 또한 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품에 관한 것이다.

Description

내열성과 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
본 발명은 내열성과 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품에 관한 것으로, 더욱 상세하게는, 특정 구조의 화합물 및 특정 수지와 함께 폴리카보네이트 공중합체를 포함함으로써, 종래의 고내열성 폴리카보네이트 수지와 대비하여 현저히 우수한 내열성을 나타내고, 유동성 등의 물성 밸런스 또한 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품에 관한 것이다.
폴리카보네이트 수지는 내열성, 기계적 물성(특히, 충격강도) 및 투명성이 우수하여 전기부품, 기계부품 및 산업용 수지로서 광범위하게 사용되고 있다. 특히 전기전자 분야 중에서 열이 많이 발산되는 TV 하우징, 컴퓨터 모니터 하우징, 복사기, 프린터, 노트북 배터리, 리튬 전지의 케이스 재료 등으로 폴리카보네이트 수지를 사용하는 경우에는 기계적 물성뿐만 아니라 우수한 내열성이 요구된다.
그런데, 일반적인 폴리카보네이트 수지는 특정한 용매에 선택적으로 침해되고, 저항성이 없으며, 정하중에 대한 내크리이프성은 좋으나, 온도 및 여러 가지 환경조건이 짝지어질 때 비교적 간단하게 파괴되며, 동하중에 대한 내성이 복잡한 문제가 있었다.
이에 따라 폴리카보네이트 수지의 내열성을 높이기 위한 연구가 지속적으로 진행되어 왔으며, 그 결과 고내열성 폴리카보네이트 수지가 개발되었다(예: 미국특허 5,070,177호, 미국특허 4,918,149호 등). 일반적으로 이와 같은 고내열성 폴리카보네이트는 비스페놀 A를 변형시켜 오르토(ortho) 위치에 입체성이 있는 치환기를 도입하여 가수분해성을 증가시키고, 열변형온도를 증대시켰다. 그러나, 이와 같은 종래의 고내열성 폴리카보네이트 수지는 일반 폴리카보네이트 수지에 비해 내충격성 및 유동성이 떨어지는 문제가 있다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하고자 한 것으로, 종래의 고내열성 폴리카보네이트 수지 대비 내열성이 현저히 향상되고, 유동성 등의 물성 밸런스 또한 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품을 제공하는 것을 기술적 과제로 한다.
상기한 기술적 과제를 해결하고자 본 발명은, (1) 하기 화학식 1의 구조를 갖는 폴리에스테르 화합물 또는 하기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물; (2) 폴리카보네이트 블록 공중합체; 및 (3) 열가소성 방향족 폴리카보네이트 수지 또는 폴리실록산-폴리카보네이트 수지;를 포함하는 폴리카보네이트 수지 조성물을 제공한다:
[화학식 1]
Figure PCTKR2017012713-appb-I000001
상기 화학식 1에서,
R1은 독립적으로 수소 원자, 탄소수 1 내지 4의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 4 내지 10의 사이클로알킬알킬기, 또는 탄소수 6 내지 10의 아릴기를 나타내고;
X는 산소 원자 또는 NR2를 나타내며, 여기서 R2는 수소 원자; 탄소수 1 내지 4의 알킬기; 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 3 내지 10의 사이클로알킬기; 또는 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 6 내지 10의 아릴기를 나타내고;
y는 2 내지 50의 정수이다.
[화학식 2]
Figure PCTKR2017012713-appb-I000002
상기 화학식 2에서,
R4 및 R5는 각각 독립적으로 탄소수 1 내지 10의 탄화수소 기이고;
m 및 n은 각각 독립적으로 0 내지 4의 정수이며;
y는 2 내지 150의 정수이고;
X는 산소 원자 또는 NR2를 나타내며, 여기서 R2는 수소 원자; 탄소수 1 내지 4의 알킬기; 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 3 내지 10의 사이클로알킬기; 또는 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 6 내지 10의 아릴기를 나타낸다.
본 발명의 다른 측면에 따르면, 본 발명에 따른 상기 폴리카보네이트 수지 조성물을 포함하는 성형품이 제공된다.
본 발명에 따른 폴리카보네이트 수지 조성물은 내열성이 탁월하게 우수함과 동시에 내충격성, 투명성 및 유동성 등의 물성 밸런스도 우수하여 사무기기 및 전기 전자제품의 하우징, 자동차 내외장 부품 등 내열성이 요구되는 제품에 유용하게 사용될 수 있고, 특히 높은 유동성으로 인해 성형성이 우수한 성형품을 제조할 수 있다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명의 폴리카보네이트 수지 조성물은 (1) 하기 화학식 1의 구조를 갖는 폴리에스테르 화합물 또는 하기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물; (2) 폴리카보네이트 블록 공중합체; 및 (3) 열가소성 방향족 폴리카보네이트 수지 또는 폴리실록산-폴리카보네이트 수지를 포함한다.
본 발명의 폴리카보네이트 수지 조성물 100 중량부 내에는 (1) 화학식 1의 구조를 갖는 폴리에스테르 화합물 또는 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물이 10 중량부 내지 80 중량부, 바람직하게는 20 중량부 내지 70 중량부, 보다 바람직하게는 30 중량부 내지 60 중량부의 함량으로 포함될 수 있다. 상기 폴리에스테르 화합물 또는 상기 페닐-아릴렌 에테르 술폰 화합물의 함량이 10 중량부 미만이면 내열성이 떨어질 수 있고, 80 중량부 초과이면 충격강도가 떨어질 수 있다.
본 발명의 폴리카보네이트 수지 조성물 100 중량부 내에는 (2) 폴리카보네이트 블록 공중합체가 5 중량부 내지 60 중량부, 바람직하게는 10 중량부 내지 50 중량부, 보다 바람직하게는 10 중량부 내지 40 중량부의 함량으로 포함될 수 있다. 상기 폴리카보네이트 블록 공중합체의 함량이 5 중량부 미만이면 내열성이 떨어질 수 있고, 60 중량부 초과이면 충격강도가 떨어질 수 있다.
본 발명의 폴리카보네이트 수지 조성물 100 중량부 내에는 (3) 열가소성 방향족 폴리카보네이트 수지 또는 폴리실록산-폴리카보네이트 수지가 10 중량부 내지 60 중량부, 바람직하게는 15 중량부 내지 50 중량부, 보다 바람직하게는 20 중량부 내지 40 중량부의 함량으로 포함될 수 있다. 상기 열가소성 방향족 폴리카보네이트 수지 또는 폴리실록산-폴리카보네이트 수지의 함량이 10 중량부 미만이면 충격강도가 떨어질 수 있고, 60 중량부 초과이면 내열성이 떨어질 수 있다.
(A) 화학식 1의 구조를 갖는 폴리에스테르 화합물
본 발명의 폴리카보네이트 수지 조성물에는 하기 화학식 1의 구조를 갖는 폴리에스테르 화합물이 포함될 수 있다.
[화학식 1]
Figure PCTKR2017012713-appb-I000003
상기 화학식 1에서,
R1은 독립적으로 수소 원자, 탄소수 1 내지 4의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 4 내지 10의 사이클로알킬알킬기, 또는 탄소수 6 내지 10의 아릴기를 나타내고;
X는 산소 원자 또는 NR2를 나타내며, 여기서 R2는 수소 원자; 탄소수 1 내지 4의 알킬기(예를 들면, 메틸, 에틸, 프로필 또는 부틸일 수 있음); 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 3 내지 10의 사이클로알킬기(예를 들면, 사이클로프로판, 사이클로부탄, 사이클로펜탄, 사이클로헥산, 사이클로헵탄, 사이클로옥탄, 클로로사이클로헥산, 메틸사이클로펜탄, 1-브로모-2-메틸-사이클로펜탄 또는 1-클로로-1-에틸-사이클로헥산일 수 있음); 또는 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 6 내지 10의 아릴기(예를 들면, 페닐, 벤질, 톨릴 또는 클로로페닐일 수 있음)를 나타내고;
y는 2 내지 50의 정수이다.
본 발명의 일 구체예에 따르면, 화학식 1의 구조를 갖는 폴리에스테르 화합물은 하기 화학식 1-1로 표시되는 화합물과 하기 화학식 1-2로 표시되는 화합물을 축합 반응시켜 제조된 것일 수 있다.
[화학식 1-1]
[화학식 1-2]
Figure PCTKR2017012713-appb-I000005
상기 화학식 1-1 및 1-2에서,
R1은 독립적으로 수소 원자, 탄소수 1 내지 4의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 4 내지 10의 사이클로알킬알킬기, 또는 탄소수 6 내지 10의 아릴기를 나타내고;
X는 산소 원자 또는 NR2를 나타내며, 여기서 R2는 수소 원자; 탄소수 1 내지 4의 알킬기(예를 들면, 메틸, 에틸, 프로필 또는 부틸일 수 있음); 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 3 내지 10의 사이클로알킬기(예를 들면, 사이클로프로판, 사이클로부탄, 사이클로펜탄, 사이클로헥산, 사이클로헵탄, 사이클로옥탄, 클로로사이클로헥산, 메틸사이클로펜탄, 1-브로모-2-메틸-사이클로펜탄 또는 1-클로로-1-에틸-사이클로헥산일 수 있음); 또는 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 6 내지 10의 아릴기(예를 들면, 페닐, 벤질, 톨릴 또는 클로로페닐일 수 있음)를 나타내고;
Y는 각각 독립적으로 히드록시기 또는 할로겐 원자(예를 들면, Cl, F 또는 Br)를 나타내며; R3는 벤젠 고리를 나타낸다.
상기 화학식 1의 구조를 갖는 폴리에스테르 화합물은 GPC(gel permeation chromatography)로 측정한 수평균분자량(Mn)이 500 내지 30,000 g/mol일 수 있으나, 이에 제한되지 않는다.
(B) 화학식 2의 구조를 갖는 페닐- 아릴렌 에테르 술폰 화합물
본 발명의 폴리카보네이트 수지 조성물에는 하기 화학식 2로 표시되는 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물이 포함될 수 있다.
[화학식 2]
Figure PCTKR2017012713-appb-I000006
상기 화학식 2에서,
R4 및 R5는 각각 독립적으로 탄소수 1 내지 10의 탄화수소 기이고, 바람직하게는 탄소수 1 내지 10의 알킬기(예를 들면 메틸, 에틸, 프로필 또는 부틸일 수 있음), 탄소수 1 내지 10의 알콕시기(예를 들면, 메톡시, 에톡시, 프로폭시 또는 부톡시일 수 있음) 및 탄소수 6 내지 10의 아릴기(예를 들면, 페닐, 벤질, 톨릴 또는 클로로페닐일 수 있음)로 이루어진 군으로부터 선택되며; m 및 n은 각각 독립적으로 0 내지 4의 정수이고, 바람직하게는 0 또는 1이며; y는 2 내지 150의 정수이고, 바람직하게는 10 내지 100의 정수이며, 보다 바람직하게는 15 내지 100의 정수이다.
또한, 상기 화학식 2에서,
X는 산소 원자 또는 NR2를 나타내며, 여기서 R2는 수소 원자; 탄소수 1 내지 4의 알킬기(예를 들면, 메틸, 에틸, 프로필 또는 부틸일 수 있음); 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 3 내지 10의 사이클로알킬기(예를 들면, 사이클로프로판, 사이클로부탄, 사이클로펜탄, 사이클로헥산, 사이클로헵탄, 사이클로옥탄, 클로로사이클로헥산, 메틸사이클로펜탄, 1-브로모-2-메틸-사이클로펜탄 또는 1-클로로-1-에틸-사이클로헥산일 수 있음); 또는 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 6 내지 10의 아릴기(예를 들면, 페닐, 벤질, 톨릴 또는 클로로페닐일 수 있음)를 나타낸다.
상기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물은 하기 화학식 2-1로 표시되는 화합물과 화학식 2-2로 표시되는 화합물을 알칼리 금속 또는 알칼리 금속염의 존재 하에서 중축합 반응시켜 제조된 중합체일 수 있다. 상기 중축합 반응들은 통상적으로 사용되는 용매, 예를 들면, N-메틸피롤리돈 (NMP) 중에서 수행될 수 있다.
[화학식 2-1]
Figure PCTKR2017012713-appb-I000007
상기 화학식 2-1에서,
X는 산소 원자 또는 NR2를 나타내며, 여기서 R2는 수소 원자; 탄소수 1 내지 4의 알킬기(예를 들면, 메틸, 에틸, 프로필 또는 부틸일 수 있음); 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 3 내지 10의 사이클로알킬기(예를 들면, 사이클로프로판, 사이클로부탄, 사이클로펜탄, 사이클로헥산, 사이클로헵탄,사이클로옥탄, 클로로사이클로헥산, 메틸사이클로펜탄, 1-브로모-2-메틸-사이클로펜탄 또는 1-클로로-1-에틸-사이클로헥산일 수 있음); 또는 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 6 내지 10의 아릴기(예를 들면, 페닐, 벤질, 톨릴 또는 클로로페닐일 수 있음)를 나타낸다.
[화학식 2-2]
Figure PCTKR2017012713-appb-I000008
상기 화학식 2-2에서,
R4 및 R5는 각각 독립적으로 탄소수 1 내지 10의 탄화수소 기이고, 바람직하게는 탄소수 1 내지 10의 알킬기(예를 들면 메틸, 에틸, 프로필 또는 부틸일 수 있음), 탄소수 1 내지 10의 알콕시기(예를 들면, 메톡시, 에톡시, 프로폭시 또는 부톡시일 수 있음) 및 탄소수 6 내지 10의 아릴기(예를 들면, 페닐, 벤질, 톨릴 또는 클로로페닐일 수 있음)로 이루어진 군으로부터 선택되며; Z는 할로겐 원자 또는 히드록시기이고, 여기서 할로겐 원자는 바람직하게는 Cl, F 또는 Br일 수 있으며; m 및 n은 각각 독립적으로 0 내지 4의 정수이고, 바람직하게는 0 또는 1이다.
상기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물을 제조하기 위한 중축합 반응들은 통상적인 중축합 반응을 통해 수행될 수 있으며, 특별히 제한되지는 않는다. 예를들면, 160 내지 200℃의 온도 조건 및 상압의 압력 조건에서, 알칼리 금속 또는 알칼리 금속염(예를 들어, 탄산칼륨) 촉매 하에서, N-메틸-2-피롤리돈(NMP), 디메틸설폭사이드(DMSO), 디메틸아세타마이드(DMAc), 디메틸포름아마이드(DMF), 설포란(Sulfolane), 디페닐 술폰(DPS) 및 디메틸 술폰(DMS)으로 이루어진 군으로부터 선택되는 반응 용매, 클로로벤젠 및 테트라하이드로퓨란(THF)이루어진 군으로부터 선택되는 공용매, 또는 상기 반응 용매 및 공용매의 혼합 용매 중에서 5 시간 내지 10 시간 동안 중축합 반응을 수행할 수 있다.
중축합 반응이 완료된 후, 중축합 반응 결과물을 희석 용매로 희석시키고(이 때 희석 용매로는 상기 반응 용매와 동일한 것을 사용할 수 있다), 희석된 반응 결과물로부터, 반응 동안에 생성된 알칼리금속 할로겐화물(알칼리 금속염 촉매에서 유래된 알칼리 금속과 디할로게노디아릴 술폰 화합물로부터 유래된 할로겐의 염으로부터 생성됨, 예를 들면 KCl)을 제거한다. 이때 상기 알칼리금속 할로겐화물의 제거는 희석된 반응 혼합물을 셀라이트(celite) 필터에 통과시켜 수행되거나, 비중 차이를 이용한 경사 분리기형 원심분리기(decanter centrifuge)를 이용해서 수행될 수 있다. 그 후, 희석 및 여과된 반응 결과물을 용매(예컨대, 메탄올 등과 같은 알코올 또는 물)에서 침전시키고, 침전된 생성물을 물(예를 들어, 증류수) 등으로 세정하고, 이를 건조시켜 상기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물을 제조할 수 있다.
상기 화학식 2-1의 화합물 : 상기 화학식 2-2의 화합물의 반응 몰비는 1 : 0.7 내지 1 : 1일 수 있고, 바람직하게는 1 : 0.8 내지 1 : 0.9일 수 있다. 상기 반응 몰비를 상기 범위 내로 조절함으로써, 상기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물을 고수율로 수득할 수 있다.
상기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물은 GPC (gel permeation chromatography)로 측정한 수평균분자량(Mn)이 500 내지 30,000 g/mol일 수 있으나, 이에 제한되지 않는다.
(C) 폴리카보네이트 블록
본 발명에 있어서, 후술하는 폴리카보네이트 블록 공중합체에 반복단위로 포함되는 폴리카보네이트 블록은, 상기 화학식 1로 표시되는 구조를 갖는 폴리에스테르 화합물 또는 상기 화학식 2로 표시되는 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물과 폴리카보네이트 올리고머를 반응시킴으로써 폴리카보네이트 블록 공중합체에 도입된다.
상기 폴리카보네이트 올리고머를 제조하는 방법에는 특별한 제한이 없다. 예를 들면, 2가 페놀류 화합물 및 포스겐을 함께 혼합하는 포스겐법으로도 제조될 수도 있으나, 이에 한정되지 않는다.
폴리카보네이트 올리고머 제조에 사용되는 2가 페놀류 화합물은, 예컨대 하기 화학식 3으로 표시되는 화합물일 수 있다.
[화학식 3]
Figure PCTKR2017012713-appb-I000009
상기 화학식 3에서,
L은 작용기를 갖지 않는 직선형, 분지형 또는 환형 알킬렌기; 또는 설파이드, 에테르, 설폭사이드, 설폰, 케톤, 페닐, 이소부틸페닐 및 나프틸로 이루어진 군으로부터 선택되는 작용기를 포함하는 직선형, 분지형 또는 환형 알킬렌기이고, 바람직하게, L은 탄소수 1 내지 10의 직선형, 분지형 또는 환형 알킬렌기일 수 있으며;
R6과 R7은 각각 독립적으로, 할로겐 원자; 또는 직선형, 분지형 또는 환형 알킬기이고;
m 및 n은 각각 독립적으로, 0 내지 4의 정수이며, 바람직하게는 0 또는 1이다.
상기 화학식 3의 화합물은, 예를 들어, 비스(4-히드록시페닐)메탄, 비스(4-히드록시페닐)페닐메탄, 비스(4-히드록시페닐)나프틸메탄, 비스(4-히드록시페닐)-(4-이소부틸페닐)메탄, 1,1-비스(4-히드록시페닐)에탄, 1-에틸-1,1-비스(4-히드록시페닐)프로판, 1-페닐-1,1-비스(4-히드록시페닐)에탄, 1-나프틸-1,1-비스(4-히드록시페닐)에탄, 1,2-비스(4-히드록시페닐)에탄, 1,10-비스(4-히드록시페닐)데칸, 2-메틸-1,1-비스(4-히드록시페닐)프로판, 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(4-히드록시페닐)부탄, 2,2-비스(4-히드록시페닐)펜탄, 2,2-비스(4-히드록시페닐)헥산, 2,2-비스(4-히드록시페닐)노난, 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3-플루오로-4-히드록시페닐)프로판, 4-메틸-2,2-비스(4-히드록시페닐)펜탄, 4,4-비스(4-히드록시페닐)헵탄, 디페닐-비스(4-히드록시페닐)메탄, 레소시놀(Resorcinol), 하이드로퀴논(Hydroquinone), 4,4'-디히드록시페닐 에테르[비스(4-히드록시페닐)에테르], 4,4'-디히드록시-2,5-디히드록시디페닐 에테르, 4,4'-디히드록시-3,3'-디클로로디페닐 에테르, 비스(3,5-디메틸-4-히드록시페닐)에테르, 비스(3,5-디클로로-4-히드록시페닐)에테르, 1,4-디히드록시-2,5-디클로로벤젠, 1,4-디히드록시-3-메틸벤젠, 4,4'-디히드록시디페놀[p,p'-디히드록시페닐], 3,3'-디클로로-4,4'-디히드록시페닐, 1,1-비스(4-히드록시페닐)사이클로헥산, 1,1-비스(3,5-디메틸-4-히드록시페닐)사이클로헥산, 1,1-비스(3,5-디클로로-4-히드록시페닐)사이클로헥산, 1,1-비스(3,5-디메틸-4-히드록시페닐)사이클로도데칸, 1,1-비스(4-히드록시페닐)사이클로도데칸, 1,1-비스(4-히드록시페닐)부탄, 1,1-비스(4-히드록시페닐)데칸, 1,4-비스(4-히드록시페닐)프로판, 1,4-비스(4-히드록시페닐)부탄, 1,4-비스(4-히드록시페닐)이소부탄, 2,2-비스(4-히드록시페닐)부탄, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 비스(3,5-디메틸-4-히드록시페닐)메탄, 비스(3,5-디클로로-4-히드록시페닐)메탄, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디브로모-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,4-비스(4-히드록시페닐)-2-메틸-부탄, 4,4'-티오디페놀[비스(4-히드록시페닐)설폰], 비스(3,5-디메틸-4-히드록시페닐)설폰, 비스(3-클로로-4-히드록시페닐)설폰, 비스(4-히드록시페닐)설파이드, 비스(4-히드록시페닐)설폭사이드, 비스(3-메틸-4-히드록시페닐)설파이드, 비스(3,5-디메틸-4-히드록시페닐)설파이드, 비스(3,5-디브로모-4-히드록시페닐)설폭사이드, 4,4'-디히드록시벤조페논, 3,3',5,5'-테트라메틸-4,4'-디히드록시벤조페논, 4,4'-디히드록시 디페닐, 메틸히드로퀴논, 1,5-디히드록시나프탈렌, 및 2,6-디히드록시나프탈렌일 수 있으며, 이에 제한되지 않는다. 이중 대표적인 것은 2,2-비스(4-히드록시페닐)프로판(비스페놀 A)이다. 이외의 2 작용성 페놀류들(dihydric phenol)은 미국특허 US 2,999,835호, US 3,028,365호, US 3,153,008호, US 3,334,154호, 및 US 4,131,575호 등을 참조할 수 있으며, 상기 2가 페놀류들은 단독으로 또는 서로 조합해서 사용될 수 있다.
본 발명의 일 구체예에 따르면, 상기 2가 페놀류 화합물(예컨대, 비스페놀 A)을 알칼리 수용액에 첨가한 다음, 그 결과 혼합물과, 포스겐 가스가 주입된 유기 용매(예컨대, 디클로로메탄)를 혼합하여 반응시키면 올리고머성 폴리카보네이트를 제조할 수 있으며, 이 때 포스겐 : 2가 페놀류 화합물의 몰비는 약 1 : 1 내지 1.5 : 1, 바람직하게는 약 1 : 1 내지 1.2 : 1의 범위로 유지될 수 있고, 제조되는 올리고머성 폴리카보네이트의 분자량은 1,000 내지 2,000일 수 있다.
본 발명의 다른 구체예에 따르면, 상기 2가 페놀류 화합물(예컨대, 비스페놀 A)를 알칼리 수용액에 첨가한 다음, 그 결과 혼합물과, 포스겐 가스가 주입된 유기 용매(예컨대, 디클로로메탄)를 혼합하여 반응시키고(이 때 포스겐 : 2가 페놀류 화합물의 몰비는 약 1 : 1 내지 1.5 : 1, 바람직하게는 약 1 : 1 내지 1.2 : 1의 범위로 유지될 수 있다), 여기에 단계적으로 분자량 조절제 및 촉매를 투입함으로써 폴리카보네이트 올리고머가 형성될 수 있다.
폴리카보네이트 올리고머 형성 반응은 일반적으로 약 15 내지 60℃ 범위의 온도에서 수행될 수 있다. 반응 혼합물의 pH 조절을 위해 알칼리금속 수산화물이 반응 혼합물에 도입될 수 있다. 상기 알칼리금속 수산화물은 예를 들어, 수산화나트륨일 수 있다.
상기 분자량 조절제로는 폴리카보네이트 제조에 사용되는 모노머와 유사한 단일 작용성 물질(monofunctional compound)이 사용될 수 있다. 상기 단일 작용성 물질은, 예를 들어, p-이소프로필페놀, p-tert-부틸페놀(p-tert-butylphenol, PTBP), p-큐밀(cumyl)페놀, p-이소옥틸페놀, 및 p-이소노닐페놀과 같은 페놀을 기본으로 하는 유도체 또는 지방족 알콜류일 수 있다. 바람직하게, p-tert-부틸페놀(PTBP)이 사용될 수 있다.
상기 촉매로는 중합 촉매 및/또는 상전이 촉매가 사용될 수 있다. 상기 중합 촉매는 예를 들어, 트리에틸아민 (triethylamine, TEA)일 수 있고, 상기 상전이 촉매는 하기 화학식 4의 화합물일 수 있다.
[화학식 4]
(R8)4Q+Z-
상기 화학식 4에서,
R8은 독립적으로, 탄소수 1 내지 10의 알킬기를 나타내고; Q는 질소 또는 인을 나타내며; Z는 할로겐 원자 또는 -OR9를 나타낸다. 여기서, R9는 수소 원자, 탄소수 1 내지 18의 알킬기, 또는 탄소수 6 내지 18의 아릴기를 나타낼 수 있다.
상기 상전이 촉매는 예를 들어, [CH3(CH2)3]4NZ, [CH3(CH2)3]4PZ, [CH3(CH2)5]4NZ, [CH3(CH2)6]4NZ, [CH3(CH2)4]4NZ, CH3[CH3(CH2)3]3NZ, CH3[CH3(CH2)2]3NZ일 수 있다. 여기서, Z는 Cl, Br 또는 -OR9일 수 있다. 여기서, R9는 수소원자, 탄소수 1 내지 18의 알킬기, 또는 탄소수 6 내지 18의 아릴기일 수 있다.
상기 상전이 촉매의 함량은 반응 혼합물의 약 0.1 내지 10 중량%인 것이 바람직하다. 상전이 촉매의 함량이 0.1 중량% 미만이면 반응성이 떨어질 수 있고, 10 중량%를 초과하면 침전물로 석출될 수 있고, 결과 공중합체의 투명성이 저하될 수 있다.
상기와 같이 하여 폴리카보네이트 올리고머를 형성한 후, 메틸렌클로라이드에 분산된 유기상을 알칼리 세정한 후 분리한다. 계속해서 상기 유기상을 0.1N 염산 용액을 사용하여 세척한 후 증류수로 2회 내지 3회 반복하여 세정한다.
세정이 완료되면 메틸렌클로라이드에 분산된 상기 유기상의 농도를 일정하게 조정하여 40 내지 80℃ 범위에서 일정량의 2차 증류수를 이용하여 조립화(Granulation)한다. 2차 증류수의 온도가 40℃ 미만이면 조립 속도가 늦어 조립화 시간이 과다하게 걸릴 수 있고, 80℃ 초과이면 일정한 입자 크기를 갖는 폴리카보네이트를 얻는 것이 어렵다. 조립이 완결되면 1차로 100 내지 110℃에서 5시간 내지 10시간, 2차로 110 내지 120℃에서 5시간 내지 10시간 건조하는 것이 바람직하다.
제조된 폴리카보네이트 올리고머의 점도평균분자량(Mv)은 바람직하게는 1,000 내지 30,000, 보다 바람직하게는 1,000 내지 15,000일 수 있다. 그 점도평균분자량이 1,000 미만이면 기계적 물성이 현저히 저하될 수 있고, 30,000을 초과하면 공중합 반응성이 저하되는 문제가 있을 수 있다.
(D) 폴리카보네이트 블록 공중합체
본 발명의 폴리카보네이트 수지 조성물에 포함되는 폴리카보네이트 블록 공중합체는, 상기 화학식 1의 구조를 갖는 폴리에스테르 화합물 및 상기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물 중에서 선택되는 화합물; 및 전술한 폴리카보네이트 블록을 반복단위로 포함할 수 있다. 상기 폴리카보네이트 블록 공중합체는 상기 화학식 1의 구조를 갖는 폴리에스테르 화합물 및 상기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물 중에서 선택되는 화합물과 전술한 폴리카보네이트 올리고머를 공중합 반응시켜 얻을 수 있다.
상기 폴리카보네이트 블록은 선형 폴리카보네이트 블록, 분지상 폴리카보네이트 블록 및 이들의 조합을 모두 포함한다. 본 발명의 일 구체예에 따르면, 선형 폴리카보네이트 블록이 주를 이루나, 분지상 폴리카보네이트 블록도 가능하며, 양자가 조합되어 사용될 수도 있다.
본 발명의 폴리카보네이트 블록 공중합체에 포함되는, 상기 화학식 1의 구조를 갖는 폴리에스테르 화합물 및 상기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물 중에서 선택되는 화합물의 양은, 상기 폴리카보네이트 블록 공중합체를 구성하는 단량체 화합물의 총 중량을 100 중량%로 기준하였을 때, 0.5 내지 50 중량%인 것이 바람직하고, 5 내지 50 중량%인 것이 더욱 바람직하며, 10 내지 50 중량%인 것이 가장 바람직하다. 상기 폴리카보네이트 블록 공중합체 중 상기 화학식 1의 구조를 갖는 폴리에스테르 화합물 및 상기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물 중에서 선택되는 화합물의 상대적 함량이 이보다 적으면 내열성이 저하될 수 있으며, 반대로 이보다 많으면 투명성, 유동성, 충격 강도 등의 물성이 저하되고 제조 비용이 증가할 수 있다.
본 발명에서 사용되는 폴리카보네이트 블록 공중합체는, 메틸렌 클로라이드 용액에서 측정시, 바람직하게는 10,000 내지 200,000, 더욱 바람직하게는 10,000 내지 150,000, 더욱 더 바람직하게는 15,000 내지 70,000의 점도평균분자량(Mv)을 갖는다. 상기 폴리카보네이트 블록 공중합체의 점도평균분자량이 10,000 미만이면 기계적 물성이 현저히 저하될 수 있으며, 200,000을 초과하면 용융 점도의 상승으로 수지의 가공에 문제가 생길 수 있다.
본 발명에서 사용되는 폴리카보네이트 블록 공중합체는, 전술한 바와 같이 폴리카보네이트 올리고머를 제조한 후, 제조된 폴리카보네이트 올리고머와 상기 화학식 1의 구조를 갖는 폴리에스테르 화합물 및 상기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물 중에서 선택되는 화합물을 공중합함으로써 제조될 수 있다.
바람직하게는, 본 발명의 폴리카보네이트 수지 조성물에 상기 성분 (1)로서 화학식 1의 구조를 갖는 폴리에스테르 화합물이 포함되는 경우, 폴리카보네이트 블록 공중합체는 폴리카보네이트 올리고머와 상기 화학식 1의 구조를 갖는 폴리에스테르 화합물을 공중합함으로써 제조될 수 있고, 본 발명의 폴리카보네이트 수지 조성물에 상기 성분 (1)로서 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물이 포함되는 경우, 폴리카보네이트 블록 공중합체는 폴리카보네이트 올리고머와 상기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물을 공중합함으로써 제조될 수 있다.
따라서, 본 발명의 다른 측면에 따르면, (1) 상기 화학식 1-1로 표시되는 화합물과 상기 화학식 1-2로 표시되는 화합물을 중축합 반응시켜 상기 화학식 1의 구조를 갖는 화합물을 얻는 단계; 및 (2) 상기 (1) 단계에서 얻어진 화합물과 폴리카보네이트 올리고머를 중합 촉매의 존재 하에 공중합하는 단계를 포함하는, 폴리카보네이트 블록 공중합체의 제조 방법이 제공된다.
또한 본 발명의 또 다른 측면에 따르면, (1) 상기 화학식 2-1로 표시되는 화합물과 상기 화학식 2-2로 표시되는 화합물을 중축합 반응시켜 상기 화학식 2의 구조를 갖는 화합물을 얻는 단계; 및 (2) 상기 (1) 단계에서 얻어진 화합물과 폴리카보네이트 올리고머를 중합 촉매의 존재 하에 공중합하는 단계를 포함하는, 폴리카보네이트 블록 공중합체의 제조 방법이 제공된다.
상기 중합 촉매로는, 예컨대, 알칼리 금속 수산화물, 알킬 암모늄염, 알킬 아민 등과 같은 염기성 촉매를 사용할 수 있다.
본 발명의 일 구체예에 따르면, 상기 제조된 폴리카보네이트 올리고머를 함유하는 유기상-수상 혼합물에 상기 화학식 1로 표시되는 구조를 갖는 폴리에스테르 화합물 및 상기 화학식 2로 표시되는 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물 중에서 선택되는 화합물을 첨가하고, 단계적으로 분자량 조절제 및 중합 촉매를 투입함으로써 본 발명의 폴리카보네이트 블록 공중합체가 제조될 수 있다. 상기 분자량 조절제 및 중합 촉매에 대해서는 앞서 설명한 바와 같다.
또한, 일 구체예에 따르면, 상기 제조된 폴리카보네이트 블록 공중합체가 메틸렌클로라이드에 분산되어 있는 유기상을 알칼리 세정한 후 분리시키고, 계속해서 상기 유기상을 0.1N 염산 용액을 사용하여 세척한 후 증류수로 2 내지 3회 반복하여 세정하고, 세정이 완료되면 메틸렌클로라이드에 분산된 상기 유기상의 농도를 일정하게 조정하여 40 내지 80℃ 범위에서 일정량의 순수를 이용하여 조립화(Granulation)한다. 순수의 온도가 40℃ 미만이면 조립 속도가 늦어져 조립시간이 매우 길어질 수 있으며, 순수의 온도가 80℃를 초과하면 일정한 크기로 폴리카보네이트 블록 공중합체의 형상을 얻는 것이 어려워질 수 있다. 조립이 완결되면 1차로 100 내지 110℃에서 5시간 내지 10시간, 2차로 110 내지 120℃에서 5시간 내지 10시간 동안 건조시키는 것이 바람직하다.
(E) 열가소성 방향족 폴리카보네이트 수지
본 발명의 폴리카보네이트 수지 조성물에 포함될 수 있는 열가소성 방향족 폴리카보네이트 수지는 2가 페놀, 카보네이트 전구체 및 분자량 조절제로부터 제조될 수 있다.
상기 2가 페놀류는 열가소성 방향족 폴리카보네이트 수지의 단량체로서, 예컨대 하기 화학식 5의 구조를 갖는 화합물일 수 있다.
[화학식 5]
Figure PCTKR2017012713-appb-I000010
상기 화학식 5에서,
A는 작용기를 갖지 않는 직선형, 분지형 또는 환형 알킬렌기; 또는 설파이드, 에테르, 설폭사이드, 설폰, 케톤, 나프틸 및 이소부틸페닐로 이루어진 군으로부터 선택되는 작용기를 포함하는 직선형, 분지형 또는 환형 알킬렌기를 나타내며, 바람직하게는, A는 탄소수 1 내지 10의 직선형 또는 분지형 알킬렌기, 또는 탄소수 3 내지 6의 환형 알킬렌기 일 수 있고;
R10 및 R11은 각각 독립적으로, 수소 원자, 할로겐 원자, 또는 알킬기 (예를 들면, 탄소수 1 내지 20 의 직선형 또는 분지형 알킬기, 또는 탄소수 3 내지 20, 바람직하게는 탄소수 3 내지 6의 환형 알킬기이다)를 나타내며;
n 및 m은 각각 독립적으로 0 내지 4의 정수이고, 바람직하게는 0 또는 1이다.
상기 2가 페놀류의 비제한적인 예시는, 비스(4-히드록시페닐)메탄, 비스(4-히드록시페닐)페닐메탄, 비스(4-히드 록시페닐)나프틸메탄, 비스(4-히드록시페닐)-(4-이소부틸페닐)메탄, 1,1-비스(4-히드록시페닐)에탄, 1-에틸- 1,1-비스(4-히드록시페닐)프로판, 1-페닐-1,1-비스(4-히드록시페닐) 에탄, 1-나프틸-1,1-비스(4-히드록시페닐) 에탄, 1,2-비스(4-히드록시페닐) 에탄, 1,10-비스(4-히드록시페닐)데칸, 2-메틸-1,1-비스(4-히드록시페닐) 프로 판, 2,2-비스(4-히드록시페닐)프로판 (비스페놀 A) 등을 포함하며, 이 중 대표적인 것은 비스페놀 A이다.
상기 카보네이트 전구체는 열가소성 방향족 폴리카보네이트 수지의 공단량체로서, 포스겐(카보닐 클로라이드)을 사용하는 것이 바람직하다. 카보네이트 전구체의 비제한적인 예시는 카보닐 브로마이드, 비스 할로 포르메이트, 디페닐카보네이트 또는 디메틸카보네이트 등을 포함한다.
상기 분자량 조절제로는 이미 공지되어 있는 물질 즉, 열가소성 방향족 폴리카보네이트 수지의 제조에 사용되는 단량체와 유사한 단일 작용성 물질(monofunctional compound)을 사용할 수 있다. 비제한적인 예시로서, 페놀을 기본으로 하여 그 유도체들 (예를 들면, 파라-이소프로필페놀, 파라-터트-부틸페놀, 파라-쿠밀페놀, 파라-이소옥 틸페놀, 파라-이소노닐페놀 등)을 사용할 수 있고, 그 밖에 지방족 알코올류 등 여러 종류의 물질을 사용할 수 있으며, 이들 중 파라-tert-부틸페놀(PTBP)을 적용하는 것이 가장 바람직하다.
이와 같은 2가 페놀, 카보네이트 전구체 및 분자량 조절제로부터 제조되는 상기 열가소성 방향족 폴리카보네이트 수지로는, 예를 들어, 선형 폴리카보네이트 수지, 분지화된 폴리카보네이트 수지, 코폴리카보네이트 수지 및 폴리에스테르카보네이트 수지 등이 있다.
한편, 본 발명의 예시적인 구현예들에서는 열가소성 방향족 폴리카보네이트 수지로서, 25℃의 메틸렌 클로라이드 용액에서 측정한 점도평균분자량(Mv)이 10,000 내지 50,000인 것, 바람직하게는 10,000 내지 30,000인 것을 적용하도록 하는 것이 좋다. 상기 점도평균분자량이 10,000 미만일 경우, 충격 강도와 인장강도 등의 기계적 물성이 크게 저하될 수 있고, 50,000을 초과하는 경우에는, 용융 점도의 상승으로 수지의 가공에 문제가 발생할 수 있다. 특히 충격 강도 및 인장 강도 등의 기계적 물성이 우수하다는 점에서 점도평균분자량이 20,000 이상인 것이 더욱 바람직하며, 가공성의 측면에서 점도평균분자량이 30,000 이하인 것이 더욱 바람직하다.
(F) 폴리실록산 -폴리카보네이트 수지 ( Si -PC 수지)
본 발명의 폴리카보네이트 수지 조성물에 포함될 수 있는 폴리실록산-폴리카보네이트 수지는 실록산 및 폴리카보네이트 블록을 반복단위로 포함하는 것이라면 특별히 제한되지 않지만, 바람직하게는 하기 화학식 6의 히드록시 말단 실록산 및 하기 화학식 7의 폴리카보네이트 블록을 반복단위로 포함할 수 있다.
[화학식 6]
Figure PCTKR2017012713-appb-I000011
상기 화학식 6에서,
R12는 각각 독립적으로, 수소 원자, 할로겐 원자, 히드록시기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 6 내지 20의 아릴기를 나타내고,
R13은 각각 독립적으로, 탄소수 1 내지 13의 탄화수소기 또는 히드록시기를 나타내며,
R14는 각각 독립적으로, 탄소수 2 내지 8의 알킬렌기를 나타내고,
m은 각각 독립적으로, 0 내지 4의 정수를 나타내며,
n은 독립적으로, 2 내지 1,000의 정수를 나타낸다.
보다 바람직하게는, 상기 화학식 6에서,
R12는 각각 독립적으로, 수소 원자, 할로겐 원자 (예를 들면 Cl 또는 Br일 수 있음), 히드록시기, 탄소수 1 내지 13의 알킬기 (예를 들면 메틸, 에틸 또는 프로필일 수 있음), 탄소수 1 내지 13의 알콕시기 (예를 들면 메톡시, 에톡시 또는 프로톡시일 수 있음) 또는 탄소수 6 내지 10의 아릴기 (예를 들면 페닐, 클로로페닐 또는 톨릴일 수 있음)를 나타내고,
R13은 각각 독립적으로, 히드록시기, 탄소수 1 내지 13의 알킬기, 탄소수 1 내지 13의 알콕시기, 탄소수 2 내지 13의 알케닐기, 탄소수 2 내지 13의 알케닐옥시기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 3 내지 6의 사이클로알콕시기, 탄소수 6 내지 10의 아릴옥시기, 탄소수 7 내지 13의 아르알킬기, 탄소수 7 내지 13의 아르알콕시기, 탄소수 7 내지 13의 알크아릴기 또는 탄소수 7 내지 13의 알크아릴옥시기를 나타내며,
R14는 각각 독립적으로, 탄소수 2 내지 8의 알킬렌기를 나타내고,
m은 각각 독립적으로, 0 또는 1을 나타내며,
n은 독립적으로, 2 내지 500의 정수, 바람직하게는 5 내지 100의 정수를 나타낸다.
상기 화학식 6의 히드록시 말단 실록산은, 예를 들어 히드록시기 및 탄소 이중결합을 지닌 하기 화학식 6-1의 화합물과 실리콘을 함유하고 있는 하기 화학식 6-2의 화합물을 백금 촉매 하에서 2 : 1의 몰비로 반응시켜 제조될 수 있다.
[화학식 6-1]
Figure PCTKR2017012713-appb-I000012
상기 화학식 6-1에서,
R12 및 m은 상기 화학식 6에서 정의된 바와 같으며,
k는 1 내지 7의 정수를 나타낸다.
[화학식 6-2]
Figure PCTKR2017012713-appb-I000013
상기 화학식 6-2에서,
R13 및 n은 상기 화학식 6에서 정의된 바와 같다.
구체적으로, 상기 화학식 6의 히드록시 말단 실록산으로 하기 화학식 6-3으로 표시되는 다우 코닝사의 실록산 모노머를 사용할 수 있으나, 이에 한정되는 것은 아니다.
[화학식 6-3]
Figure PCTKR2017012713-appb-I000014
상기 화학식 6-3에서,
n은 2 내지 1,000, 바람직하게는 2 내지 500의 정수, 보다 바람직하게는 5 내지 100의 정수를 나타낸다.
또한 상기 화학식 6의 히드록시 말단 실록산의 제조와 관련하여 미국특허 US 6,072,011호를 참조할 수 있다.
[화학식 7]
Figure PCTKR2017012713-appb-I000015
상기 화학식 7에서,
R15는 탄소수 1 내지 20, 바람직하게는 탄소수 1 내지 13의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 2 내지 13의 알케닐기, 탄소수 1 내지 13의 알콕시기, 할로겐 원자, 또는 니트로 기로 치환된 또는 비치환된 탄소수 6 내지 30의 방향족 탄화수소기를 나타내며, 여기서 상기 방향족 탄화수소기는 하기 화학식 8로 표시되는 화합물로부터 유도될 수 있다.
[화학식 8]
Figure PCTKR2017012713-appb-I000016
상기 화학식 8에서,
B는 작용기를 갖지 않는 직선형, 분지형 또는 환형 알킬렌기; 또는 설파이드, 에테르, 설폭사이드, 설폰, 케톤, 나프틸 및 이소부틸페닐로 이루어진 군으로부터 선택되는 작용기를 포함하는 직선형, 분지형 또는 환형 알킬렌기를 나타내며, 바람직하게는 B는 탄소수 1 내지 10의 직선형 또는 분지형 알킬렌기; 또는 탄소수 3 내지 6의 환형 알킬렌기일 수 있고,
R16은 각각 독립적으로, 수소 원자, 할로겐 원자, 또는 알킬기 (예를 들면 탄소수 1 내지 20의 직선형 또는 분지형 알킬기, 또는 탄소수 3 내지 20, 바람직하게는 탄소수 3 내지 6의 환형 알킬기이다)를 나타내며,
m 및 n은 각각 독립적으로, 0 내지 4의 정수이고, 바람직하게는 0 또는 1이다.
상기 화학식 8의 화합물은, 예를 들어 비스(4-히드록시페닐)메탄, 비스(4-히드록시페닐)페닐메탄, 비스(4-히드 록시페닐)나프틸메탄, 비스(4-히드록시페닐)-(4-이소부틸페닐)메탄, 1,1-비스(4-히드록시페닐)에탄, 1-에틸- 1,1-비스(4-히드록시페닐)프로판, 1-페닐-1,1-비스(4-히드록시페닐)에탄, 1-나프틸-1,1-비스(4-히드록시페닐)에 탄, 1,2-비스(4-히드록시페닐)에탄, 1,10-비스(4-히드록시페닐)데칸, 2-메틸-1,1-비스(4-히드록시페닐)프로판, 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(4-히드록시페닐)부탄, 2,2-비스(4-히드록시페닐)펜탄, 2,2-비스(4- 히드록시페닐)헥산, 2,2-비스(4-히드록시페닐)노난, 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3-플루 오로-4-히드록시페닐)프로판, 4-메틸-2,2-비스(4-히드록시페닐)펜탄, 4,4-비스(4-히드록시페닐)헵탄, 디페닐-비 스(4-히드록시페닐)메탄, 레소시놀(Resorcinol), 히드로퀴논(Hydroquine), 4,4'-디히드록시페닐 에테르[비스(4- 히드록시페닐)에테르], 4,4'-디히드록시-2,5-디히드록시디페닐 에테르, 4,4'-디히드록시-3,3'-디클로로디페닐 에테르, 비스(3,5-디메틸-4-히드록시페닐)에테르, 비스(3,5-디클로로-4-히드록시페닐)에테르, 1,4-디히드록시- 2,5-디클로로벤젠, 1,4-디히드록시-3-메틸벤젠, 4,4'-디히드록시디페놀[p,p'-디히드록시페닐], 3,3'-디클로로- 4,4'-디히드록시페닐, 1,1-비스(4-히드록시페닐)사이클로헥산, 1,1-비스(3,5-디메틸-4-히드록시페닐)사이클로헥 산, 1,1-비스(3,5-디클로로-4-히드록시페닐)사이클로헥산, 1,1-비스(3,5-디메틸-4-히드록시페닐)사이클로도데칸, 1,1-비스(4-히드록시페닐)사이클로도데칸, 1,1-비스(4-히 드록시페닐)부탄, 1,1-비스(4-히드록시페닐)데칸, 1,4-비스(4-히드록시페닐)프로판, 1,4-비스(4-히드록시페닐) 부탄, 1,4-비스(4-히드록시페닐)이소부탄, 2,2-비스(4-히드록시페닐)부탄, 2,2-비스(3-클로로-4-히드록시페닐) 프로판, 비스(3,5-디메틸-4-히드록시페닐)메탄, 비스(3,5-디클로로-4-히드록시페닐)메탄, 2,2-비스(3,5-디메틸- 4-히드록시페닐)프로판, 2,2-비스(3,5-디브로모-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,4-비스(4-히드록시페닐)-2-메틸-부탄, 4,4'-티오디페놀[비스 (4-히드록시페닐)설폰], 비스(3,5-디메틸-4-히드록시페닐)설폰, 비스(3-클로로-4-히드록시페닐)설폰, 비스(4-히 드록시페닐)설파이드, 비스(4-히드록시페닐)설폭사이드, 비스(3-메틸-4-히드록시페닐)설파이드, 비스(3,5-디메 틸-4-히드록시페닐)설파이드, 비스(3,5-디브로모-4-히드록시페닐)설폭사이드, 4,4'-디히드록시벤조페논, 3,3',5,5'-테트라메틸-4,4'-디히드록시벤조페논, 4,4'-디히드록시 디페닐, 메틸히드로퀴논, 1,5-디히드록시나프 탈렌, 또는 2,6-디히드록시나프탈렌일 수 있으나, 이에 제한되지 않는다. 이중 대표적인 것은 2,2-비스(4-히드록 시페닐)프로판 (비스페놀 A)이다. 이외의 작용성 2가 페놀류들(dihydric phenol)은 미국특허 US 2,999,835호, US 3,028,365호, US 3,153,008호 및 US 3,334,154호 등을 참조할 수 있으며, 상기 2가 페놀류들은 단독으로 또는 2종 이상 조합되어 사용될 수 있다.
상기 폴리실록산-폴리카보네이트 수지에 있어서, 히드록시 말단 실록산 : 폴리카보네이트 블록의 함량비는 중랑비로 50~99 : 50~1인 것이 바람직하다. 상기 폴리실록산-폴리카보네이트 수지 중 히드록시 말단 실록산 부분의 상대적 함량이 이보다 적으면 난연성 및 저온 충격강도가 저하될 수 있으며, 반대로 이보다 많으면 상기 폴리실록산-폴리카보네이트 수지 중 폴리카보네이트 부분의 상대적 함량 감소로 투명성, 유동성, 내열성, 상온 충격강도 등의 물성이 저하되고, 제조 비용이 증가할 수 있다.
상기 폴리실록산-폴리카보네이트 수지는, 메틸렌 클로라이드 용액에서 측정시, 바람직하게는 15,000 내지 200,000, 더욱 바람직하게는 15,000 내지 70,000의 점도평균분자량(Mv)을 갖는다. 상기 폴리실록산-폴리카보네이트 수지의 점도평균분자량이 15,000 미만이면 기계적 물성이 현저히 저하될 수 있으며, 200,000을 초과하면 용융 점도의 상승으로 수지의 가공에 문제가 생길 수 있다.
상기 폴리실록산-폴리카보네이트 수지는 단일 중합체(homopolymer), 공중합체(copolymer), 또는 이들의 혼합물 형태가 모두 이용될 수 있다. 또한 상기 폴리실록산-폴리카보네이트 수지는 에스테르 전구체, 예컨대 2관능 카르복실산 존재 하에 중합 반응시켜 얻어진 방향족 폴리에스테르-카보네이트 수지 또는 실리콘계 수지가 공중합된 코폴리카보네이트로 일부 또는 전량 대체하는 것도 가능하다.
이하, 실시예 및 비교예를 통하여 본 발명을 보다 상세하게 설명한 다. 그러나, 본 발명의 범위가 이들로 한정되는 것은 아니다.
[ 실시예 ]
제조예 1: 화학식 9의 프탈이미딘계 폴리에스테르 올리고머 화합물의 제조
하기 화학식 9-1의 N-페닐 3,3-비스-(4-히드록시페닐)프탈이미딘(N-phenyl 3,3-bis(4-hydroxyphenyl)phthalimidine, PBHPP)(0.6 몰)을 증류수 1,657g에 녹인 후 20L의 4구 반응기에 투입하고, 하기 화학식 9-2의 테레프탈로일 클로라이드(Terephthaloyl chloride)(0.5 몰)를 메틸렌 클로라이드(Methylene Chloride) 6,000g에 녹인 후 상기 4구 반응기에 투입하였다. 이후, 가성 소다(Sodium hydroxide)(1.23 몰)를 증류수에 용해시켜 가성소다 수용액(10%)을 만들고, 이를 240분 동안 적하(dropping)하여 상기 4구 반응기에 투입하였다. 적하 후 60분 동안 교반하고 상 분리를 시키며, 중액층을 분리하였다. 분리된 중액층을 에탄올에 침전시킨 후, 증류수로 세정하고 오븐에서 24시간 건조함으로써 하기 화학식 9의 프탈이미딘계 폴리에스테르 올리고머(수평균분자량= 6,000)를 얻었다. 이때 화학식 9의 n값은 11이었다.
[화학식 9-1]
Figure PCTKR2017012713-appb-I000017
[화학식 9-2]
Figure PCTKR2017012713-appb-I000018
[화학식 9]
Figure PCTKR2017012713-appb-I000019
제조예 2: 화학식 9의 프탈이미딘계 폴리에스테르 올리고머 화합물의 제조
적하 시간을 240분에서 150분으로 변경한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 화학식 9의 프탈이미딘계 폴리에스테르 올리고머(수평균분자량=10,000)을 얻었다. 이때 화학식 9의 n값이 19이었다.
제조예 3: 화학식 9의 프탈이미딘계 폴리에스테르 올리고머 화합물의 제조
적하 시간을 240분에서 60분으로 변경한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 화학식 9의 프탈이미딘계 폴리에스테르 올리고머(수평균분자량=20,000)을 얻었다. 이때 화학식 9의 n값은 38이었다.
제조예 4: 화학식 9의 프탈이미딘계 폴리에스테르 올리고머 화합물의 제조
적하 시간을 240분에서 30분으로 변경한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 화학식 9의 프탈이미딘계 폴리에스테르 올리고머(수평균분자량=30,000)을 얻었다. 이때 화학식 9의 n값은 56이었다.
제조예 5: 화학식 10의 프탈이미딘계 페닐- 아릴렌 에테르 술폰 블록 올리고머 화합물의 제조
20L의 4구 플라스크에 콘덴서를 장착하고, 질소 분위기 하에서 하기 화학식 10-1의 N-페닐 3,3-비스-(4-히드록시페닐)프탈이미딘(N-phenyl 3,3-bis(4-hydroxyphenyl)phthalimidine, PBHPP)(1.2 몰), 하기 화학식 10-2의 4,4'-디클로로디페닐 술폰(4,4'-dichlorodiphenyl sulfone, DCDPS)(1.0 몰), 탄산칼륨(Potassium carbonate)(1.1 몰), N-메틸-2-피롤리돈(N-Methyl-2-pyrrolidone, NMP)(10.1 몰) 및 클로로벤젠(Chlorobenzene)(1.11 몰)을 상기 4구 플라스크에 공급하였다. 상기 반응 혼합물의 온도를 빠른 속도로 반응 온도인 170℃까지 승온시켰으며, 공용매로 넣어준 클로로벤젠이 반응 시간이 지남에 따라 반응 부산물인 H2O를 공비시켜 유출되는 것을 확인 할 수 있었다. 192℃의 온도에서 2 시간 동안 반응한 후, 최종 반응 혼합물은 진한 갈색 빛으로 변하였으며, 육안으로 반응 혼합물의 점도를 확인할 수 있었다. 상기 최종 반응 혼합물을 상온에서 냉각시킨 후, 염산을 첨가해 최종 생성물의 양 말단을 히드록시기로 치환하고, 미리 준비된 희석 용매 NMP에 희석하였다. 희석된 반응 혼합물을 셀라이트(celite) 필터에 여과한 후, 메탄올에 침전시켰다. 침전된 생성물을 증류수로 세정 및 필터링한 후, 이를 건조시켜 하기 화학식 10의 프탈이미딘계 페닐-아릴렌 에테르 술폰 블록 올리고머 화합물(수평균분자량= 6,000)을 얻었다. 이때, 화학식 10의 n값은 10이었다.
[화학식 10-1]
Figure PCTKR2017012713-appb-I000020
[화학식 10-2]
Figure PCTKR2017012713-appb-I000021
[화학식 10]
Figure PCTKR2017012713-appb-I000022
제조예 6: 화학식 10의 프탈이미딘계 페닐- 아릴렌 에테르 술폰 블록 올리고머 화합물의 제조
반응시간을 2 시간에서 3 시간으로 변경한 것을 제외하고는 상기 제조예 5와 동일한 방법으로 화학식 10의 프탈이미딘계 페닐-아릴렌 에테르 술폰 블록 올리고머 수평균분자량=10,000)를 얻었다. 이때 화학식 10의 n값은 16이었다.
제조예 7: 화학식 10의 프탈이미딘계 페닐- 아릴렌 에테르 술폰 블록 올리고머 화합물의 제조
반응시간을 2 시간에서 4 시간으로 변경한 것을 제외하고는 상기 제조예 5와 동일한 방법으로 화학식 10의 프탈이미딘계 페닐-아릴렌 에테르 술폰 블록 올리고머(수평균분자량=20,000)를 얻었다. 이때 화학식 10의 n값은 33이었다.
제조예 8: 화학식 10의 프탈이미딘계 페닐- 아릴렌 에테르 술폰 블록 올리고머 화합물의 제조
반응시간을 2 시간에서 5 시간으로 변경한 것을 제외하고는 상기 제조예 5와 동일한 방법으로 화학식 10의 프탈이미딘계 페닐-아릴렌 에테르 술폰 블록 올리고머(수평균분자량=30,000)를 얻었다. 이때 화학식 10의 n값은 49이었다.
제조예 9: 폴리카보네이트 올리고머의 제조
10L의 4구 플라스크에서 비스페놀 A 600g(2.63 몰)을 5.6 중량% 수산화나트륨 수용액 3300ml(184.6g, 4.62 몰)에 용해시킨 다음, 포스겐 260g(2.63 몰)을 메틸렌클로라이드에 포집하여 테프론 튜브(20mm)를 통하여 천천히 투입하면서 반응시켰다. 외부 온도는 0℃로 유지하였다. 관형 반응기를 통과한 반응물을 질소 분위기 하에서 약 10 분간 계면 반응시켜 점도평균분자량이 약 1,000인 올리고머성 폴리카보네이트를 제조하였다. 상기 제조된 올리고머성 폴리카보네이트를 포함하는 혼합물 중 유기상 2150mL와 수상 3220mL를 채취하고, p-tert-부틸페놀(PTBP) 13.83g(92.1 밀리몰, 비스페놀 A에 대하여 3.5 몰%), 테트라부틸암모늄클로라이드(tetrabutyl ammonium chloride, TBACl) 7.31g(26.3 밀리몰, 비스페놀 A에 대하여 1 몰%), 15 중량% 트리에틸아민(tri-ethylamine, TEA) 수용액 1mL를 혼합한 후 30분 반응시켜, 폴리카보네이트 올리고머 용액을 제조하였다.
제조예 10: 폴리카보네이트 올리고머의 제조
p-tert-부틸페놀(PTBP)의 함량을 13.83g(92.1 밀리몰, 비스페놀 A에 대하여 3.5 몰%)에서 1.98g (13.2 밀리몰, 비스페놀 A에 대하여 0.5 몰%)로 변경한 것을 제외하고는, 제조예 10과 동일한 방법으로 폴리카보네이트 올리고머 용액을 제조하였다.
제조예 11: 폴리카보네이트 블록 공중합체의 제조
상기 제조예 9에서 제조된 폴리카보네이트 올리고머 용액에 상기 화학식 9의 화합물 200g(공중합체를 구성하는 단량체 화합물의 총량 기준으로 10 중량%)을 투입하고, 층 분리가 일어난 후 유기상만 채취하여 상기 유기상과 동일한 양의 메틸렌클로라이드(2830g), 1.1N 수산화나트륨 수용액 1100mL(총 혼합물에 대하여 20 부피%), 15 중량% 트리에틸아민 150 μL를 혼합하여 1 시간 반응시킨 후, 추가로 15 중량% 트리에틸아민 1670 μL와 메틸렌클로라이드 1280g을 투입하여 1 시간 더 반응시켰다. 층 분리 후 점도가 상승한 유기상에 순수를 투입하여 알칼리 세정한 후 분리하였다. 계속해서 상기 유기상을 0.1N 염산 용액으로 세척한 후, 증류수로 2회 내지 3회 반복하여 세정하였다. 세정이 완료되고 상기 유기상의 농도를 일정하게 한 후, 76℃에서 일정 양의 2차 증류수를 이용하여 조립하였다. 조립이 완결된 후, 1차로 110℃에서 8 시간, 2차로 120℃에서 10 시간 건조하여 폴리카보네이트 블록 공중합체를 제조하였다.
제조예 12: 폴리카보네이트 블록 공중합체의 제조
화학식 9의 화합물의 양을 200g(공중합체를 구성하는 단량체 화합물의 총량 기준으로 10 중량%)에서 600g(공중합체를 구성하는 단량체 화합물의 총량 기준으로 30 중량%)으로 변경한 것을 제외하고는 상기 제조예 11과 동일한 방법으로 폴리카보네이트 블록 공중합체를 제조하였다.
제조예 13: 폴리카보네이트 블록 공중합체의 제조
화학식 9의 화합물의 양을 200g(공중합체를 구성하는 단량체 화합물의 총량 기준으로 10 중량%)에서 1,000g(공중합체를 구성하는 단량체 화합물의 총량 기준으로 50 중량%)으로 변경한 것을 제외하고는 상기 제조예 11과 동일한 방법으로 폴리카보네이트 블록 공중합체를 제조하였다.
제조예 14: 폴리카보네이트 블록 공중합체의 제조
화학식 9의 화합물 200g(공중합체를 구성하는 단량체 화합물의 총량 기준으로 10 중량%)을 사용하는 대신 화학식 10의 화합물 600g(공중합체를 구성하는 단량체 화합물의 총량 기준으로 30 중량%)을 사용한 것을 제외하고는 상기 제조예 11과 동일한 방법으로 폴리카보네이트 블록 공중합체를 제조하였다.
제조예 15: 폴리카보네이트 블록 공중합체의 제조
화학식 9의 화합물 200g(공중합체를 구성하는 단량체 화합물의 총량 기준으로 10 중량%)을 사용하는 대신 화학식 10의 화합물 1,000g(공중합체를 구성하는 단량체 화합물의 총량 기준으로 50 중량%)을 사용한 것을 제외하고는 상기 제조예 11과 동일한 방법으로 폴리카보네이트 블록 공중합체를 제조하였다.
제조예 16: 열가소성 방향족 폴리카보네이트(선형 폴리카보네이트) 수지의 제조
계면 중합법으로 점도평균분자량이 20,000인 선형 폴리카보네이트를 제조하였다.
제조예 17: 열가소성 방향족 폴리카보네이트(선형 폴리카보네이트) 수지의 제조
계면 중합법으로 점도평균분자량이 50,000인 선형 폴리카보네이트를 제조하였다.
제조예 18: 열가소성 방향족 폴리카보네이트(분지형 폴리카보네이트) 수지의 제조
계면 중합법으로 1.1.1-트리스(4-하이드록시페닐)에탄(THPE) 0.009 몰을 사용하여 점도평균분자량이 26,000인 분지형 폴리카보네이트를 제조하였다.
제조예 19: 폴리실록산 -폴리카보네이트 수지의 제조
수용액상의 비스페놀 A와 포스겐 가스를 메틸렌클로라이드 존재 하에서 계면 반응시켜 점도평균분자량이 약 1,000인 올리고머성 폴리카보네이트 혼합물 4L를 제조하였다. 상기 수득한 올리고머성 폴리카보네이트 혼합물과 함께, 메틸렌클로라이드에 용해된, 하기 화학식 11의 히드록시 말단 실록산(다우 코닝사, BY 16-752A) 4.5 중량%, 테트라부틸암모늄클로라이드(tetrabutyl ammonium chloride, TBACl) 18mL, p-tert-부틸페놀(PTBP) 15g 및 트리에틸아민(triethylamine, TEA, 15wt% 수용액) 2.75 mL를 혼합한 후 30분 동안 반응시켰다. 상기 반응시킨 올리고머성 폴리카보네이트 혼합물을 정치 분리시켜 층 분리가 일어난 후 유기상만 채취하여 여기에 수산화나트륨 수 용액 1,700g, 메틸렌클로라이드 3,600g 및 트리에틸아민 15 중량% 수용액 3 mL를 혼합하여 2 시간 동안 반응시켰다. 층 분리 후 점도가 상승한 유기상을 알칼리 세정한 후 분리하였다. 계속해서 상기 유기상을 0.1N 염산 용액으로 세척한 후 증류수로 2회 내지 3회 반복하여 세정하였다. 세정이 완료되고 상기 유기상의 농도를 일정하게 한 후, 76℃에서 일정 양의 순수를 이용하여 조립하였다. 조립이 완결된 후, 1차로 110℃에서 8 시간, 2차로 120℃에서 10 시간 동안 건조하여 폴리실록산-폴리카보네이트 수지(점도평균분자량=21,000)를 제조하였다.
[화학식 11]
Figure PCTKR2017012713-appb-I000023
[ 실시예 1]
1) 제조예 1에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=6,000)을 이용하여 제조예 12의 방법으로 제조된 폴리카보네이트 블록 공중합체, 2) 제조예 3에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=20,000), 및 3) 제조예 16에서 수득한 선형 폴리카보네이트(점도평균분자량=20,000)를 하기 표 1에 기재된 함량으로 혼합하여 원료 물질을 제조하였다. 그 후 260~320℃의 온도에서 이축 압출기를 사용하여 상기 원료 물질을 용융 및 혼련시켰다. 이어서 압출 다이를 통해 나온 용융물을 냉각하여 성형용 펠렛을 제조하였다. 제조된 펠렛을 90~100℃의 온도에서 4 시간 이상 열풍 건조 후, 280~300℃의 온도에서 사출 성형하여 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[ 실시예 2]
제조예 3에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=20,000)을 사용하는 대신 제조예 4에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=30,000)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[ 실시예 3]
제조예 1에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=6,000)을 이용하되, 제조예 12의 방법을 사용하는 대신 제조예 13의 방법을 사용하여 폴리카보네이트 블록 공중합체를 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[ 실시예 4]
제조예 16에서 수득한 선형 폴리카보네이트(점도평균분자량=20,000)를 사용하는 대신 제조예 17에서 수득한 선형 폴리카보네이트(점도평균분자량=50,000)를 사용하고, 반응물의 함량을 하기 표 1에 기재된 함량으로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[ 실시예 5]
제조예 12의 방법으로 폴리카보네이트 블록 공중합체를 제조할 때, 제조예 1에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=6,000)을 이용하는 대신 제조예 2에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=10,000)을 이용한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[ 실시예 6]
제조예 1에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=6,000)을 이용하여 제조예 12의 방법으로 제조된 폴리카보네이트 블록 공중합체, 제조예 3에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=20,000), 및 제조예 16에서 수득한 선형 폴리카보네이트(점도평균분자량=20,000)의 함량 각각을 하기 표 1에 기재된 함량으로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[ 실시예 7]
제조예 1에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=6,000)을 이용하여 제조예 12의 방법으로 제조된 폴리카보네이트 블록 공중합체, 제조예 3에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=20,000), 및 제조예 16에서 수득한 선형 폴리카보네이트(점도평균분자량=20,000)의 함량 각각을 하기 표 1에 기재된 함량으로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[ 실시예 8]
제조예 16에서 수득한 선형 폴리카보네이트(점도평균분자량=20,000)를 사용하는 대신에 제조예 18에서 수득한 분지형 폴리카보네이트(점도평균분자량=26,000)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[실시예 9]
제조예 16에서 수득한 선형 폴리카보네이트(점도평균분자량=20,000)를 사용하는 대신에 제조예 19에서 수득한 폴리실록산-폴리카보네이트 수지(점도평균분자량=21,000)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[실시예 10]
제조예 1에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=6,000)을 이용하여 제조예 12의 방법으로 제조된 폴리카보네이트 블록 공중합체 대신에, 제조예 5에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물(수평균분자량=6,000)을 이용하여 제조예 14의 방법으로 제조된 폴리카보네이트 블록 공중합체를 사용하고, 제조예 3에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=20,000) 대신에 제조예 7에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물(수평균분자량=20,000)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[실시예 11]
제조예 7에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물(수평균분자량=20,000) 대신 제조예 8에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물(수평균분자량=30,000)을 사용한 것을 제외하고는, 실시예 10과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[실시예 12]
제조예 5에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물(수평균분자량=6,000)을 이용하되, 제조예 14의 방법을 사용하는 대신 제조예 15의 방법을 사용하여 폴리카보네이트 블록 공중합체를 제조한 것을 제외하고는, 실시예 10과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[실시예 13]
제조예 16에서 수득한 선형 폴리카보네이트(점도평균분자량=20,000) 대신 제조예 17에서 수득한 선형 폴리카보네이트(점도평균분자량=50,000)를 사용하고, 반응물의 함량을 하기 표 1에 기재된 함량으로 변경한 것을 제외하고는, 실시예 10과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[실시예 14]
제조예 14의 방법으로 폴리카보네이트 블록 공중합체를 제조할 때, 제조예 5에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물(수평균분자량=6,000)을 이용하는 대신 제조예 6에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물(수평균분자량=10,000)을 이용한 것을 제외하고는, 실시예 10과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[실시예 15]
제조예 5에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물(수평균분자량=6,000)을 이용하여 제조예 14의 방법으로 제조된 폴리카보네이트 블록 공중합체, 제조예 7에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물(수평균분자량=20,000), 및 제조예 16에서 수득한 선형 폴리카보네이트(점도평균분자량=20,000)의 함량 각각을 하기 표 1에 기재된 함량으로 변경한 것을 제외하고는, 실시예 10과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[실시예 16]
제조예 5에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물(수평균분자량=6,000)을 이용하여 제조예 14의 방법으로 제조된 폴리카보네이트 블록 공중합체, 제조예 7에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물(수평균분자량=20,000), 및 제조예 16에서 수득한 선형 폴리카보네이트(점도평균분자량=20,000)의 함량 각각을 하기 표 1에 기재된 함량으로 변경한 것을 제외하고는, 실시예 10과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[실시예 17]
제조예 16에서 수득한 선형 폴리카보네이트(점도평균분자량=20,000) 대신에 제조예 18에서 수득한 분지형 폴리카보네이트(점도평균분자량=26,000)를 사용한 것을 제외하고는, 실시예 10과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[실시예 18]
제조예 16에서 수득한 선형 폴리카보네이트(점도평균분자량=20,000) 대신에 제조예 19에서 수득한 폴리실록산-폴리카보네이트 수지(점도평균분자량=21,000)를 사용한 것을 제외하고는, 실시예 10과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[비교예 1]
제조예 16에서 수득한 선형 폴리카보네이트(점도평균분자량=20,000)만을 단독으로 원료 물질로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[비교예 2]
제조예 17에서 수득한 선형 폴리카보네이트(점도평균분자량=50,000)만을 단독으로 원료 물질로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[비교예 3]
제조예 1에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=6,000)을 이용하여 제조예 11의 방법으로 제조된 폴리카보네이트 블록 공중합체만을 단독으로 원료 물질로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[ 비교예 4]
제조예 2에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=10,000)을 이용하여 제조예 12의 방법으로 제조된 폴리카보네이트 블록 공중합체만을 단독으로 원료 물질로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[비교예 5]
제조예 1에서 수득한 프탈이미딘계 폴리에스테르 화합물(수평균분자량=6,000)을 이용하여 제조예 13의 방법으로 제조된 폴리카보네이트 블록 공중합체만을 단독으로 원료 물질로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
[비교예 6]
제조예 5에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물(수평균분자량=6,000)을 이용하여 제조예 14의 방법으로 제조된 폴리카보네이트 블록 공중합체만을 단독으로 원료 물질로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 펠렛 및 시편을 제조하였다. 제조된 시편에 대한 물성들을 측정 및 평가하고, 그 결과를 하기 표 2에 나타내었다.
상기 실시예 1 내지 18 및 비교예 1 내지 6에서 사용된 원료 물질의 성분 및 함량(단위: 중량부)을 하기 표 1에 나타내었다. 표 1에서 각 용어의 의미는 다음과 같다.
- Mn: 수평균분자량
- Mv: 점도평균분자량
- 블록 공중합체 (1): 제조예 1에서 수득한 프탈이미딘계 폴리에스테르 화합물 (Mn=6,000)을 이용하여 제조예 11의 제조 방법(프탈이미딘계 폴리에스테르 화합물의 함량이 공중합체를 구성하는 단량체 화합물의 총량 기준으로 10 중량%)으로 제조된 폴리카보네이트 블록 공중합체
- 블록 공중합체 (2): 제조예 1에서 수득한 프탈이미딘계 폴리에스테르 화합물 (Mn=6,000)을 이용하여 제조예 12의 제조 방법(프탈이미딘계 폴리에스테르 화합물의 함량이 공중합체를 구성하는 단량체 화합물의 총량 기준으로 30 중량%)으로 제조된 폴리카보네이트 블록 공중합체
- 블록 공중합체 (3): 제조예 2에서 수득한 프탈이미딘계 폴리에스테르 화합물 (Mn=10,000)을 이용하여 제조예 12의 제조 방법(프탈이미딘계 폴리에스테르 화합물의 함량이 공중합체를 구성하는 단량체 화합물의 총량 기준으로 30 중량%)으로 제조된 폴리카보네이트 블록 공중합체
- 블록 공중합체 (4): 제조예 1에서 수득한 프탈이미딘계 폴리에스테르 화합물 (Mn=6,000)을 이용하여 제조예 13의 제조 방법(프탈이미딘계 폴리에스테르 화합물의 함량이 공중합체를 구성하는 단량체 화합물의 총량 기준으로 50 중량%)으로 제조된 폴리카보네이트 블록 공중합체
- 블록 공중합체 (5): 제조예 5에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물 (Mn=6,000)을 이용하여 제조예 14의 제조 방법(프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물의 함량이 공중합체를 구성하는 단량체 화합물의 총량 기준으로 30 중량%)으로 제조된 폴리카보네이트 블록 공중합체
- 블록 공중합체 (6): 제조예 6에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물 (Mn=10,000)을 이용하여 제조예 14의 제조 방법(프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물의 함량이 공중합체를 구성하는 단량체 화합물의 총량 기준으로 30 중량%)으로 제조된 폴리카보네이트 블록 공중합체
- 블록 공중합체 (7): 제조예 5에서 수득한 프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물 (Mn=6,000)을 이용하여 제조예 15의 제조 방법(프탈이미딘계 페닐-아릴렌 에테르 술폰 화합물의 함량이 공중합체를 구성하는 단량체 화합물의 총량 기준으로 50 중량%)으로 제조된 폴리카보네이트 블록 공중합체
[표 1]
Figure PCTKR2017012713-appb-I000024
상기 실시예 1 내지 18 및 비교예 1 내지 6에서 제조된 시편에 대한 물성을 다음과 같은 방법으로 측정하였으며, 그 결과를 하기 표 2에 나타내었다.
(1) 유리전이 온도: 시차주사 열량계 (Perkin-Elmer사의 DSC-7 & Robotic)를 사용하여 유리전이 온도를 측정하였다.
(2) 유동성: ASTM D1238에 의거하여 330℃ 및 2.16 kgf의 조건에서 유동성을 측정하였다.
[표 2]
Figure PCTKR2017012713-appb-I000025
상기 표 2에 나타난 바와 같이, 본 발명에 따른 실시예 1 내지 18의 경우, 특정 구조식의 폴리에스테르 화합물 또는 특정 구조식의 페닐-아릴렌 에테르 술폰 화합물; 폴리카보네이트 블록 공중합체; 및 열가소성 방향족 폴리카보네이트 수지 또는 폴리실록산-폴리카보네이트 수지를 포함하고 있어, 내열성이 탁월하게 우수함과 동시에 유동성 등의 물성 밸런스도 우수하였으나, 본 발명에 따르지 않는 비교예 1 내지 6의 경우, 열가소성 방향족 폴리카보네이트 수지 또는 폴리카보네이트 블록 공중합체를 단독 사용함에 따라, 내열성이 열악하거나 (비교예 1 내지 3), 유동성이 현저히 저하됨을 알 수 있다 (비교예 4 내지 6).

Claims (11)

  1. (1) 하기 화학식 1의 구조를 갖는 폴리에스테르 화합물 또는 하기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물;
    (2) 폴리카보네이트 블록 공중합체; 및
    (3) 열가소성 방향족 폴리카보네이트 수지 또는 폴리실록산-폴리카보네이트 수지;
    를 포함하는 폴리카보네이트 수지 조성물:
    [화학식 1]
    Figure PCTKR2017012713-appb-I000026
    상기 화학식 1에서,
    R1은 독립적으로 수소 원자, 탄소수 1 내지 4의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 4 내지 10의 사이클로알킬알킬기, 또는 탄소수 6 내지 10의 아릴기를 나타내고;
    X는 산소 원자 또는 NR2를 나타내며, 여기서 R2는 수소 원자; 탄소수 1 내지 4의 알킬기; 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 3 내지 10의 사이클로알킬기; 또는 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 6 내지 10의 아릴기를 나타내고;
    y는 2 내지 50의 정수이며;
    [화학식 2]
    Figure PCTKR2017012713-appb-I000027
    상기 화학식 2에서,
    R4 및 R5는 각각 독립적으로 탄소수 1 내지 10의 탄화수소 기이고;
    m 및 n은 각각 독립적으로 0 내지 4의 정수이며;
    y는 2 내지 150의 정수이고;
    X는 산소 원자 또는 NR2를 나타내며, 여기서 R2는 수소 원자; 탄소수 1 내지 4의 알킬기; 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 3 내지 10의 사이클로알킬기; 또는 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 6 내지 10의 아릴기를 나타낸다.
  2. 제1항에 있어서, 폴리카보네이트 수지 조성물 100 중량부 내에,
    (1) 화학식 1의 구조를 갖는 폴리에스테르 화합물 또는 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물이 10 중량부 내지 80 중량부 포함되고,
    (2) 폴리카보네이트 블록 공중합체가 5 중량부 내지 60 중량부 포함되며,
    (3) 열가소성 방향족 폴리카보네이트 수지 또는 폴리실록산-폴리카보네이트 수지가 10 중량부 내지 60 중량부 포함되는,
    폴리카보네이트 수지 조성물.
  3. 제1항에 있어서, 화학식 1의 구조를 갖는 폴리에스테르 화합물이 하기 화학식 1-1로 표시되는 화합물과 하기 화학식 1-2로 표시되는 화합물을 축합 반응시켜 제조된 것인, 폴리카보네이트 수지 조성물:
    [화학식 1-1]
    Figure PCTKR2017012713-appb-I000028
    [화학식 1-2]
    Figure PCTKR2017012713-appb-I000029
    상기 화학식 1-1 및 1-2에서,
    R1은 독립적으로 수소 원자, 탄소수 1 내지 4의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 4 내지 10의 사이클로알킬알킬기, 또는 탄소수 6 내지 10의 아릴기를 나타내고;
    X는 산소 원자 또는 NR2를 나타내며, 여기서 R2는 수소 원자; 탄소수 1 내지 4의 알킬기; 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 3 내지 10의 사이클로알킬기; 또는 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 6 내지 10의 아릴기를 나타내고;
    Y는 각각 독립적으로 히드록시기 또는 할로겐 원자를 나타내며;
    R3는 벤젠 고리를 나타낸다.
  4. 제1항에 있어서, 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물이 하기 화학식 2-1로 표시되는 화합물과 화학식 2-2로 표시되는 화합물을 중축합 반응시켜 제조된 것인, 폴리카보네이트 수지 조성물:
    Figure PCTKR2017012713-appb-I000030
    상기 화학식 2-1에서,
    X는 산소 원자 또는 NR2를 나타내며, 여기서 R2는 수소 원자; 탄소수 1 내지 4의 알킬기; 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 3 내지 10의 사이클로알킬기; 또는 할로겐 원자 및 탄소수 1 내지 4의 알킬기로 이루어진 군으로부터 선택된 치환기로 치환 또는 비치환된 탄소수 6 내지 10의 아릴기를 나타내고,
    [화학식 2-2]
    Figure PCTKR2017012713-appb-I000031
    상기 화학식 2-2에서,
    R4 및 R5는 각각 독립적으로 탄소수 1 내지 10의 탄화수소 기이고; m 및 n은 각각 독립적으로 0 내지 4의 정수이며; Z는 각각 독립적으로 할로겐 원자 또는 히드록시기이다.
  5. 제1항에 있어서, 화학식 1의 구조를 갖는 폴리에스테르 화합물 또는 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물의 수평균분자량(Mn)이 500 내지 30,000 g/mol인, 폴리카보네이트 수지 조성물.
  6. 제1항에 있어서, 폴리카보네이트 블록 공중합체가, 상기 화학식 1의 구조를 갖는 폴리에스테르 화합물 및 상기 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물 중에서 선택되는 화합물; 및 폴리카보네이트 블록;을 반복단위로 포함하는 것인, 폴리카보네이트 수지 조성물.
  7. 제1항에 있어서,
    (1) 화학식 1의 구조를 갖는 폴리에스테르 화합물;
    (2) 화학식 1의 구조를 갖는 폴리에스테르 화합물과 폴리카보네이트 올리고머를 반응시켜 얻어진 폴리카보네이트 블록 공중합체; 및
    (3) 열가소성 방향족 폴리카보네이트 수지 또는 폴리실록산-폴리카보네이트 수지;
    를 포함하는 폴리카보네이트 수지 조성물.
  8. 제1항에 있어서,
    (1) 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물;
    (2) 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물과 폴리카보네이트 올리고머를 반응시켜 얻어진 폴리카보네이트 블록 공중합체; 및
    (3) 열가소성 방향족 폴리카보네이트 수지 또는 폴리실록산-폴리카보네이트 수지;
    를 포함하는 폴리카보네이트 수지 조성물.
  9. 제1항에 있어서, 폴리실록산-폴리카보네이트 수지가 하기 화학식 6의 히드록시 말단 실록산 및 하기 화학식 7의 폴리카보네이트 블록을 반복단위로 포함하는 것인, 폴리카보네이트 수지 조성물:
    [화학식 6]
    Figure PCTKR2017012713-appb-I000032
    상기 화학식 6에서,
    R12는 각각 독립적으로, 수소 원자, 할로겐 원자, 히드록시기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 6 내지 20의 아릴기를 나타내고,
    R13은 각각 독립적으로, 탄소수 1 내지 13의 탄화수소기 또는 히드록시기를 나타내며,
    R14는 각각 독립적으로, 탄소수 2 내지 8의 알킬렌기를 나타내고,
    m은 각각 독립적으로, 0 내지 4의 정수를 나타내며,
    n은 독립적으로, 2 내지 1,000의 정수를 나타내고,
    [화학식 7]
    Figure PCTKR2017012713-appb-I000033
    상기 화학식 7에서,
    R15는 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 2 내지 13의 알케닐기, 탄소수 1 내지 13의 알콕시기, 할로겐 원자, 또는 니트로 기로 치환된 또는 비치환된 탄소수 6 내지 30의 방향족 탄화수소기를 나타낸다.
  10. 제1항에 있어서, 폴리카보네이트 블록 공중합체가 화학식 1의 구조를 갖는 폴리에스테르 화합물 및 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물 중에서 선택되는 화합물을 반복단위로서 포함하며, 폴리카보네이트 블록 공중합체에 포함되는, 화학식 1의 구조를 갖는 폴리에스테르 화합물 및 화학식 2의 구조를 갖는 페닐-아릴렌 에테르 술폰 화합물 중에서 선택되는 화합물의 양은, 상기 폴리카보네이트 블록 공중합체를 구성하는 단량체 화합물의 총 중량을 100 중량%로 기준하였을 때, 0.5 내지 50 중량%인, 폴리카보네이트 수지 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 폴리카보네이트 수지 조성물을 포함하는 성형품.
PCT/KR2017/012713 2016-12-08 2017-11-10 내열성과 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품 WO2018105907A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/467,891 US10934431B2 (en) 2016-12-08 2017-11-10 Polycarbonate resin composition having excellent heat resistance and fluidity, and molded product including same
EP17878940.0A EP3553131A4 (en) 2016-12-08 2017-11-10 COMPOSITION OF POLYCARBONATE RESIN HAVING EXCELLENT HEAT RESISTANCE AND EXCELLENT FLUIDITY AND MOLDED PRODUCT CONTAINING IT
CN201780076231.2A CN110062792B (zh) 2016-12-08 2017-11-10 耐热性和流动性优异的聚碳酸酯树脂组合物及包含其的成型品
JP2019530667A JP6860671B2 (ja) 2016-12-08 2017-11-10 優れた耐熱性と流動性を有するポリカーボネート樹脂組成物及びそれを含む成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160166523A KR101828300B1 (ko) 2016-12-08 2016-12-08 내열성과 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
KR10-2016-0166523 2016-12-08

Publications (1)

Publication Number Publication Date
WO2018105907A1 true WO2018105907A1 (ko) 2018-06-14

Family

ID=61231590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012713 WO2018105907A1 (ko) 2016-12-08 2017-11-10 내열성과 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품

Country Status (6)

Country Link
US (1) US10934431B2 (ko)
EP (1) EP3553131A4 (ko)
JP (1) JP6860671B2 (ko)
KR (1) KR101828300B1 (ko)
CN (1) CN110062792B (ko)
WO (1) WO2018105907A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109135244A (zh) * 2018-08-31 2019-01-04 金发科技股份有限公司 一种塑料合金及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102114461B1 (ko) * 2018-12-03 2020-05-25 주식회사 삼양사 난연성 및 내열성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
KR102114464B1 (ko) * 2018-12-05 2020-05-25 주식회사 삼양사 난연성 및 내열성을 동시에 우수하게 만족시키는 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
KR102199917B1 (ko) * 2018-12-11 2021-01-11 주식회사 삼양사 내열성 및 내충격성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
KR102118186B1 (ko) * 2018-12-14 2020-06-03 주식회사 삼양사 내열성 및 내충격성이 우수하게 균형잡힌 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
KR102175848B1 (ko) * 2018-12-26 2020-11-09 주식회사 삼양사 내열성 및 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
CN110563952A (zh) * 2019-08-15 2019-12-13 温州大学 一种Cardo型聚醚砜聚合物、薄膜、制备方法及应用
KR102300057B1 (ko) * 2019-10-25 2021-09-08 주식회사 삼양사 3d-프린팅용 필라멘트 및 이를 사용하여 물체를 3d-프린팅하는 방법

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2999835A (en) 1959-01-02 1961-09-12 Gen Electric Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same
US3028365A (en) 1953-10-16 1962-04-03 Bayer Ag Thermoplastic aromatic polycarbonates and their manufacture
US3153008A (en) 1955-07-05 1964-10-13 Gen Electric Aromatic carbonate resins and preparation thereof
US3334154A (en) 1963-02-21 1967-08-01 Gen Electric Flame retardant mixed polycarbonate resins prepared from tetrabromo bisphenol-a
US4131575A (en) 1975-02-22 1978-12-26 Bayer Aktiengesellschaft Thermoplastic polycarbonate molding materials with improved mold release
US4918149A (en) 1988-11-04 1990-04-17 General Electric Company Polyphthalatecarbonate/polycarbonate resin blends
US5070177A (en) 1988-11-04 1991-12-03 General Electric Company Ultraviolet radiation resistant polyphthalatecarbonate resin
US6072011A (en) 1991-07-01 2000-06-06 General Electric Company Polycarbonate-polysiloxane block copolymers
JP3095412B2 (ja) * 1989-04-03 2000-10-03 アモコ コーポレイション ポリ(アリールエーテル)とのポリカーボネート及び/又はポリアリーレートブロックコポリマー並びにそれらの製造方法
KR20110117068A (ko) * 2008-12-31 2011-10-26 사빅 이노베이티브 플라스틱스 아이피 비.브이. 폴리카보네이트 조성물
KR20140054174A (ko) * 2011-08-03 2014-05-08 사빅 이노베이티브 플라스틱스 아이피 비.브이. 얇은 벽 및 높은 표면 광택 물품을 위한 유리 충전된 공중합체 제품
KR20150104628A (ko) * 2013-01-11 2015-09-15 사빅 글로벌 테크놀러지스 비.브이. 향상된 열 치수 안정성 및 고 굴절률을 갖는 폴리카보네이트 조성물
WO2016063154A1 (en) * 2014-10-22 2016-04-28 Sabic Global Technologies B.V. Polycarbonate/polyester composition and article prepared therefrom

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279091B1 (en) * 1987-02-17 1992-05-27 Chevron Research And Technology Company Phenolphthalein polyarylate polymers and alloy compositions thereof
US4652608A (en) * 1984-12-28 1987-03-24 Chevron Research Company Alkyl substituted phenolphthalein polyarylate polymer and alloy
US8487065B2 (en) * 2005-11-30 2013-07-16 Sabic Innovative Plastics Ip B.V. Copolycarbonate-polyesters, methods of manufacture, and uses thereof
US20080274360A1 (en) * 2007-05-04 2008-11-06 General Electric Company Polyaryl ether ketone - polycarbonate copolymer blends
US8022166B2 (en) * 2008-06-23 2011-09-20 Sabic Innovative Plastics Ip B.V. Polycarbonate compositions
JP5805982B2 (ja) * 2011-04-20 2015-11-10 ユニチカ株式会社 ポリアリレート樹脂フィルムおよび気体分離膜
US9062164B2 (en) * 2011-10-31 2015-06-23 Samyang Corporation Polysiloxane-polycarbonate copolymer and method of manufacturing the same
EP2977409B2 (en) * 2013-03-21 2022-12-07 Teijin Limited Glass-fiber-reinforced polycarbonate resin composition
CN106164175A (zh) * 2014-04-15 2016-11-23 沙特基础工业全球技术有限公司 高热聚碳酸酯组合物
EP3169720B1 (en) * 2014-07-17 2018-12-12 SABIC Global Technologies B.V. High flow, high heat polycarbonate compositions

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3028365A (en) 1953-10-16 1962-04-03 Bayer Ag Thermoplastic aromatic polycarbonates and their manufacture
US3153008A (en) 1955-07-05 1964-10-13 Gen Electric Aromatic carbonate resins and preparation thereof
US2999835A (en) 1959-01-02 1961-09-12 Gen Electric Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same
US3334154A (en) 1963-02-21 1967-08-01 Gen Electric Flame retardant mixed polycarbonate resins prepared from tetrabromo bisphenol-a
US4131575A (en) 1975-02-22 1978-12-26 Bayer Aktiengesellschaft Thermoplastic polycarbonate molding materials with improved mold release
US5070177A (en) 1988-11-04 1991-12-03 General Electric Company Ultraviolet radiation resistant polyphthalatecarbonate resin
US4918149A (en) 1988-11-04 1990-04-17 General Electric Company Polyphthalatecarbonate/polycarbonate resin blends
JP3095412B2 (ja) * 1989-04-03 2000-10-03 アモコ コーポレイション ポリ(アリールエーテル)とのポリカーボネート及び/又はポリアリーレートブロックコポリマー並びにそれらの製造方法
US6072011A (en) 1991-07-01 2000-06-06 General Electric Company Polycarbonate-polysiloxane block copolymers
KR20110117068A (ko) * 2008-12-31 2011-10-26 사빅 이노베이티브 플라스틱스 아이피 비.브이. 폴리카보네이트 조성물
KR20140054174A (ko) * 2011-08-03 2014-05-08 사빅 이노베이티브 플라스틱스 아이피 비.브이. 얇은 벽 및 높은 표면 광택 물품을 위한 유리 충전된 공중합체 제품
KR20150104628A (ko) * 2013-01-11 2015-09-15 사빅 글로벌 테크놀러지스 비.브이. 향상된 열 치수 안정성 및 고 굴절률을 갖는 폴리카보네이트 조성물
WO2016063154A1 (en) * 2014-10-22 2016-04-28 Sabic Global Technologies B.V. Polycarbonate/polyester composition and article prepared therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3553131A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109135244A (zh) * 2018-08-31 2019-01-04 金发科技股份有限公司 一种塑料合金及其制备方法

Also Published As

Publication number Publication date
CN110062792B (zh) 2021-06-29
JP2020502311A (ja) 2020-01-23
EP3553131A4 (en) 2020-08-05
CN110062792A (zh) 2019-07-26
KR101828300B1 (ko) 2018-02-13
US10934431B2 (en) 2021-03-02
JP6860671B2 (ja) 2021-04-21
US20200087509A1 (en) 2020-03-19
EP3553131A1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
WO2018105907A1 (ko) 내열성과 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2013066002A1 (en) Polysiloxane-polycarbonate copolymer and method of manufacturing the same
WO2011122767A2 (ko) 히드록시 말단 실록산, 폴리실록산-폴리카보네이트 공중합체 및 그 제조 방법
WO2013100606A1 (en) Flame-retardant thermoplastic resin composition and molded article thereof
WO2013066000A1 (en) Polycarbonate resin composition having improved low-temperature impact resistance and method of manufacturing the same
WO2013100494A1 (en) Method of preparing polysiloxane-polycarbonate copolymer
WO2012091293A2 (ko) 내화학성이 우수한 폴리카보네이트 수지 조성물
WO2015002427A1 (ko) 폴리오르가노실록산 화합물, 제조방법 및 이를 포함하는 코폴리카보네이트 수지
WO2014204146A1 (ko) 난연성과 투명성이 우수한 열가소성 공중합체 수지 및 그 제조방법
WO2017126901A1 (ko) 폴리에스테르-폴리카보네이트 공중합체 및 그 제조방법
WO2012060516A1 (ko) 폴리카보네이트 수지 및 상기 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물
WO2020060148A1 (ko) 내충격성, 난연성 및 투명도가 우수한 폴리실록산-폴리카보네이트 공중합체 및 그 제조방법
WO2020055178A1 (ko) 디올 화합물, 폴리카보네이트 및 이의 제조방법
WO2015178676A1 (ko) 투명성 및 내충격성이 향상된 폴리실록산-폴리카보네이트 공중합체 및 그 제조방법
WO2013100288A1 (ko) 분지상 폴리카보네이트-폴리실록산 공중합체 및 그 제조방법
WO2023055099A1 (ko) 열가소성 수지 및 이로부터 제조된 성형품
WO2016003132A1 (ko) 투명성 및 저온 내충격성이 향상된 폴리실록산-폴리카보네이트 공중합체 및 그 제조방법
WO2017222319A1 (ko) 내열성과 투명성이 우수한 열가소성 공중합체 수지 및 이의 제조 방법
WO2020184972A1 (ko) 폴리이미드 공중합체, 폴리이미드 공중합체의 제조방법, 이를 이용한 감광성 수지 조성물, 감광성 수지 필름 및 광학 장치
WO2021215838A1 (ko) 히드록시 말단 폴리실록산 혼합물을 이용한 폴리실록산-폴리카보네이트 공중합체 및 그 제조방법
WO2020060266A1 (ko) 프탈로니트릴 올리고머를 포함하는 3차원 프린팅용 잉크
WO2022080938A1 (ko) 폴리카보네이트 및 이의 제조방법
WO2022260446A1 (ko) 폴리카보네이트 컴파운드 조성물 및 이의 제조 방법
WO2020138644A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2021086033A1 (ko) 폴리카보네이트 수지 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017878940

Country of ref document: EP

Effective date: 20190708