WO2018096636A1 - 定格を超える負荷で稼働するための無鉄心回転電気機械、その駆動方法、および、それを含む駆動システム - Google Patents

定格を超える負荷で稼働するための無鉄心回転電気機械、その駆動方法、および、それを含む駆動システム Download PDF

Info

Publication number
WO2018096636A1
WO2018096636A1 PCT/JP2016/084856 JP2016084856W WO2018096636A1 WO 2018096636 A1 WO2018096636 A1 WO 2018096636A1 JP 2016084856 W JP2016084856 W JP 2016084856W WO 2018096636 A1 WO2018096636 A1 WO 2018096636A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant liquid
cylindrical coil
gap
coil
cylindrical
Prior art date
Application number
PCT/JP2016/084856
Other languages
English (en)
French (fr)
Inventor
学 白木
修一 大桃
Original Assignee
株式会社エムリンク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エムリンク filed Critical 株式会社エムリンク
Priority to PCT/JP2016/084856 priority Critical patent/WO2018096636A1/ja
Priority to KR1020197012334A priority patent/KR102126444B1/ko
Priority to US16/464,036 priority patent/US11251683B2/en
Priority to CN201680091120.4A priority patent/CN110140282B/zh
Priority to JP2017555733A priority patent/JP6399721B1/ja
Priority to KR1020207012747A priority patent/KR102349298B1/ko
Priority to DE112016007469.7T priority patent/DE112016007469T5/de
Priority to TW109135323A priority patent/TWI756863B/zh
Priority to TW106140222A priority patent/TWI712252B/zh
Publication of WO2018096636A1 publication Critical patent/WO2018096636A1/ja
Priority to US17/584,462 priority patent/US11563361B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/20Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/64Controlling or determining the temperature of the winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator

Definitions

  • the present invention relates to a coreless rotating electric machine for operating at a load exceeding a rating, a driving method thereof, and a driving system including the same.
  • the present invention relates to a stator (stator) composed of a lid-type mount that fixes an end face of an ironless cylindrical coil that can be energized, and a cylindrical or cup-type that is rotatably disposed on the lid-type mount.
  • a stator stator
  • the air gap is included when operating at a load exceeding the rating.
  • Refrigerant liquid is supplied to the gap, and the heated cylindrical coil vaporizes the refrigerant liquid, cools the cylindrical coil with the latent heat of vaporization of the refrigerant liquid, and supplies the refrigerant liquid so that the cylindrical coil does not exceed the allowable upper limit temperature during rated operation.
  • the present invention relates to a coreless rotating electric machine that is operated at a load exceeding a rating by adjusting the amount, a driving method thereof, and a driving system including the same.
  • An electric motor and a generator are rotating electric machines having the same structure.
  • a rotating electric machine will be described using an electric motor that converts electric energy into mechanical energy.
  • An electric motor outputs an electromagnetic force generated by the interaction between a magnetic field and a current.
  • the former uses a magnet as a stator (stator) and a coil as a rotor (rotor). Magnets are used as rotors (rotors) for the stator, and both output electromagnetic force from the rotor.
  • the present invention relates to a coreless brushless motor composed of a permanent magnet field type and ironless cylindrical coil.
  • the stator-free core coil of the stator is either composed of a laminate of conductive metal sheets having a linear portion covered with an insulating layer, or is composed of a linear conductor covered with an insulating layer. It is.
  • Electric motors do not normally assume continuous operation in a state exceeding the rating, even though the rated current may be momentarily exceeded during startup.
  • the electric motor is in an overloaded state, that is, continuously operated at a rating or higher, the electric current causes the cylindrical coil of the electric motor to generate more heat than expected.
  • the coreless motor (CP50) manufactured as a test motor in connection with the present invention is used and the refrigerant liquid supply control unit is not operated, and the condition is exceeded in each condition exceeding the rating.
  • the allowable upper limit temperature 130 ° C. of the cylindrical coil is exceeded in only a few tens of seconds.
  • the worst case that can easily be envisaged from this is that the cylindrical coil burns out and is destroyed. Even if it does not lead to destruction, it will not be possible to expect long-term normal operation of the coreless motor in terms of performance. Needless to say, adding a cooling function to the electric motor in order to prevent the performance of the electric motor from deteriorating due to the heat generation of the cylindrical coil and the heating of the magnet is merely a conventional means.
  • the usage limit guaranteed against the temperature rise of the coil or magnet during normal operation of the electric motor is displayed as a rating from the manufacturer (page 41 of Non-Patent Document 1). Ratings are original standards guaranteed by the manufacturer, but are listed in catalogs and specifications. For example, the maximum output generated while the motor exhibits good characteristics at a predetermined voltage is the rated output, and the rotational speed when operating at the rated output is the rated rotational speed, and the torque T at that time is The rated torque, and the current at that time is the rated current. When use is not specified, the continuous rating that can be operated indefinitely is used as the rating. Other ratings include a short-time rating with a limited operation period and a repeated rating that repeats operation and stop periodically.
  • the present invention relates to a coreless motor for operating at a load exceeding a rating developed based on the idea of always operating at an overload.
  • “Rated” here refers to, for example, a case where a coreless motor is operated at a rated torque or a rated output at a predetermined voltage.
  • the coreless motor (CP50) manufactured as a test motor is a so-called electric motor.
  • the rating here is that the supply amount of the refrigerant liquid is zero, the continuous operation is performed without operating the refrigerant liquid supply control unit, and the temperature of the cylindrical coil is the allowable upper limit temperature 130.
  • Patent Document 1 describes the heat of vaporization of a refrigerant liquid that boils by arranging a diffusion material that absorbs a refrigerant liquid having a boiling point lower than the operating temperature of the coil and wets the coil around the coil. The cooling of the coil is described.
  • Patent Document 2 discloses a system in which a gas-liquid two-phase including a radiator is circulated through a refrigerant by utilizing a centrifugal pump action and a height difference of a rotor to cool the inside of a vehicular rotating electrical machine. Is described.
  • Patent Document 3 alternately stores refrigerant having a boiling point temperature below an allowable limit temperature in a generator, vaporizes the refrigerant during operation of the generator, and liquefies it in the generator. It is described that the generator is efficiently cooled while being repeated.
  • Patent Document 4 describes that in a self-circulation path including a refrigerant reserve tank, a liquid-phase refrigerant is vaporized by the heat generated by the rotor and efficiently cooled by the vaporized refrigerant. .
  • Patent Document 5 discloses a method in which, in a rotor cooling device, refrigerant is continuously supplied little by little toward a wall surface and cooled by latent heat of vaporization so that the refrigerant is not unevenly distributed on the cooling wall surface of the rotor. Is described.
  • Patent Document 6 discloses that in a sealed case of a motor, the refrigerant sealed in the case is vaporized by the coil heat of the stator, liquefied by a heat radiating portion, and circulated in the sealed case. A motor cooling structure is described. This cooling structure is common to those described in Patent Document 3 and Patent Document 4.
  • Patent Document 7 describes a cooling structure for a rotating electrical machine in which respective refrigerant flow paths are provided for magnet cooling and coil cooling, and means capable of switching them are arranged. Has been.
  • Patent Document 8 describes a cooling system for a rotating electrical machine mounted on a hybrid vehicle.
  • the rotating electrical machine includes a coil portion wound around a stator core in which a large number of electromagnetic steel sheets are laminated.
  • the cooling system for a rotating electrical machine having an iron core disclosed therein when the winding temperature of the coil portion reaches 180 ° C. or more exceeds 10 times, the insulating coating around the winding of the coil portion evaporates or vaporizes.
  • a control unit that adjusts the supply amount of the refrigerant so as to form the adhesion state of the refrigerant around the winding of the specific part is arranged so as not to happen It is.
  • Patent Document 9 provides an evaporation condensation chamber inside a rotor of a generator, sends cooling liquid from outside in a jet flow in the axial direction, and uses centrifugal force to evaporate condensation chamber.
  • a generator in which a waste liquid impeller is provided in a liquid chamber connected to a coolant chamber that is displaced to the side and flows.
  • Patent Document 10 discloses an annular cavity in a housing in which a working fluid is sealed in a motor in which a rotor and an annular stator surrounding the rotor are housed in a secret housing.
  • a heat dissipation structure of a motor is described in which a pipe communicating with the pipe and a wit having a capillary action are arranged.
  • Patent Document 11 discloses cooling in which a driving oil motor for an electric vehicle including a coil wound around a cylindrical core is dropped from a cooling oil pump to a coil end via a cooling oil injection unit. A circuit is described.
  • a technical problem inherent in an electric motor that rotates due to the electromagnetic action of components such as a stator and a rotor is a heating action of an armature coil disposed in the stator.
  • the capacity and size of the electric motor are usually expressed by the output of the electric motor.
  • the output P 0 is represented by the product of the rotational speed n (rpm) and the torque T (N ⁇ m). If the input power P 1 (W) of the electric motor is assumed, the difference between the input power P 1 and the output P 0 is converted into heat energy as heat loss P L and released to the surroundings. This is the exothermic action of the armature coil, which is an unavoidable technical problem of the electric motor.
  • the inventors completely control the heat generation of the cylindrical coil, which is an armature coil, while continuously applying a load exceeding the rated torque T 0 to the coreless motor (CP50), whereby the coreless motor (CP50). It was confirmed that it can be operated for a long time.
  • a first aspect of the present invention is a coreless rotating electrical machine 10 for operating at a load exceeding the rating shown in the schematic cross-sectional view of FIG. 1 and the broken perspective view of FIG.
  • the inner periphery of the cylindrical mount 300 includes a stator 2 formed of a lid-type mount 200 that fixes the end face 101 of the ironless cylindrical coil 100 that can be energized, and a cylindrical mount 300 that is rotatably opposed to the lid-type mount 200.
  • the air gap 40 including an air gap is formed with the rotor 3 on which the plurality of magnets 4 are provided on the surface 310, and a path 8 for supplying the coolant liquid 80 to the air gap 40 is provided in the stator 2, and the control unit 20 related to the stator 2.
  • the drive part 30 relevant to the rotor 3 is the iron-free rotating electrical machine 10 for operating with the load exceeding a rating.
  • stator 2 with a refrigerant liquid container 81 communicating with the path 8 and further with a circulation means 82 communicating between the refrigerant liquid container 81 and the gap 40.
  • the ironless rotary electric machine 10 operates the drive unit 30 and operates the control unit 20 when operating at a load exceeding the rating, and the refrigerant liquid is placed in the gap 40. 80, and the cylindrical coil 100 that generates heat vaporizes the refrigerant liquid 80, cools the cylindrical coil 100 with the latent heat of vaporization of the refrigerant liquid 80, and the cylindrical coil 100 does not exceed the allowable upper limit temperature t M during rated operation.
  • the operation is performed with a load exceeding the rating.
  • no core dynamoelectric machine 10 when it is operated at load exceeding the rated, control unit 20 is actuated, so that the cylindrical coil 100 does not exceed the allowable upper limit temperature t M repeating the operation of adjusting the supply amount of the refrigerant liquid 80, an operation to stop the supply of the refrigerant liquid 80 per void 40 as the cylindrical coil 100 by said operating does not fall below the minimum temperature t N of at least the refrigerant liquid 80 is vaporized to by, keeping the cylindrical coil 100 within a range of an allowable upper limit temperature t M and the lower limit temperature t N is more preferable.
  • control unit 20 operates in conjunction with a coil temperature detection sensor 21 that detects the temperature of the cylindrical coil 100, and the coil temperature detection sensor 21.
  • a pump 22 that supplies the refrigerant liquid 80 to the gap 40 and a controller 23 that adjusts the supply amount of the refrigerant liquid 80 by an on / off command to the pump 22 can be included.
  • control unit 20 operates in conjunction with a coil temperature detection sensor 21 that detects the temperature of the cylindrical coil 100 and a coil temperature detection sensor 21 as shown in the schematic diagram of FIG.
  • An electromagnetic valve 24 for supplying the refrigerant liquid 80 from the refrigerant liquid container 81 disposed at a position higher than the cylindrical coil 100 to the gap 40, and a controller 23 for adjusting the supply amount of the refrigerant liquid 80 by an opening / closing command to the electromagnetic valve 24. You can also.
  • control unit 20 collects the vapor phase 800 of the refrigerant liquid 80 in the refrigerant liquid container 81 in the liquid phase 80 by the circulation means 82. May be.
  • the drive shaft 1000 is fixed to the center portion 340 of the cylindrical mount 300 and is rotatably connected to the center portion 240 of the lid mount 200. It is possible to provide a coreless rotating electrical machine 10 that is arranged to do so.
  • the second aspect of the present invention is a coreless rotating electrical machine 10 for operating at a load exceeding the rating shown in the schematic cross-sectional view of FIG. 3 and the broken perspective view of FIG.
  • the rotor 3 includes a stator 2 composed of a lid-type mount 200 that fixes one end face 101 of the ironless cylindrical coil 100 that can be energized, and a cup-type mount 400 that is rotatably opposed to the lid-type mount 200.
  • the cup-shaped mount 400 that forms the first gap 40 including the air gap and constitutes the rotor 3 has an open bottom part and a closed bottom part 410, and a concentric inner yoke 420 on the bottom part 410.
  • the outer yoke 430 and the outer yoke 430 are integrated, and a plurality of magnets 4 are arranged on the outer peripheral surface 422 of the inner yoke 420 and / or the inner peripheral surface 431 of the outer yoke 430 with a gap 41 therebetween in the circumferential direction.
  • a slit 423 that penetrates the inner yoke 420 is provided at the position of the inner yoke 420.
  • the cylindrical coil 100 is placed in the first gap 40 while leaving the gap 411 between the other end face 102 of the cylindrical coil 100 and the bottom portion 410 of the cup-type mount 400, and one end face of the cup-type mount 400 is arranged.
  • a second gap 50 is formed on the inner peripheral side 110 of the cylindrical coil 100 between the 401 and the lid mount 200, a third gap 60 is formed on the outer peripheral side 120 of the cylindrical coil 100, and a refrigerant liquid is formed in the first gap 40.
  • a path 8 for supplying 80 is provided in the stator 2, and a control unit 20 associated with the stator 2 and a drive unit 30 associated with the rotor 3 are provided. Electric machine 10.
  • stator 2 with a refrigerant liquid container 81 communicating with the path 8 and further providing a circulation means 82 communicating between the refrigerant liquid container 81 and the first gap 40.
  • the ironless rotary electric machine 10 operates the drive unit 30 and operates the control unit 20 when operating at a load exceeding the rating.
  • the refrigerant liquid 80 is supplied to the inner side 421 of the inner yoke 420, the cylindrical coil 100 that generates heat from the refrigerant liquid 80 sent to the cylindrical coil 100 through the slit 423 is vaporized, and the cylindrical coil 100 is cooled by the latent heat of vaporization of the refrigerant liquid 80. and, by adjusting the supply amount of the refrigerant liquid 80 as the cylindrical coil 100 does not exceed the allowable upper limit temperature t M during the rated operation, is characterized in that so as to operate at a load exceeding the rated.
  • no core dynamoelectric machine 10 when it is operated at load exceeding the rated, control unit 20 is actuated, so that the cylindrical coil 100 does not exceed the allowable upper limit temperature t M operation and to adjust the supply amount of the refrigerant liquid 80, and the operation to stop the supply of the refrigerant liquid 80 against the lower limit temperature t N first gap 40 so as not to fall below the cylindrical coil 100 is at least the refrigerant liquid 80 is vaporized by said operating by repeating, it is more preferable to maintain the cylindrical coil 100 within a range of an allowable upper limit temperature t M and the lower limit temperature t N.
  • control unit 20 operates in conjunction with a coil temperature detection sensor 21 that detects the temperature of the cylindrical coil 100, and the coil temperature detection sensor 21.
  • a pump 22 that supplies the refrigerant liquid 80 to the inner side 421 of the inner yoke 420 of the first gap 40 and a controller 23 that adjusts the supply amount of the refrigerant liquid 80 by an on / off command to the pump 22 can be included.
  • control unit 20 operates in conjunction with a coil temperature detection sensor 21 that detects the temperature of the cylindrical coil 100 and a coil temperature detection sensor 21 as shown in the schematic diagram of FIG.
  • the electromagnetic valve 24 that supplies the refrigerant liquid 80 from the refrigerant liquid container 81 arranged at a position higher than the cylindrical coil 100 to the inner side 421 of the inner yoke 420 of the first gap 40, and the refrigerant liquid 80 by the opening / closing command to the electromagnetic valve 24.
  • a controller 23 for adjusting the supply amount can also be included.
  • control unit 20 collects the vapor phase 800 of the refrigerant liquid 80 in the refrigerant liquid container 81 in the liquid phase 80 by the circulation means 82. May be.
  • the drive shaft 1000 is fixed to the center portion 340 of the cup-type mount 400 and is rotatably connected to the center portion 240 of the lid-type mount 200. It is possible to provide a coreless rotating electrical machine 10 that is arranged to do so.
  • the cylindrical coil 100 is formed in a cylindrical shape by a laminate of conductive metal sheets having linearly spaced linear portions covered with an insulating layer. It is preferable that it is either formed in a cylindrical shape with a linear conductor covered with an insulating layer.
  • the refrigerant liquid 80 is preferably water, ethanol, ammonia, liquid nitrogen, liquid helium, or a fluorine-based liquid.
  • a third aspect of the present invention is a method for driving a coreless rotary electric machine 10 for operation with a load exceeding the rating shown in FIGS. 1 and 2.
  • the stator 2 includes a lid-type mount 200 that fixes the end face 101 of the ironless cylindrical coil 100 that can be energized, and the cylindrical mount 300 that is rotatably opposed to the lid-type mount 200.
  • An air gap 40 including an air gap is formed with the rotor 3 in which the magnet 4 is provided, and a path 8 for supplying the refrigerant liquid 80 to the air gap 40 is provided in the stator 2, and the control unit 20 related to the stator 2 and the rotor 3 are provided.
  • This is a driving method of the ironless rotary electric machine 10 for operating at a load exceeding the rating, which is provided with an associated driving unit 30.
  • the ironless rotary electric machine 10 is provided with a refrigerant liquid container 81 that communicates with the path 8 in the stator 2, and circulation means 82 that communicates between the refrigerant liquid container 81 and the gap 40. Can be further deployed.
  • the drive unit 30 operates the ironless rotary electric machine 10 with a load exceeding the rating, operates the control unit 20, and the refrigerant liquid in the gap 40.
  • 80 a step in which the cylindrical coil 100 that generates heat vaporizes the refrigerant liquid 80, a step in which the cylindrical coil 100 is cooled by the latent heat of vaporization of the refrigerant liquid 80, and an allowable upper limit temperature t M during the rated operation of the cylindrical coil 100.
  • a step of adjusting the supply amount of the refrigerant liquid 80 so as not to exceed.
  • Step One embodiment of the present invention it is further to operate the controller 20, stopping the supply of the refrigerant liquid 80 per void 40 as the cylindrical coil 100 does not fall below the minimum temperature t N of at least the refrigerant liquid 80 is vaporized And further including the step of maintaining the cylindrical coil 100 in a range between the allowable upper limit temperature t M and the lower limit temperature t N by repeating the step and the step of supplying the refrigerant liquid 80 to the gap 40. preferable.
  • the controller 20 also includes a coil temperature detection sensor 21 that detects the temperature of the cylindrical coil 100, and a pump 22 that supplies the refrigerant liquid 80. And a controller 23 that adjusts the supply amount of the refrigerant liquid 80 according to an on / off command to the pump 22, a step of operating the coil temperature detection sensor 21 to detect the temperature of the cylindrical coil 100, and a step linked thereto.
  • a driving method including a step in which the controller 23 operates the pump 22 to supply the refrigerant liquid 80 to the gap 40 and a step in which the supply amount of the refrigerant liquid 80 is adjusted.
  • control unit 20 also operates in conjunction with a coil temperature detection sensor 21 for detecting the temperature of the cylindrical coil 100 and a coil temperature detection sensor 21 as shown in FIG.
  • An electromagnetic valve 24 for supplying the refrigerant liquid 80 to the gap 40 from the refrigerant liquid container 81 disposed at a position higher than the cylindrical coil 100, and a controller 23 for adjusting the supply amount of the refrigerant liquid 80 by an open / close command to the electromagnetic valve 24.
  • the controller 20 operates the circulating means 82, and the gas phase 800 of the refrigerant liquid 80 is transferred to the refrigerant liquid container 81. It is also possible to adopt a driving method that further includes the step of recovering in step (b).
  • it further includes a coreless rotating electric machine in which the drive shaft 1000 is fixed to the central portion 340 of the cylindrical mount 300 and is rotatably connected to the central portion 240 of the lid-type mount 200.
  • a driving method of the machine 10 can be used.
  • a fourth aspect of the present invention is a method of driving the ironless rotary electric machine 10 for operation with a load exceeding the rating shown in FIGS. 3 and 4.
  • the rotor 3 includes a stator 2 composed of a lid-type mount 200 that fixes one end face 101 of the ironless cylindrical coil 100 that can be energized, and a cup-type mount 400 that is rotatably opposed to the lid-type mount 200.
  • the cup-shaped mount 400 that forms the first gap 40 including the air gap and constitutes the rotor 3 has an open bottom part and a closed bottom part 410, and a concentric inner yoke 420 on the bottom part 410.
  • the outer yoke 430 and the outer yoke 430 are integrated, and a plurality of magnets 4 are arranged on the outer peripheral surface 422 of the inner yoke 420 and / or the inner peripheral surface 431 of the outer yoke 430 with a gap 41 therebetween in the circumferential direction.
  • a slit 423 that penetrates the inner yoke 420 is provided at the position of the inner yoke 420.
  • the cylindrical coil 100 is placed in the first gap 40 with the other end face 102 of the cylindrical coil 100 between the bottom 410 of the cup-type mount 400 leaving a gap 411, and one end of the cup-type mount 400 is arranged.
  • a second gap 50 is formed on the inner peripheral side 110 of the cylindrical coil 100 between the end surface 401 and the lid mount 200, a third gap 60 is formed on the outer peripheral side 120 of the cylindrical coil 100, and a refrigerant is formed in the first gap 40.
  • a path 8 for supplying the liquid 80 is provided in the stator 2, and a control unit 20 associated with the stator 2 and a drive unit 30 associated with the rotor 3 are provided, and the ironless core for operating at a load exceeding the rating. This is a driving method of the rotating electrical machine 10.
  • the iron-free rotating electrical machine 10 is provided with a refrigerant liquid container 81 that communicates with the path 8 in the stator 2, and a circulation that communicates between the refrigerant liquid container 81 and the first gap 40.
  • Means 82 can be further deployed.
  • the drive unit 30 operates the drive unit 30 to operate the ironless rotary electric machine 10 with a load exceeding the rating, operates the control unit 20, and the first gap.
  • the refrigerant liquid 80 is supplied to the inner side 421 of the 40 inner yoke 420, and the refrigerant liquid 80 is sent to the cylindrical coil 100 that generates heat through the slit 423.
  • the heat generating cylindrical coil 100 vaporizes the refrigerant liquid 80, and the refrigerant liquid cooling the cylindrical coil 100 at 80 latent heat of vaporization of, as a cylindrical coil 100 does not exceed the allowable upper limit temperature t M during the rated operation, and adjusting the supply amount of the refrigerant liquid 80, It is characterized by including.
  • a cylindrical coil 100 is the supply of the refrigerant liquid 80 to the first gap 40 so as not to fall below the minimum temperature t N of at least the refrigerant liquid 80 is vaporized Including the step of stopping, and by repeating this step and the step of supplying the refrigerant liquid 80 to the inner side 421 of the inner yoke 420 of the first gap 40 and sending the refrigerant liquid 80 to the cylindrical coil 100 that generates heat through the slit 423, preferably further comprising the step of maintaining the coil 100 in the range of an allowable upper limit temperature t M and the lower limit temperature t N.
  • the controller 20 also includes a coil temperature detection sensor 21 that detects the temperature of the cylindrical coil 100, and a pump 22 that supplies the refrigerant liquid 80. And a controller 23 that adjusts the supply amount of the refrigerant liquid 80 according to an on / off command to the pump 22, a step of operating the coil temperature detection sensor 21 to detect the temperature of the cylindrical coil 100, and a step linked thereto.
  • the controller 23 operates the pump 22, supplies the refrigerant liquid 80 to the inner side 421 of the inner yoke 420 of the first gap 40, and sends the refrigerant liquid 80 to the cylindrical coil 100 that generates heat via the slit 423. And a step of adjusting the supply amount.
  • the control unit 20 also operates in conjunction with a coil temperature detection sensor 21 for detecting the temperature of the cylindrical coil 100 and a coil temperature detection sensor 21 as shown in FIG.
  • the electromagnetic valve 24 that supplies the refrigerant liquid 80 from the refrigerant liquid container 81 disposed at a position higher than the cylindrical coil 100 to the first gap 40, and the controller 23 that adjusts the supply amount of the refrigerant liquid 80 by an open / close command to the electromagnetic valve 24.
  • the controller 20 operates the circulating means 82, and the gas phase 800 of the refrigerant liquid 80 is transferred to the refrigerant liquid container 81. It is also possible to adopt a driving method that further includes the step of recovering in step (b).
  • it further includes a coreless rotating electric machine in which the drive shaft 1000 is fixed to the central portion 440 of the cup-type mount 400 and is rotatably connected to the central portion 240 of the lid-type mount 200.
  • a driving method of the machine 10 can be used.
  • the cylindrical coil 100 is formed in a cylindrical shape by a laminate of conductive metal sheets having linearly spaced linear portions covered with an insulating layer. It is preferable that it is either formed in a cylindrical shape with a linear conductor covered with an insulating layer.
  • the refrigerant liquid 80 is preferably any one of water, ethanol, ammonia, liquid nitrogen, liquid helium, and fluorinated liquid.
  • a fifth aspect of the present invention relates to an iron-free rotating electric machine 10 shown by the schematic diagram of the iron-free rotating electric machine 10 in FIGS. 1 and 2 and the schematic diagram of the drive system 1 in FIGS. It is the drive system 1 for operating with the load exceeding a rating.
  • the inner periphery of the cylindrical mount 300 includes a stator 2 formed of a lid-type mount 200 that fixes the end face 101 of the ironless cylindrical coil 100 that can be energized, and a cylindrical mount 300 that is rotatably opposed to the lid-type mount 200.
  • a coreless rotating electrical machine 10 having a path 8 for supplying a coolant liquid 80 to the gap 40 in the stator 2 by forming a gap 40 including an air gap with the rotor 3 having a plurality of magnets 4 disposed on the surface 310; Refrigerant liquid in the gap 40 in conjunction with the drive device 30 that drives the ironless rotary electric machine 10 that operates in conjunction with the rotor 3 and the coil temperature detection sensor 21 that detects the temperature of the cylindrical coil 100 disposed in the stator 2.
  • a drive system 1 for operating a coreless rotating electrical machine 10 including a control device 20 that supplies 80 with a load exceeding a rating. .
  • the ironless rotary electric machine 10 includes a refrigerant liquid container 81 that communicates with the path 8 in the stator 2 and communicates between the refrigerant liquid container 81 and the first gap 40.
  • a circulation means 82 can be further provided.
  • the drive system 1 operates the drive device 30 and operates the control device 20 when operating the iron-free rotating electrical machine 10 with a load exceeding the rating.
  • 40 is supplied with the refrigerant liquid 80, the heated cylindrical coil 100 vaporizes the refrigerant liquid 80, cools the cylindrical coil 100 with the latent heat of vaporization of the refrigerant liquid 80, and the cylindrical coil 100 sets the allowable upper limit temperature t M during rated operation.
  • the ironless rotary electric machine 10 is operated with a load exceeding the rating.
  • the drive system 1 further operates the control device 20 when the ironless rotary electric machine 10 is operated with a load exceeding the rating, and the cylindrical coil 100 is allowed to operate at the maximum allowable temperature during rated operation. operation and supplies the refrigerant liquid 80 in the gap 40 so as not to exceed the t M, the supply of the refrigerant liquid 80 per void 40 as the cylindrical coil 100 by said operating does not fall below the minimum temperature t N of at least the refrigerant liquid 80 is vaporized by repeating the operation to stop, it is more preferable to maintain the cylindrical coil 100 within a range of an allowable upper limit temperature t M and the lower limit temperature t N.
  • the control device 20 adjusts the supply amount of the refrigerant liquid 80 by a pump 22 that supplies the refrigerant liquid 80 and an on / off command to the pump 22.
  • the controller 2 includes a controller 23, and the controller 2 operates the pump 22 in conjunction with the coil temperature detection sensor 21 to supply the refrigerant liquid 80 to the gap 40 and adjust the supply amount of the refrigerant liquid 80. it can.
  • the control device 20 adjusts the supply amount of the refrigerant liquid 80 by an electromagnetic valve 24 that supplies the refrigerant liquid 80 and an opening / closing command to the electromagnetic valve 24.
  • a controller 23 that operates the electromagnetic valve 24 in conjunction with the coil temperature detection sensor 21 to supply the refrigerant liquid 80 to the gap 40 from the refrigerant liquid container 81 disposed at a position higher than the cylindrical coil 100 and A drive system 1 that adjusts the supply amount of 80 may be used.
  • the controller 20 operates the circulating means 82, and the gas phase 800 of the refrigerant liquid 80 is transferred to the refrigerant liquid container 81. It can be set as the drive system 1 collect
  • the present invention is further deployed to secure the drive shaft 1000 to the central portion 340 of the cylindrical mount 300 and to be rotatably coupled to the central portion 240 of the lid mount 200. It can also be set as the drive system 1 which consists of a coreless rotary electric machine 10.
  • the sixth aspect of the present invention is rated for the coreless rotating electrical machine 10 shown by the schematic diagram of the coreless rotating electrical machine 10 in FIGS. 3 and 4 and the schematic diagram of the drive system 1 in FIGS. 5 and 6. It is the drive system 1 for operating with the load exceeding.
  • the rotor 3 includes a stator 2 composed of a lid-type mount 200 that fixes one end face 101 of the ironless cylindrical coil 100 that can be energized, and a cup-type mount 400 that is rotatably opposed to the lid-type mount 200.
  • the cup-shaped mount 400 that forms the first gap 40 including the air gap and constitutes the rotor 3 has a bottom portion 410 that is open on one side and closed on the other side, and a concentric inner yoke 420 and outer yoke on the bottom portion 410.
  • a plurality of magnets 4 are arranged on the outer peripheral surface 422 of the inner yoke 420 and / or the inner peripheral surface 431 of the outer yoke 430 with a gap 41 therebetween in the circumferential direction, and the inner yoke 420 corresponding to the gap 41 is provided.
  • the slit 423 which penetrates the inner yoke 420 is provided at the position.
  • the other end face 102 of the cylindrical coil 100 is arranged with the cylindrical coil 100 floating in the first gap 40 leaving a gap 411 between the bottom end 410 of the cup-shaped mount 400, and one end of the cup-shaped mount 400 is arranged.
  • a second gap 50 is formed on the inner peripheral side 110 of the cylindrical coil 100 between the end surface 401 and the lid mount 200, a third gap 60 is formed on the outer peripheral side 120 of the cylindrical coil 100, and the first gap is formed in the stator 2.
  • the coreless rotating electrical machine 10 having the path 8 for supplying the refrigerant liquid 80 to the motor 40, the drive unit 30 for driving the coreless rotating electrical machine 10 operating in conjunction with the rotor 3, and the coil temperature provided in the stator 2
  • the coreless rotating electrical machine 10 is operated with a load exceeding the rating, which includes the control device 20 that supplies the refrigerant liquid 80 to the first gap 40 in conjunction with the detection sensor 21. Because of a drive system 1.
  • the ironless rotary electric machine 10 includes a refrigerant liquid container 81 that communicates with the path 8 in the stator 2 and communicates between the refrigerant liquid container 81 and the first gap 40.
  • a circulation means 82 can be further provided.
  • the drive system 1 operates the drive device 30 and operates the control device 20 when operating the ironless rotary electric machine 10 with a load exceeding the rating.
  • the refrigerant liquid 80 is supplied to the inner side 421 of the inner yoke 420 of the one gap 40, and the heated cylindrical coil 100 vaporizes the refrigerant liquid 80 sent to the cylindrical coil 100 through the slit 423, and the cylinder is generated by the latent heat of vaporization of the refrigerant liquid 80.
  • the coil 100 is cooled, the cylindrical coil 100 is so as not to exceed the allowable upper limit temperature t M during the rated operation, and adjusting the supply amount of the refrigerant liquid 80.
  • the drive system 1 further operates the control device 20 when the ironless rotary electric machine 10 is operated with a load exceeding the rating, and the cylindrical coil 100 is allowed to operate at the maximum allowable temperature during rated operation. operation and supplies the refrigerant liquid 80 inside 421 of t M inner yoke 420 of the first cavity 40 so as not to exceed, so that the cylindrical coil 100 by said operating does not fall below the minimum temperature t N of at least the refrigerant liquid 80 is vaporized a by repeating an operation to stop the supply of the refrigerant liquid 80 to the first gap 40, to maintain the cylindrical coil 100 within a range of an allowable upper limit temperature t M and the lower limit temperature t N, more preferred.
  • the control device 20 includes a pump 22 that supplies the refrigerant liquid 80 to the inner side 421 of the inner yoke 420 of the first gap 40, and an on / off switch for the pump 22.
  • a controller 23 that adjusts the supply amount of the refrigerant liquid 80 according to an off command, and the controller 23 operates the pump 22 in conjunction with the coil temperature detection sensor 21, so that the refrigerant liquid is placed inside the inner yoke 420 of the first gap 40. 80, the refrigerant liquid 80 is sent to the cylindrical coil 100 that generates heat through the slit 423, and the supply system of the refrigerant liquid 80 is adjusted.
  • the control device 20 supplies the refrigerant liquid 80 to the inner side 421 of the inner yoke 420 of the first gap 40, and the electromagnetic valve 24.
  • a controller 23 that adjusts the supply amount of the refrigerant liquid 80 according to an open / close command for the refrigerant, the controller 23 operates the electromagnetic valve 24 in conjunction with the coil temperature detection sensor 21, and is arranged at a position higher than the cylindrical coil 100.
  • a driving system that supplies the refrigerant liquid 80 from the container 81 to the inner side 421 of the inner yoke 420 of the first gap 40, sends the refrigerant liquid 80 to the cylindrical coil 100 that generates heat through the slit 423, and adjusts the supply amount of the refrigerant liquid 80. It can also be 1.
  • the controller 20 operates the circulating means 82, and the gas phase 800 of the refrigerant liquid 80 is transferred to the refrigerant liquid container 81. It can be set as the drive system 1 collect
  • the drive shaft 1000 is fixed to the center portion 440 of the cup-type mount 400 and is corelessly rotated so as to be rotatably connected to the center portion 240 of the lid-type mount 200.
  • a drive system 1 including the electric machine 10 may be used.
  • the cylindrical coil 100 of the ironless rotary electric machine 10 is formed in a cylindrical shape by a laminate of conductive metal sheets having linear portions that are covered with an insulating layer and spaced apart in the longitudinal direction. It is preferable that it is either a thing formed in a cylindrical shape with a linear conductor covered with an insulating layer.
  • the refrigerant liquid 80 is preferably any one of water, ethanol, ammonia, liquid nitrogen, liquid helium, and fluorine-based liquid.
  • FIG. 2 is a perspective view in which a part of the ironless rotary electric machine shown in FIG. 1 is cut away.
  • FIG. 4 is a perspective view in which a part of the ironless rotary electric machine shown in FIG. 3 is cut away.
  • FIG. 2 is a schematic diagram illustrating a coreless rotating electric machine including a motor, a driving method thereof, and a driving system including the same.
  • FIG. 2 is a schematic diagram illustrating a coreless rotating electric machine including a motor, a driving method thereof, and a driving system including the same. It is a schematic diagram of a drive test of a measured motor (CP50) of a coreless rotary electric machine including a rotor made of a cup-type mount that is rotatably opposed to a stator made of a lid-type mount including a cylindrical coil. It is detail drawing showing the dimension of the to-be-measured motor (CP50) shown by FIG. Even if the applied voltage of the motor under measurement (CP50) is set to 24V and the motor under measurement (CP50) is operated without supplying the liquid coolant (pure water) to the cylindrical coil, the upper limit temperature t at which the cylindrical coil is allowed.
  • CP50 measured motor
  • CP50 to-be-measured motor
  • FIG. 11 is a graph showing current (Arms) with respect to load torque T in the table of FIG. 11 and refrigerant (pure water) amount (ml) for 10 minutes.
  • load torque T 0.33 Nm, it represents the transition of the cylindrical coil temperature t, the pump on / off timing, and the cylindrical coil temperature t for 180 to 360 seconds from the start, and the transition of the pump on / off pulse. .
  • the basic structure of the ironless rotary electric machine 10 (hereinafter referred to as “coreless motor 10”) having the stator 2 including the cylindrical coil 100 of the present invention is characterized in that one end is fixed to the stator 2 first.
  • armature coil a laminated body of conductive metal sheets having linearly spaced linear portions covered with an insulating layer, or a cylindrical coil 100 formed into a cylindrical shape with a linear conductor covered with an insulating layer. It is an ironless cylindrical coil that can be energized, and preferably has a certain rigidity of 5 mm or less consisting of two or four layers.
  • the second feature of the basic structure is that one end surface of the cylindrical coil 100 is closed by the inner peripheral surface of the lid-type mount 200 constituting the stator 2, and the other open end surface of the cylindrical coil 100 is made of a magnetic material.
  • a magnetic field is formed by the cylindrical mount 300 or the cup mount 400 of the rotor 3 and the inner peripheral surface of the cylindrical mount 300 provided with a plurality of magnets (permanent magnets) 4 or the outer yoke 430 of the cup mount 400.
  • the coreless motor 10 has a structure that is inserted and arranged in a state of being floated in the air gap including the air gap or the first air gap 40.
  • the refrigerant liquid 80 when the refrigerant liquid 80 is sent into the inner surface of the cylindrical coil 100 or the inner yoke 420 of the rotor 3 including the cup-shaped mount 400, the refrigerant liquid 80 generates heat when passing through the air gap in which a magnetic field is formed. It is vaporized on the inner surface of the coil 100. Thereby, the inner surface of the cylindrical coil 100 is cooled by latent heat of vaporization, and the entire cylindrical coil including the outer surface is instantaneously cooled by heat transfer. This is one of the features of the cooling structure of the coreless motor of the present invention.
  • a third feature of the basic structure is that a control unit or control device 20 that operates when the coreless motor 10 is operated with a load exceeding the rating is disposed in association with the stator 2, and this increases the temperature rise of the operating cylindrical coil 100.
  • the coil temperature detection sensor 21 to be detected is included.
  • the control unit or controller 20 is, as a cylindrical coil 100 in conjunction with the coil temperature sensor 21 does not exceed the allowable upper limit temperature t M during the rated operation, by adjusting the supply amount of the refrigerant liquid 80 It is.
  • the coreless motor 10 of the present invention was subjected to drive tests assuming various overload conditions, as shown in FIGS. 13 to 18 and FIG.
  • FIG. 7 shows a motor to be measured according to an embodiment of a coreless rotary electric machine 10 including a rotor 3 composed of a cup-shaped mount 400 rotatably mounted on a stator 2 composed of a lid-shaped mount 200 including a cylindrical coil 100. It is a schematic diagram of the drive test apparatus of (CP50). FIG. 8 is a detailed view of the actual measurement structure of the measured motor (CP50).
  • m-link CPH80-E Electric power generated by the generator 32 is consumed by a variable load 33 (m-link VL300), and an arbitrary load is applied to the coreless motor 10 to drive it.
  • the current of the coreless motor 10 was measured by inserting a wattmeter 31 (HIOKI PW3336) between the drive unit or drive device 30 (three-phase PWM method “m-link” MLD750-ST) and the coreless motor 10.
  • the wattmeter 31 can measure the current I (A), the voltage V (V), and the power Pi
  • a control unit or control device 20 including a CPU passes through a device (GRAPHTEC GL-100) that records the temperature t and voltage by the coil temperature detection sensor 21 installed in the cylindrical coil 100, A temperature t and a voltage are input.
  • the control unit or the control device 20 operates the refrigerant liquid supply pump 22 (NITTO UPS-112) at an appropriately set temperature t, and further stops the refrigerant liquid 81 from the refrigerant liquid container 81 to the first gap 40 of the coreless motor 10.
  • a refrigerant liquid 80 is supplied.
  • the flow rate of the refrigerant liquid 80 is adjusted by varying the drive voltage of the refrigerant liquid supply pump 22 by the refrigerant flow variable device 26 (TOKYO-RIKOSHA TYPE RSA-5) provided in association with the control unit or the control device 20. I made it.
  • the coreless motor 10 further includes a plurality of slits 423 in the axial direction in the path 8 including the pipe 82 and the inner yoke 420 of the rotor 3.
  • the thickness 2.5 mm.
  • pure water 80 that is a refrigerant liquid is sprayed directly on the cylindrical coil 100, and the cylindrical coil 100 that generates heat by the latent heat of vaporization of the pure water 80 is cooled. This is to verify that the coreless motor 10 can be continuously operated even under load conditions exceeding the rating due to the effect and the cooling action.
  • the test procedure for the coreless motor 10 is as follows.
  • drive device 30 three-phase PWM method m-link MLD750-ST
  • the load torque T applied to the coreless motor 10 by the variable load 33 of the generator 32 is increased.
  • the flow rate of the refrigerant liquid (pure water) 80 is adjusted to match the setting of the load torque T by the refrigerant liquid flow rate variable device 26 provided in association with the control unit or the control device 20 (hereinafter referred to as “control device 20”). Adjustment is made by varying the drive voltage of the liquid supply pump 22.
  • a load torque T exceeding the rated torque T 0 is applied to the coreless motor 10 when the applied voltage to the drive device 30 is set to 24V. Then, as apparent from FIG. 12, the current increases in proportion to the increase in the load torque T, and the supply amount of the refrigerant liquid (pure water) 80 increases due to the heat generation of the cylindrical coil 100 associated therewith. From this, it can be confirmed that continuous operation in an overload state is possible as a result of the drive system 1 being correctly controlled.
  • FIG. 13 (a) is an excerpt of 720 seconds (12 minutes) from the start of the start of the coreless motor 10 in the continuous operation test, and it has been confirmed that the transition is almost the same after 720 seconds (12 minutes). is there.
  • FIG. 13B is an enlarged view of the temperature waveform of the cylindrical coil 100 for 3 minutes from 180 seconds (3 minutes) to 360 seconds (6 minutes) after starting, after the start of cooling.
  • the state of rapid cooling is easily determined from the figure.
  • the first reading temperature t L1 is 123 ° C., and when the refrigerant liquid 80 is supplied at a temperature t exceeding the first reading temperature and cooling starts, the temperature after rising due to overshoot is within 2 ° C. and is reversed immediately thereafter.
  • the second reading temperature t L2 after the inversion is 122 ° C.
  • the temperature after the fall due to the overshoot decreases by about 11 to 7 ° C.
  • the maximum temperature t c1 125 ° C.
  • the minimum temperature t c2 111 ° C.
  • FIG. 14 shows the results of a drive test of the coreless motor 10 in which the load torque T 2 is set to 0.36 Nm with the variable load 33 of the generator 32.
  • the running test of the coreless motor 10 the torque T 1 is maintained to 0.36 nm, the refrigerant liquid supply pump 22 on / off the cylindrical coil 100 fixed by a pulse operation of the The coreless motor 10 is operated to maintain the temperature range.
  • the refrigerant liquid (pure water) 80 is directly supplied to the cylindrical coil.
  • FIG. 14 (a) is an excerpt of 720 seconds (12 minutes) from the start of the start of the coreless motor 10 in the continuous operation test, and it has been confirmed that the change is almost the same after 720 seconds (12 minutes). is there.
  • the total pump operating time of the cooling fluid supply start from 10 minutes, when the torque T 1 but was 56 seconds, in the case of the torque T 2 is 85.5 seconds. During this time, the supply amount of the refrigerant liquid is 3.62 ml in the case of the torque T 1 but 5.53 ml in the case of the torque T 2 , which is 1.5 times that in the case of the torque T 1 (FIGS. 11 and 12). ).
  • FIG. 14B is an enlarged view of the temperature waveform of the cylindrical coil 100 for 3 minutes from 180 seconds (3 minutes) to 360 seconds (6 minutes) after starting, after the start of cooling.
  • the state of rapid cooling is easily determined from the figure.
  • the first reading temperature t L1 is 123 ° C.
  • the second reading temperature t L2 after the inversion is 122 ° C. Even if the supply of the refrigerant liquid 80 is stopped at a temperature t lower than the second reading temperature t L2 , the temperature after the fall due to the overshoot decreases by about 9 to 5 ° C.
  • the maximum temperature t c1 128 ° C.
  • the minimum temperature t c2 113 ° C.
  • the pulse interval is shorter than when the torque T 1 is 0.33 Nm.
  • the allowable upper limit temperature t M of the cylindrical coil 100 does not exceed 130 ° C., and the cylindrical coil 100 does not fall below the lower limit temperature t N at which the refrigerant liquid (pure water) evaporates.
  • the running test of the coreless motor 10 the torque T 1 is maintained to 0.39 nm, the refrigerant liquid supply pump 22 on / off the cylindrical coil 100 fixed by a pulse operation of the The coreless motor 10 is operated to maintain the temperature range.
  • the refrigerant liquid (pure water) 80 is directly supplied to the cylindrical coil.
  • FIG. 15 (a) is an excerpt of 720 seconds (12 minutes) from the start of the start of the coreless motor 10 in the continuous operation test, and it has been confirmed that the change is almost the same after 720 seconds (12 minutes). is there.
  • FIG. 15B is an enlarged view of the temperature waveform of the cylindrical coil 100 for 3 minutes from 180 seconds (3 minutes) to 360 seconds (6 minutes) after starting, after the start of cooling.
  • the state of rapid cooling is easily determined from the figure.
  • the first reading temperature t L1 is 123 ° C.
  • the second reading temperature t L2 after the inversion is 122 ° C. Even if the supply of the refrigerant liquid 80 is stopped at a temperature t lower than the second reading temperature t L2 , the temperature after the fall due to the overshoot decreases by about 13 to 5 ° C.
  • the maximum temperature t c1 128 ° C.
  • the minimum temperature t c2 109 ° C.
  • the allowable upper limit temperature t M of the cylindrical coil 100 does not exceed 130 ° C., and the cylindrical coil 100 does not fall below the lower limit temperature t N at which the refrigerant liquid (pure water) evaporates.
  • FIG. 16 shows the results of a drive test of the coreless motor 10 in which the load torque T 4 is set to 0.42 Nm with the variable load 33 of the generator 32.
  • the torque T 1 is constant temperature region a cylindrical coil 100 by on / off pulsing of the coolant fluid supply pump 22 maintained at 0.42Nm
  • the coreless motor 10 is actuated so as to maintain the above.
  • the refrigerant liquid (pure water) 80 is directly supplied to the cylindrical coil.
  • FIG. 16 (a) is an excerpt of 720 seconds (12 minutes) from the start of the start of the coreless motor 10 in the continuous operation test, and it has been confirmed that the transition is almost the same after 720 seconds (12 minutes). is there.
  • FIG. 16B is an enlarged view of the temperature waveform of the cylindrical coil 100 for 3 minutes from 180 seconds (3 minutes) to 360 seconds (6 minutes) after starting, after the start of cooling.
  • the state of rapid cooling is easily determined from the figure.
  • the first reading temperature t L1 is 123 ° C.
  • the second reading temperature t L2 after the inversion is 122 ° C. Even if the supply of the refrigerant liquid 80 is stopped at a temperature t lower than the second reading temperature t L2 , the temperature after the fall due to the overshoot decreases by about 15 to 7 ° C.
  • the maximum temperature t c1 127 ° C.
  • the minimum temperature t c2 107 ° C.
  • the allowable upper limit temperature t M of the cylindrical coil 100 does not exceed 130 ° C., and the cylindrical coil 100 does not fall below the lower limit temperature t N at which the refrigerant liquid (pure water) evaporates. by controlling so as to narrow the difference delta t of the maximum temperature t c1 and the minimum temperature t c2, it was confirmed that it enables normal continuous operation.
  • Figure 17 is a coreless motor 10, a 5-minute torque T 1, 5 minute torque T 4, further again the torque T 1 in 2 minutes, continuously driven by test results.
  • Fig. 17 (a) is an excerpt of 720 seconds (12 minutes) from the start of the start of the coreless motor 10 in the continuous operation test, and the change is almost the same even after 720 seconds (12 minutes). It is confirmed to do.
  • the first reading temperature t L1 is 123 ° C. When the refrigerant liquid 80 is supplied at a temperature t exceeding the first reading temperature and cooling starts, the temperature rise is reversed within about 1 ° C.
  • the second reading temperature t L2 after the inversion is 122 ° C.
  • the temperature after the fall due to the overshoot decreases by about 11 to 7 ° C.
  • the maximum temperature t c1 124 ° C. and the minimum temperature t of the cylindrical coil for 2 minutes from 180 seconds (3 minutes) to 300 seconds (5 minutes) from the start time when the load torque T 1 is set to 0.33 Nm.
  • the first reading temperature t L1 is 123 ° C.
  • the refrigerant liquid 80 is supplied at a temperature t exceeding the first reading temperature and cooling starts, the temperature rise is reversed at about 4 ° C.
  • the second reading temperature t L2 after the inversion is 122 ° C. Even if the supply of the refrigerant liquid 80 is stopped at a temperature t lower than the second reading temperature t L2 , the temperature after the fall due to the overshoot decreases from about 13 to 10 ° C.
  • FIG. 18 shows experimental results when the cooling start temperature t L1 and the cooling stop temperature t L2 of the cylindrical coil 100 are changed under the same conditions as the load torque shown in FIG.
  • the fluorine-based refrigerant liquid 80 is supplied to the coreless motor 10 to be operated, the cylindrical coil 100 can be moved between 50 ° C. and 60 ° C., while the fluorine-based refrigerant liquid 80 When no is supplied, it was confirmed that the cylindrical coil 100 exceeded 130 ° C. in about 10 minutes.
  • the cooling operation for the cylindrical coil 100 due to the latent heat of vaporization supplied to the cylindrical coil 100 and vaporized by the cylindrical coil 100 is appropriately controlled by the control device 20.
  • the control device 20 was revealed.
  • the cooling operation for the cylindrical coil 100 can be appropriately controlled, it is verified that the coreless motor 10 can be continuously operated. It was confirmed that it was possible to change the temperature control region of the coil by changing.
  • the present invention is a coreless rotating electrical machine machine that continuously operates at a load exceeding the rated load, its driving method, and a driving system including the same. It has at least the following configuration.
  • a coreless rotating electrical machine is typically a rotor with a plurality of magnets arranged on the inner peripheral surface of a cylindrical mount, or a cup-type mount in which a concentric inner yoke and outer yoke are integrated at the bottom.
  • a rotor having a plurality of magnets arranged on the outer peripheral surface of the inner yoke and / or the inner peripheral surface of the outer yoke with a gap therebetween in the circumferential direction, and a slit penetrating the inner yoke at the position of the inner yoke corresponding to the gap.
  • the stator which is one of the constituent requirements corresponding to the rotor, has an iron-free cylindrical coil that can be energized, and one end face of the cylindrical coil is fixed.
  • a lid-type mount is one of the constituent requirements corresponding to the rotor.
  • a path for supplying the refrigerant liquid to the space formed by the inside of the cylindrical coil fixed to the stator and the rotor and the center of the stator is provided. And when it is driven by the drive unit or the drive device, the control unit or the control device is operated, and the temperature of the cylindrical coil that generates heat is appropriately detected. It has the structure which adjusts the supply amount of the refrigerant
  • FIG. 7 is a schematic diagram of a drive test that the ironless core rotating electrical machine of the present invention, its driving method, and the driving system including the same can be applied to various load conditions exceeding the rating. It can be easily estimated from the load 33. Moreover, it goes without saying that the size is not limited as long as it has the same configuration as the coreless motor used in the driving test.
  • the coreless rotating electrical machine of FIG. 21 illustrated as a reference diagram is configured to supply the refrigerant liquid, but the position where the refrigerant liquid shown in FIGS. 3 and 4 is supplied is not the first gap but the second gap. This is a positioned example. Also in this embodiment, the refrigerant liquid sent to the second gap reaches the cylindrical coil where heat is generated, and the refrigerant liquid is vaporized there, and the cylindrical coil can be sufficiently cooled by the vaporization latent heat, thereby, with a load exceeding the rating. I think that it can be a coreless rotating electric machine to operate. However, a coreless motor drive test based on this configuration has not been performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Windings For Motors And Generators (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

定格負荷を超える負荷で常時運転する無鉄心回転電機機械、その駆動方法およびそれを含む駆動システムの実現を目指すものであり、より具体的には、通電可能な無鉄心の円筒コイル(100)の端面を固定する蓋型マウント(200)からなるステータ(2)と、蓋型マウントに回転自在に対置される円筒型またはカップ型マウント(300)で内周面に複数のマグネット(4)が配備されているロータ(3)とでエアギャップを含む空隙(40)を形成する無鉄心回転電気機械において、定格を超える負荷で稼働するときに、エアギャップを含む空隙に冷媒液(80)を供給し、発熱する円筒コイルが冷媒液を気化し、冷媒液の気化潜熱で円筒コイルを冷却し、円筒コイルが定格運転時の許容上限温度を超えないように、冷媒液の供給量を調整することによって、定格を超える負荷で稼働するようにした無鉄心回転電気機械、その駆動方法、および、それを含む駆動システム。

Description

定格を超える負荷で稼働するための無鉄心回転電気機械、その駆動方法、および、それを含む駆動システム
 本発明は、定格を超える負荷で稼働するための無鉄心回転電気機械、その駆動方法、および、それを含む駆動システムに関する。
 本発明は、より具体的には、通電可能な無鉄心の円筒コイルの端面を固定する蓋型マウントからなるステータ(固定子)と、蓋型マウントに回転自在に対置される円筒型またはカップ型マウントで内周面に複数のマグネットが配備されているロータ(回転子)とでエアギャップを含む空隙を形成する無鉄心回転電気機械において、定格を超える負荷で稼働するときに、エアギャップを含む空隙に冷媒液を供給し、発熱する円筒コイルが冷媒液を気化し、冷媒液の気化潜熱で円筒コイルを冷却し、円筒コイルが定格運転時の許容上限温度を超えないように冷媒液の供給量を調整することによって、定格を超える負荷で稼働するようにした無鉄心回転電気機械、その駆動方法、および、それを含む駆動システムに関する。
 電動モータと発電機は同じ構造を有する回転電気機械である。回転電気機械について、電気エネルギーを機械エネルギーに変換する電動モータを用いて説明する。電動モータは、磁界と電流の相互作用で発生する電磁力を出力させるものである。分類方法はさまざまであるが、大きくはブラシ付きのDCモータとブラシレスモータに区分され、前者は磁石をステータ(固定子)に、コイルをロータ(回転子)とし、後者は逆にコイルをステータ(固定子)に、磁石をロータ(回転子)としており、いずれも回転子より外部へ電磁力を出力するものである。一方磁界発生方法の違いにより巻線界磁型と永久磁石型にも区分され、コイルに鉄心(コア)が有るものとないものにも区分される。上記区分にしたがって、永久磁石界磁型の無鉄心ブラシレス電動モータが本発明の対象になる。
 本発明は、永久磁石界磁型で無鉄心の円筒コイルからなるコアレスのブラシレスモータに関する。ステータの無鉄心の円筒コイルは、絶縁層で覆われた線状部を有する導電性金属シートの積層体から構成するか、または、絶縁層で覆われた線状導体から構成するかのいずれかである。
 電動モータは、始動時に定格電流を瞬間的に超えることはあっても、通常、定格を超える状態で連続運転されることを想定していない。電動モータを過負荷の状態、つまり定格以上で連続運転すると、電流によって電動モータの円筒コイルは想定以上に発熱する。
 電動モータの構造および機能にもよるが、本発明に関連し試験用モータとして製作されたコアレスモータ(CP50)を用いて冷媒液供給の制御部を作動させずに定格を超えた各条件で過負荷試験してみると、後述されるように、僅か数十秒で円筒コイルの許容上限温度130℃を超える。このことから容易に想定され得る最悪の事態は、円筒形コイルが焼損し破壊されることである。たとえ破壊にまで至らなくとも、性能面から、コアレスモータの長時間の正常運転を期待することはできなくなる。円筒コイルの発熱やマグネットの加熱に伴う電動モータの性能低下を防ぐため、電動モータに冷却機能を付加することは、いうまでもなく周知であり、慣用手段に過ぎない。
 そうした冷却機能の有無に拘わらず、電動モータの通常運転時にコイルやマグネットの温度上昇に対して保証された使用限度が、製造元から定格として表示される(非特許文献1の41頁)。定格は、製造元が保証する独自基準であるが、カタログや諸元表に記載される。それは、例えば、モータが所定の電圧で良好な特性を発揮しながら発生する最大出力が定格出力になり、定格出力で運転されているときの回転速度は定格回転速度で、そのときのトルクTが定格トルクであり、そのときの電流が定格電流である。使用を指定していない場合は、無期限に運転できる連続定格を定格としている。その他の定格として、運転期間を限定した短時間定格や、周期的に運転と停止を繰り返す反復定格などがある。
 本発明は、過負荷で常時運転する発想に基づき開発された定格を超える負荷で稼働するためのコアレスモータに関する。ここでいう「定格」は、例えば、所定の電圧でコアレスモータを定格トルクまたは定格出力で稼働する場合を指す。
 因みに、試験用モータとして製作されたコアレスモータ(CP50)は、いわゆる電動モータである。詳細は後述されるが、ここでいう定格は、冷媒液の供給量はゼロにして、冷媒液供給の制御部を作動せずに連続運転を行い、かつ、円筒コイルの温度が許容上限温度130℃を超えない条件としたものであり、定格トルクT=0.28Nm、定格電流I=9.7Arms、定格回転速度n=6537rpm、定格出力P=191.67Wである(図11)。
 次に円筒コイルの発熱やマグネットの加熱に伴う電動モータの性能低下を防ぐための冷却機能を電動モータに付加することは周知である。このことは以下の従来技術から認識される。
 特表2012-523817号公報(特許文献1)には、コイル周囲にコイルの作動温度よりも低い沸点を有する冷媒液を吸収し、コイルを濡らす拡散材料を配して沸騰する冷媒液の気化熱でコイルを冷却することが記載されている。
 特開平10-336968公報(特許文献2)には、ロータの遠心ポンプ作用と高低差を利用してラジエータを含む気液二相を冷媒循環させ、車両用回転電電機内を冷却するようにしたシステムが記載されている。
 特開2006-14522号公報(特許文献3)には、発電機内に沸点温度が許容限度温度以下の冷媒を貯蔵し、発電機の運転時に冷媒を気化させて発電機内で液化することを交互に繰り返しながら効率的に発電機を冷却することが記載されている。
 特開2006-158105号公報(特許文献4)には、冷媒のリザーブタンクを含む自己循環経路において液相の冷媒をロータの発熱で気化し、気化冷媒で効率よく冷却することが記載されている。
 特開2009-118693号公報(特許文献5)には、ロータ冷却装置において、冷媒がロータの冷却壁面に偏在しないように、壁面に向けて少量ずつ連続的に供給し、気化潜熱で冷却する方法が記載されている。
 特開2015-95961号公報(特許文献6)には、モータの密閉ケース内で、該ケース内に封入された冷媒をステータのコイル熱で気化し、放熱部で液化し、密閉ケース内で循環するモータの冷却構造が記載されている。この冷却構造は、特許文献3や特許文献4に記載されたものと共通する。
 特開2009-118686号公報(特許文献7)には、マグネットの冷却とコイルの冷却とに対してそれぞれの冷媒流通経路を設け、それらが切り替え可能な手段を配した回転電機の冷却構造が記載されている。
 特開2014-17968号公報(特許文献8)には、ハイブリット車両に搭載される回転電機の冷却システムが記載されている。その回転電機は、電磁鋼板を多数枚積層したステータコアに巻装されたコイル部を含むものである。これに開示された鉄心を有する回転電機の冷却システムは、コイル部の巻線温度が180℃以上になることが10回を超えると、コイル部の巻線周囲の絶縁被膜が蒸発または気化して消失し、放電耐圧性能を低下させてしまうので、そうならないように、特定部位の巻線周囲に冷媒の付着状態を形成するように冷媒の供給量を調整する制御部を配備するようにしたものである。
 特開平6-217496号公報(特許文献9)には、発電機のロータの内側に蒸発凝縮室を設け、外部から冷却液を軸方向にジェット流で送り込み、遠心力を利用して蒸発凝縮室側に偏位して流動させる冷却液室に連接する液室に廃液用のインペラが設けられた発電機が記載されている。
 特開平5-308752号公報(特許文献10)には、ロータと該ロータを囲む環状のステータとが機密状態のハウジング内に収められたモータにおいて、作動流体が封入されたハウジング内の環状の空洞に連通するパイプと毛細管作用を有するウイットを配したモータの放熱構造が記載されている。
 特開平8-130856号公報(特許文献11)には、円筒形コアに巻かれたコイルからなる電気自動車用駆動装置モータにおいて冷却用オイルポンプから冷却油噴射部を介してコイルエンドに滴下する冷却回路が記載されている。
特表2012-523817号公報 特開平10-336968号公報 特開2006-14522号公報 特開2006-158105号公報 特開2009-118693号公報 特開2015-95961号公報 特開2009-118686号公報 特開2014-17968号公報 特開平6-217496号公報 特開平5-308752号公報 特開平8-130856号公報
『史上最強カラー図解 最新モータ技術のすべてがわかる本』赤津 観監修 ナツメ出版企画株式会社 (2013年7月20日発行)
 ステータとロータという部品の電磁気作用によって回転する電動モータに内在する技術的課題は、ステータに配備される電機子のコイルの発熱作用である。電動モータの能力や大小は、通常、電動モータの出力で表現される。その出力Pは、回転速度n(rpm)とトルクT(N・m)との積で表される。電動モータの入力電力P(W)とすると、入力電力Pと出力Pとの差は熱損失Pとして熱エネルギーに変換されて周囲に放出される。これが電機子コイルの発熱作用であり、電動モータの避け難い技術的問題である。例えば、コアレスモータに限らず、電動モータは、定格を超える負荷で稼働し続けると、その発熱作用によって短時間で電機子コイルの許容上限温度を突破し、焼損し破壊されることは当業者にとって周知の事項である。それはまた、電機子コイルの発熱作用が電機子コイルの抵抗値を高め電動モータの出力変動を惹起するという問題を内在しており、したがって、電機子コイルを一定温度範囲に完全制御し出力変動を最小化することは、電動モータの究極的技術的課題でもある。
 その課題解決は、電機子コイルの温度をいかに制御するかということになる。これまで見てきたように様々な提案がなされてきたが、電機子コイルを一定温度範囲に完全制御するという究極的課題に対する抜本的な課題解決には至っていない。

 
 ところが、本発明者らは、過負荷で常時運転する発想に基づく電動モータの開発に挑戦し、定格を超える負荷で稼働するための無鉄心回転電気機械、その駆動方法、および、それを含む駆動システムを実現し、この技術的課題を解決するに至った。このことは、本発明の一実施形態に基づき製作されたコアレスモータ(CP50)を用いた駆動試験から確認することができる。
 コアレスモータ(CP50)の電圧を24Vに設定し、トルクを測定した。これが定格トルクT=0.28Nmである。本発明者らは、コアレスモータ(CP50)に定格トルクTを超える負荷を連続的に付与しながら、電機子コイルである円筒コイルの発熱を完全に制御し、それにより、コアレスモータ(CP50)の長時間運転が可能であることを確認した。
 本発明の第1の態様は、図1の断面模式図および図2の破断斜視図に示される定格を超える負荷で稼働するための無鉄心回転電気機械10である。
 それは、通電可能な無鉄心の円筒コイル100の端面101を固定する蓋型マウント200からなるステータ2と、蓋型マウント200に回転自在に対置される円筒型マウント300で円筒型マウント300の内周面310に複数のマグネット4が配備されているロータ3とでエアギャップを含む空隙40形成し、空隙40に冷媒液80を供給する経路8をステータ2に設け、ステータ2に関連する制御部20と、ロータ3に関連する駆動部30と、を配備する、定格を超える負荷で稼働するための無鉄心回転電気機械10である。
 それはまた、ステータ2に、経路8に連通する冷媒液容器81を配備し、冷媒液容器81と空隙40との間を連通する循環手段82をさらに配備することができる。
 本発明の第1の態様から明らかなように、無鉄心回転電気機械10は、駆動部30を作動し、定格を超える負荷で稼働するときに、制御部20を作動し、空隙40に冷媒液80を供給し、発熱する円筒コイル100が冷媒液80を気化し、冷媒液80の気化潜熱で円筒コイル100を冷却し、円筒コイル100が定格運転時の許容上限温度tを超えないように、冷媒液80の供給量を調整することによって、定格を超える負荷で稼働するようにしたことを特徴とする。
 本発明の一つの実施形態として、無鉄心回転電気機械10は、それが定格を超える負荷で稼働されるときに、制御部20が作動し、円筒コイル100が許容上限温度tを超えないように冷媒液80の供給量を調整する動作と、該動作によって円筒コイル100が少なくとも冷媒液80が気化する下限温度tを下回らないように空隙40に対する冷媒液80の供給を止める動作とを繰り返すことによって、円筒コイル100を許容上限温度tと下限温度tとの範囲に維持することが、より好ましい。
 本発明のもう一つの実施形態として、制御部20は、図5の模式図に示されるように、円筒コイル100の温度を検出するコイル温度検知センサ21と、コイル温度検知センサ21と連動して冷媒液80を空隙40に供給するポンプ22と、ポンプ22に対するオン・オフ指令によって冷媒液80の供給量を調整するコントローラ23を含むことができる。
 本発明のさらにもう一つの実施形態として、制御部20は、図6の模式図に示されるように、円筒コイル100の温度を検出するコイル温度検知センサ21と、コイル温度検知センサ21と連動して円筒コイル100より高い位置に配置された冷媒液容器81から空隙40に冷媒液80を供給する電磁弁24と、電磁弁24に対する開閉指令によって冷媒液80の供給量を調整するコントローラ23を含むこともできる。
 本発明の他の実施形態として、制御部20は、図5または図6に示されるように、循環手段82により冷媒液80の気相800を冷媒液容器81に液相80で回収するようにしてもよい。
 本発明のさらに他の実施形態として、図1および図2に示されるように、駆動シャフト1000が円筒型マウント300の中心部340に固定し、蓋型マウント200の中心部240に回転自在に連結するように配備された無鉄心回転電気機械10にすることができる。
 本発明の第2の態様は、図3の断面模式図および図4の破断斜視図に示される定格を超える負荷で稼働するための無鉄心回転電気機械10である。
 それは、通電可能な無鉄心の円筒コイル100の一方の端面101を固定する蓋型マウント200からなるステータ2と、蓋型マウント200に回転自在に対置されるカップ型マウント400とからなるロータ3とによってエアギャップを含む第1空隙40を形成し、ロータ3を構成するカップ型マウント400は、一方は開放されており、他方は閉じられた底部410を有し、底部410に同心円のインナーヨーク420およびアウターヨーク430を一体化し、インナーヨーク420の外周面422および/またはアウターヨーク430の内周面431に複数のマグネット4を互いに円周方向に間隙41を空けて配備し、間隙41に対応するインナーヨーク420の位置にインナーヨーク420を貫通するスリット423を設けている。
 それはさらに、円筒コイル100の他方の端面102をカップ型マウント400の底部410との間で隙間411を残して円筒コイル100を第1空隙40に浮かせて配置し、カップ型マウント400の一方の端面401と蓋型マウント200との間に円筒コイル100の内周側110に第2空隙50が形成され、円筒コイル100の外周側120に第3空隙60が形成され、第1空隙40に冷媒液80を供給する経路8がステータ2に設けられ、ステータ2に関連する制御部20と、ロータ3に関連する駆動部30と、が配備される、定格を超える負荷で稼働するための無鉄心回転電気機械10である。
 それはまた、ステータ2に、経路8に連通する冷媒液容器81を配備し、冷媒液容器81と第1空隙40との間を連通する循環手段82をさらに配備することができる。
 本発明の第2の態様から明らかなように、無鉄心回転電気機械10は、駆動部30を作動し、定格を超える負荷で稼働するときに、制御部20を作動し、第1空隙40のインナーヨーク420の内側421に冷媒液80を供給し、スリット423を介して円筒コイル100に送られる冷媒液80を発熱する円筒コイル100が気化し、冷媒液80の気化潜熱で円筒コイル100を冷却し、円筒コイル100が定格運転時の許容上限温度tを超えないように冷媒液80の供給量を調整することによって、定格を超える負荷で稼働するようにしたことを特徴とする。
 本発明の一つの実施形態として、無鉄心回転電気機械10は、それが定格を超える負荷で稼働されるときに、制御部20が作動し、円筒コイル100が許容上限温度tを超えないように冷媒液80の供給量を調整する動作と、該動作によって円筒コイル100が少なくとも冷媒液80が気化する下限温度tを下回らないように第1空隙40に対する冷媒液80の供給を止める動作とを繰り返すことによって、円筒コイル100を許容上限温度tと下限温度tとの範囲に維持することが、より好ましい。
 本発明のもう一つの実施形態として、制御部20は、図5の模式図に示されるように、円筒コイル100の温度を検出するコイル温度検知センサ21と、コイル温度検知センサ21と連動して第1空隙40のインナーヨーク420の内側421に冷媒液80を供給するポンプ22と、ポンプ22に対するオン・オフ指令によって冷媒液80の供給量を調整するコントローラ23を含むことができる。
 本発明のさらにもう一つの実施形態として、制御部20は、図6の模式図に示されるように、円筒コイル100の温度を検出するコイル温度検知センサ21と、コイル温度検知センサ21と連動して円筒コイル100より高い位置に配置された冷媒液容器81から第1空隙40のインナーヨーク420の内側421に冷媒液80を供給する電磁弁24と、電磁弁24に対する開閉指令によって冷媒液80の供給量を調整するコントローラ23を含むこともできる。
 本発明の他の実施形態として、制御部20は、図5または図6に示されるように、循環手段82により冷媒液80の気相800を冷媒液容器81に液相80で回収するようにしてもよい。
 本発明のさらに他の実施形態として、図3および図4に示されるように、駆動シャフト1000がカップ型マウント400の中心部340に固定し、蓋型マウント200の中心部240に回転自在に連結するように配備された無鉄心回転電気機械10にすることができる。
 本発明の第1および第2の態様における一つの実施形態として、円筒コイル100は、絶縁層で覆われた軸方向に離間する線状部を有する導電性金属シートの積層体で円筒形に形成されるものか、または、絶縁層で覆われた線状導体で円筒形に形成されるものの、いずれかであることが好ましい。
 本発明の第1および第2の態様における他の実施形態として、冷媒液80は、水、エタノール、アンモニア、液体窒素、液体ヘリウム、フッ素系液体のいずれかであることが好ましい。
 本発明の第3の態様は、図1および図2に示される定格を超える負荷で稼働するための無鉄心回転電気機械10の駆動方法である。
 それは、通電可能な無鉄心の円筒コイル100の端面101を固定する蓋型マウント200からなるステータ2と、蓋型マウント200に回転自在に対置される円筒型マウント300で内周面310に複数のマグネット4が配備されているロータ3とによってエアギャップを含む空隙40を形成し、空隙40に冷媒液80を供給する経路8をステータ2に設け、ステータ2に関連する制御部20、ロータ3に関連する駆動部30と、を配備する、定格を超える負荷で稼働するための無鉄心回転電気機械10の駆動方法である。
 なお、本発明の駆動方法において、無鉄心回転電気機械10は、ステータ2に、経路8に連通する冷媒液容器81を配備し、冷媒液容器81と空隙40との間を連通する循環手段82をさらに配備することができる。
 発明の第3の態様から明らかなように、それは、駆動部30を作動し、定格を超える負荷で無鉄心回転電気機械10を稼働する工程と、制御部20を作動し、空隙40に冷媒液80を供給する工程と、発熱する円筒コイル100が冷媒液80を気化し、冷媒液80の気化潜熱で円筒コイル100を冷却する工程と、円筒コイル100が定格運転時の許容上限温度tを超えないように、冷媒液80の供給量を調整する工程と、を含むことを特徴とする。
 本発明の一つの実施形態として、それはさらに、制御部20を作動し、円筒コイル100が少なくとも冷媒液80が気化する下限温度tを下回らないように空隙40に対する冷媒液80の供給を止める工程を含み、該工程と空隙40に冷媒液80を供給する工程とを繰り返すことによって、円筒コイル100を許容上限温度tと下限温度tとの範囲に維持する工程をさらに含むことが、より好ましい。
 本発明のもう一つの実施形態として、それはまた、制御部20が、図5に示されるように、円筒コイル100の温度を検出するコイル温度検知センサ21と、冷媒液80を供給するポンプ22と、ポンプ22に対するオン・オフ指令によって冷媒液80の供給量を調整するコントローラ23をさらに含み、コイル温度検知センサ21を作動し、円筒コイル100の温度を検出する工程と、該工程に連動してコントローラ23がポンプ22を作動し、空隙40に冷媒液80を供給する工程および冷媒液80の供給量を調整する工程と、を含む駆動方法とすることができる。
 本発明のさらにもう一つの実施形態として、それはまた、制御部20が、図6に示されるように、円筒コイル100の温度を検出するコイル温度検知センサ21と、コイル温度検知センサ21と連動して円筒コイル100より高い位置に配置された冷媒液容器81から空隙40に冷媒液80を供給する電磁弁24と、電磁弁24に対する開閉指令によって冷媒液80の供給量を調整するコントローラ23とを含み、コイル温度検知センサ21を作動し、円筒コイル100の温度を検出する工程と、該工程に連動してコントローラ23が電磁弁24を作動し、冷媒液容器81から空隙40に冷媒液を供給する工程および冷媒液80の供給量を調整する工程と、を含む駆動方法でもよい。
 本発明の他の実施形態として、それはさらに、図5または図6に示されるように、制御部20が循環手段82を作動し、冷媒液80の気相800を冷媒液容器81に液相80で回収する工程をさらに含む駆動方法とすることもできる。
 本発明のもう一つの他の実施形態として、それはさらに、駆動シャフト1000が円筒型マウント300の中心部340に固定され、蓋型マウント200の中心部240に回転自在に連結された無鉄心回転電気機械10の駆動方法とすることができる。
 本発明の第4の態様は、図3および図4に示される定格を超える負荷で稼働するための無鉄心回転電気機械10の駆動方法である。
 それは、通電可能な無鉄心の円筒コイル100の一方の端面101を固定する蓋型マウント200からなるステータ2と、蓋型マウント200に回転自在に対置されるカップ型マウント400とからなるロータ3とによってエアギャップを含む第1空隙40を形成し、ロータ3を構成するカップ型マウント400は、一方は開放されており、他方は閉じられた底部410を有し、底部410に同心円のインナーヨーク420およびアウターヨーク430を一体化し、インナーヨーク420の外周面422および/またはアウターヨーク430の内周面431に複数のマグネット4を互いに円周方向に間隙41を空けて配備し、間隙41に対応するインナーヨーク420の位置にインナーヨーク420を貫通するスリット423を設けている。
 それはさらに、円筒コイル100の他方の端面102をカップ型マウント400の底部410との間で隙間411を残して円筒コイル100を前記第1空隙40に浮かせて配置し、カップ型マウント400の一方の端面401と蓋型マウント200との間に円筒コイル100の内周側110に第2空隙50が形成され、円筒コイル100の外周側120に第3空隙60が形成され、第1空隙40に冷媒液80を供給する経路8がステータ2に設けられ、ステータ2に関連する制御部20と、ロータ3に関連する駆動部30と、が配備される、定格を超える負荷で稼働するための無鉄心回転電気機械10の駆動方法である。
 なお、本発明の駆動方法において、無鉄心回転電気機械10は、ステータ2に、経路8に連通する冷媒液容器81を配備し、冷媒液容器81と第1空隙40との間を連通する循環手段82をさらに配備することができる。
 本発明の第4の態様から明らかなように、それは、駆動部30を作動し、定格を超える負荷で前記無鉄心回転電気機械10を稼働する工程と、制御部20を作動し、第1空隙40のインナーヨーク420の内側421に冷媒液80を供給し、スリット423を介して発熱する円筒コイル100に冷媒液80を送る工程と、発熱する円筒コイル100が冷媒液80を気化し、冷媒液80の気化潜熱で円筒コイル100を冷却する工程と、円筒コイル100が定格運転時の許容上限温度tを超えないように、冷媒液80の供給量を調整する工程と、
を含むことを特徴とする。
 本発明の一つの実施形態として、それはさらに、制御部20を作動し、円筒コイル100が少なくとも冷媒液80が気化する下限温度tを下回らないように第1空隙40に対する冷媒液80の供給を止める工程を含み、該工程と第1空隙40のインナーヨーク420の内側421に冷媒液80を供給しスリット423を介して発熱する円筒コイル100に冷媒液80を送る工程とを繰り返すことによって、円筒コイル100を許容上限温度tと下限温度tとの範囲に維持する工程をさらに含むことが好ましい。
 本発明のもう一つの実施形態として、それはまた、制御部20が、図5に示されるように、円筒コイル100の温度を検出するコイル温度検知センサ21と、冷媒液80を供給するポンプ22と、ポンプ22に対するオン・オフ指令によって冷媒液80の供給量を調整するコントローラ23をさらに含み、コイル温度検知センサ21を作動し、円筒コイル100の温度を検出する工程と、該工程に連動してコントローラ23がポンプ22を作動し、第1空隙40のインナーヨーク420の内側421に冷媒液80を供給し、スリット423を介して発熱する円筒コイル100に冷媒液80を送る工程および冷媒液80の供給量を調整する工程と、を含む駆動方法とすることができる。
 本発明のさらにもう一つの実施形態として、それはまた、制御部20が、図6に示されるように、円筒コイル100の温度を検出するコイル温度検知センサ21と、コイル温度検知センサ21と連動して円筒コイル100より高い位置に配置された冷媒液容器81から冷媒液80を第1空隙40に供給する電磁弁24と、電磁弁24に対する開閉指令によって冷媒液80の供給量を調整するコントローラ23とを含み、コイル温度検知センサ21を作動し、円筒コイル100の温度を検出する工程と、該工程に連動してコントローラ23が電磁弁24を作動し、第1空隙40のインナーヨーク420の内側421に冷媒液80を供給し、スリット423を介して発熱する円筒コイル100に冷媒液80を送る工程および冷媒液80の供給量を調整する工程と、含む駆動方法とすることもできる。
 本発明の他の実施形態として、それはさらに、図5または図6に示されるように、制御部20が循環手段82を作動し、冷媒液80の気相800を冷媒液容器81に液相80で回収する工程をさらに含む駆動方法とすることもできる。
 本発明のもう一つの他の実施形態として、それはさらに、駆動シャフト1000がカップ型マウント400の中心部440に固定され、蓋型マウント200の中心部240に回転自在に連結された無鉄心回転電気機械10の駆動方法とすることができる。
 本発明の第3および第4の態様における一つの実施形態として、円筒コイル100は、絶縁層で覆われた軸方向に離間する線状部を有する導電性金属シートの積層体で円筒形に形成されるものか、または、絶縁層で覆われた線状導体で円筒形に形成されるものの、いずれかであることが好ましい。
 本発明の第3および第4の態様における他の実施形態として、冷媒液80は、水、エタノール、アンモニア、液体窒素、液体ヘリウム、フッ素系液体のいずれかであることが好ましい。
 本発明の第5の態様は、図1および図2の無鉄心回転電気機械10の模式図と図5および図6の駆動システム1の模式図とよって示される、無鉄心回転電気機械10を、定格を超える負荷で稼働するための駆動システム1である。
 それは、通電可能な無鉄心の円筒コイル100の端面101を固定する蓋型マウント200からなるステータ2と、蓋型マウント200に回転自在に対置される円筒型マウント300で円筒型マウント300の内周面310に複数のマグネット4が配備されているロータ3とによってエアギャップを含む空隙40を形成し、ステータ2に空隙40に冷媒液80を供給する経路8を有する無鉄心回転電気機械10と、ロータ3と連動して作動する無鉄心回転電気機械10を駆動する駆動装置30と、ステータ2に配備される円筒コイル100の温度を検出するコイル温度検知センサ21と連動して空隙40に冷媒液80を供給する制御装置20とからなる、無鉄心回転電気機械10を、定格を超える負荷で稼働するための駆動システム1である。
 なお、本発明の駆動システム1において、無鉄心回転電気機械10は、ステータ2に、経路8に連通する冷媒液容器81を配備し、冷媒液容器81と第1空隙40との間を連通する循環手段82をさらに配備することができる。
 本発明の第5の態様から明らかなように、駆動システム1は、駆動装置30を作動し、定格を超える負荷で無鉄心回転電気機械10を稼働するときに、制御装置20を作動し、空隙40に冷媒液80を供給し、発熱する円筒コイル100が冷媒液80を気化し、冷媒液80の気化潜熱で円筒コイル100を冷却し、円筒コイル100が定格運転時の許容上限温度tを超えないように、冷媒液80の供給量を調整することによって、定格を超える負荷で無鉄心回転電気機械10を稼働するようにしたことを特徴とする。
 本発明の一つの実施形態として、駆動システム1はさらに、定格を超える負荷で無鉄心回転電気機械10を稼働するときに、制御装置20を作動し、円筒コイル100が定格運転時の許容上限温度tを超えないように空隙40に冷媒液80を供給する動作と、該動作によって円筒コイル100が少なくとも冷媒液80が気化する下限温度tを下回らないように空隙40に対する冷媒液80の供給を止める動作とを繰り返すことによって、円筒コイル100を許容上限温度tと下限温度tとの範囲に維持することが、より好ましい。
 本発明のもう一つの実施形態として、制御装置20が、図5に示されるように、冷媒液80を供給するポンプ22と、ポンプ22に対するオン・オフ指令によって冷媒液80の供給量を調整するコントローラ23とを含み、コイル温度検知センサ21に連動してコントローラ2がポンプ22を作動し、空隙40に冷媒液80を供給すると共に冷媒液80の供給量を調整する駆動システム1とすることができる。
 本発明のさらにもう一つの実施形態として、制御装置20が、図6に示されるように、冷媒液80を供給する電磁弁24と、電磁弁24に対する開閉指令によって冷媒液80の供給量を調整するコントローラ23とを含み、コイル温度検知センサ21と連動して電磁弁24を作動し、円筒コイル100より高い位置に配置された冷媒液容器81から空隙40に冷媒液80を供給すると共に冷媒液80の供給量を調整する駆動システム1とすることもできる。
 本発明の他の実施形態として、それはさらに、図5または図6に示されるように、制御装置20が循環手段82を作動し、冷媒液80の気相800を冷媒液容器81に液相80で回収する駆動システム1とすることができる。
 本発明のもう一つの他の実施形態として、それはさらに、駆動シャフト1000を円筒型マウント300の中心部340に固定し、蓋型マウント200の中心部240に回転自在に連結するように配備された無鉄心回転電気機械10からなる駆動システム1とすることもできる。
 本発明の第6の態様は、図3および図4の無鉄心回転電気機械10の模式図と図5および図6の駆動システム1の模式図とよって示される、無鉄心回転電気機械10を定格を超える負荷で稼働するための駆動システム1である。
 それは、通電可能な無鉄心の円筒コイル100の一方の端面101を固定する蓋型マウント200からなるステータ2と、蓋型マウント200に回転自在に対置されるカップ型マウント400とからなるロータ3とによってエアギャップを含む第1空隙40を形成し、ロータ3を構成するカップ型マウント400は、一方は開放され他方は閉じられた底部410を有し、底部410に同心円のインナーヨーク420およびアウターヨーク430を一体化し、インナーヨーク420の外周面422および/またはアウターヨーク430の内周面431に複数のマグネット4を互いに円周方向に間隙41を空けて配備し、間隙41に対応するインナーヨーク420の位置にインナーヨーク420を貫通するスリット423を設けている。
 それはさらに、円筒コイル100の他方の端面102を、カップ型マウント400の底部410との間で隙間411を残して円筒コイル100を第1空隙40に浮かせて配置し、カップ型マウント400の一方の端面401と蓋型マウント200との間に円筒コイル100の内周側110に第2空隙50が形成され、円筒コイル100の外周側120に第3空隙60が形成され、ステータ2に第1空隙40に冷媒液80を供給する経路8を有する無鉄心回転電気機械10と、ロータ3と連動して作動する無鉄心回転電気機械10を駆動する駆動装置30と、ステータ2に配備されるコイル温度検知センサ21と連動して第1空隙40に冷媒液80を供給する制御装置20とからなる、定格を超える負荷で無鉄心回転電気機械10を稼働するための駆動システム1である。
 なお、本発明の駆動システム1において、無鉄心回転電気機械10は、ステータ2に、経路8に連通する冷媒液容器81を配備し、冷媒液容器81と第1空隙40との間を連通する循環手段82をさらに配備することができる。
 本発明の第6の態様から明らかなように、駆動システム1は、駆動装置30を作動し、定格を超える負荷で無鉄心回転電気機械10を稼働するときに、制御装置20を作動し、第1空隙40のインナーヨーク420の内側421に冷媒液80を供給し、発熱する円筒コイル100がスリット423を介して円筒コイル100に送られる冷媒液80を気化し、冷媒液80の気化潜熱で円筒コイル100を冷却し、円筒コイル100が定格運転時の許容上限温度tを超えないように、冷媒液80の供給量を調整することを特徴とする。
 本発明の一つの実施形態として、駆動システム1はさらに、定格を超える負荷で無鉄心回転電気機械10を稼働するときに、制御装置20を作動し、円筒コイル100が定格運転時の許容上限温度tを超えないように第1空隙40のインナーヨーク420の内側421に冷媒液80を供給する動作と、該動作によって円筒コイル100が少なくとも冷媒液80が気化する下限温度tを下回らないように第1空隙40に対する冷媒液80の供給を止める動作とを繰り返すことによって、円筒コイル100を許容上限温度tと下限温度tとの範囲に維持することが、より好ましい。
 本発明のもう一つの実施形態として、制御装置20が、図5に示されるように、第1空隙40のインナーヨーク420の内側421に冷媒液80を供給するポンプ22と、ポンプ22に対するオン・オフ指令によって冷媒液80の供給量を調整するコントローラ23とを含み、コイル温度検知センサ21に連動してコントローラ23がポンプ22を作動し、第1空隙40のインナーヨーク420の内側421に冷媒液80を供給し、スリット423を介して発熱する円筒コイル100に冷媒液80を送ると共に冷媒液80の供給量を調整する駆動システム1とすることができる。
 本発明のさらにもう一つの実施形態として、制御装置20が、図6に示されるように、第1空隙40のインナーヨーク420の内側421に冷媒液80を供給する電磁弁24と、電磁弁24に対する開閉指令によって冷媒液80の供給量を調整するコントローラ23とを含み、コイル温度検知センサ21と連動してコントローラ23が電磁弁24を作動し、円筒コイル100より高い位置に配置された冷媒液容器81から第1空隙40のインナーヨーク420の内側421に冷媒液80を供給し、スリット423を介して発熱する円筒コイル100に冷媒液80を送ると共に冷媒液80の供給量を調整する駆動システム1とすることもできる。
 本発明の他の実施形態として、それはさらに、図5または図6に示されるように、制御装置20が循環手段82を作動し、冷媒液80の気相800を冷媒液容器81に液相80で回収する駆動システム1とすることができる。
 本発明のもう一つの他の実施形態として、駆動シャフト1000をカップ型マウント400の中心部440に固定し、蓋型マウント200の中心部240に回転自在に連結するように配備された無鉄心回転電気機械10からなる駆動システム1とすることもできる。
 本発明の駆動システム1において、無鉄心回転電気機械10の円筒コイル100は、絶縁層で覆われた長手方向に離間する線状部を有する導電性金属シートの積層体で円筒形に形成されるものか、または、絶縁層で覆われた線状導体で円筒形に形成されるものの、いずれかであることが好ましい。
 本発明の駆動システム1において、冷媒液80は、水、エタノール、アンモニア、液体窒素、液体ヘリウム、フッ素系液体のいずれかであることが好ましい。

 
本発明の実施形態である、円筒コイルを含む蓋型マウントからなるステータに回転自在に対置される円筒型マウントからなるロータを備えた無鉄心回転電気機械の断面模式図である。 図1に示される無鉄心回転電気機械の一部を切欠いた斜視図である。 本発明の他の実施形態である、円筒コイルを含む蓋型マウントからなるステータに回転自在に対置されるカップ型マウントからなるロータを備えた無鉄心回転電気機械の断面模式図である。 図3に示される無鉄心回転電気機械の一部を切欠いた斜視図である。 図1または図3に示される無鉄心回転電気機械のステータに関して配備されるポンプによる冷媒液の流量を制御する制御部または制御装置、および、ロータに関連して配備される駆動部または駆動装置、を含む無鉄心回転電気機械、その駆動方法、および、それを含む駆動システムを表す模式図である。 図1または図3に示される無鉄心回転電気機械のステータに関して配備される電磁弁による冷媒液の流量を制御する制御部または制御装置、および、ロータに関連して配備される駆動部または駆動装置、を含む無鉄心回転電気機械、その駆動方法、および、それを含む駆動システムを表す模式図である。 円筒コイルを含む蓋型マウントからなるステータに回転自在に対置されるカップ型マウントからなるロータを備えた無鉄心回転電気機械の被測定モータ(CP50)の駆動試験の概要図である。 図7に示される被測定モータ(CP50)の寸法を表す詳細図である。 被測定モータ(CP50)の印加電圧を24Vに設定し、円筒コイルに冷媒液(純水)を供給することなく被測定モータ(CP50)を稼働しても、円筒コイルが許容される上限温度t(=130℃)を超えないトルクを被測定モータ(CP50)の定格トルクとした場合の時間(秒)と負荷トルクおよび円筒コイルの温度tの推移を始動開始から720秒(12分)間抜粋したものである。 図7に示されるトルクセンサを介した発電機の可変負荷で被測定モータ(CP50)の負荷を増大させ、許容上限温度tを超えずに、かつ、冷媒液(純水)の気化する下限温度tを下回らない状態で、制御時の円筒コイルの最大温度tc1と制御時の円筒コイルの最小温度tc2の温度差Δtを狭めるように稼働させ、印加電圧を24Vに設定したときの最大トルクと冷媒液流量を測定する冷媒液供給の制御フローである。 被測定モータ(CP50)が定格トルクを超える負荷トルクT(T=0.33Nm、T=0.36Nm、T=0.39Nm、T=0.42Nm)のそれぞれで駆動させたときの電流(Arms)、回転数(rpm)、出力(W)、ポンプ搬送量(ml/min)、10分間におけるポンプ稼働時間合計(sec)、10分間における冷媒(純水)量(ml)を表にしたものである。 図11の表の負荷トルクTに対する電流(Arms)及び10分間における冷媒(純水)量(ml)をグラフにしたものである。 負荷トルクT=0.33Nmの場合において、円筒コイル温度t、ポンプのon/offのタイミングの推移、および、始動から180~360秒間の円筒コイル温度t、ポンプのon/offのパルス推移を表す。 負荷トルクT=0.36Nmの場合において、円筒コイル温度t、ポンプのon/offのパルス推移、および、始動から180~360秒間の円筒コイル温度t、ポンプのon/offのパルス推移を表す。 負荷トルクT=0.39Nmの場合において、円筒コイル温度t、ポンプのon/offのパルス推移、および、始動から180~360秒間の円筒コイル温度t、ポンプのon/offのパルス推移を表す。 負荷トルクT=0.42Nmの場合において、円筒コイル温度t、ポンプのon/offのパルス推移、および、始動から180~360秒間の円筒コイル温度t、ポンプのon/offのパルス推移を表す。 負荷トルクをT=0.33Nm(300秒)⇒T=0.42Nm(300秒)⇒T=0.33Nm(120秒)とした場合の円筒コイル温度t、ポンプのon/offのパルス推移、始動から180~420秒間のコイル温度t、ポンプのon/offのパルス推移を表す。 図17に示された負荷トルクを変化させた測定モータ(CP50)を冷媒液の供給開始温度tL1=110℃(これを超える温度tで冷媒液を供給し)、冷媒液の停止温度tL2=90℃(これを下回る温度tで冷媒液の供給を止めるよう)に設定したときの温度t、ポンプのon/offのパルス推移、始動から180~420秒間のコイル温度t、ポンプのon/offのパルス推移を表す。 代表的冷媒液の融点℃、沸点℃、気化熱kJ/kgの一覧表である。 被測定モータ(CP50)を用いた駆動試験において、フッ素系冷媒を負荷トルクT=0.317Nmで冷却無と冷却有の場合の円筒コイルの温度tの推移を表す。 (参考図)無鉄心回転電気機械の第2空隙のみに冷媒液に供給する構成を有する無鉄心回転電気機械である。
 本発明者らは、コアレスモータ(CP50)に定格トルクT=0.28Nmを超える負荷を連続的に付与しながら、電機子コイルである円筒コイルの温度を完全に制御し、それにより、コアレスモータ(CP50)の連続運転が可能であることを確認した。
 本発明の円筒コイル100を含むステータ2を備えた無鉄心回転電気機械10(以下、「コアレスモータ10」と称する。)の基本構造の特徴は、第1に、ステータ2に一端を固定された電機子コイルとして、絶縁層で覆われた長手方向に離間する線状部を有する導電性金属シートの積層体、または、絶縁層で覆われた線状導体で円筒形に成形された円筒コイル100を用いたことである。それは、通電可能な無鉄心の円筒コイルであって、好ましくは、2層または4層からなる厚さが5mm以下の一定の剛性を有するものである。
 基本構造の特徴の第2は、円筒コイル100の一方の端面を、ステータ2を構成する蓋型マウント200の内周面によって閉鎖し、円筒コイル100の開放された他方の端面を、磁性体からなるロータ3の円筒型マウント300またはカップ型マウント400の底部と複数のマグネット(永久磁石)4が配備された円筒型マウント300の内周面またはカップ型マウント400のアウターヨーク430とによって磁界が形成されるエアギャップを含む空隙または第1空隙40に浮かせた状態で挿入配置する構造を有するコアレスモータ10であることである。
 そうなると、円筒コイル100の内面またはカップ型マウント400からなるロータ3のインナーヨーク420の内側に冷媒液80を送り込むことによって、冷媒液80は、磁界が形成されたエアギャップを通るときに発熱する円筒コイル100の内面で気化される。それにより、円筒コイル100は、気化潜熱で内面が冷却され、熱伝達により外面を含む円筒コイル全体が瞬時に冷却される。これが本発明のコアレスモータの冷却構造の特徴の一つである。
 基本構造の特徴の第3は、定格を超える負荷でコアレスモータ10を稼働するときに作動する制御部または制御装置20をステータ2に関連付けて配置し、それは稼働中の円筒コイル100の温度上昇を検知するコイル温度検知センサ21を含むことである。この特徴は、制御部または制御装置20が、コイル温度検知センサ21に連動して円筒コイル100が定格運転時の許容上限温度tを超えないように、冷媒液80の供給量を調整することである。そのことにより、定格を超える負荷で連続稼働するコアレスモータ10が実現される。本発明のコアレスモータ10について、図13から図18、および、図20に示されるように、様々な過負荷状態を想定した駆動試験を行った。
 図7は、円筒コイル100を含む蓋型マウント200からなるステータ2に回転自在に対置されるカップ型マウント400からなるロータ3を備えた無鉄心回転電気機械10の一実施形態に基づく被測定モータ(CP50)の駆動試験装置の概要図である。図8は、被測定モータ(CP50)の実測構造の詳細図である。
 図7から明らかなように、被測定モータ(CP50)であるコアレスモータ10の直径Φ=6mmの出力軸1000にトルク計35(UNIPULSE TM301)を接続したトルクセンサ34(UNIPULSE UTM II-5Nm)を介して発電機32(m-link CPH80-E)連結させる。発電機32が発電する電力を可変負荷33(m-link VL300)で消費させ、コアレスモータ10に任意の負荷を与えて駆動させる。コアレスモータ10の電流は、駆動部または駆動装置30(三相PWM方式 m-link MLD750-ST)とコアレスモータ10との間に電力計31(HIOKI PW3336)を入れて測定した。電力計31により電流I(A)、電圧V(V)、電力Pi(W)を測定することができる。
 次にCPUを含む制御部または制御装置20(m-link TH300)は、円筒コイル100に設置されるコイル温度検知センサ21による温度tおよび電圧を記録する装置(GRAPHTEC GL-100)を介して、温度tおよび電圧が入力される。制御部または制御装置20は、適宜設定された温度tで冷媒液供給ポンプ22(NITTO UPS-112)を作動し、さらに停止動作を行い、冷媒液容器81からコアレスモータ10の第1空隙40に冷媒液80を供給する。冷媒液80の流量は、制御部または制御装置20に関連付けて配備される冷媒流量可変装置26(TOKYO-RIKOSHA TYPE RSA-5)によって冷媒液供給ポンプ22の駆動電圧を可変することにより調整するようにした。コアレスモータ10はさらに、パイプ82を含む経路8、および、ロータ3のインナーヨーク420に軸方向に複数のスリット423を設ける。
 図8に示される被測定モータであるコアレスモータ10の寸法について概説する。ステータ2に連結固定しロータ3に回転自在に連結する出力軸の軸方向の長さはL=81.7mmである。ステータ2の矩形底部の一辺はx=50mm、ロータ3のアウターヨークの外径はΦ=46.3mm、内径はΦ=40mm、厚みはΔ=3.15mmである。ロータ軸部の直径はΦ=22.5mm、これはインナーヨーク420の内径Φに相当する。外径はΦ=27.5mmであり、厚みはΔ=2.5mmである。アウターヨーク430の内面に配備された4個のマグネット4の厚みはΔ=3.5mmである。インナーヨーク420とアウターヨーク430で形成されるエアギャップの幅はΨ=2.75mmであり、エアギャップに浮かせた状態に配備される円筒コイル100の厚さは、Δ=1.50mmである。
 被測定モータ(CP50)であるコアレスモータ10を用いた駆動試験は、円筒コイル100に直接冷媒液である純水80を散布し、純水80の気化潜熱で発熱する円筒コイル100を冷却する作用効果、および、その冷却作用により、定格を超える負荷条件においても、コアレスモータ10の連続運転が可能であることを検証するためである。
 コアレスモータ10の試験手順は、以下の通りである。図7に示される駆動部または駆動装置30(三相PWM方式 m-link MLD750-ST)(以下「駆動装置30」という。)に印加電圧を電圧V=24(V)に設定した。電圧Vを24(V)より高い36(V)や48(V)に設定し、仕事量を同じで試験することも可能であるが、勿論、それぞれの場合で異なる結果になることはいうまでもない。
 次に、発電機32の可変負荷33でコアレスモータ10に与える負荷トルクTを増大させていく。負荷トルクTの設定に合わせるように冷媒液(純水)80の流量は、制御部または制御装置20(以下「制御装置20」という。)に関連付けて配備される冷媒液流量可変装置26によって冷媒液供給ポンプ22の駆動電圧を可変することにより調整する。コアレスモータ10で用いられる円筒コイル100の許容上限温度は130℃である。したがって、調整は、t=130℃を超えず、かつ、冷媒液(純水)の気化する下限温度tを下回らない状態で、制御時の円筒コイルの最大温度tc1と制御時の円筒コイルの最小温度tc2の温度差Δtを狭めるように稼動し、そのときの負荷トルクTおよび冷媒液(純水)80の流量を測定した。
 図10は、図7に示されるトルクセンサ34を介した発電機32の可変負荷33でコアレスモータ(CP50)10の負荷を増大させ、許容上限温度t=130℃の超えずに、かつ、冷媒液(純水)の気化する下限温度tを下回らない状態で、制御時の円筒コイルの最大温度tc1と制御時の円筒コイルの最小温度tc2の温度差Δtを狭めるように稼動するための制御フローである。
 図10から明らかなように、コイル温度検知センサ21を読み込み(第1読込)、円筒コイル100の温度tL1=123℃で、これを超える温度tで冷媒液を供給する場合に冷媒液供給ポンプ22を稼働される。さらにコイル温度検知センサ21を読み込み(第2読込)、気化潜熱で発熱する円筒コイル100が冷されて温度tがtL2=122℃で、これを下回る温度tで冷媒液の供給を止める場合に冷媒液供給ポンプ22を停止する。その間に、円筒コイルの温度tがこれらの設定温度に至らないときは、コイル温度検知センサ21の第1読込、および、第2読込が繰り返される。
 このように、コアレスモータ10の駆動装置30への印加電圧を24Vに設定したときの最大トルクTを測定し、そのときの冷媒液(純水)80の毎分の流量Lを測定した。冷媒液供給ポンプ22の作動条件は、以下の通り。
(1)冷却開始温度tL1=123℃(第1読込)
(2)冷却停止温度tL2=122℃(第2読込)
(1)および(2)の読み込みで冷媒液供給ポンプ22を切り替え、コアレスモータ10を作動させたときに、トルクT=0.42Nm、流量L=1.141ml/minであった。
 最大トルクTおよび最大流量Lとした技術的根拠は、トルクTが0.42Nmを超えて稼働すると、冷媒液80の流量も増大する。ところが、冷媒液80の増大に伴い、冷媒液80が円筒コイル100で気化されずに霧状(液相)のままコアレスモータ10の外部に放出されることを確認した。したがって、トルクT=0,42Nmは、コアレスモータ10を定格トルクT=0.28Nmを超える負荷で連続運転できる限界トルクになる。
 図9は、円筒コイル100に冷媒液である純水80を供給することなく、円筒コイル100が許容限温度t=130℃を超えずに、連続運転可能なトルクを表す。コアレスモータ10を負荷トルクT=0.28Nmで連続運転したとき、図9から明らかなように、円筒コイル100の温度は、50秒で100℃に達し、300秒(5分)で120℃を超える。720秒(12分)で127℃に達し、その後、許容上限温度t=130℃以下で温度平衡となる。図9は、端的には、冷媒液が供給されないときの連続運転可能な定格トルクがT=0.28Nmであることを表している。
 次に、駆動装置30への印加電圧を24Vに設定したときのコアレスモータ10に定格トルクTを超える負荷トルクTを付与する。そうすると、図12から明らかなように、負荷トルクTの増大に比例して電流は増加し、それに伴う円筒コイル100の発熱によって、冷媒液(純水)80の供給量が増加する。このことから、駆動システム1が正しく制御された結果、過負荷状態の連続運転が可能であることが確認できる。
 具体的には、定格トルクTを超える負荷でコアレスモータ10を連続運転する負荷トルクTをT=0.33Nm、T=0.36Nm、T=0.39Nm、T=T=0.42Nmに設定し、さらにT=0.42NmからT=0.33Nmに低く設定した後に再度T=0.42Nmに戻すように設定した5ケースについて、コアレスモータ10を作動させた。
 コアレスモータ10は、制御装置20が、冷却開始温度tL1=123℃(第1読込)で、これを超える温度tで冷媒液を供給し、冷却停止温度tL2=122℃(第2読込)で、これを下回る温度tで冷媒液の供給を止めるように、冷媒液供給ポンプ22を切り替え、円筒コイル100の許容上限温度t=130℃を超えず、冷媒液(純水)の気化する下限温度tを下回らない状態で、制御時の円筒コイルの最大温度tc1と制御時の円筒コイルの最小温度tc2の温度差Δtを狭めるように制御することにより、定格トルクTを超えるいずれの設定トルクにおいても、正常な連続運転が可能であることを確認した。
 冷媒液供給ポンプ22の作動条件は、冷却開始(第1読込)温度tL1=123℃とした。これは冷却開始時のオーバーシュートによる温度上昇分を担保し、円筒コイル100の許容上限温度t=130℃を超えない設定値である。また、冷却停止(第2読込)温度tL2=122℃とした。これは冷却停止時のオーバーシュートによる温度下降分を担保し、更に冷却開始(第1読込)温度tL1=123℃とのヒステリシスを1℃とすることで外来ノイズ等による誤動作を防止しシステムを安定的に動作させる設定値である。この作動条件によって制御時の円筒コイルの最大温度tc1と制御時の円筒コイルの最小温度tc2の温度差Δtを狭め、熱衝撃による円筒コイルへのストレスを軽減し円筒コイルの電気抵抗値変化を狭めることが可能となる。
 以下、同一設備、同一制御条件下にて負荷トルクTを変えて確認した結果について説明する。それぞれの結果は図13~図17に示される。
 図13は、発電機32の可変負荷33で負荷トルクT=0.33Nmに設定されたコアレスモータ10の駆動試験の結果である。図13(a)から明らかなように、コアレスモータ10の稼働試験中、トルクTは0.33Nmに維持したまま、冷媒液供給ポンプ22のon/offのパルス動作によって円筒コイル100を一定の温度領域に維持するように、コアレスモータ10は作動される。より詳細には、円筒コイル100の温度tは、コアレスモータ10の始動後、100秒前後で冷却開始温度(tL1=123℃)を上回る。このときに冷媒液(純水)80がインナーヨークに貫通するスリットを経由し円筒コイルに直接供給される。次に気化潜熱によって円筒コイル100が冷却されて冷却停止温度(tL2=122℃)を下回るときに、冷媒液(純水)80の供給が停止される。これらのパルス動作の繰り返しによって円筒コイルの温度tは、一定の温度領域である111℃から125℃の範囲で推移する。図13(a)は連続運転試験におけるコアレスモータ10の始動開始から720秒(12分)間を抜粋したものであり、720秒(12分)経過後もほぼ同様に推移することは確認済みである。
 図13(b)は、冷却開始後である、始動時から180秒(3分)から360秒(6分)の3分間の円筒コイル100の温度波形を拡大した図である。急冷却する状態は、図から容易に判断される。第1読込温度tL1は123℃で、これを超える温度tで冷媒液80を供給して冷却開始すると、オーバーシュートによる上昇後の温度は2℃以内程度で直後に反転する。反転後の第2読込温度tL2は122℃で、これを下回る温度tで冷媒液80の供給を止めても、オーバーシュートで下降後の温度は11から7℃程度低下する。具体的には、負荷トルクT=0.33Nmに設定された制御時の円筒コイルの最大温度tc1=125℃、最小温度tc2=111℃、Δt=14℃となる。したがって、円筒コイル100の許容上限温度t=130℃を超えず、冷媒液(純水)の気化する下限温度tを下回らない状態で、円筒コイル100が制御時の円筒コイルの最大温度tc1と最小温度tc2の差Δtを狭めるように制御することによって、正常な連続運転が可能になることを確認した。
 図14は、発電機32の可変負荷33で負荷トルクT=0.36Nmに設定されたコアレスモータ10の駆動試験の結果である。図14(a)から明らかなように、コアレスモータ10の稼働試験中、トルクTは0.36Nmに維持したまま、冷媒液供給ポンプ22のon/offのパルス動作によって円筒コイル100を一定の温度領域に維持するように、コアレスモータ10は作動される。円筒コイル100の温度tは、コアレスモータ10の始動後、90秒前後で冷却開始温度(tL1=123℃)を上回る。このときに冷媒液(純水)80が円筒コイルに直接供給される。次に気化潜熱によって円筒コイル100が冷却されて冷却停止温度(tL2=122℃)を下回るときに、冷媒液(純水)80の供給が停止される。これらのパルス動作の繰り返しによって円筒コイルの温度tは、一定の温度領域である113℃から128℃の範囲で推移する。図14(a)は連続運転試験におけるコアレスモータ10の始動開始から720秒(12分)間を抜粋したものであり、720秒(12分)経過後もほぼ同様に推移することは確認済みである。
 コアレスモータ10の稼働試験中、冷却液供給開始から10分間のポンプ稼動時間の合計は、トルクTの場合は56秒間であったが、トルクTの場合は85.5秒間である。その間の冷媒液の供給量もトルクTの場合は3.62mlであるのにトルクTの場合は5.53mlで、トルクTの場合の1.5倍である(図11、図12)。
 図14(b)は、冷却開始後である、始動時から180秒(3分)から360秒(6分)の3分間の円筒コイル100の温度波形を拡大した図である。急冷却する状態は、図から容易に判断される。第1読込温度tL1は123℃で、これを超える温度tで冷媒液80を供給して冷却開始すると、オーバーシュートによる温度上昇は5℃程度で反転する。反転後の第2読込温度tL2は122℃で、これを下回る温度tで冷媒液80の供給を止めても、オーバーシュートで下降後の温度は9から5℃程度低下する。具体的には、負荷トルクT=0.36Nmに設定された制御時の円筒コイルの最大温度tc1=128℃、最小温度tc2=113℃、Δt=15℃となる。トルクT=0.33Nmのときに比べパルス間隔は短くなる。このケースにおいても、円筒コイル100の許容上限温度t=130℃を超えず、冷媒液(純水)の気化する下限温度tを下回らない状態で、円筒コイル100が制御時の円筒コイルの最大温度tc1と最小温度tc2の差Δtを狭めるように制御することによって、正常な連続運転が可能になることを確認した。
 図15は、発電機32の可変負荷33で負荷トルクT=0.39Nmに設定されたコアレスモータ10の駆動試験の結果である。図15(a)から明らかなように、コアレスモータ10の稼働試験中、トルクTは0.39Nmに維持したまま、冷媒液供給ポンプ22のon/offのパルス動作によって円筒コイル100を一定の温度領域に維持するように、コアレスモータ10は作動される。円筒コイル100の温度tは、コアレスモータ10の始動後、50秒前後で冷却開始温度(tL1=123℃)を上回る。このときに冷媒液(純水)80が円筒コイルに直接供給される。次に気化潜熱によって円筒コイル100が冷却されて冷却停止温度(tL2=122℃)を下回るときに、冷媒液(純水)80の供給が停止される。これらのパルス動作の繰り返しによって円筒コイルの温度tは、一定の温度領域である109℃から128℃の範囲で推移する。図15(a)は連続運転試験におけるコアレスモータ10の始動開始から720秒(12分)間を抜粋したものであり、720秒(12分)経過後もほぼ同様に推移することは確認済みである。
 コアレスモータ10の稼働試験中、冷却液供給開始から10分間のポンプ稼動時間の合計は、トルクTの場合は56秒間であったが、トルクTの場合は128秒間である。その間の冷媒液の供給量もトルクTの場合3.62mlであるのに比してトルクTの場合8.28mlで、トルクTの場合の2.3倍である(図11、図12)。
 図15(b)は、冷却開始後である、始動時から180秒(3分)から360秒(6分)の3分間の円筒コイル100の温度波形を拡大した図である。急冷却する状態は、図から容易に判断される。第1読込温度tL1は123℃で、これを超える温度tで冷媒液80を供給して冷却開始すると、オーバーシュートによる温度上昇は5℃程度で反転する。反転後の第2読込温度tL2は122℃で、これを下回る温度tで冷媒液80の供給を止めても、オーバーシュートで下降後の温度は13から5℃程度低下する。具体的には、負荷トルクT=0.39Nmに設定された制御時の円筒コイルの最大温度tc1=128℃、最小温度tc2=109℃、Δt=19℃となる。トルクT=0.36Nmのときに比べパルス間隔はさらに短くなる。このケースにおいても、円筒コイル100の許容上限温度t=130℃を超えず、冷媒液(純水)の気化する下限温度tを下回らない状態で、円筒コイル100が制御時の円筒コイルの最大温度tc1と最小温度tc2の差Δtを狭めるように制御することによって、正常な連続運転が可能になることを確認した。
 図16は、発電機32の可変負荷33で負荷トルクT=0.42Nmに設定されたコアレスモータ10の駆動試験の結果である。図16(a)から明らかなように、コアレスモータ10の稼働試験中、トルクTは0.42Nmに維持した冷媒液供給ポンプ22のon/offのパルス動作によって円筒コイル100を一定の温度領域に維持するように、コアレスモータ10は作動される。円筒コイル100の温度tは、コアレスモータ10の始動後、40秒前後で冷却開始温度(tL1=123℃)を上回る。このときに冷媒液(純水)80が円筒コイルに直接供給される。次に気化潜熱によって円筒コイル100が冷却されて冷却停止温度(tL2=122℃)を下回るときに、冷媒液(純水)80の供給が停止される。これらのパルス動作の繰り返しによって円筒コイルの温度tは、一定の温度領域である107℃から127℃の範囲で推移する。図16(a)は連続運転試験におけるコアレスモータ10の始動開始から720秒(12分)間を抜粋したものであり、720秒(12分)経過後もほぼ同様に推移することは確認済みである。
 コアレスモータ10の稼働試験中、冷却液供給開始から10分間のポンプ稼動時間の合計は、トルクTの場合は56秒間であったが、トルクTの場合は176.5秒間である。その間の冷媒液の供給量もトルクTの場合3.62mlであるのに比してトルクTの場合11.41mlで、トルクTの場合の3.2倍である(図11、図12)。
 図16(b)は、冷却開始後である、始動時から180秒(3分)から360秒(6分)の3分間の円筒コイル100の温度波形を拡大した図である。急冷却する状態は、図から容易に判断される。第1読込温度tL1は123℃で、これを超える温度tで冷媒液80を供給して冷却開始すると、オーバーシュートによる温度上昇は4℃程度で反転する。反転後の第2読込温度tL2は122℃で、これを下回る温度tで冷媒液80の供給を止めても、オーバーシュートで下降後の温度は15から7℃程度低下する。具体的には、負荷トルクT=0.42Nmに設定された制御時の円筒コイルの最大温度tc1=127℃、最小温度tc2=107℃、Δt=20℃となる。トルクT=0.39Nmのときに比べパルス間隔はさらに短くなる。このケースにおいても、円筒コイル100の許容上限温度t=130℃を超えず、冷媒液(純水)の気化する下限温度tを下回らない状態で、円筒コイル100が制御時の円筒コイルの最大温度tc1と最小温度tc2の差Δtを狭めるように制御することによって、正常な連続運転が可能になることを確認した。
 図13~図16から明らかなように、コアレスモータ10に定格トルクT=0.28Nmを超える負荷トルクT~T(0.33~0.42Nm)を連続的に付与しながら、円筒コイル100の温度を制御し、それにより、コアレスモータ10の連続運転が可能であることを確認した。この試験結果からT~Tのいずれの場合においても、コアレスモータ10は、円筒コイル100が供給される冷媒液(純水)80を気化し、その気化潜熱で、円筒コイル100の許容上限温度tを超えず、冷媒液(純水)の気化する下限温度tを下回らない状態で、円筒コイル100の最大温度tc1と最小温度tc2の差Δtを狭めるように、円筒コイル100の温度を制御することによって、正常な連続運転が可能であることを確認した。
 4ケースの過負荷状態のコアレスモータ10は、円筒コイル100への冷媒液(純水)80の供給量を調整することによって、最大温度tc1=125℃、最小温度tc2=111℃、Δt=14℃(T)、最大温度tc1=128℃、最小温度tc2=113℃、Δt=15℃(T)、最大温度tc1=128℃、最小温度tc2=109℃、Δt=19℃(T)、最大温度tc1=127℃、最小温度tc2=107℃、Δt=20℃(T)のように、円筒コイル100を適正温度範囲に完全な制御状態で連続運転可能であることが検証された。
 4ケースの過負荷状態のコアレスモータ10の駆動試験による検証を補強するための更なる駆動試験を行った。それは、発電機32の可変負荷33で設定される負荷トルクをT=0.33Nmに設定してコアレスモータ10の始動から300秒(5分)まで駆動し、次の300秒から600秒(さらに5分)間には負荷トルクをT=0.42Nmに設定してコアレスモータ10を駆動し、次の600秒から720秒(さらに2分)間には負荷トルクをT=0.33Nmに再設定してコアレスモータ10を駆動した試験である。
 図17は、コアレスモータ10を、トルクTで5分、トルクTで5分、さらに再度トルクTで2分間、連続的に駆動した試験結果である。図17(a)から明らかなように、コアレスモータ10の稼働試験中、負荷トルクをT=0.33Nmに設定してコアレスモータ10の始動から300秒(5分)まで駆動し、次の300秒から600秒(さらに5分)間には負荷トルクをT=0.42Nmに設定した条件においても冷媒液供給ポンプ22のon/offのパルス動作の繰り返しによって円筒コイルの温度tは、一定の温度領域である109℃から126℃の範囲に推移する。図17(a)は連続運転試験におけるコアレスモータ10の始動開始から720秒(12分)間を抜粋したものであり、720秒(12分)経過後も同様の負荷変動においてもほぼ同様に推移することは確認済みである。
 冷媒液供給ポンプ22の作動条件は、これまでのケースと同様に、冷却開始(第1読込)温度tL1=123℃を超えたときである。このときに冷媒液(純水)80が円筒コイルに直接供給される。次に気化潜熱によって円筒コイル100が冷却されて冷却停止(第2読込)温度tL2=122℃を下回るときに、冷媒液(純水)80の供給が停止される。
 図17(b)は、負荷トルクをT=0.33NmからT=0.42Nmに瞬時に変化させている部分の詳細である。具体的には始動時から180秒(3分)から420秒(7分)の4分間の円筒コイル100の温度波形を拡大した図である。より詳細には、180秒(3分)から300秒(5分)の負荷トルクTは0.33Nmであるので、急冷却と緩慢な温度上昇は、図から容易に判断される。第1読込温度tL1は123℃で、これを超える温度tで冷媒液80を供給して冷却開始すると、温度上昇は1℃以内程度で反転する。反転後の第2読込温度tL2は122℃で、これを下回る温度tで冷媒液80の供給を止めても、オーバーシュートで下降後の温度は11から7℃程度低下する。具体的には負荷トルクT=0.33Nmに設定された始動時から180秒(3分)から300秒(5分)の2分間の円筒コイルの最大温度tc1=124℃、最小温度tc2=111℃、Δt=13℃となり、図13の結果である最大温度tc1=125℃、最小温度tc2=111℃、Δt=14℃とほぼ合致する。
 300秒(5分)から420秒(7分)の間の負荷トルクTは0.42Nmであるので、温度の急冷却と急上昇は、図から容易に判断される。第1読込温度tL1は123℃で、これを超える温度tで冷媒液80を供給して冷却開始すると、温度上昇は4℃程度で反転する。反転後の第2読込温度tL2は122℃で、これを下回る温度tで冷媒液80の供給を止めても、オーバーシュートで下降後の温度は13から10℃程度まで低下する。具体的には負荷トルクT=0.42Nmに設定された300秒(5分)から420秒(7分)の間の2分間の円筒コイルの最大温度tc1=126℃、最小温度tc2=109℃、Δt=17℃となり、図16の結果である最大温度tc1=127℃、最小温度tc2=108℃、Δt=19℃とほぼ合致する。これによりコアレスモータ10稼動中にトルク0.42Nmを上限とする負荷変動においても正しく制御され連続運転が可能であることが確認できた。
 図18は、図17に示された負荷トルクと同一条件で円筒コイル100の冷却開始温度tL1と冷却停止温度tL2を変化させたときの実験結果である。コアレスモータ10を始動し、円筒コイル100がtL1=110℃のときを冷却開始温度に設定し、さらにtL2=90℃のときを冷却停止温度に設定し、トルクTで5分、トルクTで5分、再度トルクTで2分間、連続的にコアレスモータ10を駆動した試験結果である。冷却開始温度のtL1及び冷却停止温度のtL2の設定値を変更した場合においても、駆動システム1は、正常に作動することを確認することができた。
 以上の駆動試験は、冷媒液を図19の表に記載された気化熱2257kJ/kgの純水を用いて行ったものである。図19は純水80を含む冷媒液の融点℃、沸点℃、気化熱kJ/kgの一覧表である。そこで、冷媒液80として、融点-123℃、沸点34℃、気化熱142kJ/kgのフッ素系液体を用い、負荷トルクT=0.317Nmに設定したコアレスモータ10で、冷媒無の場合と冷媒有の場合の駆動試験を行った。
 図20は、冷媒液80にフッ素系冷媒を用い、冷媒液供給ポンプ22の作動条件を、冷却開始温度tL1=54℃(第1読込)と冷却停止温度tL2=52℃(第2読込)に設定し、円筒コイル100に供給しながら駆動された場合と、供給されない場合との駆動試験における円筒コイル100の温度tの推移を表す。この駆動試験によって、稼働されるコアレスモータ10において、フッ素系冷媒液80が供給された場合には円筒コイル100を50℃~60℃の間で推移させることができる一方で、フッ素系冷媒液80が供給されない場合には、円筒コイル100は10分程度で130℃を超えることが確認された。
 駆動試験の結果は、フッ素系冷媒液80であっても、円筒コイル100に供給され、円筒コイル100で気化された気化潜熱による円筒コイル100に対する冷却動作が制御装置20によって適正に制御されることを明らかにした。それはまた、純水以外の他の冷媒液80を用いるコアレスモータ10において、円筒コイル100に対する冷却動作が適正制御できれば、コアレスモータ10の連続運転が可能であることを検証するものであり、冷媒を変更することでコイルの温度制御領域を変更することが可能であることを確認することができた。
 図8のコアレスモータ10を用いた本駆動試験から明らかなように、本発明は、定格負荷を超える負荷で連続運転する無鉄心回転電機機械、その駆動方法およびそれを含む駆動システムであって、少なくとも以下の構成を有するものである。
 無鉄心回転電機機械は、典型的には、円筒型マウントの内周面に複数のマグネットが配備されたロータか、または、底部に同心円のインナーヨークおよびアウターヨークを一体化させたカップ型マウントのインナーヨークの外周面および/またはアウターヨークの内周面に複数のマグネットを互いに円周方向に間隙を空けて配備し、該間隙に対応するインナーヨークの位置にインナーヨークを貫通するスリットを有するロータか、そのいずれかを一方の構成要件とするものであり、ロータに対応する他方の構成要件であるステータは、通電可能な無鉄心の円筒コイル有し、該円筒コイルの一方の端面が固定される蓋型マウントとからなるものである。
 それはさらに、図1および図2と図3および図4から明らかなように、ステータに固定された円筒コイルの内側とロータおよびステータの中心部とで形成される空間に冷媒液を供給する経路を有しており、駆動部または駆動装置によって駆動されるときに制御部または制御装置を作動し、発熱する円筒コイルの温度を適宜検知することによって、該経路を介して円筒コイルの内周面に直接送る冷媒液の供給量を調整する構成を有するものである。このことは、駆動システムを表す図5および図6から容易に理解されることである。
 本発明の無鉄心回転電機機械、その駆動方法、およびそれを含む駆動システムは、定格を超える様々な負荷条件に適用可能であることは、駆動試験概要図である図7の発電機32における可変負荷33から容易に推定することができる。しかも、駆動試験に用いたコアレスモータと同じ構成を有するものであれば、その大小は問わないことはいうまでもない。
 参考図として例示した図21の無鉄心回転電気機械は、冷媒液に供給する構成が、図3および図4に示された冷媒液が供給される位置が第1空隙ではなく、第2空隙に位置した実施例である。この実施例においても、第2空隙に送られる冷媒液が発熱する円筒コイルに達し、冷媒液をそこで気化し、その気化潜熱で円筒コイルの冷却が十分にでき、それにより、定格を超える負荷で稼働するための無鉄心回転電気機械とすることができるものと考える。ただし、この構成に基づくコアレスモータの駆動試験は実施されていない。
 本発明は、好ましい実施形態に関連して記載されたが、当業者であれば、本発明の範囲から逸脱することなく、様々な変更がなされ、均等物がそれについての要素に代替され得ることが理解されるであろう。したがって、本発明を実施するために考慮された最良の実施態様として開示された特定の実施態様に限定されるものではなく、特許請求の範囲に属する全ての実施形態を含むものである。

 
1 駆動システム
2 ステータ(固定子)
3 ロータ(回転子)
4 マグネット
8 冷媒液を供給する経路
10 無鉄心回転電気機械またはコアレスモータ
20 制御部または制御装置
21 コイル温度検知センサ
22 ポンプ
23 コントローラ
24 電磁弁
25 温度・電圧記録装置
26 冷媒液流量可変装置
 
30 駆動部または駆動装置
31 電力計
32 発電機
33 可変負荷
34 トルクセンサ
35 トルク計
 
40 エアギャップを含む空隙または第1空隙
41 マグネット相互の間隙
50 第2空隙
60 第3空隙
 
80 冷媒液または液相
800 冷媒液の気相
81 冷媒液容器
82 循環手段または循環搬送パイプ
 
100 円筒コイル
101 円筒コイルの一方の端面
102 円筒コイルの他方の端面
110 円筒コイルの内周側
120 円筒コイルの外周側
 
200 ステータ2を構成する蓋型マウント
240 蓋型マウントの中心部
 
300 ロータ3を構成する円筒型マウント
310 円筒型マウントの内周面
340 円筒型マウントの中心部
 
400 ロータ3を構成するカップ型マウント
401 カップ型マウントの一方の端面
410 カップ型マウントの底部
420 カップ型マウント400を構成するインナーヨーク
421 インアーヨーク420の内側
422 インアーヨーク420の外周面
423 インアーヨーク420を貫通するスリット
430 カップ型マウント400を構成するアウターヨーク
431 アウターヨークの外周面
 
1000 駆動シャフト

 

Claims (57)

  1.  通電可能な無鉄心の円筒コイルの端面を固定する蓋型マウントからなるステータと、前記蓋型マウントに回転自在に対置される円筒型マウントで該円筒型マウントの内周面に複数のマグネットが配備されているロータとでエアギャップを含む空隙を形成し、前記空隙に冷媒液を供給する経路を前記ステータに設け、前記ステータに関連する制御部と、前記ロータに関連する駆動部と、を配備する、定格を超える負荷で稼働するための無鉄心回転電気機械であって、
     前記駆動部を作動し、定格を超える負荷で稼働するときに、前記制御部を作動し、前記空隙に前記冷媒液を供給し、発熱する前記円筒コイルが前記冷媒液を気化し、前記冷媒液の気化潜熱で前記円筒コイルを冷却し、前記円筒コイルが定格運転時の許容上限温度を超えないように、前記冷媒液の供給量を調整することによって、定格を超える負荷で稼働するようにしたことを特徴とする無鉄心回転電気機械。
     
  2.  定格を超える負荷で稼働するときに、前記制御部が作動し、前記円筒コイルが前記許容上限温度を超えないように前記冷媒液の供給量を調整する動作と、該動作によって前記円筒コイルが少なくとも前記冷媒液が気化する下限温度を下回らないように前記空隙に対する前記冷媒液の供給を止める動作とを繰り返すことによって、前記円筒コイルを前記許容上限温度と前記下限温度との範囲に維持するようにしたことを特徴とする請求項1に記載された無鉄心回転電気機械。
     
  3.  前記制御部は、前記円筒コイルの温度を検出するコイル温度検知センサと、前記コイル温度検知センサと連動して前記冷媒液を前記空隙に供給するためのポンプと、前記ポンプに対するオン・オフ指令によって前記冷媒液の供給量を調整するコントローラを含むことを特徴とする請求項1または2のいずれかに記載された無鉄心回転電気機械。
     
  4.  前記経路に連通する冷媒液容器を前記ステータにさらに配備することを特徴とする請求項1から3のいずれかに記載された無鉄心回転電気機械。
     
  5.  前記制御部は、前記円筒コイルの温度を検出するコイル温度検知センサと、前記コイル温度検知センサと連動して前記円筒コイルより高い位置に配置された前記冷媒液容器から前記空隙に前記冷媒液を供給するための電磁弁と、前記電磁弁に対する開閉指令によって前記冷媒液の供給量を調整するコントローラを含むことを特徴とする請求項4に記載された無鉄心回転電気機械。
     
  6.  前記冷媒液容器と前記空隙との間を連通する循環手段を前記ステータにさらに配備することを特徴とする請求項4または5のいずれかに記載された無鉄心回転電気機械。
     
  7.  前記制御部は、前記循環手段により前記冷媒液の気相を前記冷媒液容器に液相で回収することを特徴とする請求項6に記載された無鉄心回転電気機械。
     
  8.  前記円筒型マウントの中心部に固定され、前記蓋型マウントの中心部に回転自在に連結される駆動シャフトを配備することを特徴とする請求項1から7のいずれかに記載された無鉄心回転電気機械。
     
  9.  通電可能な無鉄心の円筒コイルの一方の端面を固定する蓋型マウントからなるステータと、前記蓋型マウントに回転自在に対置されるカップ型マウントとからなるロータとによってエアギャップを含む第1空隙を形成し、
     前記ロータを構成する前記カップ型マウントは、一方は開放され他方は閉じられた底部を有し、前記底部に同心円のインナーヨークおよびアウターヨークを一体化し、前記インナーヨークの外周面および/または前記アウターヨークの内周面に複数のマグネットを互いに円周方向に間隙を空けて配備し、前記間隙に対応する前記インナーヨークの位置に前記インナーヨークに貫通するスリットを設けており、
     前記円筒コイルの他方の端面を、前記カップ型マウントの前記底部との間で隙間を残して前記円筒コイルを前記第1空隙に浮かせて配置し、前記カップ型マウントの一方の端面と前記蓋型マウントとの間に前記円筒コイルの内周側に第2空隙が形成され、前記円筒コイルの外周側に第3空隙が形成され、前記第1空隙に冷媒液を供給する経路が前記ステータに設けられ、前記ステータに関連する制御部と、前記ロータに関連する駆動部と、が配備される、定格を超える負荷で稼働するための無鉄心回転電気機械であって、
     前記駆動部を作動し、定格を超える負荷で稼働するときに、前記制御部を作動し、前記第1空隙の前記インナーヨークの内側に前記冷媒液を供給し、前記スリットを介して前記円筒コイルに送られる前記冷媒液を発熱する前記円筒コイルが気化し、前記冷媒液の気化潜熱で前記円筒コイルを冷却し、前記円筒コイルが定格運転時の許容上限温度を超えないように、前記冷媒液の供給量を調整することによって、定格を超える負荷で稼働するようにしたことを特徴とする無鉄心回転電気機械。
     
  10.  定格を超える負荷で稼働するときに、前記制御部が作動し、前記円筒コイルが前記許容上限温度を超えないように前記冷媒液の供給量を調整する動作と、前記動作によって前記円筒コイルが少なくとも前記冷媒液が気化する下限温度を下回らないように前記第1空隙に対する前記冷媒液の供給を止める動作とを繰り返すことによって、前記円筒コイルを前記許容上限温度と前記下限温度との範囲に維持するようにしたことを特徴とする請求項9に記載された無鉄心回転電気機械。
     
  11.  前記制御部は、前記円筒コイルの温度を検出するコイル温度検知センサと、前記コイル温度検知センサと連動して前記第1空隙の前記インナーヨークの内側に前記冷媒液を供給するためのポンプと、該ポンプに対するオン・オフ指令によって前記冷媒液の供給量を調整するコントローラを含むことを特徴とする請求項9または10のいずれかに記載された無鉄心回転電気機械。
     
  12.  前記経路に連通する冷媒液容器を前記ステータにさらに配備することを特徴とする請求項9から11のいずれかに記載された無鉄心回転電気機械。
     
  13.   前記制御部は、前記円筒コイルの温度を検出するコイル温度検知センサと、前記コイル温度検知センサと連動して前記円筒コイルより高い位置に配置された前記冷媒液容器から前記第1空隙の前記インナーヨークの内側に前記冷媒液を供給するための電磁弁と、前記電磁弁に対する開閉指令によって前記冷媒液の供給量を調整するコントローラを含むことを特徴とする請求項12に記載された無鉄心回転電気機械。
     
  14.  前記冷媒液容器と前記第1空隙との間を連通する循環手段を前記ステータにさらに配備することを特徴とする請求項12または13のいずれかに記載された無鉄心回転電気機械。
     
  15.  前記制御部は、前記循環手段により前記冷媒液の気相を前記冷媒液容器に液相で回収することを特徴とする請求項14に記載された無鉄心回転電気機械。
     
  16.  前記カップ型マウントの中心部に固定され、前記蓋型マウントの中心部に回転自在に連結される駆動シャフトを配備することを特徴とする請求項9から15のいずれかに記載された無鉄心回転電気機械。
     
  17.  前記円筒コイルは、絶縁層で覆われた軸方向に離間する線状部を有する導電性金属シートの積層体で円筒形に形成される請求項1から16のいずれかに記載された無鉄心回転電気機械。
     
  18.  前記円筒コイルは、絶縁層で覆われた線状導体で円筒形に形成される請求項1から16のいずれかに記載された無鉄心回転電気機械。
     
  19.  前記冷媒液は、水、エタノール、アンモニア、液体窒素、液体ヘリウム、フッ素系液体のいずれかである請求項1から18のいずれかに記載された無鉄心回転電気機械。
     
  20.  通電可能な無鉄心の円筒コイルの端面を固定する蓋型マウントからなるステータと、前記蓋型マウントに回転自在に対置される円筒型マウントで該円筒型マウントの内周面に複数のマグネットが配備されているロータとによってエアギャップを含む空隙を形成し、前記空隙に冷媒液を供給する経路を前記ステータに設け、前記ステータに関連する制御部と、前記ロータに関連する駆動部と、を配備する、定格を超える負荷で稼働するための無鉄心回転電気機械の駆動方法であって、
     前記駆動部を作動し、定格を超える負荷で前記無鉄心回転電気機械を稼働する工程と、
     前記制御部を作動し、前記空隙に前記冷媒液を供給する工程と、
     発熱する前記円筒コイルが前記冷媒液を気化し、前記冷媒液の気化潜熱で前記円筒コイルを冷却する工程と、
     前記円筒コイルが定格運転時の許容上限温度を超えないように前記冷媒液の供給量を調整する工程と、
    を含むことを特徴とする駆動方法。
     
  21.  前記制御部を作動し、前記円筒コイルが少なくとも前記冷媒液が気化する下限温度を下回らないように前記空隙に対する前記冷媒液の供給を止める工程を含み、該工程と前記空隙に前記冷媒液を供給する前記工程とを繰り返すことによって、前記円筒コイルを前記許容上限温度と前記下限温度との範囲に維持する工程をさらに含むことを特徴とする請求項20に記載された駆動方法。
     
  22.  前記制御部が、前記円筒コイルの温度を検出するコイル温度検知センサと、前記冷媒液を供給するポンプと、該ポンプに対するオン・オフ指令によって前記冷媒液の供給量を調整するコントローラを含み、
     前記コイル温度検知センサを作動し、前記円筒コイルの温度を検出する工程と、
     該工程に連動して前記コントローラが前記ポンプを作動し、前記空隙に前記冷媒液を供給する工程および前記冷媒液の供給量を調整する工程と
    を含むことを特徴とする請求項20または21のいずれかに記載された駆動方法。
     
  23.  前記経路に連通する冷媒液容器を前記ステータにさらに配備することを特徴とする請求項20から22のいずれかに記載された駆動方法。
     
  24.   前記制御部が、前記円筒コイルの温度を検出するコイル温度検知センサと、前記コイル温度検知センサと連動して前記円筒コイルより高い位置に配置された前記冷媒液容器から前記空隙に前記冷媒液を供給する電磁弁と、前記電磁弁に対する開閉指令によって前記冷媒液の供給量を調整するコントローラとを含み、
     前記コイル温度検知センサを作動し、前記円筒コイルの温度を検出する工程と、
     該工程に連動して前記コントローラが前記電磁弁を作動し、前記冷媒液容器から前記空隙に前記冷媒液を供給する工程および前記冷媒液の供給量を調整する工程と、
    を含むことを特徴とする請求項23に記載された駆動方法。
     
  25.  前記冷媒液容器と前記空隙との間を連通する循環手段を前記ステータにさらに配備することを特徴とする請求項23または24のいずれかに記載された駆動方法。
     
  26.  前記制御部が前記循環手段を作動し、前記冷媒液の気相を前記冷媒液容器に液相で回収する工程をさらに含むことを特徴とする請求項25に記載された駆動方法。
     
  27.  前記円筒型マウントの中心部に固定され、前記蓋型マウントの中心部に回転自在に連結される駆動シャフトを配備することを特徴とする請求項20から26のいずれかに記載された駆動方法。
     
  28.  通電可能な無鉄心の円筒コイルの一方の端面を固定する蓋型マウントからなるステータと、前記蓋型マウントに回転自在に対置されるカップ型マウントとからなるロータとによってエアギャップを含む第1空隙を形成し、
     前記ロータを構成する前記カップ型マウントは、一方は開放され他方は閉じられた底部を有し、前記底部に同心円のインナーヨークおよびアウターヨークを一体化し、前記インナーヨークの外周面および/または前記アウターヨークの内周面に複数のマグネットを互いに円周方向に間隙を空けて配備し、前記間隙に対応する前記インナーヨークの位置に該インナーヨークに貫通するスリットを設けており、
     前記円筒コイルの他方の端面を、前記カップ型マウントの前記底部との間で隙間を残して前記円筒コイルを前記第1空隙に浮かせて配置し、前記カップ型マウントの一方の端面と前記蓋型マウントとの間に前記円筒コイルの内周側に第2空隙が形成され、前記円筒コイルの外周側に第3空隙が形成され、前記第1空隙に冷媒液を供給する経路が前記ステータに設けられ、前記ステータに関連する制御部と、前記ロータに関連する駆動部と、が配備される、定格を超える負荷で稼働するための無鉄心回転電気機械の駆動方法であって、
     前記駆動部を作動し、定格を超える負荷で前記無鉄心回転電気機械を稼働する工程と、
     前記制御部を作動し、前記第1空隙の前記インナーヨークの内側に前記冷媒液を供給し、前記スリットを介して発熱する前記円筒コイルに前記冷媒液を送る工程と、
     発熱する前記円筒コイルが前記冷媒液を気化し、前記冷媒液の気化潜熱で前記円筒コイルを冷却する工程と、
     前記円筒コイルが定格運転時の許容上限温度を超えないように、前記冷媒液の供給量を調整する工程と、
    を含むことを特徴とする駆動方法。
     
  29.  前記制御部を作動し、前記円筒コイルが少なくとも前記冷媒液が気化する下限温度を下回らないように前記第1空隙に対する前記冷媒液の供給を止める工程をさらに含み、該工程と前記第1空隙の前記インナーヨークの内側に前記冷媒液を供給し、前記スリットを介して発熱する前記円筒コイルに前記冷媒液を送る前記工程とを繰り返すことによって、前記円筒コイルを前記許容上限温度と前記下限温度との範囲に維持する工程を含むことを特徴とする請求項28に記載された駆動方法。
     
  30.   前記制御部が、コイル温度検知センサと、前記冷媒液を供給するためのポンプと、前記ポンプに対するオン・オフ指令によって前記冷媒液の供給量を調整するコントローラを含み、
     前記コイル温度検知センサを作動し、前記円筒コイルの温度を検出する工程と、
     該工程に連動して前記コントローラが前記ポンプを作動し、前記第1空隙の前記インナーヨークの内側に前記冷媒液を供給し前記スリットを介して発熱する前記円筒コイルに前記冷媒液を送る工程および前記冷媒液の供給量を調整する工程と、
    をさらに含むことを特徴とする請求項28または29のいずれかに記載された駆動方法。
     
  31.  前記経路に連通する冷媒液容器を前記ステータにさらに配備することを特徴とする請求項28から30のいずれかに記載された駆動方法。
     
  32.   前記制御部が、前記円筒コイルの温度を検出するコイル温度検知センサと、前記コイル温度検知センサと連動して前記円筒コイルより高い位置に配置された前記冷媒液容器から前記冷媒液を前記第1空隙に供給するための電磁弁と、前記電磁弁に対する開閉指令によって前記冷媒液の供給量を調整するコントローラとを含み、
     前記コイル温度検知センサを作動し、前記円筒コイルの温度を検出する工程と、
     前記工程に連動して前記コントローラが前記電磁弁を作動し、前記第1空隙の前記インナーヨークの内側に前記冷媒液を供給し前記スリットを介して発熱する前記円筒コイルに前記冷媒液を送る工程および前記冷媒液の供給量を調整する工程と、
    をさらに含むことを特徴とする請求項31に記載された駆動方法。
     
  33.  前記冷媒液容器と前記第1空隙との間を連通する循環手段を前記ステータにさらに配備することを特徴とする請求項31または32のいずれかに記載された駆動方法。
     
  34.  前記制御部が前記循環手段を作動し、前記冷媒液の気相を前記冷媒液容器に液相で回収する工程をさらに含むことを特徴とする請求項33に記載された駆動方法。
     
  35.  前記カップ型マウントの中心部に固定され、前記蓋型マウントの中心部に回転自在に連結される駆動シャフトを配備することを特徴とする請求項28から34のいずれかに記載された駆動方法。
     
  36.  前記円筒コイルは、絶縁層で覆われた長手方向に離間する線状部を有する導電性金属シートの積層体で円筒形に形成される請求項20から35のいずれかに記載された駆動方法。
     
  37.  前記円筒コイルは、絶縁層で覆われた線状導体で円筒形に形成される請求項20から35のいずれかに記載された駆動方法。
     
  38.  前記冷媒液は、水、エタノール、アンモニア、液体窒素、液体ヘリウム、フッ素系液体のいずれかである請求項20から37のいずれかに記載された駆動方法。
     
  39.  通電可能な無鉄心の円筒コイルの端面を固定する蓋型マウントからなるステータと、前記蓋型マウントに回転自在に対置される円筒型マウントで該円筒型マウントの内周面に複数のマグネットを内周面に配備されているロータとによってエアギャップを含む空隙を形成し、前記ステータに前記空隙に冷媒液を供給する経路を有する無鉄心回転電気機械と、前記ロータと連動して作動する前記回転電気機械を駆動する駆動装置と、前記ステータに配備されるコイル温度検知センサと連動して前記空隙に前記冷媒液を供給する制御装置とからなる、前記無鉄心回転電気機械を定格を超える負荷で稼働するための駆動システムであって、
     前記駆動装置を作動し、定格を超える負荷で前記無鉄心回転電気機械を稼働するときに、前記制御装置を作動し、前記空隙に前記冷媒液を供給し、発熱する前記円筒コイルが前記冷媒液を気化し、前記冷媒液の気化潜熱で前記円筒コイルを冷却し、前記円筒コイルが定格運転時の許容上限温度を超えないように前記冷媒液の供給量を調整することによって、定格を超える負荷で前記無鉄心回転電気機械を稼働することを特徴とする駆動システム。
     
  40.  定格を超える負荷で前記無鉄心回転電気機械を稼働するときに、前記制御装置を作動し、前記円筒コイルが定格運転時の許容上限温度を超えないように前記空隙に前記冷媒液を供給する動作と、該動作によって前記円筒コイルが少なくとも前記冷媒液が気化する下限温度を下回らないように前記空隙に対する前記冷媒液の供給を止める動作とを繰り返すことによって、前記円筒コイルを前記許容上限温度と前記下限温度との範囲に維持するようにしたことを特徴とする請求項39に記載された駆動システム。
     
  41.  前記制御装置が、前記冷媒液を供給するポンプと、前記ポンプに対するオン・オフ指令によって前記冷媒液の供給量を調整するコントローラとを含み、前記コイル温度検知センサに連動して前記コントローラが前記ポンプを作動し、前記空隙に前記冷媒液を供給すると共に前記冷媒液の供給量を調整することを特徴とする請求項39または40のいずれかに記載された駆動システム。
     
  42.  前記経路に連通する冷媒液容器を前記ステータにさらに配備することを特徴とする請求項39から41のいずれかに記載された駆動システム。
     
  43.  前記制御装置が、前記冷媒液を供給する電磁弁と、前記電磁弁に対する開閉指令によって前記冷媒液の供給量を調整するコントローラとを含み、前記コイル温度検知センサと連動して前記電磁弁を作動し、前記円筒コイルより高い位置に配置された前記冷媒液容器から前記空隙に前記冷媒液を供給すると共に前記冷媒液の供給量を調整することを特徴とする請求項42に記載された駆動システム。
     
  44.  前記冷媒液容器と前記空隙との間を連通する循環手段を前記無鉄心回転電気機械の前記ステータにさらに配備することを特徴とする請求項42または43のいずれかに記載された駆動システム。
     
  45.  前記制御装置が、前記循環手段により前記冷媒液の気相を前記冷媒液容器に液相で回収することを特徴とする請求項44に記載された駆動システム。
     
  46.  前記無鉄心回転電気機械は、前記円筒型マウントの中心部に固定され、前記蓋型マウントの中心部に回転自在に連結される駆動シャフトを配備することを特徴とする請求項39から45のいずれかに記載された駆動システム。
     
  47.  通電可能な無鉄心の円筒コイルの一方の端面を固定する蓋型マウントからなるステータと、前記蓋型マウントに回転自在に対置されるカップ型マウントとからなるロータとによってエアギャップを含む第1空隙を形成し、
     前記ロータを構成する前記カップ型マウントは、一方は開放され他方は閉じられた底部を有し、前記底部に同心円のインナーヨークおよびアウターヨークを一体化し、前記インナーヨークの外周面および/または前記アウターヨークの内周面に複数のマグネットを互いに円周方向に間隙を空けて配備し、前記間隙に対応する前記インナーヨークの位置に該インナーヨークに貫通するスリットを設けており、
     前記円筒コイルの他方の端面を、前記カップ型マウントの前記底部との間で隙間を残して前記円筒コイルを前記第1空隙に浮かせて配置し、前記カップ型マウントの一方の端面と前記蓋型マウントとの間に前記円筒コイルの内周側に第2空隙が形成され、前記円筒コイルの外周側に第3空隙が形成され、前記ステータに前記第1空隙に冷媒液を供給する経路を有する無鉄心回転電気機械と、前記ロータと連動して作動する前記回転電気機械を駆動する駆動装置と、前記ステータに配備されるコイル温度検知センサと連動して前記第1空隙に前記冷媒液を供給する制御装置とからなる、定格を超える負荷で無鉄心回転電気機械を稼働するための駆動システムであって、
     前記駆動装置を作動し、定格を超える負荷で前記無鉄心回転電気機械を稼働するときに、前記制御装置を作動し、前記第1空隙の前記インナーヨークの内側に前記冷媒液を供給し、発熱する前記円筒コイルが前記スリットを介して前記円筒コイルに送られる前記冷媒液を気化し、前記冷媒液の気化潜熱で前記円筒コイルを冷却し、前記円筒コイルが定格運転時の許容上限温度を超えないように前記冷媒液の供給量を調整することを特徴とする駆動システム。
     
  48.  定格を超える負荷で前記無鉄心回転電気機械を稼働するときに、前記制御装置を作動し、前記円筒コイルが定格運転時の前記許容上限温度を超えないように前記第1空隙の前記インナーヨークの内側に前記冷媒液を供給する動作と、該動作によって前記円筒コイルが少なくとも前記冷媒液が気化する下限温度を下回らないように前記第1空隙に対する前記冷媒液の供給を止める動作とを繰り返すことによって、前記円筒コイルを前記許容上限温度と前記下限温度との範囲に維持するようにしたことを特徴とする請求項47に記載された駆動システム。
     
  49.  前記制御装置が、前記第1空隙の前記インナーヨークの内側に前記冷媒液を供給するポンプと、該ポンプに対するオン・オフ指令によって前記冷媒液の供給量を調整するコントローラとを含み、前記コイル温度検知センサに連動して前記コントローラが前記ポンプを作動し、前記第1空隙の前記インナーヨークの内側に前記冷媒液を供給し、前記スリットを介して発熱する前記円筒コイルに前記冷媒液を送ると共に前記冷媒液の供給量を調整することを特徴とする請求項47または48のいずれかに記載された駆動システム。
     
  50.  前記経路に連通する冷媒液容器を前記ステータにさらに配備することを特徴とする請求項47から49のいずれかに記載された駆動システム。
     
  51.  前記制御装置が、前記第1空隙の前記インナーヨークの内側に前記冷媒液を供給する電磁弁と、前記電磁弁に対する開閉指令によって前記冷媒液の供給量を調整するコントローラとを含み、前記コイル温度検知センサと連動して前記コントローラが前記電磁弁を作動し、前記円筒コイルより高い位置に配置された前記冷媒液容器から前記第1空隙の前記インナーヨークの内側に前記冷媒液を供給し、前記スリットを介して発熱する前記円筒コイルに前記冷媒液を送ると共に前記冷媒液の供給量を調整することを特徴とすることを特徴とする請求項50に記載された駆動システム。
     
  52.  前記冷媒液容器と前記空隙との間を連通する循環手段を前記無鉄心回転電気機械の前記ステータにさらに配備することを特徴とする請求項50または51のいずれかに記載された駆動システム。
     
  53.  前記制御装置が、前記循環手段により前記冷媒液の気相を前記冷媒液容器に液相で回収することを特徴とする請求項52に記載された駆動システム。
     
  54.  前記無鉄心回転電気機械は、前記円筒型マウントの中心部に固定され、前記蓋型マウントの中心部に回転自在に連結される駆動シャフトを配備することを特徴とする請求項47から53のいずれかに記載された駆動システム。
     
  55.  前記円筒コイルは、絶縁層で覆われた長手方向に離間する線状部を有する導電性金属シートの積層体で円筒形に形成される請求項39から54のいずれかに記載された駆動システム。
     
  56.  前記円筒コイルは、絶縁層で覆われた線状導体で円筒形に形成される請求項39から54のいずれかに記載された駆動システム。
     
  57.  前記冷媒液は、水、エタノール、アンモニア、液体窒素、液体ヘリウム、フッ素系液体のいずれかである請求項39から56のいずれかに記載された駆動システム。

     
PCT/JP2016/084856 2016-11-24 2016-11-24 定格を超える負荷で稼働するための無鉄心回転電気機械、その駆動方法、および、それを含む駆動システム WO2018096636A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/JP2016/084856 WO2018096636A1 (ja) 2016-11-24 2016-11-24 定格を超える負荷で稼働するための無鉄心回転電気機械、その駆動方法、および、それを含む駆動システム
KR1020197012334A KR102126444B1 (ko) 2016-11-24 2016-11-24 정격을 넘는 부하에서 가동하기 위한 무철심 회전 전기 기계, 그 구동 방법, 및, 그것을 포함한 구동 시스템
US16/464,036 US11251683B2 (en) 2016-11-24 2016-11-24 Coreless rotating electrical machine for being operated under load exceeding rating, driving method thereof, and driving system including thereof
CN201680091120.4A CN110140282B (zh) 2016-11-24 2016-11-24 用于在超过额定的负载下工作的无铁芯旋转电机及其驱动方法、以及包含该无铁芯旋转电机的驱动系统
JP2017555733A JP6399721B1 (ja) 2016-11-24 2016-11-24 定格を超える負荷で稼働するための無鉄心回転電気機械、その駆動方法、および、それを含む駆動システム
KR1020207012747A KR102349298B1 (ko) 2016-11-24 2016-11-24 무철심 회전 전기 기계
DE112016007469.7T DE112016007469T5 (de) 2016-11-24 2016-11-24 Kernlose rotierende elektrische Maschine zum Betreiben mit Überlast, Antriebsverfahren für diese und diese beinhaltendes Antriebssystem
TW109135323A TWI756863B (zh) 2016-11-24 2017-11-21 無鐵心旋轉電機
TW106140222A TWI712252B (zh) 2016-11-24 2017-11-21 用於在超過額定的負載下進行運作的無鐵心旋轉電機、其之驅動方法、以及包含其之驅動系統
US17/584,462 US11563361B2 (en) 2016-11-24 2022-01-26 Coreless rotating electrical machine for being operated under load exceeding rating, driving method thereof, and driving system including thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084856 WO2018096636A1 (ja) 2016-11-24 2016-11-24 定格を超える負荷で稼働するための無鉄心回転電気機械、その駆動方法、および、それを含む駆動システム

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/464,036 A-371-Of-International US11251683B2 (en) 2016-11-24 2016-11-24 Coreless rotating electrical machine for being operated under load exceeding rating, driving method thereof, and driving system including thereof
US17/584,462 Continuation US11563361B2 (en) 2016-11-24 2022-01-26 Coreless rotating electrical machine for being operated under load exceeding rating, driving method thereof, and driving system including thereof

Publications (1)

Publication Number Publication Date
WO2018096636A1 true WO2018096636A1 (ja) 2018-05-31

Family

ID=62195053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084856 WO2018096636A1 (ja) 2016-11-24 2016-11-24 定格を超える負荷で稼働するための無鉄心回転電気機械、その駆動方法、および、それを含む駆動システム

Country Status (7)

Country Link
US (2) US11251683B2 (ja)
JP (1) JP6399721B1 (ja)
KR (2) KR102349298B1 (ja)
CN (1) CN110140282B (ja)
DE (1) DE112016007469T5 (ja)
TW (2) TWI756863B (ja)
WO (1) WO2018096636A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110140282B (zh) * 2016-11-24 2021-05-14 M-链接株式会社 用于在超过额定的负载下工作的无铁芯旋转电机及其驱动方法、以及包含该无铁芯旋转电机的驱动系统
JP7124485B2 (ja) * 2018-06-28 2022-08-24 日本電産トーソク株式会社 ソレノイド装置
US11804754B2 (en) * 2020-12-18 2023-10-31 Hamilton Sundstrand Corporation Two-phase thermal management system with active control for high density electric machine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031167U (ja) * 1983-08-04 1985-03-02 トヨタ自動車株式会社 電動機の冷却装置
JPS60162959U (ja) * 1984-04-03 1985-10-29 株式会社明電舎 回転電機の冷却装置
JP2667524B2 (ja) * 1989-07-07 1997-10-27 株式会社東芝 回転電機の冷却装置
JP2004048883A (ja) * 2002-07-10 2004-02-12 C I Kasei Co Ltd 耐振コアレスモータ用回転子および耐振コアレスモータ
JP2006074962A (ja) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd 電動機用冷却装置
JP2013526826A (ja) * 2010-05-19 2013-06-24 シーレイト リミテッド ライアビリティー カンパニー モータからの熱除去
WO2016035358A1 (ja) * 2014-09-04 2016-03-10 株式会社エムリンク 円筒コイルを含む固定子を備えた無鉄心回転電気機械およびその冷却方法
JP5911033B1 (ja) * 2014-10-02 2016-04-27 三菱電機株式会社 回転電機の運転方法
JP2016077117A (ja) * 2014-10-08 2016-05-12 三菱自動車工業株式会社 車両用モータ装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911033B2 (ja) 1980-05-15 1984-03-13 松下電工株式会社 蝶番
GB8414953D0 (en) * 1984-06-12 1984-07-18 Maghemite Inc Brushless permanent magnet dc motor
JP2837198B2 (ja) * 1989-11-07 1998-12-14 アイシン・エィ・ダブリュ株式会社 車両用モータの冷却装置
US5181837A (en) * 1991-04-18 1993-01-26 Vickers, Incorporated Electric motor driven inline hydraulic apparatus
JPH05308752A (ja) 1992-04-28 1993-11-19 Shin Meiwa Ind Co Ltd モータの放熱構造
JP3222242B2 (ja) 1993-01-18 2001-10-22 株式会社三井三池製作所 液冷式誘導電動機
JP3385373B2 (ja) 1994-10-31 2003-03-10 アイシン・エィ・ダブリュ株式会社 モ−タの冷却回路
JPH10336968A (ja) 1997-05-29 1998-12-18 Denso Corp 車両用回転電機
JP3806303B2 (ja) * 2000-12-11 2006-08-09 三菱重工業株式会社 発電機における冷却構造
US6873085B2 (en) * 2001-05-16 2005-03-29 G & G Technology, Inc. Brushless motor
JP2006014522A (ja) 2004-06-28 2006-01-12 Nissan Motor Co Ltd 電動機の冷却構造
JP4654672B2 (ja) 2004-11-30 2011-03-23 日産自動車株式会社 モータの冷却装置およびその冷却方法。
TW200824223A (en) * 2006-11-17 2008-06-01 Delta Electronics Inc Motor
JP2009118686A (ja) 2007-11-08 2009-05-28 Aisin Aw Co Ltd 回転電機の冷却構造
JP5234580B2 (ja) 2007-11-08 2013-07-10 川崎重工業株式会社 回転機ロータ冷却装置および方法
CN201230257Y (zh) * 2008-07-17 2009-04-29 宝元数控精密股份有限公司 马达散热结构
GB0906284D0 (en) 2009-04-14 2009-05-20 Isis Innovation Electric machine-evaporative cooling
JP5417123B2 (ja) 2009-10-29 2014-02-12 株式会社日立製作所 電動車両の冷却システム
US8536813B2 (en) 2010-05-19 2013-09-17 The Invention Science Fund I Llc Motor with rotor-mounted control circuitry
TWI455460B (zh) 2011-12-16 2014-10-01 Ind Tech Res Inst 具有氣水冷卻功能之電機
JP2013169029A (ja) * 2012-02-14 2013-08-29 Kobe Steel Ltd 発電装置
JP2014017968A (ja) 2012-07-09 2014-01-30 Toyota Motor Corp 回転電機冷却システム
JP6197592B2 (ja) 2013-11-12 2017-09-20 マツダ株式会社 モータの冷却構造
CN105871125A (zh) 2015-01-21 2016-08-17 东方电气集团东方电机有限公司 一种旋转电机雾化蒸发冷却系统、电机及其冷却方法
IL247964B (en) * 2016-09-21 2020-11-30 Israel Aerospace Ind Ltd System and method for cooling the body
CN110140282B (zh) * 2016-11-24 2021-05-14 M-链接株式会社 用于在超过额定的负载下工作的无铁芯旋转电机及其驱动方法、以及包含该无铁芯旋转电机的驱动系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031167U (ja) * 1983-08-04 1985-03-02 トヨタ自動車株式会社 電動機の冷却装置
JPS60162959U (ja) * 1984-04-03 1985-10-29 株式会社明電舎 回転電機の冷却装置
JP2667524B2 (ja) * 1989-07-07 1997-10-27 株式会社東芝 回転電機の冷却装置
JP2004048883A (ja) * 2002-07-10 2004-02-12 C I Kasei Co Ltd 耐振コアレスモータ用回転子および耐振コアレスモータ
JP2006074962A (ja) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd 電動機用冷却装置
JP2013526826A (ja) * 2010-05-19 2013-06-24 シーレイト リミテッド ライアビリティー カンパニー モータからの熱除去
WO2016035358A1 (ja) * 2014-09-04 2016-03-10 株式会社エムリンク 円筒コイルを含む固定子を備えた無鉄心回転電気機械およびその冷却方法
JP5911033B1 (ja) * 2014-10-02 2016-04-27 三菱電機株式会社 回転電機の運転方法
JP2016077117A (ja) * 2014-10-08 2016-05-12 三菱自動車工業株式会社 車両用モータ装置

Also Published As

Publication number Publication date
CN110140282A (zh) 2019-08-16
KR20200049914A (ko) 2020-05-08
TWI756863B (zh) 2022-03-01
TW201834362A (zh) 2018-09-16
US11563361B2 (en) 2023-01-24
TWI712252B (zh) 2020-12-01
US20190386542A1 (en) 2019-12-19
TW202118198A (zh) 2021-05-01
JPWO2018096636A1 (ja) 2018-11-22
JP6399721B1 (ja) 2018-10-03
KR102126444B1 (ko) 2020-07-08
KR20190051073A (ko) 2019-05-14
CN110140282B (zh) 2021-05-14
KR102349298B1 (ko) 2022-01-10
DE112016007469T5 (de) 2019-08-14
US20220149703A1 (en) 2022-05-12
US11251683B2 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
JP2018085918A (ja) 定格を超える負荷で稼働するための無鉄心回転電気機械、その駆動方法、および、それを含む駆動システム
US11563361B2 (en) Coreless rotating electrical machine for being operated under load exceeding rating, driving method thereof, and driving system including thereof
JP6541145B2 (ja) 低温用フェライト磁石モーターを加熱するためのシステムおよび方法
US8466649B2 (en) Heat removal from motor components
US7119461B2 (en) Enhanced thermal conductivity ferrite stator
JP2009118686A (ja) 回転電機の冷却構造
CN104283483B (zh) 用于控制电机的系统和方法
JP2008263753A (ja) 車両用回転電機の冷却装置
KR100690700B1 (ko) 가변속 단상 유도전동기
JP2006060999A (ja) 単相誘導電動機
JP5061726B2 (ja) 電動機
KR100707425B1 (ko) 단상 유도 전동기의 기동장치
US7782008B2 (en) Motor and method for controlling operation of motor
KR20150004259A (ko) 모터의 제어 시스템 및 모터의 제어 방법
KR100593542B1 (ko) 캐패시터 운전형 하이브리드 인덕션 모터의 구동장치
JP2018127925A (ja) 流体用ポンプ及びその運転方法
JP2016518808A (ja) 特に自動車用の電動モータ
JP2009273247A (ja) 回転電機
KR101187719B1 (ko) 터빈발전장치
JPH02136061A (ja) 超電導モータ
JPS5959042A (ja) 超電導回転電機
JP2000262025A (ja) コンデンサモータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017555733

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197012334

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16922490

Country of ref document: EP

Kind code of ref document: A1