WO2018100863A1 - 複合電子部品、及び該複合電子部品の製造方法 - Google Patents

複合電子部品、及び該複合電子部品の製造方法 Download PDF

Info

Publication number
WO2018100863A1
WO2018100863A1 PCT/JP2017/035231 JP2017035231W WO2018100863A1 WO 2018100863 A1 WO2018100863 A1 WO 2018100863A1 JP 2017035231 W JP2017035231 W JP 2017035231W WO 2018100863 A1 WO2018100863 A1 WO 2018100863A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
dielectric glass
composite electronic
electronic component
glass
Prior art date
Application number
PCT/JP2017/035231
Other languages
English (en)
French (fr)
Inventor
大樹 足立
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018553683A priority Critical patent/JP6624479B2/ja
Publication of WO2018100863A1 publication Critical patent/WO2018100863A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 

Definitions

  • the present invention relates to a composite electronic component and a method for manufacturing the composite electronic component. More specifically, the present invention relates to a composite electronic component such as a laminated common mode choke coil in which a magnetic layer and a dielectric glass layer are formed by co-firing and a method for manufacturing the composite electronic component. About.
  • a common mode choke coil has been widely used to remove common mode noise generated between signal lines and power lines of various electronic devices and GND (ground).
  • the noise component is transmitted in the common mode and the signal component is transmitted in the normal mode. Therefore, the noise is separated into the signal and the noise by utilizing the difference between these transmission modes. ing.
  • Patent Document 1 includes a dielectric glass layer in which a pair of spiral conductive wires are embedded, and a magnetic material layer disposed above and below the dielectric glass layer, and the dielectric glass layer includes a quartz ( 5 to 40 wt% of a filler component made of quartz) and 60 to 95 wt% of a frit component.
  • the frit component is 60.0 to 89.0 wt% of Si in terms of oxide, and Mg is 0.02 in terms of oxide.
  • a multilayer common mode choke coil containing 1 to 3.5 wt%, B containing 10.0 to 32.0 wt% in terms of oxide, and K containing 0.3 to 4.0 wt% in terms of oxide has been proposed. ing.
  • This Patent Document 1 has a laminated structure in which a dielectric glass layer in which a spiral inner conductor is embedded is sandwiched between a pair of magnetic layers.
  • JP 2013-135088 A (Claims 1, 2, paragraph [0006] etc.)
  • Patent Document 1 Although the dielectric glass layer and the magnetic layer are formed by co-firing, a large amount of bubbles are easily formed inside the fired dielectric glass layer. There is a risk of lowering reliability.
  • FIG. 7 is a cross-sectional view of the main part of the laminated common mode choke coil disclosed in Patent Document 1, in which a dielectric glass layer 102 is interposed between a pair of magnetic layers 101a and 101b. A large amount of bubbles 103 may be formed inside the dielectric glass layer 102 for the following reason.
  • the dielectric sheet before firing contains an organic binder.
  • a dielectric glass sheet containing a filler component and a glass component made of quartz and a magnetic sheet made of a ferrite material are used together.
  • C (carbon) remaining without being burned out by the binder removal process is confined as CO 2 gas in the softened glass component, thereby forming bubbles 103.
  • a large amount of bubbles 103 are formed and these bubbles 103 come into contact with the inner conductor embedded in the dielectric glass layer 102, and moisture contained in the bubbles 103 penetrates into the inner conductor, performance such as insulation performance is obtained. There is a risk of deterioration and a decrease in reliability.
  • the present invention has been made in view of such circumstances, and is capable of suppressing deterioration in performance and occurrence of structural defects inside the dielectric glass layer, and having a good bondability and high reliability. It is an object of the present invention to provide a composite electronic component such as a common mode choke coil and a method for manufacturing the composite electronic component.
  • the present inventors have revealed that intensive studies using quartz forsterite in addition to (SiO 2) (2MgO ⁇ SiO 2) as a filler component in order to achieve the above object, the composition of the glass component with a predetermined range
  • the forsterite content in the dielectric glass layer is set to 2 to 10 wt% and the total content of filler components to 20 to 60 wt%
  • the dielectric glass layer and the magnetic layer are co-fired. Even if formed, it is possible to suppress the formation of structural defects such as bubbles inside the dielectric glass layer, thereby obtaining good insulation performance, and the dielectric glass layer and the magnetic layer.
  • a composite electronic component having high reliability can be obtained.
  • each of the glass components is 70 to 85 wt% of Si, 10 to 25 wt% of B, 0.5 to 5 wt% of K, and 0 to 5 wt% of Al in terms of oxides.
  • the filler component contains at least quartz and forsterite, and the dielectric glass layer has a content of the forsterite of 2 to 10 wt%, and the total content of the filler component The amount is 20 to 60 wt%.
  • the dielectric glass layer has an internal conductor embedded therein.
  • the inner conductor is preferably formed in a spiral shape or a spiral shape.
  • the inner conductor contains Ag as a main component.
  • the ferrite material contains at least Fe, Ni, Zn, and Cu.
  • the composite electronic component of the present invention is preferably a laminated common mode choke coil.
  • the method for manufacturing a composite electronic component according to the present invention includes a step of preparing a magnetic sheet made of a ferrite material, and Si, B, K, and Al are converted into oxides.
  • At least quartz and forsterite are prepared as filler components, the forsterite content in the fired dielectric glass layer is 2 to 10 wt%, and the total content of the filler components is 20 to 60 wt%.
  • the step of weighing the filler component, the step of mixing the weighed filler component and the glass component, and performing a forming process to produce a dielectric glass sheet Applying a conductive paste to the dielectric glass sheet to form a conductive film having a predetermined pattern; and the dielectric glass sheet and the magnetic layer to be the dielectric glass layer on which the conductive film is formed And a firing step of laminating and co-firing the magnetic sheet to be formed.
  • the firing step is co-fired in a state where the dielectric glass sheet provided with the conductive film is sandwiched between the magnetic sheets.
  • the glass components are each converted to oxides in the range of 70 to 85 wt% Si, 10 to 25 wt% B, 0.5 to 5 wt% K, and 0 to 5 wt Al. %
  • the filler component contains at least quartz and forsterite
  • the dielectric glass layer has a content of the forsterite of 2 to 10 wt% and a total content of the filler component. Since the amount is 20 to 60 wt%, even when the dielectric glass layer and the magnetic layer are formed by co-firing, it is possible to suppress the generation of defects such as bubbles in the dielectric glass layer.
  • a composite electronic component such as a laminated common mode choke coil having a good insulation performance, a high reliability and an improved bondability by suppressing interfacial peeling between the dielectric glass layer and the magnetic layer.
  • a step of preparing a magnetic sheet, a step of producing a powdery glass component so as to have a predetermined component composition, and after firing A step of weighing the filler component so that the filler component containing forsterite is in a predetermined range in the dielectric glass layer, a step of producing a dielectric glass sheet, a step of forming a conductive film, and a firing step. Therefore, the above-described composite electronic component can be manufactured easily and efficiently.
  • FIG. 1 is a perspective view showing an embodiment of a laminated common mode choke coil as a composite electronic component according to the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. It is a disassembled perspective view which shows a laminated molded object typically. It is a figure which shows the single capacitor
  • FIG. 1 is a perspective view showing an embodiment of a laminated common mode choke coil as a composite electronic component according to the present invention
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • the component body 1 has a laminated structure in which a dielectric glass layer 2 containing a glass component and a filler component is sandwiched between first and second magnetic layers 3a and 3b made of a ferrite material. have.
  • First to fourth external electrodes 4 a to 4 d are formed at both ends of the component body 1.
  • the dielectric glass layer 2 has first and second inner conductors 5 and 6 formed in a coil shape (spiral shape). Specifically, the dielectric glass layer 2 is formed of a sintered body in which first to fifth dielectric glass sheets 7a to 7e are laminated.
  • the first inner conductor 5 includes a first coil portion 5c formed on the second dielectric glass sheet 7b, a first conductive via 5b penetrating the second dielectric glass sheet 7b, A first lead conductor portion 5a formed on the first dielectric glass sheet 7a, and the first coil portion 5c, the first conductive via 5b, and the first lead conductor portion 5a are electrically It is connected to the.
  • the second inner conductor 6 includes a second coil portion 6a formed on the third dielectric glass sheet 7c, a second conductive via 6b penetrating the fourth dielectric glass sheet 7d, A second lead conductor portion 6c formed on the fourth dielectric glass sheet 7d, and the second coil portion 6a, the second conductive via 6b, and the second lead conductor portion 6c are electrically It is connected to the.
  • the first inner conductor 5 and the second inner conductor 6 are embedded in the dielectric glass layer 2 via the third dielectric glass sheet 7c so that the winding directions are opposite to each other. Yes.
  • the first and second inner conductors 5 and 6 When a normal mode current flows through the first and second inner conductors 5 and 6 in the laminated common mode choke coil configured as described above, the first and second inner conductors 5 and 6 have opposite directions to each other. Since the magnetic flux is generated in the magnetic field and the magnetic flux cancels out, the function as an inductor does not occur. On the other hand, when a common mode current flows through the first and second inner conductors 5 and 6, magnetic flux is generated in the same direction as the first and second inner conductors 5 and 6 and functions as an inductor. Thus, the laminated common mode choke coil does not function as an inductor for the normal mode, but functions as an inductor only for the common mode, thereby removing noise components.
  • the conductive material for the first and second inner conductors 5 and 6 is not particularly limited, and various conductive materials such as Ag, Ag—Pd, Au, Cu, and Ni can be used. However, it is usually preferable to use a conductive material mainly composed of Ag that is relatively inexpensive and can be baked in an air atmosphere.
  • the dielectric glass layer 2 contains a borosilicate glass-based glass component and a filler component made of a ceramic filler containing at least quartz (SiO 2 ) and forsterite (2MgO ⁇ SiO 2 ) as described above. ing.
  • the glass component has a composition of SiO 2 : 70 to 85 wt%, B 2 O 3 : 10 to 25 wt%, K 2 O: 0.5 to 5 wt%, and Al 2 O 3 : 0 to 5 wt%.
  • the filler component has a forsterite content of 2 to 10 wt% in the dielectric glass layer 2 and a total filler component content of 20 to 60 wt%.
  • first to fifth dielectric glass sheets 7a to 7e to be the dielectric glass layer 2 and the magnetic sheets to be the first and second magnetic layers 3a and 3b are co-fired, Formation of structural defects such as bubbles in the dielectric glass layer 2 after firing can be suppressed.
  • the dielectric glass layer 2 and the first and second magnetic layers 3a and 3b are co-located.
  • the remaining C in the dielectric glass layer 2 without being burned out by the binder removal process is confined in the glass component as CO 2 gas, and a large amount of bubbles are formed. There is a risk of performance degradation and reliability degradation.
  • the glass component has a wettability difference between quartz and forsterite. Even if it reaches, the wettability of the glass component to the filler component is hindered, and as a result, the glass component is difficult to wet and spread to the filler component. For this reason, even if bubbles are generated inside the dielectric glass layer 2, they are released outside through a path communicating with the outside without being confined in the softened glass component, thereby suppressing the generation of bubbles. be able to.
  • forsterite exceeds the softening point of the glass component and reaches a high firing temperature range, it reacts with the glass component, and the Mg component in the forsterite dissolves in the glass component. That is, in the firing temperature range, the Mg component that acts as a modified oxide of the glass increases to lower the softening point of the glass component, and as a result, the ferrite material that forms the first and second magnetic layers 3a and 3b. The diffusion of the glass component to the surface is promoted, and thereby, it is possible to suppress the occurrence of interface peeling between the dielectric glass layer 2 and the first and second magnetic layers 3a and 3b. Will improve.
  • the present embodiment by containing a predetermined amount of quartz and forsterite having different wettability as filler components in the dielectric glass layer 2, the formation of internal defects such as bubbles is suppressed.
  • it is possible to improve the bondability by suppressing the occurrence of interfacial separation between the dielectric glass layer 2 and the first and second magnetic layers 3a and 3b, thereby reducing performance degradation such as a decrease in insulation resistance.
  • a multilayer common mode choke coil having high reliability is realized without incurring.
  • the ferrite material for forming the first and second magnetic layers 3a and 3b is not particularly limited.
  • a Zn—Cu—Ni based ferrite material having a spinel crystal structure Zn—Ni Ferrite-based ferrite materials, Ni-based ferrite materials, and the like can be used, but usually Zn-Cu-Ni-based ferrite materials can be preferably used.
  • the composition range of the ferrite material is not particularly limited.
  • Fe 2 O 3 40 to 49.5 mol%
  • ZnO 5 to 35 mol %
  • CuO 4 to 12 mol%
  • balance NiO and a small amount of additives (including inevitable impurities) can be preferably used.
  • Glass component (i) SiO 2 Glass is composed of a network oxide that becomes amorphous to form a network network structure, a modified oxide that modifies the network oxide to make it amorphous, and an intermediate oxide between the two. Composed. Of these, SiO 2 acts as a network oxide and is an important constituent.
  • the content of SiO 2 is less than 70 wt%, the content of SiO 2 in the glass component is relatively decreased, so that the first and second magnetic layers 3a of the glass component during firing, Diffusion to the 3b side is promoted excessively. For this reason, generation
  • the content of SiO 2 in the glass component is regulated to 70 to 85 wt%.
  • B 2 O 3 also acts as a network oxide and has an effect of lowering the softening point, so that it is an important component for adjusting the fluidity of the glass component.
  • the content of B 2 O 3 in the glass component is regulated to 10 to 25 wt%.
  • the content of K 2 O in the glass component is regulated to 0.5 to 5 wt%.
  • Al 2 O 3 Al 2 O 3 acts as an intermediate oxide, by incorporating an appropriate amount, stable amorphous glass is obtained by suppressing the crystallization of the glass, it is possible to improve the chemical durability of the glass component .
  • the content of Al 2 O 3 in the glass component is defined as 0 to 5 wt%.
  • filler component (i) Total content of filler component
  • two types of ceramic fillers that do not soften at the softening point of the glass component namely, quartz (SiO 2 ) and forsterite (2MgO ⁇ SiO 2 ) are used. It is contained as a filler component. Since the filler component is not softened at the softening point of the glass component as described above, the filler component and the glass component are mixed, and when rapidly cooled after firing, the glass component forms a glass substrate, and the filler is contained in the glass substrate. The components are dispersed, whereby the dielectric glass layer 2 is formed.
  • the total content of the filler component in the dielectric glass layer 2 is reduced to less than 20 wt%, the content of the glass component is relatively increased, so that the first and second magnetic layers 3a after firing, Interfacial delamination with 3b may occur, leading to a decrease in bondability.
  • the glass component content is relatively reduced, which leads to a decrease in sinterability, which is not preferable.
  • the total content of filler components is set to 20 to 60 wt%.
  • (Ii) Content of forsterite By containing forsterite in the dielectric glass layer 2 together with quartz as a filler component, the occurrence of structural defects such as bubbles in the dielectric glass layer 2 as described above is suppressed. In addition, the bondability between the dielectric glass layer 2 and the first and second magnetic layers 3a and 3b can be improved. For this purpose, the content of forsterite in the dielectric glass layer 2 needs to be at least 2 wt%.
  • the content of forsterite is 2 to 10 wt%.
  • the composition of the glass component, the total content of the filler component, and the content of forsterite within a predetermined range, the generation of defects such as bubbles in the dielectric glass layer 2 can be suppressed. It is intended to improve the bonding property between the dielectric glass layer 2 and the first and second magnetic layers 3a and 3b.
  • FIG. 3 is an exploded perspective view schematically showing a laminated molded body which is an intermediate product of the laminated common mode choke coil.
  • Magnetic Sheets 8a and 8b Predetermined amounts of ferrite raw materials such as Fe 2 O 3 , ZnO, CuO, NiO are weighed, and these weighed materials are put into a pot mill together with pure water and cobblestones such as PSZ (partially stabilized zirconia) balls, and are thoroughly mixed by wet After being pulverized and evaporated to dryness, calcined at a temperature of 700 to 800 ° C. for a predetermined time to prepare a calcined powder.
  • ferrite raw materials such as Fe 2 O 3 , ZnO, CuO, NiO are weighed, and these weighed materials are put into a pot mill together with pure water and cobblestones such as PSZ (partially stabilized zirconia) balls, and are thoroughly mixed by wet After being pulverized and evaporated to dryness, calcined at a temperature of 700 to 800 ° C. for a predetermined time to prepare a calcined powder.
  • an organic binder such as polyvinyl butyral or the like, and an organic solvent such as ethanol and toluene are put into the pot mill again with the calcined powder, and sufficiently mixed and pulverized to prepare a magnetic slurry.
  • the magnetic slurry is formed into a sheet, thereby obtaining a plurality of magnetic sheets 8a and 8b having a film thickness of 30 to 40 ⁇ m.
  • the composition of the glass component after firing is SiO 2 : 70 to 85 wt%, B 2 O 3 : 10 to 25 wt%, K 2 O: 0.5 to 5 wt%, and Al 2 O 3 : 0 to 5 wt%.
  • the Si compound, the B compound, the K compound, and the Al compound are weighed, and the weighed material is put into a platinum crucible and melted at a temperature of 1500 to 1600 ° C. for a predetermined time to prepare a glass melt.
  • the glass melt is quenched and then pulverized to obtain a glass powder.
  • the compound form of the Si compound, the B compound, the K compound, and the Al compound described above is not particularly limited, and for example, an oxide, a carbonate, or the like can be used.
  • quartz and forsterite having an average particle size of 0.5 to 1.5 ⁇ m are prepared as filler components. Then, these filler components are weighed so that the forsterite content in the fired dielectric glass layer 2 is 2 to 10 wt% and the total content of filler components is 20 to 60 wt%. Next, this weighed filler component and the above glass powder are mixed, and an organic binder such as polyvinyl butyral, an organic solvent such as ethanol and toluene, and a plasticizer are put into a pot mill together with PSZ balls, and sufficiently mixed and pulverized. Then, a dielectric glass slurry is produced.
  • an organic binder such as polyvinyl butyral, an organic solvent such as ethanol and toluene, and a plasticizer
  • the dielectric glass slurry is formed into a sheet using a forming method such as a doctor blade method, whereby the first to fifth dielectric glass sheets 7a to 7e having a film thickness of 10 to 20 ⁇ m are formed. Make it.
  • a conductive paste mainly composed of Ag or the like is prepared. Then, using a coating method such as a screen printing method, a conductive paste is applied onto the first dielectric glass sheet 7a to produce a first lead conductor pattern 9a having a predetermined shape. Next, a via hole is formed at a predetermined position of the second dielectric glass sheet 7b by laser irradiation or the like, and the via hole is filled with a conductive paste to form a first via conductor 9b.
  • a spiral first coil pattern 9c is formed on the dielectric glass sheet 7b, and the first lead conductor pattern 9a, the first via conductor 9b, and the first A first conductive film 9 made of the coil pattern 9c is prepared.
  • a conductive paste is applied on the third dielectric glass sheet 7c by using a coating method such as a screen printing method to produce a second coil pattern 10a having a predetermined shape.
  • a via hole is formed at a predetermined location of the fourth dielectric glass sheet 7d by laser irradiation or the like, and the via hole is filled with a conductive paste to form a second via conductor 10b.
  • a second lead conductor pattern 10c is formed on the fourth dielectric glass sheet 7d using a coating method such as screen printing, and the second coil pattern 10a, the second via conductor 10b, and the second A second conductive film 10 having a lead conductor pattern 10c is formed.
  • the first to fifth dielectric glass sheets 7a to 7e on which the first and second conductive films 9, 10 are formed are sequentially laminated on a predetermined number of magnetic sheets 8b, and further the fifth dielectric glass sheet 7e.
  • a predetermined number of magnetic sheets 8a are laminated, and the first to fifth dielectric glass sheets 7a to 7e are sandwiched between the magnetic sheets 8a and 8b, and are heated and pressure-bonded. Is made.
  • the laminated molded body is put in a bag and subjected to a binder removal treatment at a heating temperature of 350 to 500 ° C. in an air atmosphere, and then a baking treatment is performed at a temperature of 850 to 920 ° C. for 2 hours, thereby a magnetic sheet.
  • the first to fifth dielectric glass sheets 7a to 7e, the first and second conductive films 9.10 are co-fired, and the first and second inner conductors 5 and 6 are embedded in a spiral shape.
  • a component main body 1 including a dielectric glass layer 2 and a pair of magnetic layers 3a and 3b sandwiching the dielectric glass layer 2 is obtained.
  • a conductive paste for external electrodes mainly composed of Ag or the like is applied to predetermined portions on both ends of the component main body 1, and a baking process is performed at a temperature of about 900 ° C. to form first to fourth external electrodes 4a.
  • the first lead conductor portion 5a is electrically connected to the first external electrode 4a
  • the first coil portion 5c is electrically connected to the third external electrode 4c
  • the second lead The conductor portion 6c is electrically connected to the second external electrode 4b and the second coil portion 6a is electrically connected to the fourth external electrode 4d, whereby the laminated common as shown in FIGS. A mode choke coil is produced.
  • the step of preparing the magnetic sheets 8a and 8b, the step of preparing a powdery glass component so as to have a predetermined component composition, and the forsterite in the dielectric glass layer after firing A step of weighing the filler component so that the filler component containing is within a predetermined range, a step of producing the dielectric glass sheets 7a to 7e, a step of forming the conductive films 9, 10, and a baking step.
  • the laminated common mode choke coil can be efficiently manufactured.
  • the present invention is not limited to the above embodiment.
  • the main part of the inner conductor is formed in a two-dimensional spiral shape, but the problem of the present invention is to suppress the generation of bubbles in the dielectric glass layer and the separation of the interface.
  • the shape is not particularly limited, and for example, the main part of the inner conductor may be a three-dimensional spiral.
  • the laminated common mode choke coil has been described as an example.
  • the dielectric glass layer and the magnetic layer are formed by co-firing, the present invention can be applied to other composite electronic components. Needless to say.
  • a dielectric capacitor (hereinafter referred to as a “single capacitor”) that uses the glass component and filler component described above and does not have a magnetic layer, and a dielectric glass layer in which an internal electrode is embedded and the magnetic layer are used together. Each co-sintered capacitor formed by firing was prepared, and the insulation performance was evaluated.
  • the characteristics of the coil component such as the laminated common mode choke coil were not evaluated.
  • the insulating performance of the co-sintered capacitor was good, and the dielectric glass layer was used in the laminated composite. It is needless to say that the same characteristics can be obtained in the coil component as long as the generation of bubbles therein is suppressed and the bondability is good.
  • FIG. 4A and 4B are diagrams schematically showing a single capacitor manufactured in this example, where FIG. 4A is a longitudinal sectional view, and FIG. 4B is a sectional view taken along the line BB in FIG. 4A.
  • FIG. 4 (c) is a cross-sectional view taken along the line CC of FIG. 4 (a).
  • this single capacitor is formed in a rectangular parallelepiped shape having outer dimensions of a length L of 10 mm, a width W of 10 mm, and a height H of 1.020 mm.
  • the component main body 51 has a height having a pair of dielectric glass layers 52a and 52b having a height H1 of 0.5 mm and internal electrodes 53a and 53b sandwiched between the pair of dielectric glass layers 52a and 52b.
  • H2 is composed of a dielectric glass layer 54 having a thickness of 20 ⁇ m, and a pair of external electrodes 55a and 55b are formed on both end faces of the component body 51.
  • the internal electrodes 53a and 53b are each formed with a length L1 of 7 mm and a width W1 of 4 mm.
  • This single capacitor was produced as follows.
  • SiO 2 , B 2 O 3 , K 2 O, and Al 2 O 3 are weighed so that the glass composition after firing is as shown in Table 1, and these weighed products are put into a platinum crucible, and according to the composition components
  • the glass melt was obtained by melting at a temperature of 1500 to 1600 ° C. for 2 hours.
  • the glass melt was quenched and then pulverized to obtain glass powders of sample numbers 1 to 24 having an average particle size of 1.0 ⁇ m.
  • quartz and forsterite having an average particle diameter of 0.5 to 1.5 ⁇ m were prepared as filler components. Then, each filler component was weighed so that the content of each filler component in the dielectric glass layers 52a, 52b, and 54 and the total content of the filler components were as shown in Table 1.
  • this weighed filler component and the above glass powder are mixed, and an organic binder such as polyvinyl butyral, an organic solvent such as ethanol and toluene, and a plasticizer are put into a pot mill together with PSZ balls, and sufficiently mixed and pulverized.
  • an organic binder such as polyvinyl butyral, an organic solvent such as ethanol and toluene, and a plasticizer are put into a pot mill together with PSZ balls, and sufficiently mixed and pulverized.
  • a dielectric glass slurry was prepared.
  • the dielectric glass slurry was formed into a sheet shape, thereby producing a dielectric glass sheet having a thickness of 20 to 30 ⁇ m.
  • an Ag-based conductive paste was prepared, and the Ag-based conductive paste was applied to the dielectric glass sheet using a screen printing method to form a conductive film having a predetermined pattern at a predetermined location.
  • FIG. 5A and 5B are diagrams schematically showing the co-sintered capacitor produced in this example.
  • FIG. 5A is a longitudinal sectional view
  • FIG. 5B is a DD of FIG. 5A.
  • FIG. 5C is a cross-sectional view taken along the arrow
  • FIG. 5C is a cross-sectional view taken along the line EE of FIG.
  • this co-sintered body capacitor is formed in a rectangular parallelepiped shape having outer dimensions of a length L of 10 mm, a width W of 10 mm, and a height H of 1.020 mm, as in the case of a single capacitor.
  • the component body 56 has a height H2 including a pair of magnetic layers 57a and 57b having a height H1 of 0.5 mm and internal electrodes 58a and 58b sandwiched between the pair of magnetic layers 57a and 57b. It consists of a dielectric glass layer 59 of 20 ⁇ m, and a pair of external electrodes 60 a and 60 b are formed on both end faces of the component body 56.
  • the internal electrodes 58a and 58b are each formed to have a length L1 of 7 mm and a width W1 of 4 mm, as in the case of a single capacitor.
  • This co-sintered capacitor was produced as follows.
  • Fe 2 O 3 , ZnO, CuO, and NiO were prepared as ferrite raw materials. Then, the content after firing, Fe 2 O 3: 48.0mol% , ZnO: 30.0mol%, CuO: 8.0mol%, the balance: As will be NiO, these Fe 2 O 3, ZnO, CuO And NiO were weighed. Next, these weighed materials are put into a pot mill together with pure water and cobblestones such as PSZ (partially stabilized zirconia) balls, sufficiently mixed and pulverized wet, evaporated and dried, and calcined at a temperature of 750 ° C. for a predetermined time. A calcined powder was obtained.
  • PSZ partially stabilized zirconia
  • an organic binder such as polyvinyl butyral or the like and an organic solvent such as ethanol or toluene were again put into a pot mill together with this calcined powder together with PSZ balls, and sufficiently mixed and pulverized to prepare a magnetic slurry.
  • the magnetic material slurry was formed into a sheet, thereby producing a magnetic material sheet having a thickness of 30 ⁇ m.
  • a dielectric glass sheet is manufactured by the same method and procedure as the above-described single capacitor, and then screen printing is used to apply an Ag-based conductive paste to the surface of the dielectric glass sheet, and a predetermined location is predetermined. A conductive film having a shape was formed.
  • a dielectric glass sheet is laminated on the magnetic sheets so that the internal electrodes face each other, and a predetermined number of magnetic sheets are further laminated thereon, Thereby, a laminated molded body was produced.
  • the laminated molded body is put in a bag and subjected to a binder removal treatment at 500 ° C. in an air atmosphere, and then fired at a firing temperature of 900 ° C. for 2 hours, whereby the first and second magnetic layers 57a, A component main body 56 in which 57b, dielectric glass layer 59, and internal electrodes 58a and 58b were co-fired was obtained.
  • an Ag-based conductive paste is applied to both end faces of the component main body 56, and is baked at a temperature of 900 ° C. to form the external electrodes 60a and 60b. A capacitor was obtained.
  • FIG. 6 is a perspective view of the laminated composite produced in this example.
  • this composite is formed in a rectangular parallelepiped shape having outer dimensions of a length L of 5 mm, a width W of 5 mm, and a height H of 1.2 mm, and a height H2 of 0.4 mm. 61 is sandwiched between a pair of magnetic layers 62a and 62b having a height H1 of 0.4 mm.
  • This laminated composite was prepared as follows using the above-described magnetic material sheet and dielectric glass sheet.
  • the magnetic material sheet and the dielectric glass sheet produced as described above were cut into dimensions having a length L of 5 mm and a width W of 5 mm. And a magnetic material sheet and a dielectric material sheet were laminated
  • the laminated molded body is put in a bag and subjected to a binder removal treatment at 500 ° C. in an air atmosphere. Thereafter, the laminated molded body is fired at a firing temperature of 900 ° C. for 2 hours. 50 pieces were produced.
  • the insulation resistance logIR is measured using a general-purpose insulation resistance measuring instrument, and the insulation resistance logIR is less than 10 as a defective product and 10 or more as a good product. It was judged.
  • Table 1 shows the composition of the glass component, the content of the glass component, and the content of the filler component of each sample Nos. 1 to 24.
  • Table 2 shows the insulation resistance logIR, the number of bubbles, and the bondability evaluation of each sample Nos. 1 to 24.
  • Sample No. 1 had a K 2 O content in the glass component as low as 0.2 wt%, and could not be sintered due to poor sintering.
  • Sample No. 4 many content of K 2 O in the glass component and 5.5 wt%, but by itself capacitor is good insulation resistance logIR 10.6 in the case of co-sintering bodies capacitor, dielectric glass layer
  • the glass component in 59 diffused toward the first and second magnetic layers 57a and 57b, so that the insulation resistance logIR decreased to 8.2 and the number of bubbles increased to 17.
  • Sample No. 8 has a high SiO 2 content of 85 wt% in the glass component and a low B 2 O 3 content of 8 wt%, so that the softening point becomes excessively high, resulting in poor sintering. It could not be sintered.
  • Sample No. 11 has a B 2 O 3 content as high as 28 wt% in the glass component, and the insulation resistance logIR is as good as 10.2 for a single capacitor, but in the case of a co-sintered capacitor, the dielectric glass layer 59 The glass component in the glass diffused toward the first and second magnetic layers 57a and 57b, so that the insulation resistance logIR decreased to 8.6 and the number of bubbles increased to 13.
  • the SiO 2 content in the glass component is as low as 68 wt%, and therefore the insulation resistance logIR is good at 10.3 for a single capacitor, but in the case of a co-sintered capacitor, the dielectric glass layer 59 The glass component in the glass diffused toward the first and second magnetic layers 57a and 57b, so that the insulation resistance logIR decreased to 8.9 and the number of bubbles increased to 11.
  • Sample No. 15 had a SiO 2 content as high as 88 wt% in the glass component, had an excessively high softening point, and could not be sintered due to poor sintering.
  • Sample No. 16 has a forsterite content as high as 12 wt%, so that the formation of bubbles can be suppressed, but the Mg component in the forsterite is excessively diffused into the first and second magnetic layers 57a and 57b.
  • the insulation resistance logIR was reduced to 8.9.
  • Sample No. 19 contained no forsterite in the dielectric glass layer 59, so the number of bubbles increased to 8, and interface peeling was observed, resulting in poor bonding.
  • Sample No. 20 had a total filler component content of as high as 60 wt%, and the glass component content was relatively small.
  • sample numbers 2, 3, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, and 24 are SiO 2 : 70 to 85 wt%, B 2 O 3 : 10 to 25 wt%.
  • Al 2 O 3 0 to 5 wt%
  • the forsterite content in the dielectric glass layer 2 is 2 to 10 wt%
  • the filler component Since the total content is 20 to 60 wt% and both are within the scope of the present invention, the insulation resistance logIR can be obtained as good as 10 or more even if co-fired. It was found that the number of bubbles was less than 5 and it was possible to suppress the generation of defects in the internal structure, and to obtain a composite electronic component with good bondability without causing interface peeling.
  • a composite electronic component such as a laminated common mode choke coil having a good bondability at the interface with the layer and high reliability is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Glass Compositions (AREA)

Abstract

フェライト材料からなる第1及び第2の磁性体層3a、3bとガラス成分及びフィラー成分を含有した誘電体ガラス層2とが積層されている。ガラス成分は、それぞれ酸化物に換算してSiを70~85wt%、Bを10~25wt%、Kを0.5~5wt%、及びAlを0~5wt%の範囲で含有すると共に、フィラー成分が、少なくとも石英とフォルステライトとを含み、誘電体ガラス層2は、フォルステライトの含有量が、2~10wt%であって、かつフィラー成分の総含有量が、20~60wt%である。この複合電子部品はシート工法で容易かつ効率好く製造することができる。これにより性能劣化や誘電体ガラス層の内部に構造欠陥が生じるのを抑制することができ、しかも接合性が良好で高信頼性を有する積層コモンモードチョークコイル等の複合電子部品を実現する。

Description

複合電子部品、及び該複合電子部品の製造方法
 本発明は複合電子部品、及び該複合電子部品の製造方法に関し、より詳しくは磁性体層と誘電体ガラス層とが共焼成により形成された積層コモンモードチョークコイル等の複合電子部品とその製造方法に関する。
 従来より、各種電子機器の信号ラインや電源ラインとGND(グランド)間で発生するコモンモードのノイズ除去にはコモンモードチョークコイルが広く使用されている。
 このコモンモードチョークコイルでは、ノイズ成分はコモンモードで伝送され、信号成分はノーマルモードで伝送されることから、これらの伝送モードの相違を利用し、信号とノイズとに分離してノイズ除去を行っている。
 そして、この種のコモンモードチョークコイルのうち、小型で低背な積層タイプのコモンモードチョークコイルも開発されている。
 例えば、特許文献1では、一対のスパイラル状の導線を埋設した誘電体ガラス層と、前記誘電体ガラス層の上下に配された磁性体層とを有し、前記誘電体ガラス層が、クォーツ(石英)からなるフィラー成分5~40wt%と、フリット成分60~95wt%とを含み、フリット成分が、Siを酸化物換算で60.0~89.0wt%と、Mgを酸化物換算で0.1~3.5wt%と、Bを酸化物換算で10.0~32.0wt%と、Kを酸化物換算で0.3~4.0wt%とを含有した積層コモンモードチョークコイルが提案されている。
 この特許文献1は、スパイラル状の内部導体が埋設された誘電体ガラス層が一対の磁性体層で狭持された積層構造を有している。
 そして、特許文献1では、誘電体ガラス層が、上述した組成成分を有する誘電体ガラス組成物で形成することにより、焼結性が良好で絶縁劣化しにくい積層コモンモードチョークコイルを得ようとしている。
特開2013-135088号公報(請求項1、2、段落[0006]等)
 しかしながら、特許文献1では、誘電体ガラス層と磁性体層とを共焼成により形成しているものの、焼成後の誘電体ガラス層の内部には大量の気泡が形成され易く、このため性能劣化や信頼性低下を招くおそれがある。
 図7は、特許文献1の積層コモンモードチョークコイルの要部断面図であって、一対の磁性体層101a、101bの間に誘電体ガラス層102が介在されている。この誘電体ガラス層102の内部には、下記の理由により大量の気泡103が形成されるおそれがある。
 すなわち、焼成前の誘電体シートには有機バインダが含有されており、特許文献1のようにクォーツからなるフィラー成分及びガラス成分を含有した誘電体ガラスシートとフェライト材料からなる磁性体シートとを共焼成した場合、ガラス成分が軟化点に達すると脱バインダ処理で焼失せずに残存したC(炭素)が、軟化したガラス成分内にCOガスとなって閉じ込められ、これが原因で気泡103が形成されるおそれがある。そして、大量の気泡103が形成され、これらの気泡103が誘電体ガラス層102に埋設された内部導体と接触し、前記気泡103の有する湿分が内部導体に浸透すると、絶縁性能等の性能が劣化し、信頼性の低下を招くおそれがある。
 しかも、特許文献1では、誘電体ガラス層102と磁性体層101a、101bとの間で界面剥離が生じ易く、接合性に劣っていた。
 本発明はこのような事情に鑑みなされたものであって、性能劣化や誘電体ガラス層の内部に構造欠陥が生じるのを抑制することができ、しかも接合性が良好で高信頼性を有する積層コモンモードチョークコイル等の複合電子部品、及び該複合電子部品の製造方法を提供することを目的とする。
 本発明者は、上記目的を達成するためにフィラー成分として石英(SiO)に加えてフォルステライト(2MgO・SiO)を使用し鋭意研究を行ったところ、ガラス成分の組成を所定範囲とすると共に、誘電体ガラス層中のフォルステライトの含有量を2~10wt%とし、かつフィラー成分の総含有量を20~60wt%とすることにより、誘電体ガラス層と磁性体層とが共焼成により形成されても、誘電体ガラス層の内部に気泡等の構造欠陥が形成されるのを抑制することができ、これにより良好な絶縁性能を得ることができ、しかも誘電体ガラス層と磁性体層との間の接合性が向上し、高信頼性を有する複合電子部品を得ることができるという知見を得た。
 本発明はこのような知見に基づきなされたものであって、本発明に係る複合電子部品は、フェライト材料からなる磁性体層とガラス成分及びフィラー成分を含有した誘電体ガラス層とが積層された複合電子部品であって、前記ガラス成分は、それぞれ酸化物に換算してSiを70~85wt%、Bを10~25wt%、Kを0.5~5wt%、及びAlを0~5wt%の範囲で含有すると共に、前記フィラー成分が、少なくとも石英とフォルステライトとを含み、前記誘電体ガラス層は、前記フォルステライトの含有量が、2~10wt%であって、かつ前記フィラー成分の総含有量が、20~60wt%であることを特徴としている。
 また、本発明の複合電子部品では、前記誘電体ガラス層は、内部導体が埋設されている。
 この場合、前記内部導体は、渦巻き状又は螺旋状に形成されているのが好ましい。
 さらに、本発明の複合電子部品は、前記内部導体が、Agを主成分とするのが好ましい。
 また、本発明の複合電子部品では、前記フェライト材料が、少なくともFe、Ni、Zn、及びCuを含有しているのが好ましい。
 さらに、本発明の複合電子部品では、積層コモンモードチョークコイルであるのが好ましい。
 また、本発明に係る複合電子部品の製造方法は、フェライト材料からなる磁性体シートを用意する工程と、Si、B、K、及びAlを酸化物に換算し、焼成後においてそれぞれSiが70~85wt%、Bが10~25wt%、Kが0.5~5wt%、及びAlが0~5wt%となるように秤量し、これら秤量物を混合して粉末状のガラス成分を作製する工程と、フィラー成分として少なくとも石英及びフォルステライトを用意し、焼成後の誘電体ガラス層中の前記フォルステライトの含有量が2~10wt%であり、かつ前記フィラー成分の総含有量が20~60wt%となるように、前記フィラー成分を秤量する工程と、前記秤量されたフィラー成分と前記ガラス成分とを混合し、成形処理を行って誘電体ガラスシートを作製する工程と、前記誘電体ガラスシートに導電性ペーストを塗布し、所定パターンの導電膜を形成する工程と、前記導電膜が形成された前記誘電体ガラス層となるべき前記誘電体ガラスシートと前記磁性体層となるべき前記磁性体シートとを積層し、共焼成する焼成工程とを含むことを特徴としている。
 また、本発明の複合電子部品の製造方法では、前記焼成工程は、前記導電膜が付与された前記誘電体ガラスシートが前記磁性体シートで狭持された状態で共焼成するのが好ましい。
 本発明の複合電子部品によれば、ガラス成分は、それぞれ酸化物に換算してSiを70~85wt%、Bを10~25wt%、Kを0.5~5wt%、及びAlを0~5wt%の範囲で含有すると共に、フィラー成分が、少なくとも石英とフォルステライトとを含み、誘電体ガラス層は、前記フォルステライトの含有量が、2~10wt%であって、かつ前記フィラー成分の総含有量が、20~60wt%であるので、誘電体ガラス層と磁性体層とを共焼成により形成されても、気泡等の欠陥が誘電体ガラス層内に生成されるのを抑制することができ、絶縁性能が良好で、誘電体ガラス層と磁性体層との界面剥離も抑制され接合性の向上した高信頼性を有する積層コモンモードチョークコイル等の複合電子部品を得ることができる。
 また、本発明の複合電子部品の製造方法によれば、上述したように、磁性体シートを準備する工程と、所定の成分組成となるように粉末状のガラス成分を作製する工程と、焼成後の誘電体ガラス層中でフォルステライトを含むフィラー成分が所定範囲となるように前記フィラー成分を秤量する工程と、誘電体ガラスシートを作製する工程と、導電膜を形成する工程と、焼成工程とを含むので、上述した複合電子部品を容易かつ効率よく製造することができる。
本発明に係る複合電子部品としての積層コモンモードチョークコイルの一実施の形態を示す斜視図である。 図1のA-A矢視断面図である。 積層成形体を模式的に示す分解斜視図である。 実施例で作製した単体コンデンサを示す図であり、(a)は縦断面図、(b)はB-B矢視断面図、(c)はC-C矢視断面図である。 実施例で作製した共焼結体コンデンサを示す図であり、(a)は縦断面図、(b)はD-D矢視断面図、(c)はE-E矢視断面図である。 実施例で作製した積層複合体を示す斜視図である。 従来技術の課題を説明するための積層コモンモードチョークコイルの要部断面図である。
 次に、本発明の実施の形態を詳説する。
 図1は、本発明に係る複合電子部品としての積層コモンモードチョークコイルの一実施の形態を示す斜視図であり、図2は、図1のA-A矢視断面図である。
 この積層コモンモードチョークコイルでは、部品本体1は、ガラス成分及びフィラー成分を含有した誘電体ガラス層2がフェライト材料からなる第1及び第2の磁性体層3a、3bに狭持された積層構造を有している。部品本体1の両端部には第1~第4の外部電極4a~4dが形成されている。
 また、誘電体ガラス層2には、コイル状(渦巻き状)に形成された第1及び第2の内部導体5、6が埋設されている。具体的には、誘電体ガラス層2は、第1~第5の誘電体ガラスシート7a~7eが積層された焼結体で形成されている。そして、第1の内部導体5は、第2の誘電体ガラスシート7b上に形成された第1のコイル部5cと、第2の誘電体ガラスシート7bを貫通する第1の導通ビア5bと、第1の誘電体ガラスシート7a上に形成された第1の引出導体部5aとを有し、第1のコイル部5c、第1の導通ビア5b、及び第1の引出導体部5aが電気的に接続されている。また、第2の内部導体6は、第3の誘電体ガラスシート7c上に形成された第2のコイル部6aと、第4の誘電体ガラスシート7dを貫通する第2の導通ビア6bと、第4の誘電体ガラスシート7d上に形成された第2の引出導体部6cとを有し、第2のコイル部6a、第2の導通ビア6b、及び第2の引出導体部6cが電気的に接続されている。そして、第1の内部導体5と第2の内部導体6とは、巻き方向が互いに反対方向となるように第3の誘電体ガラスシート7cを介して前記誘電体ガラス層2中に埋設されている。
 このように構成された積層コモンモードチョークコイルは、第1及び第2の内部導体5、6にノーマルモードの電流が流れると、該第1及び第2の内部導体5、6には互いに逆方向に磁束が発生し、磁束が打ち消しあうことからインダクタとしての機能は生じない。一方、第1及び第2の内部導体5、6にコモンモードの電流が流れると、該第1及び第2の内部導体5、6には同一方向に磁束が発生し、インダクタとして機能する。このように積層コモンモードチョークコイルでは、ノーマルモードに対してはインダクタとして機能せず、コモンモードに対してのみインダクタとして機能することにより、ノイズ成分を除去している。
 尚、第1及び第2の内部導体5、6の導体材料としては、特に限定されるものではなく、Ag、Ag-Pd、Au、Cu、Ni等の各種導電性材料を使用することが可能であるが、通常は比較的安価で大気雰囲気で焼成可能なAgを主成分とした導電性材料を好んで使用することができる。
 そして、前記誘電体ガラス層2は、上述したようにホウケイ酸ガラス系のガラス成分と少なくとも石英(SiO)とフォルステライト(2MgO・SiO)とを含むセラミックフィラーからなるフィラー成分とを含有している。
 さらに、前記ガラス成分は、成分組成が、SiO:70~85wt%、B:10~25wt%、KO:0.5~5wt%、及びAl:0~5wt%とされ、フィラー成分は、誘電体ガラス層2中のフォルステライトの含有量が2~10wt%とされ、かつフィラー成分の総含有量が20~60wt%とされている。
 これにより誘電体ガラス層2となるべき第1~第5の誘電体ガラスシート7a~7eと第1及び第2の磁性体層3a、3bとなるべき磁性体シートとを共焼成しても、焼成後の誘電体ガラス層2内に気泡等の構造欠陥が形成されるのを抑制することができる。しかも、誘電体ガラス層2と第1及び第2の磁性体層3a、3bとの接合界面で界面剥離が生じるのを抑制でき、接合性が良好で高信頼性を有する積層コモンモードチョークコイルを得ることができる。
 すなわち、[発明が解決しようとする課題]の項でも述べたように、特許文献1のような従来技術では、誘電体ガラス層2と第1及び第2の磁性体層3a、3bとを共焼成により形成した場合、誘電体ガラス層2の内部には脱バインダ処理で焼失せずに残存したCがCOガスとなってガラス成分内に閉じ込められ、大量の気泡が形成されることから、性能劣化や信頼性低下を招くおそれがある。
 しかるに、フィラー成分として石英に加えフォルステライトを誘電体ガラス層2中に含有させると、ガラス成分は石英とフォルステライトとでは濡れ性が相違することから、焼成処理中にガラス成分が軟化点付近に到達しても、ガラス成分のフィラー成分に対する濡れ性が阻害され、その結果、ガラス成分はフィラー成分に濡れ拡がり難くなる。このため、たとえ誘電体ガラス層2の内部に気泡が生成されても、軟化したガラス成分内に閉じ込められることなく外部に連通する経路を介して外部に放出され、これにより気泡の生成を抑制することができる。
 また、フォルステライトは、ガラス成分の軟化点を超えて高温の焼成温度領域に達するとガラス成分と反応し、フォルステライト中のMg成分がガラス成分内に溶け込む。すなわち、焼成温度領域では、ガラスの修飾酸化物として作用するMg成分が増加してガラス成分の軟化点を低下させ、その結果、第1及び第2の磁性体層3a、3bを形成するフェライト材料へのガラス成分の拡散が促進され、これにより誘電体ガラス層2と第1及び第2の磁性体層3a、3bとの間で界面剥離が生じるのを抑制することができ、両者の接合性が向上する。
 このように本実施の形態では、フィラー成分として互いに濡れ性の異なる所定量の石英及びフォルステライトを誘電体ガラス層2中に含有させることにより、気泡等の内部欠陥が形成されるのを抑制すると共に誘電体ガラス層2と第1及び第2の磁性体層3a、3bとで界面剥離が生じるのを抑制して接合性を向上させることができ、これにより絶縁抵抗の低下等の性能劣化を招くことなく、高信頼性を有する積層コモンモードチョークコイルを実現している。
 尚、第1及び第2の磁性体層3a、3bを形成するフェライト材料としては、特に限定されるものではなく、例えば、スピネル型結晶構造を有するZn-Cu-Ni系フェライト材料、Zn-Ni系フェライト材料、Ni系フェライト材料等を使用することができるが、通常はZn-Cu-Ni系フェライト材料を好んで使用することができる。また、フェライト材料の組成範囲も特に限定されるものではないが、例えば、Zn-Cu-Ni系フェライト材料の場合であれば、Fe:40~49.5mol%、ZnO:5~35mol%、CuO:4~12mol%、残部:NiO及び微量添加剤(不可避不純物を含む。)となるように配合されたものを好んで使用することができる。
 次に、誘電体ガラス層2中のガラス成分及びフィラー成分の含有量を上述の範囲に規定した理由を詳述する。
(1)ガラス成分
(i)SiO
 ガラスは、非晶質化して網目状のネットワーク構造を形成する網目状酸化物と、網目状酸化物を修飾して非晶質化する修飾酸化物と、両者の中間的な中間酸化物とで構成される。このうちSiOは網目状酸化物として作用し、重要な構成成分である。
 しかしながら、SiOの含有量が70wt%未満になると、ガラス成分中のSiOの含有量が相対的に低下し、その結果、焼成中にガラス成分の第1及び第2の磁性体層3a、3b側への拡散が過度に促進される。このため、誘電体ガラス層2中で十分に気泡の生成を抑制することができず、絶縁性能の低下を招くおそれがある。
 一方、SiOにはガラス成分の軟化点を上昇させる作用があることから、SiO含有量が85wt%を超えると、ガラス成分の軟化点が過度に高くなり、このため焼結性の低下を招くおそれがある。
 そこで、本実施の形態では、ガラス成分中のSiOの含有量を70~85wt%に規定している。
(ii)B
 Bも、網目状酸化物として作用し、また軟化点を低下させる作用があることから、ガラス成分の流動性を調整する上でも重要な構成成分である。
 しかしながら、Bの含有量が10wt%未満に低下すると、ガラス成分の軟化点を十分に低下させることができず軟化点が過度に高くなって、焼結性の低下を招くおそれがある。
 一方、Bの含有量が25wt%を超えると、焼成中にガラス成分の第1及び第2の磁性体層3a、3b側への拡散が過度に促進され、このため、誘電体ガラス層2中で十分に気泡の生成を抑制することができず、絶縁性能の低下を招くおそれがある。
 そこで、本実施の形態では、ガラス成分中のBの含有量を10~25wt%に規定している。
(iii)K
 KOは、修飾酸化物としてガラスの軟化点を調整する作用を有し、本ガラス成分では必須の構成要素である。
 すなわち、KOの含有量が0.5wt%未満になると、KOの含有量が過少となって焼結性の低下を招くおそれがある。
 一方、KOの含有量が5wt%を超えると、焼成中にガラス成分の第1及び第2の磁性体層3a、3b側への拡散が過度に促進され、このため、誘電体ガラス層2中で十分に気泡の生成を抑制することができず、絶縁性能の低下を招くおそれがある。
 そこで、本実施の形態では、ガラス成分中のKOの含有量を0.5~5wt%に規定している。
(iv)Al
 Alは、中間酸化物として作用し、適量含有させることにより、ガラスの結晶化を抑制して安定した非晶質ガラスが得られ、ガラス成分の化学的耐久性を向上させることができる。
 しかしながら、Alはガラス成分の軟化点を上昇させる作用を有することから、ガラス成分中のAlの含有量が5wt%を超えると、軟化点が過度に高くなり、焼結性低下を招くおそれがある。
 そこで、本実施の形態では、ガラス成分中のAlの含有量を0~5wt%に規定している。
(2)フィラー成分
(i)フィラー成分の総含有量
 本実施の形態では、ガラス成分の軟化点では軟化しない2種類のセラミックフィラー、すなわち石英(SiO)及びフォルステライト(2MgO・SiO)をフィラー成分として含有している。斯かるフィラー成分は、上述したようにガラス成分の軟化点では軟化しないことから、フィラー成分とガラス成分とを混合し、焼成後に急冷するとガラス成分がガラス素地を形成し、該ガラス素地中にフィラー成分が分散し、これにより誘電体ガラス層2が形成される。
 しかしながら、誘電体ガラス層2中のフィラー成分の総含有量が20wt%未満に低下すると、ガラス成分の含有量が相対的に増加することから焼成後の第1及び第2の磁性体層3a、3bとの間で界面剥離を招き、接合性の低下を招くおそれがある。
 一方、フィラー成分の総含有量が60wt%を超えると、ガラス成分の含有量が相対的に少なくなることから焼結性の低下を招き、好ましくない。
 そこで、本実施の形態では、フィラー成分の総含有量を20~60wt%としている。
(ii)フォルステライトの含有量
 フィラー成分として、石英と共にフォルステライトを誘電体ガラス層2中に含有させることにより、上述したように誘電体ガラス層2内に気泡等の構造欠陥が生じるのを抑制でき、かつ誘電体ガラス層2と第1及び第2の磁性体層3a、3bとの間の接合性を向上させることができる。そして、そのためには誘電体ガラス層2中のフォルステライトの含有量は少なくとも2wt%は必要である。
 しかしながら、フォルステライトの含有量が、10wt%を超えると、気泡の生成は抑制できるものの、フォルステライト中のMg成分の第1及び第2の磁性体層3a、3bへの拡散が過度に促進され、このため絶縁性の低下を招くおそれがある。
 そこで、本実施の形態では、フォルステライトの含有量を2~10wt%としている。
 このように本発明では、ガラス成分の組成、フィラー成分の総含有量、及びフォルステライトの含有量を所定範囲に規定することにより、誘電体ガラス層2内での気泡等の欠陥の生成抑制と誘電体ガラス層2と第1及び第2の磁性体層3a、3bとの間の接合性向上の両立を図っている。
 次に、上記積層コモンモードチョークコイルの製造方法を詳述する。
 図3は本積層コモンモードチョークコイルの中間生成物である積層成形体を模式的に示す分解斜視図である。
[磁性体シート8a、8bの作製]
 Fe、ZnO、CuO、NiO等のフェライト素原料を所定量秤量し、これら秤量物を純水及びPSZ(部分安定化ジルコニア)ボール等の玉石と共にポットミルに投入し、湿式で十分に混合粉砕し、蒸発乾燥させた後、700~800℃の温度で所定時間仮焼し、仮焼粉末を作製する。
 次いで、この仮焼粉末にポリビニルブチラール系等の有機バインダ、エタノール、トルエン等の有機溶剤をPSZボールと共に、再びポットミルに投入し、十分に混合粉砕し、磁性体スラリーを作製する。
 次に、ドクターブレード法等の成形加工法を使用し、前記磁性体スラリーをシート状に成形加工し、これにより膜厚30~40μmの複数枚の磁性体シート8a、8bを得る。
[第1~第5の誘電体ガラスシート7a~7eの作製]
 焼成後のガラス成分の組成が、SiO:70~85wt%、B:10~25wt%、KO:0.5~5wt%、及びAl:0~5wt%となるようにSi化合物、B化合物、K化合物、及びAl化合物を秤量し、この秤量物を白金坩堝に投入し、1500~1600℃の温度で所定時間溶融させ、ガラス融液を作製する。次いで、このガラス融液を急冷した後、粉砕し、これによりガラス粉末を得る。
 尚、上述したSi化合物、B化合物、K化合物、Al化合物の化合物形態は特に限定されるものではなく、例えば酸化物、炭酸化物等を使用することができる。
 次に、フィラー成分として平均粒径が0.5~1.5μmの石英及びフォルステライトを準備する。そして、焼成後の誘電体ガラス層2中のフォルステライトの含有量が2~10wt%でありかつフィラー成分の総含有量が20~60wt%となるように、これらフィラー成分を秤量する。次いで、この秤量されたフィラー成分と上記ガラス粉末とを混合し、ポリビニルブチラール系等の有機バインダ、エタノール、トルエン等の有機溶剤、及び可塑剤をPSZボールと共に、ポットミルに投入し、十分に混合粉砕し、誘電体ガラススラリーを作製する。
 次に、ドクターブレード法等の成形加工法を使用し、前記誘電体ガラススラリーをシート状に成形加工し、これにより膜厚10~20μmの第1~第5の誘電体ガラスシート7a~7eを作製する。
[第1及び第2の導電膜9、10の作製]
 Ag等を主成分とする導電性ペーストを用意する。そして、スクリーン印刷法等の塗布法を使用し、第1の誘電体ガラスシート7a上に導電性ペーストを塗布し、所定形状の第1の引出導体パターン9aを作製する。次に、レーザ照射等により第2の誘電体ガラスシート7bの所定箇所にビアホールを形成し、該ビアホールに導電性ペーストを充填させて第1のビア導体9bを形成する。その後スクリーン印刷法等の塗布法を使用し、誘電体ガラスシート7b上に渦巻き状の第1のコイルパターン9cを形成し、第1の引出導体パターン9a、第1のビア導体9b、及び第1のコイルパターン9cからなる第1の導電膜9を作製する。
 同様に、スクリーン印刷法等の塗布法を使用して第3の誘電体ガラスシート7c上に導電性ペーストを塗布し、所定形状の第2のコイルパターン10aを作製する。次に、レーザ照射等により第4の誘電体ガラスシート7dの所定箇所にビアホールを形成し、該ビアホールに導電性ペーストが充填して第2のビア導体10bを形成する。その後スクリーン印刷法等の塗布法を使用して第4の誘電体ガラスシート7d上に第2の引出導体パターン10cを形成し、第2のコイルパターン10a、第2のビア導体10b及び第2の引出導体パターン10cを有する第2の導電膜10を形成する。
[積層コモンモードチョークコイルの作製]
 所定枚数の磁性体シート8bに第1及び第2の導電膜9、10が形成された第1~第5の誘電体ガラスシート7a~7eを順次積層し、さらに第5の誘電体ガラスシート7e上に所定枚数の磁性体シート8aを積層し、第1~第5の誘電体ガラスシート7a~7eを磁性体シート8a、8bで狭持した状態で、加熱・圧着させ、これにより積層成形体を作製する。
 次いで、この積層成形体を匣に入れ、大気雰囲気下、350~500℃の加熱温度で脱バインダ処理を行い、その後、850~920℃の温度で2時間焼成処理を行い、これにより磁性体シート8、第1~第5の誘電体ガラスシート7a~7e、第1及び第2の導電膜9.10が共焼成され、第1及び第2の内部導体5、6が渦巻き状に埋設された誘電体ガラス層2と、該誘電体ガラス層2を狭持する一対の磁性体層3a、3bからなる部品本体1を得る。
 その後、この部品本体1の両端部の所定箇所にAg等を主成分とした外部電極用導電性ペーストを塗布し、900℃程度の温度で焼き付け処理を行って第1~第4の外部電極4a~4dを形成する。すなわち、第1の引出導体部5aが第1の外部電極4aに電気的に接続されると共に第1のコイル部5cが第3の外部電極4cに電気的に接続され、また、第2の引出導体部6cが第2の外部電極4bに電気的に接続されると共に第2のコイル部6aが第4の外部電極4dに電気的に接続され、これにより図1及び図2のような積層コモンモードチョークコイルが作製される。
 このように本製造方法では、磁性体シート8a、8bを準備する工程と、所定の成分組成となるように粉末状のガラス成分を作製する工程と、焼成後の誘電体ガラス層中でフォルステライトを含むフィラー成分が所定範囲となるように前記フィラー成分を秤量する工程と、誘電体ガラスシート7a~7eを作製する工程と、導電膜9、10を形成する工程と、焼成工程とを含むので、積層コモンモードチョークコイルを効率よく製造することができる。
 尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、内部導体の主要部を二次元的な渦巻き状に形成しているが、本発明の課題は誘電体ガラス層中の気泡生成と界面剥離の抑制にあることから、内部導体の形状は特に限定されるものではなく、例えば、内部導体の主要部が三次元的な螺旋状であってもよい。
 また、ガラス成分についても、SiO、B、KO、Alが上述した組成範囲を満たすのであれば、特性に影響を与えない範囲で必要に応じ適宜添加物を含有させてもよい。また、フィラー成分についても同様であり、特性に影響を与えない範囲で必要に応じ適宜添加物を含有させてもよい。
 また、上記実施の形態では積層コモンモードチョークコイルを例示して説明したが、誘電体ガラス層と磁性体層とを共焼成により形成するのであれば、他の複合電子部品に適用可能であるのはいうまでもない。
 次に、本発明の実施例を具体的に説明する。
 上述したガラス成分及びフィラー成分を使用し、磁性体層を有さない誘電体コンデンサ(以下、「単体コンデンサ」という。)、及び内部電極が埋設された誘電体ガラス層と磁性体層とを共焼成により形成した共焼結コンデンサをそれぞれ作製し、絶縁性能を評価した。
 また、誘電体ガラス層を一対の磁性体層で狭持させた積層複合体(内部電極なし)を作製し、誘電体ガラス層内の気泡生成の有無及び磁性体層と誘電体ガラス層との接合性を評価した。
  尚、本実施例では、積層コモンモードチョークコイル等のコイル部品での特性評価は行っていないが、共焼結体コンデンサでの絶縁性能が良好であり、かつ積層複合体において、誘電体ガラス層内での気泡生成が抑制され、接合性が良好であれば、コイル部品においても同様の特性が得られるのはいうまでもない。
[試料の作製]
<単体コンデンサの作製>
 図4は、本実施例で作製した単体コンデンサを模式的に示す図であって、図4(a)は縦断面図、図4(b)は図4(a)のB-B矢視断面図、図4(c)は図4(a)のC-C矢視断面図である。
 すなわち、この単体コンデンサは、長さLが10mm、幅Wが10mm、高さHが1.020mmの外形寸法を有する直方体形状に形成されている。そして、部品本体51は、高さH1が0.5mmの一対の誘電体ガラス層52a、52bと、前記一対の誘電体ガラス層52a、52bに狭持された内部電極53a、53bを有する高さH2が20μmの誘電体ガラス層54とからなり、前記部品本体51の両端面には一対の外部電極55a、55bが形成されている。内部電極53a、53bは、いずれも長さL1が7mm、幅W1が4mmに形成されている。
 この単体コンデンサを以下のようにして作製した。
 まず、焼成後のガラス組成が表1となるように、SiO、B、KO、Alを秤量し、これら秤量物を白金坩堝に投入し、組成成分に応じて1500~1600℃の温度で2時間溶融させ、ガラス融液を得た。次に、このガラス融液を急冷した後、粉砕し、試料番号1~24の平均粒径1.0μmのガラス粉末を得た。
 次に、フィラー成分として平均粒径が0.5~1.5μmの石英及びフォルステライトを用意した。そして、誘電体ガラス層52a、52b、54中の各フィラー成分の含有量及びフィラー成分の総含有量が表1となるように、これら各フィラー成分を秤量した。
 次いで、この秤量されたフィラー成分と上記ガラス粉末とを混合し、ポリビニルブチラール系等の有機バインダ、エタノール、トルエン等の有機溶剤、及び可塑剤をPSZボールと共に、ポットミルに投入し、十分に混合粉砕し、誘電体ガラススラリーを作製した。
 次に、ドクターブレード法を使用し、前記誘電体ガラススラリーをシート状に成形加工し、これにより膜厚20~30μmの誘電体ガラスシートを作製した。
 次いで、Ag系導電性ペーストを用意し、誘電体ガラスシートに対しスクリーン印刷法を使用して前記Ag系導電性ペーストを塗布し、所定個所に所定パターンの導電膜を形成した。
 次いで、所定枚数の誘電体ガラスシートを所定順序で積層し、積層成形体を得た。そして、この積層成形体を匣に入れて大気雰囲気下、500℃で脱バインダ処理を行い、その後、900℃の焼成温度で2時間焼成し、これにより部品本体51を得た。
 その後、この部品本体51の両端面にAg系導電性ペーストを塗布し、900℃の温度で焼き付け処理を行って外部電極55a、55bを形成し、これにより試料番号1~24の単体コンデンサを得た。
<共焼結体コンデンサの作製>
 図5は、本実施例で作製した共焼結体コンデンサを模式的に示す図であって、図5(a)は縦断面図、図5(b)は図5(a)のD-D矢視断面図、図5(c)は図5(a)のE-E矢視断面図である。
 すなわち、この共焼結体コンデンサは、単体コンデンサと同様、長さLが10mm、幅Wが10mm、高さHが1.020mmの外形寸法を有する直方体形状に形成されている。そして、部品本体56は、高さH1が0.5mmの一対の磁性体層57a、57bと、前記一対の磁性体層57a、57bに狭持された内部電極58a、58bを有する高さH2が20μmの誘電体ガラス層59からなり、前記部品本体56の両端面には一対の外部電極60a、60bが形成されている。内部電極58a、58bは、単体コンデンサと同様、いずれも長さL1が7mm、幅W1が4mmに形成されている。
 この共焼結体コンデンサを以下のようにして作製した。
 まず、フェライト素原料としてFe、ZnO、CuO、NiOを用意した。そして、焼成後の含有量が、Fe:48.0mol%、ZnO:30.0mol%、CuO:8.0mol%、残部:NiOとなるように、これらFe、ZnO、CuO、及びNiOを秤量した。次いで、これら秤量物を純水及びPSZ(部分安定化ジルコニア)ボール等の玉石と共にポットミルに投入し、湿式で十分に混合粉砕し、蒸発乾燥させた後、750℃の温度で所定時間仮焼し、仮焼粉末を得た。
 次いで、この仮焼粉末にポリビニルブチラール系等の有機バインダ、エタノール、トルエン等の有機溶剤をPSZボールと共に、再びポットミルに投入し、十分に混合粉砕し、磁性体スラリーを作製した。
 次に、ドクターブレード法等の成形加工法を使用し、前記磁性体スラリーをシート状に成形加工し、これにより膜厚30μmの磁性体シートを作製した。
 また、上述した単体コンデンサと同様の方法・手順で誘電体ガラスシートを作製し、次いで、スクリーン印刷法を使用し、誘電体ガラスシートの表面にAg系導電性ペーストを塗布し、所定個所に所定形状の導電膜を形成した。
 次いで、所定枚数の磁性体シートを積層した後、該磁性体シート上に内部電極が対向状となるように誘電体ガラスシートを積層し、さらにその上に所定枚数の磁性体シートを積層し、これにより積層成形体を作製した。
 そして、この積層成形体を匣に入れて大気雰囲気下、500℃で脱バインダ処理を行い、その後、900℃の焼成温度で2時間焼成し、これにより第1及び第2の磁性体層57a、57b、誘電体ガラス層59、内部電極58a、58bが共焼成された部品本体56を得た。
 その後、この部品本体56の両端面にAg系導電性ペーストを塗布し、900℃の温度で焼き付け処理を行って外部電極60a、60bを形成し、これにより試料番号1~24の共焼結体コンデンサを得た。
<積層複合体の作製>
 図6は、本実施例で作製した積層複合体の斜視図である。
 すなわち、この複合体は、長さLが5mm、幅Wが5mm、高さHが1.2mmの外形寸法を有する直方体形状に形成されており、高さH2が0.4mmの誘電体ガラス層61が、高さH1が0.4mmの一対の磁性体層62a、62bに狭持されている。
 この積層複合体は、上述した磁性体シート及び誘電体ガラスシートを使用し、以下のようにして作製した。
 すなわち、上述のようにして作製された磁性体シート及び誘電体ガラスシートを長さLが5mm、幅Wが5mmの寸法に切断した。そして、磁性体シート及び誘電体シートが所定厚みとなるように積層し、加熱・圧着して積層成形体を作製した。
 そして、この積層成形体を匣に入れて大気雰囲気下、500℃で脱バインダ処理を行い、その後、900℃の焼成温度で2時間焼成し、これにより試料番号1~24の積層複合体を各50個作製した。
[試料の評価]
 試料番号1~24の各単体コンデンサ及び各共焼結体コンデンサについて、汎用の絶縁抵抗測定器を使用して絶縁抵抗logIRを測定し、絶縁抵抗logIRが10未満を不良品、10以上を良品と判断した。
 また、試料番号1~24の各積層複合体について、中央部分まで鏡面研磨を行って断面を露出させ、光学顕微鏡で内部構造を観察し、気泡の形成有無により内部構造に欠陥が生じているか否かを確認した。すなわち、光学顕微鏡で観察した結果、最長幅部分が3μm以上の窪み等の欠陥が認められた箇所を気泡と判断してその個数を計数し、各試料50個について気泡数の平均値を算出した。そして、気泡数が5個未満の試料を良品、気泡数が5個以上の試料を不良品と判断した。
 また、試料番号1~24の各積層複合体について、上述した誘電体ガラス層の内部構造の観察と同時に誘電体ガラス層61と磁性体層62a、62bとの界面を観察した。そして、各試料50個中、界面剥離が1つでも認められた試料を接合性不良(×)とし、界面剥離が全く認められなかった試料を接合性良好(○))とし、接合性を評価した。
 表1は、試料番号1~24の各試料のガラス成分の組成、ガラス成分の含有量、フィラー成分の含有量を示している。
 また、表2は、試料番号1~24の各試料の絶縁抵抗logIR、気泡数、及び接合性評価を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 試料番号1は、ガラス成分中のKO含有量が0.2wt%と少なく、焼結不良となって焼結させることができなかった。
 試料番号4は、ガラス成分中のKO含有量が5.5wt%と多く、単体コンデンサでは絶縁抵抗logIRは10.6と良好であるが、共焼結体コンデンサの場合、誘電体ガラス層59中のガラス成分が第1及び第2の磁性体層57a、57b側に拡散し、このため絶縁抵抗logIRは8.2に低下し、気泡数も17と多くなった。
 試料番号7は、ガラス成分中のAlの含有量が10wt%と多く、軟化点が過度に高くなり、焼結不良となって焼結させることができなかった。
 試料番号8は、ガラス成分中のSiOの含有量が85wt%と多く、しかも、Bの含有量が8wt%と少ないため、軟化点が過度に高くなり、焼結不良となって焼結させることができなかった。
 試料番号11は、ガラス成分中のB含有量が28wt%と多く、単体コンデンサでは絶縁抵抗logIRは10.2と良好であるが、共焼結体コンデンサの場合、誘電体ガラス層59中のガラス成分が第1及び第2の磁性体層57a、57b側に拡散し、このため絶縁抵抗logIRが8.6に低下し、気泡数も13と多くなった。
 試料番号12は、ガラス成分中のSiO含有量が68wt%と少なく、このため単体コンデンサでは絶縁抵抗logIRは10.3と良好であるが、共焼結体コンデンサの場合、誘電体ガラス層59中のガラス成分が第1及び第2の磁性体層57a、57b側に拡散し、このため絶縁抵抗logIRは8.9に低下し、気泡数も11と多くなった。
 試料番号15は、ガラス成分中のSiO含有量が88wt%と多く、軟化点が過度に高く、焼結不良となって焼結させることができなかった。
 試料番号16は、フォルステライト含有量が12wt%と多く、このため気泡の生成は抑制できるものの、フォルステライト中のMg成分の第1及び第2の磁性体層57a、57bへの拡散が過度に促進され、絶縁抵抗logIRが8.9に低下した。
 試料番号19は、誘電体ガラス層59中にフォルステライトが含有されていないため、気泡数が8個と多くなり、また、界面剥離も認められ、接合不良を招いた。
 試料番号20は、フィラー成分の総含有量が60wt%と多く、ガラス成分の含有量が相対的に少なくなるため、焼結不良となって焼結させることができなかった。
 試料番号23は、フィラー成分の総含有量が15wt%と少なく、ガラス成分の含有量が相対的に多くなったため、気泡数も15と多くなり、また、界面剥離も認められ、接合不良を招いた。
 これに対し試料番号2、3、5、6、9、10、13、14、17、18、21、22、及び24は、SiO:70~85wt%、B:10~25wt%、KO:0.5~5wt%、及びAl:0~5wt%の範囲にあり、誘電体ガラス層2中でフォルステライトの含有量が2~10wt%であり、かつフィラー成分の総含有量が20~60wt%にあり、いずれも本発明範囲内であるので、共焼成しても絶縁抵抗logIRは10以上と良好な絶縁性能を得ることができ、誘電体ガラス層中の気泡数は5個未満であり、内部構造の欠陥生成を抑制でき、しかも界面剥離も生じることなく接合性の良好な複合電子部品が得られることが分かった。
 磁性体層と誘電体ガラス層とを共焼成により形成されても、絶縁性能を損なうことなく、誘電体ガラス層中で気泡等の内部構造の欠陥生成を抑制でき、磁性体層と誘電体ガラス層との界面の接合性が良好で高信頼性を有する積層コモンモードチョークコイル等の複合電子部品を実現する。
2 誘電体ガラス層
3a 第1の磁性体層
3b 第2の磁性体層
5 第1の内部導体
6 第2の内部導体
7a~7e 第1~第5の誘電体ガラスシート
8 磁性体シート
9 第1の導電膜
10 第2の導電膜

Claims (8)

  1.  フェライト材料からなる磁性体層とガラス成分及びフィラー成分を含有した誘電体ガラス層とが積層された複合電子部品であって、
     前記ガラス成分は、それぞれ酸化物に換算してSiを70~85wt%、Bを10~25wt%、Kを0.5~5wt%、及びAlを0~5wt%の範囲で含有すると共に、
     前記フィラー成分が、少なくとも石英とフォルステライトとを含み、
     前記誘電体ガラス層は、前記フォルステライトの含有量が、2~10wt%であって、かつ前記フィラー成分の総含有量が、20~60wt%であることを特徴とする複合電子部品。
  2.  前記誘電体ガラス層は、内部導体が埋設されていることを特徴とする請求項1記載の複合電子部品。
  3.  前記内部導体は、渦巻き状又は螺旋状に形成されていることを特徴とする請求項2記載の複合電子部品。
  4.  前記内部導体は、Agを主成分とすることを特徴とする請求項2又は請求項3記載の複合電子部品。
  5.  前記フェライト材料は、少なくともFe、Ni、Zn、及びCuを含有していることを特徴とする請求項1乃至請求項4のいずれかに記載の複合電子部品。
  6.  積層コモンモードチョークコイルであることを特徴とする請求項1乃至請求項5のいずれかに記載の複合電子部品。
  7.  フェライト材料からなる磁性体シートを準備する工程と、
     Si、B、K、及びAlを酸化物に換算し、焼成後においてそれぞれSiが70~85wt%、Bが10~25wt%、Kが0.5~5wt%、及びAlが0~5wt%となるように秤量し、これら秤量物を混合して粉末状のガラス成分を作製する工程と、
     フィラー成分として少なくとも石英及びフォルステライトを準備し、焼成後の誘電体ガラス層中の前記フォルステライトの含有量が2~10wt%であり、かつ前記フィラー成分の総含有量が20~60wt%となるように、前記フィラー成分を秤量する工程と、
     前記秤量されたフィラー成分と前記ガラス成分とを混合し、成形処理を行って誘電体ガラスシートを作製する工程と、
     前記誘電体ガラスシートに導電性ペーストを塗布し、所定パターンの導電膜を形成する工程と、
     前記導電膜が形成された前記誘電体ガラス層となるべき前記誘電体ガラスシートと前記磁性体層となるべき前記磁性体シートとを積層し、共焼成する焼成工程とを含むことを特徴とする複合電子部品の製造方法。
  8.  前記焼成工程は、前記導電膜が付与された前記誘電体ガラスシートが前記磁性体シートで狭持された状態で共焼成することを特徴とする請求項7記載の複合電子部品の製造方法。
PCT/JP2017/035231 2016-11-30 2017-09-28 複合電子部品、及び該複合電子部品の製造方法 WO2018100863A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018553683A JP6624479B2 (ja) 2016-11-30 2017-09-28 複合電子部品、及び該複合電子部品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016232335 2016-11-30
JP2016-232335 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018100863A1 true WO2018100863A1 (ja) 2018-06-07

Family

ID=62242645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035231 WO2018100863A1 (ja) 2016-11-30 2017-09-28 複合電子部品、及び該複合電子部品の製造方法

Country Status (2)

Country Link
JP (1) JP6624479B2 (ja)
WO (1) WO2018100863A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099400A (ja) * 2017-11-29 2019-06-24 株式会社村田製作所 ガラス−セラミック−フェライト組成物および電子部品
JP2020150007A (ja) * 2019-03-11 2020-09-17 株式会社村田製作所 積層コイル部品
US20210166854A1 (en) * 2019-11-29 2021-06-03 Murata Manufacturing Co., Ltd. Coil component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114173A (ja) * 2009-11-27 2011-06-09 Kyocera Corp ガラスセラミック配線基板およびコイル内蔵ガラスセラミック配線基板ならびにガラスセラミック配線基板の製造方法
JP2014152059A (ja) * 2013-02-06 2014-08-25 Tdk Corp 誘電体磁器組成物、電子部品および複合電子部品
JP2014236170A (ja) * 2013-06-05 2014-12-15 株式会社村田製作所 セラミック電子部品およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517211A (ja) * 1991-03-07 1993-01-26 Sumitomo Metal Ind Ltd 基板材料及び回路基板
JP3451003B2 (ja) * 1997-11-19 2003-09-29 京セラ株式会社 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114173A (ja) * 2009-11-27 2011-06-09 Kyocera Corp ガラスセラミック配線基板およびコイル内蔵ガラスセラミック配線基板ならびにガラスセラミック配線基板の製造方法
JP2014152059A (ja) * 2013-02-06 2014-08-25 Tdk Corp 誘電体磁器組成物、電子部品および複合電子部品
JP2014236170A (ja) * 2013-06-05 2014-12-15 株式会社村田製作所 セラミック電子部品およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099400A (ja) * 2017-11-29 2019-06-24 株式会社村田製作所 ガラス−セラミック−フェライト組成物および電子部品
JP2020150007A (ja) * 2019-03-11 2020-09-17 株式会社村田製作所 積層コイル部品
CN111681850A (zh) * 2019-03-11 2020-09-18 株式会社村田制作所 层叠线圈部件
KR20200108783A (ko) * 2019-03-11 2020-09-21 가부시키가이샤 무라타 세이사쿠쇼 적층 코일 부품
KR102339627B1 (ko) 2019-03-11 2021-12-14 가부시키가이샤 무라타 세이사쿠쇼 적층 코일 부품
US20210166854A1 (en) * 2019-11-29 2021-06-03 Murata Manufacturing Co., Ltd. Coil component
JP2021086981A (ja) * 2019-11-29 2021-06-03 株式会社村田製作所 コイル部品
JP7099434B2 (ja) 2019-11-29 2022-07-12 株式会社村田製作所 コイル部品

Also Published As

Publication number Publication date
JP6624479B2 (ja) 2019-12-25
JPWO2018100863A1 (ja) 2019-10-17

Similar Documents

Publication Publication Date Title
JP6079899B2 (ja) 積層セラミック電子部品
JP5845426B2 (ja) セラミック積層部品
US20130154786A1 (en) Laminated common-mode choke coil
JP5481854B2 (ja) 電子部品
CN209962815U (zh) 层叠线圈部件
JP5799948B2 (ja) セラミック電子部品及びその製造方法
CN108137388B (zh) 导电性糊及叠层陶瓷部件的端电极形成方法
KR101699389B1 (ko) 적층 세라믹 콘덴서 및 그 제조방법
WO2018100863A1 (ja) 複合電子部品、及び該複合電子部品の製造方法
WO2017122452A1 (ja) 積層体及び電子部品
JP2010147098A (ja) 電子部品
JP7180689B2 (ja) 積層体及び電子部品
JP5386496B2 (ja) 複合電子部品
JP7309666B2 (ja) 多層セラミック基板及び電子装置
JP5229323B2 (ja) 積層コイル部品およびその製造方法
KR20140112881A (ko) 외부 전극용 도전성 페이스트 및 이를 이용한 적층 세라믹 전자부품
JP6493560B2 (ja) 多層セラミック基板及び電子部品
US10457608B2 (en) Multilayer ceramic substrate and electronic device
JP2024077239A (ja) 積層型コイル部品及び積層型コイル部品の製造方法
JPH09120710A (ja) 導電性組成物およびそれを用いたセラミックコンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553683

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875090

Country of ref document: EP

Kind code of ref document: A1