WO2018100998A1 - 固体撮像素子、固体撮像素子の製造方法、及び、撮像装置 - Google Patents

固体撮像素子、固体撮像素子の製造方法、及び、撮像装置 Download PDF

Info

Publication number
WO2018100998A1
WO2018100998A1 PCT/JP2017/040359 JP2017040359W WO2018100998A1 WO 2018100998 A1 WO2018100998 A1 WO 2018100998A1 JP 2017040359 W JP2017040359 W JP 2017040359W WO 2018100998 A1 WO2018100998 A1 WO 2018100998A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge holding
unit
semiconductor substrate
solid
imaging device
Prior art date
Application number
PCT/JP2017/040359
Other languages
English (en)
French (fr)
Inventor
伸一 荒川
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN201780072855.7A priority Critical patent/CN109997229B/zh
Priority to US16/462,334 priority patent/US10777594B2/en
Priority to KR1020197010244A priority patent/KR102476411B1/ko
Priority to JP2018553742A priority patent/JP6967530B2/ja
Publication of WO2018100998A1 publication Critical patent/WO2018100998A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14638Structures specially adapted for transferring the charges across the imager perpendicular to the imaging plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures

Definitions

  • the present technology relates to a solid-state imaging device, a method for manufacturing a solid-state imaging device, and an imaging apparatus.
  • Solid-state imaging devices are roughly classified into CCD (Charge Coupled Device) image sensors and CMOS (Complementary Metal-Oxide-Semiconductor) image sensors.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal-Oxide-Semiconductor
  • the shutter system of the CMOS image sensor includes a mechanical shutter system and an electronic shutter system. 2. Description of the Related Art In recent years, an electronic shutter system is mainly used for a CMOS image sensor mounted on a mobile device such as a camera-equipped mobile phone that has been widely used in order to reduce the size of the device.
  • ⁇ Electronic shutter methods include rolling shutter method and global shutter method, depending on the exposure method.
  • the rolling shutter system is a system in which signals are sequentially read out line by line, and the so-called “konjac phenomenon” occurs due to the readout time difference that occurs between the lines in one frame because the signals are read out line by line.
  • the global shutter system since the entire frame is exposed and read out at the same time, the image is not distorted even if a fast-moving object is photographed.
  • CMOS image sensor In the global shutter type CMOS image sensor, in order to realize the simultaneous storage in each pixel, a charge holding element (capacitor) is provided for each pixel, and the charges generated in the photoelectric conversion element are transferred to the charge holding element all at once. By holding, global shutter photography is possible. However, if light leaks into the charge holding element that is holding the charge, optical noise is generated and there is a concern that the image quality may deteriorate.
  • Patent Documents 1 and 2 disclose a technique for realizing a global shutter system in a back-illuminated CMOS image sensor and suppressing the above-described optical noise.
  • a light shielding metal that covers the charge holding element from the light incident side is provided, and the light shielding metal extends along a region between the charge holding element and the photoelectric conversion unit. It has become.
  • the present technology has been made in view of the above-described problems, and aims to reduce optical noise and improve image quality in a global shutter back-illuminated CMOS image sensor.
  • One aspect of the present technology includes a semiconductor substrate, a photoelectric conversion unit that photoelectrically converts incident light from the back surface of the semiconductor substrate, a charge holding unit that temporarily holds charges generated by the photoelectric conversion unit, A first penetrating light shielding film that penetrates the front and back surfaces of the semiconductor substrate and partitions the photoelectric conversion unit and the charge holding unit; and is formed of a semiconductor material outside the surface of the semiconductor substrate and straddles the first penetrating light shielding film.
  • a first bypass unit that connects the photoelectric conversion unit and the charge holding unit, and a control unit that controls charge transfer from the photoelectric conversion unit to the charge holding unit via the first bypass unit,
  • the front end portion of the first through-shielding light-shielding film is formed in the thickness direction of the semiconductor substrate to be approximately the same as the front end of the charge holding portion or longer in the front side direction than the front end of the charge holding portion. It is a solid-state image sensor.
  • Another aspect of the present technology includes: a step of forming a photoelectric conversion unit that photoelectrically converts incident light from the back surface on a semiconductor substrate; and a charge holding unit that temporarily holds charges generated by the photoelectric conversion unit.
  • a step of forming, a step of forming a first through light-shielding film that penetrates the front and back of the semiconductor substrate and partitions the photoelectric conversion unit and the charge holding unit, and a semiconductor material formed on the outer surface of the semiconductor substrate A step of forming a first bypass unit that connects the photoelectric conversion unit and the charge holding unit across the first penetrating light-shielding film, and the photoelectric conversion unit via the first bypass unit to the charge holding unit.
  • a control electrode for controlling the charge transfer of the first through-shielding film, and a front end of the first through-shielding film in a thickness direction of the semiconductor substrate and a front end of the charge holding unit Forming a control electrode for controlling the charge transfer of the first through-shielding film, and a front end of the first through-shielding film in a thickness direction of the semiconductor substrate and a front end of the charge holding unit The same or a table of the charge holding portions It is formed long in the front direction than the end, a method of manufacturing a solid-state imaging device.
  • an imaging device including a solid-state imaging device and a signal processing circuit that processes a signal from the solid-state imaging device
  • the solid-state imaging device including a semiconductor substrate, A photoelectric conversion unit that photoelectrically converts incident light from the back surface of the semiconductor substrate; a charge holding unit that temporarily holds charges generated by the photoelectric conversion unit; and the photoelectric conversion unit that penetrates the front and back of the semiconductor substrate; A first penetrating light-shielding film that partitions the charge-holding part; a first penetrating light-shielding film that is formed of a semiconductor material outside the surface of the semiconductor substrate and that connects the photoelectric conversion part and the charge-holding part across the first penetrating light-shielding film.
  • the front end of the first penetrating light shielding film includes In the thickness direction of the semiconductor substrate It is formed long in the front direction than the front end of the front end and the same level or the charge retaining portion of the charge holding unit, an image pickup device.
  • the solid-state imaging device described above includes various modes such as being implemented in another device or implemented together with another method. Moreover, this technique is realizable also as an imaging device provided with the said solid-state image sensor, and the manufacturing method of the solid-state image sensor mentioned above.
  • optical noise can be reduced and image quality can be improved in a global shutter type backside illuminated CMOS image sensor.
  • effects described in the present specification are merely examples and are not limited, and may have additional effects.
  • FIG. 4 is a diagram illustrating a cross-sectional configuration example of a pixel in the AA cross section of FIG. 3.
  • FIG. 4 is a diagram illustrating a specific example of the shape of a bypass portion along the AA cross section of FIG. 3.
  • FIG. 12 is a diagram illustrating a cross-sectional configuration example of a pixel in the AA cross section of FIG. 11. It is a figure which shows the figure which shows the planar structural example of the pixel which concerns on 3rd Embodiment.
  • FIG. 12 is a diagram illustrating a cross-sectional configuration example of a pixel in the AA cross section of FIG. 11. It is a figure which shows the figure which shows the planar structural example of the pixel which concerns on 3rd Embodiment.
  • FIG. 14 is a diagram illustrating a cross-sectional configuration example of a pixel in the AA cross section of FIG. 13. It is a figure which shows the planar structural example of the pixel which concerns on 4th Embodiment.
  • FIG. 16 is a diagram showing a cross-sectional configuration example of a pixel in the AA cross section of FIG. 15. It is a figure which shows the planar structural example of the pixel which concerns on 5th Embodiment.
  • FIG. 18 is a diagram illustrating a cross-sectional configuration example of a pixel in the AA cross section of FIG. 17.
  • FIG. 10 is a diagram illustrating a cross-sectional configuration example of a pixel according to a sixth embodiment in a cross section corresponding to a cross section along AA in FIG. 3.
  • FIG. 21 is a diagram showing a cross-sectional configuration example of a pixel in the AA cross section of FIG. 20. It is a block diagram which shows the structure of an imaging device.
  • FIG. 1 is a diagram illustrating a schematic configuration of a solid-state imaging device 100 according to the present embodiment.
  • the solid-state imaging device 100 is a CMOS type solid-state imaging device, and includes a pixel array unit 121, a vertical driving unit 122, a column processing unit 123, a horizontal driving unit 125, an output unit 127, and a driving control unit 124.
  • the pixel array unit 121 includes a plurality of pixels 10 arranged in an array, and the pixels 10 are connected to the vertical driving unit 122 via a plurality of horizontal signal lines HSLn corresponding to the number of rows of the pixels 10. Are connected to the column processing unit 123 via a plurality of vertical signal lines VSLm corresponding to the number of columns of the pixels 10. That is, the plurality of pixels 10 included in the pixel array unit 121 are respectively arranged at points where the horizontal signal lines HSLn and the vertical signal lines VSLm intersect.
  • the vertical driving unit 122 generates a driving signal (transfer signal, selection signal, reset signal, etc.) for driving each pixel 10 for each row of the plurality of pixels 10 included in the pixel array unit 121, and the horizontal signal line HSLn. To supply sequentially.
  • a driving signal transfer signal, selection signal, reset signal, etc.
  • the column processing unit 123 extracts a signal level of the pixel signal by performing a CDS (Correlated Double Sampling) process on the pixel signal output from each pixel 10 through the vertical signal line VSLm. Then, pixel data corresponding to the amount of light received by the pixel 10 is acquired.
  • CDS Correlated Double Sampling
  • the horizontal driving unit 125 outputs a driving signal for causing the column processing unit 123 to output pixel data acquired from each pixel 10 for each column of the plurality of pixels 10 included in the pixel array unit 121. Supply sequentially.
  • the pixel data is supplied from the column processing unit 123 to the output unit 127 at a timing according to the drive signal of the horizontal driving unit 125, and the output unit 127 amplifies the pixel data, for example, to the subsequent image processing circuit. Output.
  • the heel drive control unit 124 controls the drive of each block inside the solid-state imaging device 100.
  • the drive control unit 124 generates a clock signal according to the drive cycle of each block and supplies the clock signal to each block.
  • FIG. 2 is a circuit diagram illustrating a configuration example of the pixel 10.
  • the pixel 10 includes a PD 11, a first transfer transistor 12, a second transfer transistor 13, a charge holding unit 14, a floating diffusion (FD) 15, an amplification transistor 16, a selection transistor 17, and a reset transistor. 18 is configured.
  • the first transfer transistor 12, the second transfer transistor 13, the charge holding unit 14, the amplification transistor 16, the selection transistor 17, and the reset transistor 18 may be collectively referred to as a pixel transistor.
  • PD11 receives the light irradiated to the pixel 10, and produces
  • the first transfer transistor 12 is driven according to the transfer signal supplied from the vertical drive unit 122, and when the first transfer transistor 12 is turned on, the charge accumulated in the PD 11 is transferred to the charge holding unit 14.
  • the second transfer transistor 13 is driven according to the transfer signal supplied from the vertical drive unit 122, and when the second transfer transistor 13 is turned on, the charge accumulated in the charge holding unit 14 is transferred to the FD 15.
  • the soot charge holding unit 14 is a capacitor that accumulates charges transferred from the PD 11 via the first transfer transistor 12.
  • the FD 15 is a floating diffusion region having a predetermined capacitance formed at a connection point between the second transfer transistor 13 and the gate electrode as the control electrode of the amplification transistor 16.
  • the FD 15 holds charge through the second transfer transistor 13. The charges transferred from the unit 14 are accumulated.
  • the amplifying transistor 16 is connected to the power supply VDD, and outputs a pixel signal at a level corresponding to the charge accumulated in the FD 15.
  • the selection transistor 17 is driven according to the selection signal supplied from the vertical driving unit 122.
  • the selection transistor 17 is turned on, the pixel signal output from the amplification transistor 16 can be read to the vertical signal line VSLm via the selection transistor 17. It becomes a state.
  • the reset transistor 18 is driven according to a reset signal supplied from the vertical drive unit 122.
  • the reset transistor 18 is turned on, the charge accumulated in the FD 15 is discharged to the power supply VDD through the reset transistor 18, and the FD 15 is Reset.
  • the global shutter method is adopted, and charges can be transferred from the PD 11 to the charge holding unit 14 simultaneously for all the pixels 10. 10 exposure timings can be made the same. Thereby, it is possible to avoid the occurrence of distortion in the image.
  • FIG. 3 is a diagram showing a planar configuration example of the pixel 10
  • FIG. 4 is a diagram showing a sectional configuration example of the pixel 10 in the AA section of FIG.
  • the pixel 10 has a backside illumination type configuration.
  • the PD 11 as a photoelectric conversion unit that photoelectrically converts incident light from the back surface of the semiconductor substrate 20, the charge holding unit 14 that temporarily holds charges generated by the PD 11, and the FD 15 are planar.
  • a region where the PD 11 of the semiconductor substrate 20 is formed may be referred to as a PD region, and a region where the charge holding portion 14 is formed in the semiconductor substrate 20 may be referred to as a charge holding region.
  • the pixel 10 has a configuration in which a wiring layer 21, a semiconductor substrate 20, a light shielding layer 22, a planarizing layer 23, a color filter layer 24, and an on-chip lens 25 are laminated in order from the lower side of FIG.
  • the color filter layer 24 may be formed directly on the semiconductor substrate 20 or the light shielding layer 22 without providing the planarizing layer 23.
  • the solid-state imaging device 100 has a so-called back-illuminated CMOS image sensor structure in which incident light is irradiated to a back surface 20R opposite to the front surface 20F on which the wiring layer 21 of the semiconductor substrate 20 is laminated.
  • a plurality of wirings 21a for reading out charges from the PD 11 of the semiconductor substrate 20 are embedded in the interlayer insulating film 21b.
  • a substrate support (not shown) is provided below the wiring layer 21.
  • a gate electrode 32 constituting the first transfer transistor 12 is disposed on the semiconductor substrate 20 via an insulating oxide film (not shown). By applying a predetermined voltage to the gate electrode 32, the charge accumulated in the PD 11 is transferred to the charge holding unit 14.
  • the semiconductor substrate 20 is formed with an N-type region constituting the PD 11 and an N-type region constituting the charge holding portion 14.
  • the N-type region that constitutes the PD 11 and the N-type region that constitutes the charge holding unit 14 are formed at positions near the surface 20F of the semiconductor substrate 20.
  • a surface pinning layer of a P-type region may be provided on the back side of the PD 11 and the charge holding unit 14 and on the front side of the charge holding unit 14.
  • an inter-pixel separation region 34 that separates the pixel 10 from other adjacent pixels 10 is formed so as to surround the outer periphery of the pixel 10.
  • the light shielding layer 22 is formed in a state in which a back surface light shielding film 35 formed of a light shielding material is embedded in a high dielectric constant material film 36.
  • the back surface light-shielding film 35 is formed of a material such as tungsten (W), aluminum (Al), or copper (Cu), and is connected to GND (not shown).
  • the high dielectric constant material film 36 is formed of a material such as silicon dioxide (SiO 2 ), hafnium oxide (HfO 2 ), tantalum pentoxide (Ta 2 O 5 ), and zirconium dioxide (ZrO 2 ).
  • a penetrating light shielding film 37 as a first penetrating light shielding film is provided between the PD 11 of the pixel 10 and the charge holding unit 14.
  • the through light shielding film 37 is formed by forming a high dielectric constant material film on the entire inner surface of the through hole formed in the semiconductor substrate 20 and filling the material with light shielding properties therein.
  • the high dielectric constant material film and the light shielding material are the same as those of the back surface light shielding film 35 described above.
  • the penetrating light shielding film 37 is formed so as to penetrate the front and back of the semiconductor substrate 20, and has a structure that partitions between the PD 11 and the charge holding unit 14.
  • the front side end of the penetrating light-shielding film 37 is formed in the thickness direction of the semiconductor substrate 20 to be approximately the same as the front side end of the charge holding unit 14 or longer in the front side direction than the front side end of the charge holding unit 14. .
  • incident light from the back surface 20 ⁇ / b> R side of the semiconductor substrate 20 to the PD 11 is not obliquely incident on the charge holding unit 14.
  • At least a part of the charge holding portion 14 is located on the opposite side of the PD 11 across the through light shielding film 37, and the formation range of the PD 11 and the charge holding portion 14 in the direction in which the through light shielding film 37 extends. At least part of the formation range overlaps.
  • the connection length between the PD 11 and the charge holding portion 14 can be made as short as possible.
  • a penetrating light shielding film 39 is provided in the inter-pixel separation region 34 between the pixel 10 and another adjacent pixel.
  • the structure and material of the penetrating light shielding film 39 are the same as those of the penetrating light shielding film 37 described above.
  • the penetrating light shielding film 39 is formed to penetrate the front and back of the semiconductor substrate 20 and partitions the pixel 10 from other pixels. As a result, incident light incident on the PD 11 of the pixel 10 from the rear surface 20R side of the semiconductor substrate 20 does not enter the other adjacent pixels 10 obliquely.
  • the light shielding layer 22 is provided with a back surface light shielding film 35 that covers the back surface side of the charge holding portion 14.
  • the back surface light shielding film 35 is formed along the back surface 20R on the back surface 20R side of the semiconductor substrate 20 where the charge holding portion 14 is provided, and the PD 11 side edge of the back surface light shielding film 35 is the back surface of the through light shielding film 37.
  • the other edge of the back light shielding film 35 is connected to the back side edge of the penetrating light shielding film 39. That is, except for the side facing the front surface 20 ⁇ / b> F of the semiconductor substrate 20, the charge holding unit 14 is in a state of being optically blocked by the back surface light shielding film 35 and the through light shielding films 37 and 39.
  • the high dielectric constant material film is provided so as to thinly enclose the through light shielding films 37 and 39 formed in the semiconductor substrate 20, and the high dielectric constant material film is also provided between the back light shielding film 35 and the semiconductor substrate 20. These high dielectric constant material films are continuously formed with the high dielectric constant films that cover the outer sides of the through light shielding films 37 and 39.
  • the bypass unit 38 connects between the PD 11 and the charge holding unit 14 outside the surface 20F of the semiconductor substrate 20.
  • the bypass portion 38 is formed of a semiconductor material to which an N-type impurity is added, and is formed so as to straddle the surface 20F of the semiconductor substrate 20 at a portion where the penetrating light shielding film 37 is provided.
  • As a semiconductor material constituting the bypass portion 38 SiGe, InGaAs or the like can be used in addition to silicon.
  • the bypass portion 38 is formed at a position / range including the formation ranges of the penetrating light shielding film 37, the PD 11, and the charge holding portion 14.
  • the bypass portion 38 has a P-type region 38b (see FIG.
  • the P-type region 38b has an N-type impurity to which an N-type impurity is added. It functions as a channel region between the region 38a (see FIG. 5) and the gate electrode 32, and serves as a charge transfer path for transferring charges from the PD 11 to the charge holding unit 14.
  • FIG. 5 is a diagram showing a specific example of the shape of the bypass portion 38 along the AA cross section.
  • the bypass portion 38 has a tapered side surface extending in a direction substantially orthogonal to the surface 20F of the semiconductor substrate 20, and has a trapezoidal cross section with the long side facing the semiconductor substrate 20 side.
  • the basic shape of the bypass portion 38 is the same as that of the specific example shown in FIG. 5A, but the surface 20F of the semiconductor substrate 20 has a dent on both sides of the bypass portion 38. It has a wrenching shape.
  • the basic shape of the bypass portion 38 is the same as that in the specific example shown in FIG. 5A, but the corner on the short side of the trapezoidal cross section of the bypass portion 38 is removed. It has a different shape. If the corners are obtuse as shown in these specific examples, electric field concentration is avoided and transfer efficiency is improved.
  • a gate electrode 32 is formed as a control unit for controlling charge transfer from the PD 11 to the charge holding unit 14 via the bypass unit 38.
  • the gate electrode 32 may be a polysilicon gate, a metal gate using a high-k insulating film, or the like.
  • the gate electrode 32 is formed along the front side and the side surface of the bypass portion 38, and is provided at a position and shape straddling the penetrating light shielding film 37.
  • a memory gate 40 is provided on the surface 20F of the semiconductor substrate 20 corresponding to the charge holding unit 14.
  • the potential of the charge holding unit 14 changes and the charge transfer efficiency from the PD 11 to the charge holding unit 14 is improved. This makes it possible to suppress noise and afterimage during charge transfer.
  • the solid-state imaging device 100 configured as described above can suppress the leakage of light to the charge holding unit 14 and can reduce noise components during transfer, and has significantly better characteristics than the conventional structure. Can be obtained.
  • FIG. 6 to 10 are diagrams illustrating a flow according to an example of a method for manufacturing the solid-state imaging device 100.
  • FIG. 6 to 10 are diagrams illustrating a flow according to an example of a method for manufacturing the solid-state imaging device 100.
  • the resist R is patterned by a lithography technique on a portion where the bypass portion 38 of the surface 20F of the semiconductor substrate 20 is provided (FIG. 6A), and the surface 20F of the semiconductor substrate 20 not covered with the resist R is dried.
  • Excavation is performed uniformly by etching (FIG. 6B).
  • the excavation depth only needs to secure a necessary thickness for the bypass portion 38. Specifically, the range of 50 to 300 nm is exemplified.
  • the resist R is peeled and removed. Thereby, the bypass part 38 on the protrusion left on the surface 20F of the semiconductor substrate 20 in the form of a bank is formed.
  • the trenching shape shown in FIG. 5B is formed by locally deepening the processing end depending on processing conditions when this dry etching is applied. Note that plasma damage due to dry etching can be recovered by performing high-temperature heat treatment at 1000 ° C. or higher after processing.
  • ion implantation is performed for the bypass unit 38, the PD 11, and the charge holding unit 14 (FIG. 6C). Ion implantation is performed so that the bypass unit 38, the PD 11, and the charge holding unit 14 are of the first conductivity type (N + type in this embodiment). Although not shown, necessary ion implantation is also performed on the pixel transistor.
  • a second conductive type (P + type in this embodiment) pinning layer is formed by ion implantation. Charges may be prevented from flowing out on the front surface 20F and the back surface 20R of the substrate 20.
  • an insulating oxide film is laminated on the surface 20F of the semiconductor substrate 20 (not shown), a gate electrode of the pixel transistor is formed at a predetermined position thereon, and a plurality of wirings 21a and interlayers of the wiring layer 21 are formed thereon. Insulating films 21b are sequentially stacked (FIG. 7D). Thereafter, although not shown, a substrate support material (support substrate, etc.) is bonded to the front surface side of the wiring layer 21, the entire surface is turned upside down, and the semiconductor substrate 20 is polished and ground from the back surface 20 R side to the back side of the PD 11. The substrate 20 may be thinned. Note that the substrate support material may be formed with a logic circuit, a memory element, or the like. In this case, a through electrode penetrating from the semiconductor substrate 20 to the substrate support material is formed, and a predetermined wiring 21a of the wiring layer 21 is formed. Are electrically connected to a logic circuit, a memory element, and the like.
  • a resist R is patterned on the back surface 20R of the semiconductor substrate 20 by a lithography technique (FIG. 7E), and through holes H that penetrate the semiconductor substrate 20 from the back surface 20R side to the front surface 20F side by dry etching are formed. It forms (FIG.7 (f)).
  • the resist R is peeled off.
  • a high dielectric constant material is deposited on the inner surface H1 of the through hole H and the flat portion 20a of the back surface 20R of the semiconductor substrate 20 (FIG. 8G).
  • the high dielectric constant material for example, a single film of oxide film (SiO 2 ), hafnium oxide (HfOx), tantalum oxide (TaOx), zirconium oxide (ZrOx), or a laminated film thereof can be applied. Thereafter, the through hole H is filled with a metal material to form the through light shielding films 37 and 39, and the back surface light shielding film 35 is formed by laminating the metal material on the flat portion 20a of the back surface 20R of the semiconductor substrate 20. (FIG. 8 (h)).
  • the metal material for example, a single film of tungsten (W), aluminum (Al), copper (Cu), titanium (Ti), titanium nitride (TiN), tungsten nitride (WN), or a laminated film thereof is applied. Is possible.
  • a resist R is patterned on the back surface light shielding film 35 by a lithography technique, and necessary portions of the back surface light shielding film 35 are removed by dry etching to form openings (FIG. 8 (i)).
  • an opening is formed at a site corresponding to the PD region of the PD 11.
  • the planarizing layer 23 is formed by, for example, forming a thermoplastic resin film on the backside light-shielding film 35 by a spin coating method and then performing a thermosetting process.
  • the color filter layer 24 is formed by applying a coating solution containing a color material such as a pigment or a dye and a photosensitive resin by a coating method such as a spin coating method, and the coating film is formed by a lithography technique. It is formed by pattern processing.
  • the on-chip lens 25 is formed, for example, by forming a positive photoresist film on the color filter layer 24 and then processing it.
  • the solid-state imaging device 100 according to the first embodiment having a global shutter function can be created.
  • the bypass portion 38 is formed by lithography and dry etching, but the bypass portion 38 can also be formed by an epitaxial vapor deposition method.
  • 10A to 10C are views for explaining a manufacturing method in the case where the bypass portion 38 is formed by an epitaxial vapor deposition method.
  • the insulating film F is formed on the surface 20F of the semiconductor substrate 20, and the resist R in which the portion where the bypass portion 38 of the insulating film F is provided is patterned by the lithography technique and is not covered with the resist R.
  • the insulating film F is excavated and removed by dry etching to open (FIG. 10A).
  • SiO and SiN are generally used for the insulating film F, but the insulating film F is not limited as long as the selectivity can be secured at the time of film formation by the epitaxial vapor deposition method.
  • the natural oxide film on the surface 20F of the semiconductor substrate 20 is removed by wet treatment or hydrogen reduction, and a semiconductor material such as silicon is epitaxially formed (FIG.
  • Si epitaxial film formation is performed using a Si—H—Cl-based gas, and the growth rate and shape can be controlled by adjusting the H / Cl ratio.
  • the facet shape shown in FIG. 5C described above when this epitaxial vapor deposition method is applied, a plurality of Si surfaces appear depending on processing conditions, and facets are formed.
  • the bypass portion 38 is formed at a predetermined position on the surface 20F of the semiconductor substrate 20 (FIG. 10C).
  • a bypass portion 38 is formed on the surface 20 ⁇ / b> F of the semiconductor substrate 20 as a protruding portion that is stacked and formed in a banking pattern by selective epitaxial growth.
  • the solid-state imaging device 200 according to the present embodiment has the same configuration as that of the solid-state imaging device 100 described above, except that the positional relationship and shape of the PD, the charge holding unit, the bypass unit, and the like in the pixel are different.
  • the positional relationship and shape of the PD 211, the charge holding unit 214, the bypass unit 238, and the like of the pixel 210 of the solid-state imaging device 200 will be mainly described, and detailed description of other configurations will be omitted, and as necessary.
  • a reference numeral with 2 added to the head of the reference numeral of the configuration of the solid-state imaging device 100 is shown.
  • the basic functions of the PD 211, the charge holding unit 214, the bypass unit 238, and the like are the same as those of the PD 11, the charge holding unit 14, the bypass unit 38, and the like.
  • FIG. 11 is a diagram showing a planar configuration example of the pixel 210
  • FIG. 12 is a diagram showing a sectional configuration example of the pixel 210 in the AA section of FIG.
  • the entire gate electrode 232 of the first transfer transistor 212 is provided on the same side as the PD 211 with the penetrating light-shielding film 237 interposed therebetween, in a positional relationship adjacent to the PD 211 while partially overlapping with the formation of the PD 211. It has been.
  • the gate electrode 232 has a concave portion 232 a that is not adjacent to the PD 211 but has a concave portion 232 a that is partly cut out at the corner facing the penetrating light shielding film 237.
  • the gate electrode 232 is provided at a position not corresponding to the penetrating light shielding film 237 on the bypass portion 238.
  • the bypass part 238 connects the gate electrode 232 and the charge holding part 214 so as to straddle the penetration light shielding film 237 outside the surface 220F of the semiconductor substrate 220, and includes the edge of the recess 232a. It is formed in a range extending across the 237 to the charge holding portion 214 side.
  • At least a part of the charge holding unit 214 is located on the opposite side of the gate electrode 232 across the through light shielding film 237, and the formation range of the gate electrode 232 and the charge in the extending direction of the through light shielding film 237. At least a part of the formation range of the holding part 214 overlaps.
  • bypass unit 238 becomes a charge transfer path for transferring charges from the PD 211 to the charge holding unit 214 via a channel formed under the gate electrode 232.
  • the solid-state image sensor 300 according to the present embodiment has the same configuration as the solid-state image sensor 100 described above except that the shape of the gate electrode in the pixel is different.
  • the shape of the gate electrode 332 of the pixel 310 of the solid-state imaging device 300 will be mainly described, and detailed description of other configurations will be omitted.
  • symbol with attached is shown. Note that the basic function of the gate electrode 332 is the same as that of the gate electrode 32.
  • FIG. 13 is a diagram illustrating a planar configuration example of the pixel 310
  • FIG. 14 is a diagram illustrating a sectional configuration example of the pixel 310 in the AA section of FIG.
  • the gate electrode 332 is formed along the front side and the side surface of the bypass portion 338, and is provided at a position and shape straddling the penetrating light shielding film 337. Accordingly, when a predetermined voltage is applied to the gate electrode 332, the charge accumulated in the PD 311 is transferred to the charge holding unit 314.
  • the gate electrode 332 includes a penetrating portion 332 a extending in the thickness direction of the semiconductor substrate 320 along the side surface of the penetrating light shielding film 337 on the PD 311 side.
  • a P-type region to which a P-type impurity is added is also formed in a region including the bypass portion 338 and the surface of the PD 311 in contact with the penetration portion 332a. Therefore, by providing the penetration portion 332a, a channel range formed by applying a predetermined voltage to the gate electrode 332 is expanded, and charge transfer efficiency is improved. In addition, the channel formed by the penetration portion 332a enables efficient transfer of charges at a deep position of the PD 311.
  • the penetration portion 332a may have a shape in which a flat plate-like member is extended from the gate electrode 332 main body, or may have a shape in which a plurality of columnar members are extended from the gate electrode 332 main body in a comb shape.
  • the length of the penetration part 332a is appropriately set according to the potential design of the PD 311.
  • a gate insulating film is provided between the penetration part 332a and the semiconductor substrate 320, it is difficult to transmit light and contributes to a reduction in optical noise to the charge holding part 314.
  • a metal gate made of a metal material as the gate electrode 332, the light shielding property between the PD 311 and the charge holding unit 314 can be improved, and the optical noise to the charge holding unit can be further reduced. is there.
  • a material of the metal electrode for example, tungsten (W), aluminum (Al), titanium (Ti), titanium nitride (TiN), cobalt (Co), or a laminated structure thereof can be used.
  • the penetration part 332a may be a metal gate, and the other part may be a silicon gate.
  • the solid-state imaging device 400 according to the present embodiment has the same configuration as the solid-state imaging device 100 described above except for the structure between the charge holding unit and the floating diffusion.
  • the structure between the charge holding unit 414 and the floating diffusion 415 of the pixel 410 of the solid-state image sensor 400 will be mainly described, and detailed description of other configurations will be omitted, and the solid-state image sensor 100 will be described as necessary.
  • symbol head of the structure of is shown.
  • the basic functions of the charge holding unit 414 and the floating diffusion 415 are the same as those of the charge holding unit 14 and the floating diffusion 15.
  • FIG. 15 is a diagram illustrating a planar configuration example of the pixel 410
  • FIG. 16 is a diagram illustrating a sectional configuration example of the pixel 410 in the AA section of FIG.
  • a penetrating light shielding film 441 as a second penetrating light shielding film is provided between the charge holding unit 414 and the floating diffusion 415.
  • the through-shading film 441 is formed by forming a high dielectric constant material film on the entire inner surface of the through-hole formed in the semiconductor substrate 420 and filling it with a light-shielding material, like the through-shading film 437 and the like.
  • the penetrating light shielding film 441 is formed so as to penetrate the front and back of the semiconductor substrate 420 and has a structure for partitioning between the charge holding portion 414 and the floating diffusion 415.
  • the front side end of the penetrating light shielding film 441 is formed in the thickness direction of the semiconductor substrate 420 to the same extent as the front side end of the charge holding unit 414 or longer than the front side end of the charge holding unit 414. .
  • the penetrating light shielding film 441 By providing the penetrating light shielding film 441, the light shielding property between the charge holding portion 414 and the floating diffusion 415 is improved, and the influence of noise from the floating diffusion 415 side to the charge holding portion 414 can be suppressed.
  • the charge holding unit 414 may have a structure in which a penetrating light shielding film similar to the penetrating light shielding film 441 is provided on the opposite side of the floating diffusion 415 of the charge holding unit 414 and the entire periphery thereof is surrounded by the penetrating light shielding film. .
  • a penetrating light shielding film similar to the penetrating light shielding film 441 is provided on the opposite side of the floating diffusion 415 of the charge holding unit 414 and the entire periphery thereof is surrounded by the penetrating light shielding film.
  • the charge holding unit 414 and the floating diffusion 415 are connected by a bypass unit 442 as a second bypass unit that is formed outside the surface 420F of the semiconductor substrate 420 so as to straddle the penetrating light shielding film 441.
  • the bypass portion 442 is formed at a position / range including the formation range of the through light shielding film 441, the charge holding portion 414, and the floating diffusion 415.
  • the bypass part 442 is formed of a semiconductor material to which an N-type impurity is added.
  • the gate electrode of the second transfer transistor 13 is stacked on the surface side of the bypass unit 442, and when a predetermined voltage is applied to the gate electrode, the charge accumulated in the PD 411 is transferred to the charge holding unit. 414. That is, the bypass unit 442 serves as a charge transfer path for transferring charges from the charge holding unit 414 to the floating diffusion 415.
  • the solid-state imaging device 500 according to the present embodiment has the same configuration as the solid-state imaging device 100 described above except that a light shielding film is provided on the surface side of the charge holding unit.
  • the shape of the surface light-shielding film 543 of the solid-state imaging device 500 will be mainly described, detailed description of other configurations will be omitted, and 5 is added to the head of the reference numerals of the configuration of the solid-state imaging device 100 as necessary. The sign is shown.
  • FIG. 17 is a diagram illustrating a planar configuration example of the pixel 510
  • FIG. 18 is a diagram illustrating a sectional configuration example of the pixel 510 in the AA section of FIG.
  • the surface light-shielding film 543 is a member that shields light by covering the front side of the charge holding portion 514.
  • the surface light-shielding film 543 is formed on the front side of the charge holding portion 514 so as to cover the members (memory gate 540, bypass portion 538, transfer electrode 532, etc.) formed between the semiconductor substrate 520 and the wiring layer 521.
  • the range covered with the surface light-shielding film 543 can be expanded or reduced as long as the semiconductor substrate 520 is not electrically interfered with the contact portion connecting the wiring 521a.
  • a high dielectric constant material film is provided between the surface light-shielding film 543 and the charge holding portion 514 and various members (memory gate 540, bypass portion 538, transfer electrode 532, etc.). Thereby, the light-shielding property of the charge holding portion 514 can be further improved.
  • the solid-state imaging device 600 according to the present embodiment has the same configuration as the solid-state imaging device 100 described above except for the formation range of the bypass portion formed in a raised shape.
  • the formation range of the bypass portion 638 of the solid-state imaging device 600 will be mainly described, detailed description of other configurations will be omitted, and 6 will be added to the top of the reference numerals of the configuration of the solid-state imaging device 100 as necessary. The sign is shown.
  • FIG. 19 is a diagram showing a cross-sectional configuration example of the pixel 610 in a cross section corresponding to the cross section AA in FIG.
  • the bypass portion 638 has a shape extending not only in a portion straddling the penetrating light shielding film 637 but also in the formation range of the PD 611 on the surface 620F of the semiconductor substrate 620.
  • the entire surface of the PD 611 has a raised shape that is substantially the same as the surface of the bypass portion 638.
  • the solid-state imaging device 700 according to the present embodiment has the same configuration as that of the above-described solid-state imaging device 100 except that the charge holding unit is not provided and an FD accumulation type configuration in which the charge of the PD is directly transferred to the floating diffusion is adopted. It is.
  • FIG. 20 is a diagram illustrating a planar configuration example of the pixel 710
  • FIG. 21 is a diagram illustrating a sectional configuration example of the pixel 710 in the AA section of FIG.
  • a floating diffusion 715 is provided as a configuration for receiving and holding the charge transferred from the PD 711 via the bypass unit 738. That is, at least a part of the floating diffusion 715 is located on the opposite side of the PD 711 with the through light shielding film 737 interposed therebetween, and at least the formation range of the PD 711 and the formation range of the floating diffusion 715 in the direction in which the through light shielding film 737 extends. Some overlap.
  • the bypass portion 738 formed in the overlapping portion serves as a charge transfer path from the PD 711 to the floating diffusion 715.
  • the charge accumulated in the floating diffusion 715 is output as a pixel signal via the contact 744 and the wiring 745.
  • the solid-state imaging device 700 configured in this manner generally has a merit from the viewpoint of chip size because the charge holding portion requiring a large area can be eliminated.
  • FIG. 22 is a block diagram illustrating a configuration of an imaging apparatus 800 including the solid-state imaging device 100.
  • An imaging apparatus 800 illustrated in FIG. 1 is an example of an electronic device.
  • an imaging device refers to a solid-state imaging in an image capturing unit (photoelectric conversion unit) such as an imaging device such as a digital still camera or a digital video camera, or a mobile terminal device such as a mobile phone having an imaging function. It refers to all electronic devices that use elements.
  • an electronic apparatus using a solid-state imaging device for the image capturing unit includes a copying machine using a solid-state imaging device for the image reading unit.
  • the imaging device may be modularized including a solid-state imaging device for mounting on the electronic device described above.
  • an imaging apparatus 800 includes an optical system 811 including a lens group, a solid-state imaging device 100, a DSP 813 (Digital Signal Processor) as a signal processing circuit that processes an output signal of the solid-state imaging device 100, a frame memory 814, a display unit. 815, a recording unit 816, an operation system 817, a power supply system 818, and a control unit 819.
  • an optical system 811 including a lens group
  • a solid-state imaging device 100 As a signal processing circuit that processes an output signal of the solid-state imaging device 100
  • a frame memory 814 includes a display unit. 815, a recording unit 816, an operation system 817, a power supply system 818, and a control unit 819.
  • the DSP 813, the frame memory 814, the display unit 815, the recording unit 816, the operation system 817, the power supply system 818, and the control unit 819 are connected so as to be able to transmit and receive data and signals to each other via a communication bus.
  • the optical system 811 takes in incident light (image light) from a subject and forms an image on the imaging surface of the solid-state imaging device 100.
  • the solid-state imaging device 100 generates an electrical signal corresponding to the amount of incident light received on the imaging surface by the optical system 811 in units of pixels and outputs it as a pixel signal.
  • This pixel signal is input to the DSP 813, and image data generated by appropriately performing various image processing is stored in the frame memory 814, recorded on the recording medium of the recording unit 816, or output to the display unit 815.
  • image data generated by appropriately performing various image processing is stored in the frame memory 814, recorded on the recording medium of the recording unit 816, or output to the display unit 815.
  • the display unit 815 includes a panel type display device such as a liquid crystal display device or an organic EL (electroluminescence) display device, and displays a moving image, a still image, and other information captured by the solid-state image sensor 100.
  • the recording unit 816 records a moving image or a still image captured by the solid-state imaging device 100 on a recording medium such as a DVD (Digital Versatile Disk), HD (Hard Disk), or a semiconductor memory.
  • the operation system 817 receives various operations from the user, and transmits an operation command corresponding to the user's operation to each unit 813, 814, 815, 816, 818, 819 via the communication bus.
  • the power supply system 818 generates various power supply voltages serving as drive power supplies and appropriately supplies them to the supply target (respective units 813, 814, 815, 816, 817, 819).
  • the control unit 819 includes a CPU that performs arithmetic processing, a ROM that stores a control program for the imaging apparatus 800, a RAM that functions as a work area for the CPU, and the like.
  • the control unit 819 controls the units 813, 814, 815, 816, 817, and 818 through the communication bus by the CPU executing a control program stored in the ROM while using the RAM as a work area.
  • the control unit 819 controls a timing generator (not shown) to generate various timing signals, and performs control to supply each timing signal.
  • present technology is not limited to the above-described embodiments, and includes configurations in which the configurations disclosed in the above-described embodiments are mutually replaced or combinations are changed, known technologies, and the above-described embodiments. Also included are configurations in which the configurations disclosed in 1 are replaced with each other or combinations are changed. Further, the technical scope of the present technology is not limited to the embodiment described above, It extends to the matters described in the claims and their equivalents.
  • a semiconductor substrate A photoelectric conversion unit that photoelectrically converts incident light from the back surface of the semiconductor substrate; A charge holding unit that temporarily holds the charge generated by the photoelectric conversion unit; A first penetrating light-shielding film that penetrates through the front and back of the semiconductor substrate and partitions the photoelectric conversion unit and the charge holding unit; A first bypass part that is formed of a semiconductor material on the outer surface of the semiconductor substrate and connects the photoelectric conversion part and the charge holding part across the first penetrating light shielding film; A control unit that controls charge transfer from the photoelectric conversion unit to the charge holding unit via the first bypass unit; With The front end portion of the first through-shielding light-shielding film is formed in the thickness direction of the semiconductor substrate to be approximately the same as the front end of the charge holding portion or longer in the front side direction than the front end of the charge holding portion. Solid-state image sensor.
  • the control unit controls a control electrode provided at a position corresponding to the first penetrating light shielding film on the first bypass unit to transfer the photoelectric conversion unit to the charge holding unit via the first bypass unit.
  • the control unit controls a control electrode provided at a position not corresponding to the first penetrating light shielding film on the first bypass unit to transfer the photoelectric conversion unit to the charge holding unit via the first bypass unit.
  • the said control electrode has a penetration part extended in the thickness direction of the said semiconductor substrate along the side surface of the said 1st penetration light shielding film on the said photoelectric conversion part side, The said (2) or the said (3) Solid-state image sensor.
  • a second bypass part that is formed of a semiconductor material outside the surface of the semiconductor substrate and connects the charge holding part and the floating diffusion across the second penetrating light shielding film;
  • An imaging apparatus comprising: a solid-state imaging device; and a signal processing circuit that processes a signal from the solid-state imaging device
  • the solid-state imaging device includes a semiconductor substrate, a photoelectric conversion unit that photoelectrically converts incident light from the back surface of the semiconductor substrate, a charge holding unit that temporarily holds charges generated by the photoelectric conversion unit, and the semiconductor substrate
  • a first penetrating light-shielding film that divides the photoelectric conversion part and the charge holding part through the front and back surfaces of the semiconductor substrate, and is formed of a semiconductor material on the outer surface of the semiconductor substrate and straddles the first penetrating light-shielding film.
  • a first bypass unit that connects the conversion unit and the charge holding unit, and a control unit that controls charge transfer from the photoelectric conversion unit to the charge holding unit via the first bypass unit,
  • the front end portion of the first through-shielding light-shielding film is formed in the thickness direction of the semiconductor substrate to be approximately the same as the front end of the charge holding portion or longer in the front side direction than the front end of the charge holding portion.
  • DESCRIPTION OF SYMBOLS 10 ... Pixel, 11 ... PD, 12 ... 1st transfer transistor, 13 ... 2nd transfer transistor, 14 ... Charge holding part, 15 ... Floating diffusion (FD), 16 ... Amplification transistor, 17 ... Selection transistor, 18 ... Reset transistor, 20 ... semiconductor substrate, 20F ... front surface, 20R ... back surface, 20a ... flat portion, 21 ... wiring layer, 21a ... wiring, 21b ... interlayer insulating film, 22 ... light shielding layer, 23 ... flattening layer, 24 ... color Filter layer, 25 ... On-chip lens, 32 ... Gate electrode, 34 ... Inter-pixel separation region, 35 ... Back side light shielding film, 36 ...
  • PD 514 ... Charge holding part, 520 ... Semiconductor substrate, 521 ... Wiring layer, 521a ... Wiring, 532 ... Transfer electrode, 538 ... Bypass part, 539 ... Penetration light shielding film, 543 ... Surface light shielding film, 600 ... Solid-state imaging device, 610 ... Pixel, 611 ... PD, 620 ... Semiconductor substrate, 620F ... Surface, 638 ... Bypass part, 639 ... Penetration light shielding film, 700 ... Solid-state imaging device, 710 ... Pixel, 711 ... PD, 715 ... Floating Diffusion, 737 ... penetrating light shielding film, 738 ... bypass unit, 744 ...

Abstract

グローバルシャッター方式の裏面照射型CMOSイメージセンサにおいて、光学ノイズを低減し、画質を改善する。 半導体基板と、前記半導体基板の裏面からの入射光を光電変換する光電変換部と、前記光電変換部が生成する電荷を一時的に保持する電荷保持部と、前記半導体基板の表裏を貫通して前記光電変換部と前記電荷保持部との間を仕切る第1貫通遮光膜と、前記半導体基板の表面外側に半導体材料で形成され前記第1貫通遮光膜を跨いで前記光電変換部と前記電荷保持部を接続する第1バイパス部と、前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する制御部と、を備え、前記第1貫通遮光膜の表側の端部は、前記半導体基板の厚さ方向において、前記電荷保持部の表側端と同程度又は前記電荷保持部の表側端よりも表側方向に長く形成されている固体撮像素子。

Description

固体撮像素子、固体撮像素子の製造方法、及び、撮像装置
 本技術は、固体撮像素子、固体撮像素子の製造方法、及び、撮像装置に関する。
 固体撮像装置は、CCD(Charge Coupled Device)イメージセンサとCMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサとに大別される。
 CMOSイメージセンサのシャッター方式は、メカニカルシャッター方式と電子シャッター方式がある。近年、普及が目覚ましいカメラ付き携帯電話などのモバイル機器に搭載されるCMOSイメージセンサは、装置サイズ小型化のため、主に電子シャッター方式が採用されている。
 電子シャッター方式は、露光方式によって、ローリングシャッター方式とグローバルシャッター方式とがある。ローリングシャッター方式は、1ラインずつ順次信号を読み出していく方式であり、1ラインずつ順番に読み出すために、1フレーム内のライン間に発生する読み出し時差によって、いわゆる「こんにゃく現象」が生じる。一方、グローバルシャッター方式は、1フレーム全体を一斉露光して読み出すため、動きが早いものを撮影しても画像に歪みが生じない。
 グローバルシャッター方式のCMOSイメージセンサでは、各画素における蓄積の同時性を実現する為に、画素毎に電荷保持素子(キャパシタ)を設け、光電変換素子で発生した電荷を電荷保持素子へ一斉転送して保持することで、グローバルシャッター撮影を可能にしている。ただし、電荷保持中の電荷保持素子に光が漏れ込むと光学的ノイズになって画質劣化の懸念がある。
 特許文献1,2には、裏面照射型のCMOSイメージセンサにおいてグローバルシャッター方式を実現し、上述した光学的ノイズを抑制する技術が開示されている。これら文献に開示された固体撮像素子では、電荷保持素子を光入射側から覆う遮光メタルが設けられており、電荷保持素子と光電変換部の間の領域に沿って遮光メタルを延在させた構造となっている。
特開2013-65688号公報 特開2014-96390号公報
 上述した特許文献1に記載の固体撮像素子は、電荷保持部と光電変換部の間に延在する遮光膜がシリコン基板を貫通していないため、斜め入射した光の一部がシリコン基板の裏面近くで電荷保持部に入射してしまい、電荷保持部で光電変換によって発生する電荷が光学的ノイズとなる可能性が有る。
 上述した特許文献2に記載の固体撮像素子は、電荷保持素子と光電変換部の間の電荷の転送をコンタクトに延在する遮光膜を貫通型メタル遮光膜構造とし、電荷保持領域に漏れ込む光を防止し、虚像の発生を抑制している。しかしながら、特許文献2に記載の技術では、シリコンの外にメタル配線を設けて光電変換部と電荷保持部の間を接続しており、メタル配線にノイズを拾いやすいことから、画質特性悪化の可能性がある。
 本技術は、前記課題に鑑みてなされたもので、グローバルシャッター方式の裏面照射型CMOSイメージセンサにおいて、光学ノイズを低減し、画質を改善することを目的とする。
 本技術の態様の1つは、半導体基板と、前記半導体基板の裏面からの入射光を光電変換する光電変換部と、前記光電変換部が生成する電荷を一時的に保持する電荷保持部と、前記半導体基板の表裏を貫通して前記光電変換部と前記電荷保持部との間を仕切る第1貫通遮光膜と、前記半導体基板の表面外側に半導体材料で形成され前記第1貫通遮光膜を跨いで前記光電変換部と前記電荷保持部を接続する第1バイパス部と、前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する制御部と、を備え、前記第1貫通遮光膜の表側の端部は、前記半導体基板の厚さ方向において、前記電荷保持部の表側端と同程度又は前記電荷保持部の表側端よりも表側方向に長く形成されている固体撮像素子である。
 本技術の他の態様の1つは、半導体基板に裏面からの入射光を光電変換する光電変換部を形成する工程と、前記光電変換部が生成する電荷を一時的に保持する電荷保持部を形成する工程と、前記半導体基板の表裏を貫通して前記光電変換部と前記電荷保持部との間を仕切る第1貫通遮光膜を形成する工程と、前記半導体基板の表面外側に半導体材料で形成され前記第1貫通遮光膜を跨いで前記光電変換部と前記電荷保持部を接続する第1バイパス部を形成する工程と、前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する制御電極を形成する工程と、を含んで構成され、前記第1貫通遮光膜の表側の端部は、前記半導体基板の厚さ方向において、前記電荷保持部の表側端と同程度又は前記電荷保持部の表側端よりも表側方向に長く形成されている、固体撮像素子の製造方法である。
 本技術の他の態様の1つは、固体撮像素子と、前記固体撮像素子からの信号を処理する信号処理回路と、を備える撮像装置であって、前記固体撮像素子は、半導体基板と、前記半導体基板の裏面からの入射光を光電変換する光電変換部と、前記光電変換部が生成する電荷を一時的に保持する電荷保持部と、前記半導体基板の表裏を貫通して前記光電変換部と前記電荷保持部との間を仕切る第1貫通遮光膜と、前記半導体基板の表面外側に半導体材料で形成され前記第1貫通遮光膜を跨いで前記光電変換部と前記電荷保持部を接続する第1バイパス部と、前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する制御部と、を備え、前記第1貫通遮光膜の表側の端部は、前記半導体基板の厚さ方向において、前記電荷保持部の表側端と同程度又は前記電荷保持部の表側端よりも表側方向に長く形成されている、撮像装置である。
 なお、以上説明した固体撮像素子は、他の機器に組み込まれた状態で実施されたり他の方法とともに実施されたりする等の各種の態様を含む。また、本技術は前記固体撮像素子を備える撮像装置、上述した固体撮像素子の製造方法としても実現可能である。
 本技術によれば、グローバルシャッター方式の裏面照射型CMOSイメージセンサにおいて、光学ノイズを低減し、画質を改善することができる。なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また付加的な効果があってもよい。
第1の実施形態に係る固体撮像素子の概略構成を説明する図である。 画素の構成例を示す回路図である。 画素の平面的な構成例を示す図である。 図3のA-A断面における画素の断面的な構成例を示す図である。 図3のA-A断面に沿うバイパス部の形状の具体的な例を示す図である。 固体撮像素子の製造方法の一例に係る流れを示す図である。 固体撮像素子の製造方法の一例に係る流れを示す図である。 固体撮像素子の製造方法の一例に係る流れを示す図である。 固体撮像素子の製造方法の一例に係る流れを示す図である。 固体撮像素子の製造方法の一例に係る流れを示す図である。 第2の実施形態に係る画素の平面的な構成例を示す図である。 図11のA-A断面における画素の断面的な構成例を示す図である。 第3の実施形態に係る画素の平面的な構成例を示す図を示す図である。 図13のA-A断面における画素の断面的な構成例を示す図である。 第4の実施形態に係る画素の平面的な構成例を示す図である。 図15のA-A断面における画素の断面的な構成例を示す図である。 第5の実施形態に係る画素の平面的な構成例を示す図である。 図17のA-A断面における画素の断面的な構成例を示す図である。 第6の実施形態に係る画素の、図3のA-A断面に相当する断面における断面的な構成例を示す図である。 第7の実施形態に係る画素の平面的な構成例を示す図である。 図20のA-A断面における画素の断面的な構成例を示す図である。 撮像装置の構成を示すブロック図である。
 以下、下記の順序に従って本技術を説明する。
(A)第1の実施形態:
(B)第2の実施形態:
(C)第3の実施形態:
(D)第4の実施形態:
(E)第5の実施形態:
(F)第6の実施形態:
(G)第7の実施形態:
(A)第1の実施形態: 
 図1は、本実施形態に係る固体撮像素子100の概略構成を説明する図である。
 固体撮像素子100は、CMOS型固体撮像素子であり、画素アレイ部121、垂直駆動部122、カラム処理部123、水平駆動部125、出力部127、および駆動制御部124を備える。
  画素アレイ部121は、アレイ状に配置された複数の画素10を有しており、画素10は、画素10の行数に応じた複数の水平信号線HSLnを介して垂直駆動部122に接続され、画素10の列数に応じた複数の垂直信号線VSLmを介してカラム処理部123に接続されている。即ち、画素アレイ部121が有する複数の画素10は、水平信号線HSLnおよび垂直信号線VSLmが交差する点にそれぞれ配置されている。
  垂直駆動部122は、画素アレイ部121が有する複数の画素10の行ごとに、それぞれの画素10を駆動するための駆動信号(転送信号や、選択信号、リセット信号など)を、水平信号線HSLnを介して順次供給する。
  カラム処理部123は、垂直信号線VSLmを介して、それぞれの画素10から出力される画素信号に対してCDS(Correlated Double Sampling:相関2重サンプリング)処理を施すことで画素信号の信号レベルを抽出し、画素10の受光量に応じた画素データを取得する。
  水平駆動部125は、画素アレイ部121が有する複数の画素10の列ごとに、それぞれの画素10から取得された画素データをカラム処理部123から出力させるための駆動信号を、カラム処理部123に順次供給する。
  出力部127には、水平駆動部125の駆動信号に従ったタイミングでカラム処理部123から画素データが供給され、出力部127は、例えば、その画素データを増幅して、後段の画像処理回路に出力する。
  駆動制御部124は、固体撮像素子100の内部の各ブロックの駆動を制御する。例えば、駆動制御部124は、各ブロックの駆動周期に従ったクロック信号を生成して、それぞれのブロックに供給する。
  図2は、画素10の構成例を示す回路図である。
  図2に示すように、画素10は、PD11、第1の転送トランジスタ12、第2の転送トランジスタ13、電荷保持部14、フローティングディフュージョン(FD)15、増幅トランジスタ16、選択トランジスタ17、およびリセットトランジスタ18を備えて構成される。以下、第1の転送トランジスタ12、第2の転送トランジスタ13、電荷保持部14、増幅トランジスタ16、選択トランジスタ17、およびリセットトランジスタ18をまとめて画素トランジスタと記載する場合がある。
  PD11は、画素10に照射される光を受光して、その光の光量に応じた電荷を発生して蓄積する。
  第1の転送トランジスタ12は、垂直駆動部122から供給される転送信号に従って駆動し、第1の転送トランジスタ12がオンになると、PD11に蓄積されている電荷が電荷保持部14に転送される。
  第2の転送トランジスタ13は、垂直駆動部122から供給される転送信号に従って駆動し、第2の転送トランジスタ13がオンになると、電荷保持部14に蓄積されている電荷がFD15に転送される。
  電荷保持部14は、第1の転送トランジスタ12を介してPD11から転送される電荷を蓄積するキャパシタである。
  FD15は、第2の転送トランジスタ13と増幅トランジスタ16の制御電極としてのゲート電極との接続点に形成された所定の容量を有する浮遊拡散領域であり、第2の転送トランジスタ13を介して電荷保持部14から転送される電荷を蓄積する。
  増幅トランジスタ16は、電源VDDに接続されており、FD15に蓄積されている電荷に応じたレベルの画素信号を出力する。
  選択トランジスタ17は、垂直駆動部122から供給される選択信号に従って駆動し、選択トランジスタ17がオンになると、増幅トランジスタ16から出力される画素信号が選択トランジスタ17を介して垂直信号線VSLmに読み出し可能な状態となる。
  リセットトランジスタ18は、垂直駆動部122から供給されるリセット信号に従って駆動し、リセットトランジスタ18がオンになると、FD15に蓄積されている電荷が、リセットトランジスタ18を介して電源VDDに排出され、FD15がリセットされる。
  このように構成された画素10を有する固体撮像素子100では、グローバルシャッター方式が採用され、全ての画素10に対して同時に、PD11から電荷保持部14に電荷を転送することができ、全ての画素10の露光タイミングを同一にすることができる。これにより、画像に歪みが発生することを回避することができる。
  図3は、画素10の平面的な構成例を示す図、図4は、図3のA-A断面における画素10の断面的な構成例を示す図である。画素10は、裏面照射型の構成である。
 図3に示す画素10では、半導体基板20の裏面からの入射光を光電変換する光電変換部としてのPD11、PD11が生成する電荷を一時的に保持する電荷保持部14、およびFD15が平面的に配置されている。以下では、画素10において、半導体基板20のPD11が形成されている領域をPD領域、半導体基板20に電荷保持部14が形成されている領域を電荷保持領域と呼ぶ場合がある。
 画素10は、図4の下側から順に、配線層21、半導体基板20、遮光層22、平坦化層23、カラーフィルタ層24、およびオンチップレンズ25が積層された構成である。なお、平坦化層23を設けず、半導体基板20や遮光層22の上に直接カラーフィルタ層24を積層形成してもよい。
 固体撮像素子100は、半導体基板20の配線層21を積層される表面20Fに対して反対側となる裏面20Rに対して入射光が照射される、いわゆる裏面照射型CMOSイメージセンサの構造である。
  配線層21は、半導体基板20のPD11の電荷読み出し等を行う複数の配線21aが層間絶縁膜21bに埋設されている。配線層21の下側には、例えば、基板支持材(不図示)が設けられる。
 配線層21には、半導体基板20に対して絶縁酸化膜(不図示)を介して、第1の転送トランジスタ12を構成するゲート電極32が配置されている。ゲート電極32に所定の電圧が印加されることにより、PD11に蓄積されている電荷が電荷保持部14へ転送される。
  半導体基板20には、PD11を構成するN型領域と、電荷保持部14を構成するN型領域とが形成されている。PD11を構成するN型領域と電荷保持部14を構成するN型領域は、半導体基板20の表面20F寄りの位置に形成されている。PD11および電荷保持部14の裏面側および電荷保持部14の表面側にはP型領域の表面ピニング層を設けてもよい。
 半導体基板20には、画素10と、隣接する他の画素10とを分離する画素間分離領域34が、画素10の外周を囲うように形成されている。
  遮光層22は、遮光性を有する材料により形成される裏面遮光膜35が、高誘電率材料膜36に埋め込まれた状態で形成されている。例えば、裏面遮光膜35は、タングステン(W)や、アルミ(Al)、銅(Cu)などの材料により形成され、図示しないGNDに接続されている。高誘電率材料膜36は、二酸化ケイ素(SiO)や、酸化ハフニウム(HfO)、五酸化タンタル(Ta)、二酸化ジルコニウム(ZrO)などの材料により形成される。
 半導体基板20において、画素10のPD11と電荷保持部14との間に第1貫通遮光膜としての貫通遮光膜37が設けられている。貫通遮光膜37は、半導体基板20に形成した貫通孔の内面全体に高誘電率材料膜を形成し、その中に遮光性を有する材料を充填して形成される。高誘電率材料膜と遮光性を有する材料は、上述した裏面遮光膜35と同様である。貫通遮光膜37は、半導体基板20の表裏を貫通して形成され、PD11と電荷保持部14との間を仕切る構造である。貫通遮光膜37の表側の端部は、半導体基板20の厚さ方向において、電荷保持部14の表側端部と同程度又は電荷保持部14の表側端部よりも表側方向に長く形成されている。貫通遮光膜37を設けることにより、半導体基板20の裏面20R側からPD11への入射光が電荷保持部14へ斜め入射することがない。
 図3において、貫通遮光膜37を挟んでPD11の反対側には、少なくとも電荷保持部14の一部が位置しており、貫通遮光膜37の延びる方向においてPD11の形成範囲と電荷保持部14の形成範囲の少なくとも一部が重複している。この重複部分にバイパス部38を形成することで、PD11と電荷保持部14との接続長を可及的に短く形成することができる。
 半導体基板20において、画素10と隣接する他の画素との間の画素間分離領域34の中には貫通遮光膜39が設けられている。貫通遮光膜39の構造や材料は上述した貫通遮光膜37と同様である。貫通遮光膜39は、半導体基板20の表裏を貫通して形成され、画素10と他の画素の間を仕切っている。これにより、画素10のPD11へ半導体基板20の裏面20R側から入射した入射光が隣接する他の画素10へ斜め入射することがない。
 遮光層22には、電荷保持部14の裏面側を覆蓋する裏面遮光膜35が設けられている。裏面遮光膜35は、電荷保持部14を設けた部位の半導体基板20の裏面20R側において裏面20Rに沿って形成されており、裏面遮光膜35のPD11側の縁部は貫通遮光膜37の裏面側端部に連接され、裏面遮光膜35の他の縁部は貫通遮光膜39の裏面側端部に連接されている。すなわち、半導体基板20の表面20Fに面する側を除いて、電荷保持部14は、裏面遮光膜35と貫通遮光膜37、39とによって光学的に閉塞された状態である。なお、高誘電率材料膜は半導体基板20中に形成された貫通遮光膜37,39を薄く包み込むように設けられており、また裏面遮光膜35と半導体基板20の間にも高誘電率材料膜が設けられており、これらの高誘電率材料膜は貫通遮光膜37,39の外側を覆う高誘電率膜と連続的に形成されている。
 バイパス部38は、半導体基板20の表面20Fの外側においてPD11と電荷保持部14の間を接続する。バイパス部38は、N型不純物を添加した半導体材料で形成されており、貫通遮光膜37を設けた部位の半導体基板20の表面20Fを跨ぐように形成されている。バイパス部38を構成する半導体材料は、シリコンの他、SiGe、InGaAs等を用いることができる。すなわち、バイパス部38は、貫通遮光膜37、PD11及び電荷保持部14の形成範囲をそれぞれ含む位置・範囲で形成されている。バイパス部38は、ゲート電極32に接する表面に沿ってP型不純物が添加されたP型領域38b(図5参照)を有し、このP型領域38bは、N型不純物が添加されたN型領域38a(図5参照)とゲート電極32との間でチャネル領域として機能し、PD11から電荷保持部14へ電荷を転送する電荷転送路となる。
 図5は、A-A断面に沿うバイパス部38の形状の具体的な例を示す図である。図5(a)に示す具体例では、バイパス部38は、半導体基板20の表面20Fと略直交する方向に延びる側面にテーパーが付いており、長辺を半導体基板20側に向けた断面台形状になっている。図5(b)に示す具体例では、バイパス部38の基本的な形状は図5(a)に示す具体例と同様であるが、バイパス部38の両側において半導体基板20の表面20Fに凹みが付いたレンチング形状となっている。図5(c)に示す具体例では、バイパス部38の基本的な形状は図5(a)に示す具体例と同様であるが、バイパス部38の断面台形の短辺側の角部が取れた形状となっている。これら具体例に示すように角部を鈍角とすると、電界の集中が回避され、転送効率が良好になる。
 半導体基板20の表面20Fの外側には、バイパス部38を介したPD11から電荷保持部14への電荷転送を制御する制御部としてのゲート電極32が形成されている。ゲート電極32は、ポリシリコンゲート、High-k絶縁膜を用いたメタルゲート等を採用できる。ゲート電極32は、バイパス部38の表側及び側面に沿って形成されており、貫通遮光膜37を跨ぐ位置及び形状で設けられている。ゲート電極32に所定の電圧が印加されることにより、PD11に蓄積されている電荷が電荷保持部14へ転送される。
 電荷保持部14に対応する半導体基板20の表面20Fには、メモリーゲート40が設けられている。メモリーゲート40に電圧を印加すると、電荷保持部14のポテンシャルが変化し、PD11から電荷保持部14への電荷転送効率が向上する。これにより、電荷転送時のノイズ、残像を抑制することが可能となる。
 以上のように構成した固体撮像素子100は、電荷保持部14への光の漏れ込みが抑制され、転送時のノイズ成分についても減少する事が可能であり、従来構造に対して、著しく良い特性を得る事ができる。
 次に、固体撮像素子100の製造方法の一例について説明する。図6~図10は、固体撮像素子100の製造方法の一例に係る流れを示す図である。
 まず、半導体基板20の表面20Fのバイパス部38が設けられる部位の上にリソグラフィ技術でレジストRをパターニングし(図6(a))、レジストRで覆われていない半導体基板20の表面20Fをドライエッチングで一様に掘削する(図6(b))。掘削深さはバイパス部38に必要な厚みが確保できさえすればよい。具体的には、50~300nmの範囲が例示される。半導体基板20の表面20Fの掘削終了後、レジストRは剥離除去される。これにより、半導体基板20の表面20Fに盛土状に残存させた突起上のバイパス部38が形成される。なお、上述した図5(b)に示すトレンチング形状は、このドライエッチングを適用した場合に、加工条件次第で加工端が局所的に深くなることで形成される。なお、ドライエッチングのプラズマダメージは、加工後に1000℃以上の高温熱処理を行うことで回復させることができる。
 次に、バイパス部38、PD11、電荷保持部14に必要なイオン注入を行う(図6(c))。バイパス部38、PD11、電荷保持部14が第1導電型(本実施形態ではN型)となる様にイオン注入を行う。また、図示はしないが、画素トランジスタについても必要なイオン注入を実施する。なお、電荷保持部14やPD11の形成領域に対応する半導体基板20の表面20F及び裏面20Rについては、イオン注入で第2導電型(本実施形態ではP型)のピニング層を形成して半導体基板20の表面20F及び裏面20Rにおいて電荷の湧き出しを抑制してもよい。
 次に、半導体基板20の表面20Fに絶縁酸化膜を積層し(不図示)、その上の所定の位置に画素トランジスタのゲート電極を形成し、その上に配線層21の複数の配線21a及び層間絶縁膜21bを順次に積層形成する(図7(d))。その後、図示しないが、基板支持材(支持基板等)を配線層21の表面側に貼り合せ、全体を表裏反転し、半導体基板20の裏面20R側からPD11の裏側近くまで研磨・研削して半導体基板20を薄肉化してもよい。なお、基板支持材は、論理回路や記憶素子等を形成したものであってもよく、この場合、半導体基板20から基板支持材へ貫通する貫通電極を形成して配線層21の所定の配線21aと論理回路や記憶素子等とを電気的に接続する。
 次に、半導体基板20の裏面20Rの上に、リソグラフィ技術でレジストRをパターニングし(図7(e))、ドライエッチングで半導体基板20を裏面20R側から表面20F側へ貫通する貫通孔Hを形成する(図7(f))。貫通孔Hの形成後、レジストRは剥離除去する。その後、貫通孔Hの内側面H1及び半導体基板20の裏面20Rの平坦部20aに高誘電率材料を成膜する(図8(g))。高誘電率材料は、例えば、酸化膜(SiO)、酸化ハフニウム(HfOx)、酸化タンタル(TaOx)、酸化ジルコニウム(ZrOx)の単膜、或いは、その積層膜を適用する事が可能である。その後、貫通孔Hの内部に金属材料を充填して貫通遮光膜37,39を形成するとともに、半導体基板20の裏面20Rの平坦部20aの上に金属材料を積層して裏面遮光膜35を形成する(図8(h))。金属材料は、例えば、タングステン(W)、アルミニウム(Al)、銅(Cu)、チタン(Ti)、窒化チタン(TiN)、窒化タングステン(WN)の単膜、或いは、その積層膜を適用する事が可能である。
 次に、裏面遮光膜35の上に、リソグラフィ技術でレジストRをパターニングし、ドライエッチングで裏面遮光膜35の必要な個所を除去して開口を形成する(図8(i))。本実施形態ではPD11のPD領域に対応する部位に開口を形成する。
 次に、裏面遮光膜35の凹凸を平坦化する平坦化層23を形成し、その上に、カラーフィルタ層24、オンチップレンズ25を順次に形成する((図9(j)))。平坦化層23は、例えば、裏面遮光膜35の上に熱可塑性樹脂をスピンコート法で成膜した後、熱硬化処理を行うことで形成される。カラーフィルタ層24は、例えば、顔料や染料などの色材と感光性樹脂とを含む塗布液を、スピンコート法などのコーティング方法によって塗布して塗膜を形成し、その塗膜をリソグラフィ技術でパターン加工することにより形成される。オンチップレンズ25は、例えば、ポジ型のフォトレジスト膜をカラーフィルタ層24上に成膜後、加工することによって形成される。
 以上の工程により、グローバルシャッター機能を有する第1の実施形態に係る固体撮像素子100を作成することができる。
 なお、上述した製造方法では、バイパス部38をリソグラフィ技術とドライエッチングによって形成したが、バイパス部38はエピタキシャル気相成長法で形成することもできる。図10(a)~(c)は、バイパス部38をエピタキシャル気相成長法で形成する場合の製造方法を説明する図である。
 この場合、半導体基板20の表面20Fの上に絶縁膜Fを形成し、この絶縁膜Fのバイパス部38が設けられる部位が開口したレジストRをリソグラフィ技術でパターニングし、レジストRで覆われていない絶縁膜Fをドライエッチングで掘削除去して開口する(図10(a))。絶縁膜Fは、例えば、SiO、SiNを用いる事が一般的であるが、エピタキシャル気相成長法による成膜時に選択性を確保できれば、限定される訳ではない。続いて、Wet処理や水素還元で半導体基板20の表面20F上の自然酸化膜を除去し、シリコン等の半導体材料をエピタキシャル成膜する(図10(b))。Siエピタキシャル成膜は、例えばSi-H-Cl系ガスを用いて行い、H/Cl比率を調整する事により成長レートや形状をコントロールする事が可能である。上述した図5(c)に示すファセット形状は、このエピタキシャル気相成長法を適用した場合に、加工条件次第で複数のSi面が現れ、ファセットが形成される。その後、絶縁膜Fを除去することで、半導体基板20の表面20Fの所定の位置にバイパス部38が形成された状態となる(図10(c))。これにより、半導体基板20の表面20Fに選択エピタキシャル成長で盛土状に積層形成した突起部としてのバイパス部38が形成される。
(B)第2の実施形態: 
 本実施形態に係る固体撮像素子200は、画素におけるPD、電荷保持部、バイパス部等の位置関係や形状が異なる点を除くと、上述した固体撮像素子100と同様の構成である。
 そこで、以下では主に、固体撮像素子200の画素210のPD211、電荷保持部214、バイパス部238等の位置関係や形状について説明し、その他の構成については詳細な説明を省略し、必要に応じて固体撮像素子100の構成の符号先頭に2を付けた符号を示す。なお、PD211、電荷保持部214、バイパス部238等の基本的な機能は、PD11、電荷保持部14、バイパス部38等と同様である。
 図11は、画素210の平面的な構成例を示す図、図12は、図11のA-A断面における画素210の断面的な構成例を示す図である。
 図11において、第1の転送トランジスタ212のゲート電極232は、その全体が、貫通遮光膜237を挟んでPD211と同じ側に、PD211の形成と一部重複しつつPD211と隣り合う位置関係で設けられている。ゲート電極232は、PD211に隣接せず貫通遮光膜237に面する側の角部を一部切欠き状に凹ませた凹部232aを有する。このように、ゲート電極232はバイパス部238上の貫通遮光膜237に対応しない位置に設けられている。
 バイパス部238は、半導体基板220の表面220Fの外側において、貫通遮光膜237を跨ぐようにゲート電極232と電荷保持部214の間を接続するものであり、凹部232aの縁部を含み貫通遮光膜237を跨いで電荷保持部214側に延びる範囲に形成されている。
 電荷保持部214は、図11において、貫通遮光膜237を挟んでゲート電極232の反対側に、少なくとも一部が位置しており、貫通遮光膜237の延びる方向においてゲート電極232の形成範囲と電荷保持部214の形成範囲の少なくとも一部が重複している。
 これにより、バイパス部238は、ゲート電極232下に形成されるチャネルを介して、PD211から電荷保持部214へ電荷を転送する電荷転送路となる。
(C)第3の実施形態: 
 本実施形態に係る固体撮像素子300は、画素におけるゲート電極の形状が異なる点を除くと、上述した固体撮像素子100と同様の構成である。
 そこで、以下では主に固体撮像素子300の画素310のゲート電極332の形状について説明し、その他の構成については詳細な説明を省略し、必要に応じて固体撮像素子100の構成の符号先頭に3を付けた符号を示す。なお、ゲート電極332の基本的な機能は、ゲート電極32と同様である。
 図13は、画素310の平面的な構成例を示す図、図14は、図13のA-A断面における画素310の断面的な構成例を示す図である。
 ゲート電極332は、ゲート電極32と同様、バイパス部338の表側及び側面に沿って形成されており、貫通遮光膜337を跨ぐ位置及び形状で設けられている。従って、ゲート電極332に所定の電圧が印加されることにより、PD311に蓄積されている電荷が電荷保持部314へ転送される。
 ゲート電極332は、貫通遮光膜337のPD311側の側面に沿って、半導体基板320の厚み方向に延設された貫入部332aを有する。この貫入部332aに接するバイパス部338やPD311の面を含む領域にもP型不純物を添加したP型領域が形成されている。従って、貫入部332aを設けることで、ゲート電極332への所定の電圧印加により形成されるチャネル範囲が拡大し、電荷転送効率が向上する。また、貫入部332aの形成するチャネルによって、PD311の深い位置の電荷を効率良く転送可能となる。
 貫入部332aは、ゲート電極332本体から平板状部材が延設された形状としてもよいし、ゲート電極332本体から複数の柱状部材が櫛歯状に延設された形状としてもよい。貫入部332aの長さは、PD311のポテンシャル設計に応じて適宜設定される。
 貫入部332aと半導体基板320の間にはゲート絶縁膜が設けられるため、光を透過しにくく、電荷保持部314への光学的ノイズ減少に寄与する。また、ゲート電極332の材料をメタル材料としたメタルゲートとすることで、PD311と電荷保持部314の間の遮光性を向上し、電荷保持部への光学的ノイズをより減少することも可能である。メタル電極の材料としては、例えば、タングステン(W)、アルミニウム(Al)、チタン(Ti)、窒化チタン(TiN)、コバルト(Co)の単体、或いは その積層構造を用いる事ができる。むろん、ゲート電極332の材料のうち、貫入部332aのみをメタルゲートとし、他の部分はシリコンゲートとしてもよい。
(D)第4の実施形態: 
 本実施形態に係る固体撮像素子400は、電荷保持部とフローティングディフュージョンの間の構造を除くと、上述した固体撮像素子100と同様の構成である。
 そこで、以下では主に固体撮像素子400の画素410の電荷保持部414とフローティングディフュージョン415の間の構造について説明し、その他の構成については詳細な説明を省略し、必要に応じて固体撮像素子100の構成の符号先頭に4を付けた符号を示す。なお、電荷保持部414とフローティングディフュージョン415の基本的な機能は、電荷保持部14とフローティングディフュージョン15と同様である。
 図15は、画素410の平面的な構成例を示す図、図16は、図15のA-A断面における画素410の断面的な構成例を示す図である。
 電荷保持部414とフローティングディフュージョン415の間には、第2貫通遮光膜としての貫通遮光膜441が設けられている。貫通遮光膜441は、貫通遮光膜437等と同様に、半導体基板420に形成した貫通孔の内面全体に高誘電率材料膜を形成し、その中に遮光性を有する材料を充填して形成される。
 貫通遮光膜441は、半導体基板420の表裏を貫通して形成され、電荷保持部414とフローティングディフュージョン415の間を仕切る構造である。貫通遮光膜441の表側の端部は、半導体基板420の厚さ方向において、電荷保持部414の表側端部と同程度又は電荷保持部414の表側端部よりも表側方向に長く形成されている。
 貫通遮光膜441を設けることにより、電荷保持部414とフローティングディフュージョン415の間の遮光性が向上し、フローティングディフュージョン415側から電荷保持部414へのノイズの影響を抑制できる。
 なお、電荷保持部414は、電荷保持部414のフローティングディフュージョン415と反対側にも貫通遮光膜441と同様の貫通遮光膜を設けて、その周囲全体を貫通遮光膜で囲われた構造としてもよい。このように電荷保持部414の周囲を貫通遮光膜で囲うことで、電荷保持部414の遮光性を更に向上し、光学的ノイズの影響を更に抑制することもできる。
 電荷保持部414とフローティングディフュージョン415の間は、半導体基板420の表面420Fの外側に貫通遮光膜441を跨ぐように形成される第2バイパス部としてのバイパス部442によって接続される。バイパス部442は、貫通遮光膜441、電荷保持部414及びフローティングディフュージョン415の形成範囲をそれぞれ含む位置・範囲で形成されている。バイパス部442は、N型不純物を添加した半導体材料で形成されている。バイパス部442の表面側には、第2の転送トランジスタ13のゲート電極が積層形成されており、このゲート電極に所定の電圧が印加されることにより、PD411に蓄積されている電荷が電荷保持部414へ転送される。すなわち、バイパス部442は、電荷保持部414からフローティングディフュージョン415へ電荷を転送する電荷転送路となる。
(E)第5の実施形態: 
 本実施形態に係る固体撮像素子500は、電荷保持部の表面側に遮光膜を設けた点を除くと、上述した固体撮像素子100と同様の構成である。
 そこで、以下では主に固体撮像素子500の表面遮光膜543の形状について説明し、その他の構成については詳細な説明を省略し、必要に応じて固体撮像素子100の構成の符号先頭に5を付けた符号を示す。
 図17は、画素510の平面的な構成例を示す図、図18は、図17のA-A断面における画素510の断面的な構成例を示す図である。
 表面遮光膜543は、電荷保持部514の表側を覆って遮光する部材である。表面遮光膜543を貫通遮光膜539に連接して形成すると、貫通遮光膜539側からの光入射を抑制できる。表面遮光膜543は、電荷保持部514の表側において、半導体基板520と配線層521の間に形成される部材(メモリーゲート540、バイパス部538、転送電極532等)を含めて覆うように形成される。この表面遮光膜543で覆う範囲は、半導体基板520を配線521aに接続するコンタクト部との間で電気的に干渉しない範囲で拡縮可能である。表面遮光膜543と電荷保持部514や各種部材(メモリーゲート540、バイパス部538、転送電極532等)との間には、高誘電率材料膜が設けられる。これにより、電荷保持部514の遮光性を更に向上できる。
(F)第6の実施形態: 
 本実施形態に係る固体撮像素子600は、盛上状に形成するバイパス部の形成範囲を除くと、上述した固体撮像素子100と同様の構成である。
 そこで、以下では主に固体撮像素子600のバイパス部638の形成範囲について説明し、その他の構成については詳細な説明を省略し、必要に応じて固体撮像素子100の構成の符号先頭に6を付けた符号を示す。
 図19は、図3のA-A断面に相当する断面における画素610の断面的な構成例を示す図である。
 バイパス部638は、貫通遮光膜637を跨ぐ部位のみならず、半導体基板620の表面620FにおいてPD611の形成範囲内に延設された形状となっている。例えば、PD611の表面全体をバイパス部638の表面と略同程度の盛上げ形状とする。これにより、PD611の体積が増大し、PD611の飽和電荷量を増大するメリットがある。
(G)第7の実施形態: 
 本実施形態に係る固体撮像素子700は、電荷保持部を設けず、PDの電荷を直接フローティングディフュージョンへ転送するFD蓄積型の構成とした点を除くと、上述した固体撮像素子100と同様の構成である。
 そこで、以下では主に固体撮像素子700のPD711からフローティングディフュージョン715への電荷転送に関する構成について説明し、その他の構成については詳細な説明を省略し、必要に応じて固体撮像素子100の構成の符号先頭に7を付けた符号を示す。
 図20は、画素710の平面的な構成例を示す図、図21は、図20のA-A断面における画素710の断面的な構成例を示す図である。
 本実施形態では、PD711からバイパス部738を介して転送された電荷を受け取って保持する構成としてフローティングディフュージョン715を設けてある。すなわち、貫通遮光膜737を挟んでPD711の反対側には、少なくともフローティングディフュージョン715の一部が位置しており、貫通遮光膜737の延びる方向においてPD711の形成範囲とフローティングディフュージョン715の形成範囲の少なくとも一部が重複している。この重複部分に形成されるバイパス部738が、PD711からフローティングディフュージョン715への電荷転送路となる。フローティングディフュージョン715に蓄積された電荷は、コンタクト744、配線745を介して、画素信号として出力される。
 このように構成した固体撮像素子700によれば、一般に、大面積を要する電荷保持部を無くせるため、チップサイズの観点のメリットがある。
(C)第8の実施形態:
 図22は、固体撮像素子100を備える撮像装置800の構成を示すブロック図である。同図に示す撮像装置800は、電子機器の一例である。
 なお、本明細書において、撮像装置とは、デジタルスチルカメラやデジタルビデオカメラ等の撮像装置や、撮像機能を有する携帯電話機などの携帯端末装置など、画像取込部(光電変換部)に固体撮像素子を用いる電子機器全般を指す。むろん、画像取込部に固体撮像素子を用いる電子機器には、画像読取部に固体撮像素子を用いる複写機も含まれる。また、撮像装置は、上述した電子機器に搭載するために固体撮像素子を含めてモジュール化されていてもよい。
 図22において、撮像装置800は、レンズ群を含む光学系811、固体撮像素子100、固体撮像素子100の出力信号を処理する信号処理回路としてのDSP813(Digital Signal Processor)、フレームメモリ814、表示部815、記録部816、操作系817、電源系818及び制御部819を備えている。
 DSP813、フレームメモリ814、表示部815、記録部816、操作系817、電源系818及び制御部819は、通信バスを介して、互いにデータや信号を送受信できるように接続されている。
 光学系811は、被写体からの入射光(像光)を取り込んで固体撮像素子100の撮像面上に結像する。固体撮像素子100は、光学系811によって撮像面上に結像された入射光の受光量に応じた電気信号を画素単位で生成し、画素信号として出力する。この画素信号はDSP813に入力され、適宜に各種の画像処理を行って生成された画像データは、フレームメモリ814に記憶されたり、記録部816の記録媒体に記録されたり、表示部815に出力されたりする。
 表示部815は、液晶表示装置や有機EL(electro luminescence)表示装置等のパネル型表示装置からなり、固体撮像素子100によって撮像された動画や静止画、その他の情報を表示する。記録部816は、固体撮像素子100によって撮像された動画や静止画を、DVD(Digital Versatile Disk)やHD(Hard Disk)、半導体メモリ等の記録媒体に記録する。
 操作系817は、ユーザから各種の操作を受け付けるものであり、ユーザの操作に応じた操作命令を通信バスを介して各部813,814,815,816,818,819へ送信する。電源系818は、駆動電源となる各種の電源電圧を生成して供給対象(各部813,814,815,816,817,819)へ適宜に供給する。
 制御部819は、演算処理を行うCPUや撮像装置800の制御プログラムを記憶するROM、CPUのワークエリアとして機能するRAM、等を備えている。制御部819は、RAMをワークエアリアとして利用しつつROMに記憶されている制御プログラムをCPUが実行することにより、通信バスを介して各部813,814,815,816,817,818を制御する。また、制御部819は、不図示のタイミングジェネレータを制御して各種のタイミング信号を生成させ、各部へ供給する制御を行ったりする。
 なお、本技術は上述した各実施形態に限られず、上述した各実施形態の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術並びに上述した各実施形態の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も含まれる。また,本技術の技術的範囲は上述した実施形態に限定されず,
請求の範囲に記載された事項とその均等物まで及ぶものである。
 そして、本技術は、以下のような構成を取ることができる。
(1)
 半導体基板と、
 前記半導体基板の裏面からの入射光を光電変換する光電変換部と、
 前記光電変換部が生成する電荷を一時的に保持する電荷保持部と、
 前記半導体基板の表裏を貫通して前記光電変換部と前記電荷保持部との間を仕切る第1貫通遮光膜と、
 前記半導体基板の表面外側に半導体材料で形成され前記第1貫通遮光膜を跨いで前記光電変換部と前記電荷保持部を接続する第1バイパス部と、
 前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する制御部と、
を備え、
 前記第1貫通遮光膜の表側の端部は、前記半導体基板の厚さ方向において、前記電荷保持部の表側端と同程度又は前記電荷保持部の表側端よりも表側方向に長く形成されている固体撮像素子。
(2)
 前記制御部は、前記第1バイパス部上の前記第1貫通遮光膜に対応する位置に設けられた制御電極を制御して前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する、前記(1)に記載の固体撮像素子。
(3)
 前記制御部は、前記第1バイパス部上の前記第1貫通遮光膜に対応しない位置に設けられた制御電極を制御して前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する、前記(1)に記載の固体撮像素子。
(4)
 前記制御電極は、前記光電変換部側を前記第1貫通遮光膜の側面に沿って前記半導体基板の厚み方向に延設された貫入部を有する、前記(2)又は前記(3)に記載の固体撮像素子。
(5)
 前記貫入部は、金属材料で形成されている、前記(4)に記載の固体撮像素子。
(6)
 前記第1バイパス部は、前記半導体基板の表面をエッチングして盛土状に残存させた突起部である、前記(1)~前記(5)の何れか1つに記載の固体撮像素子。
(7)
 前記第1バイパス部は、前記半導体基板の表面に選択エピタキシャル成長で盛土状に積層形成した突起部である、前記(1)~前記(5)の何れか1つに記載の固体撮像素子。
(8)
 前記光電変換部の表面を前記第1バイパス部の表面と略同程度の盛上げ形状とした、前記(7)に記載の固体撮像素子。
(9)
 前記第1バイパス部の前記第1貫通遮光膜を跨ぐ部位と前記電荷保持部との表側を覆う遮光膜を更に備える、前記(1)~前記(8)の何れか1つに記載の固体撮像素子。
(10)
 前記電荷保持部は貫通遮光膜で囲われている、前記(1)~前記(9)の何れか1つに記載の固体撮像素子。
(11)
 前記電荷保持部から転送される電荷を保持するフローティングディフュージョンと、
 前記半導体基板の表裏を貫通して前記電荷保持部と前記フローティングディフュージョンの間を仕切る第2貫通遮光膜と、
 前記半導体基板の表面外側に半導体材料で形成され前記第2貫通遮光膜を跨いで前記電荷保持部と前記フローティングディフュージョンとを接続する第2バイパス部と、
を更に備える、前記(1)~前記(1)0の何れか1つに記載の固体撮像素子。
(12)
 前記電荷保持部は、キャパシタである、前記(1)~前記(1)0の何れか1つに記載の固体撮像素子。
(13)
 前記電荷保持部は、フローティングディフュージョンである、前記(1)~請求項10の何れか1つに記載の固体撮像素子。
(14)
 半導体基板に裏面からの入射光を光電変換する光電変換部を形成する工程と、
 前記光電変換部が生成する電荷を一時的に保持する電荷保持部を形成する工程と、
 前記半導体基板の表裏を貫通して前記光電変換部と前記電荷保持部との間を仕切る第1貫通遮光膜を形成する工程と、
 前記半導体基板の表面外側に半導体材料で形成され前記第1貫通遮光膜を跨いで前記光電変換部と前記電荷保持部を接続する第1バイパス部を形成する工程と、
 前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する制御電極を形成する工程と、
を含んで構成され、
 前記第1貫通遮光膜の表側の端部は、前記半導体基板の厚さ方向において、前記電荷保持部の表側端と同程度又は前記電荷保持部の表側端よりも表側方向に長く形成されている、固体撮像素子の製造方法。
(15)
 固体撮像素子と、前記固体撮像素子からの信号を処理する信号処理回路と、を備える撮像装置であって、
 前記固体撮像素子は、半導体基板と、前記半導体基板の裏面からの入射光を光電変換する光電変換部と、前記光電変換部が生成する電荷を一時的に保持する電荷保持部と、前記半導体基板の表裏を貫通して前記光電変換部と前記電荷保持部との間を仕切る第1貫通遮光膜と、前記半導体基板の表面外側に半導体材料で形成され前記第1貫通遮光膜を跨いで前記光電変換部と前記電荷保持部を接続する第1バイパス部と、前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する制御部と、を備え、
 前記第1貫通遮光膜の表側の端部は、前記半導体基板の厚さ方向において、前記電荷保持部の表側端と同程度又は前記電荷保持部の表側端よりも表側方向に長く形成されている、撮像装置。
10…画素、11…PD、12…第1の転送トランジスタ、13…第2の転送トランジスタ、14…電荷保持部、15…フローティングディフュージョン(FD)、16…増幅トランジスタ、17…選択トランジスタ、18…リセットトランジスタ、20…半導体基板、20F…表面、20R…裏面、20a…平坦部、21…配線層、21a…配線、21b…層間絶縁膜、22…遮光層、23…平坦化層、24…カラーフィルタ層、25…オンチップレンズ、32…ゲート電極、34…画素間分離領域、35…裏面遮光膜、36…高誘電率材料膜、37…貫通遮光膜、38…バイパス部、39…貫通遮光膜、40…メモリーゲート、100…固体撮像素子、121…画素アレイ部、122…垂直駆動部、123…カラム処理部、124…駆動制御部、125…水平駆動部、127…出力部、200…固体撮像素子、210…画素、211…PD、212…第1の転送トランジスタ、214…電荷保持部、220…半導体基板、220F…表面、232…ゲート電極、232a…凹部、237…貫通遮光膜、238…バイパス部、300…固体撮像素子、310…画素、311…PD、314…電荷保持部、320…半導体基板、332…ゲート電極、332a…貫入部、337…貫通遮光膜、338…バイパス部、400…固体撮像素子、410…画素、411…PD、414…電荷保持部、415…フローティングディフュージョン、420…半導体基板、437…貫通遮光膜、440…メモリーゲート、441…貫通遮光膜、442…バイパス部、500…固体撮像素子、510…画素、511…PD、514…電荷保持部、520…半導体基板、521…配線層、521a…配線、532…転送電極、538…バイパス部、539…貫通遮光膜、543…表面遮光膜、600…固体撮像素子、610…画素、611…PD、620…半導体基板、620F…表面、638…バイパス部、639…貫通遮光膜、700…固体撮像素子、710…画素、711…PD、715…フローティングディフュージョン、737…貫通遮光膜、738…バイパス部、744…コンタクト、745…配線、800…撮像装置、811…光学系、813…DSP、814…フレームメモリ、815…表示部、816…記録部、817…操作系、818…電源系、819…制御部、H…貫通孔、H1…内側面、HSLn…水平信号線、R…レジスト、VSLm…垂直信号線

Claims (15)

  1.  半導体基板と、
     前記半導体基板の裏面からの入射光を光電変換する光電変換部と、
     前記光電変換部が生成する電荷を一時的に保持する電荷保持部と、
     前記半導体基板の表裏を貫通して前記光電変換部と前記電荷保持部との間を仕切る第1貫通遮光膜と、
     前記半導体基板の表面外側に半導体材料で形成され前記第1貫通遮光膜を跨いで前記光電変換部と前記電荷保持部を接続する第1バイパス部と、
     前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する制御部と、
    を備え、
     前記第1貫通遮光膜の表側の端部は、前記半導体基板の厚さ方向において、前記電荷保持部の表側端と同程度又は前記電荷保持部の表側端よりも表側方向に長く形成されている固体撮像素子。
  2.  前記制御部は、前記第1バイパス部上の前記第1貫通遮光膜に対応する位置に設けられた制御電極を制御して前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する、請求項1に記載の固体撮像素子。
  3.  前記制御部は、前記第1バイパス部上の前記第1貫通遮光膜に対応しない位置に設けられた制御電極を制御して前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する、請求項1に記載の固体撮像素子。
  4.  前記制御電極は、前記光電変換部側を前記第1貫通遮光膜の側面に沿って前記半導体基板の厚み方向に延設された貫入部を有する、請求項2に記載の固体撮像素子。
  5.  前記貫入部は、金属材料で形成されている、請求項4に記載の固体撮像素子。
  6.  前記第1バイパス部は、前記半導体基板の表面をエッチングして盛土状に残存させた突起部である、請求項1に記載の固体撮像素子。
  7.  前記第1バイパス部は、前記半導体基板の表面に選択エピタキシャル成長で盛土状に積層形成した突起部である、請求項1に記載の固体撮像素子。
  8.  前記光電変換部の表面を前記第1バイパス部の表面と略同程度の盛上げ形状とした、請求項7に記載の固体撮像素子。
  9.  前記第1バイパス部の前記第1貫通遮光膜を跨ぐ部位と前記電荷保持部との表側を覆う遮光膜を更に備える、請求項1に記載の固体撮像素子。
  10.  前記電荷保持部は貫通遮光膜で囲われている、請求項1に記載の固体撮像素子。
  11.  前記電荷保持部から転送される電荷を保持するフローティングディフュージョンと、
     前記半導体基板の表裏を貫通して前記電荷保持部と前記フローティングディフュージョンの間を仕切る第2貫通遮光膜と、
     前記半導体基板の表面外側に半導体材料で形成され前記第2貫通遮光膜を跨いで前記電荷保持部と前記フローティングディフュージョンとを接続する第2バイパス部と、
    を更に備える、請求項1に記載の固体撮像素子。
  12.  前記電荷保持部は、キャパシタである、請求項1に記載の固体撮像素子。
  13.  前記電荷保持部は、フローティングディフュージョンである、請求項1に記載の固体撮像素子。
  14.  半導体基板に裏面からの入射光を光電変換する光電変換部を形成する工程と、
     前記光電変換部が生成する電荷を一時的に保持する電荷保持部を形成する工程と、
     前記半導体基板の表裏を貫通して前記光電変換部と前記電荷保持部との間を仕切る第1貫通遮光膜を形成する工程と、
     前記半導体基板の表面外側に半導体材料で形成され前記第1貫通遮光膜を跨いで前記光電変換部と前記電荷保持部を接続する第1バイパス部を形成する工程と、
     前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する制御電極を形成する工程と、
    を含んで構成され、
     前記第1貫通遮光膜の表側の端部は、前記半導体基板の厚さ方向において、前記電荷保持部の表側端と同程度又は前記電荷保持部の表側端よりも表側方向に長く形成されている、固体撮像素子の製造方法。
  15.  固体撮像素子と、前記固体撮像素子からの信号を処理する信号処理回路と、を備える撮像装置であって、
     前記固体撮像素子は、半導体基板と、前記半導体基板の裏面からの入射光を光電変換する光電変換部と、前記光電変換部が生成する電荷を一時的に保持する電荷保持部と、前記半導体基板の表裏を貫通して前記光電変換部と前記電荷保持部との間を仕切る第1貫通遮光膜と、前記半導体基板の表面外側に半導体材料で形成され前記第1貫通遮光膜を跨いで前記光電変換部と前記電荷保持部を接続する第1バイパス部と、前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する制御部と、を備え、
     前記第1貫通遮光膜の表側の端部は、前記半導体基板の厚さ方向において、前記電荷保持部の表側端と同程度又は前記電荷保持部の表側端よりも表側方向に長く形成されている、撮像装置。
     
PCT/JP2017/040359 2016-12-01 2017-11-09 固体撮像素子、固体撮像素子の製造方法、及び、撮像装置 WO2018100998A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780072855.7A CN109997229B (zh) 2016-12-01 2017-11-09 固态成像元件及其制造方法以及成像设备
US16/462,334 US10777594B2 (en) 2016-12-01 2017-11-09 Solid-state imaging element, solid-state imaging element manufacturing method, and imaging device
KR1020197010244A KR102476411B1 (ko) 2016-12-01 2017-11-09 고체 촬상 소자, 고체 촬상 소자의 제조 방법 및 촬상 장치
JP2018553742A JP6967530B2 (ja) 2016-12-01 2017-11-09 固体撮像素子、固体撮像素子の製造方法、及び、撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-233931 2016-12-01
JP2016233931 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018100998A1 true WO2018100998A1 (ja) 2018-06-07

Family

ID=62241476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040359 WO2018100998A1 (ja) 2016-12-01 2017-11-09 固体撮像素子、固体撮像素子の製造方法、及び、撮像装置

Country Status (5)

Country Link
US (1) US10777594B2 (ja)
JP (1) JP6967530B2 (ja)
KR (1) KR102476411B1 (ja)
CN (1) CN109997229B (ja)
WO (1) WO2018100998A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008907A1 (ja) * 2018-07-06 2020-01-09 ソニーセミコンダクタソリューションズ株式会社 受光素子、測距モジュール、および、電子機器
TWI685958B (zh) * 2018-12-13 2020-02-21 力晶積成電子製造股份有限公司 影像感測器及其製造方法
JP2020092126A (ja) * 2018-12-03 2020-06-11 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、固体撮像素子の製造方法、および電子機器
JP2020181944A (ja) * 2019-04-26 2020-11-05 キヤノン株式会社 光電変換装置、撮像システム、および、移動体
WO2021149349A1 (ja) * 2020-01-20 2021-07-29 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
WO2022019307A1 (ja) * 2020-07-22 2022-01-27 国立大学法人静岡大学 光電変換素子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6929266B2 (ja) * 2018-12-17 2021-09-01 キヤノン株式会社 光電変換装置、光電変換システム、移動体
CA3144668A1 (en) * 2019-06-28 2020-12-30 Quantum-Si Incorporated Optical and electrical secondary path rejection
CN112117291B (zh) * 2020-10-30 2022-11-18 联合微电子中心有限责任公司 一种背照式电荷域全局快门图像传感器及其制作方法
CN112768482B (zh) * 2021-01-20 2023-03-24 联合微电子中心有限责任公司 一种背照式全局快门像素结构及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119711A (ja) * 2009-11-06 2011-06-16 Semiconductor Energy Lab Co Ltd 半導体装置
JP2013065688A (ja) * 2011-09-16 2013-04-11 Sony Corp 固体撮像素子および製造方法、並びに電子機器
JP2014022795A (ja) * 2012-07-13 2014-02-03 Sony Corp 撮像素子、撮像方法
WO2014141898A1 (ja) * 2013-03-12 2014-09-18 ソニー株式会社 固体撮像素子、製造方法、および電子機器
JP2015053411A (ja) * 2013-09-09 2015-03-19 ソニー株式会社 固体撮像素子、固体撮像素子の製造方法、および電子機器
WO2016136486A1 (ja) * 2015-02-27 2016-09-01 ソニー株式会社 固体撮像装置及び電子機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960015322B1 (ko) * 1993-07-23 1996-11-07 현대전자산업 주식회사 차폐용 플레이트를 갖는 반도체소자 제조방법
US6093936A (en) * 1995-06-07 2000-07-25 Lsi Logic Corporation Integrated circuit with isolation of field oxidation by noble gas implantation
KR100209752B1 (ko) * 1996-05-16 1999-07-15 구본준 마이크로 렌즈 패턴용 마스크
JP5601615B2 (ja) 2009-10-22 2014-10-08 日本電気硝子株式会社 蓄電デバイス用負極活物質及びその製造方法
JP2011216673A (ja) * 2010-03-31 2011-10-27 Sony Corp 固体撮像装置、固体撮像装置の製造方法、および電子機器
JP5581954B2 (ja) * 2010-10-07 2014-09-03 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法、及び電子機器
JP2012230943A (ja) * 2011-04-25 2012-11-22 Panasonic Corp X線センサーと、その製造方法と、x線センサーを用いたx線診断装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119711A (ja) * 2009-11-06 2011-06-16 Semiconductor Energy Lab Co Ltd 半導体装置
JP2013065688A (ja) * 2011-09-16 2013-04-11 Sony Corp 固体撮像素子および製造方法、並びに電子機器
JP2014022795A (ja) * 2012-07-13 2014-02-03 Sony Corp 撮像素子、撮像方法
WO2014141898A1 (ja) * 2013-03-12 2014-09-18 ソニー株式会社 固体撮像素子、製造方法、および電子機器
JP2015053411A (ja) * 2013-09-09 2015-03-19 ソニー株式会社 固体撮像素子、固体撮像素子の製造方法、および電子機器
WO2016136486A1 (ja) * 2015-02-27 2016-09-01 ソニー株式会社 固体撮像装置及び電子機器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008907A1 (ja) * 2018-07-06 2020-01-09 ソニーセミコンダクタソリューションズ株式会社 受光素子、測距モジュール、および、電子機器
CN112219280A (zh) * 2018-07-06 2021-01-12 索尼半导体解决方案公司 光接收元件、测距模块和电子设备
TWI823953B (zh) * 2018-07-06 2023-12-01 日商索尼半導體解決方案公司 受光元件、測距模組及電子機器
JP2020092126A (ja) * 2018-12-03 2020-06-11 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、固体撮像素子の製造方法、および電子機器
CN113169199A (zh) * 2018-12-03 2021-07-23 索尼半导体解决方案公司 固态摄像元件、制造固态摄像元件的方法和电子设备
JP7280034B2 (ja) 2018-12-03 2023-05-23 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、固体撮像素子の製造方法、および電子機器
TWI685958B (zh) * 2018-12-13 2020-02-21 力晶積成電子製造股份有限公司 影像感測器及其製造方法
JP2020181944A (ja) * 2019-04-26 2020-11-05 キヤノン株式会社 光電変換装置、撮像システム、および、移動体
JP7346071B2 (ja) 2019-04-26 2023-09-19 キヤノン株式会社 光電変換装置、撮像システム、および、移動体
WO2021149349A1 (ja) * 2020-01-20 2021-07-29 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
WO2022019307A1 (ja) * 2020-07-22 2022-01-27 国立大学法人静岡大学 光電変換素子

Also Published As

Publication number Publication date
US10777594B2 (en) 2020-09-15
US20190371846A1 (en) 2019-12-05
CN109997229B (zh) 2023-06-20
CN109997229A (zh) 2019-07-09
KR102476411B1 (ko) 2022-12-12
JP6967530B2 (ja) 2021-11-17
JPWO2018100998A1 (ja) 2019-10-17
KR20190086660A (ko) 2019-07-23

Similar Documents

Publication Publication Date Title
WO2018100998A1 (ja) 固体撮像素子、固体撮像素子の製造方法、及び、撮像装置
JP7301936B2 (ja) 固体撮像素子およびその製造方法、並びに電子機器
US10020339B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device and electronic apparatus
US8692303B2 (en) Solid-state imaging device, electronic device, and manufacturing method for solid-state imaging device
JP5651976B2 (ja) 固体撮像素子およびその製造方法、並びに電子機器
US20210202565A1 (en) Imaging device and electronic device
US11462582B2 (en) Solid-state image pickup device, manufacturing method, and electronic apparatus
US10536659B2 (en) Solid-state image capturing element, manufacturing method therefor, and electronic device
WO2015125611A1 (ja) 固体撮像素子および製造方法、並びに電子機器
JP5505709B2 (ja) 固体撮像素子およびその製造方法、並びに電子機器
WO2018173789A1 (ja) 撮像素子、電子機器
KR102268707B1 (ko) 이미지 센서
TW201301493A (zh) 成像器件,驅動方法及電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553742

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197010244

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877225

Country of ref document: EP

Kind code of ref document: A1