WO2018100782A1 - 電力変換装置及びその制御方法 - Google Patents

電力変換装置及びその制御方法 Download PDF

Info

Publication number
WO2018100782A1
WO2018100782A1 PCT/JP2017/024312 JP2017024312W WO2018100782A1 WO 2018100782 A1 WO2018100782 A1 WO 2018100782A1 JP 2017024312 W JP2017024312 W JP 2017024312W WO 2018100782 A1 WO2018100782 A1 WO 2018100782A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
inverter
current
converter
voltage
Prior art date
Application number
PCT/JP2017/024312
Other languages
English (en)
French (fr)
Inventor
裕介 清水
哲男 秋田
綾井 直樹
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2018553649A priority Critical patent/JP6874773B2/ja
Publication of WO2018100782A1 publication Critical patent/WO2018100782A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device and a control method thereof.
  • This application claims priority based on Japanese Patent Application No. 2016-232619 filed on Nov. 30, 2016, and incorporates all the description content described in the above Japanese application.
  • a DC / DC converter and an inverter are mounted on a power conversion device provided between a DC power source and an AC circuit, and DC power is converted into AC power or, if necessary, in the opposite direction by switching of a semiconductor. Can also be converted.
  • both the DC / DC converter and the inverter always perform high-frequency switching.
  • the instantaneous value of the AC side voltage and the DC side voltage are compared with each other, for example, when converting from DC to AC, in order to reduce power loss due to continuous switching and improve conversion efficiency.
  • a power converter is a power converter provided between a DC power source and an AC circuit, and is provided between the DC power source and a DC bus, and includes a DC / DC including a DC reactor.
  • a control unit that controls a switching operation of the DC / DC converter and a switching operation of the inverter, and the control unit includes a voltage on the DC side based on the voltage of the DC power supply and the impedance of the DC / DC converter, and the Based on a voltage target value on the AC side of the inverter to be obtained by switching operation, a half cycle of the frequency of the AC circuit And controlling the AC / DC converter so that the time when the DC / DC converter performs high-frequency switching and the time when the inverter performs high-frequency switching appear alternately, and the inductance of each of the DC reactor
  • control method of the power converter device which concerns on 1 expression of this invention is the electric power containing the DC / DC converter containing a direct current reactor, an intermediate capacitor, an inverter, and the alternating current reactor connected to the alternating current side of the said inverter.
  • a control method for a conversion device based on a DC power supply voltage and a DC voltage based on the impedance of the DC / DC converter, and a voltage target value on the AC side of the inverter to be obtained by a switching operation,
  • the time when the DC / DC converter performs high-frequency switching and the time when the inverter performs high-frequency switching appear to alternate, and the DC reactor and the AC reactor DC superposition characteristics in which each inductance changes depending on the current value
  • the voltage drop of each reactor corresponding to the current of the current value incorporates the calculation, calculates a target voltage value of the AC-side and the voltage target value of the DC bus of the inverter, a control method of the power converter.
  • FIG. 6 is a waveform diagram simply showing the characteristics of the operation of the DC / DC converter and the inverter in the minimum switching conversion method, and particularly, a diagram displayed so that the amplitude relationship from the DC input to the AC output is easy to see.
  • FIG. 4 is a waveform diagram briefly showing the characteristics of the operation of the DC / DC converter and the inverter in the minimum switching conversion method, and particularly, a diagram displayed so that the timing of control is easy to see.
  • It is a flowchart which shows the control process of a DC / DC converter and an inverter performed by a control part, when the power converter device is performing the power conversion from direct current to alternating current.
  • both the DC / DC converter and the inverter are constantly reduced in power loss compared to the power conversion device in which high frequency switching is performed, and the conversion efficiency is improved. To rise.
  • the total current distortion rate and the current distortion rate of each order when the current distortion is expanded to the 40th order are suppressed to a predetermined value or less. Therefore, it is required to reduce the distortion of the AC output current in order to satisfy the grid connection regulations.
  • the present disclosure aims to reduce distortion of an AC output current in a power conversion device in which a DC / DC converter and an inverter alternately perform high-frequency switching in an AC half cycle to generate an AC waveform. To do.
  • the gist of the embodiment of the present invention includes at least the following.
  • This is a power converter provided between a DC power source and an AC circuit, and is provided between the DC power source and a DC bus, and includes a DC / DC converter including a DC reactor, and the DC bus.
  • An intermediate capacitor provided between the two wires, an inverter provided between the DC bus and the AC circuit, an AC reactor connected to the AC side of the inverter, and a switching operation of the DC / DC converter
  • a control unit for controlling the switching operation of the inverter, and the control unit obtains the DC side voltage based on the voltage of the DC power source and the impedance of the DC / DC converter, and the switching operation.
  • the DC / DC within the half cycle of the frequency of the AC circuit Based on the direct current superposition characteristics in which the inductance of each of the direct current reactor and the alternating current reactor varies depending on the current value, while the inverter performs the high frequency switching and the inverter performs the high frequency switching alternately.
  • the power converter is configured to calculate the voltage target value on the AC side of the inverter and the voltage target value of the DC bus by taking into account the voltage drop of each reactor corresponding to the current value.
  • the control unit calculates the DC superimposition characteristic by any one of a polynomial, a stepwise approximation, a linear approximation, and use of a data table, or a combination thereof. You can also.
  • the direct current superimposition characteristic can be approximated easily without requiring a large calculation load and without consuming a large amount of memory.
  • the data table consumes a relatively large amount of memory, it can save time and effort.
  • the control unit in the feedback control of the current that flows through at least one of the DC reactor and the AC reactor, the control unit has a proportional gain with respect to the current of the reactor, Relatively, the gain may be changed so as to have a high gain for a small current value and a low gain for a large current value.
  • the followability of the feedback control can be enhanced with a relatively high gain at a small current value.
  • the stability of the feedback control can be ensured with a relatively low gain, and oscillation can be prevented.
  • the current flowing through the DC reactor has a small current value when the alternating current is near zero crossing, and the large current value is when the alternating current is near the peak value.
  • a control method for a power converter including a DC / DC converter including a DC reactor, an intermediate capacitor, an inverter, and an AC reactor connected to the AC side of the inverter.
  • the frequency of the AC circuit based on the voltage of the DC power source and the voltage on the DC side based on the impedance of the DC / DC converter, and the voltage target value on the AC side of the inverter to be obtained by the switching operation.
  • the DC / DC converter is controlled so that the time when the DC / DC converter performs high frequency switching and the time when the inverter performs high frequency switching alternately appear, and the inductance of each of the DC reactor and the AC reactor is Based on the DC superposition characteristics that change depending on the current value, Incorporating a voltage drop of each reactor corresponding to the value in the calculation, it calculates a target voltage value of the AC side and the voltage target value of the DC bus of the inverter, a control method of the power converter.
  • a power converter device can also be expressed as follows. That is, a power conversion device provided between a direct current power supply and an alternating current circuit, which is provided between the direct current power supply and the DC bus, and includes a DC / DC converter including a direct current reactor and the two lines of the DC bus. An intermediate capacitor provided in the inverter, an inverter provided between the DC bus and the AC circuit, an AC reactor connected to the AC side of the inverter, a switching operation of the DC / DC converter, and an inverter A control unit that controls a switching operation, and the control unit includes a voltage on the DC side based on the voltage of the DC power supply and the impedance of the DC / DC converter, and the inverter to be obtained by the switching operation.
  • the DC / DC converter is within a half cycle of the frequency of the AC circuit.
  • the inverter performs high frequency switching alternately, and the inductance as a variable reflecting the direct current superposition characteristics of each of the direct current reactor and the alternating current reactor is provided.
  • It is a power converter which calculates
  • each inductance of the AC reactor and the DC reactor is treated as a variable to be obtained as a function of the current target value or the current detection value of each reactor, and using the obtained inductance, the voltage target value on the AC side of the inverter and the DC bus By calculating the voltage target value, it is possible to perform a highly accurate conversion operation and reduce the distortion rate of the AC output current.
  • FIG. 1 is a circuit diagram illustrating an example of a circuit configuration of the power conversion device.
  • the power converter 1 is provided between the DC power source 2 and the AC circuit 3, and the “DC voltage” of the DC power source 2 is lower than the peak value (crest value) of the “AC voltage” of the AC circuit 3.
  • the “DC voltage” is a voltage value in consideration of a voltage drop due to a DC reactor with respect to a DC voltage of a DC power supply.
  • “AC voltage” is precisely an AC voltage target value of the inverter (details will be described later).
  • the AC power path 3 is connected to a consumer load 4L on which the power converter 1 is installed and a commercial power system 4P.
  • the power converter 1 includes a direct-current side capacitor 5, a DC / DC converter 6, an intermediate capacitor 9, an inverter 10, and a filter circuit 11 as main circuit components.
  • the DC / DC converter 6 includes a DC reactor 7, a high-side switching element Q1, and a low-side switching element Q2, and constitutes a DC chopper circuit.
  • the switching elements Q1 and Q2 for example, MOSFETs can be used.
  • the MOSFET switching elements Q1, Q2 have diodes (body diodes) d1, d2, respectively. Each switching element Q1, Q2 is controlled by the control unit 14.
  • the high voltage side of the DC / DC converter 6 is connected to the DC bus 8.
  • the intermediate capacitor 9 connected between the two lines of the DC bus 8 has a small capacity (100 ⁇ F or less, for example, several tens of ⁇ F), and exhibits a smoothing action for a voltage switched at a high frequency (for example, 20 kHz). However, it does not exert a smoothing action on a voltage that changes at a frequency (100 Hz or 120 Hz) that is about twice the commercial frequency.
  • the inverter 10 connected to the DC bus 8 includes switching elements Q3 to Q6 that constitute a full bridge circuit.
  • These switching elements Q3 to Q6 are, for example, MOSFETs.
  • the switching elements Q3 to Q6 have diodes (body diodes) d3 to d6, respectively.
  • the switching elements Q3 to Q6 are controlled by the control unit 14.
  • a filter circuit 11 is provided between the inverter 10 and the AC circuit 3.
  • the filter circuit 11 includes an AC reactor 12 and an AC side capacitor 13 provided on the load 4L side (right side in the figure) from the AC reactor 12.
  • the filter circuit 11 prevents passage of high-frequency noise generated in the inverter 10 so as not to leak to the AC electric circuit 3 side.
  • a voltage sensor 15 and a current sensor 16 are provided on the low voltage side (left side in the figure) of the DC / DC converter 6.
  • the voltage sensor 15 is connected in parallel with the DC power supply 2 and detects the voltage across the DC power supply 2. Information on the detected voltage is provided to the control unit 14.
  • the current sensor 16 detects a current flowing through the DC / DC converter 6. Information on the detected current is provided to the control unit 14.
  • a voltage sensor 17 is connected in parallel to the intermediate capacitor 9. The voltage sensor 17 detects the voltage across the intermediate capacitor 9, that is, the voltage of the DC bus 8. Information on the detected voltage is provided to the control unit 14.
  • a current sensor 18 for detecting a current flowing through the AC reactor 12 is provided on the AC side. Information on the current detected by the current sensor 18 is provided to the control unit 14. A voltage sensor 19 is provided in parallel with the AC capacitor 13. Information on the voltage detected by the voltage sensor 19 is provided to the control unit 14.
  • the control unit 14 includes, for example, a computer, and a necessary control function is realized by the computer executing a software (computer program).
  • the software is stored in a storage device (not shown) of the control unit 14.
  • FIG. 2 and FIG. 3 are waveform diagrams simply showing the characteristics of the operation of the DC / DC converter 6 and the inverter 10 in the minimum switching conversion method. Although both figures show the same contents, FIG. 2 particularly displays the amplitude relationship from the DC input to the AC output so that it can be easily seen, and FIG. 3 particularly shows the control timing so that it can be easily seen.
  • the upper part of FIG. 2 and the left column of FIG. 3 are waveform diagrams representing traditional switching control that is not the minimum switching conversion method, for comparison.
  • 2 and the right column of FIG. 3 are waveform diagrams showing the operation of the minimum switching conversion method.
  • the output at the interconnection point of the pair of switching elements of the DC / DC converter and the DC reactor with respect to the input DC voltage is It is in the form of an equidistant pulse train having a value higher than the DC voltage.
  • This output is smoothed by an intermediate capacitor and appears as a voltage on the DC bus.
  • the inverter performs PWM-controlled switching while inverting the polarity in a half cycle. As a result, a sinusoidal AC voltage is obtained through final smoothing.
  • the absolute value of the instantaneous value of the AC voltage (hereinafter simply referred to as the absolute value of the AC voltage) and the input DC voltage
  • the DC / DC converter 6 and the inverter 10 operate according to the comparison result. Specifically, when the absolute value of the AC voltage is smaller than (or below) the DC voltage, the DC / DC converter 6 stops (“ST” in the figure), and the absolute value of the AC voltage is equal to or greater than the DC voltage. When (or larger), the DC / DC converter 6 performs a boosting operation (“OP” in the figure).
  • the output of the DC / DC converter 6 is smoothed by the intermediate capacitor 9 and appears on the DC bus 8 as the illustrated voltage.
  • the intermediate capacitor 9 since the intermediate capacitor 9 has a small capacity, the peak of the absolute value of the AC voltage and a part of the waveform around it remain as they are without being smoothed.
  • the inverter 10 performs high-frequency switching when the absolute value of the AC voltage is smaller than (or less than) the DC voltage according to the comparison result between the absolute value of the AC voltage and the DC voltage (see FIG.
  • the high frequency switching is stopped (“ST” in the figure).
  • the inverter 10 has the switching elements Q3 and Q6 on, Q4 and Q5 off (non-inverted), the switching elements Q3 and Q6 off, and Q4 and Q5 on ( By selecting one of (inversion), only necessary polarity inversion is performed.
  • the output of the inverter 10 is smoothed by the AC reactor 12 and the AC side capacitor 13, and a desired AC output is obtained.
  • the DC / DC converter 6 and the inverter 10 are alternately performing high-frequency switching operation, and when the DC / DC converter 6 is performing a boosting operation, The inverter 10 stops high-frequency switching and performs only necessary polarity inversion with respect to the voltage of the DC bus 8. Conversely, when the inverter 10 performs high frequency switching, the DC / DC converter 6 stops and the voltage across the DC capacitor 5 appears on the DC bus 8 via the DC reactor 7 and the diode d1.
  • Such a power conversion device 1 can reduce the overall number of high-frequency switching operations by generating a pause in the high-frequency switching of the switching elements Q1 to Q6. Thereby, the efficiency of power conversion can be improved significantly.
  • FIG. 4 is a flowchart showing a control process of the DC / DC converter 6 and the inverter 10 executed by the control unit 14 when the power conversion device 1 performs power conversion from direct current to alternating current.
  • the control unit 14 calculates the current input power average value ⁇ Pin>.
  • the symbol ⁇ > is used to mean an average value (the same applies hereinafter).
  • the input power average value ⁇ Pin> is obtained based on the following formula (1).
  • ⁇ Pin> ⁇ Iin ⁇ Vg> (1)
  • Iin is a DC / DC converter current detection value detected by the current sensor 16.
  • Vg is a DC input voltage detection value detected by the voltage sensor 15.
  • control unit 14 sets the DC input current target value Ig * as compared with the input power average value ⁇ Pin> at the previous calculation (step S1).
  • instantaneous values that are not averaged are used for the current detection value Iin and the DC input voltage detection value Vg.
  • control part 14 calculates the average value ⁇ Ia *> of the output current target value as the power converter device 1 based on following formula (2).
  • ⁇ Ia *> ⁇ ⁇ Ig * ⁇ Vg> / ⁇ Va> (2)
  • is a constant representing the conversion efficiency of the power conversion device 1.
  • Va is a system voltage detection value detected by the voltage sensor 19.
  • the control unit 14 calculates an inverter current target value Iinv * (current target value on the AC side of the inverter 10), which is a current target value for controlling the inverter 10, according to the following equation (4) (step) S3).
  • Iinv * Ia * + s CaVa (4)
  • Ca is the capacitance of the AC side capacitor 13
  • s is a Laplace operator (the same applies hereinafter).
  • the second term on the right side in the equation (4) is a value added in consideration of the current flowing through the AC capacitor 13 of the filter circuit 11.
  • the control unit 14 performs feedback control of the inverter 10 based on the inverter current target value Iinv * and the actual inverter current detection value Iinv detected by the current sensor 18 (step S4).
  • the control unit 14 calculates the inverter output voltage target value Vinv * (voltage target value on the AC side of the inverter 10) based on the following equation (5) (step S5).
  • Vinv * Va + Z ac Iinv * (5)
  • Z ac is the impedance of the AC reactor 12
  • the second term on the right side of the equation (5) is a value added in consideration of the voltage drop at both ends of the AC reactor 12.
  • Vinv * Va + R ac Iinv * + L ac ⁇ (d Iinv * / dt) ... (5a) It becomes.
  • R ac is the resistance of the AC reactor 12
  • the resistance R ac and the inductance L ac of the AC reactor 12, operations on, can be considered as both constant.
  • the inductance Lac is not a constant, and has a DC superposition characteristic that varies depending on the flowing current. For this reason, when treated as a constant, the inventors have come to the point that this may eventually lead to distortion of the alternating current waveform.
  • a very expensive AC reactor it is possible to obtain an inductance that can be treated as a constant even if the current changes.
  • the product cost of the power converter becomes high. is there. Therefore, in reality, an AC reactor that is as inexpensive as possible has to be adopted. This is also the case with the DC reactor 7.
  • FIG. 5 is a graph showing an example of the DC superposition characteristics of the AC reactor.
  • the horizontal axis represents current [A]
  • the vertical axis represents inductance [ ⁇ H].
  • the inductance L ac (x) ⁇ 0.01236x 3 + 1.406x 2 ⁇ 55.54x + 849.4
  • control unit 14 is an inverter current that is a current target value for controlling the inverter 10 so that the current phase of the AC power output from the power conversion device 1 is in phase with the system voltage detection value Va.
  • An inverter output voltage target value Vinv * is set based on the target value Iinv *.
  • the control unit 14 compares the voltage Vg as the voltage on the DC power supply side or preferably the following DC voltage Vgf with the absolute value of the inverter output voltage target value Vinv *. Then, the larger one is determined as the DC / DC converter voltage target value Vo * (step S6 in FIG. 4).
  • Vo * Max (Vg ⁇ (R dc Iin + L dc (d Iin / dt),
  • R dc is the resistance of the DC reactor
  • L dc is the inductance of the DC reactor
  • (Z R dc + sL dc ).
  • FIG. 6 is a graph showing an example of the DC superposition characteristics of the DC reactor.
  • the horizontal axis represents current [A]
  • the vertical axis represents inductance [ ⁇ H].
  • the inductance droops as the current increases. For example, when the current is 0, the inductance of 800 [ ⁇ H] or more decreases to about 500 [ ⁇ H] at 16 [A].
  • inductance L dc (x) 0.07284x 3 -2.478x 2 -1.757x + 861.3
  • control unit 14 calculates a DC / DC converter current target value Iin * based on the following equation (7) (step S7).
  • Iin * ⁇ (Iinv * ⁇ Vinv *) + (s C Vo *) ⁇ Vo * ⁇ / (Vg-Z dc Iin) (7)
  • C is the capacitance of the intermediate capacitor 9.
  • Equation (7) the second term added to the product of the inverter current target value Iinv * and the inverter output voltage target value Vinv * is a value that takes into account reactive power passing through the intermediate capacitor 9. That is, the value of Iin * can be obtained more accurately by considering reactive power in addition to the power target value of the inverter 10. Furthermore, if the power loss of the power converter 1 is measured in advance, the power loss can also be considered as the second term plus the third term in the equation (7).
  • Iin * (Iinv * ⁇ Vinv *) / Vg (8)
  • Iin * obtained by this equation (8) can be used as Iin included in the right side of equations (6b) and (7).
  • the DC / DC converter 6 is feedback-controlled by the DC / DC converter current target value Iin * and the DC / DC converter current detection value Iin (step S8).
  • the control unit 14 obtains the current input power average value ⁇ Pin> based on the above-described equation (1) (step S9).
  • the control unit 14 feedback-controls the inverter 10 and the DC / DC converter 6 with the current target value.
  • the feedback control in step S4 is performed based on the inverter current target value Iinv * and the inverter current detection value Iinv.
  • the feedback control in step S8 is performed based on the DC / DC converter current target value Iin * and the DC / DC converter current detection value Iin.
  • the DC / DC converter current target value Iin * is based on the inverter current target value Iinv * (Equation (7), Equation (8)). Therefore, both feedback controls are based on the inverter current target value Iinv *.
  • the feedback gain in feedback control is considered.
  • Proportional control is often used for the feedback control of the reactor current, and the magnitude of the proportional gain is related to the followability of the control. For example, the larger the proportional gain, the better the tracking of the control, but the current tends to oscillate. Conversely, the smaller the proportional gain, the easier it is to settle down. However, the followability is not good.
  • the ideal value for the proportional gain of feedback control is generally Inductance value [H] x Control frequency [Hz] Given in.
  • FIG. 7 is a graph showing an example of a change characteristic when changing the proportional gain according to the current flowing through the DC reactor 7.
  • the horizontal axis represents the current [A] flowing through the DC reactor 7, and the vertical axis represents the proportional gain [V / A].
  • the proportional gain is 5 [V / A]
  • the proportional gain is 3 [V / A].
  • the current flowing through the DC reactor 7 has a small current value when the alternating current is near the zero cross, and the large current value is when the alternating current is near the peak value. That is, by changing the proportional gain in this way, waveform distortion can be suppressed from the vicinity of the zero cross of the alternating current to the vicinity of the peak value.
  • the proportional gain is similarly changed according to the flowing current. In this case, particularly when the voltage of the DC power supply 2 is close to the peak value of the AC voltage, the effect of suppressing distortion appears.
  • FIG. 8 shows an example of (a) and (b) the system voltage (upper) without any countermeasure and the alternating current (lower) flowing from the power converter 1 to the commercial power system 4P for comparison.
  • the direct current side is 100V
  • the system side is 202V, 60 Hz.
  • the proportional gain of the current control of the DC reactor 7 was kept constant at 5 [V / A], and a grid connection of 1.5 kW was made in the reverse power flow direction.
  • As the inductance value a value when a current of 5 A flows through each reactor was adopted (that is, AC reactor 12: 625 ⁇ H, DC reactor 7: 800 ⁇ H).
  • FIG. 9 shows an example of the system voltage (upper) when only the countermeasure of (a) is taken (the proportional gain is constant) and the alternating current (lower) flowing from the power converter 1 to the commercial power system 4P.
  • the direct current side is 100V
  • the system side is 202V, 60 Hz.
  • the inductance values are substituted into the approximate expressions of the DC superimposition characteristics of the DC reactor 7 and the AC reactor 12, respectively, and Iin * and Ia * as reactor current target values are substituted for each control period (20 kHz). The value obtained in this way was used.
  • the proportional gain of direct current reactor current control was made constant at 5 V / A, and the grid connection of 1.5 kW was made in the reverse power flow direction.
  • the total current distortion factor of the system current was 5.23%, and the power factor was 0.98.
  • the overall current distortion rate is greatly improved.
  • the reflection of the DC superposition characteristics in the control contributes to the improvement of the distortion rate of the AC current.
  • the distortion rate of the alternating current was further improved by changing the proportional gain in the current control of the direct current reactor.
  • reflecting the DC superposition characteristics in the control is particularly effective for improving distortion in the third-order current, and changing the proportional gain means that the 29th-order and 31st-order currents are changed. It was effective in improving distortion.
  • the proportional gain of the current control of the AC reactor 12 is always constant. However, as described above, it is preferable to change the proportional gain in the current control of the AC reactor 12 according to the flowing current as well.
  • the power converter 1 of the present embodiment described in detail above includes a DC / DC converter 6 including a DC reactor 7, a small-capacity intermediate capacitor 9, an inverter 10, an AC reactor 12, and switching of the DC / DC converter 6. And a control unit 14 that controls the operation and the switching operation of the inverter 10.
  • the control unit 14 In the half cycle of the frequency, the time when the DC / DC converter 6 performs high-frequency switching and the time when the inverter 10 performs high-frequency switching appear to alternate, and each of the DC reactor 7 and the AC reactor 12 is controlled. Based on the DC superposition characteristics in which the inductance varies with the current value, the voltage drop of each reactor corresponding to the current current value is taken into the calculation, and the voltage target value on the AC side of the inverter 10 and the voltage target value of the DC bus 8 are calculated. To do.
  • control unit 14 can easily approximate the DC superimposition characteristic without requiring a large calculation load and without consuming a large amount of memory. Can do.
  • the proportional gain with respect to the current of the DC reactor 7 is relatively increased to a high gain and a large current value with respect to a small current value.
  • it can be changed so as to have a low gain relationship.
  • the followability of the feedback control can be enhanced with a relatively high gain at a small current value.
  • the stability of the feedback control can be ensured with a relatively low gain, and oscillation can be prevented.
  • the current flowing through the DC reactor 7 has a small current value when the alternating current is near the zero cross, and the large current value is when the alternating current is near the peak value.
  • the use of the above polynomial is an example.
  • the approximation has an advantage that the direct current superposition characteristic can be easily approximated without requiring a large calculation load and without consuming a large amount of memory.
  • a data table consumes a relatively large amount of memory, but has the advantage of saving labor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

直流リアクトルを含むDC/DCコンバータと、インバータと、交流リアクトルと、制御部とを含む電力変換装置であり、制御部は、直流電源の電圧及びDC/DCコンバータのインピーダンスに基づく直流側の電圧、並びに、スイッチング動作により得ようとするインバータの交流側の電圧目標値に基づいて、交流電路の周波数の半サイクル内で、DC/DCコンバータが高周波スイッチングを行う時期と、インバータが高周波スイッチングを行う時期とが交互に出現するよう制御するとともに、直流リアクトル及び交流リアクトルの各々のインダクタンスが電流値によって変化する直流重畳特性に基づき、現在の電流値に対応した各リアクトルの電圧降下を演算に取り入れて、インバータの交流側の電圧目標値及びDCバスの電圧目標値を演算する。

Description

電力変換装置及びその制御方法
 本発明は、電力変換装置及びその制御方法に関する。
 本出願は、2016年11月30日出願の日本出願第2016-232619号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 直流電源と交流電路との間に設けられる電力変換装置には一般に、DC/DCコンバータ及びインバータが搭載されており、半導体のスイッチングにより、直流電力を交流電力に、又は、必要によりその逆方向にも、変換することができる。伝統的な電力変換装置は、DC/DCコンバータ及びインバータの双方が常時、高周波スイッチングを行っている。これに対して、常時スイッチングを行うことによる電力損失を低減して変換効率を向上させるべく、例えば直流から交流への変換時に、交流側の電圧の瞬時値と直流側の電圧とを互いに比較して、交流半サイクル内で、昇圧が必要な時はDC/DCコンバータのみが高周波スイッチングを行い、降圧が必要な時はインバータのみが高周波スイッチングを行うことにより、交互に高周波スイッチングを休止する期間を設ける。このような制御方式を最小スイッチング変換方式と称している。これにより、全体的なスイッチング回数を減少させた電力変換装置を提供することができる(例えば、特許文献1参照。)。
特開2014-241714号公報
 本発明の一表現に係る電力変換装置は、直流電源と交流電路との間に設けられる電力変換装置であって、前記直流電源とDCバスとの間に設けられ、直流リアクトルを含むDC/DCコンバータと、前記DCバスの2線間に設けられた中間コンデンサと、前記DCバスと前記交流電路との間に設けられたインバータと、前記インバータの交流側に接続された交流リアクトルと、前記DC/DCコンバータのスイッチング動作及び前記インバータのスイッチング動作を制御する制御部と、を備え、前記制御部は、前記直流電源の電圧及び前記DC/DCコンバータのインピーダンスに基づく直流側の電圧、並びに、前記スイッチング動作により得ようとする前記インバータの交流側の電圧目標値に基づいて、前記交流電路の周波数の半サイクル内で、前記DC/DCコンバータが高周波スイッチングを行う時期と、前記インバータが高周波スイッチングを行う時期とが交互に出現するよう制御するとともに、前記直流リアクトル及び前記交流リアクトルの各々のインダクタンスが電流値によって変化する直流重畳特性に基づき、現在の電流値に対応した各リアクトルの電圧降下を演算に取り入れて、前記インバータの交流側の電圧目標値及び前記DCバスの電圧目標値を演算する、電力変換装置である。
 また、本発明の一表現に係る電力変換装置の制御方法は、直流リアクトルを含むDC/DCコンバータと、中間コンデンサと、インバータと、前記インバータの交流側に接続された交流リアクトルと、を含む電力変換装置の制御方法であって、直流電源の電圧及び前記DC/DCコンバータのインピーダンスに基づく直流側の電圧、並びに、スイッチング動作により得ようとする前記インバータの交流側の電圧目標値に基づいて、前記交流電路の周波数の半サイクル内で、前記DC/DCコンバータが高周波スイッチングを行う時期と、前記インバータが高周波スイッチングを行う時期とが交互に出現するよう制御するとともに、前記直流リアクトル及び前記交流リアクトルの各々のインダクタンスが電流値によって変化する直流重畳特性に基づき、現在の電流値に対応した各リアクトルの電圧降下を演算に取り入れて、前記インバータの交流側の電圧目標値及び前記DCバスの電圧目標値を演算する、電力変換装置の制御方法である。
電力変換装置の回路構成の一例を示す回路図である。 最小スイッチング変換方式における、DC/DCコンバータ及びインバータの動作の特徴を簡略に示す波形図であり、特に、直流入力から交流出力までの振幅の関係が見やすいように表示した図である。 最小スイッチング変換方式における、DC/DCコンバータ及びインバータの動作の特徴を簡略に示す波形図であり、特に、制御のタイミングが見やすいように表示した図である。 電力変換装置が直流から交流への電力変換を行っている場合に、制御部によって実行される、DC/DCコンバータ及びインバータの制御処理を示すフローチャートである。 交流リアクトルの直流重畳特性の一例を示すグラフである。 直流リアクトルの直流重畳特性の一例を示すグラフである。 比例ゲインを直流リアクトルに流れる電流に応じて変化させる際の変化特性の一例を示すグラフである。 比較のために、歪低減の対策をしない状態の系統電圧(上)と、電力変換装置から商用電力系統へ流れる交流電流(下)の、一例としての波形図である。 直流重畳特性についての対策のみを施した場合(比例ゲインは一定)の系統電圧(上)と、電力変換装置から商用電力系統へ流れる交流電流(下)の、一例としての波形図である。
 [本開示が解決しようとする課題]
 前述のような、スイッチング回数を減少させた電力変換装置によれば、DC/DCコンバータ及びインバータの双方が常時、高周波スイッチングを行っている電力変換装置に比べて電力損失が減少し、変換効率が上昇する。一方、系統連系規定では、総合電流歪率及び、電流歪を40次までの次数に展開した場合の各次の電流歪率を、それぞれ所定値以下に抑えること、とされている。従って、系統連系規定を満たすべく、交流出力電流の歪を低減することが求められる。
 かかる課題に鑑み、本開示は、DC/DCコンバータとインバータとが交流半サイクル内で交互に高周波スイッチングをして交流波形を作る電力変換装置において、交流出力電流の歪を低減することを目的とする。
 [本開示の効果]
 本開示によれば、DC/DCコンバータとインバータとが交流半サイクル内で交互に高周波スイッチングをして交流波形を作る電力変換装置において、交流出力電流の歪を低減することができる。
 [実施形態の要旨]
 本発明の実施形態の要旨としては、少なくとも以下のものが含まれる。
 (1)これは、直流電源と交流電路との間に設けられる電力変換装置であって、前記直流電源とDCバスとの間に設けられ、直流リアクトルを含むDC/DCコンバータと、前記DCバスの2線間に設けられた中間コンデンサと、前記DCバスと前記交流電路との間に設けられたインバータと、前記インバータの交流側に接続された交流リアクトルと、前記DC/DCコンバータのスイッチング動作及び前記インバータのスイッチング動作を制御する制御部と、を備え、前記制御部は、前記直流電源の電圧及び前記DC/DCコンバータのインピーダンスに基づく直流側の電圧、並びに、前記スイッチング動作により得ようとする前記インバータの交流側の電圧目標値に基づいて、前記交流電路の周波数の半サイクル内で、前記DC/DCコンバータが高周波スイッチングを行う時期と、前記インバータが高周波スイッチングを行う時期とが交互に出現するよう制御するとともに、前記直流リアクトル及び前記交流リアクトルの各々のインダクタンスが電流値によって変化する直流重畳特性に基づき、現在の電流値に対応した各リアクトルの電圧降下を演算に取り入れて、前記インバータの交流側の電圧目標値及び前記DCバスの電圧目標値を演算する、電力変換装置である。
 このような電力変換装置では、DC/DCコンバータ及びインバータのうち、いずれか必要な方だけを高速(例えば20kHz)でスイッチング動作させ、その間、他方の高周波スイッチングを休止させることで、スイッチングに伴う電力損失を低減することができる。このような変換方式では、生成する交流波形のゼロクロスからピーク値までの間に、高周波スイッチングの主体がインバータからDC/DCコンバータへ、又はその逆に、交代するため、そこで出力電流の歪が生じやすい。しかしながら、交流リアクトル及び直流リアクトルの各インダクタンスを変数扱いして特性に合わせた正確な演算を行うことにより、極めて精度の高い変換動作を行い、交流出力電流の歪率を低減することができる。
 (2)また、(1)の電力変換装置において、前記制御部は、前記直流重畳特性を、多項式、段階的近似、直線近似、データテーブルの利用のいずれか1つ又はそれらの組み合わせにより演算することもできる。
 この場合、大きな演算負荷を要さず、また、多くのメモリーを消費することなく、簡単に直流重畳特性を近似することができる。なお、データテーブルは比較的メモリーを消費するが、演算の手間が省ける。
 (3)また、(1)又は(2)の電力変換装置において、前記制御部は、前記直流リアクトル及び前記交流リアクトルの少なくとも一方に流す電流のフィードバック制御において、当該リアクトルの電流に対する比例ゲインが、相対的に、小電流値に対して高ゲイン、大電流値に対して低ゲインの関係となるように変化させるようにしてもよい。
 この場合、小電流値では相対的に高ゲインでフィードバック制御の追従性を高めることができる。また、大電流値では相対的に低ゲインでフィードバック制御の安定性を確保し、発振を防止することができる。直流リアクトルに流れる電流が小電流値となるのは、交流電流がゼロクロス近傍のときであり、また、大電流値となるのは、交流電流がピーク値近傍のときである。すなわち、このように比例ゲインを変化させることにより、交流電流のゼロクロス近傍からピーク値近傍まで、波形の歪を抑制することができる。交流リアクトルの電流に対する比例ゲインを同様に変化させる場合は、直流電源の電圧が交流電圧のピーク値に近い場合に、特に、歪抑制の効果が現れる。
 (4)一方、制御方法の観点からは、直流リアクトルを含むDC/DCコンバータと、中間コンデンサと、インバータと、前記インバータの交流側に接続された交流リアクトルと、を含む電力変換装置の制御方法であって、直流電源の電圧及び前記DC/DCコンバータのインピーダンスに基づく直流側の電圧、並びに、スイッチング動作により得ようとする前記インバータの交流側の電圧目標値に基づいて、前記交流電路の周波数の半サイクル内で、前記DC/DCコンバータが高周波スイッチングを行う時期と、前記インバータが高周波スイッチングを行う時期とが交互に出現するよう制御するとともに、前記直流リアクトル及び前記交流リアクトルの各々のインダクタンスが電流値によって変化する直流重畳特性に基づき、現在の電流値に対応した各リアクトルの電圧降下を演算に取り入れて、前記インバータの交流側の電圧目標値及び前記DCバスの電圧目標値を演算する、電力変換装置の制御方法である。
 このような電力変換装置の制御方法では、DC/DCコンバータ及びインバータのうち、いずれか必要な方だけを高速(例えば20kHz)でスイッチング動作させ、その間、他方の高周波スイッチングを休止させることで、スイッチングに伴う電力損失を低減することができる。このような変換方式では、生成する交流波形のゼロクロスからピーク値までの間に、高周波スイッチングの主体がインバータからDC/DCコンバータへ、又はその逆に、交代するため、そこで出力電流の歪が生じやすい。しかしながら、交流リアクトル及び直流リアクトルの各インダクタンスを変数扱いして特性に合わせた正確な演算を行うことにより、極めて精度の高い変換動作を行い、交流出力電流の歪率を低減することができる。
 (5)また、電力変換装置は以下のように表現することもできる。
 すなわち、直流電源と交流電路との間に設けられる電力変換装置であって、前記直流電源とDCバスとの間に設けられ、直流リアクトルを含むDC/DCコンバータと、前記DCバスの2線間に設けられた中間コンデンサと、前記DCバスと前記交流電路との間に設けられたインバータと、前記インバータの交流側に接続された交流リアクトルと、前記DC/DCコンバータのスイッチング動作及び前記インバータのスイッチング動作を制御する制御部と、を備え、前記制御部は、前記直流電源の電圧及び前記DC/DCコンバータのインピーダンスに基づく直流側の電圧、並びに、前記スイッチング動作により得ようとする前記インバータの交流側の電圧目標値に基づいて、前記交流電路の周波数の半サイクル内で、前記DC/DCコンバータが高周波スイッチングを行う時期と、前記インバータが高周波スイッチングを行う時期とが交互に出現するよう制御するとともに、前記直流リアクトル及び前記交流リアクトルの各々が有する直流重畳特性を反映した変数としてのインダクタンスを各リアクトルの電流目標値又は電流検出値の関数として求め、求めた各インダクタンスを用いて、前記インバータの交流側の電圧目標値及び前記DCバスの電圧目標値を演算する、電力変換装置である。
 このような電力変換装置では、DC/DCコンバータ及びインバータのうち、いずれか必要な方だけを高速(例えば20kHz)でスイッチング動作させ、その間、他方の高周波スイッチングを休止させることで、スイッチングに伴う電力損失を低減することができる。このような変換方式では、生成する交流波形のゼロクロスからピーク値までの間に、高周波スイッチングの主体がインバータからDC/DCコンバータへ、又はその逆に、交代するため、そこで出力電流の歪が生じやすい。しかしながら、交流リアクトル及び直流リアクトルの各インダクタンスを変数扱いして各リアクトルの電流目標値又は電流検出値の関数として求め、求めた各インダクタンスを用いて、インバータの交流側の電圧目標値及びDCバスの電圧目標値を演算することにより、極めて精度の高い変換動作を行い、交流出力電流の歪率を低減することができる。
 [実施形態の詳細]
 以下、本発明の一実施形態に係る電力変換装置及びその制御方法について、図面を参照して説明する。
 《電力変換装置の回路構成例》
 図1は、電力変換装置の回路構成の一例を示す回路図である。図において、電力変換装置1は、直流電源2と交流電路3との間に設けられ、直流電源2の「直流電圧」が交流電路3の「交流電圧」のピーク値(波高値)より低い状態で、直流から交流へ、又は必要によりその逆に、電力変換を行うことができる。なお、「直流電圧」は、正確には、直流電源の直流電圧に直流リアクトルによる電圧降下を考慮した電圧値である。また、「交流電圧」は、正確には、インバータの交流電圧目標値である(詳細後述)。交流電路3には、電力変換装置1が設置されている需要家の負荷4L、及び、商用電力系統4Pが接続されている。
 電力変換装置1は、主回路構成要素として、直流側コンデンサ5、DC/DCコンバータ6、中間コンデンサ9、インバータ10、及び、フィルタ回路11を備えている。DC/DCコンバータ6は、直流リアクトル7と、ハイサイドのスイッチング素子Q1と、ローサイドのスイッチング素子Q2とを備え、直流チョッパ回路を構成している。スイッチング素子Q1,Q2としては例えば、MOSFETを使用することができる。MOSFETのスイッチング素子Q1,Q2はそれぞれ、ダイオード(ボディダイオード)d1,d2を有している。各スイッチング素子Q1,Q2は、制御部14により制御される。
 DC/DCコンバータ6の高圧側は、DCバス8に接続されている。DCバス8の2線間に接続されている中間コンデンサ9は、小容量(100μF以下、例えば数十μF)であり、高周波(例えば20kHz)でスイッチングされた電圧に対しては平滑作用を発揮するが、商用周波数の2倍程度の周波数(100Hz又は120Hz)で変化する電圧に対しては平滑作用を発揮しない。
 DCバス8に接続されたインバータ10は、フルブリッジ回路を構成するスイッチング素子Q3~Q6を備えている。これらスイッチング素子Q3~Q6は、例えば、MOSFETである。MOSFETの場合は、スイッチング素子Q3~Q6がそれぞれ、ダイオード(ボディダイオード)d3~d6を有している。各スイッチング素子Q3~Q6は、制御部14により制御される。
 インバータ10と交流電路3との間には、フィルタ回路11が設けられている。フィルタ回路11は、交流リアクトル12と、交流リアクトル12より負荷4L側(図の右側)に設けられた交流側コンデンサ13とを備えている。フィルタ回路11は、インバータ10で発生する高周波ノイズが交流電路3側へ漏れ出ないように、通過を阻止している。
 計測用の回路要素としては、DC/DCコンバータ6の低圧側(図の左側)に、電圧センサ15及び電流センサ16が設けられている。電圧センサ15は直流電源2と並列接続され、直流電源2の両端電圧を検出する。検出された電圧の情報は、制御部14に提供される。電流センサ16は、DC/DCコンバータ6に流れる電流を検出する。検出された電流の情報は、制御部14に提供される。中間コンデンサ9には電圧センサ17が並列接続されている。電圧センサ17は、中間コンデンサ9の両端電圧すなわち、DCバス8の電圧を検出する。検出された電圧の情報は、制御部14に提供される。
 一方、交流側には、交流リアクトル12に流れる電流を検出する電流センサ18が設けられている。電流センサ18によって検出された電流の情報は、制御部14に提供される。また、交流側コンデンサ13と並列に、電圧センサ19が設けられている。電圧センサ19によって検出された電圧の情報は、制御部14に提供される。
 制御部14は例えば、コンピュータを含み、ソフトウェア(コンピュータプログラム)をコンピュータが実行することで、必要な制御機能を実現する。ソフトウェアは、制御部14の記憶装置(図示せず。)に格納される。
 《電圧波形で見た最小スイッチング変換方式の概要》
 次に、上記の電力変換装置1において実行される最小スイッチング変換方式の動作について、その概要を説明する。
 図2及び図3は、最小スイッチング変換方式における、DC/DCコンバータ6及びインバータ10の動作の特徴を簡略に示す波形図である。両図は同じ内容を示しているが、図2は特に、直流入力から交流出力までの振幅の関係が見やすいように表示し、図3は特に、制御のタイミングが見やすいように表示している。図2の上段及び図3の左欄はそれぞれ、比較のために、最小スイッチング変換方式ではない伝統的なスイッチング制御を表す波形図である。また、図2の下段及び図3の右欄はそれぞれ、最小スイッチング変換方式の動作を示す波形図である。
 まず、図2の上段(又は図3の左欄)において、伝統的なスイッチング制御では、入力される直流電圧に対する、DC/DCコンバータの一対のスイッチング素子及び直流リアクトルの相互接続点での出力は、直流電圧よりも高い値の等間隔のパルス列状である。この出力は中間コンデンサによって平滑化され、DCバスの電圧として現れる。これに対してインバータは、PWM制御されたスイッチングを半周期で極性反転しながら行う。この結果、最終的な平滑化を経て、正弦波の交流電圧が得られる。
 次に、図2の下段(又は図3の右欄)の最小スイッチング変換方式では、交流電圧の瞬時値の絶対値(以下、単に交流電圧の絶対値という。)と、入力である直流電圧との比較結果に応じて、DC/DCコンバータ6とインバータ10とが動作する。具体的には、交流電圧の絶対値が直流電圧より小さいとき(又は以下のとき)は、DC/DCコンバータ6は停止し(図中の「ST」)、交流電圧の絶対値が直流電圧以上のとき(又は、より大きいとき)は、DC/DCコンバータ6が昇圧動作を行う(図中の「OP」)。DC/DCコンバータ6の出力は中間コンデンサ9により平滑化され、DCバス8に、図示の電圧として現れる。ここで、前述のように、中間コンデンサ9が小容量であることにより、交流電圧の絶対値のピーク及びその前後となる一部の波形が平滑化されずにそのまま残る。
 これに対してインバータ10は、交流電圧の絶対値と、直流電圧との比較結果に応じて、交流電圧の絶対値が直流電圧より小さいとき(又は以下のとき)は、高周波スイッチングを行い(図中の「OP」)、交流電圧の絶対値が直流電圧以上のとき(又は、より大きいとき)は、高周波スイッチングを停止する(図中の「ST」)。高周波スイッチングを停止しているときのインバータ10は、スイッチング素子Q3,Q6がオン、Q4,Q5がオフの状態(非反転)と、スイッチング素子Q3,Q6がオフ、Q4,Q5がオンの状態(反転)のいずれかを選択することにより、必要な極性反転のみを行う。インバータ10の出力は交流リアクトル12及び交流側コンデンサ13により平滑化され、所望の交流出力が得られる。
 ここで、図3の右欄に示すように、DC/DCコンバータ6とインバータ10とは、交互に高周波スイッチングの動作をしており、DC/DCコンバータ6が昇圧の動作をしているときは、インバータ10は高周波スイッチングを停止し、DCバス8の電圧に対して必要な極性反転のみを行っている。逆に、インバータ10が高周波スイッチングするときは、DC/DCコンバータ6は停止して、直流側コンデンサ5の両端電圧が、直流リアクトル7及びダイオードd1を介してDCバス8に現れる。
 以上のようにして、DC/DCコンバータ6とインバータ10とによる最小スイッチング変換方式の動作が行われる。このような電力変換装置1は、スイッチング素子Q1~Q6の高周波スイッチングに休止期間が生じることによって、全体的な高周波スイッチング回数を減らすことができる。これにより、電力変換の効率を、大幅に改善することができる。
 《最小スイッチング変換方式の詳細》
 図4は、電力変換装置1が直流から交流への電力変換を行っている場合に、制御部14によって実行される、DC/DCコンバータ6及びインバータ10の制御処理を示すフローチャートである。
 まず、エンドレスな処理ループのステップS9から見ると、制御部14は、現状の入力電力平均値〈Pin〉を演算する。なお、この記号〈 〉は平均値を意味するものとして用いる(以下同様。)。入力電力平均値〈Pin〉は、下記式(1)に基づいて求められる。
  〈Pin〉=〈Iin×Vg〉  ・・・(1)
 ここで、Iinは、電流センサ16によって検出されるDC/DCコンバータ電流検出値である。また、Vgは、電圧センサ15によって検出される直流入力電圧検出値である。
 次に、制御部14は、前回演算時の入力電力平均値〈Pin〉と比較して、直流入力電流目標値Ig*を設定する(ステップS1)。
 なお、式(1)以外の以下に示す制御に関する各式においては、電流検出値Iin、及び直流入力電圧検出値Vgは、平均化されていない瞬時値が用いられる。
 続いて制御部14は、下記式(2)に基づいて、電力変換装置1としての出力電流目標値の平均値〈Ia*〉を演算する。
 〈Ia*〉=η〈Ig*×Vg〉/〈Va〉  ・・・(2)
 ここで、ηは電力変換装置1の変換効率を表す定数である。Vaは、電圧センサ19によって検出される、系統電圧検出値である。
 さらに、制御部14は、下記式(3)に基づいて、出力電流目標値Ia*を、系統電圧検出値Vaと同位相の正弦波として求める(ステップS2)。すなわち制御部14は、電力変換装置1が出力する交流電力の電流Ia(出力電流)が系統電圧(系統電圧検出値Va)と同位相となるようにインバータ10を制御する。
 Ia*=(√2)×〈Ia*〉×sinωt  ・・・(3)
 このようにして、制御部14は、入力電力平均値〈Pin〉及び系統電圧検出値Vaに基づいて出力電流目標値Ia*を求める。
 次に、制御部14は、下記式(4)により、インバータ10を制御するための電流目標値であるインバータ電流目標値Iinv*(インバータ10の交流側での電流目標値)を演算する(ステップS3)。
 Iinv*=Ia* + s CaVa  ・・・(4)
 ここで、Caは、交流側コンデンサ13の静電容量、sはラプラス演算子である(以下同様。)。式(4)中の右辺第2項は、フィルタ回路11の交流側コンデンサ13に流れる電流を考慮して加算した値である。
 制御部14は、インバータ電流目標値Iinv*と、電流センサ18によって検出される実際のインバータ電流検出値Iinvとに基づいて、インバータ10をフィードバック制御する(ステップS4)。
 一方、制御部14は、下記式(5)に基づいて、インバータ出力電圧目標値Vinv*(インバータ10の交流側での電圧目標値)を演算する(ステップS5)。
 Vinv*=Va+ZacIinv*  ・・・(5)
 ここで、Zacは、交流リアクトル12のインピーダンスであり、式(5)の右辺第2項は、交流リアクトル12の両端での電圧降下を考慮して加算した値である。
 上記式(5)は、時間tでの微分を用いた表現とすれば、
 Vinv*=
    Va + RacIinv* + Lac× (d Iinv*/dt)
                          ・・・(5a)
となる。ここで、Racは交流リアクトル12の抵抗、Lacは交流リアクトル12のインダクタンスで、(Zac=Rac+sLac)である。
 ここで、交流リアクトル12の抵抗Rac及びインダクタンスLacは、演算上、共に定数と考えることもできる。しかしながら、インダクタンスLacは厳密には定数ではなく、流れる電流によって変化する直流重畳特性を有している。そのため、定数として扱うと、そのことが最終的に交流電流の波形の歪につながるのではないかという着眼に至った。もちろん、非常に高価な交流リアクトルを採用すれば、電流が変化しても実質的に定数として扱えるインダクタンスを得ることは可能であるが、そうすると、電力変換装置の製品コストが高価になるという問題がある。従って、現実的には、なるべく安価な交流リアクトルを採用せざるを得ない。このことは、直流リアクトル7についても同様の事情である。
 図5は、交流リアクトルの直流重畳特性の一例を示すグラフである。横軸は電流[A]、縦軸はインダクタンス[μH]である。図示のように、電流の増大と共にインダクタンスが垂下する特性がある。例えば、電流0のときは、800[μH]以上であるインダクタンスが、20[A]では、200[μH]まで下がっている。そこで、例えば出力電流目標値Ia*を用いて、Ia*=x[A]とすると、xの関数であるインダクタンスLac(x)は、以下の近似式で表すことができる。
 Lac(x)=-0.01236x+1.406x-55.54x+849.4
 なお、このような近似式は普遍的なものではなく、交流リアクトルの個体により異なる。従って、予め直流重畳特性をグラフ化して、例えば表計算ソフトの機能を利用して、近似式を容易に得ることができる。
 この近似式を用いることにより、上記式(5a)は、以下の式に置き換わる。
 Vinv*=Va + RacIinv*+
      Lac(x)×10-6× (d Iinv*/dt)
                        ・・・(5b)
 上記式(5b)の採用により、交流リアクトルの直流重畳特性を演算に取り入れて、インバータ出力電圧目標値Vinv*を設定することができる。
 なお、近似式を用いることにより、制御部14は、大きな演算負荷を要さず、また、多くのメモリーを消費することなく、簡単に直流重畳特性を近似することができる。
 また、このように、制御部14は、電力変換装置1が出力する交流電力の電流位相が系統電圧検出値Vaと同位相となるようにインバータ10を制御するための電流目標値であるインバータ電流目標値Iinv*に基づいて、インバータ出力電圧目標値Vinv*を設定する。
 次に、制御部14は、下記式(6)に示すように、直流電源側の電圧としての電圧Vg又は好ましくは下記の直流電圧Vgfと、インバータ出力電圧目標値Vinv*の絶対値とを比較して、大きい方をDC/DCコンバータ電圧目標値Vo*に決定する(図4のステップS6)。
 直流電圧Vgfとは、VgにDC/DCコンバータ6のインピーダンスZdcによる電圧降下を考慮した電圧であり、DC/DCコンバータ電流検出値をIinとして、Vgf=Vg-ZdcIinである。従って、
 Vo*=Max(Vg-ZdcIin,|Vinv*|)  ・・・(6)
とすることができる。
 上記式(6)は、時間tでの微分を用いた表現とすれば、
 Vo*=
Max(Vg-(RdcIin+Ldc(d Iin/dt),|Vinv*|)
                           ・・・(6a)
である。ただし、Rdcは直流リアクトルの抵抗、Ldcは直流リアクトルのインダクタンスで、(Z=Rdc+sLdc)である。
 ここで、直流リアクトルは直流重畳特性を有しているので、インダクタンスLdcは、定数ではない。
 図6は、直流リアクトルの直流重畳特性の一例を示すグラフである。横軸は電流[A]、縦軸はインダクタンス[μH]である。図示のように、電流の増大と共にインダクタンスが垂下する特性がある。例えば、電流0のときは、800[μH]以上であるインダクタンスが、16[A]では、約500[μH]まで下がっている。そこで、例えばDC/DCコンバータ電流検出値Iin(又は電流目標値Iin*)を用いて、Iin=x[A]とすると、xの関数であるインダクタンスLdc(x)は、以下の近似式で表すことができる。
 Ldc(x)=0.07284x-2.478x-1.757x+861.3
 なお、このような近似式は普遍的なものではなく、直流リアクトルの個体により異なる。従って、予め直流重畳特性をグラフ化して、例えば表計算ソフトの機能を利用して、近似式を容易に得ることができる。
 この近似式を用いることにより、上記式(6a)は、以下の式に置き換わる。
 Vo*=Max(Vg-(RdcIin+Ldc(x)×10-6×(d Iin/dt),|Vinv*|)      ・・・(6b)
 上記式(6b)の採用により、直流リアクトルの直流重畳特性を演算に取り入れて、DC/DCコンバータ6の電圧目標値Vo*を設定することができる。
 なお、近似式を用いることにより、制御部14は、大きな演算負荷を要さず、また、多くのメモリーを消費することなく、簡単に直流重畳特性を近似することができる。
 さらに、制御部14は、下記式(7)に基づいて、DC/DCコンバータ電流目標値Iin*を演算する(ステップS7)。
 Iin*={(Iinv*×Vinv*) +(s C Vo*)×Vo*}
      /(Vg-ZdcIin)          ・・・(7)
 ここで、Cは、中間コンデンサ9の静電容量である。
 式(7)中、インバータ電流目標値Iinv*と、インバータ出力電圧目標値Vinv*との積に加算されている第2項は、中間コンデンサ9を通過する無効電力を考慮した値である。すなわち、インバータ10の電力目標値に加えて、無効電力を考慮することにより、より正確にIin*の値を求めることができる。なお、さらに、予め電力変換装置1の電力損失を測定しておけば、式(7)の上記第2項プラス第3項として、電力損失も考慮することができる。
 なお、中間コンデンサ9の静電容量C及び電力損失が、(Iinv*×Vinv*)に比べて十分小さい場合、下記式(8)が成立する。
 Iin*=(Iinv*×Vinv*)/Vg  ・・・(8)
 この式(8)によって求まるIin*を、式(6b)、(7)の右辺に含まれるIinとして用いることができる。
 以上のようにして、DC/DCコンバータ6は、DC/DCコンバータ電流目標値Iin*と、DC/DCコンバータ電流検出値Iinとによって、フィードバック制御される(ステップS8)。
 上記ステップS8の後、制御部14は、前述の式(1)に基づいて、現状の入力電力平均値〈Pin〉を求める(ステップS9)。
 制御部14は、上述したように、インバータ10及びDC/DCコンバータ6を電流目標値によってフィードバック制御する。
 ステップS4のフィードバック制御は、インバータ電流目標値Iinv*と、インバータ電流検出値Iinvに基づいて行われる。
 ステップS8のフィードバック制御は、DC/DCコンバータ電流目標値Iin*と、DC/DCコンバータ電流検出値Iinとに基づいて行われる。ここで、DC/DCコンバータ電流目標値Iin*は、インバータ電流目標値Iinv*に基づいている(式(7)、式(8))。
 従って、どちらのフィードバック制御も、インバータ電流目標値Iinv*に基づいている。
 ここで、フィードバック制御におけるフィードバックゲインについて考える。リアクトル電流のフィードバック制御には比例制御がよく用いられ、制御の追従性には比例ゲインの大小が関係する。例えば、比例ゲインが大きい方が制御の追従性が良いが、電流が発振しやすい。逆に、比例ゲインは小さい方が定常状態に落ち着きやすい。但し、追従性は良くない。フィードバック制御の比例ゲインの理想値は一般に、
 インダクタンス値[H]×制御周波数[Hz]
で与えられる。
 しかし、実際の制御系では入力信号を与えてからそれに応じた出力信号が現れるまでに一定の時間が経過する「むだ時間」があり、それによる制御遅れがある。そのため、実際の制御系では、比例ゲインは理想値より小さい値となる。リアクトルには直流重畳特性があるため、比例ゲインの理想値はリアクトル電流の大きい場合にはリアクトル電流の小さい場合に比べ小さい値となる。そのため実際の制御系では制御周期ごとにリアクトル電流目標値に応じて、リアクトル電流のフィードバック制御の比例ゲインを変化させることで、最適な制御を行うことができ、電流歪等の電力品質や、制御安定性の向上が見込める。
 図7は、比例ゲインを直流リアクトル7に流れる電流に応じて変化させる際の変化特性の一例を示すグラフである。横軸は直流リアクトル7に流れる電流[A]、縦軸が比例ゲイン[V/A]である。この例では、電流0[A]で比例ゲインが5[V/A]、また、電流7.5[A]で比例ゲインが3[V/A]になる。
 このような比例ゲインの特性を適用することにより、小電流値では相対的に高ゲインでフィードバック制御の追従性を高めることができる。また、大電流値では相対的に低ゲインでフィードバック制御の安定性を確保し、発振を防止することができる。直流リアクトル7に流れる電流が小電流値となるのは、交流電流がゼロクロス近傍のときであり、また、大電流値となるのは、交流電流がピーク値近傍のときである。すなわち、このように比例ゲインを変化させることにより、交流電流のゼロクロス近傍からピーク値近傍まで、波形の歪を抑制することができる。
 なお、交流リアクトル12に流れる電流のフィードバック制御においても比例ゲインを、流れる電流によって同様に変化させることが好ましい。この場合、直流電源2の電圧が交流電圧のピーク値に近い場合、特に、歪抑制の効果が現れる。
 《検証》
 次に、上述の、(a)直流重畳特性を考慮してインダクタンスを変数として制御に取り入れること、具体的には、上記の式(5a)に代えて式(5b)を、式(6a)に代えて式(6b)を、それぞれ用いること、及び、(b)直流リアクトルの電流に応じて比例ゲインを変化させること、により、それぞれ、どのような効果が得られるかを調べた。
 なお、以下の検証においては、交流リアクトル12の電流制御の比例ゲインは常に一定としている。
 まず、図8は、比較のために、(a)(b)いずれの対策もしない状態の系統電圧(上)と、電力変換装置1から商用電力系統4Pへ流れる交流電流(下)の、一例としての波形図である。具体的には、直流側は100V、系統側は202V、60Hzである。直流重畳特性を考慮せずに、直流リアクトル7の電流制御の比例ゲインを5[V/A]で一定とし、逆潮流方向に1.5kWの系統連系をした。インダクタンス値は各リアクトルに5Aの電流が流れた時の値を採用した(すなわち交流リアクトル12:625μH、直流リアクトル7:800μH)。図示のように、交流電流には、インバータ10からDC/DCコンバータ6にスイッチングの主体が変わる瞬間の波形の大きな歪が見られる。この場合の、系統電流の総合電流歪率は7.02%、力率は0.98だった。
 図9は、(a)の対策のみを施した場合(比例ゲインは一定)の系統電圧(上)と、電力変換装置1から商用電力系統4Pへ流れる交流電流(下)の、一例としての波形図である。具体的には、直流側は100V、系統側は202V、60Hzである。また、直流重畳特性を考慮すべく、インダクタンス値は、直流リアクトル7及び交流リアクトル12それぞれの直流重畳特性の近似式にリアクトル電流目標値としてのIin*及びIa*を制御周期(20kHz)ごとに代入して求めた値を用いた。また、直流リアクトル電流制御の比例ゲインは5V/Aで一定とし、逆潮流方向に1.5kWの系統連系をした。この場合の、系統電流の総合電流歪率は5.23%、力率は0.98であった。図8の場合と比べて、総合電流歪率は大幅に改善されている。
 上記の検証結果も含めて、対策(a)、(b)の有・無での4パターンについての検証結果は、以下の通りである。
 [対策(a)有り、(b)有りの場合]
 総合電流歪率:3.88%、力率:0.98
 総合電流歪率の数値に大きく影響していると思われる次数ごとの歪率:
 3次:2.41%、29次:0.69%、31次:0.22%
 [対策(a)無し、(b)有りの場合]
 総合電流歪率:4.75%、力率:0.98
 総合電流歪率の数値に大きく影響していると思われる次数ごとの歪率:
 3次:3.60%、29次:0.90%、31次:0.10%
 [対策(a)有り、(b)無しの場合](図9)
 総合電流歪率:5.23%、力率:0.98
 総合電流歪率の数値に大きく影響していると思われる次数ごとの歪率:
 3次:3.09%、29次:1.84%、31次:2.35%
 [対策(a)無し、(b)無しの場合](図8)
 総合電流歪率:7.02%、力率:0.98
 総合電流歪率の数値に大きく影響していると思われる次数ごとの歪率:
 3次:4.97%、29次:2.20%、31次:2.86%
 以上のように、直流重畳特性を制御に反映することは、交流電流の歪率の改善に寄与することが検証された。また、直流リアクトルの電流制御における比例ゲインを変化させることで、さらに、交流電流の歪率が改善されることが検証された。
 また、歪となる電流の次数に関して、直流重畳特性を制御に反映することは、3次の電流における歪の改善に特に効果があり、比例ゲインを変化させることは、29次、31次の電流における歪の改善に効果があった。
 なお、上記検証では、交流リアクトル12の電流制御の比例ゲインは常に一定としたが、前述のように、交流リアクトル12の電流制御においても比例ゲインを、流れる電流によって同様に変化させることが好ましい。
 《まとめ》
 以上詳述した本実施形態の電力変換装置1は、直流リアクトル7を含むDC/DCコンバータ6と、小容量の中間コンデンサ9と、インバータ10と、交流リアクトル12と、DC/DCコンバータ6のスイッチング動作及びインバータ10のスイッチング動作を制御する制御部14とを備えている。制御部14は、直流電源2の電圧及びDC/DCコンバータ6のインピーダンスに基づく直流側の電圧、並びに、スイッチング動作により得ようとするインバータ10の交流側の電圧目標値に基づいて、交流電路3の周波数の半サイクル内で、DC/DCコンバータ6が高周波スイッチングを行う時期と、インバータ10が高周波スイッチングを行う時期とが交互に出現するよう制御するとともに、直流リアクトル7及び交流リアクトル12の各々のインダクタンスが電流値によって変化する直流重畳特性に基づき、現在の電流値に対応した各リアクトルの電圧降下を演算に取り入れて、インバータ10の交流側の電圧目標値及びDCバス8の電圧目標値を演算する。
 このような電力変換装置1では、DC/DCコンバータ6及びインバータ10のうち、いずれか必要な方だけを高速(例えば20kHz)でスイッチング動作させ、その間、他方の高周波スイッチングを休止させることで、スイッチングに伴う電力損失を低減することができる。このような最小スイッチング変換方式では、生成する交流波形のゼロクロスからピーク値までの間に、高周波スイッチングの主体がインバータ10からDC/DCコンバータ6へ、又はその逆に、交代するため、そこで出力電流の歪が生じやすい。しかしながら、交流リアクトル12及び直流リアクトル7の各インダクタンスを変数扱いして特性に合わせた正確な演算を行うことにより、極めて精度の高い変換動作を行い、交流出力電流の歪率を低減することができる。
 なお、直流重畳特性を、多項式の近似式で演算することで、制御部14は、大きな演算負荷を要さず、また、多くのメモリーを消費することなく、簡単に直流重畳特性を近似することができる。
 さらに、比例ゲインに変化をつけて、例えば、直流リアクトル7に流す電流のフィードバック制御において、直流リアクトル7の電流に対する比例ゲインが、相対的に、小電流値に対して高ゲイン、大電流値に対して低ゲインの関係となるように変化させることができる。この場合、小電流値では相対的に高ゲインでフィードバック制御の追従性を高めることができる。また、大電流値では相対的に低ゲインでフィードバック制御の安定性を確保し、発振を防止することができる。直流リアクトル7に流れる電流が小電流値となるのは、交流電流がゼロクロス近傍のときであり、また、大電流値となるのは、交流電流がピーク値近傍のときである。すなわち、このように比例ゲインを変化させることにより、交流電流のゼロクロス近傍からピーク値近傍まで、波形の歪を抑制することができる。交流リアクトル12の電流に対する比例ゲインを同様に変化させる場合は、直流電源2の電圧が交流電圧のピーク値に近い場合に、特に、歪抑制の効果が現れる。
 《その他》
 なお、上記のような多項式を用いるのは一例である。リアクトル固有の直流重畳特性に合わせて、多項式の他、段階的近似、直線近似、データテーブルの利用のいずれか1つ又はそれらの組み合わせにより演算することも可能である。近似は、大きな演算負荷を要さず、また、多くのメモリーを消費することなく、簡単に直流重畳特性を近似することができる利点がある。データテーブルは比較的メモリーを消費するが、演算の手間が省ける利点がある。
 また、上記電力変換装置1の動作は直流から交流への変換について説明したが、直流電源2が蓄電池である場合は、交流から直流への変換を行うことができる。その場合、電力の流れが逆になるが、同様な制御を適用することができる。
 《補記》
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 1 電力変換装置
 2 直流電源
 3 交流電路
 4L 負荷
 4P 商用電力系統
 5 直流側コンデンサ
 6 DC/DCコンバータ
 7 直流リアクトル
 8 DCバス
 9 中間コンデンサ
 10 インバータ
 11 フィルタ回路
 12 交流リアクトル
 13 交流側コンデンサ
 14 制御部
 15 電圧センサ
 16 電流センサ
 17 電圧センサ
 18 電流センサ
 19 電圧センサ
 d1~d6 ダイオード
 Q1~Q6 スイッチング素子

Claims (5)

  1.  直流電源と交流電路との間に設けられる電力変換装置であって、
     前記直流電源とDCバスとの間に設けられ、直流リアクトルを含むDC/DCコンバータと、
     前記DCバスの2線間に設けられた中間コンデンサと、
     前記DCバスと前記交流電路との間に設けられたインバータと、
     前記インバータの交流側に接続された交流リアクトルと、
     前記DC/DCコンバータのスイッチング動作及び前記インバータのスイッチング動作を制御する制御部と、を備え、
     前記制御部は、前記直流電源の電圧及び前記DC/DCコンバータのインピーダンスに基づく直流側の電圧、並びに、前記スイッチング動作により得ようとする前記インバータの交流側の電圧目標値に基づいて、前記交流電路の周波数の半サイクル内で、前記DC/DCコンバータが高周波スイッチングを行う時期と、前記インバータが高周波スイッチングを行う時期とが交互に出現するよう制御するとともに、前記直流リアクトル及び前記交流リアクトルの各々のインダクタンスが電流値によって変化する直流重畳特性に基づき、現在の電流値に対応した各リアクトルの電圧降下を演算に取り入れて、前記インバータの交流側の電圧目標値及び前記DCバスの電圧目標値を演算する、電力変換装置。
  2.  前記制御部は、前記直流重畳特性を、多項式、段階的近似、直線近似、データテーブルの利用のいずれか1つ又はそれらの組み合わせにより演算する請求項1に記載の電力変換装置。
  3.  前記制御部は、前記直流リアクトル及び前記交流リアクトルの少なくとも一方に流す電流のフィードバック制御において、当該リアクトルの電流に対する比例ゲインが、相対的に、小電流値に対して高ゲイン、大電流値に対して低ゲインの関係となるように変化させる、請求項1又は請求項2に記載の電力変換装置。
  4.  直流リアクトルを含むDC/DCコンバータと、中間コンデンサと、インバータと、前記インバータの交流側に接続された交流リアクトルと、を含む電力変換装置の制御方法であって、直流電源の電圧及び前記DC/DCコンバータのインピーダンスに基づく直流側の電圧、並びに、スイッチング動作により得ようとする前記インバータの交流側の電圧目標値に基づいて、前記交流電路の周波数の半サイクル内で、前記DC/DCコンバータが高周波スイッチングを行う時期と、前記インバータが高周波スイッチングを行う時期とが交互に出現するよう制御するとともに、
     前記直流リアクトル及び前記交流リアクトルの各々のインダクタンスが電流値によって変化する直流重畳特性に基づき、現在の電流値に対応した各リアクトルの電圧降下を演算に取り入れて、前記インバータの交流側の電圧目標値及び前記DCバスの電圧目標値を演算する、
     電力変換装置の制御方法。
  5.  直流電源と交流電路との間に設けられる電力変換装置であって、
     前記直流電源とDCバスとの間に設けられ、直流リアクトルを含むDC/DCコンバータと、
     前記DCバスの2線間に設けられた中間コンデンサと、
     前記DCバスと前記交流電路との間に設けられたインバータと、
     前記インバータの交流側に接続された交流リアクトルと、
     前記DC/DCコンバータのスイッチング動作及び前記インバータのスイッチング動作を制御する制御部と、を備え、
     前記制御部は、前記直流電源の電圧及び前記DC/DCコンバータのインピーダンスに基づく直流側の電圧、並びに、前記スイッチング動作により得ようとする前記インバータの交流側の電圧目標値に基づいて、前記交流電路の周波数の半サイクル内で、前記DC/DCコンバータが高周波スイッチングを行う時期と、前記インバータが高周波スイッチングを行う時期とが交互に出現するよう制御するとともに、前記直流リアクトル及び前記交流リアクトルの各々が有する直流重畳特性を反映した変数としてのインダクタンスを各リアクトルの電流目標値又は電流検出値の関数として求め、求めた各インダクタンスを用いて、前記インバータの交流側の電圧目標値及び前記DCバスの電圧目標値を演算する、電力変換装置。
PCT/JP2017/024312 2016-11-30 2017-07-03 電力変換装置及びその制御方法 WO2018100782A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018553649A JP6874773B2 (ja) 2016-11-30 2017-07-03 電力変換装置及びその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-232619 2016-11-30
JP2016232619 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018100782A1 true WO2018100782A1 (ja) 2018-06-07

Family

ID=62241419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024312 WO2018100782A1 (ja) 2016-11-30 2017-07-03 電力変換装置及びその制御方法

Country Status (2)

Country Link
JP (1) JP6874773B2 (ja)
WO (1) WO2018100782A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002981A (ja) * 2019-06-24 2021-01-07 株式会社Soken 電力変換装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121875A (ja) * 2004-10-25 2006-05-11 Denso Corp モータ制御装置
JP2008172957A (ja) * 2007-01-12 2008-07-24 Matsushita Electric Ind Co Ltd スイッチングレギュレータ、dc−dcコンバータ及び電源装置
JP2015213402A (ja) * 2014-05-07 2015-11-26 三菱電機株式会社 Dc/dcコンバータ
JP2015228728A (ja) * 2014-05-30 2015-12-17 住友電気工業株式会社 変換装置
WO2016139990A1 (ja) * 2015-03-05 2016-09-09 住友電気工業株式会社 変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121875A (ja) * 2004-10-25 2006-05-11 Denso Corp モータ制御装置
JP2008172957A (ja) * 2007-01-12 2008-07-24 Matsushita Electric Ind Co Ltd スイッチングレギュレータ、dc−dcコンバータ及び電源装置
JP2015213402A (ja) * 2014-05-07 2015-11-26 三菱電機株式会社 Dc/dcコンバータ
JP2015228728A (ja) * 2014-05-30 2015-12-17 住友電気工業株式会社 変換装置
WO2016139990A1 (ja) * 2015-03-05 2016-09-09 住友電気工業株式会社 変換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002981A (ja) * 2019-06-24 2021-01-07 株式会社Soken 電力変換装置
JP7161447B2 (ja) 2019-06-24 2022-10-26 株式会社Soken 電力変換装置

Also Published As

Publication number Publication date
JP6874773B2 (ja) 2021-05-19
JPWO2018100782A1 (ja) 2019-10-17

Similar Documents

Publication Publication Date Title
JP6187587B2 (ja) インバータ装置
JP6414546B2 (ja) インバータ装置
JP6158739B2 (ja) 電力変換装置
JP6414491B2 (ja) 変換装置
KR20160106051A (ko) 변환 장치
CN105940597A (zh) 电力变换装置的控制方法
WO2016006273A1 (ja) 電力変換装置及び三相交流電源装置
US10348190B2 (en) Conversion device for converting voltage in a non-insulated manner and method for controlling the same
WO2018012146A1 (ja) 電力変換装置、及び電力変換装置の制御方法
JP6750508B2 (ja) 電力変換装置及びその高調波抑制方法
JP6349974B2 (ja) 変換装置
JP6825627B2 (ja) 電力変換装置及び電流歪の低減方法
WO2018100782A1 (ja) 電力変換装置及びその制御方法
JP5411031B2 (ja) 3レベル電力変換装置
JP2013215061A (ja) 電力変換装置
CN109104890B (zh) 电力转换装置以及用于控制电力转换装置的方法
JP2018183035A (ja) 電力変換装置及びその制御方法
JP4517762B2 (ja) スイッチング制御方法、整流装置及び駆動システム
JP6946799B2 (ja) 電源システム
JP2017184450A (ja) 電力変換装置並びに蓄電池の充電制御方法及び放電制御方法
JP2019004585A (ja) 電力変換装置及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877374

Country of ref document: EP

Kind code of ref document: A1