WO2018104044A1 - Hybridfahrzeug - Google Patents

Hybridfahrzeug Download PDF

Info

Publication number
WO2018104044A1
WO2018104044A1 PCT/EP2017/079829 EP2017079829W WO2018104044A1 WO 2018104044 A1 WO2018104044 A1 WO 2018104044A1 EP 2017079829 W EP2017079829 W EP 2017079829W WO 2018104044 A1 WO2018104044 A1 WO 2018104044A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid vehicle
electric motors
power supply
vehicle according
wheels
Prior art date
Application number
PCT/EP2017/079829
Other languages
English (en)
French (fr)
Inventor
Joachim Fröschl
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN201780063148.1A priority Critical patent/CN109843626B/zh
Publication of WO2018104044A1 publication Critical patent/WO2018104044A1/de
Priority to US16/369,622 priority patent/US11034231B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/406Torque distribution between left and right wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a hybrid vehicle with an internal combustion engine, an electric motor and at least four wheels.
  • Hybrid vehicles using both an internal combustion engine and an electric motor for driving are known.
  • serial hybrid vehicles an internal combustion engine drives a generator that provides electrical power to an electric motor.
  • This electric motor in turn drives the wheels of the vehicle.
  • This approach is less efficient, since only reduced efficiencies of the overall system can be achieved by the series connection of internal combustion engine and electric motor.
  • one axis of the hybrid vehicle is driven by the internal combustion engine, the other axis being driven by an electric motor.
  • the electric motor also serves for
  • Internal combustion engine at least two electric motors, at least four wheels and a first axis and at least one second axis, wherein each two of the wheels are associated with one of the axes.
  • the internal combustion engine is provided for driving the wheels of the first axle, and one of the electric motors is provided for driving each of the wheels of the second axle.
  • a pair of opposing wheels are considered, which are attached by means of independent suspension on the vehicle.
  • pairs of wheels should fall, as for example in Trucks are common.
  • the internal combustion engine can be connected in a known manner, for example by a transmission and / or a clutch, in a rotationally fixed manner to the wheels of the first axle in order to be able to transmit the generated torque to the wheels of the first axle.
  • the electric motors can drive the wheels of the second axle via a transmission and / or a clutch.
  • engagement of an automatic stability program of the vehicle may be performed by a short regenerative operation of a single electric motor, whereby energy can also be recovered here.
  • the driving safety is increased by the individual electric motors, since an all-wheel drive assistance can be optimized and improvements when starting on the mountain or when driving downhill by the individual control of the wheels of the second axis are possible.
  • the first axle may be the front axle of the vehicle and the second axle may be the rear axle of the vehicle or vice versa. If the
  • Electric motors are provided at the front axle, the efficiency of the Recuperation further increase, whereas the electric motors on the rear axle can be easily integrated into existing drive concepts.
  • the vehicle has an on-board power supply and consumers that are electrically connected to the on-board power supply, wherein the electric motors are electrically connected to the on-board power supply.
  • Electric motors feed electricity into the on-board power supply system and extract it, thereby increasing the supply reliability of the consumers and the maximum power of the on-board power supply system.
  • the on-board power network is operated, for example, with a voltage of 48 volts.
  • the internal combustion engine may have a generator that can feed electricity into the on-board power supply, whereby a basic supply of consumers with electricity during operation of the internal combustion engine is ensured.
  • the generator is a starter generator, it can also generate electricity from the
  • the on-board power supply system has two parallel cable strands which extend from a power supply of the
  • associated cable harness can be switched on or off.
  • the electric motors are directly coupled to one another mechanically and / or electrically.
  • the mechanical coupling is used for torque transmission between the two electric motors.
  • the coupling of the electric motors can be done without using the
  • On-board power supply system In this way, emergency operation functions can be realized, which keep the vehicle to some extent manoeuvrable, even if, for example, the steering or the on-board electrical system has failed.
  • the electric motors by means of a shaft, a clutch and a differential gear with each other mechanically coupled, which can be implemented in a reliable manner, an emergency operation system.
  • the electric motors can be coupled to each other by a direct wiring with a switch.
  • the switch When the switch is closed, one of the electric motors generates regenerative power for the other, which is then operated by a motor. This creates opposing torques on the wheels, which in turn creates a steering torque.
  • the hybrid vehicle has at least two
  • Electric motor accumulators groups of cells or the whole
  • Electric motor accumulators can be coupled by means of a switch.
  • the coupled cells, groups or accumulators then act like one
  • the switch can be a semiconductor switch or a contactor. In this way, an electrical coupling can be realized without much effort.
  • the vehicle preferably has at least one on-board accumulator which is electrically connected to the vehicle electrical system, so that the consumers can also be supplied with power independently of the operation of the internal combustion engine or of the electric motors.
  • the hybrid vehicle can be a
  • Have control unit which is adapted to control the electric motors such that for recuperation during steering maneuvers, the electric motor of the inside wheel is operated as a generator to generate a steering torque. This can also be used in a steering maneuver, for example during
  • Lane change energy to be recovered.
  • the steering torque generated by the generator operation can both support a Conventionally generated steering torque as well as the only steering torque of a steering maneuver are generated.
  • Figure 1 is a schematic diagram of a first embodiment of a hybrid vehicle according to the invention.
  • FIG 2 is a schematic diagram of a second embodiment of a hybrid vehicle according to the invention.
  • a hybrid vehicle 10 is schematically indicated as a dashed rectangle.
  • the hybrid vehicle 10 has four wheels 12, two of which are arranged on a first axis 14 and the other two on a second axis 16.
  • the wheels 12, in particular those of the second axle 16, can be fastened to the hybrid vehicle 10 by means of an independent wheel suspension.
  • first axle 14 is the front axle of the hybrid vehicle 10 and the second axle 16 is the rear axle of the hybrid vehicle 10
  • Hybrid vehicle 10 the wheels 12 of the first axis 14 by a steering (not shown) are operated in a conventional manner. This is indicated by the double arrows in the figures.
  • Front axle of the hybrid vehicle 10 and the first axis 14 is the rear axle of the hybrid vehicle 10.
  • the hybrid vehicle 10 also has an internal combustion engine 18, two electric motors 20, 22 and an on-board power supply 24.
  • the internal combustion engine 18, more specifically the output shaft (not shown) of the engine 18, is connected to the first axle 14 by means of a transmission 26 and a clutch 28.
  • the engine 18 may thus drive the wheels 12 of the first axle 14 in a known manner.
  • the engine 18 includes an electric generator 30, a starter 32, and a power supply 34.
  • the generator 30 and the starter 32 are connected to the power supply 34, which in turn is integrated into the on-board power supply 24.
  • the generator 30 can power in the
  • Feed the on-board power supply 24 and the starter 32 can supply power from the
  • the generator 30 and the starter 32 are designed as a starter generator.
  • the electric motors 20, 22 are provided on the second axis 16.
  • One of the electric motors 20, 22 is connected to one of the wheels 12 of the second axle 16 and can drive this wheel 12 assigned to it.
  • a transmission and / or a clutch (not shown) may be provided between the electric motors 20, 22 and the associated wheels 12, a transmission and / or a clutch (not shown) may be provided.
  • the left electric motor 20 is connected to the left wheel 12 of the second axle 16 and the right electric motor 22 is connected to the right wheel 12 of the second axle 16.
  • the electric motors 20, 22 are also electrically connected to the on-board power supply 24 and can feed power into the on-board power supply 24 and remove it therefrom.
  • the on-board power supply 24 is, for example, with a
  • the on-board power supply 24 has two parallel cable strands 36, 38, which extend from the power supply 34 to one of the electric motors 20, 22.
  • the cable strands 36, 38 are separated from each other, wherein they are electrically connected by means of the power supply 34.
  • the left harness 36 extends from the power supply 34 to the left electric motor 20 and the right
  • Harness 38 extends from the power supply 34 to the right
  • Electric motor 22 Via the on-board power supply 24, the electric motors 20, 22 are thus connected to each other only by means of the power supply 34.
  • Several consumers 40 of the hybrid vehicle 10 are also connected to the on-board power supply 24. In this case, some consumers 40 are connected to only one of the two cable strands 36, 38, whereas others
  • Consumers 40 can be connected to two cable strands 36, 38.
  • the cable strands 36, 38 can be used as supply rails with a
  • Supply line may be formed, to which the consumers 40 and the
  • Electric motors 20, 22 can be infected.
  • the consumers 40 can be supplied, for example, with electric current and at the same time exchange data (power line communication).
  • the hybrid vehicle 10 also has an on-board accumulator 42 which is connected to the on-board power supply 24, in the embodiment shown with both
  • Cable strands 36, 38 is connected and which serves as an energy storage.
  • a control unit 43 is provided, which is formed for example in the power supply 34 and / or as part of the motor control.
  • the control unit 43 can be the generator operation of the
  • electric motors 20, 22 control that individual
  • Electric motor 20 generate a larger braking torque, a consumer 40 is turned on by the control unit 43, which is connected only to the left wiring harness 36.
  • the electric motors 20, 22 can be coupled to one another mechanically by means of shafts 44, a differential gear 46 and a clutch 48 for torque transmission.
  • the electric motors 20, 22 can be electrically coupled to one another by means of a direct wiring 50 (indicated by dashed lines in FIG. 1) and a switch 52.
  • a direct wiring 50 indicated by dashed lines in FIG. 1
  • the wheels 12 of the first axle 14 are driven by the engine 18.
  • the internal combustion engine 18 may be assisted to drive the hybrid vehicle 10 by the electric motors 20, 22 by motoring the electric motors 20, 22 and thus also driving the wheels 12 of the second axle 16. In this way, a limited four-wheel drive can be realized. This is helpful, for example, when starting off on slippery roads and when starting off on the mountain.
  • the electric motors 20, 22 generate different torques, so that slip balanced or in addition to the drive
  • Steering torque can be generated, for example, to improve the acceleration of a curve out.
  • the electric motors 20, 22 while driving for recuperation, so used for energy recovery.
  • the electric motors 20, 22 while driving for recuperation, so used for energy recovery.
  • Electric motors 20, 22 individually or simultaneously operated as a generator and thus the hybrid vehicle 10 brake.
  • Electric motors 20, 22 both a braking torque on their associated wheels 12 and electric current, the e.g. can charge the on-board accumulator 42.
  • the electric motors 20, 22 can be controlled differently, so that the wheels 12 of the second axis 16
  • the torque fluctuation generated in a switching operation of the internal combustion engine drive can be mitigated or compensated by additional moments of the electric motors 20, 22, whereby the ride comfort is improved.
  • the two electric motors 20, 22 are converted into a limp home mode.
  • the two electric motors 20, 22 coupled, so the clutch 48 and / or the switch 52 are closed.
  • a mechanical coupling can by the
  • Differential gear 46 different moments on the wheels 12 of the second axis 16 are generated, which results in a torque around the
  • a steering torque can be generated by one of the electric motors 20, 22 operated as a generator and the current generated thereby by the wiring 50 the other
  • Electric motor 22, 20 is supplied.
  • the other electric motor 22, 20 is operated by the power motor and then drives its associated wheel 12 at.
  • a braking torque is applied to one of the wheels 12 of the second axle 16 and a drive torque to the other, whereby a steering torque is generated
  • FIG. 2 shows a second embodiment of the invention, which substantially corresponds to the first embodiment. That is why in the
  • Embodiment in that the coupling between the two electric motors 20, 22 is designed differently.
  • On-board accumulator 42 On-board accumulator 42.
  • Each of the two electric motor accumulators 54 is electrically connected to one of the electric motors 20, 22, so that each electric motor 20, 22 has its own electric motor accumulator 54.
  • the two electric motor accumulators 54 can also be connected directly to the respective wiring harness 36, 38 of the associated electric motor 20, 22.
  • the two electric motor accumulators 54 can be coupled to one another.
  • either the electric motor accumulators 54 as a whole, in each case individual cells of the two electric motor accumulators 54 individually or as groups of cells can be coupled together.
  • Cabling 50 may be present.

Abstract

Ein Hybridfahrzeug (10) hat einen Verbrennungsmotor (18), wenigstens zwei Elektromotoren (20,22), wenigstens vier Räder (12) und eine erste Achse (14) und wenigstens eine zweite Achse (16), wobei jeweils zwei der Räder (12) einer der Achsen (16) zugeordnet sind. Der Verbrennungsmotor (18) ist zum Antreiben der Räder (12) der ersten Achse (14) vorgesehen und jeweils einer der Elektromotoren (20, 22) ist zum Antreiben je eines der Räder (12) der zweiten Achse (16) vorgesehen.

Description

Hybridfahrzeug
Die Erfindung betrifft ein Hybridfahrzeug mit einem Verbrennungsmotor, einem Elektromotor und wenigstens vier Rädern.
Hybridfahrzeuge, die zum Antrieb sowohl einen Verbrennungsmotor als auch einen Elektromotor verwenden, sind bekannt. Bei sogenannten seriellen Hybridfahrzeugen, treibt ein Verbrennungsmotor einen Generator an, der elektrischen Strom für einen Elektromotor bereitstellt. Dieser Elektromotor treibt wiederum die Räder des Fahrzeugs an. Dieser Ansatz ist wenig effizient, da durch die Reihenschaltung von Verbrennungsmotor und Elektromotor nur reduzierte Wirkungsgrade des Gesamtsystems erzielt werden können.
Bei anderen Hybridfahrzeugen wird eine Achse des Hybridfahrzeugs durch den Verbrennungsmotor angetrieben, wobei die andere Achse durch einen Elektromotor angetrieben wird. Der Elektromotor dient dabei auch zur
Rekuperation von kinetischer Energie beim Bremsen. Dieser Ansatz nutzt das vorhandene Rekuperationspotenzial jedoch nur bedingt aus, da nur beim Bremsen Energie zurückgewonnen werden kann.
Es ist somit Aufgabe der Erfindung, ein Hybridfahrzeug bereitzustellen, dass sowohl einen effizienten Antrieb als auch umfangreiche
Rekuperationsmöglichkeiten bietet. Die Aufgabe wird gelöst durch ein Hybridfahrzeug mit einem
Verbrennungsmotor, wenigstens zwei Elektromotoren, wenigstens vier Rädern und einer ersten Achse und wenigstens einer zweiten Achse, wobei jeweils zwei der Räder einer der Achsen zugeordnet sind. Der Verbrennungsmotor ist zum Antreiben der Räder der ersten Achse vorgesehen und jeweils einer der Elektromotoren ist zum Antreiben je eines der Räder der zweiten Achse vorgesehen.
Dabei wird unter einer Achse auch ein Paar gegenüberliegender Räder angesehen, die mittels Einzelradaufhängungen am Fahrzeug befestigt sind. Unter den Begriff sollen auch Räderpaare fallen, wie sie beispielsweise bei Lastwagen üblich sind. Der Verbrennungsmotor ist in bekannter Weise, beispielsweise durch ein Getriebe und/oder eine Kupplung, drehfest mit den Rädern der ersten Achse verbindbar, um das erzeugte Drehmoment zu den Rädern der ersten Achse übertragen zu können. Auch die Elektromotoren können über ein Getriebe und/oder eine Kupplung die Räder der zweiten Achse antreiben.
Dadurch, dass die Räder direkt durch den Verbrennungsmotor bzw. einzeln durch die Elektromotoren betrieben werden, ist ein sehr effizienter Antrieb mit geringen Verlusten möglich, da die elektrische Energie direkt in kinetische Energie umgesetzt wird.
Gleichzeitig wird die Anzahl an Fahrsituationen vergrößert, in denen eine Rekuperation von kinetischer Energie in elektrische Energie möglich ist.
Neben den bekannten Rekuperationsmöglichkeiten beim Bremsen kann erfindungsgemäß zum Beispiel Energie beim Lenken zurückgewonnen werden. Hierzu wird der Elektromotor, der dem kurveninneren Rad der zweiten Achse zugeordnet ist, generatorisch betrieben, sodass nur dieses Rad gebremst wird. Dadurch entsteht ein Lenkmoment an der zweiten Achse, also ein Drehmoment um die Fahrzeughochachse, das zu einer Drehbewegung des Fahrzeugs führt. Auf diese Weise kann beim Lenken elektrische Energie gewonnen werden, wohingegen Lenken üblicherweise Energie kostet.
Ebenso kann ein Eingriff eines automatischen Stabilitätsprogramms des Fahrzeugs (DSC, ESP, etc.) durch einen kurzen generatorischen Betrieb eines einzelnen Elektromotors durchgeführt werden, wodurch auch hier Energie zurückgewonnen werden kann. Zudem wird die Fahrsicherheit durch die einzelnen Elektromotoren erhöht, da eine Allrad-Anfahrtunterstützung optimiert werden kann und Verbesserungen beim Anfahren am Berg oder beim Bergabfahren durch die einzelne Ansteuerung der Räder der zweiten Achse möglich sind.
Die erste Achse kann die Vorderachse des Fahrzeugs und die zweite Achse kann die Hinterachse des Fahrzeugs sein oder umgekehrt. Wenn die
Elektromotoren an der Vorderachse vorgesehen sind, lässt sich die Effizienz der Rekuperation weiter steigern, wohingegen die Elektromotoren an der Hinterachse leichter in bestehende Antriebskonzepte integriert werden können.
Vorzugsweise weist das Fahrzeug ein Bordstromnetz und Verbraucher auf, die mit dem Bordstromnetz elektrisch verbunden sind, wobei die Elektromotoren mit dem Bordstromnetz elektrisch verbunden sind. Dabei können die
Elektromotoren Strom in das Bordstromnetz einspeisen und daraus entnehmen und erhöhen dadurch die Versorgungssicherheit der Verbraucher und die maximale Leistung des Bordstromnetzes. Das Bordstromnetz wird beispielsweise mit einer Spannung von 48 Volt betrieben. Auch kann der Verbrennungsmotor einen Generator aufweisen, der Strom ins Bordstromnetz einspeisen kann, wodurch eine Grundversorgung der Verbraucher mit Strom beim Betrieb des Verbrennungsmotors gewährleistet ist. Für den Fall, dass der Generator ein Startergenerator ist, kann er auch Strom aus dem
Bordstromnetz entnehmen. In einer Ausführungsform der Erfindung weist das Bordstromnetz zwei parallele Kabelstränge auf, die sich von einer Stromversorgung des
Verbrennungsmotors zu je einem der Elektromotoren erstrecken. Die
Verbraucher sind dabei mit einem der Kabelstränge oder beiden Kabelsträngen elektrisch verbunden. Dadurch lässt sich die Ausfallsicherheit weiter erhöhen. Außerdem lassen sich die Bremsmomente der einzelnen Elektromotoren auf einfache Weise einstellen, indem einzelne Verbraucher in dem jeweils
zugeordneten Kabelstrang hinzugeschaltet oder abgeschaltet werden.
In einer weiteren Ausgestaltung der Erfindung sind die Elektromotoren direkt miteinander mechanisch und/oder elektrisch koppelbar. Dabei dient die mechanische Kopplung zur Drehmomentübertragung zwischen den beiden Elektromotoren.
Die Kopplung der Elektromotoren kann ohne Verwendung des
Bordstromnetzes erfolgen. Auf diese Weise können Notlauffunktionen realisiert werden, die das Fahrzeug in gewissem Maße manövrierfähig halten, auch wenn zum Beispiel die Lenkung oder das Bordstromnetz ausgefallen ist. Beispielsweise sind die Elektromotoren mittels einer Welle, einer Kupplung und einem Differenzialgetriebe miteinander mechanisch koppelbar, wodurch auf zuverlässige Weise ein Notlaufsystem realisiert werden kann.
Eine effiziente und gewichtssparende Kopplung kann dadurch realisiert werden, dass die Elektromotoren durch eine direkte Verkabelung mit einem Schalter miteinander koppelbar sind. Wird der Schalter geschlossen, erzeugt einer der Elektromotoren generatorisch Strom für den anderen, der dann motorisch betrieben wird. Dadurch entstehen an den Rädern gegenläufige Drehmomente, wodurch wiederrum ein Lenkmoment entsteht. Beispielsweise weist das Hybridfahrzeug wenigstens zwei
Elektromotorakkumulatoren auf, von denen je einer mit jeweils einem der Elektromotoren elektrisch verbunden ist, wobei einzelne Zellen der
Elektromotorakkumulatoren, Gruppen von Zellen oder die gesamten
Elektromotorakkumulatoren mittels eines Schalters gekoppelt werden können. Die gekoppelten Zellen, Gruppen oder Akkumulatoren wirken dann wie eine
Einheit für beide Elektromotoren. Der Schalter kann dabei ein Halbleiterschalter oder ein Schütz sein. Auf diese Weise kann ohne großen Aufwand eine elektrische Kopplung realisiert werden.
Vorzugsweise weist das Fahrzeug wenigstens einen Bordakkumulator auf, der mit dem Bordstromnetz elektrisch verbunden ist, sodass die Verbraucher auch unabhängig vom Betrieb des Verbrennungsmotors beziehungsweise der Elektromotoren mit Strom versorgt werden können.
Um Gewicht und Bauteile einzusparen, können die zwei
Elektromotorakkumulatoren Teile eines geteilten Akkumulators sein und/oder den wenigstens einen Bordakkumulator bilden.
In einer Ausgestaltung der Erfindung kann das Hybridfahrzeug eine
Steuereinheit aufweisen, die dazu eingerichtet ist, die Elektromotoren derart zu steuern, dass zur Rekuperation bei Lenkmanövern der Elektromotor des kurveninneren Rads generatorisch betrieben wird, um ein Lenkmoment zu erzeugen. Dadurch kann auch bei einem Lenkmanöver, zum Beispiel beim
Spurwechsel, Energie zurückgewonnen werden. Das durch den generatorischen Betrieb erzeugte Lenkmoment kann sowohl zur Unterstützung eines konventionell erzeugten Lenkmoments als auch als das einzige Lenkmoment eines Lenkmanövers generiert werden.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung sowie aus den beigefügten Zeichnungen, auf die Bezug genommen wird. In den Zeichnungen zeigen:
Figur 1 eine schematische Skizze einer ersten Ausführungsform eines erfindungsgemäßen Hybridfahrzeugs, und
Figur 2 eine schematische Skizze einer zweiten Ausführungsform eines erfindungsgemäßen Hybridfahrzeugs. In Figur 1 ist ein Hybridfahrzeug 10 als gestricheltes Rechteck schematisch angedeutet.
Das Hybridfahrzeug 10 weist vier Räder 12 auf, von denen zwei auf einer ersten Achse 14 und die anderen beiden auf einer zweiten Achse 16 angeordnet sind. Die Räder 12, insbesondere die der zweiten Achse 16 können mittels einer Einzelradaufhängung am Hybridfahrzeug 10 befestigt sein.
In den gezeigten Ausführungsformen ist die erste Achse 14 die Vorderachse des Hybridfahrzeugs 10 und die zweite Achse 16 die Hinterachse des
Hybridfahrzeugs 10. Somit können die Räder 12 der ersten Achse 14 durch eine Lenkung (nicht gezeigt) in üblicher Weise betätigt werden. Dies ist durch die Doppelpfeile in den Figuren angedeutet.
Denkbar ist selbstverständlich auch, dass die zweite Achse 16 die
Vorderachse des Hybridfahrzeugs 10 darstellt und die erste Achse 14 die Hinterachse des Hybridfahrzeugs 10 ist. Das Hybridfahrzeug 10 weist zudem einen Verbrennungsmotor 18, zwei Elektromotoren 20, 22 und ein Bordstromnetz 24 auf.
Der Verbrennungsmotor 18, genauer gesagt die Ausgangswelle (nicht gezeigt) des Verbrennungsmotors 18, ist mittels eines Getriebes 26 und einer Kupplung 28 mit der ersten Achse 14 verbunden. Der Verbrennungsmotor 18 kann somit die Räder 12 der ersten Achse 14 auf bekannte Weise antreiben. Außerdem weist der Verbrennungsmotor 18 einen elektrischen Generator 30, einen Starter 32 und eine Stromversorgung 34 auf. Der Generator 30 und der Starter 32 sind mit der Stromversorgung 34 verbunden, die wiederum in das Bordstromnetz 24 eingebunden ist. Der Generator 30 kann Strom ins
Bordstromnetz 24 einspeisen und der Starter 32 kann Strom aus dem
Bordstromnetz 24 entnehmen.
Denkbar ist selbstverständlich auch, dass der Generator 30 und der Starter 32 als ein Startergenerator ausgeführt sind.
Die Elektromotoren 20, 22 sind an der zweiten Achse 16 vorgesehen. Je einer der Elektromotoren 20, 22 ist mit einem der Räder 12 der zweiten Achse 16 verbunden und kann dieses ihm zugeordnete Rad 12 antreiben. Auch hier können zwischen den Elektromotoren 20, 22 und den zugeordneten Rädern 12 ein Getriebe und/oder eine Kupplung (nicht gezeigt) vorgesehen sein.
In der gezeigten Ausführungsform ist der linke Elektromotor 20 mit dem linken Rad 12 der zweiten Achse 16 und der rechte Elektromotor 22 mit dem rechten Rad 12 der zweiten Achse 16 verbunden.
Die Elektromotoren 20, 22 sind außerdem mit dem Bordstromnetz 24 elektrisch verbunden und können Strom ins Bordstromnetz 24 einspeisen und daraus entnehmen. Das Bordstromnetz 24 wird beispielsweise mit einer
Spannung von 48 Volt betrieben.
Das Bordstromnetz 24 weist zwei parallele Kabelstränge 36, 38 auf, die sich von der Stromversorgung 34 zu jeweils einem der Elektromotoren 20, 22 erstrecken.
Die Kabelstränge 36, 38 verlaufen getrennt voneinander, wobei sie mittels der Stromversorgung 34 elektrisch verbunden sind.
In der gezeigten Ausführungsform erstreckt sich der linke Kabelstrang 36 von der Stromversorgung 34 zum linken Elektromotor 20 und der rechte
Kabelstrang 38 erstreckt sich von der Stromversorgung 34 zum rechten
Elektromotor 22. Über das Bordstromnetz 24 sind die Elektromotoren 20, 22 somit nur mittels der Stromversorgung 34 miteinander verbunden. Mehrere Verbraucher 40 des Hybridfahrzeugs 10 sind außerdem an das Bordstromnetz 24 angeschlossen. Dabei sind einige Verbraucher 40 mit nur einem der beiden Kabelstränge 36, 38 verbunden, wohingegen andere
Verbraucher 40 mit beiden Kabelsträngen 36, 38 verbunden sein können. Die Kabelstränge 36, 38 können als Versorgungsschienen mit einer
Versorgungsleitung ausgebildet sein, an die die Verbraucher 40 und die
Elektromotoren 20, 22 angesteckt werden können. Durch die Versorgungsleitung können die Verbraucher 40 beispielsweise mit elektrischem Strom versorgt werden und gleichzeitig Daten austauschen (Powerline Communication). Ebenfalls weist das Hybridfahrzeug 10 einen Bordakkumulator 42 auf, der mit dem Bordstromnetz 24, in der gezeigten Ausführungsform mit beiden
Kabelsträngen 36, 38, verbunden ist und der als Energiespeicher dient.
Zur Steuerung der Elektromotoren 20, 22 und der Verbraucher 40 ist eine Steuereinheit 43 vorgesehen, die beispielsweise in der Stromversorgung 34 und/oder als Teil der Motorsteuerung ausgebildet ist.
Die Steuereinheit 43 kann den generatorischen Betrieb der
Elektromotoren 20, 22 unter anderem dadurch steuern, dass einzelne
Verbraucher 40 zu- oder abgeschaltet werden. Soll beispielsweise der
Elektromotor 20 ein größeres Bremsmoment erzeugen, wird ein Verbraucher 40 von der Steuereinheit 43 eingeschaltet, der nur mit dem linken Kabelstrang 36 verbunden ist.
Unabhängig vom Bordstromnetz 24 sind die Elektromotoren 20, 22 jedoch auch direkt miteinander koppelbar.
In der ersten Ausführungsform nach Figur 1 sind die Elektromotoren 20, 22 durch Wellen 44, einem Differenzialgetriebe 46 und einer Kupplung 48 miteinander mechanisch zur Drehmomentübertragung koppelbar.
Zusätzlich oder als Alternative können die Elektromotoren 20, 22 elektrisch mittels einer direkten Verkabelung 50 (in Figur 1 gestrichelt angedeutet) und einem Schalter 52 elektrisch miteinander koppelbar sein. Zum Betrieb des Hybridfahrzeugs 10 werden die Räder 12 der ersten Achse 14 durch den Verbrennungsmotor 18 angetrieben. Der Verbrennungsmotor 18 kann zum Antrieb des Hybridfahrzeugs 10 durch die Elektromotoren 20, 22 unterstützt werden, indem die Elektromotoren 20, 22 motorisch betrieben werden und somit die Räder 12 der zweiten Achse 16 ebenfalls antreiben. Auf diese Weise kann ein begrenzter Allradantrieb realisiert werden. Dies ist beispielsweise beim Anfahren auf glatter Fahrbahn und beim Anfahren am Berg hilfreich. Dabei können die Elektromotoren 20, 22 unterschiedliche Drehmomente erzeugen, sodass Schlupf ausgeglichen oder zusätzlich zum Antrieb ein
Lenkmoment erzeugt werden kann, beispielsweise um das Beschleunigen aus einer Kurve heraus zu verbessern.
Auch können die Elektromotoren 20, 22 während der Fahrt zur Rekuperation, also zur Energierückgewinnung, verwendet werden. Hierzu können die
Elektromotoren 20, 22 einzeln oder gleichzeitig generatorisch betrieben werden und damit das Hybridfahrzeug 10 bremsen. Dabei erzeugen die
Elektromotoren 20, 22 sowohl ein Bremsmoment an den ihnen zugeordneten Rädern 12 als auch elektrischen Strom, der z.B. den Bordakkumulator 42 laden kann.
Auch beim Bremsen können die Elektromotoren 20, 22 unterschiedlich angesteuert werden, sodass an den Rädern 12 der zweiten Achse 16
unterschiedliche Bremsmomente erzeugt werden.
Damit können Bremseingriffe des automatischen Stabilitätsprogramms (DSC, ESP, etc.) des Hybridfahrzeugs 10 realisiert werden.
Aber auch Lenkmanöver, wie ein Fahrbahnwechsel, können auf diese Weise ohne Einschlagen der Räder 12 der ersten Achse 14 durchgeführt werden. Dabei entsteht durch die unterschiedlichen Bremsmomente an den Rädern 12 der zweiten Achse 16 ein Lenkmoment um die Fahrzeughochachse. Somit dreht sich das Hybridfahrzeug 10 und führt ein Lenkmanöver aus.
Sowohl Lenken als auch Eingriffe des Stabilitätsprogramms verbrauchen bei üblichen Hybridfahrzeugen Strom. Im erfindungsgemäßen Hybridfahrzeug 10 wird in diesen Situationen nun Strom erzeugt. Die überschüssige Energie wird dabei im Bordakkumulator 42 gespeichert. Auch bei normaler Fahrt können die Elektromotoren 20, 22 generatorisch betrieben werden und damit zur Stromversorgung der Verbraucher 40 dienen. Dementsprechend muss der Generator 30 des Verbrennungsmotors 18 nur eine niedrige Leistung aufbringen, die den Grundverbrauch an elektrischer Energie deckt. Dementsprechend kann der Generator 30 kleiner und kostengünstiger ausgeführt werden.
Auch kann die bei einem Schaltvorgang des verbrennungsmotorischen Antriebs erzeugte Momentenschwankung durch zusätzliche Momente der Elektromotoren 20, 22 gemildert oder kompensiert werden, wodurch der Fahrkomfort verbessert wird.
Bei einem Ausfall des Bordstromnetzes 24 oder Teilen davon können die beiden Elektromotoren 20, 22 in einen Notlaufmodus überführt werden. Hierzu werden die beiden Elektromotoren 20, 22 gekoppelt, also die Kupplung 48 und/oder der Schalter 52 werden geschlossen. Im Falle einer mechanischen Kopplung können durch das
Differenzialgetriebe 46 unterschiedliche Momente an den Rädern 12 der zweiten Achse 16 erzeugt werden, die zu einem Drehmoment um die
Fahrzeughochachse und damit zu einem Lenkmoment führen. Das Fahrzeug bleibt somit zu einem gewissen Grad manövrierfähig. Im Falle einer elektrischen Kopplung kann ein Lenkmoment dadurch erzeugt werden, dass einer der Elektromotoren 20, 22 generatorisch betrieben und der dadurch erzeugte Strom durch die Verkabelung 50 dem anderen
Elektromotor 22, 20 zugeführt wird. Der andere Elektromotor 22, 20 wird durch den Strom motorisch betrieben und treibt dann das ihm zugeordnete Rad 12 an. Somit liegt an einem der Räder 12 der zweiten Achse 16 ein Bremsmoment und an dem anderen ein Antriebsmoment an, wodurch ein Lenkmoment erzeugt wird
Durch die elektrische Kopplung, also die Verkabelung 50, lässt sich auch ein Ausfall der Stromversorgung 34 teilweise kompensieren und eine Kopplung zwischen den beiden Kabelsträngen 36, 38 über die Elektromotoren 20, 22 wieder herstellen.
Auf diese Weise werden weitere Rückfallebenen für Notfälle im
Hybridfahrzeug 10 realisiert. In Figur 2 ist eine zweite Ausführungsform der Erfindung gezeigt, die im Wesentlichen der ersten Ausführungsform entspricht. Deswegen wird im
Folgenden nur auf die Unterschiede eingegangen und gleiche und
funktionsgleiche Teile sind mit denselben Bezugszeichen versehen. Die zweite Ausführungsform unterscheidet sich von der ersten
Ausführungsform darin, dass die Kopplung zwischen den beiden Elektromotoren 20, 22 anders ausgeführt ist.
In der zweiten Ausführungsform weist das Hybridfahrzeug 10 zwei
Elektromotorakkumulatoren 54 auf, die als Teile eines geteilten Akkumulators 56 ausgeführt sein können. Beispielsweise bilden die beiden
Elektromotorakkumulatoren 54 bzw. der geteilte Akkumulator 56 den
Bordakkumulator 42.
Jeder der beiden Elektromotorakkumulatoren 54 ist mit jeweils einem der Elektromotoren 20, 22 elektrisch verbunden, sodass jeder Elektromotor 20, 22 einen eigenen Elektromotorakkumulator 54 hat.
Die beiden Elektromotorakkumulatoren 54 können auch direkt mit dem jeweiligen Kabelstrang 36, 38 des zugeordneten Elektromotors 20, 22 verbunden sein.
Außerdem sind die beiden Elektromotorakkumulatoren 54 miteinander koppelbar. Hierzu sind entweder die Elektromotorakkumulatoren 54 als Ganzes, jeweils einzelne Zellen der beiden Elektromotorakkumulatoren 54 einzeln oder als Gruppen von Zellen miteinander koppelbar.
Die Koppelung erfolgt dabei durch einen Schalter 58, wie einem
Halbleiterschalter oder einem Schütz. Wird, wie in der ersten Ausführungsform beschrieben, eine Kopplung der beiden Elektromotoren 20, 22 notwendig, wird der Schalter 58 geschlossen. Die beiden Elektromotorakkumulatoren 54 werden so gekoppelt und dienen dann als gemeinsamer Akkumulator für beide
Elektromotoren 20, 22.
Auf diese Weise wird eine elektrische Verbindung zwischen den beiden Elektromotoren 20, 22 und auch den beiden Kabelsträngen 36, 38 erzielt. Diese elektrische Verbindung ähnelt der elektrischen Verbindung durch die
Verkabelung 50 in der ersten Ausführungsform.
Selbstverständlich können die Merkmale der beiden Ausführungsformen beliebig miteinander kombiniert werden. Insbesondere kann auch in der zweiten Ausführungsform noch eine mechanische Kopplung der Elektromotoren 20, 22 oder eine elektrische Kopplung der Elektromotoren 20, 22 durch eine
Verkabelung 50 vorhanden sein.

Claims

Patentansprüche
1. Hybridfahrzeug mit einem Verbrennungsmotor (18), wenigstens zwei Elektromotoren (20,22), wenigstens vier Rädern (12) und einer ersten Achse (14) und wenigstens einer zweiten Achse (16), wobei jeweils zwei der Räder (12) einer der Achsen (16) zugeordnet sind, wobei der Verbrennungsmotor (18) zum Antreiben der Räder (12) der ersten Achse (14) vorgesehen ist, wobei jeweils einer der Elektromotoren (20, 22) zum Antreiben je eines der Räder (12) der zweiten Achse (16) vorgesehen ist.
2. Hybridfahrzeug nach Anspruch 1 , dadurch gekennzeichnet, dass die erste Achse (14) die Vorderachse des Hybridfahrzeugs (10) und die zweite Achse (16) die Hinterachse des Hybridfahrzeugs (10) ist oder umgekehrt.
3. Hybridfahrzeug nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Hybridfahrzeug (10) ein Bordstromnetz (24) und Verbraucher (40) aufweist, die mit dem Bordstromnetz (24) elektrisch verbunden sind, wobei die
Elektromotoren (20, 22) mit dem Bordstromnetz (24) elektrisch verbunden sind.
4. Hybridfahrzeug nach Anspruch 3, dadurch gekennzeichnet, dass der Verbrennungsmotor (18) einen Generator (30) aufweist, der Strom ins
Bordstromnetz (24) einspeisen kann.
5. Hybridfahrzeug nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Bordstromnetz (24) zwei parallele Kabelstränge (36, 38) aufweist, die sich von einer Stromversorgung (34) des Verbrennungsmotors (18) zu je einem der Elektromotoren (20, 22) erstrecken.
6. Hybridfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Elektromotoren (20, 22) direkt miteinander mechanisch und/oder elektrisch koppelbar sind.
7. Hybridfahrzeug nach Anspruch 6, dadurch gekennzeichnet, dass die Elektromotoren (20, 22) mittels einer Welle (44), einer Kupplung (48) und einem Differenzialgetriebe (46) miteinander mechanisch koppelbar sind.
8. Hybridfahrzeug nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Elektromotoren (20, 22) durch eine direkte Verkabelung (50) mit einem Schalter (52) miteinander koppelbar sind.
9. Hybridfahrzeug nach einem der Ansprüche 6 bis 8, dadurch
gekennzeichnet, dass das Hybridfahrzeug (10) wenigstens zwei
Elektromotorakkumulatoren (54) aufweist, von denen je einer mit jeweils einem der Elektromotoren (20, 22) elektrisch verbunden ist, wobei einzelne Zellen der Elektromotorakkumulatoren (54), Gruppen von Zellen oder die gesamten Elektromotorakkumulatoren (54) mittels eines Schalters (58) gekoppelt werden können.
10. Hybridfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Hybridfahrzeug (10) wenigstens einen
Bordakkumulator (42) aufweist, der mit dem Bordstromnetz (24) elektrisch verbunden ist.
11. Hybridfahrzeug nach Anspruch 9 und 10, dadurch gekennzeichnet, dass die zwei Elektromotorakkumulatoren (54) Teile eines geteilten Akkumulators (56) sind und/oder den wenigstens einen Bordakkumulator (42) bilden.
12. Hybridfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Hybridfahrzeug eine Steuereinheit (43) aufweist, die dazu eingerichtet ist, die Elektromotoren (20, 22) derart zu steuern, dass zur Rekuperation bei Lenkmanövern der Elektromotor (20, 22) des kurveninneren Rads (12) generatorisch betrieben wird, um ein Lenkmoment zu erzeugen.
PCT/EP2017/079829 2016-12-06 2017-11-21 Hybridfahrzeug WO2018104044A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780063148.1A CN109843626B (zh) 2016-12-06 2017-11-21 混合动力车辆
US16/369,622 US11034231B2 (en) 2016-12-06 2019-03-29 Hybrid vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016224199.0A DE102016224199A1 (de) 2016-12-06 2016-12-06 Hybridfahrzeug
DE102016224199.0 2016-12-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/369,622 Continuation US11034231B2 (en) 2016-12-06 2019-03-29 Hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2018104044A1 true WO2018104044A1 (de) 2018-06-14

Family

ID=60480297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/079829 WO2018104044A1 (de) 2016-12-06 2017-11-21 Hybridfahrzeug

Country Status (4)

Country Link
US (1) US11034231B2 (de)
CN (1) CN109843626B (de)
DE (1) DE102016224199A1 (de)
WO (1) WO2018104044A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3084622A1 (fr) * 2018-08-02 2020-02-07 Valeo Equipements Electriques Moteur Architecture de traction comportant des machines electriques basse tension integrees dans les roues d'un vehicule automobile
DE102018219208A1 (de) * 2018-11-12 2020-05-14 Audi Ag Verfahren zum Betrieb eines Kraftfahrzeugs und Kraftfahrzeug
FR3097812B1 (fr) * 2019-06-26 2022-11-25 Valeo Equip Electr Moteur Architecture de traction a repartition vectorielle de couple securisee

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1747929A1 (de) * 2005-07-30 2007-01-31 Renk Aktiengesellschaft Hybridantrieb für ein Kettenfahrzeug
DE102009008324A1 (de) * 2009-02-10 2010-08-19 Lück, Harald Fahrantriebsanordnung
DE112013001795T5 (de) * 2012-03-30 2014-12-11 Honda Motor Co., Ltd. Fahrzeugantriebssystem
DE102015004119A1 (de) * 2015-03-31 2016-10-06 Audi Ag Kraftfahrzeug mit einem elektrischen Energiespeicher und zwei Ladeschnittstellen, Ladesystem sowie Verfahren

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042056A (en) * 1975-11-21 1977-08-16 Automobile Corporation Of America Hybrid powered automobile
JP3261673B2 (ja) * 1997-09-18 2002-03-04 本田技研工業株式会社 車両の発進アシスト装置
JP2001001779A (ja) * 1999-06-22 2001-01-09 Honda Motor Co Ltd 前後輪駆動車両
DE10148113A1 (de) 2001-09-28 2003-04-30 Daimler Chrysler Ag Fahrzeug mit einem Energiespeicher und Verfahren zum Betreiben des Fahrzeugs
JP2004328991A (ja) * 2003-04-09 2004-11-18 Nissan Motor Co Ltd 車両の左右輪駆動装置
JP4390785B2 (ja) * 2006-05-24 2009-12-24 トヨタ自動車株式会社 四輪駆動式車両の駆動力制御装置
DE102007031605A1 (de) * 2007-07-06 2009-01-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hybridfahrzeug
EP2570284B1 (de) * 2011-09-14 2016-10-26 V2 Plug-in Hybrid Vehicle Partnership Handelsbolag Steckdosenelektrohybridfahrzeug
JP5483293B2 (ja) * 2011-11-29 2014-05-07 富士重工業株式会社 ハイブリッド自動車の車体構造
JP5329685B2 (ja) * 2011-12-22 2013-10-30 本田技研工業株式会社 車両用駆動装置
CN104245380B (zh) * 2012-03-21 2016-08-24 本田技研工业株式会社 车辆用驱动装置及车辆用驱动装置的控制方法
JP5965700B2 (ja) * 2012-03-30 2016-08-10 本田技研工業株式会社 車両用駆動装置
KR101953447B1 (ko) * 2013-12-02 2019-02-28 혼다 기켄 고교 가부시키가이샤 차량
JP5810149B2 (ja) * 2013-12-24 2015-11-11 本田技研工業株式会社 輸送機関の駆動装置
JP5841991B2 (ja) * 2013-12-24 2016-01-13 本田技研工業株式会社 輸送機関の駆動装置
EP3088237B1 (de) * 2013-12-27 2022-07-13 Honda Motor Co., Ltd. Fahrzeug und fahrzeugsteuerungsverfahren
JP5981584B2 (ja) * 2015-02-19 2016-08-31 本田技研工業株式会社 車両
US10486521B2 (en) * 2015-12-07 2019-11-26 Dana Heavy Vehicle Systems Group, Llc Distributed drivetrain architectures for commercial vehicles with a hybrid electric powertrain
KR101752980B1 (ko) * 2015-12-24 2017-07-03 현대다이모스(주) 친환경 차량의 후륜 구동장치
CN106915245B (zh) * 2015-12-25 2020-08-07 比亚迪股份有限公司 动力驱动系统及具有该动力驱动系统的车辆
US10807466B1 (en) * 2016-03-28 2020-10-20 Dana Heavy Vehicle Systems Group, Llc Electric drivetrain axles with multi-speed gearboxes
JP6637811B2 (ja) * 2016-03-30 2020-01-29 本田技研工業株式会社 駆動装置
JP6773436B2 (ja) * 2016-03-31 2020-10-21 本田技研工業株式会社 車両駆動システム
JP6647117B2 (ja) * 2016-03-31 2020-02-14 本田技研工業株式会社 車両駆動システム
WO2018004003A1 (ja) * 2016-06-30 2018-01-04 本田技研工業株式会社 駆動装置
KR101782266B1 (ko) * 2016-07-06 2017-09-26 현대다이모스(주) 친환경 차량의 후륜 구동장치
JP6382925B2 (ja) * 2016-12-21 2018-08-29 本田技研工業株式会社 電動車両
JP6841078B2 (ja) * 2017-02-21 2021-03-10 トヨタ自動車株式会社 駆動力制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1747929A1 (de) * 2005-07-30 2007-01-31 Renk Aktiengesellschaft Hybridantrieb für ein Kettenfahrzeug
DE102009008324A1 (de) * 2009-02-10 2010-08-19 Lück, Harald Fahrantriebsanordnung
DE112013001795T5 (de) * 2012-03-30 2014-12-11 Honda Motor Co., Ltd. Fahrzeugantriebssystem
DE102015004119A1 (de) * 2015-03-31 2016-10-06 Audi Ag Kraftfahrzeug mit einem elektrischen Energiespeicher und zwei Ladeschnittstellen, Ladesystem sowie Verfahren

Also Published As

Publication number Publication date
US11034231B2 (en) 2021-06-15
CN109843626B (zh) 2022-09-06
CN109843626A (zh) 2019-06-04
US20190225072A1 (en) 2019-07-25
DE102016224199A1 (de) 2018-06-07

Similar Documents

Publication Publication Date Title
EP2946963B1 (de) Kraftfahrzeug
WO2018150009A1 (de) Achsantriebseinheit mit lenkanlage, antriebsachse und kraftfahrzeug
EP2985170B1 (de) Hybridfahrzeug mit einer externen elektrischen Schnittstelle
DE102008030581A1 (de) Triebstrang für ein Kraftfahrzeug und Verfahren zum Betreiben eines Triebstrangs eines Kraftfahrzeuges
DE102016123691A1 (de) Steuersystem für eine Antriebseinheit
DE102010007634B4 (de) Verfahren zum Betrieb eines Hybridfahrzeuges
EP2560835A1 (de) Antriebsvorrichtung für ein allradgetriebenes fahrzeug und verfahren zur verteilung des antriebsmoments auf einen vorderachsantrieb und einen hinterachsantrieb
EP2748044A1 (de) Verfahren zum bremsen eines kraftfahrzeugs
DE112009002514T5 (de) Parallele Leistungsquellen für Hybridelektrofahrzeug-Anwendungen
DE102010007632A1 (de) Hybridfahrzeug
DE102011100811A1 (de) Antiblockiersystem für ein Fahrzeug mit elektromotorischem Fahrzeugantrieb
DE102018103483B4 (de) Antriebskraftregelungssystem
DE102011084858A1 (de) Radselektiver elektrischer Antrieb mit Reichweitenverlängerung und Freilaufverkupplung
DE102016108918A1 (de) Fahrzeugsystem und Verfahren zum Aktivieren von Warnleuchten bei Batterieabklemmereignissen
WO2018104044A1 (de) Hybridfahrzeug
WO2009021909A1 (de) Verfahren zum betrieb eines gleichstrom-spannungswandlers in einem hybridfahrzeug
DE10222812A1 (de) Elektrisches Lenk-Antriebssystem für ein Fahrzeug mit Radseitenlenkung
DE102021107503A1 (de) Steuergeräteverbund, Arbeitsverfahren und Brennstoffzellenfahrzeug mit einem solchen Steuergeräteverbund oder Arbeitsverfahren
EP2830903B1 (de) Verfahren und regelungseinrichtung zur regelung eines hybridantriebs eines hybridelektrischen kraftfahrzeugs
DE102017216635A1 (de) Fahrzeug mit elektrischer Antriebseinrichtung, insbesondere für autonomes Fahren
WO2015090752A1 (de) Verfahren und vorrichtung für den betrieb eines hybridfahrzeuges
DE102017219714A1 (de) Hybridantrieb für Twinster-Antrieb
EP2303662A1 (de) Verfahren und vorrichtung zum betreiben eines fahrzeuges mit hybridantrieb
DE102017103400A1 (de) Achsantriebseinheit mit Lenkanlage, Antriebsachse und Kraftfahrzeug
DE19919452A1 (de) Kraftfahrzeug-Antriebseinrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17804856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17804856

Country of ref document: EP

Kind code of ref document: A1