WO2018092459A1 - 輻射ヒータ装置 - Google Patents

輻射ヒータ装置 Download PDF

Info

Publication number
WO2018092459A1
WO2018092459A1 PCT/JP2017/036355 JP2017036355W WO2018092459A1 WO 2018092459 A1 WO2018092459 A1 WO 2018092459A1 JP 2017036355 W JP2017036355 W JP 2017036355W WO 2018092459 A1 WO2018092459 A1 WO 2018092459A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat generating
heater device
surface member
temperature
Prior art date
Application number
PCT/JP2017/036355
Other languages
English (en)
French (fr)
Inventor
関 秀樹
公威 石川
裕康 生出
田中 祐介
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2018551071A priority Critical patent/JP6725005B2/ja
Priority to DE112017005776.0T priority patent/DE112017005776T5/de
Priority to CN201780070487.2A priority patent/CN109952810B/zh
Publication of WO2018092459A1 publication Critical patent/WO2018092459A1/ja
Priority to US16/396,833 priority patent/US11440375B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2227Electric heaters incorporated in vehicle trim components, e.g. panels or linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2226Electric heaters using radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/06Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated
    • F24D5/08Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated with hot air led through radiators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/267Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an organic material, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/342Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/342Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
    • H05B3/347Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles woven fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/36Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material

Definitions

  • the present disclosure relates to a radiant heater device that generates radiant heat.
  • the radiation heater device includes a substrate portion formed so as to provide a surface with an electrically insulating material, and a plurality of heat generating portions arranged in parallel so as to extend along the surface of the substrate portion. Yes.
  • the temperature of the heat generating portion rises in response to energization, and when the object comes into contact, the temperature of the heat generating portion decreases.
  • this radiation heater apparatus is provided with a surface layer formed of a thermoplastic resin sheet and having a plurality of convex portions on the surface of the substrate portion. For this reason, the contact area between the object and the surface layer is small, and direct heat transfer from the heater device to the object is suppressed.
  • This disclosure is intended to more quickly reduce the temperature of the contact portion when an object comes into contact.
  • a radiant heater device that generates radiant heat includes a plate-like substrate portion made of an electrically insulating material, a sheet-like surface member disposed on one surface side of the substrate portion, and A heat generating portion formed on the other surface side of the substrate portion, and the surface member has a recessed portion formed on the substrate portion side in the thickness direction of the surface member, and the space portion defines a surface direction of the surface member. It is made of a fiber cloth that suppresses heat transfer.
  • the surface member is formed of a fiber cloth in which a space portion recessed toward the substrate portion is formed in the thickness direction of the surface member, and the space portion suppresses the movement of heat in the surface direction of the surface member. Since it is comprised, the temperature of a contact part when an object contacts can be reduced more rapidly.
  • FIG. 3 is a sectional view taken along line III-III in FIG. It is an external view of the knitted fabric of 1st Embodiment. It is the schematic which shows how to transmit the heat in a prior art. It is the schematic which shows how heat is transmitted in 1st Embodiment. It is a figure showing the relationship between the fabric weight (for example, thickness and weight) of a surface member, and the contact temperature of a contact part. It is a figure showing the relationship of the contact temperature of the contact part at the time of raising or flocking to a knitted fabric.
  • FIG. 1 A radiation heater device 1 according to a first embodiment of the present disclosure will be described with reference to FIGS.
  • the radiation heater apparatus 1 which concerns on 1st Embodiment is installed in the room
  • the apparatus 1 constitutes a part of the heating apparatus 10 for the room.
  • the device 1 is an electric heater that generates heat by being fed from a power source such as a battery or a generator mounted on a moving body.
  • the device 1 is formed in a thin plate shape.
  • the device 1 generates heat when electric power is supplied.
  • the apparatus 1 radiates radiant heat R mainly in a direction perpendicular to the surface in order to warm an object positioned in a direction perpendicular to the surface.
  • the device 1 In the room, there is a seat 11 for the passenger 12 to sit.
  • the device 1 is installed indoors so as to radiate radiant heat R to the feet of the occupant 12.
  • the device 1 can be used as a device for immediately providing warmth to the occupant 12 immediately after the heating device 10 is activated.
  • the device 1 is installed on a wall surface in the room.
  • the apparatus 1 is installed so as to face an occupant 12 in a normal posture assumed.
  • the road traveling vehicle has a steering column 13 for supporting the handle 14.
  • the device 1 can be installed on the lower surface of the steering column 13.
  • the apparatus 1 is installed such that its surface is exposed toward the room.
  • the device 1 extends along an XY plane defined by an axis X and an axis Y.
  • the apparatus 1 is formed in a substantially rectangular thin plate shape.
  • the apparatus 1 includes a substrate unit 2, a plurality of electrodes 3 and 4, and a plurality of heat generating units 5.
  • the electrode 4 and the heat generating part 5 embedded in the substrate part 2 are hatched.
  • FIG. 3 shows a III-III cross section of FIG.
  • the device 1 has a thickness in the direction of the axis Z.
  • the apparatus 1 can also be called a planar heater that radiates radiant heat R mainly in a direction perpendicular to the surface.
  • the substrate part 2 is made of a resin material that provides excellent electrical insulation and withstands high temperatures.
  • the substrate part 2 is formed in a flat plate shape.
  • the substrate unit 2 is a multilayer substrate.
  • the substrate unit 2 has a front surface layer 21 and a back surface layer 22. These layers 21 and 22 are provided by a sheet of thermoplastic resin.
  • a surface member 80 described later is bonded to the surface layer 21.
  • the side of the surface layer 21 to which the surface member 80 is bonded corresponds to one surface side of the substrate unit 2.
  • the surface member 80 is exposed toward the room.
  • the surface member 80 provides the surface of the device 1.
  • the back layer 22 provides the back of the device 1.
  • the intermediate layer 23 is disposed between the front surface layer 21 and the back surface layer 22.
  • On one or more of the layers 21, 22, 23, a material for forming the electrodes 3, 4 and the heat generating portion 5 is supported.
  • the side on which the heat generating part 5 is carried in one or a plurality of the layers 21, 22, 23 corresponds to the other surface side of the substrate part 2.
  • the substrate unit 2 is a member for supporting the electrodes 3 and 4 and the heat generating unit 5.
  • the material for providing the substrate part 2 provides a sufficiently lower thermal conductivity than the electrodes 3, 4 and the heat generating part 5.
  • substrate part 2 provides the heat insulation part which suppresses heat conduction between the two adjacent heat-emitting parts 5.
  • the plurality of electrodes 3 and 4 includes an external electrode 3 at least a part of which is exposed to the outside of the apparatus 1 and an internal electrode 4 disposed in the substrate unit 2.
  • the electrode 3 includes a pair of electrodes 31 and 32 for supplying power.
  • the pair of electrodes 31 and 32 provide a terminal for the device 1.
  • These electrodes 3 are arranged on the outer surface of the substrate portion 2 including the outer edge portion, the front surface, and the back surface of the substrate portion 2.
  • a part of the electrode 3 is embedded in the substrate portion 2 and is electrically connected to the electrode 4.
  • the electrode 4 may be exposed to the outer surface of the substrate portion 2 and used as a terminal for supplying the electrode.
  • the electrode 4 is embedded in the substrate part 2.
  • the electrode 4 is also a bus bar portion that distributes power to a plurality of heat generating portions 5 to be described later.
  • the electrode 4 extends from the electrode 3.
  • the electrode 4 has a sufficiently low electric resistance value as compared with the plurality of heat generating portions 5.
  • the electric resistance value of the electrode 4 is set so that heat generation in the electrode 4 can be suppressed.
  • the electrode 4 distributes the current evenly to the plurality of heat generating portions 5.
  • the electrode 4 has a pair of electrodes 41 and 42 for supplying electric power.
  • the pair of electrodes 41 and 42 are disposed at both ends of the unit region of the substrate unit 2 so as to be separated from each other.
  • the pair of electrodes 41, 42 extend along both sides of the unit region of the substrate unit 2. A region where the pair of electrodes 41 and 42 are provided and a region between them define a unit region.
  • Each of the plurality of heat generating portions 5 is embedded in the substrate portion 2.
  • the heat generating part 5 is disposed between the front surface layer 21 and the back surface layer 22. Therefore, the heat generating part 5 is not exposed on the surface of the substrate part 2.
  • the heat generating part 5 is protected by the substrate part 2.
  • the heat generating part 5 is disposed between the pair of electrodes 41 and 42.
  • the heat generating part 5 extends linearly between the pair of electrodes 41 and 42.
  • the heating part 5 can be called a linear heating element.
  • the heat generating portion 5 extends straightly between the pair of electrodes 41 and 42.
  • One end of the heat generating part 5 is electrically and mechanically connected to one electrode 41.
  • the other end of the heat generating part 5 is electrically and mechanically connected to the other electrode 42.
  • the heat generating part 5 is formed in a thin plate shape parallel to the surface of the substrate part 2.
  • the heat generating part 5 can radiate radiant heat R by heat supplied by energization.
  • the heat generating part 5 can radiate radiant heat R that makes the occupant 12, that is, a person feel warm, by being heated to a predetermined radiation temperature Tr.
  • the volume of the heat generating part 5 is set so that the heat supplied from the heat generating part 5 can reach a temperature at which the heat generating part 5 can radiate the radiant heat R.
  • the volume of the heat generating part 5 is set such that the temperature of the electrode 3 is rapidly increased by the heat supplied from the heat generating part 5.
  • the volume of the heat generating unit 5 is set to be small so that a rapid temperature drop is caused by heat radiation to an object that is in contact with the surface of the device 1.
  • the thickness of the heat generating part 5 is set thin in order to maximize the area parallel to the surface and minimize the volume.
  • the area of the heat generating part 5 is set to a size suitable for radiating radiant heat R.
  • the area of the heat generating part 5 is set smaller than an object positioned facing the surface of the device 1, for example, a part of the occupant 12.
  • the plurality of heat generating parts 5 are arranged in parallel to each other.
  • the plurality of heat generating portions 5 are electrically connected in parallel between the pair of electrodes 41 and 42.
  • the plurality of heat generating portions 5 are arranged so as to define a gap 6 therebetween.
  • the plurality of heat generating portions 5 are arranged so as to be distributed substantially evenly with respect to the surface of the substrate portion 2.
  • the plurality of heat generating portions 5 are arranged so as to be distributed with a substantially uniform density in a region between the pair of electrodes 41 and 42.
  • the plurality of heat generating units 5 are distributed in the most part of the unit area of the substrate unit 2.
  • the shape and dimensions that define the cross-sectional area of the electrodes 3 and 4 in the energization direction, and the materials of the electrodes 3 and 4 are selected and set so as to provide a low electrical resistance value.
  • the cross-sectional areas and materials of the electrodes 3 and 4 are set so as to provide a good electric conductor in order to distribute the current evenly to the plurality of heat generating portions 5.
  • the shape and dimensions that define the cross-sectional area of the heat generating portion 5 in the energization direction, and the material of the heat generating portion 5 are selected and set so as to provide a high electrical resistance value so that radiant heat R is generated by energization. .
  • the material of the electrodes 3 and 4 and the material of the heat generating part 5 are different materials.
  • the electrical specific resistance of the material of the electrodes 3 and 4 is sufficiently lower than the electrical specific resistance of the material of the heat generating part 5.
  • the electrode 4 is elongated and has a longitudinal direction along the axis Y.
  • the electrode 4 has a length EL along the axis Y.
  • the length EL corresponds to the energization direction in the electrode 4.
  • the electrode 4 has a width EW along the axis X.
  • the width EW is orthogonal to the energization direction.
  • the electrode 4 has a thickness ET along the axis Z. The thickness ET is smaller than the length EL and the width EW.
  • the electrode 4 provides a ribbon-like electrical conductor.
  • the heat generating part 5 is elongated and has a longitudinal direction along the axis X.
  • the heat generating part 5 has a length HL along the axis X.
  • the length HL corresponds to the energization direction in the heat generating portion 5.
  • the heat generating part 5 has a width HW along the axis Y.
  • the width HW is orthogonal to the energization direction.
  • the heat generating part 5 has a thickness HT along the axis Z.
  • the thickness HT is smaller than the length HL and the width HW. Therefore, the heat generating part 5 provides a ribbon-shaped heat generating element.
  • the thickness HT is desirably set to be smaller than 1 mm.
  • the thickness HT is desirably set to be smaller than 100 ⁇ m.
  • the width EW is set larger than the width HW in order to suppress the electric resistance value in the electrode 4.
  • the cross-sectional area of the electrode 4 orthogonal to the energizing direction is larger than the cross-sectional area of the heat generating part 5 orthogonal to the energizing direction.
  • the specific resistance of the electrode 4 that is smaller than the specific resistance of the heat generating part 5 makes it possible to suppress the cross-sectional area of the electrode 4.
  • the thickness ET may be set larger than the thickness HT.
  • the gap 6 has a width GW.
  • the length of the gap 6 is the same as the length HL of the heat generating portion 5.
  • the plurality of heating portions 5 and the plurality of gaps 6 are alternately arranged over the entire length EL of the electrode 4.
  • the width GW of the gap 6 can be set equal to the width HW of the heat generating portion 5.
  • the several heat-emitting part 5 is arrange
  • the heat generating portions 5 and the gaps 6 having fine widths HW and GW are arranged with high density. As a result, the temperature distribution on the surface of the radiation heater device 1 is suppressed.
  • Such a high-density arrangement of the fine heat generating portions 5 contributes to radiating uniform radiant heat R from the surface of the radiant heater device 1.
  • the radiation heater device 1 is formed in a thin plate shape. Furthermore, the electrodes 3 and 4 and the heat generating part 5 embedded in the substrate part 2 are in the form of a film extending in parallel with the surface of the substrate part 2. Such film-like electrodes 3 and 4 and the heat generating part 5 are advantageous for radiating radiant heat R over a wide area.
  • the heat generating part 5 is made of a material that generates heat when energized.
  • the heat generating part 5 shows an electrical resistance value along the energization direction so as to generate heat when energized.
  • the heat generating part 5 can be made of a metal material.
  • the heat generating part 5 can be made of a tin alloy.
  • the heat generating part 5 can be made of an alloy containing copper, silver, and tin.
  • the heat generating part 5 can also be made of a heating wire material such as a stainless alloy, a nickel-chromium alloy, or an aluminum alloy.
  • the electrodes 3 and 4 are made of a material having a lower electrical specific resistance than the material of the heat generating portion 5.
  • the electrodes 3 and 4 are made of a material that generates less heat than the heat generating portion 5 when energized.
  • the electrodes 3 and 4 are made of a material having a low specific resistance so that current can be evenly distributed to the plurality of heat generating portions 5.
  • the electrodes 3 and 4 can be made of a metal material.
  • the electrodes 3 and 4 can be made of a tin alloy.
  • the electrodes 3 and 4 can be made of an alloy containing copper, silver, and tin.
  • the electrodes 3 and 4 can also be made of a good conductor material such as a copper alloy or an aluminum alloy.
  • the plurality of heating units 5 When a predetermined voltage, for example, 12V DC power is supplied to the electrodes 31, 32, the plurality of heating units 5 generate heat due to the current flowing through the plurality of heating units 5.
  • the radiant heat R is provided from the surface of the device 1 as the plurality of heat generating portions 5 generate heat.
  • the temperature of the several heat-emitting part 5 rises earlier than the temperature rise of the indoor air by a heating apparatus. As a result, the occupant 12 can be warmed by the radiant heat R faster than the heating effect by the heating device.
  • the volume of the electrode 4 and the heat generating part 5 is set so as to reduce the heat capacity.
  • the heat capacity of the heat generating part 5 is set so that when an object comes into contact with the surface of the radiation heater device 1, the surface temperature of the radiation heater device 1 at the contact portion falls below a predetermined temperature in a short time. In a desirable mode, the heat capacity of the heat generating part 5 is set so that the surface temperature of the contact portion is below 60 ° C. when a human finger contacts the surface of the radiation heater device 1.
  • the plurality of heat generating portions 5 are arranged in parallel to each other inside the substrate portion 2 having a lower thermal conductivity than the heat generating portion 5. For this reason, it becomes the structure by which the high heat conduction part and the low heat conduction part are alternately arrange
  • the heat generating part 5 of the present embodiment has a structure in which the movement of heat in the surface direction of the substrate part 2 is suppressed.
  • the radiation heater device 1 of the present embodiment further suppresses the movement of heat in the surface direction of the surface member 80 by the surface member 80 provided on the surface layer 21 of the substrate unit 2.
  • the surface member 80 is composed of fiber cloths 81 and 82.
  • the fiber cloths 81 and 82 are formed with a space 80 a that is recessed toward the substrate portion 2 in the thickness direction of the surface member 80, and the movement of heat in the surface direction of the surface member 80 is suppressed by the space 80 a.
  • the fiber cloths 81 and 82 of the present embodiment are constituted by a knitted cloth formed by knitting a plurality of fibers with air interposed therebetween.
  • the fiber cloth 81 has a base cloth part 810
  • the fiber cloth 82 has a mesh part 821.
  • the knitted fabric is actually comprised as a three-dimensional solid knitted fabric.
  • at least a part of the fiber cloths 81 and 82 has a mesh shape.
  • the mesh shape is a lattice shape. That is, the fiber cloths 81 and 82 have an uneven shape on the surface.
  • the base cloth part 810 is in the form of a thin sheet.
  • the mesh portion 821 has a stitch structure in which a yarn member is knitted to increase the density.
  • the fiber cloths 81 and 82 of the present embodiment are formed at low cost by integrally knitting two knitted cloths.
  • the fiber cloths 81 and 82 have a double mesh structure in which two knitted cloths are knitted.
  • the knitted fabrics 81 and 82 can be configured using chemical fibers such as PET (that is, polyethylene terephthalate), PA (that is, nylon), PPS (that is, polyphenylene sulfide), and natural fibers such as silk. It should be noted that the thermal conductivity of the knitted fabric of the present invention using these chemical fibers and natural fibers such as silk is remarkably smaller than the thermal conductivity of the thermoplastic resin constituting the substrate portion 2.
  • FIG. 4B shows a schematic diagram of a cross section of a knitted fabric in the prior art
  • FIG. 4C shows a schematic diagram of a cross section of the knitted fabrics 81 and 82 of the present invention. As shown in FIGS.
  • the heat transfer method is different between the related art and the present plan.
  • the resin material of the substrate portion 2X is formed in a sheet shape or an uneven shape with a substantially uniform density.
  • heat conduction is performed uniformly through the resin arranged at a substantially uniform density.
  • FIG. 4C in the base fabric portion 810 and the mesh portion 821 in the present plan, a plurality of fibers and fibers are knitted together and air is interposed in the cross section.
  • heat moves mainly through the fiber part 80c rather than the air part 80b between the plurality of fibers. Therefore, the number of paths through which heat is transmitted is smaller than that of the conventional resin material, and the heat conduction is significantly reduced.
  • Equation 1 the thermal resistance when the object contacts the surface member 80.
  • the heater structure of the heat generating portion 5 and the structure of the surface member 80 of the radiant heater device 1 even when the temperature of the contact portion is high, the heat transfer from the heat generating portion 5 to the thickness direction of the surface member 80 is quickly performed at the moment of touching. After that, the heat transfer in the planar direction between the heater and the surface member 80 is suppressed. Therefore, the temperature of the touched part can be quickly reduced. Moreover, the thermal discomfort given to a passenger
  • the total thickness of the base fabric portion 810 and the mesh portion 821 is preferably 1 mm or less. In order to reduce the thermal resistance R, the total thickness of the base fabric portion 810 and the mesh portion 821 is preferably set to about 0.6 to 0.8 mm. Further, the interval between the mesh portions 821 facing each other with the space portion 80a interposed therebetween is preferably about 1 mm to 3 mm. The thickness of the mesh part 821 is preferably about 0.3 mm.
  • the convex surface temperature of the surface member 80 was about 105 ° C.
  • the temperature of the heat generating portion 5 at that time was 125 to 130 ° C.
  • the calculated value of the concave surface temperature of the surface member 80 was 115 ° C.
  • the surface temperature of the convex portion of the surface member 80 at the moment when the object touches the surface member 80 is about 41 to 42 ° C., which is about 1 ° C. compared to other flat knitted fabrics of equivalent thickness.
  • the reduction effect of about 3 ° C. reduction was confirmed in comparison with the case where raising or flocking was applied to the knitted fabric.
  • the surface member 80 is formed with the space portion 80 a that is recessed toward the substrate portion 2 in the thickness direction of the surface member 80, and heat transfer in the surface direction of the surface member 80 is performed by the space portion 80 a. It is comprised by the fiber cloth 81 and 82 to suppress. Therefore, the temperature of the contact portion when the object comes into contact can be lowered more quickly.
  • the heat generating part 5 has a structure in which the movement of heat in the surface direction of the substrate part is suppressed, the temperature of the contact part when an object comes into contact can be further reduced more quickly.
  • FIG. 5 shows the evaluation result of the contact temperature of the finger to the radiation heater device 1 according to the difference in the basis weight (for example, thickness and weight) of the surface member 80.
  • the horizontal axis represents the thickness and weight of the surface member 80, and the vertical axis represents the temperature of the contact portion.
  • Ts is a temperature at which general heat is felt (that is, 43 ° C.)
  • Ts is determined to be safe even if the surface member 80 contacts the surface member 80 if the temperature of the surface member 80 is lower than the temperature Ts. be able to.
  • the space portion 80a is not formed, the smaller the thickness, the smaller the thermal resistance in the thickness direction, so that the heat transfer to the finger increases and the contact temperature slightly increases.
  • the heat capacity of the surface member increases as the thickness increases, the heat transfer from around the contact portion increases and the contact temperature increases. From this result, it was found that the temperature of the contact portion tends to protrude downward with respect to the thickness and weight of the surface member 80.
  • the optimum value is 0.6 to 0.8 mm in thickness.
  • FIG. 6 shows the evaluation result of the finger contact temperature to the radiation heater device 1 when raising or flocking the knitted fabric.
  • FIG. 7 shows the evaluation results of the contact temperature of the finger to the radiation heater device 1 depending on the composition of the surface member.
  • Synthetic leather ie, synthetic leather
  • acrylic or PVC ie, vinyl chloride
  • a non-woven fabric made of only short fibers has a contact temperature comparable to that of a knitted fabric, and it can be estimated that a small air chamber in the non-woven fabric plays a role of heat insulation in the plane direction and heat transfer becomes small.
  • Fig. 8 shows the evaluation results of the finger contact temperature to the radiation heater device 1 depending on the unevenness of the knitted fabric of the surface member.
  • Ts a temperature at which general heat pain is felt
  • a temperature lower than that is determined to be safe even if contact is made It was clearly found that the contact temperature at the contact portion decreases as the unevenness due to the mesh increases.
  • the temperature is the same as that of the knitted fabric.
  • the unevenness exceeds 0.3 mm, the contact area at the time of contact is reduced, and the contact temperature is greatly reduced.
  • the above effect could be confirmed with a sample in which the convexity thickness was 0.9 to 1.0 mm and the unevenness difference was 0.5 to 0.7 mm.
  • FIG. 9 shows the evaluation results of the contact temperature of the finger to the radiation heater device 1 due to the difference in the unevenness in the surface shape using the nonwoven fabric.
  • the thermal conductivity was remarkably increased, and the contact temperature was extremely increased.
  • the contact temperature tended to decrease little even with leather-textured and fabric patterns with less unevenness. In this case, the unevenness was about 0.1 to 0.2 mm.
  • a decrease in the contact temperature can be confirmed by increasing the amount of unevenness of the groove portion due to the stripe pattern, and in this case, the effect can be confirmed from about 0.3 mm.
  • FIG. 10 shows the evaluation result of the radiation amount of the radiation heater device 1 depending on the unevenness amount of the surface member.
  • the amount of radiation when the surface temperature (for example, about 100 ° C.) was combined was measured, and the magnitude of the amount of radiation was compared using a flat knitted fabric as a reference. According to this result, when the unevenness due to the mesh is small, the radiation amount is almost the same as that of the knitted fabric. However, as the unevenness of the mesh is large, the radiation amount is increased and increased by about 30%.
  • the fiber cloths 81 and 82 of the first embodiment are made of knitted fabric, but the fiber cloth of the present embodiment is made of a nonwoven fabric 83.
  • the nonwoven fabric 83 is formed in a cloth shape in which a plurality of fibers are entangled without knitting and air is interposed between the plurality of fibers to reduce heat conduction. Also in this embodiment, the heat conduction is reduced as in FIG. 4C.
  • press portions 83a that are linear concave portions and base fabric portions 83b that are linear convex portions are alternately formed.
  • the press part 83 a is recessed on the surface layer 21 side of the substrate part 2.
  • the press portion 83a and the base fabric portion 83b are formed by pressing the nonwoven fabric 83 using a mold in which linear convex portions are formed.
  • the press part 83a and the base fabric part 83b are inexpensively formed by press work.
  • the thickness of the press part 83a is thinner than that of the base cloth part 83b. Moreover, the density of the fiber of the press part 83a is higher than the density of the fiber of the base fabric part 83b. Thereby, the press part 83a has smaller thermal resistance in the thickness direction than the base cloth part 83b.
  • the convex surface temperature of the surface member 80 was about 105 ° C.
  • the heater heat generating portion temperature at that time was 125 to 130 ° C.
  • the calculated concave surface temperature of the surface member 80 was 115 ° C.
  • the temperature of the surface member at the moment when the object touches the surface member 80 is about 42 ° C., which is about 2 ° C. lower than the other flat nonwoven fabric of the same thickness, and the unevenness difference.
  • a reduction effect of about 3-4 ° C. reduction was confirmed in comparison with the graining process as small as 0.2 mm.
  • the fiber cloths 81 and 82 of the first embodiment have a mesh shape
  • the fiber cloths 81 and 82 of the present embodiment have a honeycomb shape.
  • the fiber cloths 81 and 82 can also be formed in a honeycomb shape.
  • the plurality of heat generating portions 5 are arranged in parallel with each other inside the substrate portion 2 having a lower thermal conductivity than the heat generating portion 5, and the heat generating portions 5 are arranged on the surface of the substrate portion 2. It has a structure in which the movement of heat in the direction is suppressed.
  • the heat generating portion 5 may be configured in a planar shape, and the heat generating portion 5 may not have a structure in which the movement of heat in the surface direction of the substrate portion 2 is suppressed.
  • the linear press portion 83a is formed in the nonwoven fabric 83, but it may be a shape other than the linear shape such as a lattice shape or a honeycomb shape.
  • a through hole penetrating both surfaces of the nonwoven fabric 83 may be formed in the nonwoven fabric 83, and a space formed by the through hole may be a space portion 80a.
  • the fiber cloth of the first embodiment has a double mesh structure in which two fiber cloths are overlapped, but is configured to have a mesh structure in which one fiber cloth is meshed. May be.
  • the radiant heater device that generates radiant heat includes a plate-like substrate portion made of an electrically insulating material, and one surface side of the substrate portion.
  • the surface member is formed of a fiber cloth in which a space portion recessed toward the substrate portion is formed in the thickness direction of the surface member, and the space portion suppresses the movement of heat in the surface direction of the surface member.
  • the fiber cloth is configured by interposing air between a plurality of fibers.
  • the heat-emitting part has a structure where the movement of the heat
  • the fiber cloth has a mesh shape.
  • the fiber cloth can be made into a mesh shape.
  • the fiber cloth has a double mesh structure in which two knitted cloths are overlapped. Accordingly, the thickness can be increased as compared with the case where the fiber cloth is constituted by one fiber cloth, and the surface member having the optimum thickness can be constituted.
  • the mesh shape is a lattice shape.
  • the mesh shape can be a lattice shape.
  • the mesh shape is a honeycomb shape.
  • the mesh shape can be a honeycomb shape.
  • the fiber cloth is constituted by a knitted cloth. Therefore, it is possible to produce a high-class feeling.
  • the fiber cloth is composed of a non-woven fabric. Therefore, it is possible to exert a buffering action when an object such as a finger contacts the surface member.

Abstract

輻射熱を生じる輻射ヒータ装置は、電気絶縁性の材料によって構成された板状の基板部(2)と、前記基板部の一面側に配置されたシート状の表面部材(80)と、前記基板部の他面側に形成された発熱部(5)と、を備える。前記表面部材は、該表面部材の厚み方向のうち前記基板部側に凹んだ空間部(80a)が形成され該空間部により前記表面部材の面方向の熱の移動を抑制する繊維布(81、82、83)により構成されている。

Description

輻射ヒータ装置 関連出願への相互参照
 本出願は、2016年11月16日に出願された日本特許出願番号2016-223467号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、輻射熱を生じる輻射ヒータ装置に関するものである。
 従来、特許文献1に記載された輻射ヒータ装置がある。この輻射ヒータ装置は、電気絶縁性の材料によって表面を提供するように形成された基板部と、基板部の表面に沿って延びるように並列的に配置された複数の発熱部と、を備えている。この輻射ヒータ装置は、通電に応答して発熱部の温度は上昇し、物体が接触すると発熱部の温度は低下する。また、この輻射ヒータ装置は、基板部の表面に、熱可塑性樹脂のシートによって構成され、複数の凸部が形成された表面層が設けられている。このため、物体と表面層との接触面積が少なく、ヒータ装置から物体への直接的な熱伝達が抑制される。
特開2014-189251号公報
 上記特許文献1に記載された装置は、樹脂のシートにより表面層が形成されているので、物体が接触したときの接触部の温度を迅速に低下させることが不十分であることが、本発明者らの研究により判明した。
 本開示は、物体が接触したときの接触部の温度をより迅速に低下させることを目的とする。
 本開示の1つの観点によれば、輻射熱を生じる輻射ヒータ装置は、電気絶縁性の材料によって構成された板状の基板部と、基板部の一面側に配置されたシート状の表面部材と、基板部の他面側に形成された発熱部と、を備え、表面部材は、該表面部材の厚み方向のうち基板部側に凹んだ空間部が形成され該空間部により表面部材の面方向の熱の移動を抑制する繊維布により構成されている。
 このような構成によれば、表面部材は、該表面部材の厚み方向のうち基板部側に凹んだ空間部が形成され該空間部により表面部材の面方向の熱の移動を抑制する繊維布により構成されているので、物体が接触したときの接触部の温度をより迅速に低下させることができる。
第1実施形態に係る輻射ヒータ装置を車両に取り付けた様子を示した図である。 第1実施形態に係る輻射ヒータ装置の平面図である。 図2中のIII-III断面図である。 第1実施形態の編布の外観図である。 従来技術における熱の伝わり方を示す概略図である。 第1実施形態における熱の伝わり方を示す概略図である。 表面部材の目付量(例えば、厚みおよび重さ)と接触部の接触温度の関係を表した図である。 編布に起毛あるいは植毛をした場合の接触部の接触温度の関係を表した図である。 表面部材の組成の違いによる接触部の接触温度の特性を表した図である。 表面部材の編布の凹凸量の違いによる接触部の接触温度の特性を表した図である。 表面部材に不織布を用いた場合の厚みに対する凹凸量と接触部の接触温度の関係を表した図である。 表面部材の凹凸量の違いによる接触部の接触温度の特性を表した図である。 第2実施形態に係る輻射ヒータ装置の断面図であって、図3に対応する図である。 第2実施形態の不織布の外観図である。 第3実施形態の表面部材の外観図である。
 以下に、図面を参照しながら複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。
 (第1実施形態)本開示の第1実施形態に係る輻射ヒータ装置1について、図1~図10を用いて説明する。図1において、第1実施形態に係る輻射ヒータ装置1は、道路走行車両、船舶、航空機などの移動体の室内に設置されている。装置1は、室内のための暖房装置10の一部を構成している。装置1は、移動体に搭載された電池、発電機などの電源から給電されて発熱する電気的なヒータである。装置1は、薄い板状に形成されている。装置1は、電力が供給されると発熱する。装置1は、その表面と垂直な方向に位置付けられた対象物を暖めるために、主としてその表面と垂直な方向へ向けて輻射熱Rを放射する。
 室内には、乗員12が着座するための座席11が設置されている。装置1は、乗員12の足元に輻射熱Rを放射するように室内に設置されている。装置1は、暖房装置10の起動直後において、乗員12に対して即効的に暖かさを提供するための装置として利用することができる。装置1は、室内の壁面に設置される。装置1は、想定される通常の姿勢の乗員12に対向するように設置される。例えば、道路走行車両は、ハンドル14を支持するためのステアリングコラム13を有している。装置1は、ステアリングコラム13の下面に設置することができる。装置1は、その表面が室内に向けて露出するように設置されている。
 図2において、装置1は、軸Xと軸Yによって規定されるX-Y平面に沿って広がっている。装置1は、ほぼ四角形の薄い板状に形成されている。装置1は、基板部2と、複数の電極3、4と、複数の発熱部5とを有する。図中には、基板部2に埋設された電極4と発熱部5には、ハッチングが付されている。
 図3は、図2のIII-III断面を示す。図中において、装置1は、軸Zの方向に厚さをもつ。装置1は、主として表面と垂直な方向に向けて輻射熱Rを放射する面状ヒータとも呼ぶことができる。
 基板部2は、優れた電気絶縁性を提供し、かつ高温に耐える樹脂材料によって作られている。基板部2は、平板状に形成されている。基板部2は、多層基板である。
 基板部2は、表面層21と、裏面層22とを有する。これらの層21、22は、熱可塑性樹脂のシートによって提供される。
 表面層21には、後述する表面部材80が接着されている。表面層21の表面部材80が接着されている側が、基板部2の一面側に対応する。表面部材80は、室内に向けて露出している。表面部材80は、装置1の表面を提供する。裏面層22は、装置1の背面を提供する。中間層23は、表面層21と裏面層22との間に配置されている。上記層21、22、23のひとつまたは複数の上に、電極3、4、および、発熱部5を形成する材料が担持される。上記層21、22、23のひとつまたは複数における、発熱部5が担持される側が、基板部2の他面側に対応する。
基板部2は、電極3、4、および、発熱部5を支持するための部材である。
 基板部2を提供する材料は、電極3、4および発熱部5よりも十分に低い熱伝導率を提供する。基板部2は、隣接する2つの発熱部5の間において、熱伝導を抑制する断熱部を提供する。
 複数の電極3、4は、装置1の外部に少なくとも一部が露出する外部の電極3と、基板部2内に配置されている内部の電極4とを有する。電極3は、電力を供給するための一対の電極31、32を含む。一対の電極31、32は、装置1の端子を提供する。これら電極3は、基板部2の外縁部、表面、および裏面を含む基板部2の外面に配置される。電極3の一部は基板部2の内部に埋設され、電極4と電気的に接続されている。なお、電極4を基板部2の外面に露出させ、電極を供給するための端子として利用してもよい。
 電極4は、基板部2の内部に埋設されている。電極4は、後述する複数の発熱部5へ電力を分配するバスバー部分でもある。電極4は、電極3から延びている。電極4は、複数の発熱部5に比べて十分に低い電気抵抗値を有する。電極4の電気抵抗値は、電極4における発熱を抑制することができるように設定されている。電極4は、複数の発熱部5に均等に電流を分配する。電極4は、電力を供給するための一対の電極41、42を有する。一対の電極41、42は、基板部2の単位領域の両端に互いに離れて配置されている。一対の電極41、42は、基板部2の単位領域の両辺に沿って延びている。一対の電極41、42が設けられた領域とそれらの間の領域とが単位領域を規定する。
 複数の発熱部5のそれぞれは、基板部2の内部に埋設されている。発熱部5は、表面層21と裏面層22との間に配置されている。よって、発熱部5は、基板部2の表面には露出していない。発熱部5は、基板部2によって保護されている。発熱部5は、一対の電極41、42の間に配置されている。発熱部5は、一対の電極41、42の間において線状に延びている。発熱部5は、線状発熱体と呼ぶことができる。発熱部5は、一対の電極41、42の間において直線状に真っ直ぐに延びている。発熱部5の一端は一方の電極41に電気的に、かつ機械的に接続されている。発熱部5の他端は他方の電極42に電気的に、かつ機械的に接続されている。
 発熱部5は、基板部2の面と平行な薄い板状に形成されている。発熱部5は、通電によって供給される熱によって輻射熱Rを放射可能である。発熱部5は、所定放射温度Trに加熱されることによって、乗員12、すなわち人に暖かさを感じさせる輻射熱Rを放射することができる。発熱部5の体積は、発熱部5から供給される熱によって発熱部5が輻射熱Rを放射することができる温度に到達できるように設定されている。発熱部5の体積は、発熱部5から供給される熱によって電極3の温度が急速に上昇するように設定されている。発熱部5の体積は、装置1の表面に接触した物体への放熱によって急速な温度低下を生じるように小さく設定されている。発熱部5の厚さは、表面と平行な面積を最大化し、体積を最小化するために、薄く設定されている。発熱部5の面積は、輻射熱Rを放射するために適した広さに設定されている。発熱部5の面積は、装置1の表面に対向して位置付けられる物体、例えば乗員12の一部分より小さく設定されている。
 複数の発熱部5は、互いに平行に配置されている。複数の発熱部5は、一対の電極41、42の間において、電気的に並列に接続されている。複数の発熱部5は、それらの間に隙間6を区画形成するように配置されている。
 複数の発熱部5は、基板部2の表面に対してほぼ均等に分散するように配置されている。複数の発熱部5は、一対の電極41、42の間の領域においてほぼ均等な密度で分布するように配置されている。複数の発熱部5は、基板部2の単位領域のほとんどの範囲に分散的に配置されている。
 電極3、4の通電方向に関する断面積を規定する形状および寸法、並びに、電極3、4の材料は、低い電気抵抗値を提供するように選定され、設定されている。電極3、4の断面積と材料とは、複数の発熱部5へ均等に電流を分配するために、良好な電気導体を提供するように設定されている。発熱部5の通電方向に関する断面積を規定する形状および寸法、並びに、発熱部5の材料は、通電によって輻射熱Rを発生するように高い電気抵抗値を提供するように選定され、設定されている。電極3、4の材料と、発熱部5の材料とは、異なる材料である。電極3、4の材料の電気的な固有抵抗は、発熱部5の材料の電気的な固有抵抗より十分に低い。
 電極4は、細長く延びており、軸Yに沿って長手方向をもつ。電極4は、軸Yに沿って長さELをもつ。長さELは、電極4内における通電方向に相当する。電極4は、軸Xに沿って幅EWをもつ。幅EWは、通電方向に直交する。電極4は、軸Zに沿って厚さETをもつ。厚さETは、長さELおよび幅EWより小さい。よって、電極4は、リボン状の電気導体を提供する。
 発熱部5は、細長く延びており、軸Xに沿って長手方向をもつ。発熱部5は、軸Xに沿って長さHLをもつ。長さHLは、発熱部5内における通電方向に相当する。発熱部5は、軸Yに沿って幅HWをもつ。幅HWは、通電方向に直交する。発熱部5は、軸Zに沿って厚さHTをもつ。厚さHTは、長さHLおよび幅HWより小さい。よって、発熱部5は、リボン状の発熱体を提供する。
 厚さHTは、幅HWより小さく(すなわち、HW>HT)設定することが望ましい。厚さHTは、1mmより小さく設定することが望ましい。厚さHTは、100μmより小さく設定することが望ましい。
 幅EWは、電極4における電気抵抗値を抑制するために、幅HWより大きく設定されている。この実施形態では、通電方向に直交する電極4の断面積は、通電方向に直交する発熱部5の断面積より大きい。発熱部5の固有抵抗より小さい電極4の固有抵抗は、電極4の断面積を抑制することを可能とする。同様の目的のために、厚さETを厚さHTより大きく設定してもよい。
 隙間6は、幅GWをもつ。隙間6の長さは、発熱部5の長さHLと同じである。複数の発熱部5と複数の隙間6とは、電極4の長さELの全体にわたって交互に配置されている。隙間6の幅GWは、発熱部5の幅HWと等しく設定することができる。これにより、複数の発熱部5が均等に分散して配置される。また、微細な幅HW、GWをもつ発熱部5と隙間6とが高密度に配列される。この結果、輻射ヒータ装置1の表面における温度分布が抑制される。このような微細な発熱部5の高密度の配置は、輻射ヒータ装置1の面から均一な輻射熱Rを放射するために貢献する。
 この実施形態では、輻射ヒータ装置1は、薄い板状に形成される。さらに、基板部2の内部に埋設された電極3、4および発熱部5は、基板部2の表面と平行に拡がる膜状である。このような膜状の電極3、4および発熱部5は、広い面積にわたって輻射熱Rを放射するために有利である。
 発熱部5は、通電によって発熱する材料によって作られている。発熱部5は、通電によって発熱するように通電方向に沿って電気的な抵抗値を示す。発熱部5は、金属材料によって作ることができる。発熱部5は、錫合金によって作ることができる。発熱部5は、銅、銀、錫を含む合金によって作ることができる。また、発熱部5は、ステンレス合金、ニッケル-クロム合金、アルミニウム合金などの電熱線材料によっても作ることができる。
 電極3、4は、発熱部5の材料より電気的な固有抵抗が低い材料によって作られている。電極3、4は、通電されたときに発熱部5より発熱量が少ない材料によって作られている。電極3、4は、複数の発熱部5へ均等に電流を分配できるように固有抵抗が低い材料によって作られている。電極3、4は、金属材料によって作ることができる。電極3、4は、錫合金によって作ることができる。電極3、4は、銅、銀、錫を含む合金によって作ることができる。また、電極3、4は、銅合金またはアルミニウム合金などの良導体材料によっても作ることができる。
 電極31、32に所定の電圧、例えば12Vの直流電力が供給されると、複数の発熱部5に流れる電流によって、複数の発熱部5は発熱する。複数の発熱部5が発熱することにより、装置1の表面からは輻射熱Rが提供される。複数の発熱部5の温度は、暖房装置による室内の空気の温度上昇より早く上昇する。この結果、暖房装置による暖房効果より早く、輻射熱Rによって乗員12に暖かさを与えることができる。
 電極4および発熱部5の体積は、熱容量を小さくするように設定される。発熱部5の熱容量は、輻射ヒータ装置1の表面に物体が接触した時に、その接触部分における輻射ヒータ装置1の表面温度が短時間で所定温度を下回るように設定される。望ましい形態においては、発熱部5の熱容量は、輻射ヒータ装置1の表面にヒトの指が接触した場合に、接触部分の表面温度が60℃を下回るように設定される。
 前述したように、複数の発熱部5は、発熱部5よりもの熱伝導率の低い基板部2の内部に互いに平行に配置されている。このため、基板部2の内部には高熱伝導部と低熱伝導部が交互に配置された構成となる。このように、本実施形態の発熱部5は、基板部2の面方向の熱の移動が抑制される構造を有している。
 本実施形態の輻射ヒータ装置1は、さらに、基板部2の表面層21に設けられた表面部材80により、表面部材80の面方向の熱の移動を抑制する。
 表面部材80は、繊維布81、82により構成されている。繊維布81、82は、表面部材80の厚み方向のうち基板部2側に凹んだ空間部80aが形成され該空間部80aにより表面部材80の面方向の熱の移動を抑制する。
 本実施形態の繊維布81、82は、複数の繊維と繊維との間に空気を介在して編んで形成された編布により構成されている。繊維布81は、基布部810を有し、繊維布82は、メッシュ部821を有している。なお、図3中には、基布部810およびメッシュ部821を模式的に示してあるが、実際には、編布は、三次元立体編物として構成されている。図4Aに示すように、繊維布81、82は、少なくとも一部がメッシュ形状を成している。メッシュ形状は、格子状となっている。すなわち、繊維布81、82は、表面に凹凸形状が形成されている。
 基布部810は薄いシート状を成している。メッシュ部821は、糸部材を編み込んで密度を高めた編み目構造となっている。本実施形態の繊維布81、82は、2枚の編布を一体編みすることにより廉価に形成される。繊維布81、82は、2枚の編布を重ね編みしたダブルメッシュ構造を有している。
 編布81、82は、PET(すなわち、ポリエチレンテレフタレート)、PA(すなわち、ナイロン)、PPS(すなわち、ポリフェニレンサルファイド)等の化学繊維や絹等の天然繊維を用いて構成することができる。なお、基板部2を構成している熱可塑性樹脂の熱伝導率と比べて、これら化学繊維および絹等の天然繊維を用いた本案の編布の熱伝導率が、格段に小さいことが本発明者らの研究で下記のように判明した。図4Bに従来技術における編布の断面の略図を示し、図4Cに本案の編布81、82の断面の略図を示す。図4B、図4Cに示すように、従来技術と本案とでは、熱の伝わり方が違う。従来技術では、図4Bに示すように、基板部2Xの樹脂材料がシート状、または凹凸状にほぼ一様な密度で形成される。このようにほぼ一様な密度で配された樹脂を介して、矢印に示すように、一様に熱伝導が行われる。対して、図4Cに示すように、本案における基布部810とメッシュ部821では、複数の繊維と繊維とが互いに編み込まれ、その断面中に空気を介在して形成される。これにより、矢印に示すように、複数の繊維の間の空気部80bよりも主に繊維部80cを伝って熱が移動する。よって従来技術の一様な樹脂材料よりも熱が伝わる経路が少なくなり、熱伝導が格段に小さくなる。
 ここで、表面部材80に物体が接触したときの接触面積をA、表面部材80の熱伝導率をλ、熱が移動する距離をLとすると、表面部材80に物体が接触したときの熱抵抗Rは、以下の数式1で表される。
 R=L/λ・A …(数式1)
 表面部材80において、厚み方向に凹んだ空間部80aを形成して厚みを小さくすることは、熱が移動する距離Lが小さくなるため、熱抵抗Rは小さくなる。したがって、物体が接触した部分の厚み方向の熱を伝えやすくする。しかしながら輻射ヒータ装置1は、発熱部5が、基板部2の面方向の熱の移動が抑制される構造となっている。さらに輻射ヒータ装置1は、表面部材80に空間部80aが形成されていない場合と比較して、表面部材80の空間部80aにより物体との接触面積Aが小さくなるために、熱抵抗Rは大きくなる。よって本輻射ヒータ装置1の発熱部5のヒータ構造と表面部材80の構造により、接触部の温度が高くても、触れた瞬間に発熱部5から表面部材80の厚み方向に迅速に熱移動が起こり、その後はヒータと表面部材80の平面方向の熱移動が抑制される。したがって、触れた部分の温度を迅速に低下させることができる。また、乗員に与える熱的な不快感を低減することもできる。
 基布部810とメッシュ部821の厚みの合計は、1mm以下とするのが好ましい。なお、熱抵抗Rを小さくするためには、基布部810とメッシュ部821の厚みの合計を0.6~0.8mm程度とするのが好ましい。また、空間部80aを挟んで対向するメッシュ部821の間隔は、1mm~3mm程度とするのが好ましい。また、メッシュ部821の厚みは、0.3mm程度とするのが好ましい。
 本発明者らの検証では、表面部材80の凸部表面温度を約105℃、その時の発熱部5の温度を125~130℃、表面部材80の凹部表面温度の計算値を115℃とした。そのとき、本輻射ヒータ装置1では、表面部材80に物体が触れた瞬間の表面部材80の凸部表面温度は約41~42℃となり、他の同等厚みの平坦な編布に比べ約1℃低下し、編布に起毛や植毛を施した場合と比較して約3℃低下の低減効果を確認できた。また凹部の温度を高めることが可能になるため、他の同等厚みの平坦な編布に比べて、放射率を約30%増加することが評価により確認できた。
 上記した構成によれば、表面部材80は、該表面部材80の厚み方向のうち基板部2側に凹んだ空間部80aが形成され該空間部80aにより表面部材80の面方向の熱の移動を抑制する繊維布81、82により構成されている。したがって、物体が接触したときの接触部の温度をより迅速に低下させることができる。
 また、発熱部5は、基板部の面方向の熱の移動が抑制される構造を有しているので、さらに、物体が接触したときの接触部の温度をより迅速に低下させることができる。
 図5に、表面部材80の目付量(例えば、厚みおよび重さ)の違いによる、輻射ヒータ装置1への指の接触温度の評価結果を示す。横軸は、表面部材80の厚みや重さを表しており、縦軸は、接触部の温度を表している。一般的な熱による痛みを感じる温度(すなわち、43℃)をTsとすると、表面部材80の温度が温度Tsを下回る温度であれば、表面部材80に指等が接触しても安全と判断することができる。空間部80aが形成されていない平坦な編布では、厚みが少ないほど厚み方向の熱抵抗が小さくなるため、指への熱移動が大きくなり接触温度がやや高くなる。また厚みが多いほど、表面部材の熱容量が大きくなるため、接触部の周りからの熱移動が大きくなり接触温度が高くなる。この結果から、接触部の温度は、表面部材80の厚みや重さに対して下に凸となる傾向があることが分かった。その最適値は、厚みで0.6~0.8mmである。
 図6に、編布に起毛あるいは植毛をした場合の輻射ヒータ装置1への指の接触温度の評価結果を示す。編布に起毛あるいは植毛をした場合、編布に起毛あるいは植毛をしていない場合よりも接触時の接触部の温度が上昇する傾向がわかった。また、起毛の割合が大きくなるにつれて、接触時の接触部の温度上昇の度合いが大きくなる傾向がわかった。さらにヒータ表面へ粘着材を用いて短繊維を植毛した場合も更なる温度上昇が確認できた。これらは、表面部材の指への接触面積が大きくなり、熱抵抗が小さくなるためと推定できる。つまり、接触部の温度を低下させるには、編布に起毛あるいは植毛を施さない方が良いことが分かった。
 図7に表面部材の組成の違いによる、輻射ヒータ装置1への指の接触温度の評価結果を示す。表面がアクリルやPVC(すなわち、塩化ビニル)などで覆われた合皮(すなわち、合成皮革)では、表面の熱伝導率が高くなり、よって熱移動が大きくなるため、接触時の接触部の温度が高くなる。短繊維のみによる不織布では、編布と同等程度の接触温度となり、不織布の中の小さな空気室が平面方向の断熱の役目を果たし、熱移動が小さくなるためであると推定できる。
 図8に表面部材の編布の凹凸量の違いによる、輻射ヒータ装置1への指の接触温度の評価結果を示す。先述と同様に、一般的な熱による痛みを感じる温度(すなわち、43℃)をTsと示し、それを下回る温度が、接触しても安全と判断することができる。メッシュによる凹凸が大きいほど、接触部の接触温度が低下することが明らかに判明した。凹凸が0.3mm程度までは、編布と同等の温度低下であるが、凹凸量が0.3mmを上回ることで、接触時の接触面積が低減し、接触温度が大幅に低下する。上記評価では、凸部厚みが0.9~1.0mmにおいて、凹凸の差が0.5~0.7mmを設けるようにしたサンプルで上記効果を確認できた。
 図9に、不織布を用いた表面形状での凹凸量の違いによる、輻射ヒータ装置1への指への接触温度の評価結果を示す。不織布の表面をプレスにて高密度にした平坦部位では熱伝導率が顕著に大きくなり、接触温度が極端に上昇した。また革シボ調や布柄の凹凸が少ない形状でも、接触温度が低下が小さい傾向が見られた。この場合の凹凸量は約0.1~0.2mm程度であった。これに対し、ストライプ柄による溝部の凹凸量を大きくすることで接触温度の低下が確認でき、この場合の凹凸量では0.3mm程度から効果が確認できた。
 図10に表面部材の凹凸量の違いによる、輻射ヒータ装置1の輻射量の評価結果を示す。この評価では表面温度(例えば約100℃)を合わせた時の輻射量を測定し、平坦な編布を基準としてその輻射量の大小を比較した。この結果によると、メッシュによる凹凸が小さい場合は、編布とほぼ同等の輻射量となるが、メッシュの凹凸が大きいほど、輻射量が増加し、約30%程度増加することが確認できた。
 (第2実施形態)
 本開示の第2実施形態に係る輻射ヒータ装置1について、図11~図12を用いて説明する。上記第1実施形態の繊維布81、82は、編布により構成されているが、本実施形態の繊維布は、不織布83により構成されている。不織布83は、複数の繊維を編まずに絡み合わせ、複数の繊維の間に空気を介在して熱伝導を小さくした布状に形成される。本実施形態においても図4Cに示すのと同様に熱伝導が小さくなる。本実施形態の繊維布83の表面には、直線状の凹部となるプレス部83aと、直線状の凸部となる基布部83bとが交互に形成されている。プレス部83aは、基板部2の表面層21側に凹んでいる。プレス部83aおよび基布部83bは、直線状の凸部が形成された金型を用いて不織布83をプレス加工することにより形成されている。このようにプレス部83aおよび基布部83bは、プレス加工により廉価に形成される。
 プレス部83aは、基布部83bよりも厚みが薄くなっている。また、プレス部83aの繊維の密度は、基布部83bの繊維の密度よりも高くなっている。これにより、プレス部83aは、基布部83bよりも厚み方向の熱抵抗が小さくなっている。
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。
 本発明者らの検証では、表面部材80の凸部表面温度を約105℃、その時のヒータ発熱部温度を125~130℃、表面部材80の凹部表面温度の計算値を115℃とした。そのとき、本実施形態の輻射ヒータ装置1では、表面部材80に物体が触れた瞬間の表面部材温度は約42℃となり、他の同等厚みの平坦な不織布に比べ約2℃低下、凹凸差が0.2mm程の小さいシボ加工に比べ約3~4℃低下の低減効果を確認できた。
 (第3実施形態)
 本開示の第3実施形態に係る輻射ヒータ装置1について、図13を用いて説明する。
 上記第1実施形態の繊維布81、82は、メッシュ形状を成しているが、本実施形態の繊維布81、82は、ハニカム形状を成している。このように、繊維布81、82をハニカム形状とすることもできる。
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。
 (他の実施形態)
 (1)上記各実施形態では、複数の発熱部5が、発熱部5よりもの熱伝導率の低い基板部2の内部に互いに平行に配置されており、発熱部5が、基板部2の面方向の熱の移動が抑制される構造を有している。これに対し、例えば、発熱部5を平面状に構成し、発熱部5が、基板部2の面方向の熱の移動が抑制される構造を有していなくてもよい。
 (2)上記第2実施形態では、不織布83に直線形状のプレス部83aを形成したが、格子形状やハニカム形状等、直線形状以外の形状とすることもできる。不織布83の両面を貫通する貫通穴を不織布83に形成し、この貫通穴により形成される空間を空間部80aとしてもよい。
 (3)上記第1実施形態の繊維布は、2枚の繊維布を重ね合わせたダブルメッシュ構造を有しているが、1枚の繊維布にメッシュ加工を施したメッシュ構造を有するよう構成してもよい。
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、輻射熱を生じる輻射ヒータ装置は、電気絶縁性の材料によって構成された板状の基板部と、基板部の一面側に配置されたシート状の表面部材と、基板部の他面側に形成された発熱部と、を備える。表面部材は、該表面部材の厚み方向のうち基板部側に凹んだ空間部が形成され該空間部により表面部材の面方向の熱の移動を抑制する繊維布により構成されている。
 また、第2の観点によれば、繊維布は、複数の繊維の間に空気を介在して構成される。また、第3の観点によれば、発熱部は、基板部の面方向の熱の移動が抑制される構造を有している。従って、さらに、物体が接触したときの接触部の温度を迅速に低下させることができる。
 また、第4の観点によれば、繊維布は、メッシュ形状を成している。このように、繊維布をメッシュ形状とすることができる。
 また、第5の観点によれば、繊維布は、2枚の編布を重ね合わせたダブルメッシュ構造を有している。従って、1枚の繊維布で構成する場合よりも厚みを大きくすることができ、最適な厚みの表面部材を構成することが可能である。
 また、第6の観点によれば、メッシュ形状は、格子状である。このように、メッシュ形状を格子状とすることができる。
 また、第7の観点によれば、メッシュ形状は、ハニカム形状である。このように、メッシュ形状をハニカム形状とすることもできる。
 また、第8の観点によれば、繊維布は、編布により構成されている。従って、高級感を演出することも可能である。
 また、第9の観点によれば、繊維布は、不織布により構成されている。従って、表面部材に指等の物体が接触したときの緩衝作用を発揮することができる。

Claims (9)

  1.  輻射熱を生じる輻射ヒータ装置であって、電気絶縁性の材料によって構成された板状の基板部(2)と、
     前記基板部の一面側に配置されたシート状の表面部材(80)と、
     前記基板部の他面側に形成された発熱部(5)と、を備え、
     前記表面部材は、該表面部材の厚み方向のうち前記基板部側に凹んだ空間部(80a)が形成され該空間部により前記表面部材の面方向の熱の移動を抑制する繊維布(81、82、83)により構成されている輻射ヒータ装置。
  2.  前記繊維布は、複数の繊維の間に空気を介在して構成される請求項1に記載の輻射ヒータ装置。
  3.  前記発熱部は、前記基板部の面方向の熱の移動が抑制される構造を有している請求項1または2に記載の輻射ヒータ装置。
  4.  前記繊維布は、メッシュ形状を成している請求項1ないし3のいずれか1つに記載の輻射ヒータ装置。
  5.  前記繊維布は、2枚の編布を重ね合わせたダブルメッシュ構造を有している請求項4に記載の輻射ヒータ装置。
  6.  前記メッシュ形状は、格子状である請求項4または5に記載の輻射ヒータ装置。
  7.  前記メッシュ形状は、ハニカム形状である請求項4または5に記載の輻射ヒータ装置。
  8.  前記繊維布は、編布により構成されている請求項1ないし7のいずれか1つに記載の輻射ヒータ装置。
  9.  前記繊維布は、不織布(83)により構成されている請求項1ないし7のいずれか1つに記載の輻射ヒータ装置。
PCT/JP2017/036355 2016-11-16 2017-10-05 輻射ヒータ装置 WO2018092459A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018551071A JP6725005B2 (ja) 2016-11-16 2017-10-05 輻射ヒータ装置
DE112017005776.0T DE112017005776T5 (de) 2016-11-16 2017-10-05 Heizstrahlervorrichtung
CN201780070487.2A CN109952810B (zh) 2016-11-16 2017-10-05 辐射加热装置
US16/396,833 US11440375B2 (en) 2016-11-16 2019-04-29 Radiant heater device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016223467 2016-11-16
JP2016-223467 2016-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/396,833 Continuation US11440375B2 (en) 2016-11-16 2019-04-29 Radiant heater device

Publications (1)

Publication Number Publication Date
WO2018092459A1 true WO2018092459A1 (ja) 2018-05-24

Family

ID=62145577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036355 WO2018092459A1 (ja) 2016-11-16 2017-10-05 輻射ヒータ装置

Country Status (5)

Country Link
US (1) US11440375B2 (ja)
JP (1) JP6725005B2 (ja)
CN (1) CN109952810B (ja)
DE (1) DE112017005776T5 (ja)
WO (1) WO2018092459A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019046786A (ja) * 2017-09-04 2019-03-22 株式会社デンソー ヒータ装置
KR102123677B1 (ko) * 2018-08-21 2020-06-17 엘지전자 주식회사 전기 히터
JP2020199988A (ja) * 2019-06-13 2020-12-17 トヨタ自動車株式会社 車両の暖房装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187089U (ja) * 1983-05-31 1984-12-12 松下電器産業株式会社 採暖具
JPH07216711A (ja) * 1994-01-26 1995-08-15 Matsushita Electric Works Ltd 積層不織布及び電気カーペット
JPH08205968A (ja) * 1995-01-31 1996-08-13 Beam Kogyo Kk エレクトレット性を有するマット
JP2010091185A (ja) * 2008-10-08 2010-04-22 Panasonic Corp 加熱装置およびそれを用いた車両用暖房装置
WO2013179836A1 (ja) * 2012-05-30 2013-12-05 株式会社デンソー 発熱装置
JP2013251184A (ja) * 2012-06-01 2013-12-12 Daiwa House Industry Co Ltd 遠赤外線効能を有するシート材、及びこれを利用した建築用暖房材、並びにシート材の製造方法
JP2016113137A (ja) * 2014-12-10 2016-06-23 現代自動車株式会社Hyundai Motor Company 車両のヒーティングパネル

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410033A (en) * 1987-06-30 1989-01-13 Matsushita Electric Ind Co Ltd Flat warmer
US6477865B1 (en) 1999-12-16 2002-11-12 Asahi Doken Kabushiki Kaisha Three-dimensional marquisette style knitted fabric
JP3867669B2 (ja) 2000-12-18 2007-01-10 日東紡績株式会社 二重編地
JP3991750B2 (ja) * 2002-04-08 2007-10-17 松下電器産業株式会社 面状発熱体
US20060151455A1 (en) * 2003-03-17 2006-07-13 Stefan Stowe Air-conditioning device for the passenger area of a vehicle
JP4978175B2 (ja) * 2005-12-27 2012-07-18 パナソニック株式会社 面状発熱体
JP5515201B2 (ja) 2007-03-29 2014-06-11 パナソニック株式会社 車両用暖房装置
WO2008155893A1 (ja) * 2007-06-15 2008-12-24 Panasonic Corporation 車両用暖房装置
JP2010052710A (ja) * 2008-07-29 2010-03-11 Panasonic Corp 加熱装置およびそれを用いた車両用暖房装置
JP5488606B2 (ja) * 2009-09-24 2014-05-14 パナソニック株式会社 座席用暖房装置およびそれを備えた車両
JP5531808B2 (ja) * 2010-06-22 2014-06-25 パナソニック株式会社 座席用暖房装置
CN202463516U (zh) * 2012-03-01 2012-10-03 河北新宇宙电动车有限公司 车载电地暖
JP5895805B2 (ja) * 2012-05-23 2016-03-30 株式会社デンソー 輻射ヒータ装置
KR102049508B1 (ko) * 2013-03-18 2019-11-28 코오롱글로텍주식회사 표면이 평탄화된 코팅원단시트를 적용한 면상발열체 및 이의 제조방법
JP5983495B2 (ja) * 2013-03-28 2016-08-31 株式会社デンソー 輻射ヒータ装置
JP6127913B2 (ja) * 2013-03-29 2017-05-17 株式会社デンソー 輻射ヒータ装置
JP2014205372A (ja) * 2013-04-10 2014-10-30 株式会社デンソー 輻射ヒータ装置
LU92228B1 (de) * 2013-06-20 2014-12-22 Iee Sarl Heizfähiges Innenraumverkleidungselement
DE102013010850B4 (de) * 2013-06-28 2019-03-28 Webasto SE Elektrisches Heizmodul, elektrisches Heizgerät, Fahrzeug und Verfahren zur Herstellung eines elektrischen Heizmoduls
DE102013214548B4 (de) * 2013-07-25 2022-08-11 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit einer elektrischen Heizeinrichtung
KR20160009960A (ko) * 2014-07-17 2016-01-27 한온시스템 주식회사 자동차의 인덕션 히터
JP6245101B2 (ja) * 2014-07-22 2017-12-13 株式会社デンソー 輻射ヒータ装置
CN104159341B (zh) * 2014-08-19 2015-12-02 北京新宇阳科技有限公司 带有接地层的自限温导电高分子电热膜
CN204236296U (zh) * 2014-09-22 2015-04-01 捷温汽车系统(中国)有限公司 电加热装置、气候调节装置、车辆座椅和车辆
CN204340600U (zh) * 2014-12-23 2015-05-20 孝感华工高理电子有限公司 汽车空调用ptc加热器
JP6528539B2 (ja) 2015-05-27 2019-06-12 アイシン精機株式会社 流路仕切構造及び流体制御弁
KR102238056B1 (ko) * 2015-07-03 2021-04-09 현대자동차주식회사 차량용 복사열 히터
US10960730B2 (en) * 2015-09-14 2021-03-30 Hyundai Motor Company Vehicle radiation heater
WO2017047301A1 (ja) * 2015-09-15 2017-03-23 株式会社デンソー ヒータ装置
CN108476559B (zh) * 2016-01-25 2021-04-09 株式会社电装 加热器装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187089U (ja) * 1983-05-31 1984-12-12 松下電器産業株式会社 採暖具
JPH07216711A (ja) * 1994-01-26 1995-08-15 Matsushita Electric Works Ltd 積層不織布及び電気カーペット
JPH08205968A (ja) * 1995-01-31 1996-08-13 Beam Kogyo Kk エレクトレット性を有するマット
JP2010091185A (ja) * 2008-10-08 2010-04-22 Panasonic Corp 加熱装置およびそれを用いた車両用暖房装置
WO2013179836A1 (ja) * 2012-05-30 2013-12-05 株式会社デンソー 発熱装置
JP2013251184A (ja) * 2012-06-01 2013-12-12 Daiwa House Industry Co Ltd 遠赤外線効能を有するシート材、及びこれを利用した建築用暖房材、並びにシート材の製造方法
JP2016113137A (ja) * 2014-12-10 2016-06-23 現代自動車株式会社Hyundai Motor Company 車両のヒーティングパネル

Also Published As

Publication number Publication date
JPWO2018092459A1 (ja) 2019-03-22
US20190248211A1 (en) 2019-08-15
US11440375B2 (en) 2022-09-13
JP6725005B2 (ja) 2020-07-15
CN109952810B (zh) 2022-01-11
CN109952810A (zh) 2019-06-28
DE112017005776T5 (de) 2019-08-14

Similar Documents

Publication Publication Date Title
JP5983495B2 (ja) 輻射ヒータ装置
KR101328353B1 (ko) 탄소나노튜브 발열시트
JP6245101B2 (ja) 輻射ヒータ装置
WO2018092459A1 (ja) 輻射ヒータ装置
CN107926081B (zh) 加热器装置
JP3860172B2 (ja) 可撓性の加熱装置
JP6162647B2 (ja) 複雑に成形された面を加熱する装置
KR102238056B1 (ko) 차량용 복사열 히터
JP5801855B2 (ja) 電気ヒータ装置
CN108476559B (zh) 加热器装置
KR20150071229A (ko) 열전도성 소재를 사용한 발열체
JP2007280788A (ja) 面状発熱体
KR20100127435A (ko) 매트리스
KR20130119692A (ko) 선택적 발열시스템을 갖는 발열매트
JP2007179776A (ja) 面状発熱体
KR20110088277A (ko) 냉난방용 시트
KR102461509B1 (ko) 히팅필름
WO2018061702A1 (ja) 輻射ヒータ装置
KR200239332Y1 (ko) 탄소섬유 면상발열지를 이용한 돌침대용 면상 발열체
KR200393709Y1 (ko) 탄소 섬유 라인을 이용한 발열 시트
JP2023549915A (ja) 自動車の暖房構造
KR101401539B1 (ko) 전자파 방지용 전열시트
KR20210147767A (ko) 나노 탄소 면상발열체 및 그의 제조방법
WO2019078090A1 (ja) ヒータ装置
KR20110109718A (ko) 선택 발열 시트

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018551071

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871933

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17871933

Country of ref document: EP

Kind code of ref document: A1