WO2018087959A1 - 圧電式アクチュエータ及び圧電式バルブ - Google Patents
圧電式アクチュエータ及び圧電式バルブ Download PDFInfo
- Publication number
- WO2018087959A1 WO2018087959A1 PCT/JP2017/025659 JP2017025659W WO2018087959A1 WO 2018087959 A1 WO2018087959 A1 WO 2018087959A1 JP 2017025659 W JP2017025659 W JP 2017025659W WO 2018087959 A1 WO2018087959 A1 WO 2018087959A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric element
- processing unit
- piezoelectric
- valve
- displacement
- Prior art date
Links
- 238000012545 processing Methods 0.000 claims abstract description 58
- 238000006073 displacement reaction Methods 0.000 claims abstract description 42
- 230000007246 mechanism Effects 0.000 claims abstract description 16
- 230000001629 suppression Effects 0.000 claims abstract description 14
- 238000007599 discharging Methods 0.000 claims description 2
- 238000013016 damping Methods 0.000 abstract 1
- 239000012636 effector Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 230000036278 prepulse Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/06—Drive circuits; Control arrangements or methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/20—Valve-gear or valve arrangements actuated non-mechanically by electric means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/004—Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/04—Constructional details
- H02N2/043—Mechanical transmission means, e.g. for stroke amplification
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/14—Drive circuits; Control arrangements or methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/20—Valve-gear or valve arrangements actuated non-mechanically by electric means
- F01L9/24—Piezoelectric actuators
Definitions
- the present invention relates to a piezoelectric actuator and a piezoelectric valve that drive an object by enlarging displacement of a piezoelectric element (piezo element).
- the piezoelectric valve shown in FIG. 1 of Patent Document 1 has a built-in piezoelectric actuator.
- the expansion and contraction of the piezoelectric actuator opens and closes the valve at the tip of the actuator.
- Patent Document 2 shows an example in which vibration is suppressed by inserting a pre-pulse as shown in FIGS. 4B and 5A of the same document.
- Patent Literature 1 is considered to have the following problems to be solved. i) Even in the case of the two-stage output drive voltage waveform described in the same document, the effect of suppressing the resonance vibration is low because the pulse waveform includes the frequency component of the piezoelectric actuator. ii) Since there is no concept of resonance, if the structure is changed, it is necessary to tune again according to the actual product, and it is not known what kind of two-stage output should be set in advance. iii) The driving voltage waveform of the two-stage output described in the same document (the voltage at the second stage is higher than that at the first stage) is considered to be the same as the waveform through a low-pass filter with a slow update pitch.
- the present invention has been made by paying attention to such a problem, and is applied to a piezoelectric valve or the like, and can cause an operating body such as a valve body to perform an accurate operation. It is an object to provide an actuator and a piezoelectric valve.
- the piezoelectric actuator of the present invention includes a piezoelectric element that generates a driving force necessary for the operation of the operating body as a displacement, and at least a spring element to expand the displacement of the piezoelectric element and act on the operating body.
- a piezoelectric actuator comprising: a displacement magnifying mechanism that includes the driving element that operates the operating body by applying a voltage to the piezoelectric element to expand the piezoelectric element.
- a resonance suppression processing unit having an inverse function characteristic of a mechanical resonance frequency when operating the magnifying mechanism is provided, and a voltage with reduced mechanical resonance is applied to the piezoelectric element through the resonance suppression processing unit. It is comprised by these.
- the resonance suppression processing unit having the inverse function characteristic It can be configured accurately.
- the drive means includes a delay compensation processing unit having a reverse characteristic of an electrical drive characteristic that causes a delay in driving the piezoelectric element. It is desirable that a voltage that reduces the influence of the electrical drive characteristics is applied to the piezoelectric element through the delay compensation processing unit.
- Specific embodiments include a case where the resonance suppression processing unit is a notch filter, and a case where the delay compensation processing unit is a high-pass filter.
- a piezoelectric actuator Using such a piezoelectric actuator, a gas pressure chamber for receiving compressed gas supplied from the outside, a valve main body formed with a gas discharge passage for discharging the compressed gas from the gas pressure chamber, and the gas pressure chamber are arranged. If a piezoelectric valve is configured by including a valve body that is an operating body that opens and closes the gas discharge path, the piezoelectric valve can be opened and closed at high speed stably and reliably.
- the control block diagram which shows the drive means which comprises the piezoelectric actuator which concerns on the same embodiment.
- the graph which shows the function of the 1st filter process part which is the resonance suppression process part which concerns on the same embodiment.
- FIG. 1 is a V diagram showing a piezoelectric valve V of this embodiment.
- the piezoelectric valve V discharges the compressed gas from the gas pressure chamber 111 that receives compressed gas supplied from the outside and the gas pressure chamber 111.
- the valve main body 11 in which the gas exhaust path 112 to be formed is formed, and the valve body 12 that is disposed in the gas pressure chamber 111 and opens and closes the gas exhaust path 112 is provided.
- a piezoelectric actuator A having the valve body 12 as an operating body is integrally incorporated in the valve body 11.
- the piezoelectric actuator A includes a piezoelectric element 13 that generates a driving force necessary for the operation of the valve body 12 as an operating body as a displacement, and at least a spring element for enlarging the displacement of the piezoelectric element 13 to act on the valve body 12. And a driving means 15 for operating the valve body 12 as the operating body by applying a voltage to the piezoelectric element 13 and expanding the piezoelectric element 13. Yes.
- the valve body 12 is disposed in a position for opening and closing the gas discharge path 112 in the gas pressure chamber 111 of the valve body 11.
- the piezoelectric element 13 is disposed inside a U-shaped base substrate 10 described later of the valve body 11.
- the displacement enlarging mechanism 14 is disposed in the gas pressure chamber 111 of the valve body 11, The displacement of the piezoelectric element 13 is enlarged to act on the valve body 12.
- the driving device 15 applies a driving voltage to the piezoelectric element 13 to charge the charge, and a charging drive circuit (not shown) that expands the piezoelectric element 13 and discharges the charged charge.
- a discharge drive circuit (not shown) that contracts is provided, and the valve element 12 is driven to open and close by expanding and contracting the piezoelectric element 13.
- the displacement magnifying mechanism 14 includes a displacement magnifying part 14a for enlarging the displacement of the piezoelectric element 13 and a displacement transmitting part 14b for transmitting the displacement of the piezoelectric element 13 to the displacement magnifying part 14a.
- the displacement transmitting portion 14b includes a U-shaped base substrate 10 to which one end of the piezoelectric element 13 is bonded, and a cap member 18a to which the other end of the piezoelectric element 13 is bonded.
- the piezoelectric element 13 is incorporated in the space of the U-shaped base substrate 10 and between the U-shaped bottom portion and the cap member 18a, and the one end is joined to the base substrate 10, and the other The end is joined to the cap member 18a.
- the displacement transmission part 14b and the displacement enlargement part 14a include a first hinge 16, a second hinge 17, a first arm member 18, and a leaf spring 19.
- One end of the first hinge 16 is joined to the base substrate 10.
- One end of the second hinge 17 is joined to a cap member 18 a attached to the piezoelectric element 13. Both the other ends of the first hinge 16 and the second hinge 17 are joined to the base of the arm member 18.
- One end of a leaf spring 19 is joined to the outer front end portion of the arm member 18, and the inner end of the leaf spring 19 is joined to the nearest side end portion of the valve body 12.
- the piezoelectric element 13 When the piezoelectric valve V is charged by applying a driving voltage to the piezoelectric element 13 by the driving means 15 in the state of FIG. 1, the piezoelectric element 13 extends in the left direction of the drawing.
- the displacement accompanying the extension of the piezoelectric element 13 is expanded by the lever principle in the displacement magnifying mechanism 14 with the second hinge 17 as a force point, the first hinge 16 as a fulcrum, and the tip of the arm member 18 as an action point.
- the outer front end portion of 18 is greatly displaced in the direction in which the space between the pair of arm members 18 and 18 expands.
- the piezoelectric element 13 when the piezoelectric element 13 discharges electric charges by the driving device 15, the piezoelectric element 13 contracts, and the contraction is transmitted to the valve body 12 via the displacement enlarging mechanism 14. Sits on the valve seat 113.
- the spring element of the displacement magnifying mechanism 14 resonates in the same mode as a series of operation modes of the displacement magnifying mechanism.
- the resonance frequency of the pair of leaf springs 19 and 19 is also influenced by the structure, it is generally considered that the resonance frequency is very high and the resonance vibration is small.
- the drive means (controller) 15 shown in FIG. 2 originally has a voltage level set by the output voltage setting unit 15b to an output signal waveform (pulse waveform) generated by the output signal generator 15a.
- a drive pulse obtained by multiplying the value by the multiplication unit 15c is input to the drive circuit 15d to generate a drive voltage to the piezoelectric element 13.
- a first filter processing unit 15x as a resonance suppression processing unit having an inverse function characteristic of a mechanical resonance frequency when the displacement magnifying mechanism 14 is operated, and the piezoelectric element 13
- a second filter processing unit 15y as a delay compensation processing unit having a reverse characteristic of the electrical drive characteristic that causes a drive delay when driving the drive, and through the first filter processing unit 15x, the second filter processing unit 15y is incorporated.
- a voltage with reduced influence of the mechanical resonance frequency is applied to the piezoelectric element 13, and a voltage with reduced influence of the electrical drive characteristic is applied to the piezoelectric element 13 through the second filter processing unit 15y. It is configured.
- the first filter processing unit 15x is configured by a notch filter.
- the mechanical resonance frequency characteristic of the actuator main body a1 (see FIG. 1) constituting the piezoelectric actuator A can be determined from analysis or the like, and only the vibration mode shown by the arrow in FIG. For this reason, the resonance frequency of f0 KHz as shown in FIG. 3 can be determined.
- the first filter processing unit 15x has an inverse characteristic of the mechanical resonance frequency characteristic as shown in FIG. 4 so as to remove this frequency component from the square wave output from the multiplier 15c. It is realized as a notch filter, and a waveform from which resonance frequency components are removed is output through this notch filter.
- the type of notch can be set by the center frequency, width, and gain of the notch.
- the reason why the first filter processing unit 15x is not a low-pass filter is that the low-pass filter does not have a frequency component higher than the mechanical resonance of the actuator body a1, and thus a response delay occurs. If response delay is allowed, a low-pass filter may be employed for the first filter processing unit 15x.
- the signal waveform from the notch filter used in the first filter processing unit 15x is input to the second filter processing unit 15y. Since the piezoelectric element 13 moves with voltage, it is delayed with respect to the current. Focusing on the electrical characteristics, in this embodiment, a low-pass filter having a cutoff frequency of fc KHz at ⁇ 3 dB as shown in FIG. 5 is obtained from the output impedance R of the control means 15 and the capacitance component C of the piezoelectric element body. Is formed. Therefore, the second filter processing unit 15y has a high-pass filter characteristic that is an inverse function of the low-pass filter characteristic as shown in FIG. 6, and the signal waveform output from the first filter processing unit 15x is related to the second filter processing unit 15y.
- the filter processing unit 15y By passing through the filter processing unit 15y, the delay based on the electrical characteristics is compensated and the responsiveness is further improved.
- the output impedance R of the control means 15 and the capacitance component C of the piezoelectric element 13 can be easily calculated from the design values of the drive circuit 15d of the drive means 15 and the piezoelectric element 13.
- FIG. 7 shows the characteristics of the first filter processing section 15x and the characteristics of the second filter processing section 15y together, and a combination of these characteristics forms the overall filter function.
- the filter is digitally configured using a microcomputer. Specifically, the filter function combining the characteristics of FIG. 7 is tabulated, and digital values are extracted from the table at a predetermined update pitch for the pulse signal output from the multiplier 15c and converted to analog data by a DA converter. Then, the filtered voltage is applied to the piezoelectric element 13 through the drive circuit 15d.
- these filter processing units 15x and 15y may be configured so as to be filtered by giving a calculation formula to a microcomputer, or may be configured by an analog circuit.
- FIG. 8A shows both the input waveform and the output waveform to the first filter processing unit 15 x, and it is originally desired to apply this output waveform to the piezoelectric element 13.
- the voltage waveform is once amplified by the second filter processing unit 15y as shown in FIG. 8B.
- the final applied voltage waveform of the piezoelectric element 13 is as shown in FIG. 8C under the influence of the low-pass filter composed of the output impedance R of the drive circuit 15d and the capacitance component C of the piezoelectric element 13. Is coincident with the output waveform from the first filter processing unit as shown in FIG. That is, it can be understood that the voltage can be applied to the piezoelectric element 13 with the voltage waveform originally desired to be output outputted from the first filter processing unit 15x by reducing the influence of the electrical characteristics.
- FIG. 9 shows the comparison data.
- FIG. 9A shows an application to the piezoelectric element 13 when the pulse output A is applied by actually constructing a circuit in the case where the first and second filter processing units 15x and 15y shown in FIG. 2 are not provided. It is a measurement waveform of the voltage waveform B and the displacement C of the valve 12. You can see how the valve is vibrating.
- FIG. 9B shows the pulse signal A2 in the stepwise driving method of the cited document 1 and the piezoelectric element 13 when the first stage pulse signal A1 is input stepwise as a voltage lower than A2 in the preceding stage. The applied voltage waveform B1 and the displacement C1 of the valve are shown, and it can be seen that the vibration of the valve 12 is improved.
- FIG. 9C shows the measurement result of this embodiment when the first and second filter processing units 15x and 15y shown in FIG. 2 are provided, and Az is the first and second filters.
- both prior art documents 1 and 2 perform actual matching while performing tuning by trial and error while actually measuring the pulse width and pulse height of the first stage pulse, the pre-pulse, the interval between the pre-pulse and the main pulse, and the like.
- the present invention can obtain the reverse characteristic in advance from the design value and the analysis result, an appropriate filter can be easily configured.
- the notch filter or the high-pass filter is based on how much the center frequency or the reference frequency deviates in which direction, The filter function can be easily modified.
- the resonance frequency component of the piezoelectric actuator A is removed from the drive applied voltage to the piezoelectric element 13 by the notch filter of the first filter processing unit 15x. Vibration due to mechanical resonance of the actuator A is removed and suppressed.
- the response speed can be increased.
- the responsiveness can be further improved by the inverse function of the low-pass filter comprising the driver and load of the second filter processing unit 15y.
- the command voltage of this embodiment is a pulse voltage obtained by multiplying the output signal waveform (pulse waveform) generated by the output signal generator 15a by the voltage level value set by the output voltage setting unit 15b by the multiplication unit 15c. . Only the height of the entire pulse is changed by multiplication, and the pulse waveform as a voltage command is not changed in a stepped manner in two steps or multiple steps such as the first voltage and the second voltage as in the prior art document 1, Further, unlike the prior art document 2, the signal generator does not generate a signal separated into a pre-pulse and a main pulse.
- the controller that is the driving unit includes the first filter processing unit and the second filter processing unit, but only the first filter processing unit has the same effects as the above. Can do.
- the first filter processing unit is a notch filter and the second filter processing unit is a high-pass filter.
- the present invention is not limited to this as long as the operational effects of the present invention can be obtained.
- the resonance suppression processing unit and the delay compensation processing unit are configured by filters, but these can also be realized by functions that do not belong to the filter concept.
- the present invention can be effectively used as a piezoelectric actuator and a piezoelectric valve for driving an object by expanding the displacement of a piezoelectric element (piezo element).
- Valve body 12 ... Actuator (Valve) 13 ... Piezoelectric element 14 ... Displacement magnifying mechanism 15 ... Drive means (controller) 15x: Resonance suppression processing unit (first filter processing unit) 15y ... Delay compensation processing unit (second filter processing unit) 19 ... leaf spring 111 ... gas pressure chamber 112 ... gas discharge path A ... piezoelectric actuator V ... piezoelectric valve
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrically Driven Valve-Operating Means (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Abstract
作動体である弁体(12)の動作に必要な駆動力を変位として発生する圧電素子(13)と、圧電素子(13)の変位を拡大し弁体(12)に作用させるべく少なくともバネ要素を含んだ変位拡大機構(14)と、圧電素子(13)に電圧を印加して圧電素子(13)を伸張させることで弁体(12)を作動させる駆動手段(15)とを備えたものにおいて、駆動手段(15)は、変位拡大機構(14)を動作させる際の機械的な共振周波数の逆関数特性を有する第1のフィルタ処理部(15x)を備えており、この共振抑制処理部(15x)を通して圧電素子(13)に機械的な共振を低減する電圧を印加するように構成されている。
Description
本発明は、圧電素子(ピエゾ素子)の変位を拡大して対象物を駆動する圧電式アクチュエータ及び圧電式バルブに関するものである。
この種の圧電式アクチュエータを利用した圧電式バルブとして、特許文献1、2に示されるものが知られている。
特許文献1の図1に示される圧電式バルブには、圧電式アクチュエータが内蔵されている。圧電式アクチュエータの伸縮動作により、アクチュエータ先端の弁部が開閉する仕組みになっている。
高速用途の場合、圧電式アクチュエータへは、同文献の図2(a)に示される通常パルス状の駆動電圧を印加するが、この場合に、同文献の図2(b)に示されるバルブ出力の出力変動が発生することに鑑みて、同文献の図3、図4に示されるように多段方式で電圧を印加することで、この圧力変動を抑制している。
一方、特許文献2では、同文献の図4B、図5A等に示されるようなプレパルスを入れることで振動を抑制している例を示している。
ところで、特許文献1のものは、圧電式エアバルブが変位拡大機構を介して弁体を移動させるものであるがゆえ、エアの噴風時間が長くなる場合に弁体が振動してノズルからの噴風量が変動し、安定した動作が得られないとの認識の下に、電圧の印加に工夫を凝らしている。しかしながら、特許文献1のものは、同文献中には明確な記載はないが、本発明者が検討した結果、圧力変動は圧電式アクチュエータの機械共振に起因したものであって、圧電式アクチュエータの伸縮時に共振による振動が発生し、これにより弁部の開度が変化していることに主たる原因があることが明らかとなった。
このようなことから、特許文献1には、次のような解決すべき課題があると考えられる。
i)同文献中に記載されている2段出力の駆動電圧波形の場合でも、パルス波形には、圧電式アクチュエータの周波数成分を含んでいるため、共振振動抑制の効果は低い。
ii)共振の概念がないので、構造を変更すると、現物合わせで再度チューニングする必要があり、事前にどのような2段出力にすれば良いのかがわからない。
iii)同文献に記載の2段出力の駆動電圧波形(1段目より2段目が電圧が高い)は、更新ピッチの遅いローパスフィルタを介した波形と同じと考えられる。共振振動を抑制するには、ローパスフィルタのカットオフ周波数を圧電式アクチュエータの共振周波数より低く設定することが有効であるが、その結果、駆動電圧波形から圧電式アクチュエータの共振より高い周波数成分も減少するため、圧電式アクチュエータの応答性が悪い。
i)同文献中に記載されている2段出力の駆動電圧波形の場合でも、パルス波形には、圧電式アクチュエータの周波数成分を含んでいるため、共振振動抑制の効果は低い。
ii)共振の概念がないので、構造を変更すると、現物合わせで再度チューニングする必要があり、事前にどのような2段出力にすれば良いのかがわからない。
iii)同文献に記載の2段出力の駆動電圧波形(1段目より2段目が電圧が高い)は、更新ピッチの遅いローパスフィルタを介した波形と同じと考えられる。共振振動を抑制するには、ローパスフィルタのカットオフ周波数を圧電式アクチュエータの共振周波数より低く設定することが有効であるが、その結果、駆動電圧波形から圧電式アクチュエータの共振より高い周波数成分も減少するため、圧電式アクチュエータの応答性が悪い。
一方、特許文献2のものでは、iii)はチューニングさえすれば共振周波数成分をある程度除去することが期待できるし、回路もシンプルになるので、良い対策であると考えられるが、上記i)、ii)については同様の課題が残る。
本発明は、このような課題に着目してなされたものであって、圧電式バルブ等に適用して弁体等の作動体に的確な動作を行わせることが可能な、従来にはない圧電式アクチュエータ及び圧電式バルブを提供することを目的としている。
本発明は、かかる目的を達成するために、次のような手段を講じたものである。
すなわち、本発明の圧電式アクチュエータは、作動体の動作に必要な駆動力を変位として発生する圧電素子と、前記圧電素子の変位を拡大し前記作動体に作用させるべく少なくともバネ要素を一部に含んだ変位拡大機構と、前記圧電素子に電圧を印加して該圧電素子を伸張させることで前記作動体を作動させる駆動手段と、を備えてなる圧電式アクチュエータにおいて、前記駆動手段は、前記変位拡大機構を動作させる際の機械的な共振周波数の逆関数特性を有する共振抑制処理部を備えており、この共振抑制処理部を通して前記圧電素子に前記機械的な共振を低減した電圧を印加するように構成されていることを特徴とする。
このように、作動体の変位の変動が変位拡大機構のバネ弾性による機械的な共振振動に起因することに着目すれば、その共振周波数を同定することにより、逆関数特性の共振抑制処理部を的確に構成することができる。
さらに、駆動系の応答遅れを的確に解消するためには、前記駆動手段が、前記圧電素子を駆動する際の遅れの原因となる電気的な駆動特性の逆特性を有する遅れ補償処理部を備え、この遅れ補償処理部を通して前記圧電素子に前記電気的な駆動特性の影響を低減する電圧を印加するように構成されていることが望ましい。
具体的な実施の態様としては、共振抑制処理部がノッチフィルタであるものや、遅れ補償処理部がハイパスフィルタであるものが挙げられる。
このような圧電式アクチュエータを用い、外部から供給される圧縮気体を受け入れる気体圧力室及び該気体圧力室から前記圧縮気体を排出する気体排出路が形成されるバルブ本体と、前記気体圧力室に配置され前記気体排出路を開閉する作動体である弁体とを備えて圧電式バルブを構成すれば、当該圧電式バルブに高速で安定、確実な開閉動作を行わせることが可能となる。
以上説明した本発明によれば、圧電式アクチュエータの共振周波数成分を除去して弁体等の作動体に的確な動作を行わせることが可能となるうえに、現物合わせ等に頼らずに解析等を通じて的確な駆動系を構成することが可能な、新規有用な圧電式アクチュエータを提供することが可能となる。
以下、本発明の一実施形態を、図面を参照して説明する。
図1はこの実施形態の圧電式バルブVを示すV図であり、この圧電式バルブVは、外部から供給される圧縮気体を受け入れる気体圧力室111及び該気体圧力室111から前記圧縮気体を排出する気体排出路112が形成されるバルブ本体11と、前記気体圧力室111に配置され前記気体排出路112を開閉する弁体12とを備えている。そして、この弁体12を作動体とする圧電式アクチュエータAをバルブ本体11に一体に組み込んで構成されている。
圧電式アクチュエータAは、作動体である弁体12の動作に必要な駆動力を変位として発生する圧電素子13と、この圧電素子13の変位を拡大し前記弁体12に作用させるべく少なくともバネ要素を含んだ変位拡大機構14と、前記圧電素子13に電圧を印加して該圧電素子13を伸張させることで前記作動体である弁体12を作動させる駆動手段15と、を基本構成として備えている。
前記弁体12は、前記バルブ本体11の前記気体圧力室111内において、前記気体排出路112を開閉する位置に配置される。
前記圧電素子13は、前記バルブ本体11の後述するU字状のベース基板10の内側に配置される。
前記変位拡大機構14は、前記バルブ本体11の前記気体圧力室111内に配置され、
前記圧電素子13の変位を拡大して前記弁体12に作用させる。
前記圧電素子13の変位を拡大して前記弁体12に作用させる。
前記駆動装置15は、前記圧電素子13に駆動電圧を印加して電荷を充電し、該圧電素子13を伸長させる図示しない充電用駆動回路と、前記充電した電荷を放電し、前記圧電素子13を収縮させる図示しない放電用駆動回路を備え、前記圧電素子13を伸縮変位させることにより前記弁体12を開閉駆動する。
前記変位拡大機構14は、前記圧電素子13の変位を拡大する変位拡大部14aと、前記圧電素子13の変位を前記変位拡大部14aに伝達する変位伝達部14bを有する。
前記変位伝達部14bは、前記圧電素子13の一端が接合されるU字状のベース基板10と、前記圧電素子13の他端が接合されるキャップ部材18aを有する。
前記圧電素子13は、前記U字状のベース基板10の空間内であって該U字状底部と前記キャップ部材18aとの間に組み込まれ、前記一端が前記ベース基板10に接合され、前記他端が前記キャップ部材18aに接合されている。
変位伝達部14bと変位拡大部14aは、第1ヒンジ16、第2ヒンジ17、第1アーム部材18及び板ばね19を含んで構成される。第1ヒンジ16の一端はベース基板10に接合される。第2ヒンジ17の一端は前記圧電素子13に取り付けられるキャップ部材18aに接合される。第1ヒンジ16及び第2ヒンジ17の各他端はいずれも、アーム部材18の基部に接合される。アーム部材18の外側先端部分には、板ばね19の一端が接合され、板ばね19の内方端は弁体12の最寄の側端部に接合される。
圧電式バルブVは、図1の状態において、駆動手段15により圧電素子13に駆動電圧を印加して電荷を充電すると、当該圧電素子13が図面左方向に伸長する。当該圧電素子13の伸長に伴う変位は、変位拡大機構14において、第2ヒンジ17を力点、第1ヒンジ16を支点、アーム部材18の先端部を作用点としてテコの原理により拡大され、アーム部材18の外側先端部を、一対のアーム部材18、18間が広がる方向に大きく変位させる。
そして、一対のアーム部材18、18の各外側先端部における変位は、一対の板ばね19、19を介して弁体12を弁座113から離間させ、気体排出路112を開放する。
一方、圧電式バルブVは、駆動装置15により上記圧電素子13が電荷を放電すると該圧電素子13が収縮し、当該収縮が変位拡大機構14を介して弁体12に伝達され、当該弁体12が弁座113に着座する。変位拡大機構14のバネ要素は、前記変位拡大機構のの一連の動作モードと同じモードにて共振する。なお、一対の板ばね19、19の共振周波数も構造により影響するが、一般的には共振周波数が非常に高く、共振振動も少ないことと考えられる。
このような構成において、図2に示す駆動手段(コントローラ)15は、本来ならば、出力信号発生器15aで発生する出力信号波形(パルス波形)に、出力電圧設定部15bで設定される電圧レベル値を乗算部15cで乗じた駆動パルスを駆動回路15dに入力して圧電素子13への駆動電圧を生成する。これに対して、本実施形態は、前記変位拡大機構14を動作させる際の機械的な共振周波数の逆関数特性を有する共振抑制処理部としての第1のフィルタ処理部15xと、前記圧電素子13を駆動する際の駆動遅れの原因となる電気的な駆動特性の逆特性を有する遅れ補償処理部としての第2のフィルタ処理部15yとを内蔵しており、第1のフィルタ処理部15xを通して前記圧電素子13に前記機械的な共振周波数の影響を低減した電圧を印加し、第2のフィルタ処理部15yを通して前記圧電素子13に前記電気的な駆動特性の影響を低減した電圧を印加するように構成されている。
第1のフィルタ処理部15xは、ノッチフィルタによって構成されている。圧電式アクチュエータAを構成するアクチュエータ本体a1(図1参照)の機械共振周波数特性は、解析等から割り出すことができ、加振形態からすると図1に矢印で示すような振動モードだけが現れる。このため、図3のようなf0KHzの共振周波数を割り出すことができる。第1のフィルタ処理部15xでは、乗算器15cから出てくる方形波からこの周波数成分を除去するように、第1のフィルタ処理部15xは図4に示すように機械共振周波数特性の逆特性のノッチフィルタとして実現し、このノッチフィルタを通して共振周波数成分を除去した波形を出力する。どの様なノッチにするかは、ノッチの中心周波数、幅、ゲインによって設定することができる。この第1のフィルタ処理部15xをローパスフィルタにしないのは、ローパスフィルタにはアクチュエータ本体a1の機械共振よりも高い周波数成分がないために応答遅れが生じるからである。応答遅れが許容されるならば、第1のフィルタ処理部15xにローパスフィルタを採用しても構わない。
図2に戻って、第1のフィルタ処理部15xで用いるノッチフィルタからの信号波形は第2のフィルタ処理部15yに入力される。圧電素子13は電圧で動くので電流に対して遅れとなる。電気的な特性に着目すると、この実施形態では制御手段15の出力インピーダンスRと圧電素子本体の容量成分Cとから、図5に示すように-3dBのときのカットオフ周波数がfcKHzのローパスフィルタが形成されている。そこで、第2のフィルタ処理部15yには、図6のように上記ローパスフィルタ特性の逆関数となるハイパスフィルタの特性をもたせ、第1のフィルタ処理部15xから出た信号波形を当該第2のフィルタ処理部15yを通すことで、電気的特性に基づく遅れ分を補償してさらに応答性を向上させる。制御手段15の出力インピーダンスRと圧電素子13の容量成分Cとは駆動手段15の駆動回路15dや圧電素子13の設計値から容易に算出することが可能である。
図7は、第1のフィルタ処理部15xの特性と第2のフィルタ処理部15yの特性を併記したものであり、これを合成したものが全体のフィルタ機能となる。この実施形態では、マイクロコンピュータを使用してフィルタをデジタルで構成している。具体的には、図7の特性を合成したフィルタ機能をテーブル化しておき、乗算器15cから出力されるパルス信号に対して所定更新ピッチでテーブルからデジタル値を取り出してDAコンバータでアナログデータに変換し、駆動回路15dを通して圧電素子13にフィルタリング後の電圧を印加するようにしている。勿論、これらのフィルタ処理部15x、15yを、マイクロコンピュータに計算式を与えてフィルタリングさせるように構成したり、アナログ回路で構成しても良いことは言うまでもない。
図8(a)は第1のフィルタ処理部15xへの入力波形と出力波形を併記したものであり、本来この出力波形を圧電素子13に印加したい。この実施形態では第2のフィルタ処理部15yを設けているので、電圧波形は一旦図8(b)のように第2のフィルタ処理部15yで増幅される。その後、駆動回路15dの出力インピーダンスRと圧電素子13の容量成分Cから構成されるローパスフィルタの影響を受けて圧電素子13の最終的な印加電圧波形は図8(c)のようになり、これは図8(d)に併記されるように第1のフィルタ処理部からの出力波形と一致する。すなわち、電気的特性による影響を低減して、第1のフィルタ処理部15xから出力される本来印加したい電圧波形で圧電素子13に電圧を印加できていることがわかる。
図9に比較データを示す。図9(a)は図2に示す第1、第2のフィルタ処理部15x、15yが無いとした場合の構成を実際に回路を組んでパルス出力Aを印加した際の圧電素子13への印加電圧波形Bと弁12の変位Cの測定波形である。弁が振動している様子がわかる。一方、図9(b)は引用文献1の段階的駆動方式においてパルス信号A2と、その前段にA2より低い電圧として1段目のパルス信号A1を段階的に入れた場合の圧電素子13への印加電圧波形B1と弁の変位C1を示しており、弁12の振動が改善されていることがわかる。これに対して、図9(c)は図2に示す第1、第2のフィルタ処理部15x、15yを設けた場合の本実施形態の測定結果を示し、Azは第1、第2のフィルタ処理部15x、15yを介した出力波形、Bzは圧電素子への印加電圧波形、Czは弁の変位である。弁12の変位に安定した結果を得ていることがわかる。なお、DAコンバータの更新ピッチを高速化し、アナログ波形に近づけることで、さらに共振振動抑制を改善することができる。ただし、図示の状態でも十分に実用性の高いものである。なお、図9の比較データはいずれも、伸張動作のみで確認としているが、縮小動作においても同等の効果がある。
プレパルス方式は評価していないが、本実施形態を荒くしていくと同じ波形になることが推測される。ただし、現物での合わせ込みのため、調整は困難と考えられる。
このように、先行技術文献1、2は何れも、1段目のパルスやプレパルスのパルス幅やパルス高さ、プレパルスと本パルスの間隔等を実測しながら試行錯誤でチューニングしつつ現物合わせを行わなければならないが、本発明は設計値や解析結果から事前に逆特性を求めることができるため、簡単に適正なフィルタを構成することができる。
さらに、圧電素子13や駆動回路15d等の経年変化によってフィルタの適合性が低下した場合にも、ノッチフィルタやハイパスフィルタであれば中心周波数や基準周波数からどの方向へどれだけずれたかに基づいて、フィルタ機能の修正も簡単に行うことができる。
以上のように、本実施形態によれば、第1のフィルタ処理部15xのノッチフィルタにより、圧電素子13への駆動印加電圧から、圧電式アクチュエータAの共振周波数成分が除去されることで、圧電式アクチュエータAの機械共振による振動が除去、抑制される。
また、ローパスフィルタと比較して、機械共振の共振周波数より高い周波数成分を含んでいるため、応答速度を速くすることができる。
さらに、第2のフィルタ処理部15yのドライバと負荷からなるローパスフィルタの逆関数により応答性をさらに向上させることができる。
そして、本実施形態の指令電圧は、出力信号発生器15aで発生する出力信号波形(パルス波形)に、出力電圧設定部15bで設定される電圧レベル値を乗算部15cで乗じたパルス電圧である。乗算によってパルス全体の高さが変わるだけで、電圧指令であるパルス波形を先行技術文献1のように第1電圧、第2電圧という具合に2段もしくは多段にステップ状に変化させるものではなく、また、先行技術文献2のようにプレパルスとメインパルスに分離した信号を信号発生部で発生するものでもない。
以上、本発明の一実施形態について説明したが、各部の具体的な構成は上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
例えば、上記実施形態では、駆動手段であるコントローラが第1のフィルタ処理部と第2のフィルタ処理部とを備えていたが、第1のフィルタ処理部だけでも上記に準じた作用効果を奏することができる。
また、上記実施形態では第1のフィルタ処理部がノッチフィルタであり、第2のフィルタ処理部がハイパスフィルタであったが、本発明の作用効果が得られれば、これに限定されない。
さらに、上記実施形態では共振抑制処理部や遅れ補償処理部をフィルタによって構成したが、フィルタの概念に属しない機能によってこれらを実現することも可能である。
その他、この圧電式アクチュエータを圧電式バルブ以外の用途に適用するなど、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
本発明は、圧電素子(ピエゾ素子)の変位を拡大して対象物を駆動する圧電式アクチュエータ及び圧電式バルブとして有効に利用することが可能である。
11…バルブ本体
12…作動体(弁体)
13…圧電素子
14…変位拡大機構
15…駆動手段(コントローラ)
15x…共振抑制処理部(第1のフィルタ処理部)
15y…遅れ補償処理部(第2のフィルタ処理部)
19…板ばね
111…気体圧力室
112…気体排出路
A…圧電式アクチュエータ
V…圧電式バルブ
12…作動体(弁体)
13…圧電素子
14…変位拡大機構
15…駆動手段(コントローラ)
15x…共振抑制処理部(第1のフィルタ処理部)
15y…遅れ補償処理部(第2のフィルタ処理部)
19…板ばね
111…気体圧力室
112…気体排出路
A…圧電式アクチュエータ
V…圧電式バルブ
Claims (5)
- 作動体の動作に必要な駆動力を変位として発生する圧電素子と、
前記圧電素子の変位を拡大し前記作動体に作用させるべく少なくともバネ要素を一部に含んだ変位拡大機構と、
前記圧電素子に電圧を印加して該圧電素子を伸張させることで前記作動体を作動させる駆動手段と、を備えてなる圧電式アクチュエータにおいて、
前記駆動手段は、前記変位拡大機構を動作させる際の機械的な共振周波数の逆関数特性を有する共振抑制処理部を備えており、この共振抑制処理部を通して前記圧電素子に前記機械的な共振を低減した電圧を印加するように構成されていることを特徴とする圧電式アクチュエータ。 - 前記駆動手段は、前記圧電素子を駆動する際の遅れの原因となる電気的な駆動特性の逆特性を有する遅れ補償処理部を備えており、この遅れ補償処理部を通して前記圧電素子に前記電気的な駆動特性の影響を低減する電圧を印加するように構成されている請求項1に記載の圧電式アクチュエータ。
- 共振抑制処理部がノッチフィルタである請求項1又は2に記載の圧電式アクチュエータ。
- 共振抑制処理部がノッチフィルタであり、遅れ補償処理部がハイパスフィルタである請求項2に記載の圧電式アクチュエータ。
- 請求項1~4に記載の圧電式アクチュエータを用いたものであって、
外部から供給される圧縮気体を受け入れる気体圧力室及び該気体圧力室から前記圧縮気体を排出する気体排出路が形成されるバルブ本体と、
前記気体圧力室に配置され前記気体排出路を開閉する作動体である弁体とを備えていることを特徴とする圧電式バルブ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780069881.4A CN109982780B (zh) | 2016-11-14 | 2017-07-14 | 压电式致动器以及压电式阀 |
EP17869630.8A EP3539680B1 (en) | 2016-11-14 | 2017-07-14 | Piezoelectric actuator and piezoelectric valve |
US16/349,407 US11009141B2 (en) | 2016-11-14 | 2017-07-14 | Piezoelectric actuator and piezoelectric valve |
KR1020197011814A KR102338645B1 (ko) | 2016-11-14 | 2017-07-14 | 압전식 액추에이터 및 압전식 밸브 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-221198 | 2016-11-14 | ||
JP2016221198A JP6955137B2 (ja) | 2016-11-14 | 2016-11-14 | 圧電式アクチュエータ及び圧電式バルブ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018087959A1 true WO2018087959A1 (ja) | 2018-05-17 |
Family
ID=62109507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/025659 WO2018087959A1 (ja) | 2016-11-14 | 2017-07-14 | 圧電式アクチュエータ及び圧電式バルブ |
Country Status (7)
Country | Link |
---|---|
US (1) | US11009141B2 (ja) |
EP (1) | EP3539680B1 (ja) |
JP (1) | JP6955137B2 (ja) |
KR (1) | KR102338645B1 (ja) |
CN (1) | CN109982780B (ja) |
TW (1) | TWI735580B (ja) |
WO (1) | WO2018087959A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5631631B2 (ja) | 1975-02-10 | 1981-07-22 | ||
JP2011087455A (ja) * | 2009-09-18 | 2011-04-28 | Murata Mfg Co Ltd | 圧電アクチュエーター駆動回路 |
JP2011143099A (ja) * | 2010-01-15 | 2011-07-28 | Asahi Kasei Electronics Co Ltd | 振動要素駆動回路および振動要素保護回路 |
JP2012528557A (ja) * | 2009-05-29 | 2012-11-12 | コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング | ピエゾバルブを操作するための回路装置および方法 |
WO2013157548A1 (ja) | 2012-04-20 | 2013-10-24 | 株式会社サタケ | 圧電式バルブ、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機 |
JP2015085278A (ja) * | 2013-10-31 | 2015-05-07 | ローム株式会社 | アクチュエータの駆動回路装置及び駆動方法並びにそれらを用いたレンズモジュール及び電子機器 |
JP2016032939A (ja) * | 2015-09-25 | 2016-03-10 | セイコーエプソン株式会社 | 制御装置および流体噴射装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0999567A (ja) * | 1995-10-04 | 1997-04-15 | Denso Corp | ピエゾアクチュエータ |
JPH10288618A (ja) * | 1997-04-16 | 1998-10-27 | Seiko Instr Inc | 表面分析装置 |
JP3975029B2 (ja) * | 1999-07-06 | 2007-09-12 | オリンパス株式会社 | 動吸振器付き走査型プローブ顕微鏡及びその測定方法 |
JP4344164B2 (ja) * | 2003-04-18 | 2009-10-14 | 株式会社サタケ | 圧電式エアバルブおよび複合圧電式エアバルブ |
JP2007028419A (ja) * | 2005-07-20 | 2007-02-01 | Victor Co Of Japan Ltd | スピーカ駆動装置 |
US7849870B2 (en) * | 2007-11-01 | 2010-12-14 | Honeywell International Inc. | Piezoelectric pressure control valve |
US20100326530A1 (en) * | 2007-11-01 | 2010-12-30 | Honeywell International, Inc. | Piezoelectric flow control valve |
JP5348881B2 (ja) * | 2007-12-25 | 2013-11-20 | セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー | 振動補償制御回路 |
JP5631631B2 (ja) | 2010-05-21 | 2014-11-26 | 株式会社サタケ | 圧電式バルブ及び該圧電式バルブを利用する光学式粒状物選別機 |
JP2013144273A (ja) * | 2012-01-13 | 2013-07-25 | Taiheiyo Cement Corp | 圧電アクチュエータの駆動回路 |
JP2014127533A (ja) | 2012-12-25 | 2014-07-07 | Nikon Corp | 搬送装置、基板貼り合わせ装置および搬送装置駆動プログラム |
DE102013105557B4 (de) * | 2013-05-29 | 2015-06-11 | Michael Förg | Piezoelektrischer Aktor |
-
2016
- 2016-11-14 JP JP2016221198A patent/JP6955137B2/ja active Active
-
2017
- 2017-05-24 TW TW106117224A patent/TWI735580B/zh active
- 2017-07-14 KR KR1020197011814A patent/KR102338645B1/ko active IP Right Grant
- 2017-07-14 US US16/349,407 patent/US11009141B2/en active Active
- 2017-07-14 WO PCT/JP2017/025659 patent/WO2018087959A1/ja active Application Filing
- 2017-07-14 EP EP17869630.8A patent/EP3539680B1/en active Active
- 2017-07-14 CN CN201780069881.4A patent/CN109982780B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5631631B2 (ja) | 1975-02-10 | 1981-07-22 | ||
JP2012528557A (ja) * | 2009-05-29 | 2012-11-12 | コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング | ピエゾバルブを操作するための回路装置および方法 |
JP2011087455A (ja) * | 2009-09-18 | 2011-04-28 | Murata Mfg Co Ltd | 圧電アクチュエーター駆動回路 |
JP2011143099A (ja) * | 2010-01-15 | 2011-07-28 | Asahi Kasei Electronics Co Ltd | 振動要素駆動回路および振動要素保護回路 |
WO2013157548A1 (ja) | 2012-04-20 | 2013-10-24 | 株式会社サタケ | 圧電式バルブ、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機 |
JP2015085278A (ja) * | 2013-10-31 | 2015-05-07 | ローム株式会社 | アクチュエータの駆動回路装置及び駆動方法並びにそれらを用いたレンズモジュール及び電子機器 |
JP2016032939A (ja) * | 2015-09-25 | 2016-03-10 | セイコーエプソン株式会社 | 制御装置および流体噴射装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109982780B (zh) | 2021-10-01 |
KR20190080870A (ko) | 2019-07-08 |
US11009141B2 (en) | 2021-05-18 |
US20190264827A1 (en) | 2019-08-29 |
EP3539680A4 (en) | 2020-07-22 |
TW201818012A (zh) | 2018-05-16 |
JP2018080709A (ja) | 2018-05-24 |
CN109982780A (zh) | 2019-07-05 |
KR102338645B1 (ko) | 2021-12-13 |
EP3539680B1 (en) | 2024-03-13 |
TWI735580B (zh) | 2021-08-11 |
JP6955137B2 (ja) | 2021-10-27 |
EP3539680A1 (en) | 2019-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hollkamp et al. | A self-tuning piezoelectric vibration absorber | |
JP4990286B2 (ja) | Memsチューナブルデバイス | |
CN108282730B (zh) | 微机械声换能器组件和相应的制造方法 | |
JP2015525872A5 (ja) | ||
US6016231A (en) | Drive mechanism employing electromechanical transducer and apparatus employing the mechanism | |
JP2014503169A (ja) | 機械/電気変換装置による振動エネルギーの変換を最適化する回路 | |
JP2007501938A (ja) | 改良電極形状による外来振動抑制形加速度計 | |
EP2515436A1 (en) | MEMS resonator and method of controlling the same | |
CN113195399A (zh) | 作为致动器的弯曲换能器、作为传感器的弯曲换能器、以及弯曲换能器系统 | |
WO2018087959A1 (ja) | 圧電式アクチュエータ及び圧電式バルブ | |
Davis et al. | Actively tuned solid state piezoelectric vibration absorber | |
JP5879197B2 (ja) | 静電型変換装置、静電型トランスおよび交流電圧発生装置 | |
US9310606B2 (en) | Controller for actuating a micromechanical actuator, actuating system for actuating a micromechanical actuator, micro-mirror system and method for actuating a micromechanical actuator | |
JP2014066292A (ja) | アクティブ制振器 | |
JP2007040382A (ja) | 振動抑制装置 | |
Bouchami et al. | Non-linear modeling of MEMS-based oscillators using an analog hardware description language | |
JP2019193211A (ja) | 音制御装置 | |
Pavithra et al. | Design and modeling of nonlinear coupled MEMS resonator using electrostatic actuation for L-band mobile satellite communication | |
JPH06301948A (ja) | ヘッド駆動装置 | |
JPH04312236A (ja) | 防振装置 | |
Lerman et al. | On the quality-factor of micro-resonators | |
Miller | Vibration Energy Harvesting from Wideband and Time‐Varying Frequencies | |
JPH0614563A (ja) | 圧電アクチュエータの駆動装置 | |
Su et al. | A reliable and wide-range tuning technique for low-frequency MEMS energy harvesters | |
Agrawal et al. | Modelling non-linearities in a MEMS square wave oscillator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17869630 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197011814 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017869630 Country of ref document: EP |