WO2018061702A1 - 輻射ヒータ装置 - Google Patents

輻射ヒータ装置 Download PDF

Info

Publication number
WO2018061702A1
WO2018061702A1 PCT/JP2017/032339 JP2017032339W WO2018061702A1 WO 2018061702 A1 WO2018061702 A1 WO 2018061702A1 JP 2017032339 W JP2017032339 W JP 2017032339W WO 2018061702 A1 WO2018061702 A1 WO 2018061702A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
heat
heat generating
portions
generating portions
Prior art date
Application number
PCT/JP2017/032339
Other languages
English (en)
French (fr)
Inventor
関 秀樹
公威 石川
裕康 生出
田中 祐介
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2018542328A priority Critical patent/JP6669271B2/ja
Publication of WO2018061702A1 publication Critical patent/WO2018061702A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating

Definitions

  • the present disclosure relates to a radiation heater device.
  • Patent Document 1 A conventional radiation heater device is disclosed in Patent Document 1.
  • This conventional radiant heater device includes a planar heater body. When the user touches the heater body, the temperature of the part touched by the user is rapidly reduced.
  • the heater main body includes a film-like heat generating portion that generates heat by energization and emits radiant heat. Thereby, the heat capacity of the heat generating portion is reduced. Further, the heater body includes a plurality of heat generating portions. The heater main body portion is disposed between two adjacent heat generating portions, and has a plurality of low heat conductive portions having lower thermal conductivity than each of the plurality of heat generating portions. As a result, the thermal resistance in the surface direction of the heater body is increased. That is, the heater main body portion is less likely to move heat in the surface direction.
  • the temperature sensor detects the temperature of the heater body. It is conceivable that the control unit controls the temperature of the heater main body according to the temperature detected by the temperature sensor. Furthermore, a case where a temperature sensor is installed in a portion of the heater main body that can be touched by the user can be considered. In this case, when the user touches a part of the heater main body where the temperature sensor is installed, the temperature of the part touched by the user rapidly decreases. For this reason, the temperature detected by the temperature sensor rapidly decreases.
  • the control unit performs control to increase the temperature of the heater body.
  • a heater main-body part will overheat, and the temperature of a heater main-body part will become higher than preset temperature.
  • a control part judges that the rapid temperature change of a heater main-body part is abnormal, and performs control which stops electricity supply of a heater main-body part. Thereby, the temperature of a heater main-body part will become lower than preset temperature.
  • the heater main body has a configuration including a film-like heat generating portion, the heater main body has a configuration including a plurality of heat generating portions, or the heater main body has a plurality of low heat conduction portions. It is not restricted to the structure which has this.
  • a radiant heater device includes: A planar heater body that radiates radiant heat; A temperature sensor for detecting the temperature of the heater body, A control unit for controlling the temperature of the heater body based on the detection result of the temperature sensor;
  • the heater body is A first region that radiates radiant heat toward an object to be heated; A second region in which the temperature sensor is installed at a position different from the first region, which is related to the temperature of the first region, The first area is located where the user can touch, The second area is installed in a place where the user cannot touch it.
  • the temperature sensor is installed in the 2nd field in a position different from the 1st field among heater main-body parts. For this reason, the sudden change of the temperature in the installation site
  • the temperature control of the heater body using the temperature sensor can be appropriately performed.
  • FIG. 5 is a sectional view taken along line VV in FIG. 4.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 4. It is a top view of the 2nd field of the heater body part in a 2nd embodiment.
  • FIG. 10 is a sectional view taken along line XX in FIG. 9. It is a figure which shows the heater main-body part and control part of the radiation heater apparatus in 5th Embodiment. It is a figure which shows the vehicle mounting state of the radiation heater apparatus in 6th Embodiment. It is a figure which shows the heater main-body part and control part of a radiation heater apparatus in 7th Embodiment. It is a figure which shows the heater main-body part and control part of a radiation heater apparatus in 8th Embodiment.
  • FIG. 25 is a sectional view taken along line XXV-XXV in FIG. 24.
  • FIG. 25 is a sectional view taken along line XXVI-XXVI in FIG. 24.
  • It is a top view of the heater main-body part in 12th Embodiment. It is the XXVIII-XXVIII sectional view taken on the line of FIG.
  • the radiant heater device 1 of the present embodiment is used as a heating device in a passenger compartment of a road traveling vehicle.
  • a seat 3 for seating the occupant 2 is installed in the passenger compartment.
  • an instrument panel 4 is installed in front of the seat 3 relative to the vehicle.
  • the instrument panel 4 is an interior member.
  • the instrument panel 4 referred to in this specification includes not only a portion where instruments are arranged, but also a portion that accommodates audio and an air conditioner.
  • the radiant heater device 1 includes a planar heater body 10.
  • the heater body 10 is installed in a portion corresponding to the front of the seat 3 in the lower portion 4 a of the instrument panel 4.
  • the heater body 10 radiates radiant heat H ⁇ b> 1 toward the foot of the occupant 2, which is an object to be heated.
  • the heater body 10 is mounted on the vehicle with a part thereof covered by the lower part 4a of the instrument panel 4. Therefore, the lower part 4 a of the instrument panel 4 constitutes the covering member 5 that covers a part of the heater body 10.
  • the covering member 5 has an opening 6. Another part of the heater body 10 is exposed through the opening 6.
  • the heater body 10 has a first region 12 and a second region 14.
  • the first region 12 is a region that radiates radiant heat toward the passenger 2. Accordingly, the first region 12 provides the occupant 2 with a feeling of warmth, that is, a feeling of heating.
  • the second region 14 is set at a position different from the first region 12 in the heater body 10.
  • the second area 14 is provided with a temperature sensor 30 to be described later.
  • the second region 14 is a region having a temperature related to the temperature of the first region 12.
  • the area of the second region 14 is set smaller than the area of the first region 12.
  • the opening 6 of the covering member 5 exposes the first region 12 from the covering member 5 in a state where the heater body 10 and the covering member 5 overlap each other. That is, the covering member 5 does not cover the first region 12 in a state where the heater body 10 is mounted on the vehicle. For this reason, radiation
  • region 12 is not prevented.
  • the passenger may touch the first area 12. Accordingly, the first region 12 is installed at a place where the occupant can touch.
  • the covering member 5 has a portion 7 that covers the second region 14 when the heater body 10 and the covering member 5 are overlapped. Therefore, the covering member 5 covers the second region 14 and the temperature sensor 30 in a state where the heater body 10 is mounted on the vehicle. That is, the second region 14 and the temperature sensor 30 are disposed at a position on the side opposite to the occupant of the covering member 5. For this reason, the second region 14 is not touched by the occupant 2. Thus, the 2nd field 14 is installed in the place where a crew member cannot touch.
  • the heater body 10 has a passenger-side surface 10 a and an anti-occupant-side surface 10 b.
  • the X-axis direction and the Y-axis direction are directions parallel to the surfaces 10 a and 10 b of the heater main body 10, that is, the surface direction of the heater main body 10.
  • the Z-axis direction is a direction perpendicular to the surfaces 10 a and 10 b of the heater body 10, that is, the thickness direction of the heater body 10.
  • the heater main body 10 includes a substrate unit 20, a pair of electrodes 22, 24, a plurality of first heat generating units 26, and one second heat generating unit 28.
  • the substrate unit 20 has a flat plate shape. As shown in FIGS. 5 and 6, a pair of electrodes 22, 24, a plurality of first heat generating portions 26, and one second heat generating portion 28 are arranged inside the substrate portion 20.
  • the substrate unit 20 supports a pair of electrodes 22, 24, a plurality of first heat generating units 26, and one second heat generating unit 28.
  • the substrate portion 20 is made of a flexible synthetic resin as an insulating material.
  • the synthetic resin is, for example, a thermoplastic resin.
  • the pair of electrodes 22 and 24 are arranged apart from each other.
  • the pair of electrodes 22, 24 is electrically connected to both the plurality of first heat generating units 26 and one second heat generating unit 28.
  • the plurality of first heat generating portions 26 generate heat by energization and emit radiant heat.
  • the plurality of first heat generating portions 26 are made of a metal material.
  • the plurality of first heat generating portions 26 are arranged in parallel between the pair of electrodes 22 and 24.
  • the first heat generating portion 26 extends linearly between the pair of electrodes 22 and 24.
  • One end side of the first heat generating portion 26 is in contact with one electrode 22 of the pair of electrodes 22 and 24. For this reason, one end side of the first heat generating portion 26 is electrically connected to the one electrode 22.
  • the other end side of the first heat generating portion 26 is in contact with the other electrode 24 of the pair of electrodes 22 and 24. For this reason, the other end side of the first heat generating portion 26 is electrically connected to the other electrode 24.
  • the 1st heat generating part 26 is a film
  • Membrane means a thin and wide shape.
  • film-like means that the dimension in two different directions parallel to the surfaces 10 a and 10 b of the heater body 10 (for example, both the X-axis direction and the Y-axis direction) is the thickness of the heater body 10.
  • a shape larger than the thickness dimension in the direction (that is, the Z-axis direction) is meant.
  • each of the plurality of first heat generating portions 26 has a film shape and extends linearly.
  • “linear” refers to a length dimension from one end to the other end (for example, in the X-axis direction) in a shape in a direction parallel to the surfaces 10 a and 10 b of the heater body 10. (Dimension) means a shape larger than a width dimension (for example, a dimension in the Y-axis direction). “Linear” includes a case where the width dimension is larger than the thickness dimension and a case where the width dimension is smaller than the thickness dimension. In the present embodiment, the width dimension of each of the plurality of first heat generating portions 26 is larger than the thickness dimension. For this reason, in the present embodiment, each of the plurality of first heat generating portions 26 is also in the form of a film.
  • a low heat conduction portion 27 exists between two adjacent first heat generating portions 26 among the plurality of first heat generating portions 26 inside the substrate portion 20.
  • the low thermal conductive portion 27 is a portion having lower thermal conductivity than the first heat generating portion 26.
  • the low heat conducting portion 27 thermally separates the adjacent first heat generating portions 26 from each other.
  • the low heat conducting portion 27 is made of an insulating material that constitutes the substrate portion 20.
  • the region where the plurality of first heat generating portions 26 and the plurality of low heat conducting portions 27 exist is the first region 12.
  • the first region 12 is a region having a plurality of first heat generating portions 26 and a plurality of low heat conducting portions 27 in the heater body 10.
  • the first region 12 has a plurality of first heat generating portions 26 that are film-like and a plurality of low heat conducting portions 27. Since the first heat generating portion 26 has a film shape, the heat capacity of the first heat generating portion 26 is reduced.
  • the heat generating part is constituted by a plurality of first heat generating parts 26. More specifically, one first heat generating portion 26 has an elongated shape. Thereby, the thermal resistance in the length direction of the first heat generating portion 26 is increased. A low heat conducting portion 27 is disposed between two adjacent first heat generating portions 26. Thereby, the thermal resistance between the two adjacent 1st heat generating parts 26 is enlarged. As a result, the thermal resistance in the surface direction of the first region 12 is increased. That is, the heat transfer in the surface direction is suppressed as compared with the case where the heat generating portion is configured by one heat generating portion continuous in the surface direction.
  • the 1st field 12 constitutes the heater where the temperature of the part touched falls rapidly.
  • the plurality of first heat generating portions 26 are set so as to reach a radiation temperature at which radiation heat that makes a person feel warmth can be emitted.
  • the thermal resistance in the length direction of each of the plurality of first heat generating portions 26 is such that when the object contacts on the surface of the heater body 10, the temperature of the portion in contact with the object is lower than the radiation temperature. Is set to decrease.
  • the second heat generating portion 28 is arranged in a region away from the plurality of first heat generating portions 26 within the substrate portion 20.
  • a region where the second heat generating portion 28 exists in the substrate unit 20 is the second region 14.
  • the second region 14 is a region having the second heat generating portion 28.
  • the second heat generating part 28 generates heat when energized.
  • the second heat generating portion 28 is made of the same material as that of the first heat generating portion 26 so that the temperature is the same as that of the first heat generating portion 26 when energized.
  • the electrical resistance value of the second heat generating portion 28 is adjusted by the shape of length, width, thickness, etc., so that the second heat generating portion 28 has the same temperature as the first heat generating portion 26.
  • the second heat generating portion 28 has a shape that spreads in the plane direction between the pair of electrodes 22 and 24.
  • the one end side of the second heat generating part 28 is in contact with one electrode 22. For this reason, one end side of the second heat generating portion 28 is electrically connected to one electrode 22. The other end side of the second heat generating portion 28 is in contact with the other electrode 24. For this reason, the other end side of the second heat generating portion 28 is electrically connected to the other electrode 24.
  • the second heat generating portion 26 has a film shape.
  • the second heat generating portion 28 has a shorter length in the direction in which the pair of electrodes 22, 24 face each other (that is, the X-axis direction in FIG. 4) than the first heat generating portion 26. It has become.
  • the connection location of the pair of electrodes 22, 24 to the second heat generating portion 28 is compared with the connection location of the pair of electrodes 22, 24 to the first heat generation portion 26, compared to the pair of electrodes 22, 24.
  • the interval of is narrow.
  • the second heat generating part 28 is longer than the first heat generating part 26 in the direction orthogonal to the direction in which the pair of electrodes 22 and 24 face each other (that is, in the Y-axis direction in FIG. 4). .
  • the thickness of the second heat generating portion 28 in the Z-axis direction in FIG. 6 is the same as the thickness of the first heat generating portion 26 in the Z-axis direction in FIG. Therefore, the second heat generating portion 28 has a larger cross-sectional area in a cross section orthogonal to the direction in which the pair of electrodes 22 and 24 face each other, compared to the first heat generating portion 26.
  • the shape of the second heat generating portion 28 is a shape that is shorter in the X-axis direction and longer in the Y-axis direction than the first heat generating portion 26. For this reason, the thermal resistance in the surface direction of the second heat generating portion 28 is smaller than the thermal resistance in the surface direction of the first heat generating portion 26.
  • the thermal resistance Rh (K / W) in the length direction of the heat generating portion is expressed by the following equation.
  • Rh HL / ( ⁇ 1 ⁇ CA)
  • HL is the length of the heat generating part.
  • ⁇ 1 is the thermal conductivity of the heat generating part.
  • CA is a cross-sectional area of the heat generating portion.
  • the heat resistance in the length direction of the heat generating part is calculated using the length of the heat generating part, the cross-sectional area of the heat generating part, and the thermal conductivity of the heat generating part.
  • the thermal conductivity is the same. For this reason, the heat resistance in the length direction is smaller when the length of the heat generation portion is shorter and the cross-sectional area of the heat generation portion is larger.
  • the second heat generating portion 28 is shorter than the first heat generating portion 26 in the length of the heat generating portion in the X-axis direction and has a larger cross-sectional area. Therefore, the second heat generating portion 28 has a lower thermal resistance in the X-axis direction than the first heat generating portion 28. Further, the second heat generating portion 28 is not divided by the low heat conducting portion 27 in the Y-axis direction. For this reason, the second heat generating portion 28 has a smaller thermal resistance in the Y-axis direction than the first heat generating portion 28.
  • the second heat generating portion 26 has a shape in which the second heat generating portion 28 has a smaller thermal resistance in the surface direction than the first heat generating portion 26.
  • the thermal resistance in the surface direction of the second region 14 is smaller than the thermal resistance in the surface direction of the first region 12. That is, the heat resistance in the surface direction of the second heat generating portion 28 is such that the second region 14 is more easily moved in the surface direction than the first region 12, so that the second heat generating portion 26 has a plurality of first heat generating portions 26. It is smaller than the thermal resistance in the surface direction in each of the above.
  • the end 22a of one electrode 22 and the end 24a of the other electrode 24 are electrically connected to a control unit 32 described later. Accordingly, in the present embodiment, the end 22a of one electrode 22 and the end 24a of the other electrode 24 constitute first and second connection terminals that are electrically connected to the control unit 32, respectively. ing.
  • the second heat generating portion 28 is electrically connected to the pair of electrodes 22 and 24 common to the plurality of first heat generating portions 26. That is, between the end portion 22a of one electrode 22 and the end portion 24a of the other electrode 24, the plurality of first heat generating portions 26 and the second heat generating portion 28 are electrically connected in parallel. . For this reason, during energization of the plurality of first heat generating units 26, the temperature of the second heat generating unit 28 is related to the temperature of the plurality of first heat generating units 26.
  • the radiation heater device 1 includes a temperature sensor 30 and a control unit 32.
  • the temperature sensor 30 is disposed at a position facing the second heat generating portion 28 in the thickness direction of the substrate portion 20. As shown in FIG. 6, the temperature sensor 30 is installed on the surface of the substrate unit 20. The temperature sensor 30 detects the surface temperature of the second region 14 heated by the second heat generating unit 28. As the temperature sensor 30, a thermistor or a thermostat is used.
  • the control unit 32 is configured by a known microcomputer or the like. As shown in FIG. 4, the temperature sensor 30 is electrically connected to the input side of the control unit 32 via a harness 33 that is an electrical connection unit. In addition, a pair of electrodes 22 and 24 are electrically connected to the output side of the control unit 32 via the harness 33. In addition, a power source and a ground are electrically connected to the control unit 32.
  • the control unit 32 controls the amount of power supplied to the plurality of first heat generating units 26 and the second heat generating unit 28 based on the sensor signal from the temperature sensor 30. In this way, the control unit 32 controls the temperatures of the first region 12 and the second region 14 of the heater body 10 based on the detection result of the temperature sensor 30.
  • the temperature sensor 30 is installed in the second region 14 at a position different from the first region 12 in the heater body 10.
  • the second region 14 is covered with the covering member 5.
  • the second region 14 is installed on the side opposite to the occupant with respect to the covering member 5.
  • the 2nd field 14 is installed in the position where the crew member 2 cannot touch. If it says from another viewpoint, the 2nd area
  • the installation site of the temperature sensor 30 cannot be touched by the occupant 2. Moreover, it can avoid that the temperature sensor 30 gets wet. Thereby, the sudden change of the temperature in the installation site
  • the first region 12 of the heater main body 10 is configured such that each of the plurality of first heat generating portions 26 has a small heat capacity and has a large thermal resistance in the surface direction of the heater main body 10. For this reason, when the temperature sensor 30 is installed in the first region 12 of the heater main body 10, the amount of heat that moves from the periphery of the temperature sensor 30 to the temperature sensor 30 in the first region 12 is small, and the temperature sensor 30. Heat transfer is suppressed. That is, the amount of heat per unit time flowing into the temperature sensor 30 is reduced. As a result, a new problem has been found that when the temperature of the first region 12 changes, the change of the temperature sensor 30 cannot follow the temperature change of the first region 12. If the change of the temperature sensor 30 cannot follow the temperature change of the first region 12, the temperature control of the heater body 10 by the control unit 32 cannot be performed appropriately.
  • the controller 32 stops energization of the first region 12 when the temperature of the first region 12 of the heater body 10 exceeds the first temperature. In this case, if the temperature rise of the temperature sensor 30 is delayed when the temperature of the first region 12 rises, the energization stop timing is delayed and the temperature of the first region 12 becomes too high. Further, for example, it is conceivable that the control unit 32 controls the first region 12 to energize when the temperature of the first region 12 becomes lower than the second temperature. In this case, if the temperature drop of the temperature sensor 30 is delayed when the temperature of the first region 12 falls, the timing of starting energization is delayed and the temperature of the first region 12 becomes too low.
  • the temperature of the heater body 10 is not appropriately controlled even when the temperature sensor 30 has low followability to the temperature change of the heater body 10. For this reason, thermal discomfort is generated in the passenger.
  • the thermal resistance in the surface direction of the second region 14 is smaller than the thermal resistance in the surface direction of the first region 12. That is, the second region 14 is more easily moved in the surface direction than the first region 12. For this reason, compared with the case where the temperature sensor 30 is installed in the 1st area
  • the temperature of the second heat generating unit 28 is related to the temperature of the plurality of first heat generating units 26. That is, when the heater body 10 is energized, the temperature of the second region 14 becomes a temperature related to the temperature of the first region 12. For this reason, the temperature sensor 30 can measure the temperature related to the temperature of the first region 12 with high sensitivity. Therefore, according to the present embodiment, the followability of the temperature sensor 30 to the temperature change of the heater body 10 can be improved as compared with the case where the temperature sensor 30 is installed in the first region 12.
  • the temperature control of the heater body 10 using the temperature sensor 30 can be appropriately performed as compared with the case where the temperature sensor 30 is installed in the first region 12. For this reason, the thermal discomfort which a user produces when the temperature control of the heater main-body part 10 is not made appropriate can be reduced.
  • the heater main body 10 using the temperature sensor 30 is maintained while maintaining the feature of the heater main body 10 that when the user touches, the temperature of the part touched by the user rapidly decreases. It is possible to appropriately control the temperature.
  • the electrical resistance value of the second heat generating portion 28 is adjusted so that the temperature of the second heat generating portion 28 during energization is the same as the temperature of the first heat generating portion 26. It is not limited. The temperature of the second heat generating unit 28 during energization may not be the same as the temperature of the first heat generating unit 26. There should be a predetermined correlation between the temperature of the second heat generating portion 28 and the temperature of the first heat generating portion 26.
  • the area of the second region 14 is not limited to the area illustrated in FIG.
  • the area of the second region 14 may be at least as large as the temperature sensor 30 can be installed.
  • the second heat generating portion 28 has a shape having a shorter length in the X-axis direction and a larger cross-sectional area than the first heat generating portion 26, but is not limited thereto.
  • the second heat generating portion 28 may have a shape with a smaller thermal resistance in the surface direction than each of the plurality of first heat generating portions 26.
  • the second heat generating portion 28 may have a shape having the same length in the X-axis direction and a large cross-sectional area as compared with each of the plurality of first heat generating portions 26.
  • This cross-sectional area is an area in a cross section perpendicular to the X-axis direction.
  • the material constituting the second heat generating portion 28 is the same as the material constituting the first heat generating portion 26, but is not limited thereto.
  • the material constituting the second heat generating part 28 may be made of a material having a higher thermal conductivity than the material constituting the first heat generating part 26. Thereby, the thermal resistance in the surface direction of the second heat generating portion 28 only needs to be smaller than the thermal resistance in the surface direction of the first heat generating portion 26.
  • This embodiment differs from the first embodiment in the planar shape of the second heat generating part.
  • Other configurations of the radiation heater device 1 are the same as those in the first embodiment.
  • the second region 14 has one second heat generating portion 28a.
  • the second heat generating part 28a corresponds to the second heat generating part 28 of the first embodiment.
  • the second heat generating portion 28a is arranged in a meandering manner. Specifically, both ends of the second heat generating portion 28a are connected to the pair of electrodes 22 and 24, respectively.
  • the second heat generating portion 28 a is arranged to meander between the pair of electrodes 22 and 24. Thereby, the electrical resistance value of the 2nd heat generating part 28a is adjusted.
  • an interval G28a between adjacent portions of the second heat generating portion 28a is adjacent to each other as shown in FIG. 4 so that the second region 14 is more easily moved in the surface direction than the first region 12. It is narrower than the gap G26 between the two first heat generating portions 26. That is, as compared with the plurality of first heat generating portions 26, the second heat generating portions 28a are arranged densely. Thereby, the thermal resistance in the surface direction of the second region 14 is smaller than the thermal resistance in the surface direction of the first region 12. Therefore, also in this embodiment, the same effect as the first embodiment can be obtained.
  • This embodiment differs from the first embodiment in the number and shape of the second heat generating parts.
  • Other configurations of the radiation heater device 1 are the same as those in the first embodiment.
  • the second region 14 has two second heat generating portions 28b.
  • the second heat generating part 28b corresponds to the second heat generating part 28 of the first embodiment.
  • the two second heat generating portions 28 b are arranged in parallel between the pair of electrodes 22 and 24.
  • the second heat generating portion 28 b extends linearly between the pair of electrodes 22 and 24.
  • the gap G28b between the two adjacent second heat generating portions 28b is set to be adjacent to each other as shown in FIG. 4 so that heat can be easily transferred in the surface direction in the second region 14 compared to the first region 12. It is narrower than the gap G26 between the two first heat generating portions 26. Thereby, the thermal resistance in the surface direction of the second region 14 is smaller than the thermal resistance in the surface direction of the first region 12. Therefore, also in this embodiment, the same effect as the first embodiment can be obtained.
  • the number of the second heat generating portions 28b is two, but may be three or more.
  • an interval G28b between two adjacent second heat generating portions 28b among the plurality of second heat generating portions 28b is narrower than an interval G26 between two adjacent first heat generating portions 26 among the plurality of first heat generating portions 26. It only has to be.
  • this embodiment is different from the first embodiment in that the second region 14 has a heat transfer sheet 29.
  • Other configurations of the radiation heater device 1 are the same as those in the first embodiment.
  • the heat transfer sheet 29 is made of a material having a higher thermal conductivity than the material constituting the substrate unit 20. That is, the heat transfer sheet 29 is made of a material having a higher thermal conductivity than that of the material constituting the low heat conducting portion 27 of the first region 12. Specifically, the heat transfer sheet 29 is made of metal. The heat transfer sheet 29 may be made of a material other than metal as long as the material has a higher thermal conductivity than the material forming the substrate unit 20.
  • the heat transfer sheet 29 is formed on the surface of the substrate unit 20.
  • a temperature sensor 30 is installed on the upper surface of the heat transfer sheet 29. As described above, the heat transfer sheet 29 is disposed between the temperature sensor 30 and the second heat generating portion 28.
  • the second region 14 includes the heat transfer sheet 29 so that the second region 14 is more easily moved in the surface direction than the first region 12. With this heat transfer sheet 29, the thermal conductivity in the surface direction of the second region 14 is enhanced. With this heat transfer sheet 29, the thermal resistance in the surface direction of the second region 14 is smaller than the thermal resistance in the surface direction of the first region 12. Therefore, also in this embodiment, the same effect as the first embodiment can be obtained.
  • the present embodiment differs from the first embodiment in the electrical connection between the first heat generating portion and the second heat generating portion.
  • Other configurations of the radiation heater device 1 are the same as those in the first embodiment.
  • a pair of electrodes 22 and 24 b are connected to the plurality of first heat generating portions 26.
  • a pair of electrodes 24 c and 25 are connected to one second heat generating portion 28.
  • the other electrode 24 b of the pair of electrodes 22, 24 b and the one electrode 24 c of the pair of electrodes 24 c, 25 are constituted by one electrode 24.
  • An end 22a of one electrode 22 of the pair of electrodes 22 and 24b and a part 25a of the other electrode 25 of the pair of electrodes 24c and 25 are electrically connected to the control unit 32.
  • the end 22a of the one electrode 22 on the first heat generating unit 26 side and the part 25a of the other electrode 25 on the second heat generating unit 28 side are electrically connected to the control unit 32, respectively.
  • the 1st, 2nd connection terminal connected to is comprised.
  • the plurality of first heat generating units 26 and the second heat generating units 28 are electrically connected in series between the first connection terminal 22a and the second connection terminal 25a. .
  • the temperature of the second heat generating unit 28 is related to the temperature of the plurality of first heat generating units 26. Therefore, the present embodiment can provide the same effects as those of the first embodiment.
  • the heater main body 10 is mounted on the vehicle in a state where the intermediate region 13 located between the first region 12 and the second region 14 is curved. That is, in the state where the heater body 10 is mounted on the vehicle, the intermediate region 13 has a curved shape.
  • the intermediate region 13 is a part of the substrate unit 20. For this reason, the intermediate region 13 has flexibility.
  • the heater main body 10 is installed in the lower part 4a of the instrument panel 4 as in the first embodiment.
  • the first region 12 is installed on the surface on the passenger side of the instrument panel 4.
  • the intermediate region 13 is disposed inside the opening 8 provided in the instrument panel 4.
  • the second region 14 is installed on the surface on the opposite side of the instrument panel 4. That is, the second area 14 is installed on the opposite side of the occupant side with respect to the first area 12.
  • the second area 14 is set such that the second area projected within the range of the first area 12 is located.
  • the second region 14 is fixed to the instrument panel 4 by the fixing member 9.
  • the temperature sensor 30 is installed on the surface on the passenger side in the second region 14.
  • the second region 14 is installed in a place where the passenger cannot touch it. Therefore, the present embodiment can provide the same effects as those of the first embodiment. Furthermore, according to the present embodiment, the temperature sensor 30 can be prevented from being peeled off by an external force.
  • the temperature sensor 30 was installed in the passenger
  • the temperature sensor 30 may be installed on the surface on the opposite side of the second region 14.
  • a heat insulating member may be added to one or both of the occupant side and the non-occupant side of the second region 14. Thereby, the thermal influence to the 2nd area
  • the intermediate region 13 has a curved shape, that is, a curved shape having a roundness, but may be a curved shape having a corner.
  • the intermediate region 13 is a part of the substrate unit 20.
  • the intermediate region 13 may be formed of a wiring member separate from the substrate unit 20.
  • the second region 14 includes a heat transfer sheet 40 instead of the second heat generating portion 28 of the first embodiment.
  • the heat transfer sheet 40 is a sheet-like member made of a material having a higher thermal conductivity than a material constituting each of the plurality of low heat conduction portions 27, that is, a material constituting the substrate portion 20.
  • the heat transfer sheet 40 is made of metal.
  • the heat transfer sheet 40 may be made of a material other than metal as long as the material has a higher thermal conductivity than the material forming the substrate unit 20.
  • the heat transfer sheet 40 is disposed adjacent to the first region 12 so that heat from the first heat generating portion 26 is transmitted.
  • the heat transfer sheet 40 is disposed on the surface of the substrate unit 20.
  • the heat transfer sheet 40 has a planar shape that is longer in the Y-axis direction and shorter in the X-axis direction than the first heat generating portion 26.
  • the temperature sensor 30 is installed on the surface of the heat transfer sheet 40. The temperature sensor 30 detects the temperature of the heat transfer sheet 40 to which the heat from the first heat generating part 26 is transmitted, that is, the second region 14.
  • the second region 14 includes the heat transfer sheet 40 so that the second region 14 is more easily moved in the surface direction than the first region 12.
  • the thermal resistance in the surface direction of the second region 14 is smaller than the thermal resistance in the surface direction of the first region 12. For this reason, compared with the case where the temperature sensor 30 is installed in the 1st area
  • the temperature sensor 30 can measure the temperature related to the temperature of the first region 12 with high sensitivity. Therefore, also in this embodiment, the same effect as the first embodiment can be obtained.
  • the heater main body 10 has a first main body 101 and a second main body 102.
  • the first main body 101 is a portion of the heater main body 10 on the first region 12 side.
  • the first main body 101 includes a first region 12 and a pair of electrodes 22 and 24.
  • the second main body 102 is a portion of the heater main body 10 on the second region 14 side.
  • the second main body 102 includes a second region 14 and a pair of electrodes 22 and 24.
  • the temperature sensor 30 is installed on the surface of the second region 14.
  • the area of the second region 14 is sufficiently smaller than that of the first region 12 as in the first embodiment. This is for the purpose of heating the occupant 2 efficiently by making the first region 12 as small as possible compared to the first region 12 for the purpose of warming the occupant 2, thereby efficiently using the electric power used by the entire heater body 10. This is because it can be used.
  • the end portions 22 a and 24 a of the pair of electrodes 22 and 24 and the temperature sensor 30 are connected to the control unit 32 via the harness 33.
  • the heater main body 10 has a passenger-side surface 10a and an anti-occupant-side surface 10b.
  • the first main body 101 is installed inside the storage unit 50.
  • the storage unit 50 includes a recess 4 b provided in a part of the instrument panel 4.
  • the storage unit 50 may be formed of a member different from the instrument panel 4.
  • the first heat insulating portion 52 is disposed on the side opposite to the occupant of the first body portion 101.
  • the first heat insulating portion 52 is laminated on the surface 10 b on the side opposite to the occupant of the first main body portion 101. In this state, the first main body 101 is installed inside the storage unit 50.
  • the first heat insulating portion 52 is made of a heat insulating material for suppressing heat transfer from the first region 12.
  • the skin portion 54 is laminated on the passenger-side surface 10 a of the first main body portion 101. As shown in FIGS. 14 and 15, the skin portion 54 is a covering member that covers the first main body portion 101.
  • the skin portion 54 is made of cloth such as woven fabric or non-woven fabric, or leather.
  • the second heat insulating portion 56 is disposed on the side opposite to the occupant of the second main body portion 102.
  • the second heat insulating portion 56 is laminated on the surface 10 b on the side opposite to the occupant of the second main body portion 102.
  • the second main body portion 102 is installed on the surface of the storage portion 50.
  • the storage unit 50 is configured by a part of the instrument panel 4.
  • the second heat insulating portion 56 is made of a heat insulating material for suppressing heat transfer from the second region 14.
  • the heat insulation material which comprises the 2nd heat insulation part 56, and the heat insulation material which comprises the 1st heat insulation part 52 are the same kind of materials.
  • the thickness T56 of the second heat insulating part 56 in the direction perpendicular to the surface 10a of the heater body 10 is the same as the thickness T52 of the first heat insulating part 52.
  • the second main body 102 and the temperature sensor 30 are covered with a protective case 58.
  • a space 60 is formed around the temperature sensor 30 inside the protective case 58.
  • the first region 12 includes a plurality of first heat generating portions 26 as in the first embodiment.
  • the second region 14 includes a plurality of second heat generating portions 28c.
  • Each of the plurality of second heat generating portions 28c corresponds to the second heat generating portion 28 of the first embodiment.
  • the number of the plurality of second heat generating portions 28c may be another number of 2 or more.
  • Each of the plurality of second heat generating portions 28c extends linearly.
  • Each of the plurality of second heat generating portions 28c is arranged in parallel. Note that the present invention is not limited to the case where each of the plurality of first heat generating units 26 and the plurality of second heat generating units 28c extends linearly. These may extend in a bent line shape.
  • the interval G28 between the adjacent second heat generating portions 28c among the plurality of second heat generating portions 28c is set such that the heat generation density of the second region 14 is higher than the heat generation density of the first region 12. It is narrower than the gap G26 between the adjacent first heat generating portions 26 in the portion 26.
  • the heat generation density is a heat generation amount (W / m 2 ) per unit area. That is, the heat generation density is a heat transfer amount (W / m 2 ) per unit area.
  • the heat generation density of the second region 14 is the ratio of the amount of heat released from the second region 14 to the outside of the heater main body with respect to the area of the second region 14 on the passenger-side surface 10a of the heater main body 10. is there.
  • the heat generation density of the first region 12 is the ratio of the amount of heat released from the first region 12 to the outside of the heater main body 10 with respect to the area of the first region 12 on the passenger-side surface 10a of the heater main body 10.
  • the heat generation density is the same as the heat flux. Therefore, the heat generation density of the second region 14 and the heat generation density of the first region 12 can be measured by the heat flux sensor.
  • the area of the second region 14 is the plurality of second heat generation portions 28 c projected when the plurality of second heat generating portions 28 c are projected in a direction perpendicular to the surface 10 a with respect to the passenger-side surface 10 a of the heater main body 10. This is the area of the region including the heat generating portion 28c.
  • the area of the first region 12 means that the plurality of first heat generating portions 26 projected when the plurality of first heat generating portions 26 are projected on the surface 10a of the heater main body 10 in a direction perpendicular to the surface 10a. Is the area of the region containing.
  • each of the plurality of second heat generating portions 28c is arranged at equal intervals.
  • the width W28 of each of the plurality of second heat generating portions 28c is smaller than the width W26 of each of the plurality of first heat generating portions 26.
  • the width W28 of the second heat generating portion 28c is the length of the second heat generating portion 28c in the arrangement direction of the plurality of second heat generating portions 28c.
  • the width W26 of the first heat generating part 26 is the length of the first heat generating part 26 in the direction in which the plurality of first heat generating parts 26 are arranged.
  • the thickness T28 of each of the plurality of second heat generating portions 28c is the same as the thickness T26 of each of the plurality of first heat generating portions 26.
  • the thickness T28 of the second heat generating portion 28c is the length of the second heat generating portion 28c in the direction perpendicular to the surface 10a of the heater main body portion 10.
  • the thickness T26 of the first heat generating portion 26 is the length of the first heat generating portion 26 in the direction perpendicular to the surface 10a of the heater main body portion 10.
  • the cross-sectional area in the cross section perpendicular to the longitudinal direction of each of the plurality of second heat generating portions 28c is larger than the cross-sectional area in the cross section perpendicular to the longitudinal direction of each of the plurality of first heat generating portions 26. small.
  • the thickness T202 of the portion 202 that covers the passenger side of the plurality of second heat generating portions 28c in the board portion 20 is the occupant of the plurality of first heat generating portions 26 in the board portion 20. This is the same as the thickness T201 of the portion 201 covering the side.
  • the radiation heater device J1 of Comparative Example 1 is configured such that the heat generation density of the second region 14 is the same as the heat generation density of the first region 12. Different from the heater device 1.
  • the second region 14 has a plurality of second heat generating portions 28d.
  • the plurality of second heat generating portions 28d correspond to the plurality of second heat generating portions 28c.
  • the intervals G28 between the plurality of second heat generating portions 28d are wider than the intervals G26 between the plurality of first heat generating portions 26.
  • the width W28 of each of the plurality of second heat generating portions 28d is smaller than the width W26 of each of the plurality of first heat generating portions 26.
  • the other configuration of the heater body 10 is the same as that of the heater body 10 of the present embodiment.
  • the present inventors have found that the following problems occur in the radiation heater device J1 of Comparative Example 1.
  • the first region 12 is configured such that when the surface of the first region 12 is touched by the user, the temperature of the touched portion is quickly reduced. For this reason, the surface temperature of the 1st field 12 can be made into 45 to 300 ° C high temperature. In order to give the passenger 2 a sufficient thermal feeling, the surface temperature of the first region 12 is preferably 100 ° C. or higher.
  • the second region 14 has a sufficiently small area as compared with the first region 12.
  • the total heat generation amount of the second region 14 is smaller than the total heat generation amount of the first region 12. For this reason, when the surface temperature of the first region 12 is set to a high temperature of 45 ° C. or higher, the surface temperature of the second region 14 is strongly affected by heat transfer between the second region 14 and the surrounding air. For this reason, the surface temperature of the second region 14 is lower than the surface temperature of the first region 12. Furthermore, the slope when the surface temperature of the second region 14 changes (that is, the amount of change in temperature per unit time) is different from the slope when the surface temperature of the first region 12 changes.
  • the change in the surface temperature of the second region 14 greatly deviates from the change in the surface temperature of the first region 14. That is, when the surface temperature of the first region 14 changes, the surface temperature of the second region 14 behaves differently from the surface temperature of the first region 14.
  • the control unit 32 stops energization of the heater body 10.
  • the control unit 32 resumes energization of the heater body 10.
  • the control unit 32 controls energization of the heater body 10 so that the surface temperature of the second region 14 becomes the target temperature.
  • the surface temperature of the first region 14 and the surface temperature of the second region 14 decrease from the stop of energization to the resumption of energization.
  • the surface temperature of the second region 14 is lower than the surface temperature of the first region 12 due to the influence of ambient air.
  • energization is resumed.
  • the rising speed of the surface temperature of the second region 14 is slower than the surface temperature of the first region 12 due to the influence of ambient air.
  • the control unit 32 controls the energization of the heater body 10 so that the surface temperature of the second region 14 becomes the target temperature
  • the surface temperature of the first region 12 is higher than the surface temperature of the second region 14. It becomes too much.
  • This problem occurs when the area of the second region 14 is smaller than the area of the first region 12. This problem does not occur when the area of the second region 14 is the same as the area of the first region 12. In this case, if the heat generating part in the first region 12 and the heat generating part in the second region 14 have the same shape, the change in the surface temperature of the second region is the same as the change in the surface temperature of the first region.
  • this problem occurs when the surface temperature of the first region 12 and the second region 14 is a high temperature of 45 ° C. or higher. That is, it occurs when the temperature difference between the respective surfaces of the first region 12 and the second region 14 and the ambient air around the heater body 10 is large. This problem becomes significant when the surface temperatures of the first region 12 and the second region 14 are 100 ° C. or higher. Moreover, this subject becomes remarkable when the temperature of ambient air is low, for example, when it is 0 degrees C or less.
  • the heater unit for heating corresponds to the first region of the present embodiment.
  • the measurement heater unit corresponds to the second region of the present embodiment.
  • the surface temperature of the heater part for heating is a temperature close to the human body temperature, specifically, a temperature lower than 45 ° C. For this reason, the temperature difference of each surface and ambient air of a heating heater part and a measurement heater part is small. The influence of heat transfer between the measurement heater and the surrounding air is small. Therefore, in the conventional contact heater device, the above-mentioned problem does not occur or does not become a big problem.
  • the heat generation density of the second region 14 is higher than the heat generation density of the first region 12.
  • the radiant heater device 1 of the comparative example 1 it is possible to increase the total amount of heat generated in the second region 14. Thereby, the influence of the surrounding air which the surface temperature of the 2nd field 14 receives can be made small. For this reason, the surface temperature of the second region 14 can be brought close to the surface temperature of the first region 12. The inclination when the surface temperature of the second region 14 changes can be made closer to the inclination when the surface temperature of the first region 12 changes. As a result, the change in the surface temperature of the second region 14 can be brought close to the change in the surface temperature of the first region 12.
  • the rate of decrease in the surface temperature of the second region 14 immediately after the energization is stopped can be made closer to the rate of decrease in the surface temperature of the first region 12.
  • the surface temperature of the second region 14 when energization is resumed can be brought close to the surface temperature of the first region 12.
  • the rate of increase in the surface temperature of the second region 14 immediately after resuming energization can be made closer to the rate of increase in the surface temperature of the first region 12. Therefore, the surface temperature of the second region 14 after the elapse of a predetermined time immediately after resuming energization can be brought close to the surface temperature of the first region 14.
  • the correlation between the surface temperature of the second region 14 and the surface temperature of the first region 14 can be ensured. Therefore, temperature control of the 1st field 12 of heater main part 10 can be performed appropriately.
  • each of the plurality of second heat generating portions 28c is arranged at equal intervals, but may be arranged at different intervals.
  • each of the plurality of first heat generating units 26 is arranged at equal intervals, but may be arranged at different intervals.
  • the width W28, the thickness T28, and the cross-sectional area of each of the plurality of second heat generating portions 28c and the width W26, the thickness T26, and the cross-sectional area of each of the plurality of first heat generating portions 26 is the present embodiment. It is not limited to.
  • the width W28 of each of the plurality of second heat generating units 28c may be larger than the width W26 of each of the plurality of first heat generating units 26.
  • Each thickness T28 of the plurality of second heat generating portions 28c may be larger than each T26 of the plurality of first heat generating portions 26.
  • the cross-sectional area of each of the plurality of second heat generating portions 28c is equal to each of the plurality of first heat generating portions 26. It may be larger than the cross-sectional area.
  • the heat generation density of the second region 14 is higher than the heat generation density of the first region 12. It only has to be.
  • This embodiment is different from the eighth embodiment in that the cross-sectional area of one second heat generating portion is larger than the cross-sectional area of one first heat generating portion.
  • Other configurations of the radiation heater device 1 are the same as those in the eighth embodiment.
  • the second region 14 has a plurality of second heat generating portions 28e.
  • the plurality of second heat generating portions 28e correspond to the second heat generating portion 28c of the eighth embodiment.
  • the plurality of second heat generating portions 28 e is two.
  • the number of the plurality of second heat generating portions 28e may be another number of 3 or more.
  • the cross-sectional areas of the plurality of second heat generating portions 28e are the cross-sectional areas of the plurality of first heat generating portions 26 so that the heat generation density of the second region 14 is higher than the heat generation density of the first region 12. Is bigger than.
  • the cross-sectional area of the second heat generating portion 28e is a cross-sectional area in a cross section perpendicular to the direction in which the second heat generating portion 28e extends linearly.
  • the cross-sectional area of the first heat generating part 26 is a cross-sectional area in a cross section perpendicular to the direction in which the first heat generating part 26 extends linearly.
  • each width W28 of the plurality of second heat generating portions 28e is larger than each width W26 of the plurality of first heat generating portions 26.
  • the interval G28 between the adjacent second heat generating portions 28c is the same as the interval G26 between the adjacent first heat generating portions 26.
  • the thicknesses T28 of the plurality of second heat generating portions 28e are the same as the thicknesses T26 of the plurality of first heat generating portions 26, respectively.
  • the electrical resistance value per unit length in the longitudinal direction of each of the plurality of second heat generating portions 28e is the electrical resistance per unit length in the longitudinal direction of each of the plurality of first heat generating portions 26.
  • the value is low.
  • the length of each of the plurality of second heat generating portions 28e is shorter than the length of each of the plurality of first heat generating portions 26.
  • the electric resistance values of the plurality of second heat generating portions 28e are lower than the electric resistance values of the plurality of first heat generating portions 26, respectively.
  • Joule heat is inversely proportional to the electrical resistance value. The smaller the electrical resistance value, the greater the amount of heat generated.
  • the heat generation amount of each of the plurality of second heat generation units 28 e is larger than the heat generation amount of each of the plurality of first heat generation units 26.
  • the heat generation density of the second region 14 is larger than the heat generation density of the first region 12. Therefore, also in this embodiment, the same effect as in the eighth embodiment can be obtained.
  • the width W28 of each of the plurality of second heat generating portions 28e is the same as the width W26 of each of the plurality of first heat generating portions 26, and the thickness T28 of each of the plurality of second heat generating portions 28e is the plurality of first heat generating portions. It may be thicker than each thickness T26 of the part 26. Since at least one of the width W28 and the thickness T28 of the second heat generating portion 28d is larger than the first heat generating portion 26, the cross-sectional area of each of the plurality of second heat generating portions 28d becomes each of the plurality of first heat generating portions 26. It suffices if it is larger than the cross-sectional area.
  • the interval G28 between the adjacent second heat generating portions 28c may be smaller than the interval G26 between the adjacent first heat generating portions 26.
  • the heat generation density of the second region 14 can be made larger than the heat generation density of the first region 12.
  • the interval G28 between the adjacent second heat generation units 28c is larger than the interval G26 between the adjacent first heat generation units 26. May be.
  • the heat generation density of the second region 14 is higher than that of the first region 12. It only needs to be higher than the heat generation density.
  • each of the plurality of second heat generating parts is made of a material having a lower electrical resistivity than each of the plurality of first heat generating parts.
  • Other configurations of the radiation heater device 1 are the same as those in the eighth embodiment.
  • the second region 14 has a plurality of second heat generating portions 28f.
  • the plurality of second heat generating portions 28f correspond to the second heat generating portion 28c of the eighth embodiment.
  • the plurality of second heat generating portions 28f are two.
  • the number of the plurality of second heat generating portions 28f may be another number of 3 or more.
  • each of the plurality of second heat generating portions 28f is electrically compared with each of the plurality of first heat generating portions 26 so that the heat generation density of the second region 14 is higher than the heat generation density of the first region 12. It is made of a material with low resistivity.
  • the width W28, the thickness T28, and the interval G28 of each of the plurality of second heat generating portions 28f are the same as the width W26, the thickness T26, and the interval G26 of each of the plurality of first heat generating portions 26.
  • Each length of the plurality of second heat generating portions 28f in the X-axis direction is shorter than each length of the plurality of first heat generating portions 26 in the X-axis direction.
  • the electric resistance values of the plurality of second heat generating portions 28f are lower than the electric resistance values of the plurality of first heat generating portions 26, respectively. For this reason, each calorific value of the plurality of second heat generating portions 28f is larger than each calorific value of the plurality of first heat generating portions 26. Thereby, the heat generation density of the second region 14 is larger than the heat generation density of the first region 12. Therefore, also in this embodiment, the same effect as in the eighth embodiment can be obtained.
  • the relationship between the width W28, the thickness T28, and the interval G28 of each of the plurality of second heat generating portions 28f and the width W26, the thickness T26, and the interval G26 of each of the plurality of first heat generating portions 26 is the present embodiment. It is not limited to. If the heat generation density of the second region 14 is higher than the heat generation density of the first region 12, the width W28, the thickness T28, the gap G28 of the second heat generating portion 28f, and the width W26, thickness of the first heat generating portion 26 The length T26 and the interval G26 may be different.
  • the second region 14 may have only one second heat generating portion 28f. That is, the 2nd field 14 may have the 2nd exothermic part 28 of a 1st embodiment.
  • each of the one or more second heat generating portions 28f is made of a material having a lower electrical resistivity than each of the plurality of first heat generating portions 26, thereby generating heat in the second region 14. It is sufficient that the density is higher than the heat generation density of the first region 12.
  • the second heat generating portion 28 occupies the entire area of the second region 14. For this reason, the heat generation density of the second region 14 is larger than the heat generation density of the first region 12. Furthermore, with respect to the first embodiment, each of the second heat generating units 28 is changed to be made of a material having a lower electrical resistivity than each of the plurality of first heat generating units 26. Thereby, the heat generation density of the second region 14 can be made larger than the heat generation density of the first region 12.
  • the present embodiment is different from the eighth embodiment in that the substrate portion in the second region is made of a material having a higher thermal conductivity than the substrate portion in the first region.
  • Other configurations of the radiation heater device 1 are the same as those in the eighth embodiment.
  • the second region 14 has a plurality of second heat generating portions 28g.
  • the plurality of second heat generating portions 28g correspond to the second heat generating portion 28c of the eighth embodiment.
  • the number of the plurality of second heat generating portions 28g may be another number of 3 or more.
  • the width W28, thickness T28, and interval G28 of each of the plurality of second heat generating portions 28g are the same as the width W26, thickness T26, and interval G26 of each of the plurality of first heat generating portions 26.
  • Each length of the plurality of second heat generating portions 28g in the X-axis direction is shorter than each length of the plurality of first heat generating portions 26 in the X-axis direction.
  • the material constituting each of the plurality of second heat generating portions 28g is the same as the material constituting each of the plurality of first heat generating portions 26.
  • the substrate portion 20 is made of different materials for the first main body portion 101 and the second main body portion 102 so that the heat generation density of the second region 14 is higher than the heat generation density of the first region 12. That is, the substrate portion 20b of the second main body portion 102 shown in FIG. 26 is made of a material having a higher thermal conductivity than the substrate portion 20a of the first main body portion 101 shown in FIG. Thereby, the portion 202 covering the passenger side of the plurality of second heat generating portions 28g in the board portion 20 is more thermally conductive than the portion 201 covering the passenger side of the plurality of first heat generating portions 26 in the board portion 20. It is composed of a high rate material.
  • the portions 201 that cover the passenger side of the plurality of first heat generating portions 26 constitute a first insulating portion that covers the heating object side of the plurality of first heat generating portions.
  • the portions 202 that cover the passenger side of the plurality of second heat generating portions 28g constitute second insulating portions that cover the heating object side of the plurality of second heat generating portions.
  • the thickness T202 of the portion 202 that covers the occupant side of the plurality of second heat generating portions 28g in the substrate portion 20 is equal to the plurality of first heat generating portions 26 in the substrate portion 20. This is the same as the thickness T201 of the portion 201 covering the passenger side.
  • heat is more easily transferred through the substrate portion 20 in the second region 14 than in the first region 12. Therefore, when the first region 12 and the second region 14 are compared with the same area, the total heat generation amount of the plurality of first heat generation units 26 and the total heat generation amount of the plurality of second heat generation units 28 in the same area are the same.
  • the amount of heat released from the second region 14 to the outside of the heater body 10 is larger than the amount of heat released from the first region 12 to the outside of the heater body 10.
  • the heat generation density of the second region 14 is larger than the heat generation density of the first region 12.
  • the heat generation density of the second region 14 is greater than the heat generation density of the first region 12 because the length of each of the plurality of second heat generation units 28g is shorter than the length of each of the plurality of first heat generation units 26. Is also high. Therefore, also in this embodiment, the same effect as in the eighth embodiment can be obtained.
  • the relationship between the width W28, the thickness T28, and the interval G28 of each of the plurality of second heat generating portions 28g and the width W26, the thickness T26, and the interval G26 of each of the plurality of first heat generating portions 26 is described in the present embodiment. It is not limited to. If the heat generation density of the second region 14 is higher than the heat generation density of the first region 12, the width W28, the thickness T28, and the gap G28 of the second heat generating portion 28g, and the width W26 of the first heat generating portion 26, the thickness The length T26 and the interval G26 may be different. This embodiment may be combined with each of the eighth, ninth, and tenth embodiments.
  • the second region 14 may have only one second heat generating portion 28g.
  • the thickness T202 of the portion 202 that covers the occupant side of the plurality of second heat generating portions 28g in the substrate portion 20 is the thickness T201 of the portion 201 that covers the occupant side of the plurality of first heat generating portions 26 in the substrate portion 20. And may be different. Even in this case, it is sufficient that the heat of the second region 14 is more easily transferred through the substrate portion 20 than the first region 12.
  • This embodiment is different from the eighth embodiment in that the thickness of the substrate portion in the second region is different from the thickness of the substrate portion in the first region.
  • the second region 14 has a plurality of second heat generating portions 28g as in the eleventh embodiment.
  • the thickness T202 of the portion 202 covering the occupant side of the plurality of second heat generating portions 28g in the board portion 20 is equal to the occupant side of the plurality of first heat generating portions 26 in the substrate portion 20.
  • the covering portion 201 is thinner (that is, smaller) than the thickness T201.
  • the thickness T202 is the thickness of the second insulating portion measured from the respective surfaces of the plurality of second heat generating portions 28c in the direction perpendicular to the surface 10a of the heater main body portion 10.
  • the thickness T201 is the thickness of the first insulating portion measured from each surface of the plurality of first heat generating portions 26 in the direction perpendicular to the surface 10a of the heater main body portion 10.
  • the substrate 20 is composed of the same material for the first main body 101 and the second main body 102.
  • the heat in the second region 14 is more easily transferred from the heat generating portion toward the surface 10 a of the heater main body portion 10 in the second region 14 than in the first region 12.
  • the heat generation density of the second region 14 is larger than the heat generation density of the first region 12.
  • the heat generation density of the second region 14 is greater than the heat generation density of the first region 12 because the length of each of the plurality of second heat generation units 28g is shorter than the length of each of the plurality of first heat generation units 26. Is also high. Therefore, also in this embodiment, the same effect as in the eighth embodiment can be obtained.
  • the relationship between the width W28, the thickness T28, and the interval G28 of each of the plurality of second heat generating portions 28g and the width W26, the thickness T26, and the interval G26 of each of the plurality of first heat generating portions 26 is described in the present embodiment. It is not limited to. If the heat generation density of the second region 14 is higher than the heat generation density of the first region 12, the width W28, the thickness T28, and the gap G28 of the second heat generating portion 28g, and the width W26 of the first heat generating portion 26, the thickness The length T26 and the interval G26 may be different. This embodiment may be combined with each of the eighth, ninth, tenth and eleventh embodiments.
  • the second region 14 may have only one second heat generating portion 28g.
  • This embodiment is different from the eighth embodiment in that the first heat insulating portion and the second heat insulating portion are different in thickness.
  • the thickness T56 of the second heat insulating portion 56 is smaller than the thickness T52 of the first heat insulating portion 52.
  • Other configurations of the radiation heater device 1 are the same as those in the eighth embodiment.
  • the heat capacity of the second heat insulating part 56 When the heat capacity of the second heat insulating part 56 is large, the influence of the heat capacity of the second heat insulating part 56 on the temperature change of the second region 14 is large. At the time of raising the temperature of the heater body 10, the rate of increase in the surface temperature of the second region 12 becomes slower as the heat capacity of the second heat insulating portion 56 is larger. When the temperature of the heater main body 10 is lowered, the lowering rate of the surface temperature of the second region 12 becomes slower as the heat capacity of the second heat insulating portion 56 is larger. Thus, the larger the heat capacity of the second heat insulating portion 56, the more the change in the surface temperature of the second region 14 deviates from the change in the surface temperature of the first region 14. That is, when the surface temperature of the first region 14 changes, the surface temperature of the second region 14 behaves differently from the surface temperature of the first region 14.
  • the heat capacity of the second heat insulating portion 56 can be reduced. For this reason, the influence of the heat capacity of the second heat insulating part 56 on the temperature change of the second region 14 can be reduced.
  • the change in the surface temperature of the second region 14 can be made closer to the change in the surface temperature of the first region 12. That is, the correlation between the surface temperature of the second region 14 and the surface temperature of the first region 14 can be ensured. Therefore, temperature control of the 1st field 12 of heater main part 10 can be performed appropriately.
  • the heat insulating material that forms the second heat insulating portion 56 is the same type of material as the heat insulating material that forms the first heat insulating portion 52.
  • the heat insulating material constituting the second heat insulating portion 56 may be a different type of material from the heat insulating material constituting the first heat insulating portion 52. Even in this case, compared to the case where the thickness T56 of the second heat insulating portion 56 is the same as the thickness T52 of the first heat insulating portion 52, the heat capacity of the second heat insulating portion 56 can be reduced. Therefore, even in this case, the effect of the present embodiment can be obtained.
  • this embodiment may be combined with each of the ninth, tenth, eleventh, and twelfth embodiments.
  • the heat generation density of the second region 14 may be the same as the heat generation density of the first region 12 as in the radiation heater device J1 of Comparative Example 1. Even in this case, the effect of the present embodiment can be obtained.
  • each of the plurality of first heat generating portions 26 has a film shape and extends linearly.
  • each of the plurality of first heat generating portions 26 may not have a film shape but may have a linearly extending shape.
  • each of the plurality of first heat generating portions 26 extends linearly and has a shape that is narrower than that of each of the above embodiments.
  • the width dimension in the Y-axis direction of each of the plurality of first heat generating portions 26 is smaller than the thickness dimension in the Z-axis direction shown in FIG. For this reason, in the example shown in FIG. 32, each of the plurality of first heat generating portions 26 is not in the form of a film.
  • each of the plurality of first heat generating portions 26 extends linearly and has a shape that is narrower than the above embodiments.
  • one first heat generating portion 26 is folded between a pair of electrodes 22 and 24. Has been placed.
  • One first heat generating portion 26 extends linearly from the one electrode 22 to the first folded portion 262 in the X-axis direction.
  • the first heat generating portion 26 extends linearly from the first folded portion 262 to the second folded portion 264 in the X-axis direction.
  • the first heat generating portion 26 extends linearly in the X-axis direction from the second folded portion 264 to the other electrode 24.
  • interval of the 1st heat generating part 26 is narrow.
  • each of the plurality of first heat generating portions 26 meanders in the X-axis direction. Also by this, the space
  • a plurality of first heat generating portions 26 can be densely arranged in the first region 12.
  • each of the plurality of first heat generating portions 26 extends linearly and has a shape that is narrower than the above embodiments. Unlike the example shown in FIG. 32, the plurality of first heat generating portions 26 are densely present in the first region 12, so that the folded electrodes 22 b, 22 c, 22 d, 22 e, 22 f, and 22 g are provided.
  • all of the plurality of first heat generating portions 26 are connected in parallel between the pair of electrodes 22 and 24.
  • the plurality of first heat generating portions 26 are connected in parallel and in series between the pair of electrodes 22 and 24.
  • one electrode 22 and folded electrodes 22c, 22e, and 22g are disposed on one side in the X-axis direction.
  • the other electrode 24 and the folded electrodes 22b, 22d, and 22f are arranged.
  • the two first heat generating portions 26 are folded and arranged.
  • first heat generating portions 26 are folded between the folded electrode 22b and the folded electrode 22c. As described above, the two first heat generating portions 26 are folded and arranged between the electrode located on one side in the X-axis direction and the electrode located on the other side in the X-axis direction. This also allows a plurality of first heat generating portions 26 to be densely arranged in the first region 12. Also in the example shown in FIG. 35, the arrangement of each of the plurality of first heat generating units 26 may be changed to the arrangement shown in FIG.
  • one first heat generating portion 26 has a shape extending linearly. Thereby, the thermal resistance in the length direction of the first heat generating portion 26 is increased.
  • a low heat conducting portion 27 is disposed between two adjacent first heat generating portions 26. Thereby, the thermal resistance between the two adjacent 1st heat generating parts 26 is enlarged. As a result, also in the examples shown in FIGS. 32, 33, 34, and 35, the thermal resistance in the surface direction of the first region 12 is increased.
  • region 12 may be only one.
  • the first heat generating portion 26 has a film shape and is disposed over the entire region between the pair of electrodes 22 and 24. For this reason, in the present embodiment, unlike the first embodiment, the first region 12 does not have a plurality of low heat conduction portions 27.
  • the first heat generating portion 26 is composed of a mixed material of a conductive material and a resin material.
  • the first heat generating portion 26 is formed by printing using a mixed material.
  • the conductive material include carbon, tin alloy, and other metal materials.
  • the thermal conductivity of the first heat generating portion 26 is set smaller than that of a metal film made of copper, silver, or the like.
  • the first heat generating portion 26 has a film shape and is set to have a small thermal conductivity. For this reason, also in the example shown in FIG. 36, the thermal resistance in the surface direction of the 1st area
  • the instrument panel 4 is used as the covering member 5, but other members may be used.
  • the first heat generating unit 26 serves as both the heat generating unit that generates heat by energization and the heat radiating unit that radiates radiant heat using the heat of the heat generating unit, but it does not have to be combined.
  • the heat generating part and the heat radiating part constitute a first heat generating part.
  • the 2nd heat-emitting part 28 should just have at least the function to generate
  • the radiation heater device 1 is installed in the vehicle, but the present invention is not limited to this.
  • the radiation heater device 1 may be installed in a place other than the vehicle.
  • a radiation heater apparatus is provided with a heater main-body part, a temperature sensor, and a control part.
  • the heater body has a first region and a second region.
  • the first area is installed at a place where the user can touch.
  • the second area is installed in a place where the user cannot touch it.
  • the first region has a plurality of heat generating portions and a plurality of low heat conducting portions.
  • the plurality of heat generating portions are film-like, and generate heat when energized to radiate radiant heat.
  • the plurality of low heat conductive portions are disposed between two adjacent heat generating portions among the plurality of heat generating portions, and have lower thermal conductivity than each of the plurality of heat generating portions. In the first aspect, such a specific configuration can be adopted.
  • heat is more easily transferred in the surface direction in the second region than in the first region.
  • the heater body is configured such that the heat capacity of the heat generating part is small and the thermal resistance in the surface direction of the heater body is large. For this reason, when a temperature sensor is installed in the heater body, the amount of heat that moves from the periphery of the temperature sensor to the temperature sensor in the heater body is small, and heat transfer to the temperature sensor is suppressed. That is, the amount of heat per unit time flowing into the temperature sensor is reduced. As a result, a new problem has been found that when the temperature of the heater body changes, the change of the temperature sensor cannot follow the temperature change of the heater. If the change of the temperature sensor cannot follow the change of the temperature of the heater, the temperature control of the heater body by the controller cannot be performed appropriately.
  • the second region is a region having a temperature related to the temperature of the first region.
  • the plurality of heat generating portions are a plurality of first heat generating portions.
  • the second region has a second heat generating part that generates heat when energized.
  • the second heat generating part is electrically connected to each of the plurality of first heat generating parts. In the second aspect, such a specific configuration can be adopted.
  • the second region has a plurality of thermal resistances in the surface direction of the second heat generating part so that heat can be easily transferred in the surface direction as compared with the first region. It is smaller than the thermal resistance in the surface direction in each of the first heat generating portions.
  • such a specific configuration can be adopted.
  • the second heat generating portion is arranged in a meandering manner.
  • the interval between adjacent portions of the second heat generating portions is two adjacent ones of the plurality of first heat generating portions so that the second region is more easily moved in the surface direction than the first region. It is narrower than the interval between the first heat generating portions.
  • such a specific configuration can be adopted.
  • the second region has a plurality of second heat generating portions.
  • the interval between two adjacent second heat generating portions among the plurality of second heat generating portions is such that the second region is more easily moved in the surface direction than the first region. It is narrower than the interval between two adjacent first heat generating parts.
  • such a specific configuration can be adopted.
  • the second region has the heat transfer sheet so that the second region is more easily moved in the surface direction than the first region.
  • the heat transfer sheet is made of a material having a higher thermal conductivity than the material constituting each of the plurality of low heat conducting portions, and is disposed between the second heat generating portion and the temperature sensor. In the fourth aspect, such a specific configuration can be adopted.
  • the second region has the heat transfer sheet so that the second region can move heat more easily in the surface direction than the first region.
  • the heat transfer sheet is made of a material having a higher thermal conductivity than the material constituting each of the plurality of low heat conductive portions, and is arranged so that heat from the heat generating portion is transferred. In the second aspect, such a specific configuration can be adopted.
  • the heater main body is installed in a state where the second region is covered with the covering member.
  • the 2nd field is installed in the position where a user cannot touch. For this reason, it can avoid that a 2nd area
  • the heater main body is installed in a state where the second region is located on the opposite side of the heating object side with respect to the first region.
  • the 2nd field is installed in the position where a user cannot touch. For this reason, it can avoid that a 2nd area
  • the heater body has an intermediate region that connects the first region and the second region.
  • the middle region is bent.
  • such a specific configuration can be adopted.
  • each of the plurality of heat generating portions extends linearly and is arranged in parallel. Such a specific configuration can be adopted.
  • the plurality of heat generating portions are a plurality of first heat generating portions.
  • the second region has one or more second heat generating portions that generate heat when energized.
  • Each of the one or more second heat generating portions is electrically connected to each of the plurality of first heat generating portions.
  • the area of the second region is smaller than the area of the first region.
  • the heat generation density of the second region is higher than the heat generation density of the first region.
  • the total heat generation amount of the second region can be increased.
  • the influence of the surrounding air which the surface temperature of the 2nd field receives can be made small.
  • the correlation between the surface temperature of the second region and the surface temperature of the first region can be ensured. Therefore, temperature control of the 1st field of a heater main part can be performed appropriately.
  • each of the plurality of first heat generating portions extends linearly and is arranged in parallel.
  • the second region has a plurality of second heat generating portions.
  • Each of the plurality of second heat generating portions extends linearly and is arranged in parallel.
  • the interval between the second heat generating portions adjacent to each other among the plurality of second heat generating portions is set so that the heat generation density of the second region is higher than the heat density of the first region. It is narrower than the interval between the heat generating parts. In this way, the heat generation density of the second region can be made higher than the heat generation density of the first region.
  • each of the plurality of first heat generating portions extends linearly and is arranged in parallel.
  • the second region has a plurality of second heat generating portions.
  • Each of the plurality of second heat generating portions extends linearly and is arranged in parallel.
  • the cross-sectional area in the cross section perpendicular to the linearly extending direction of each of the plurality of second heat generating portions is such that the heat generation density of the second region is higher than the heat generation density of the first region. It is larger than the cross-sectional area in the cross section perpendicular to the linearly extending direction of each heating part. In this way, the heat generation density of the second region can be made higher than the heat generation density of the first region.
  • each of the one or more second heat generating units is configured so that the heat generating density of the second region is higher than the heat generating density of the first region. Compared with each, it is comprised with the material whose electric resistivity is low. In this way, the heat generation density of the second region can be made higher than the heat generation density of the first region.
  • the first region has a first insulating portion that covers the heating object side of the plurality of first heat generating portions.
  • the 2nd field has the 2nd insulating part which covers the heating subject side of one or a plurality of 2nd exothermic parts.
  • the second insulating portion is made of a material having a higher thermal conductivity than the first insulating portion so that the heat density of the second region is higher than the heat density of the first region. In this way, the heat generation density of the second region can be made higher than the heat generation density of the first region.
  • the first region has a first insulating portion that covers the heating object side of the plurality of first heat generating portions.
  • the 2nd field has the 2nd insulating part which covers the heating subject side of one or a plurality of 2nd exothermic parts.
  • Second insulation measured from the surface of each of the one or more second heat generating portions in a direction perpendicular to the surface of the heater main body so that the heat generation density of the second region is higher than the heat generation density of the first region.
  • the thickness of the part is smaller than the thickness of the first insulating part measured from the surface of each of the plurality of first heat generating parts. In this way, the heat generation density of the second region can be made higher than the heat generation density of the first region.
  • the plurality of heat generating portions are a plurality of first heat generating portions.
  • the second region has one or more second heat generating portions that generate heat when energized.
  • Each of the one or more second heat generating portions is electrically connected to each of the plurality of first heat generating portions.
  • a radiation heater device is provided with the 1st heat insulation part arranged at the counter heating object side of the 1st field, and the 2nd heat insulation part arranged at the counter heating object side of the 2nd field.
  • the 1st heat insulation part is comprised with the heat insulation material for suppressing the movement of the heat
  • the 2nd heat insulation part is comprised with the heat insulation material for suppressing the movement of the heat
  • the thickness of the second heat insulating part is smaller than the thickness of the first heat insulating part.
  • the heat capacity of the second heat insulating part can be reduced. For this reason, the influence of the heat capacity of the 2nd heat insulation part with respect to the temperature change of a 2nd area
  • region can be made small.
  • the change of the surface temperature of the second region can be brought close to the change of the surface temperature of the first region. That is, the correlation between the surface temperature of the second region and the surface temperature of the first region can be ensured. Therefore, temperature control of the 1st field of a heater main part can be performed appropriately.
  • the first region has one or more first heat generating portions that generate heat when energized.
  • the second region has one or more second heat generating portions that generate heat when energized.
  • Each of the one or more second heat generating parts is electrically connected to each of the one or more first heat generating parts.
  • the area of the second region is smaller than the area of the first region.
  • the heat generation density of the second region is higher than the heat generation density of the first region.
  • the total heat generation amount of the second region can be increased.
  • the influence of the surrounding air which the surface temperature of the 2nd field receives can be made small.
  • the correlation between the surface temperature of the second region and the surface temperature of the first region can be ensured. Therefore, temperature control of the 1st field of a heater main part can be performed appropriately.
  • the first region has one or more first heat generating portions that generate heat by energization.
  • the second region has one or more second heat generating portions that generate heat when energized.
  • Each of the one or more second heat generating parts is electrically connected to each of the one or more first heat generating parts.
  • a radiation heater device is provided with the 1st heat insulation part arranged at the counter heating object side of the 1st field, and the 2nd heat insulation part arranged at the counter heating object side of the 2nd field.
  • the 1st heat insulation part is comprised with the heat insulation material for suppressing the movement of the heat
  • the 2nd heat insulation part is comprised with the heat insulation material for suppressing the movement of the heat
  • the thickness of the second heat insulating part is smaller than the thickness of the first heat insulating part.
  • the heat capacity of the second heat insulating portion can be reduced. For this reason, the influence of the heat capacity of the 2nd heat insulation part with respect to the temperature change of a 2nd area
  • region can be made small.
  • the change of the surface temperature of the second region can be brought close to the change of the surface temperature of the first region. That is, the correlation between the surface temperature of the second region and the surface temperature of the first region can be ensured. Therefore, temperature control of the 1st field of a heater main part can be performed appropriately.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Control Of Resistance Heating (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

輻射ヒータ装置は、輻射熱を放射する面状のヒータ本体部(10)と、ヒータ本体部の温度を検出する温度センサ(30)と、温度センサの検出結果に基づいて、ヒータ本体部の温度を制御する制御部(32)とを備える。ヒータ本体部は、加熱対象物に向けて輻射熱を放射する第1領域(12)と、第1領域とは異なる位置にあり、第1領域の温度と関連のある温度となり、温度センサが設置される第2領域(14)とを有する。第1領域は、ユーザが触れられる場所に設置される。第2領域は、ユーザに触れられない場所に設置される。

Description

輻射ヒータ装置 関連出願への相互参照
 本出願は、2016年9月29日に出願された日本特許出願番号2016-191318号と、2017年4月11日に出願された日本特許出願番号2017-78186号とに基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、輻射ヒータ装置に関するものである。
 従来の輻射ヒータ装置として、特許文献1に記載のものがある。この従来の輻射ヒータ装置は、面状のヒータ本体部を備える。ヒータ本体部は、ユーザが触れると、ユーザが触れた部位の温度が急激に低下するように構成されている。
 具体的には、ヒータ本体部は、通電によって発熱して輻射熱を放射する膜状の発熱部を備える。これにより、発熱部の熱容量が小さくされている。さらに、ヒータ本体部は、その発熱部を複数備える。ヒータ本体部は、隣り合う2つの発熱部の間に配置され、複数の発熱部のそれぞれよりも熱伝導性が低い複数の低熱伝導部を有する。これらにより、ヒータ本体部の面方向での熱抵抗が大きくされている。すなわち、ヒータ本体部は、面方向で熱が移動しにくくなっている。このため、ヒータ本体部をユーザが触れて、ユーザが触れた部位からユーザへ熱移動が生じたとき、ユーザが触れた部位の周りからユーザが触れた部位への熱移動が抑制される。したがって、ユーザが触れた瞬間に、ユーザが触れた部位の温度が急激に低下する。
特開2014-189251号公報
 ところで、上記した従来の輻射ヒータ装置は、下記の課題を有することが本発明者によって見出された。
 従来の輻射ヒータ装置において、温度センサがヒータ本体部の温度を検出する。温度センサの検出温度に応じて、制御部がヒータ本体部の温度を制御する場合が考えられる。さらに、ヒータ本体部のうちユーザが触れることが可能な部位に、温度センサが設置される場合が考えられる。この場合、ヒータ本体部のうち温度センサが設置された部位をユーザが触れると、ユーザが触れた部位の温度が急激に低下する。このため、温度センサの検出温度が急激に低下する。
 この結果、制御部は、ヒータ本体部の温度を上昇させる制御を行う。これにより、ヒータ本体部が過昇温し、ヒータ本体部の温度が設定温度よりも高くなってしまう。または、制御部は、ヒータ本体部の急激な温度変化を異常と判断して、ヒータ本体部の通電を停止させる制御を行う。これにより、ヒータ本体部の温度が設定温度よりも低くなってしまう。
 このように、温度センサの設置部位における温度の急変によって、ヒータ本体部が適切に温度制御されないという、上記した従来の輻射ヒータ装置特有の課題があることが見出された。ヒータ本体部が適切に温度制御されないことで、乗員に熱的不快感が生じる。
 なお、この課題が生じるのは、ヒータ本体部が膜状の発熱部を備える構成である場合や、ヒータ本体部が発熱部を複数備える構成である場合や、ヒータ本体部が複数の低熱伝導部を有する構成である場合に限られない。
 本開示は上記点に鑑みて、温度センサを用いたヒータ本体部の温度制御を適切に行うことができる輻射ヒータ装置を提供することを目的とする。
 本開示の1つの観点によれば、輻射ヒータ装置は、
 輻射熱を放射する面状のヒータ本体部と、
 ヒータ本体部の温度を検出する温度センサと、
 温度センサの検出結果に基づいて、ヒータ本体部の温度を制御する制御部とを備え、
 ヒータ本体部は、
 加熱対象物に向けて輻射熱を放射する第1領と、
 第1領域とは異なる位置にあり、第1領域の温度と関連のある温度となり、温度センサが設置される第2領域とを有し、
 第1領域は、ユーザが触れられる場所に設置され、
 第2領域は、ユーザに触れられない場所に設置される。
 これによれば、ヒータ本体部のうち第1領域とは異なる位置にある第2領域に、温度センサが設置されている。このため、第2領域がユーザに触れられない場所に設置されることで、温度センサの設置部位における温度の急変を回避することができる。
 この結果、本開示の輻射ヒータ装置によれば、温度センサを用いたヒータ本体部の温度制御を適切に行うことができる。
第1実施形態における輻射ヒータ装置の車両搭載状態を示す図である。 第1実施形態におけるヒータ本体部の斜視図である。 第1実施形態におけるヒータ本体部と被覆部材の分解斜視図である。 第1実施形態における輻射ヒータ装置のヒータ本体部および制御部を示す図である。 図4のV-V線断面図である。 図4のVI―VI線断面図である。 第2実施形態におけるヒータ本体部の第2領域の平面図である。 第3実施形態におけるヒータ本体部の第2領域の平面図である。 第4実施形態におけるヒータ本体部の第2領域の平面図である。 図9のX―X線断面図である。 第5実施形態における輻射ヒータ装置のヒータ本体部および制御部を示す図である。 第6実施形態における輻射ヒータ装置の車両搭載状態を示す図である。 第7実施形態における輻射ヒータ装置のヒータ本体部および制御部を示す図である。 第8実施形態における輻射ヒータ装置のヒータ本体部および制御部を示す図である。 図14のXV―XV線断面図である。 図14のXVI―XVI線断面図である。 第8実施形態におけるヒータ本体部の平面図である。 図17のXVIII―XVIII線断面図である。 図17のXIX―XIX線断面図である。 比較例1における輻射ヒータ装置のヒータ本体部の平面図である。 比較例1における第1領域の表面温度と第2領域の表面温度のそれぞれの変化を示すグラフである。 第8実施形態における第1領域の表面温度と第2領域の表面温度のそれぞれの変化を示すグラフである。 第9実施形態におけるヒータ本体部の平面図である。 第10実施形態におけるヒータ本体部の平面図である。 第11実施形態におけるヒータ本体部の平面図である。 図24のXXV―XXV線断面図である。 図24のXXVI―XXVI線断面図である。 第12実施形態におけるヒータ本体部の平面図である。 図27のXXVIII―XXVIII線断面図である。 図27のXXIX―XXIX線断面図である。 第13実施形態におけるヒータ本体部の第1領域の断面図である。 第13実施形態におけるヒータ本体部の第2領域の断面図である。 他の実施形態におけるヒータ本体部の平面図である。 他の実施形態におけるヒータ本体部の平面図である。 他の実施形態における第1発熱部の配置を示す図である。 他の実施形態におけるヒータ本体部の平面図である。 他の実施形態におけるヒータ本体部の平面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 図1に示すように、本実施形態の輻射ヒータ装置1は、道路走行車両の車室内の暖房装置として用いられる。車室内には、乗員2が着座するための座席3が設置されている。車室内には、座席3よりも車両前方側にインストルメントパネル4が設置されている。インストルメントパネル4は、内装部材である。本明細書で言うインストルメントパネル4には、計器類が配置されている部分だけでなく、オーディオやエアコンを収納する部分が含まれる。
 輻射ヒータ装置1は、面状のヒータ本体部10を備えている。ヒータ本体部10は、インストルメントパネル4の下部4aのうち座席3の前方に対応する部位に設置される。ヒータ本体部10は、加熱対象物である乗員2の足に向けて輻射熱H1を放射する。
 ヒータ本体部10は、その一部がインストルメントパネル4の下部4aに覆われた状態で、車両に搭載される。したがって、インストルメントパネル4の下部4aが、ヒータ本体部10の一部を覆う被覆部材5を構成している。被覆部材5は、開口部6を有している。開口部6を介して、ヒータ本体部10の他の一部が露出している。
 図2に示すように、ヒータ本体部10は、第1領域12と第2領域14とを有する。第1領域12は、乗員2に向けて輻射熱を放射する領域である。したがって、第1領域12が乗員2に温熱感、すなわち、暖房感を提供する。
 第2領域14は、ヒータ本体部10のうち第1領域12とは異なる位置に設定されている。第2領域14は、後述する温度センサ30が設置される。第2領域14は、第1領域12の温度と関連のある温度となる領域である。第2領域14の面積は、第1領域12の面積よりも小さく設定されている。
 図3に示すように、被覆部材5の開口部6は、ヒータ本体部10と被覆部材5とが重なり合った状態で、被覆部材5から第1領域12を露出させる。すなわち、ヒータ本体部10が車両に搭載された状態において、被覆部材5は、第1領域12を覆わない。このため、第1領域12から乗員2の足に向けての輻射熱H1の放射は妨げられない。
 また、乗員が第1領域12を触れることがあり得る。したがって、第1領域12は、乗員が触れられる場所に設置される。
 さらに、被覆部材5は、ヒータ本体部10と被覆部材5とが重なり合った状態のとき、第2領域14を覆う部分7を有する。したがって、ヒータ本体部10が車両に搭載された状態において、被覆部材5は、第2領域14および温度センサ30を覆う。すなわち、第2領域14および温度センサ30は、被覆部材5の反乗員側の位置に配置される。このため、第2領域14は、乗員2に触れられない。このように、第2領域14は、乗員に触れられない場所に設置される。
 図4、5、6に示すように、ヒータ本体部10は、乗員側の表面10aと、反乗員側の表面10bとを有する。図4、5、6中の矢印で示すX軸方向、Y軸方向およびZ軸方向は、互いに直交する方向である。X軸方向およびY軸方向が、ヒータ本体部10の表面10a、10bに平行な方向、すなわち、ヒータ本体部10の面方向である。Z軸方向が、ヒータ本体部10の表面10a、10bに垂直な方向、すなわち、ヒータ本体部10の厚さ方向である。
 図4に示すように、ヒータ本体部10は、基板部20と、一対の電極22、24と、複数の第1発熱部26と、1つの第2発熱部28とを有する。
 基板部20は、平板形状である。図5、6に示すように、基板部20の内部に、一対の電極22、24と、複数の第1発熱部26と、1つの第2発熱部28とが配置されている。基板部20は、一対の電極22、24と、複数の第1発熱部26と、1つの第2発熱部28とを支持している。基板部20は、絶縁材料としての可撓性を有する合成樹脂で構成されている。合成樹脂は、例えば、熱可塑性樹脂である。
 図4に示すように、一対の電極22、24は、互いに離れて配置されている。一対の電極22、24は、複数の第1発熱部26と1つの第2発熱部28との両方に電気的に接続される。
 複数の第1発熱部26は、通電によって発熱して輻射熱を放射する。複数の第1発熱部26は、金属材料で構成されている。複数の第1発熱部26は、一対の電極22、24の間に並列に配置されている。第1発熱部26は、一対の電極22、24の間で直線状に延びている。第1発熱部26の一端側は、一対の電極22、24のうち一方の電極22に接触している。このため、第1発熱部26の一端側は、一方の電極22と電気的に接続されている。第1発熱部26の他端側は、一対の電極22、24の他方の電極24に接触している。このため、第1発熱部26の他端側は、他方の電極24と電気的に接続されている。
 図5に示すように、第1発熱部26は、膜状である。「膜状」とは、薄く広がった形状を意味する。換言すると、「膜状」とは、ヒータ本体部10の表面10a、10bに平行な異なる2方向(例えば、X軸方向およびY軸方向の両方向)での寸法が、ヒータ本体部10の厚さ方向(すなわち、Z軸方向)での厚さ寸法よりも大きい形状を意味する。
 このように、複数の第1発熱部26のそれぞれは、膜状であって、線状に延びている。「線状」とは、図4に示されるように、ヒータ本体部10の表面10a、10bに平行な方向での形状において、一端から他端までの長さ寸法(例えば、X軸方向での寸法)が幅寸法(例えば、Y軸方向での寸法)よりも大きい形状を意味する。「線状」には、幅寸法が厚さ寸法よりも大きい場合と、幅寸法が厚さ寸法よりも小さい場合とが含まれる。本実施形態では、複数の第1発熱部26のそれぞれの幅寸法は、厚さ寸法よりも大きい。このため、本実施形態では、複数の第1発熱部26のそれぞれは、膜状でもある。
 図4に示すように、基板部20の内部において、複数の第1発熱部26のうち隣り合う2つの第1発熱部26の間には、低熱伝導部27が存在する。低熱伝導部27は、第1発熱部26よりも熱伝導性が低い部分である。低熱伝導部27は、隣り合う第1発熱部26同士を熱的に分離している。低熱伝導部27は、基板部20を構成する絶縁材料によって構成されている。
 複数の第1発熱部26と複数の低熱伝導部27とが存在する領域が、第1領域12である。換言すると、第1領域12は、ヒータ本体部10のうち複数の第1発熱部26と複数の低熱伝導部27とを有する領域である。
 このように、第1領域12は、膜状である複数の第1発熱部26と、複数の低熱伝導部27とを有する。第1発熱部26が膜状であることにより、第1発熱部26の熱容量が小さくされている。
 さらに、発熱部が複数の第1発熱部26によって構成されている。より具体的には、1つの第1発熱部26は細長い形状を有する。これにより、第1発熱部26の長さ方向の熱抵抗が大きくされている。隣り合う2つの第1発熱部26の間に低熱伝導部27が配置されている。これにより、隣り合う2つの第1発熱部26の間の熱抵抗が大きくされている。これらの結果、第1領域12の面方向での熱抵抗が大きくされている。すなわち、発熱部が面方向で連続する1つの発熱部で構成されている場合と比較して、面方向の熱移動が抑制されている。
 このため、図2に示すように、第1領域12が乗員2の指などに触れられて、触れられた部分から乗員へ熱が移動したときに、触れられた部分の周囲から触れられた部分への熱移動が抑制される。触れられた部分の温度が速やかに低下する。これにより、乗員への熱的な不快感を低減することができる。このように、第1領域12は、触れられた部分の温度が速やかに低下するヒータを構成している。
 本実施形態では、複数の第1発熱部26は、人に暖かさを感じさせる輻射熱を放射できる放射温度に到達できるように設定される。複数の第1発熱部26のそれぞれの長さ方向の熱抵抗は、ヒータ本体部10の表面の上において物体が接触するとき、物体が接触している部分の温度が、放射温度より低い抑制温度に低下するように設定される。
 図4に示すように、第2発熱部28は、基板部20の内部のうち複数の第1発熱部26から離れた領域に配置されている。基板部20のうち第2発熱部28が存在する領域が、第2領域14である。換言すると、第2領域14は、第2発熱部28を有する領域である。
 第2発熱部28は、通電によって発熱する。第2発熱部28は、通電時に第1発熱部26と同じ温度となるように、第1発熱部26を構成する材料と同じ材料で構成されている。
 また、第2発熱部28は、第1発熱部26の温度と同じとなるように、長さ、幅、厚さ等の形状によって、第2発熱部28の電気抵抗値が調整されている。具体的には、第2発熱部28は、一対の電極22、24の間で、面方向に広がる形状を有している。
 第2発熱部28の一端側は、一方の電極22に接触している。このため、第2発熱部28の一端側は、一方の電極22と電気的に接続されている。第2発熱部28の他端側は、他方の電極24に接触している。このため、第2発熱部28の他端側は、他方の電極24と電気的に接続されている。
 図6に示すように、第2発熱部26は、膜状である。
 図4に示すように、第2発熱部28は、第1発熱部26と比較して、一対の電極22、24が向かい合う方向(すなわち、図4中のX軸方向)での長さが短くなっている。換言すると、一対の電極22、24のうち第2発熱部28との接続箇所は、一対の電極22、24のうち第1発熱部26との接続箇所と比較して、一対の電極22、24の間隔が狭くなっている。
 第2発熱部28は、一対の電極22、24が向かい合う方向に対して直交する方向(すなわち、図4中のY軸方向)での長さが、第1発熱部26よりも長くなっている。図6中のZ軸方向における第2発熱部28の厚さは、図5中のZ軸方向における第1発熱部26の厚さと同じである。したがって、第2発熱部28は、第1発熱部26と比較して、一対の電極22、24が向かい合う方向に対して直交する断面における断面積が大きくなっている。
 このように、第2発熱部28の形状は、第1発熱部26と比較して、X軸方向での長さが短く、Y軸方向での長さが長い形状である。このため、第2発熱部28の面方向での熱抵抗は、第1発熱部26の面方向での熱抵抗よりも小さくなっている。
 ここで、発熱部の長さ方向の熱抵抗Rh(K/W)は、次の式で表される。
 Rh=HL/(λ1・CA)
 HLは、発熱部の長さである。λ1は、発熱部の熱伝導率である。CAは、発熱部の断面積である。
 このように、発熱部の長さ方向の熱抵抗は、発熱部の長さ、発熱部の断面積、発熱部の熱伝導率を用いて算出される。2つの発熱部の熱抵抗を比較するとき、2つの発熱部が同じ材料で構成されていれば、熱伝導率が同じである。このため、2つの発熱部のうち発熱部の長さが短く、発熱部の断面積が大きい方が、長さ方向の熱抵抗が小さい。
 第2発熱部28の方が、第1発熱部26よりも、発熱部のX軸方向の長さが短く、発熱部の断面積が大きい。したがって、第2発熱部28の方が、第1発熱部28よりも、X軸方向の熱抵抗が小さい。また、第2発熱部28は、Y軸方向において低熱伝導部27によって分断されていない。このため、第2発熱部28の方が、第1発熱部28よりも、Y軸方向の熱抵抗も小さい。
 上述の通り、本実施形態では、第1発熱部26よりも第2発熱部28の方が面方向における熱抵抗が小さくなる形状を第2発熱部26が有する。これにより、第2領域14の面方向における熱抵抗が、第1領域12の面方向における熱抵抗よりも小さくなっている。すなわち、第2領域14が、第1領域12と比較して、面方向で熱が移動しやすくなるように、第2発熱部28の面方向での熱抵抗が、複数の第1発熱部26のそれぞれにおける面方向での熱抵抗よりも小さくなっている。
 一方の電極22の端部22aと、他方の電極24の端部24aとが、後述する制御部32に電気的に接続されている。したがって、本実施形態では、一方の電極22の端部22aと、他方の電極24の端部24aとが、それぞれ、制御部32と電気的に接続される第1、第2接続端子を構成している。
 このように、第2発熱部28は、複数の第1発熱部26と共通の一対の電極22、24に対して電気的に接続されている。すなわち、一方の電極22の端部22aと他方の電極24の端部24aとの間において、複数の第1発熱部26と、第2発熱部28とが、並列に電気的に接続されている。このため、複数の第1発熱部26の通電時において、第2発熱部28の温度は、複数の第1発熱部26の温度と関連のある温度となる。
 また、図4に示すように、輻射ヒータ装置1は、温度センサ30と、制御部32とを備える。
 温度センサ30は、基板部20の厚さ方向で第2発熱部28と対向する位置に配置されている。図6に示すように、温度センサ30は、基板部20の表面に設置されている。温度センサ30は、第2発熱部28によって加熱される第2領域14の表面温度を検出する。温度センサ30としては、サーミスタやサーモスタットが用いられる。
 制御部32は、周知のマイクロコンピュータ等によって構成されている。図4に示すように、電気接続部であるハーネス33を介して、制御部32の入力側に温度センサ30が電気的に接続されている。また、ハーネス33を介して、制御部32の出力側に一対の電極22、24が電気的に接続されている。また、制御部32に電源とグランドが電気的に接続されている。
 制御部32は、温度センサ30からのセンサ信号に基づいて、複数の第1発熱部26および第2発熱部28への給電電力量を制御する。このようにして、制御部32は、温度センサ30の検出結果に基づいて、ヒータ本体部10の第1領域12および第2領域14の温度を制御する。
 以上の説明の通り、本実施形態では、ヒータ本体部10のうち第1領域12とは異なる位置にある第2領域14に温度センサ30が設置されている。第2領域14は、被覆部材5に覆われている。換言すると、第2領域14は、被覆部材5に対して反乗員側に設置されている。このように、第2領域14は、乗員2に触れられない位置に設置されている。別の観点から言うと、第2領域14は、乗員2の接触が阻害された場所に設置されている。さらに、別の観点から言うと、第2領域14は、第1領域12よりも乗員2が触れ難い場所に設置されている。
 このため、温度センサ30の設置部位は乗員2に触れられない。また、温度センサ30が被水することを回避することができる。これにより、温度センサ30の設置部位における温度の急変を回避することができる。
 ところで、ヒータ本体部10の第1領域12は、複数の第1発熱部26のそれぞれの熱容量が小さく、かつ、ヒータ本体部10の面方向での熱抵抗が大きくなるように構成されている。このため、ヒータ本体部10の第1領域12に温度センサ30が設置された場合、第1領域12のうち温度センサ30の周囲から温度センサ30へ移動する熱量が少なく、かつ、温度センサ30への熱移動が抑制されてしまう。すなわち、温度センサ30へ流入する単位時間あたりの熱量が少なくなってしまう。この結果、第1領域12の温度が変化する際において、温度センサ30の変化が第1領域12の温度変化に追従できないという新たな課題が見出された。温度センサ30の変化が第1領域12の温度変化に追従できないと、制御部32によるヒータ本体部10の温度制御を適切に行うことができない。
 例えば、制御部32が、ヒータ本体部10の第1領域12の温度が第1温度を超えたときに、第1領域12の通電を停止させる制御が考えられる。この場合、第1領域12の温度上昇時に、温度センサ30の温度上昇が遅れると、通電停止のタイミングが遅くなり、第1領域12の温度が高くなりすぎる。また、例えば、制御部32が、第1領域12の温度が第2温度よりも低くなったときに、第1領域12に通電させる制御が考えられる。この場合、第1領域12の温度下降時に、温度センサ30の温度下降が遅れると、通電開始のタイミングが遅くなり、第1領域12の温度が低くなりすぎてしまう。
 このように、ヒータ本体部10の温度変化に対する温度センサ30の追従性が低いことによっても、ヒータ本体部10が適切に温度制御されない。このため、乗員に熱的不快感が生じる。
 これに対して、本実施形態では、第2領域14の面方向における熱抵抗は、第1領域12の面方向における熱抵抗よりも小さくなっている。すなわち、第2領域14は、第1領域12と比較して、面方向で熱が移動しやすくなっている。このため、温度センサ30が第1領域12に設置される場合と比較して、温度センサ30の周囲から温度センサ30へ流入する単位時間当たりの熱量を多くすることができる。したがって、温度センサ30によって、感度よく第2発熱部28の温度を測定することができる。
 ここで、第1発熱部26の通電時において、第2発熱部28の温度は、複数の第1発熱部26の温度と関連のある温度となる。すなわち、ヒータ本体部10の通電時において、第2領域14の温度は、第1領域12の温度と関連のある温度となる。このため、温度センサ30によって、第1領域12の温度と関連のある温度を感度良く測定することができる。したがって、本実施形態によれば、温度センサ30が第1領域12に設置される場合と比較して、ヒータ本体部10の温度変化に対する温度センサ30の追従性を向上させることができる。
 これらの結果、本実施形態によれば、温度センサ30が第1領域12に設置される場合と比較して、温度センサ30を用いたヒータ本体部10の温度制御を適切に行うことができる。このため、ヒータ本体部10の温度制御が適切にされないことによってユーザに生じる熱的不快感を軽減できる。
 このように、本実施形態によれば、ユーザが触れると、ユーザが触れた部位の温度が急激に低下するというヒータ本体部10の特徴を維持したまま、温度センサ30を用いたヒータ本体部10の温度制御を適切に行うことができる。
 なお、本実施形態では、通電時における第2発熱部28の温度が第1発熱部26の温度と同じとなるように、第2発熱部28の電気抵抗値が調整されていたが、これに限定されない。通電時における第2発熱部28の温度が第1発熱部26の温度と同じでなくてもよい。第2発熱部28の温度と、第1発熱部26の温度との間に所定の相関関係があればよい。
 また、本実施形態において、第2領域14の広さは、図4等に図示される広さに限定されない。第2領域14の広さは、少なくとも温度センサ30が設置できる広さがあればよい。
 また、本実施形態では、第2発熱部28が、第1発熱部26よりも、X軸方向の長さが短く、断面積が大きい形状であったが、これに限定されない。第2発熱部28は、複数の第1発熱部26のそれぞれと比較して、面方向における熱抵抗が小さくなる形状であればよい。例えば、第2発熱部28は、複数の第1発熱部26のそれぞれと比較して、X軸方向の長さが同じで、断面積が大きい形状であってもよい。この断面積は、X軸方向に垂直な断面における面積である。
 また、本実施形態では、第2発熱部28を構成する材料が、第1発熱部26を構成する材料と同じであったが、これに限定されない。第2発熱部28を構成する材料が、第1発熱部26を構成する材料よりも熱伝導率が高い材料で構成されていてもよい。これにより、第2発熱部28の面方向における熱抵抗が、第1発熱部26の面方向における熱抵抗よりも小さくなっていればよい。
 (第2実施形態)
 本実施形態は、第1実施形態に対して、第2発熱部の平面形状が異なる。輻射ヒータ装置1の他の構成は、第1実施形態と同じである。
 図7に示すように、本実施形態では、第2領域14は、1つの第2発熱部28aを有する。第2発熱部28aは、第1実施形態の第2発熱部28に対応する。第2発熱部28aは、蛇行して配置されている。具体的には、第2発熱部28aの両端のそれぞれは、一対の電極22、24のそれぞれに接続されている。第2発熱部28aは、一対の電極22、24の間を蛇行して配置されている。これにより、第2発熱部28aの電気抵抗値が調整されている。
 そして、第2領域14が、第1領域12と比較して、面方向で熱が移動しやすくなるように、第2発熱部28aのうち隣り合う部分の間隔G28aが、図4に示す隣り合う2つの第1発熱部26の間隔G26よりも狭くなっている。すなわち、複数の第1発熱部26と比較して、第2発熱部28aが密に配置されている。これにより、第2領域14の面方向における熱抵抗は、第1領域12の面方向における熱抵抗よりも小さくなっている。したがって、本実施形態においても、第1実施形態と同様の効果が得られる。
 (第3実施形態)
 本実施形態は、第1実施形態に対して、第2発熱部の数および形状が異なる。輻射ヒータ装置1の他の構成は、第1実施形態と同じである。
 図8に示すように、本実施形態では、第2領域14は、2つの第2発熱部28bを有する。第2発熱部28bは、第1実施形態の第2発熱部28に対応する。2つの第2発熱部28bは、一対の電極22、24の間に並列に配置されている。第2発熱部28bは、一対の電極22、24の間で直線状に延びている。
 そして、第2領域14が、第1領域12と比較して、面方向で熱が移動しやすくなるように、隣り合う2つの第2発熱部28bの間隔G28bが、図4に示す隣り合う2つの第1発熱部26の間隔G26よりも狭くなっている。これにより、第2領域14の面方向における熱抵抗は、第1領域12の面方向における熱抵抗よりも小さくなっている。したがって、本実施形態においても、第1実施形態と同様の効果が得られる。
 なお、本実施形態では、第2発熱部28bが2つであったが、3つ以上であってもよい。この場合、複数の第2発熱部28bのうち隣り合う2つの第2発熱部28bの間隔G28bが、複数の第1発熱部26のうち隣り合う2つの第1発熱部26の間隔G26よりも狭くなっていればよい。
 (第4実施形態)
 図9に示すように、本実施形態は、第2領域14が伝熱シート29を有する点が、第1実施形態と異なる。輻射ヒータ装置1の他の構成は、第1実施形態と同じである。
 伝熱シート29は、基板部20を構成する材料よりも熱伝導率が高い材料で構成されている。すなわち、伝熱シート29は、第1領域12の低熱伝導部27を構成する材料よりも熱伝導率が高い材料で構成されている。具体的には、伝熱シート29は、金属で構成されている。伝熱シート29は、基板部20を構成する材料よりも熱伝導率が高い材料であれば、金属以外の材料で構成されていてもよい。
 図10に示すように、伝熱シート29は、基板部20の表面上に形成されている。伝熱シート29の上面に温度センサ30が設置されている。このように、伝熱シート29は、温度センサ30と第2発熱部28との間に配置されている。
 本実施形態では、第2領域14が、第1領域12と比較して、面方向で熱が移動しやすくなるように、第2領域14は、伝熱シート29を有している。この伝熱シート29により、第2領域14の面方向における熱伝導性が高められている。この伝熱シート29により、第2領域14の面方向における熱抵抗は、第1領域12の面方向における熱抵抗よりも小さくなっている。したがって、本実施形態においても、第1実施形態と同様の効果が得られる。
 なお、本実施形態は、第1実施形態に適用されたが、第2、第3実施形態に適用されてもよい。
 (第5実施形態)
 本実施形態は、第1実施形態に対して、第1発熱部と第2発熱部の電気的な接続が異なる。輻射ヒータ装置1の他の構成は、第1実施形態と同じである。
 図11に示すように、本実施形態では、複数の第1発熱部26に一対の電極22、24bが接続されている。1つの第2発熱部28に一対の電極24c、25が接続されている。一対の電極22、24bのうち他方の電極24bと、一対の電極24c、25のうち一方の電極24cとが、1つの電極24で構成されている。一対の電極22、24bのうち一方の電極22の端部22aと、一対の電極24c、25のうち他方の電極25の一部25aとが、制御部32に電気的に接続されている。したがって、本実施形態では、第1発熱部26側の一方の電極22の端部22aと、第2発熱部28側の他方の電極25の一部25aとが、それぞれ、制御部32と電気的に接続される第1、第2接続端子を構成している。
 このように、本実施形態では、第1接続端子22aと第2接続端子25aとの間において、複数の第1発熱部26と第2発熱部28とが、直列に電気的に接続されている。このため、複数の第1発熱部26の通電時において、第2発熱部28の温度は、複数の第1発熱部26の温度と関連のある温度となる。したがって、本実施形態によっても、第1実施形態と同様の効果が得られる。
 (第6実施形態)
 本実施形態は、第1実施形態に対して、ヒータ本体部10の車両搭載状態が異なる。輻射ヒータ装置1の他の構成は、第1実施形態と同じである。
 図12に示すように、ヒータ本体部10は、第1領域12と第2領域14の間に位置する中間領域13が湾曲した状態で、車両に搭載されている。すなわち、ヒータ本体部10が車両に搭載された状態において、中間領域13は湾曲形状である。中間領域13は、基板部20の一部である。このため、中間領域13は可撓性を有する。
 ヒータ本体部10は、第1実施形態と同様に、インストルメントパネル4の下部4aに設置されている。第1領域12は、インストルメントパネル4の乗員側の表面に設置されている。中間領域13は、インストルメントパネル4に設けられた開口部8の内部に配置されている。第2領域14は、インストルメントパネル4の反乗員側の表面に設置されている。すなわち、第2領域14は、第1領域12に対して乗員側の反対側に設置されている。第2領域14を乗員側に投影したときに、第1領域12の範囲内に投影した第2領域が位置するように、第2領域14が設置される。第2領域14は、固定部材9によって、インストルメントパネル4に固定されている。温度センサ30は、第2領域14のうち乗員側の表面に設置されている。
 このように、本実施形態においても、第2領域14は、乗員に触れられない場所に設置されている。したがって、本実施形態によっても、第1実施形態と同様の効果が得られる。さらに、本実施形態によれば、外力による温度センサ30の剥がれ防止も兼ね備えることができる。
 なお、本実施形態では、温度センサ30は、第2領域14のうち乗員側の表面に設置されていたが、これに限定されない。温度センサ30は、第2領域14のうち反乗員側の表面に設置されていてもよい。
 また、第2領域14の乗員側と反乗員側の一方または両方に、断熱部材を追加してもよい。これにより、第2領域14の周辺からの第2領域14への熱的な影響を軽減させることができる。この結果、ヒータ本体部10の温度制御をより適切に行うことができる。
 また、本実施形態では、中間領域13が湾曲形状、すなわち、丸みを有して曲がった形状であったが、角を有して曲がった形状であってもよい。また、本実施形態では、中間領域13は、基板部20の一部であったが、基板部20とは別体の配線部材で構成してもよい。
 (第7実施形態)
 本実施形態は、第2領域の構成が第1実施形態と異なる。輻射ヒータ装置1の他の構成は、第1実施形態と同じである。
 図13に示すように、第2領域14は、第1実施形態の第2発熱部28の替わりに、伝熱シート40を有する。伝熱シート40は、複数の低熱伝導部27のそれぞれを構成する材料、すなわち、基板部20を構成する材料よりも熱伝導率が高い材料で構成されたシート状の部材である。具体的には、伝熱シート40は、金属で構成されている。伝熱シート40は、基板部20を構成する材料よりも熱伝導率が高い材料であれば、金属以外の材料で構成されていてもよい。
 伝熱シート40は、第1発熱部26からの熱が伝わるように、第1領域12に隣接して配置されている。伝熱シート40は、基板部20の表面に配置されている。伝熱シート40は、第1発熱部26と比較して、Y軸方向での長さが広く、X軸方向での長さが短い平面形状を有する。温度センサ30は、伝熱シート40の表面に設置されている。温度センサ30は、第1発熱部26からの熱が伝わる伝熱シート40、すなわち、第2領域14の温度を検出する。
 本実施形態では、第2領域14が、第1領域12と比較して、面方向で熱が移動しやすくなるように、第2領域14は、伝熱シート40を有している。この伝熱シート40により、第2領域14の面方向における熱抵抗は、第1領域12の面方向における熱抵抗よりも小さくなっている。このため、温度センサ30が第1領域12に設置される場合と比較して、温度センサ30の周囲から温度センサ30へ流入する単位時間当たりの熱量を多くすることができる。
 ここで、第2領域14は、伝熱シート40によって第1発熱部26から熱が伝わる。このため、ヒータ本体部10の通電時において、第2領域14の温度は、第1領域12の温度と関連のある温度となる。したがって、本実施形態によっても、温度センサ30によって、第1領域12の温度と関連のある温度を感度良く測定することができる。よって、本実施形態においても、第1実施形態と同様の効果が得られる。
 (第8実施形態)
 本実施形態は、第1-第7実施形態と得られる効果が異なる。
 図14に示すように、ヒータ本体部10は、第1本体部101と第2本体部102とを有する。第1本体部101は、ヒータ本体部10のうち第1領域12側の部分である。第1本体部101は、第1領域12と一対の電極22、24とを含む。第2本体部102は、ヒータ本体部10のうち第2領域14側の部分である。第2本体部102は、第2領域14と一対の電極22、24とを含む。
 第2領域14の表面上に温度センサ30が設置されている。第2領域14は、第1実施形態と同様に、第1領域12よりも面積が十分に小さい。これは、乗員2を暖める目的である第1領域12と比べて、第1領域12を極力小さくすることで、ヒータ本体部10の全体で使用される電力を効率よく、乗員2を暖める目的で使えるためである。
 第1実施形態と同様に、一対の電極22、24のそれぞれの端部22a、24aおよび温度センサ30は、ハーネス33を介して、制御部32に接続されている。
 図15に示すように、ヒータ本体部10は、乗員側の表面10aと、反乗員側の表面10bとを有する。第1本体部101は、収納部50の内部に設置されている。収納部50は、インストルメントパネル4の一部に設けられた凹部4bで構成されている。なお、収納部50は、インストルメントパネル4とは別の部材で構成されていてもよい。
 第1本体部101の反乗員側に第1断熱部52が配置されている。第1断熱部52は、第1本体部101の反乗員側の表面10bに積層されている。この状態で、第1本体部101が収納部50の内部に設置されている。第1断熱部52は、第1領域12からの熱の移動を抑制するための断熱材料で構成されている。
 第1本体部101の乗員側の表面10aに表皮部54が積層されている。表皮部54は、図14、15に示すように、第1本体部101を覆う被覆部材である。表皮部54は、織物、不織布などの布やレザーで構成されている。
 図16に示すように、第2本体部102の反乗員側に第2断熱部56が配置されている。第2断熱部56は、第2本体部102の反乗員側の表面10bに積層されている。この状態で、第2本体部102が収納部50の表面上に設置されている。収納部50は、インストルメントパネル4の一部で構成されている。第2断熱部56は、第2領域14からの熱の移動を抑制するための断熱材料で構成されている。本実施形態では、第2断熱部56を構成する断熱材料と、第1断熱部52を構成する断熱材料とは同じ種類の材料である。ヒータ本体部10の表面10aに垂直な方向における第2断熱部56の厚さT56は、第1断熱部52の厚さT52と同じである。
 第2本体部102および温度センサ30は、保護ケース58に覆われている。保護ケース58の内部では、温度センサ30の周りに空間60が形成されている。
 図17に示すように、第1実施形態と同様に、第1領域12は、複数の第1発熱部26を有する。
 第1実施形態と異なり、第2領域14は、複数の第2発熱部28cを有する。複数の第2発熱部28cのそれぞれは、第1実施形態の第2発熱部28に対応する。図17では、複数の第2発熱部28cは3つである。複数の第2発熱部28cの数は2以上の他の数であってもよい。
 複数の第2発熱部28cのそれぞれは、直線状に延びている。複数の第2発熱部28cのそれぞれは、並列に配置されている。なお、複数の第1発熱部26および複数の第2発熱部28cのそれぞれが直線状に延びている場合に限られない。これらが曲がった線状に延びていてもよい。
 そして、第2領域14の発熱密度が第1領域12の発熱密度よりも高くなるように、複数の第2発熱部28cのうち隣り合う第2発熱部28cの間隔G28が、複数の第1発熱部26のうち隣り合う第1発熱部26の間隔G26よりも狭くなっている。発熱密度は、単位面積あたりの発熱量(W/m)である。すなわち、発熱密度は、単位面積あたりの熱移動量(W/m)である。さらに換言すると、第2領域14の発熱密度は、ヒータ本体部10の乗員側の表面10aでの第2領域14の面積に対する第2領域14からヒータ本体部の外部へ放出される熱量の比である。第1領域12の発熱密度は、ヒータ本体部10の乗員側の表面10aでの第1領域12の面積に対する第1領域12からヒータ本体部10の外部へ放出される熱量の比である。発熱密度は、熱流束と同じである。よって、第2領域14の発熱密度と第1領域12の発熱密度は、熱流束センサによって計測することが可能である。
 第2領域14の面積とは、複数の第2発熱部28cをヒータ本体部10の乗員側の表面10aに対して、表面10aに垂直な方向で、投影したときに、投影した複数の第2発熱部28cが含まれる領域の面積である。第1領域12の面積とは、複数の第1発熱部26をヒータ本体部10の表面10aに対して、表面10aに垂直な方向で、投影したときに、投影した複数の第1発熱部26が含まれる領域の面積である。
 本実施形態では、複数の第2発熱部28cのそれぞれは等間隔で配置されている。複数の第2発熱部28cのそれぞれの幅W28は、複数の第1発熱部26のそれぞれの幅W26よりも小さい。第2発熱部28cの幅W28は、複数の第2発熱部28cの並び方向における第2発熱部28cの長さである。第1発熱部26の幅W26は、複数の第1発熱部26の並び方向における第1発熱部26の長さである。
 また、図18、19に示すように、複数の第2発熱部28cのそれぞれの厚さT28は、複数の第1発熱部26のそれぞれの厚さT26と同じである。第2発熱部28cの厚さT28は、ヒータ本体部10の表面10aに垂直な方向における第2発熱部28cの長さである。第1発熱部26の厚さT26は、ヒータ本体部10の表面10aに垂直な方向における第1発熱部26の長さである。したがって、複数の第2発熱部28cのそれぞれの長手方向に対して垂直な断面での断面積は、複数の第1発熱部26のそれぞれの長手方向に対して垂直な断面での断面積よりも小さい。
 また、図18、19に示すように、基板部20のうち複数の第2発熱部28cの乗員側を覆う部分202の厚さT202は、基板部20のうち複数の第1発熱部26の乗員側を覆う部分201の厚さT201と同じである。
 次に、本実施形態の輻射ヒータ装置1と比較例1の輻射ヒータ装置J1とを比較する。
 図20に示すように、比較例1の輻射ヒータ装置J1は、第2領域14の発熱密度が第1領域12の発熱密度と同じとなるように構成されている点が、本実施形態の輻射ヒータ装置1と異なる。
 比較例1の輻射ヒータ装置J1では、第2領域14は、複数の第2発熱部28dを有する。複数の第2発熱部28dは、複数の第2発熱部28cに対応する。複数の第2発熱部28dのそれぞれの間隔G28が、複数の第1発熱部26のそれぞれの間隔G26よりも広くなっている。複数の第2発熱部28dのそれぞれの幅W28が、複数の第1発熱部26のそれぞれの幅W26よりも小さくなっている。その他のヒータ本体部10の構成は、本実施形態のヒータ本体部10の構成と同じである。
 比較例1の輻射ヒータ装置J1では、次の課題が生じることが本発明者に見出された。
 比較例1の輻射ヒータ装置J1では、第1領域12の表面がユーザに触れられたときに、触れられた部分の温度が速やかに低下するように、第1領域12が構成されている。このため、第1領域12の表面温度を45℃以上300℃以下の高温にすることができる。乗員2に十分な温熱感を与えるためには、第1領域12の表面温度は100℃以上であることが好ましい。
 また、第2領域14は、第1領域12に比べて十分に小さい面積である。第2領域14の全体の発熱量は、第1領域12の全体の発熱量よりも小さい。このため、第1領域12の表面温度を45℃以上の高温にする場合、第2領域14の表面温度は、第2領域14とその周囲空気との間の熱伝達の影響を強く受ける。このため、第2領域14の表面温度は、第1領域12の表面温度よりも低くなる。さらに、第2領域14の表面温度が変化するときの傾き(すなわち、単位時間あたりの温度変化量)が第1領域12の表面温度が変化するときの傾きと異なる。この結果、第2領域14の表面温度の変化が、第1領域14の表面温度の変化から大きく乖離する。すなわち、第1領域14の表面温度が変化するとき、第2領域14の表面温度は、第1領域14の表面温度と異なる挙動を示す。
 例えば、表皮部54を介して第1領域12に乗員2が接触したときに、制御部32はヒータ本体部10への通電を停止する。乗員2の接触が解消されたときに、制御部32はヒータ本体部10への通電を再開する。通電の再開後では、第2領域14の表面温度が目標温度になるように、制御部32がヒータ本体部10の通電を制御する。制御部32がこのような制御を行う場合、第1領域12の表面温度と第2領域14の表面温度とは、時間経過にともなって、図21Aに示すように変化する。
 図21Aに示すように、通電の停止から通電の再開まで、第1領域14の表面温度と第2領域14の表面温度とが低下する。このとき、第2領域14の表面温度は、周囲空気の影響により、第1領域12の表面温度よりも低くなる。この状態で、通電が再開される。このとき、周囲空気の影響により、第2領域14の表面温度は、第1領域12の表面温度よりも上昇速度が遅い。このため、第2領域14の表面温度が目標温度になるように、制御部32がヒータ本体部10の通電を制御すると、第1領域12の表面温度が第2領域14の表面温度よりも高くなりすぎてしまう。
 このように、比較例1の輻射ヒータ装置J1では、第2領域14の表面温度と第1領域14の表面温度との相関性を確保することが困難となる。よって、ヒータ本体部10の第1領域12の温度制御を適切に行うことができないという課題が生じる。
 この課題は、第2領域14の面積が第1領域12の面積よりも小さい場合に生じる。第2領域14の面積が第1領域12の面積と同じ場合、この課題は生じない。この場合、第1領域12の発熱部と第2領域14の発熱部が同じ形状であれば、第2領域の表面温度の変化は、第1領域の表面温度の変化と同じだからである。
 さらに、この課題は、第1領域12および第2領域14の表面温度が45℃以上の高温とされる場合に生じる。すなわち、第1領域12および第2領域14のそれぞれの表面とヒータ本体部10の周囲空気との温度差が大きい場合に生じる。この課題は、第1領域12および第2領域14の表面温度が100℃以上とされる場合に顕著となる。また、この課題は、周囲空気の温度が低いとき、例えば、0℃以下のときに顕著となる。
 従来の接触式ヒータ装置において、本実施形態と同様に、暖房用ヒータ部と、計測用ヒータ部とを別々に設けた場合を検討する。暖房用ヒータ部は、本実施形態の第1領域に対応する。計測用ヒータ部は、本実施形態の第2領域に対応する。この場合、暖房用ヒータ部の表面温度は、人体温度に近い温度、具体的には、45℃よりも低い温度とされる。このため、暖房用ヒータ部および計測用ヒータ部のそれぞれの表面と周囲空気との温度差は小さい。計測用ヒータ部における周囲空気との間の熱伝達による影響は小さい。よって、従来の接触式ヒータ装置においては、上記した課題は生じないか、大きな課題とはならない。
 本実施形態の輻射ヒータ装置1では、第2領域14の発熱密度が、第1領域12の発熱密度よりも高くなっている。
 これによれば、比較例1の輻射ヒータ装置1と比較して、第2領域14の全体の発熱量を増大することができる。これにより、第2領域14の表面温度が受ける周囲空気の影響を小さくすることができる。このため、第2領域14の表面温度を、第1領域12の表面温度に近づけることができる。第2領域14の表面温度が変化するときの傾きを第1領域12の表面温度が変化するときの傾きに近づけることができる。この結果、第2領域14の表面温度の変化を第1領域12の表面温度の変化に近づけることができる。
 具体的には、図21Bに示すように、通電の停止直後からの第2領域14の表面温度の下降速度を、第1領域12の表面温度の下降速度に近づけることができる。このため、通電再開時の第2領域14の表面温度を、第1領域12の表面温度に近づけることができる。このため、通電再開直後からの第2領域14の表面温度の上昇速度を、第1領域12の表面温度の上昇速度に近づけることができる。よって、通電再開直後から所定時間経過後の第2領域14の表面温度を、第1領域14の表面温度に近づけることができる。
 このように、本実施形態の輻射ヒータ装置によれば、第2領域14の表面温度と第1領域14の表面温度との相関性を確保することができる。よって、ヒータ本体部10の第1領域12の温度制御を適切に行うことができる。
 なお、本実施形態では、複数の第2発熱部28cのそれぞれが等間隔で配置されていたが、異なる間隔で配置されていてもよい。同様に、本実施形態では、複数の第1発熱部26のそれぞれが等間隔で配置されていたが、異なる間隔で配置されていてもよい。
 また、複数の第2発熱部28cのそれぞれの幅W28、厚さT28および断面積と、複数の第1発熱部26のそれぞれの幅W26、厚さT26および断面積との関係は、本実施形態に限定されない。複数の第2発熱部28cのそれぞれの幅W28が、複数の第1発熱部26のそれぞれの幅W26よりも大きくてもよい。複数の第2発熱部28cのそれぞれの厚さT28が、複数の第1発熱部26のそれぞれのT26よりも大きくてもよい。第2発熱部28cの幅W28と厚さT28の少なくとも一方が第1発熱部26よりも大きいことによって、複数の第2発熱部28cのそれぞれの断面積が、複数の第1発熱部26のそれぞれの断面積よりも大きくてもよい。
 要するに、隣り合う第2発熱部28cの間隔G28が隣り合う第1発熱部26の間隔G26よりも狭くなっていることにより、第2領域14の発熱密度が第1領域12の発熱密度よりも高くなっていればよい。
 (第9実施形態)
 本実施形態は、1つの第2発熱部の断面積が1つの第1発熱部の断面積よりも大きくなっている点が、第8実施形態と異なる。輻射ヒータ装置1の他の構成は、第8実施形態と同じである。
 図22に示すように、第2領域14は、複数の第2発熱部28eを有する。複数の第2発熱部28eは、第8実施形態の第2発熱部28cに対応する。図22では、複数の第2発熱部28eは2つである。複数の第2発熱部28eの数は3以上の他の数であってもよい。そして、第2領域14の発熱密度が第1領域12の発熱密度よりも高くなるように、複数の第2発熱部28eのそれぞれの断面積が、複数の第1発熱部26のそれぞれの断面積よりも大きくなっている。第2発熱部28eの断面積は、第2発熱部28eが直線状に延びている方向に対して垂直な断面における断面積である。同様に、第1発熱部26の断面積は、第1発熱部26が直線状に延びている方向に対して垂直な断面における断面積である。
 具体的には、第8実施形態と異なり、複数の第2発熱部28eのそれぞれの幅W28は、複数の第1発熱部26のそれぞれの幅W26よりも大きい。隣り合う第2発熱部28cの間隔G28は、隣り合う第1発熱部26の間隔G26と同じである。第8実施形態と同様に、複数の第2発熱部28eのそれぞれの厚さT28は、複数の第1発熱部26のそれぞれの厚さT26と同じである。
 本実施形態では、複数の第2発熱部28eのそれぞれの長手方向での単位長さあたりの電気抵抗値が、複数の第1発熱部26のそれぞれの長手方向での単位長さあたりの電気抵抗値が低くなっている。複数の第2発熱部28eのそれぞれの長さは、複数の第1発熱部26のそれぞれの長さよりも短い。このため、複数の第2発熱部28eのそれぞれの電気抵抗値は、複数の第1発熱部26のそれぞれの電気抵抗値よりも低くなっている。ジュール熱は、電気抵抗値に反比例する。電気抵抗値が小さいほど、発熱量は大きくなる。このため、複数の第2発熱部28eのそれぞれの発熱量は、複数の第1発熱部26のそれぞれの発熱量よりも大きい。これにより、第2領域14の発熱密度は、第1領域12の発熱密度よりも大きくなっている。したがって、本実施形態においても、第8実施形態と同様の効果が得られる。
 なお、複数の第2発熱部28cのそれぞれの幅W28、厚さT28、間隔G28と、複数の第1発熱部26のそれぞれの幅W26、厚さT26、間隔G26との関係は、本実施形態に限定されない。
 複数の第2発熱部28eのそれぞれの幅W28が、複数の第1発熱部26のそれぞれの幅W26と同じで、複数の第2発熱部28eのそれぞれの厚さT28が、複数の第1発熱部26のそれぞれの厚さT26よりも厚くなっていてもよい。第2発熱部28dの幅W28と厚さT28の少なくとも一方が第1発熱部26よりも大きいことによって、複数の第2発熱部28dのそれぞれの断面積が、複数の第1発熱部26のそれぞれの断面積よりも大きくなっていればよい。
 また、第8実施形態のように、隣り合う第2発熱部28cの間隔G28が、隣り合う第1発熱部26の間隔G26より小さくなっていてもよい。この場合、第2領域14の発熱密度を、第1領域12の発熱密度よりもより一層大きくできる。
 また、第2領域14の発熱密度が第1領域12の発熱密度よりも高くなっていれば、隣り合う第2発熱部28cの間隔G28が、隣り合う第1発熱部26の間隔G26よりも大きくてもよい。
 要するに、複数の第2発熱部28eのそれぞれの断面積が、複数の第1発熱部26のそれぞれの断面積よりも大きくなっていることによって、第2領域14の発熱密度が第1領域12の発熱密度よりも高くなっていればよい。
 (第10実施形態)
 本実施形態は、複数の第2発熱部のそれぞれが、複数の第1発熱部のそれぞれと比較して、電気抵抗率が低い材料で構成されている点が、第8実施形態と異なる。輻射ヒータ装置1の他の構成は、第8実施形態と同じである。
 図23に示すように、第2領域14は、複数の第2発熱部28fを有する。複数の第2発熱部28fは、第8実施形態の第2発熱部28cに対応する。図23では、複数の第2発熱部28fは2つである。複数の第2発熱部28fの数は3以上の他の数であってもよい。そして、第2領域14の発熱密度が第1領域12の発熱密度よりも高くなるように、複数の第2発熱部28fのそれぞれが、複数の第1発熱部26のそれぞれと比較して、電気抵抗率が低い材料で構成されている。
 本実施形態では、複数の第2発熱部28fのそれぞれの幅W28、厚さT28、間隔G28は、複数の第1発熱部26のそれぞれの幅W26、厚さT26、間隔G26と同じである。X軸方向における複数の第2発熱部28fのそれぞれの長さは、X軸方向における複数の第1発熱部26のそれぞれの長さよりも短い。
 本実施形態によれば、材料と長さによって、複数の第2発熱部28fのそれぞれの電気抵抗値は、複数の第1発熱部26のそれぞれの電気抵抗値よりも低くなっている。このため、複数の第2発熱部28fのそれぞれの発熱量は、複数の第1発熱部26のそれぞれの発熱量よりも大きい。これにより、第2領域14の発熱密度は、第1領域12の発熱密度よりも大きくなっている。したがって、本実施形態においても、第8実施形態と同様の効果が得られる。
 なお、複数の第2発熱部28fのそれぞれの幅W28、厚さT28、間隔G28と、複数の第1発熱部26のそれぞれの幅W26、厚さT26、間隔G26との関係は、本実施形態に限定されない。第2領域14の発熱密度が第1領域12の発熱密度よりも高くなっていれば、第2発熱部28fの幅W28、厚さT28、間隔G28と、第1発熱部26の幅W26、厚さT26、間隔G26とが異なっていてもよい。
 また、第2領域14の発熱密度が第1領域12の発熱密度よりも高くなっていれば、第2領域14が有する第2発熱部28fが1つのみであってもよい。すなわち、第2領域14が第1実施形態の第2発熱部28を有していてもよい。
 要するに、1つまたは複数の第2発熱部28fのそれぞれが、複数の第1発熱部26のそれぞれと比較して、電気抵抗率が低い材料で構成されていることによって、第2領域14の発熱密度が第1領域12の発熱密度よりも高くなっていればよい。
 なお、第1実施形態では、第2領域14の全域を第2発熱部28が占めている。このため、第2領域14の発熱密度は、第1領域12の発熱密度よりも大きくなっている。さらに、第1実施形態に対して、第2発熱部28のそれぞれが、複数の第1発熱部26のそれぞれと比較して、電気抵抗率が低い材料で構成されるように変更する。これにより、第2領域14の発熱密度を、第1領域12の発熱密度よりもより一層大きくすることができる。
 (第11実施形態)
 本実施形態は、第2領域の基板部が、第1領域の基板部と比較して、熱伝導率が高い材料で構成されている点が、第8実施形態と異なる。輻射ヒータ装置1の他の構成は、第8実施形態と同じである。
 図24に示すように、第2領域14は、複数の第2発熱部28gを有する。複数の第2発熱部28gは、第8実施形態の第2発熱部28cに対応する。図24では、複数の第2発熱部28gは2つである。複数の第2発熱部28gの数は3以上の他の数であってもよい。複数の第2発熱部28gのそれぞれの幅W28、厚さT28、間隔G28は、複数の第1発熱部26のそれぞれの幅W26、厚さT26、間隔G26と同じである。X軸方向における複数の第2発熱部28gのそれぞれの長さは、X軸方向における複数の第1発熱部26のそれぞれの長さよりも短い。複数の第2発熱部28gのそれぞれを構成する材料は、複数の第1発熱部26のそれぞれを構成する材料と同じである。
 第2領域14の発熱密度が第1領域12の発熱密度よりも高くなるように、基板部20が第1本体部101と第2本体部102で異なる材料で構成されている。すなわち、図26に示す第2本体部102の基板部20bが、図25に示す第1本体部101の基板部20aと比較して、熱伝導率が高い材料で構成されている。これにより、基板部20のうち複数の第2発熱部28gの乗員側を覆う部分202が、基板部20のうち複数の第1発熱部26の乗員側を覆う部分201と比較して、熱伝導率が高い材料で構成されている。複数の第1発熱部26の乗員側を覆う部分201が、複数の第1発熱部の加熱対象物側を覆う第1絶縁部を構成している。複数の第2発熱部28gの乗員側を覆う部分202が、複数の第2発熱部の加熱対象物側を覆う第2絶縁部を構成している。
 本実施形態では、第8実施形態と同様に、基板部20のうち複数の第2発熱部28gの乗員側を覆う部分202の厚さT202は、基板部20のうち複数の第1発熱部26の乗員側を覆う部分201の厚さT201と同じである。
 本実施形態によれば、第2領域14の方が、第1領域12よりも、基板部20を熱が移動しやすくなっている。このため、第1領域12と第2領域14とを同じ面積で比較したとき、同じ面積における複数の第1発熱部26の総発熱量と複数の第2発熱部28の総発熱量が同じ場合、第2領域14からヒータ本体部10の外部へ放出される熱量は、第1領域12からヒータ本体部10の外部へ放出される熱量よりも多い。これにより、第2領域14の発熱密度は、第1領域12の発熱密度よりも大きくなっている。また、複数の第2発熱部28gのそれぞれの長さが複数の第1発熱部26のそれぞれの長さよりも短いことによっても、第2領域14の発熱密度は、第1領域12の発熱密度よりも高くなっている。したがって、本実施形態においても、第8実施形態と同様の効果が得られる。
 なお、複数の第2発熱部28gのそれぞれの幅W28、厚さT28、間隔G28と、複数の第1発熱部26のそれぞれの幅W26、厚さT26、間隔G26との関係は、本実施形態に限定されない。第2領域14の発熱密度が第1領域12の発熱密度よりも高くなっていれば、第2発熱部28gの幅W28、厚さT28、間隔G28と、第1発熱部26の幅W26、厚さT26、間隔G26とが異なっていてもよい。第8、第9、第10実施形態のそれぞれに本実施形態を組み合わせてもよい。
 また、第2領域14の発熱密度が第1領域12の発熱密度よりも高くなっていれば、第2領域14が有する第2発熱部28gが1つのみであってもよい。
 また、基板部20のうち複数の第2発熱部28gの乗員側を覆う部分202の厚さT202が、基板部20のうち複数の第1発熱部26の乗員側を覆う部分201の厚さT201と異なっていてもよい。この場合でも、第2領域14の方が、第1領域12よりも、基板部20を熱が移動しやすくなっていればよい。
 (第12実施形態)
 本実施形態は、第2領域の基板部の厚さが、第1領域の基板部の厚さと異なる点が、第8実施形態と異なる。
 図27に示すように、第2領域14は、第11実施形態と同様に、複数の第2発熱部28gを有する。
 図28、29に示すように、基板部20のうち複数の第2発熱部28gの乗員側を覆う部分202の厚さT202が、基板部20のうち複数の第1発熱部26の乗員側を覆う部分201の厚さT201よりも薄く(すなわち、小さく)なっている。厚さT202は、ヒータ本体部10の表面10aに垂直な方向で、複数の第2発熱部28cのそれぞれの表面から計測した第2絶縁部の厚さである。厚さT201は、ヒータ本体部10の表面10aに垂直な方向で、複数の第1発熱部26のそれぞれの表面から計測した第1絶縁部の厚さである。
 本実施形態では、基板部20は、第1本体部101と第2本体部102で同じ材料で構成されている。
 本実施形態によれば、第2領域14の方が、第1領域12よりも、発熱部からヒータ本体部10の表面10aに向かって基板部20を熱が移動しやすくなっている。これにより、第11実施形態と同様に、第2領域14の発熱密度は、第1領域12の発熱密度よりも大きくなっている。また、複数の第2発熱部28gのそれぞれの長さが複数の第1発熱部26のそれぞれの長さよりも短いことによっても、第2領域14の発熱密度は、第1領域12の発熱密度よりも高くなっている。したがって、本実施形態においても、第8実施形態と同様の効果が得られる。
 なお、複数の第2発熱部28gのそれぞれの幅W28、厚さT28、間隔G28と、複数の第1発熱部26のそれぞれの幅W26、厚さT26、間隔G26との関係は、本実施形態に限定されない。第2領域14の発熱密度が第1領域12の発熱密度よりも高くなっていれば、第2発熱部28gの幅W28、厚さT28、間隔G28と、第1発熱部26の幅W26、厚さT26、間隔G26とが異なっていてもよい。第8、第9、第10、第11実施形態のそれぞれに本実施形態を組み合わせてもよい。
 また、第2領域14の発熱密度が第1領域12の発熱密度よりも高くなっていれば、第2領域14が有する第2発熱部28gが1つのみであってもよい。
 (第13実施形態)
 本実施形態は、第1断熱部と第2断熱部の厚さが異なる点が、第8実施形態と異なる。
 図30、31に示すように、第2断熱部56の厚さT56は、第1断熱部52の厚さT52よりも小さくなっている。輻射ヒータ装置1の他の構成は、第8実施形態と同じである。
 これによれば、第8実施形態の効果に加えて、さらに、次の効果を奏する。
 第2断熱部56の熱容量が大きい場合、第2領域14の温度変化に対する第2断熱部56の熱容量の影響が大きい。ヒータ本体部10の昇温時では、第2断熱部56の熱容量が大きいほど、第2領域12の表面温度の上昇速度が遅くなる。ヒータ本体部10の降温時では、第2断熱部56の熱容量が大きいほど、第2領域12の表面温度の下降速度が遅くなる。このように、第2断熱部56の熱容量が大きいほど、第2領域14の表面温度の変化が、第1領域14の表面温度の変化から大きく乖離する。すなわち、第1領域14の表面温度が変化するとき、第2領域14の表面温度は、第1領域14の表面温度と異なる挙動を示す。
 これに対して、本実施形態によれば、第2断熱部56の熱容量を小さくできる。このため、第2領域14の温度変化に対する第2断熱部56の熱容量の影響を小さくできる。第1領域14の表面温度が変化するとき、第2領域14の表面温度の変化を第1領域12の表面温度の変化に近づけることができる。すなわち、第2領域14の表面温度と第1領域14の表面温度との相関性を確保することができる。よって、ヒータ本体部10の第1領域12の温度制御を適切に行うことができる。
 なお、本実施形態では、第2断熱部56を構成する断熱材料は、第1断熱部52を構成する断熱材料とは同じ種類の材料である。しかし、第2断熱部56を構成する断熱材料は、第1断熱部52を構成する断熱材料と異なる種類の材料であってもよい。この場合であっても、第2断熱部56の厚さT56が、第1断熱部52の厚さT52と同じ厚さの場合と比較して、第2断熱部56の熱容量を小さくできる。よって、この場合でも、本実施形態の効果が得られる。
 また、第9、第10、第11、第12実施形態のそれぞれに本実施形態を組み合わせてもよい。
 また、本実施形態においては、比較例1の輻射ヒータ装置J1のように、第2領域14の発熱密度が第1領域12の発熱密度と同じであってもよい。この場合であっても、本実施形態の効果が得られる。
 (他の実施形態)
 (1)上記各実施形態では、図4、17等に示されるように、複数の第1発熱部26のそれぞれは、膜状であって、線状に延びていた。しかしながら、複数の第1発熱部26のそれぞれは、図32、33、34、35に示すように、膜状ではないが、線状に延びた形状であってもよい。
 図32に示す例では、複数の第1発熱部26のそれぞれは、線状に延び、かつ、上記各実施形態と比較して幅が細い形状である。複数の第1発熱部26のそれぞれのY軸方向での幅寸法は、図5に示すZ軸方向での厚さ寸法よりも小さい。このため、図32に示す例では、複数の第1発熱部26のそれぞれは、膜状ではない。
 図33に示す例では、図32に示す例と同様に、複数の第1発熱部26のそれぞれは、線状に延び、かつ、上記各実施形態と比較して幅が細い形状である。そして、図32に示す例と異なり、第1領域12に複数の第1発熱部26が密に存在するために、1本の第1発熱部26は一対の電極22、24の間を折り返して配置されている。1本の第1発熱部26は、一方の電極22から第1折り返し部262までX軸方向に直線状に延びている。この第1発熱部26は、第1折り返し部262から第2折り返し部264までX軸方向に直線状に延びている。この第1発熱部26は、第2折り返し部264から他方の電極24までX軸方向に直線状に延びている。これにより、第1発熱部26の間隔が狭くなっている。
 図33に示す例においては、複数の第1発熱部26のそれぞれの配置を図34に示す配置に変更してもよい。図34では、複数の第1発熱部26のそれぞれがX軸方向に蛇行して配置されている。これによっても、第1発熱部26の間隔を狭くすることができる。第1領域12に複数の第1発熱部26を密に配置することができる。
 図35に示す例では、図32に示す例と同様に、複数の第1発熱部26のそれぞれは、線状に延び、かつ、上記各実施形態と比較して幅が細い形状である。そして、図32に示す例と異なり、第1領域12に複数の第1発熱部26が密に存在するために、折り返し電極22b、22c、22d、22e、22f、22gが設けられている。
 図33に示す例では、一対の電極22、24の間において、複数の第1発熱部26のすべてが並列に接続されている。これに対して、図35に示す例では、一対の電極22、24の間において、複数の第1発熱部26は、並列かつ直列に接続されている。具体的には、X軸方向の一方側に、一方の電極22、折り返し電極22c、22e、22gが配置されている。X軸方向の他方側に、他方の電極24、折り返し電極22b、22d、22fが配置されている。一方の電極22と折り返し電極22bとの間を、2本の第1発熱部26が折り返して配置されている。同様に、折り返し電極22bと折り返し電極22cとの間を、2本の第1発熱部26が折り返して配置されている。このように、X軸方向の一方側に位置する電極とX軸方向の他方側に位置する電極との間を、2本の第1発熱部26が折り返して配置されている。これによっても、第1領域12に複数の第1発熱部26を密に配置することができる。図35に示す例においても、複数の第1発熱部26のそれぞれの配置を図34に示す配置に変更してもよい。
 図32、33、34、35に示す例においても、1つの第1発熱部26が線状に延びた形状を有する。これにより、第1発熱部26の長さ方向の熱抵抗が大きくされている。隣り合う2つの第1発熱部26の間に低熱伝導部27が配置されている。これにより、隣り合う2つの第1発熱部26の間の熱抵抗が大きくされている。これらの結果、図32、33、34、35に示す例においても、第1領域12の面方向での熱抵抗が大きくされている。
 また、図36に示すように、第1領域12に配置される第1発熱部26が1つのみであってもよい。この第1発熱部26は、膜状であって、一対の電極22、24の間の全領域にわたって配置されている。このため、本実施形態では、第1実施形態と異なり、第1領域12は、複数の低熱伝導部27を有していない。
 この第1発熱部26は、導電材料と樹脂材料との混合材料によって構成される。この第1発熱部26は、混合材料を用いた印刷によって形成される。導電材料としては、カーボン、すず合金、他の金属材料が挙げられる。この第1発熱部26の熱伝導率は、銅、銀などで構成される金属膜よりも小さく設定される。
 このように、この第1発熱部26は、膜状であって、熱伝導率が小さく設定されている。このため、図36に示す例においても、上記各実施形態と同様に、第1領域12の面方向での熱抵抗が大きくされている。
 (2)第1実施形態では、被覆部材5として、インストルメントパネル4が用いられていたが、他の部材が用いられてもよい。
 (3)上記各実施形態では、第1発熱部26は、通電によって発熱する発熱部と、発熱部の熱によって輻射熱を放射する放熱部とを兼ねていたが、兼ねていなくてもよい。この場合、発熱部と放熱部とが第1発熱部を構成する。また、第2発熱部28は、通電によって発熱する機能を少なくとも有していればよい。
 (4)上記各実施形態では、輻射ヒータ装置1が車両に設置されていたが、これに限定されない。輻射ヒータ装置1は、車両以外の場所に設置されてもよい。
 (5)本開示は上記した実施形態に限定されるものではなく、請求の範囲に記載した範囲内において適宜変更が可能であり、様々な変形例や均等範囲内の変形をも包含する。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、輻射ヒータ装置は、ヒータ本体部と、温度センサと、制御部とを備える。ヒータ本体部は、第1領域と第2領域とを有する。第1領域は、ユーザが触れられる場所に設置される。第2領域は、ユーザに触れられない場所に設置される。
 また、第2の観点によれば、第1領域は、複数の発熱部と、複数の低熱伝導部とを有する。複数の発熱部は、膜状であり、通電によって発熱して輻射熱を放射する。複数の低熱伝導部は、複数の発熱部のうち隣り合う2つの発熱部の間に配置され、複数の発熱部のそれぞれよりも熱伝導性が低い。第1の観点において、このような具体的な構成を採用することができる。
 また、第3の観点によれば、第2領域は、第1領域と比較して、面方向で熱が移動しやすくなっている。
 ここで、上記した従来の輻射ヒータ装置では、発熱部の熱容量が小さく、かつ、ヒータ本体部の面方向での熱抵抗が大きくなるように、ヒータ本体部が構成されている。このため、ヒータ本体部に温度センサが設置された場合、ヒータ本体部のうち温度センサの周囲から温度センサへ移動する熱量が少なく、かつ、温度センサへの熱移動が抑制されてしまう。すなわち、温度センサへ流入する単位時間あたりの熱量が少なくなってしまう。この結果、ヒータ本体部の温度が変化する際において、温度センサの変化がヒータの温度変化に追従できないという新たな課題が見出された。温度センサの変化がヒータの温度変化に追従できないと、制御部によるヒータ本体部の温度制御を適切に行うことができない。
 これに対して、第3の観点によれば、温度センサが第1領域に設置される場合と比較して、温度センサの周囲から温度センサへ流入する単位時間あたりの熱量を多くすることができる。したがって、温度センサによって、感度よく第2領域の温度を測定することができる。ここで、第2領域は、第1領域の温度と関連のある温度となる領域である。これにより、温度センサが第1領域に設置される場合と比較して、ヒータ本体部の温度変化に対する温度センサの追従性を向上させることができる。
 また、第4の観点によれば、複数の発熱部は、複数の第1発熱部である。第2領域は、通電によって発熱する第2発熱部を有する。第2発熱部は、複数の第1発熱部のそれぞれに対して電気的に接続される。第2の観点において、このような具体的な構成を採用することができる。
 また、第5の観点によれば、第2領域が、第1領域と比較して、面方向で熱が移動しやすくなるように、第2発熱部の面方向での熱抵抗が、複数の第1発熱部のそれぞれにおける面方向での熱抵抗よりも小さくなっている。第4の観点において、このような具体的な構成を採用することができる。
 また、第6の観点によれば、第2発熱部は、蛇行して配置されている。第2領域が、第1領域と比較して、面方向で熱が移動しやすくなるように、第2発熱部のうち隣り合う部分の間隔が、複数の第1発熱部のうち隣り合う2つの第1発熱部の間隔よりも狭くなっている。第4の観点において、このような具体的な構成を採用することができる。
 また、第7の観点によれば、第2領域は、第2発熱部を複数有する。第2領域が、第1領域と比較して、面方向で熱が移動しやすくなるように、複数の第2発熱部のうち隣り合う2つの第2発熱部の間隔が、複数の第1発熱部のうち隣り合う2つの第1発熱部の間隔よりも狭くなっている。第4の観点において、このような具体的な構成を採用することができる。
 また、第8の観点によれば、第2領域が、第1領域と比較して、面方向で熱が移動しやすくなるように、第2領域は、伝熱シートを有する。伝熱シートは、複数の低熱伝導部のそれぞれを構成する材料よりも熱伝導率が高い材料で構成され、第2発熱部と温度センサの間に配置される。第4の観点において、このような具体的な構成を採用することができる。
 また、第9の観点によれば、第2領域が、第1領域と比較して、面方向で熱が移動しやすくなるように、第2領域は、伝熱シートを有する。伝熱シートは、複数の低熱伝導部のそれぞれを構成する材料よりも熱伝導率が高い材料で構成され、発熱部からの熱が伝わるように配置される。第2の観点において、このような具体的な構成を採用することができる。
 また、第10の観点によれば、第1-第9の観点において、ヒータ本体部は、第2領域が被覆部材に覆われた状態で設置される。これによれば、第2領域はユーザに触れられない位置に設置される。このため、第2領域がユーザに触れられて温度低下することを回避することができる。
 また、第11の観点によれば、第1-第9の観点において、ヒータ本体部は、第2領域が第1領域に対して加熱対象物側の反対側に位置する状態で設置される。これによれば、第2領域はユーザに触れられない位置に設置される。このため、第2領域がユーザに触れられて温度低下することを回避することができる。
 また、第12の観点によれば、ヒータ本体部は、第1領域と第2領域とをつなぐ中間領域を有する。中間領域は曲がった状態である。第11の観点において、このような具体的な構成を採用することができる。
 また、第13の観点によれば、第1-第12の観点において、複数の発熱部のそれぞれは、線状に延びているとともに、並列に配置されている。このような具体的な構成を採用することができる。
 また、第14の観点によれば、複数の発熱部は、複数の第1発熱部である。第2領域は、通電によって発熱する1つまたは複数の第2発熱部を有する。1つまたは複数の第2発熱部のそれぞれは、複数の第1発熱部のそれぞれに対して電気的に接続されている。第2領域の面積は、第1領域の面積よりも小さくなっている。第2領域の発熱密度は、第1領域の発熱密度よりも高くなっている。
 これによれば、第2領域の発熱密度が第1領域の発熱密度と同じ場合と比較して、第2領域の全体の発熱量を増大することができる。これにより、第2領域の表面温度が受ける周囲空気の影響を小さくすることができる。このため、第2領域の表面温度と第1領域の表面温度との相関性を確保することができる。よって、ヒータ本体部の第1領域の温度制御を適切に行うことができる。
 また、第15の観点によれば、複数の第1発熱部のそれぞれは、線状に延びているとともに、並列に配置されている。第2領域は、複数の第2発熱部を有する。複数の第2発熱部のそれぞれは、線状に延びているとともに、並列に配置されている。第2領域の発熱密度が第1領域の発熱密度よりも高くなるように、複数の第2発熱部のうち隣り合う第2発熱部の間隔が、複数の第1発熱部のうち隣り合う第1発熱部の間隔よりも狭くなっている。このようにして、第2領域の発熱密度が第1領域の発熱密度よりも高くなるようにすることができる。
 また、第16の観点によれば、複数の第1発熱部のそれぞれは、線状に延びているとともに、並列に配置されている。第2領域は、複数の第2発熱部を有する。複数の第2発熱部のそれぞれは、線状に延びているとともに、並列に配置されている。第2領域の発熱密度が第1領域の発熱密度よりも高くなるように、複数の第2発熱部のそれぞれの線状に延びている方向に対して垂直な断面における断面積が、複数の第1発熱部のそれぞれの線状に延びている方向に対して垂直な断面における断面積よりも大きくなっている。このようにして、第2領域の発熱密度が第1領域の発熱密度よりも高くなるようにすることができる。
 また、第17の観点によれば、第2領域の発熱密度が第1領域の発熱密度よりも高くなるように、1つまたは複数の第2発熱部のそれぞれは、複数の第1発熱部のそれぞれと比較して、電気抵抗率が低い材料で構成されている。このようにして、第2領域の発熱密度が第1領域の発熱密度よりも高くなるようにすることができる。
 また、第18の観点によれば、第1領域は、複数の第1発熱部の加熱対象物側を覆う第1絶縁部を有する。第2領域は、1つまたは複数の第2発熱部の加熱対象物側を覆う第2絶縁部を有する。第2領域の発熱密度が第1領域の発熱密度よりも高くなるように、第2絶縁部は、第1絶縁部と比較して、熱伝導率が高い材料で構成されている。このようにして、第2領域の発熱密度が第1領域の発熱密度よりも高くなるようにすることができる。
 また、第19の観点によれば、第1領域は、複数の第1発熱部の加熱対象物側を覆う第1絶縁部を有する。第2領域は、1つまたは複数の第2発熱部の加熱対象物側を覆う第2絶縁部を有する。第2領域の発熱密度が第1領域の発熱密度よりも高くなるように、ヒータ本体部の表面に垂直な方向で、1つまたは複数の第2発熱部のそれぞれの表面から計測した第2絶縁部の厚さが、複数の第1発熱部のそれぞれの表面から計測した第1絶縁部の厚さよりも小さくなっている。このようにして、第2領域の発熱密度が第1領域の発熱密度よりも高くなるようにすることができる。
 また、第20の観点によれば、複数の発熱部は、複数の第1発熱部である。第2領域は、通電によって発熱する1つまたは複数の第2発熱部を有する。1つまたは複数の第2発熱部のそれぞれは、複数の第1発熱部のそれぞれに対して電気的に接続されている。輻射ヒータ装置は、第1領域の反加熱対象物側に配置された第1断熱部と、第2領域の反加熱対象物側に配置された第2断熱部とを備える。第1断熱部は、第1領域からの熱の移動を抑制するための断熱材料で構成されている。第2断熱部は、第2領域からの熱の移動を抑制するための断熱材料で構成されている。第2断熱部の厚さは、第1断熱部の厚さよりも小さくなっている。
 これによれば、第2断熱部の熱容量を小さくできる。このため、第2領域の温度変化に対する第2断熱部の熱容量の影響を小さくできる。第1領域の表面温度が変化するとき、第2領域の表面温度の変化を第1領域の表面温度の変化に近づけることができる。すなわち、第2領域の表面温度と第1領域の表面温度との相関性を確保することができる。よって、ヒータ本体部の第1領域の温度制御を適切に行うことができる。
 また、第21の観点によれば、第1領域は、通電によって発熱する1つまたは複数の第1発熱部を有する。第2領域は、通電によって発熱する1つまたは複数の第2発熱部を有する。1つまたは複数の第2発熱部のそれぞれは、1つまたは複数の第1発熱部のそれぞれに対して電気的に接続されている。第2領域の面積は、第1領域の面積よりも小さくなっている。第2領域の発熱密度は、第1領域の発熱密度よりも高くなっている。
 これによれば、第2領域の発熱密度が第1領域の発熱密度と同じ場合と比較して、第2領域の全体の発熱量を増大することができる。これにより、第2領域の表面温度が受ける周囲空気の影響を小さくすることができる。このため、第2領域の表面温度と第1領域の表面温度との相関性を確保することができる。よって、ヒータ本体部の第1領域の温度制御を適切に行うことができる。
 また、第22の観点によれば、第1領域は、通電によって発熱する1つまたは複数の第1発熱部を有する。第2領域は、通電によって発熱する1つまたは複数の第2発熱部を有する。1つまたは複数の第2発熱部のそれぞれは、1つまたは複数の第1発熱部のそれぞれに対して電気的に接続されている。輻射ヒータ装置は、第1領域の反加熱対象物側に配置された第1断熱部と、第2領域の反加熱対象物側に配置された第2断熱部とを備える。第1断熱部は、第1領域からの熱の移動を抑制するための断熱材料で構成されている。第2断熱部は、第2領域からの熱の移動を抑制するための断熱材料で構成されている。第2断熱部の厚さは、第1断熱部の厚さよりも小さくなっている。
 これによれば、第2断熱部の熱容量を小さくできる。このため、第2領域の温度変化に対する第2断熱部の熱容量の影響を小さくできる。第1領域の表面温度が変化するとき、第2領域の表面温度の変化を第1領域の表面温度の変化に近づけることができる。すなわち、第2領域の表面温度と第1領域の表面温度との相関性を確保することができる。よって、ヒータ本体部の第1領域の温度制御を適切に行うことができる。
 

Claims (22)

  1.  輻射ヒータ装置であって、
     輻射熱を放射する面状のヒータ本体部(10)と、
     前記ヒータ本体部の温度を検出する温度センサ(30)と、
     前記温度センサの検出結果に基づいて、前記ヒータ本体部の温度を制御する制御部(32)とを備え、
     前記ヒータ本体部は、
     加熱対象物に向けて輻射熱を放射する第1領域(12)と、
     前記第1領域とは異なる位置にあり、前記第1領域の温度と関連のある温度となり、前記温度センサが設置される第2領域(14)とを有し、
     前記第1領域は、ユーザが触れられる場所に設置され、
     前記第2領域は、ユーザに触れられない場所に設置される輻射ヒータ装置。
  2.  前記第1領域は、
     通電によって発熱して輻射熱を放射し、膜状である複数の発熱部(26)と、
     前記複数の発熱部のうち隣り合う2つの発熱部の間に配置され、前記複数の発熱部のそれぞれよりも熱伝導性が低い複数の低熱伝導部(27)とを有する請求項1に記載の輻射ヒータ装置。
  3.  前記第2領域は、前記第1領域と比較して、面方向で熱が移動しやすくなっている請求項1または2に記載の輻射ヒータ装置。
  4.  前記複数の発熱部は、複数の第1発熱部であり、
     前記第2領域は、通電によって発熱する第2発熱部(28、28a、28b)を有し、
     前記第2発熱部は、前記複数の第1発熱部のそれぞれに対して電気的に接続される請求項2に記載の輻射ヒータ装置。
  5.  前記第2領域が、前記第1領域と比較して、面方向で熱が移動しやすくなるように、前記第2発熱部(28)の面方向での熱抵抗が、前記複数の第1発熱部のそれぞれにおける面方向での熱抵抗よりも小さくなっている請求項4に記載の輻射ヒータ装置。
  6.  前記第2発熱部(28a)は、蛇行して配置されており、
     前記第2領域が、前記第1領域と比較して、面方向で熱が移動しやすくなるように、前記第2発熱部のうち隣り合う部分の間隔(G28a)が、前記複数の第1発熱部のうち隣り合う2つの第1発熱部の間隔(G26)よりも狭くなっている請求項4に記載の輻射ヒータ装置。
  7.  前記第2領域は、前記第2発熱部(28b)を複数有し、
     前記第2領域が、前記第1領域と比較して、面方向で熱が移動しやすくなるように、前記複数の第2発熱部のうち隣り合う2つの第2発熱部の間隔(G28b)が、前記複数の第1発熱部のうち隣り合う2つの第1発熱部の間隔(G26)よりも狭くなっている請求項4に記載の輻射ヒータ装置。
  8.  前記第2領域が、前記第1領域と比較して、面方向で熱が移動しやすくなるように、前記第2領域は、伝熱シート(29)を有し、
     前記伝熱シートは、前記複数の低熱伝導部のそれぞれを構成する材料よりも熱伝導率が高い材料で構成され、前記第2発熱部と前記温度センサの間に配置される請求項4に記載の輻射ヒータ装置。
  9.  前記第2領域が、前記第1領域と比較して、面方向で熱が移動しやすくなるように、前記第2領域は、伝熱シート(40)を有し、
     前記伝熱シートは、前記複数の低熱伝導部のそれぞれを構成する材料よりも熱伝導率が高い材料で構成され、前記発熱部からの熱が伝わるように配置される請求項2に記載の輻射ヒータ装置。
  10.  前記ヒータ本体部は、前記第2領域が被覆部材(5)に覆われた状態で設置される請求項1ないし9のいずれか1つに記載の輻射ヒータ装置。
  11.  前記ヒータ本体部は、前記第2領域が前記第1領域に対して前記加熱対象物側の反対側に位置する状態で設置される請求項1ないし9のいずれか1つに記載の輻射ヒータ装置。
  12.  前記ヒータ本体部は、前記第1領域と前記第2領域とをつなぐ中間領域(13)を有し、
     前記中間領域は曲がった状態である請求項11に記載の輻射ヒータ装置。
  13.  前記複数の発熱部のそれぞれは、線状に延びているとともに、並列に配置されている請求項1ないし12のいずれか1つに記載の輻射ヒータ装置。
  14.  前記複数の発熱部は、複数の第1発熱部であり、
     前記第2領域は、通電によって発熱する1つまたは複数の第2発熱部(28、28c、28e、28f、28g)を有し、
     前記1つまたは複数の第2発熱部のそれぞれは、前記複数の第1発熱部のそれぞれに対して電気的に接続されており、
     前記1つまたは複数の第2発熱部を前記ヒータ本体部の前記加熱対象物側の表面(10a)に対して、前記表面に垂直な方向で、投影したときに、投影した前記1つまたは複数の第2発熱部が含まれる領域の面積である前記第2領域の面積は、前記複数の第1発熱部を前記ヒータ本体部の前記表面に対して、前記表面に垂直な方向で、投影したときに、投影した前記複数の第1発熱部が含まれる領域の面積である前記第1領域の面積よりも小さくなっており、
     前記第2領域の面積に対する前記第2領域から前記ヒータ本体部の外部へ放出される熱量の比である前記第2領域の発熱密度は、前記第1領域の面積に対する前記第1領域から前記ヒータ本体部の外部へ放出される熱量の比である前記第1領域の発熱密度よりも高くなっている請求項2に記載の輻射ヒータ装置。
  15.  前記複数の第1発熱部のそれぞれは、線状に延びているとともに、並列に配置されており、
     前記第2領域は、前記複数の第2発熱部(28c)を有し、
     前記複数の第2発熱部のそれぞれは、線状に延びているとともに、並列に配置されており、
     前記第2領域の発熱密度が前記第1領域の発熱密度よりも高くなるように、前記複数の第2発熱部のうち隣り合う第2発熱部の間隔(G28)が、前記複数の第1発熱部のうち隣り合う第1発熱部の間隔(G26)よりも狭くなっている請求項14に記載の輻射ヒータ装置。
  16.  前記複数の第1発熱部のそれぞれは、線状に延びているとともに、並列に配置されており、
     前記第2領域は、前記複数の第2発熱部(28e)を有し、
     前記複数の第2発熱部のそれぞれは、線状に延びているとともに、並列に配置されており、
     前記第2領域の発熱密度が前記第1領域の発熱密度よりも高くなるように、前記複数の第2発熱部のそれぞれの線状に延びている方向に対して垂直な断面における断面積が、前記複数の第1発熱部のそれぞれの線状に延びている方向に対して垂直な断面における断面積よりも大きくなっている請求項14に記載の輻射ヒータ装置。
  17.  前記第2領域の発熱密度が前記第1領域の発熱密度よりも高くなるように、前記1つまたは複数の第2発熱部(28f)のそれぞれは、前記複数の第1発熱部のそれぞれと比較して、電気抵抗率が低い材料で構成されている請求項14に記載の輻射ヒータ装置。
  18.  前記第1領域は、前記複数の第1発熱部の前記加熱対象物側を覆う第1絶縁部(201)を有し、
     前記第2領域は、前記1つまたは複数の第2発熱部の前記加熱対象物側を覆う第2絶縁部(202)を有し、
     前記第2領域の発熱密度が前記第1領域の発熱密度よりも高くなるように、前記第2絶縁部は、前記第1絶縁部と比較して、熱伝導率が高い材料で構成されている請求項14に記載の輻射ヒータ装置。
  19.  前記第1領域は、前記複数の第1発熱部の前記加熱対象物側を覆う第1絶縁部(201)を有し、
     前記第2領域は、前記1つまたは複数の第2発熱部の前記加熱対象物側を覆う第2絶縁部(202)を有し、
     前記第2領域の発熱密度が前記第1領域の発熱密度よりも高くなるように、前記ヒータ本体部の前記表面に垂直な方向で、前記1つまたは複数の第2発熱部のそれぞれの表面から計測した前記第2絶縁部の厚さ(T202)が、前記複数の第1発熱部のそれぞれの表面から計測した前記第1絶縁部の厚さ(T201)よりも小さくなっている請求項14に記載の輻射ヒータ装置。
  20.  前記複数の発熱部は、複数の第1発熱部であり、
     前記第2領域は、通電によって発熱する1つまたは複数の第2発熱部(28c)を有し、
     前記1つまたは複数の第2発熱部のそれぞれは、前記複数の第1発熱部のそれぞれに対して電気的に接続されており、
     前記輻射ヒータ装置は、前記第1領域の反加熱対象物側に配置された第1断熱部(52)と、前記第2領域の反加熱対象物側に配置された第2断熱部(56)とを備え、
     前記第1断熱部は、前記第1領域からの熱の移動を抑制するための断熱材料で構成され、
     前記第2断熱部は、前記第2領域からの熱の移動を抑制するための断熱材料で構成され、
     前記第2断熱部の前記ヒータ本体部の前記加熱対象物側の表面(10a)に垂直な方向での厚さ(T56)は、前記第1断熱部の前記ヒータ本体部の前記表面に垂直な方向での厚さ(T52)よりも小さくなっている請求項2に記載の輻射ヒータ装置。
  21.  前記第1領域は、通電によって発熱する1つまたは複数の第1発熱部(26)を有し、
     前記第2領域は、通電によって発熱する1つまたは複数の第2発熱部(28、28c、28e、28f、28g)を有し、
     前記1つまたは複数の第2発熱部のそれぞれは、前記1つまたは複数の第1発熱部のそれぞれに対して電気的に接続されており、
     前記1つまたは複数の第2発熱部を前記ヒータ本体部の前記加熱対象物側の表面(10a)に対して、前記表面に垂直な方向で、投影したときに、投影した前記1つまたは複数の第2発熱部が含まれる領域の面積である前記第2領域の面積は、前記1つまたは複数の第1発熱部を前記ヒータ本体部の前記表面に対して、前記表面に垂直な方向で、投影したときに、投影した前記1つまたは複数の第1発熱部が含まれる領域の面積である前記第1領域の面積よりも小さくなっており、
     前記第2領域の面積に対する前記第2領域から前記ヒータ本体部の外部へ放出される熱量の比である前記第2領域の発熱密度は、前記第1領域の面積に対する前記第1領域から前記ヒータ本体部の外部へ放出される熱量の比である前記第1領域の発熱密度よりも高くなっている請求項1に記載の輻射ヒータ装置。
  22.  前記第1領域は、通電によって発熱する1つまたは複数の第1発熱部(26)を有し、
     前記第2領域は、通電によって発熱する1つまたは複数の第2発熱部(28c)を有し、
     前記1つまたは複数の第2発熱部のそれぞれは、前記1つまたは複数の第1発熱部のそれぞれに対して電気的に接続されており、
     前記輻射ヒータ装置は、前記第1領域の反加熱対象物側に配置された第1断熱部(52)と、前記第2領域の反加熱対象物側に配置された第2断熱部(56)とを備え、
     前記第1断熱部は、前記第1領域からの熱の移動を抑制するための断熱材料で構成され、
     前記第2断熱部は、前記第2領域からの熱の移動を抑制するための断熱材料で構成され、
     前記第2断熱部の前記ヒータ本体部の前記加熱対象物側の表面(10a)に垂直な方向での厚さ(T56)は、前記第1断熱部の前記ヒータ本体部の前記表面に垂直な方向での厚さ(T52)よりも小さくなっている請求項1に記載の輻射ヒータ装置。
     
PCT/JP2017/032339 2016-09-29 2017-09-07 輻射ヒータ装置 WO2018061702A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018542328A JP6669271B2 (ja) 2016-09-29 2017-09-07 輻射ヒータ装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-191318 2016-09-29
JP2016191318 2016-09-29
JP2017-078186 2017-04-11
JP2017078186 2017-04-11

Publications (1)

Publication Number Publication Date
WO2018061702A1 true WO2018061702A1 (ja) 2018-04-05

Family

ID=61763431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032339 WO2018061702A1 (ja) 2016-09-29 2017-09-07 輻射ヒータ装置

Country Status (2)

Country Link
JP (1) JP6669271B2 (ja)
WO (1) WO2018061702A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298587A (ja) * 1985-10-24 1987-05-08 キヤノン株式会社 発熱器
JP2010215140A (ja) * 2009-03-18 2010-09-30 Panasonic Corp ステアリングホイール
JP2014205372A (ja) * 2013-04-10 2014-10-30 株式会社デンソー 輻射ヒータ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298587A (ja) * 1985-10-24 1987-05-08 キヤノン株式会社 発熱器
JP2010215140A (ja) * 2009-03-18 2010-09-30 Panasonic Corp ステアリングホイール
JP2014205372A (ja) * 2013-04-10 2014-10-30 株式会社デンソー 輻射ヒータ装置

Also Published As

Publication number Publication date
JPWO2018061702A1 (ja) 2019-02-28
JP6669271B2 (ja) 2020-03-18

Similar Documents

Publication Publication Date Title
JP5983495B2 (ja) 輻射ヒータ装置
JP5954235B2 (ja) ヒータ装置
JP6376286B2 (ja) ヒータ装置
JP6245101B2 (ja) 輻射ヒータ装置
JP6447245B2 (ja) 輻射ヒータ装置
JP6288310B2 (ja) ヒータ装置
CN107926081B (zh) 加热器装置
WO2019198413A1 (ja) ヒータ装置
JP7135964B2 (ja) ヒータ装置
JP6296175B2 (ja) ヒータ装置
US20200236740A1 (en) Heater device
JP6725005B2 (ja) 輻射ヒータ装置
CN113613531A (zh) 加热器装置
WO2018061702A1 (ja) 輻射ヒータ装置
WO2016013168A1 (ja) 輻射ヒータ装置
WO2020031730A1 (ja) ヒータ装置
WO2018150769A1 (ja) ヒータ装置
WO2019078090A1 (ja) ヒータ装置
JP2022114269A (ja) 面状発熱体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018542328

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855660

Country of ref document: EP

Kind code of ref document: A1