WO2013157548A1 - 圧電式バルブ、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機 - Google Patents

圧電式バルブ、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機 Download PDF

Info

Publication number
WO2013157548A1
WO2013157548A1 PCT/JP2013/061300 JP2013061300W WO2013157548A1 WO 2013157548 A1 WO2013157548 A1 WO 2013157548A1 JP 2013061300 W JP2013061300 W JP 2013061300W WO 2013157548 A1 WO2013157548 A1 WO 2013157548A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
piezoelectric
piezoelectric element
signal
gas
Prior art date
Application number
PCT/JP2013/061300
Other languages
English (en)
French (fr)
Inventor
伊藤 隆文
輝彦 竹内
松下 忠史
世傑 徐
矢野 健
丈司 上間
樋口 俊郎
Original Assignee
株式会社サタケ
有限会社メカノトランスフォーマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サタケ, 有限会社メカノトランスフォーマ filed Critical 株式会社サタケ
Priority to CN201380020550.3A priority Critical patent/CN104395658B/zh
Priority to GB1420439.0A priority patent/GB2516399B/en
Priority to IN2596KON2014 priority patent/IN2014KN02596A/en
Priority to KR1020147032589A priority patent/KR102017367B1/ko
Priority to US14/395,475 priority patent/US9114430B2/en
Priority to BR112014026011-7A priority patent/BR112014026011B1/pt
Publication of WO2013157548A1 publication Critical patent/WO2013157548A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B11/00Arrangement of accessories in apparatus for separating solids from solids using gas currents
    • B07B11/02Arrangement of air or material conditioning accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B11/00Arrangement of accessories in apparatus for separating solids from solids using gas currents
    • B07B11/04Control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • B07B4/02Separating solids from solids by subjecting their mixture to gas currents while the mixtures fall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • F16K31/007Piezoelectric stacks

Definitions

  • the present invention relates to a piezoelectric valve that opens and closes a valve by using expansion and contraction displacement of a piezoelectric element, a driving method of the piezoelectric valve, and an optical granular material sorter including a blast means using the piezoelectric valve. .
  • particles such as cereal grains and resin pellets are blown away by a blast of air jetting means to sort them into non-defective products (granular materials to be sought) and defective products (granular materials to be excluded), or foreign matter mixed into the granular materials
  • An optical granular material sorter that removes the like is known. This type of granular material sorter removes the granular material falling along the predetermined trajectory from the end of the conveyance path by blowing the air blown off with the above-mentioned means based on the detection signal of defective products or the like. Then, the granular material is selected.
  • the granular material sorter blows away defective products etc. from the continuous and large amount of falling granular materials by air (fountain), and only the defective products do not involve other granular materials. In order to blow off with high accuracy, it is necessary to provide a responsive valve in the blast nozzle.
  • Patent Document 1 describes a piezoelectric air valve that opens and closes a valve at high speed using a piezoelectric element.
  • the piezoelectric air valve includes a displacement enlarging mechanism that expands a small displacement of the piezoelectric element based on the principle of leverage.
  • the optical granular material sorter equipped with the blast nozzle using the piezoelectric air valve is more accurate than the conventional electromagnetic valve because the piezoelectric air valve is more responsive when opening and closing the valve. It blows off well and is less likely to be blown away by involving good products.
  • Patent Document 2 describes a piezoelectric valve that suppresses fluctuations in the amount of gas ejected from the gas discharge path when the valve is opened by setting the driving voltage applied to the piezoelectric element to a two-stage voltage.
  • the piezoelectric valve applies a first-stage voltage to the piezoelectric element at a timing when the valve body is driven to open the valve body, and at a timing that prevents vibration of the valve body that occurs due to the opening of the valve body from the first-stage voltage.
  • a higher second-stage voltage is applied to the piezoelectric element. According to this, since the fluctuation
  • the piezoelectric valve has a problem that the response at the time of opening the valve is greatly inferior to the case where the drive voltage applied to the piezoelectric element is a rectangular one-stage voltage.
  • the piezoelectric valve has a problem in that the circuit configuration of the driving device is complicated and the cost is higher than when the driving voltage applied to the piezoelectric element is a one-stage voltage.
  • the present invention provides a piezoelectric valve that can stably supply the gas even when the gas ejection time becomes long and also has excellent responsiveness when the valve is opened, and a method for driving the piezoelectric valve.
  • the present invention provides an optical granular material sorter that can blow out defective products and the like more reliably by using the piezoelectric valve and can obtain a stable sorting action of granular materials. With the goal.
  • the present invention is a piezoelectric valve having a gas pressure chamber for receiving compressed gas supplied from the outside, and a gas discharge passage for discharging the compressed gas from the gas pressure chamber, A valve body arranged in a gas pressure chamber for opening and closing the gas discharge path; a piezoelectric element that generates a driving force necessary for the operation of the valve body as a displacement; and a displacement of the piezoelectric element is expanded to act on the valve body A displacement enlarging mechanism, and a signal generating unit that generates a signal composed of a pre-pulse and a main pulse, and applying a driving voltage to the piezoelectric element as an input signal to the driving circuit using the signal generated by the signal generating unit, Drive means for extending the piezoelectric element to drive the valve body to open.
  • the driving means applies a driving voltage to the piezoelectric element based on the pre-pulse at the timing when the valve element opens, and fluctuations in the amount of gas ejected from the gas discharge path after the valve opening. It is preferable to apply a driving voltage to the piezoelectric element based on the main pulse at a timing to suppress the above.
  • the present invention provides a transfer means for transferring an object to be sorted, an optical detection means for detecting an object to be sorted falling from an end of the transfer means at a detection position, and an optical detection device provided further below the optical detection means.
  • Blasting means for blowing away the object to be sorted by air blast based on the detection result of the means, and the blasting means includes any one of the piezoelectric valves described above.
  • the piezoelectric valve generates a signal composed of the pre-pulse and the main pulse in a signal generation unit of the driving unit based on a detection result by the optical detection unit, and extends the piezoelectric element to expand the valve element. It is characterized by being driven to open the valve.
  • the present invention includes a gas pressure chamber that receives compressed gas supplied from the outside, and a gas discharge passage that discharges the compressed gas from the gas pressure chamber, and is disposed in the gas pressure chamber to open and close the gas discharge passage.
  • a valve element that generates a driving force necessary for the operation of the valve element as a displacement, a displacement enlarging mechanism that expands the displacement of the piezoelectric element and acts on the valve element, and an expansion and contraction displacement of the piezoelectric element
  • Driving means for opening and closing the valve body, wherein the driving means has a signal generating section for generating a signal composed of a pre-pulse and a main pulse, and the signal generation A drive voltage is applied to the piezoelectric element based on the signal generated in the section, and the valve element is driven to open by extending the piezoelectric element.
  • the driving means opens the valve body by applying a voltage to the piezoelectric element based on the pre-pulse, and applies the voltage to the piezoelectric element based on the main pulse to thereby open the valve after the valve opening. It is preferable to suppress fluctuations in the gas ejection amount from the gas discharge path.
  • the piezoelectric valve of the present invention has a signal generator that generates a signal composed of a pre-pulse and a main pulse, and applies a drive voltage to the piezoelectric element using the signal generated by the signal generator as an input signal to a drive circuit.
  • the piezoelectric element is extended and provided with a driving means for driving to open the valve body, the gas can be stably supplied even when the gas ejection time becomes long, and the responsiveness at the time of valve opening is also provided. It is excellent.
  • the piezoelectric valve according to the present invention applies a one-stage driving voltage having a specific voltage value to the piezoelectric element using the signal generated in the signal generator as an input signal to the driving circuit.
  • the circuit configuration is simplified, and the cost can be reduced as compared with the case where the drive voltage applied to the piezoelectric element is a two-stage voltage.
  • the optical granular material sorter according to the present invention includes the piezoelectric valve according to the present invention, the air can be stably supplied even when the blast time is long, and the response when the valve is opened. Combined with good quality, defective products and the like can be blown out more reliably, and stable sorting of granular materials can be performed.
  • the driving means has a signal generating unit that generates a signal composed of a pre-pulse and a main pulse, and the piezoelectric element is applied to the piezoelectric element based on the signal generated by the signal generating unit. Since the valve element is driven to open by applying a driving voltage and extending the piezoelectric element, the piezoelectric valve can stably supply the gas even when the gas ejection time becomes long. The time response will be excellent.
  • a one-stage driving voltage having a specific voltage value is applied to the piezoelectric element based on the signal generated by the signal generating unit. The circuit configuration is simplified, and the cost can be reduced compared to the case where the drive voltage applied to the piezoelectric element is a two-stage voltage.
  • FIG. 1 Schematic explanatory drawing of a piezoelectric valve body.
  • the 2nd modification of a piezoelectric valve. The block diagram of the circuit structure of the drive device in the piezoelectric valve of this invention.
  • the block diagram of the circuit structure of the drive device in the conventional piezoelectric valve The figure which shows the input signal and applied voltage in the conventional piezoelectric valve.
  • FIG. 1 is a schematic explanatory view of a piezoelectric valve in a state in which a side surface of a valve body is opened.
  • FIG. 1A is a side view when the valve is closed, and
  • FIG. 1B is a front view.
  • the piezoelectric valve 10 includes a valve main body 11, a valve body 12, a piezoelectric element 13, a displacement enlarging mechanism 14, and a driving device 15.
  • the valve body 11 includes a gas pressure chamber 111 that receives a supply of compressed gas from an external compressed gas supply source (not shown), and a gas discharge passage 112 that ejects the gas in the gas pressure chamber 111 to the outside.
  • the valve body 12 is disposed in the gas pressure chamber 111 of the valve body 11 and opens and closes the gas discharge path 112.
  • the piezoelectric element 13 is disposed in the valve body 11 and has one end fixed to the valve body 11.
  • the displacement magnifying mechanism 14 is disposed in the gas pressure chamber 111 of the valve main body 11 and enlarges the displacement of the piezoelectric element 13 to act on the valve body 12.
  • the driving device 15 applies a driving voltage to the piezoelectric element 13 to charge it, charges the driving circuit for extending the piezoelectric element 13, discharges the charged charge, and contracts the piezoelectric element 13.
  • a discharge drive circuit is provided, and the valve element 12 is driven to open and close by expanding and contracting the piezoelectric element 13.
  • the driving device 15 may be any device as long as the charging driving circuit and the discharging driving circuit are electrically connected to the piezoelectric element.
  • the driving device 15 needs to be physically integrated with the valve body 11. There is no.
  • a pair of the displacement enlarging mechanisms 14 are provided symmetrically with respect to a line (hereinafter referred to as “center line”) connecting the longitudinal axis of the piezoelectric element 13 and the gas discharge path 112.
  • the first displacement enlarging mechanism includes a first hinge 16a, a second hinge 17a, a first arm member 18a, and a first leaf spring 19a.
  • One end of the first hinge 16 a is joined to the valve body 11.
  • One end of the second hinge 17 a is joined to a cap member 131 attached to the piezoelectric element 13.
  • Both the other ends of the first hinge 16a and the second hinge 17a are joined to the base of the first arm member 18a.
  • One end of the first leaf spring 19 a is joined to the outer front end portion of the first arm member 18 a, and the inner end is joined to one side end of the valve body 12.
  • the second displacement magnifying mechanism includes the third hinge 16b, the fourth hinge 17b, the second arm member 18b, and the second leaf spring 19b.
  • One end of the third hinge 16 b is joined to the valve body 11.
  • One end of the fourth hinge 17 b is joined to a cap member 131 attached to the piezoelectric element 13.
  • the other ends of the third hinge 16b and the fourth hinge 17b are both joined to the base of the second arm member 18b.
  • One end of the second leaf spring 19b is joined to the outer front end portion of the second arm member 18b, and the inner end is joined to the other side end of the valve body 12.
  • the piezoelectric element 13 In the state shown in FIG. 1A, when the piezoelectric device 10 is charged by applying a driving voltage to the piezoelectric element 13 by the driving device 15, the piezoelectric element 13 extends in the right direction in the drawing.
  • the displacement accompanying the extension of the piezoelectric element 13 is magnified by the lever principle using the second hinge 17a as a power point, the first hinge 16a as a fulcrum, and the tip of the first arm member 18a as an action point.
  • the outer tip of the first arm member 18a is greatly displaced.
  • the displacement associated with the extension of the piezoelectric element 13 is the lever principle in the second displacement enlargement mechanism, with the fourth hinge 17b as a force point, the third hinge 16b as a fulcrum, and the tip of the second arm member 18b as an action point. And the outer end portion of the second arm member 18b is greatly displaced.
  • the displacement at the outer front ends of the first arm member 18a and the second arm member 18b causes the valve body 12 to be separated from the valve seat 113 via the first plate spring 19a and the second plate spring 19b, and gas is discharged.
  • the path 112 is opened.
  • the piezoelectric valve 10 is contracted when the piezoelectric element 13 discharges electric charges by the driving device 15, and the contraction is transmitted to the valve body 12 via the first and second displacement enlarging mechanisms.
  • the valve body 12 is seated on the valve seat 113.
  • the piezoelectric valve 10 has been described as an example in which the side surface of the gas pressure chamber 111 is opened to the outside, but this is for showing the internal structure, and the gas pressure chamber 111 is sealed. Needless to say, it is used in a state where
  • FIG. 2 is a first modification of the piezoelectric valve, and shows a state in which the side surface of the valve body is opened.
  • the piezoelectric valve 20 includes an actuator 30 formed by integrating a valve body 22, a piezoelectric element 23, and a displacement magnifying mechanism 24.
  • the actuator 30 is connected to a valve body 21 having a gas pressure chamber 211 and a gas discharge path 212.
  • a drive device (corresponding to the drive device 15) for driving the valve body 22 to open and close is not shown.
  • the displacement enlarging mechanism 24 includes a displacement enlarging unit 25 that enlarges the displacement of the piezoelectric element 23 and a displacement transmitting unit 26 that transmits the displacement of the piezoelectric element 23 to the displacement enlarging unit 25.
  • the displacement transmission unit 26 includes a U-shaped base substrate 27 to which one end of the piezoelectric element 23 is bonded, and a cap member 28 to which the other end of the piezoelectric element 23 is bonded.
  • the piezoelectric element 23 is incorporated in the space of the U-shaped base substrate 27 and between the U-shaped bottom portion and the cap member 28, and the one end is the base substrate. 27, and the other end is joined to the cap member 28.
  • the piezoelectric valve 20 is also used with the side surface of the valve body 21 sealed.
  • FIG. 3 shows a second modification of the piezoelectric valve, which shows the inside of the cross section of the valve body.
  • the piezoelectric valve 40 shown in FIG. 3 has an opening in the front surface of the valve body 41 forming the gas pressure chamber 411, and a gas discharge path 421 is formed in the lid body 42 that closes the opening. 2 is different from the piezoelectric valve 20 shown in FIG. 2 in that the plate 43 disposed in the valve body 41 is integrally formed and the actuator 30 shown in FIG. To do. In this case as well, a driving device that opens and closes the valve body is not shown.
  • a plate 43 to which the actuator 30 is fixed is disposed from the front opening of the valve body 41, and the valve 42 is formed by the lid 42 formed integrally with the plate 43.
  • the body 41 is assembled by closing the opening.
  • FIG. 4A is a block diagram of a circuit configuration of a driving device in a piezoelectric valve according to the present invention
  • FIG. 4B is a timing chart of signals generated in the circuit and applied voltages of the piezoelectric element.
  • the drive device for the piezoelectric valve of the present invention generates one charging signal A (hereinafter referred to as “prepulse signal”) consisting of a prepulse and a main pulse in the signal generator 150.
  • prepulse signal a charging signal A
  • the driving device discharges the electric charge from the piezoelectric element and contracts the piezoelectric element by using the discharging signal B generated in the signal generating unit 150 as an input signal to the discharging driving circuit 152.
  • the piezoelectric valve of the present invention uses the signal A (prepulse signal) generated in the signal generator 150 as an input signal to the charging drive circuit 151 from a specific voltage value to the piezoelectric element. Since the one-stage driving voltage is applied, the circuit configuration of the driving device is simplified.
  • FIG. 5A is an input signal (prepulse signal) to the charging drive circuit 151 in the piezoelectric valve of the present invention
  • FIG. 5B is a drive voltage applied to the piezoelectric element based on the input signal
  • FIG. 5C is a valve open by the drive voltage.
  • the graph of the ejection pressure characteristic of the air which ejects from the gas discharge path made is shown.
  • compressed air was used as the compressed gas supplied from the outside to the piezoelectric valve.
  • the pre-pulse time t1 and the pause time t2 (main pulse input timing), and the drive voltage value applied to the piezoelectric element by the pre-pulse signal are such that the rise of the air ejection pressure at the time of valve opening is fast, and the valve is opened.
  • Optimum timing conditions and the like that prevent later fluctuations in the air ejection pressure are determined in advance through experiments and the like.
  • the main pulse time t3 is set based on the air ejection time.
  • FIG. 6A is a block diagram of a circuit configuration of a driving device in a conventional piezoelectric valve described in Patent Document 2
  • FIG. 6B is a timing chart of signals generated and generated in the circuit and applied voltage of the piezoelectric element. Show. As shown in FIG.
  • the signal generator 550 in the driving device in the conventional piezoelectric valve, the signal generator 550 generates two charging signals, a signal A_H and a signal A_L, which are rectangular waves, and the command value calculation circuit 553
  • the two signals are combined to generate a combined signal A ′ (hereinafter referred to as “two-stage signal”) having two stages, and the two-stage signal is used as an input signal to the charging drive circuit 551, thereby generating a piezoelectric signal.
  • a voltage is applied to the element to charge it, and the piezoelectric element is stretched.
  • the driving device discharges the electric charge from the piezoelectric element and contracts the piezoelectric element by using the discharging signal B generated in the signal generating unit 550 as an input signal to the discharging driving circuit 552.
  • the conventional piezoelectric valve generates a signal A ′ (two-stage signal) in the command value calculation circuit 553 based on the signal A_H and the signal A_L generated in the signal generator 550, and the signal A ′ (two-stage signal) is used as an input signal to the charging drive circuit 551 to apply a two-stage drive voltage to the piezoelectric element, and the first-stage drive voltage applied to the piezoelectric element is a target value. Since it is necessary to perform feedback control by the FB circuit 554, the circuit configuration of the driving device becomes complicated.
  • FIG. 7A shows an input signal (two-stage signal) to a charging drive circuit 551 in a conventional piezoelectric valve (comparative example)
  • FIG. 7B shows a drive voltage applied to the piezoelectric element based on the input signal
  • FIG. The graph of the ejection pressure characteristic of the air which ejects from the gas exhaust path opened by drive voltage is shown. In this case as well, compressed air was used as the compressed gas supplied from the outside to the piezoelectric valve.
  • the first stage time t4 (second stage input timing) and the drive voltage value applied to the piezoelectric element by the second stage signal are such that the rise of the air ejection pressure at the time of valve opening is fast and the drive voltage value is opened.
  • Optimal timing conditions, etc. in which fluctuations in the air jet pressure after the valve are suppressed (preventing the valve body from vibrating due to the reaction caused by the valve opening) are determined in advance through experiments and the like.
  • the second stage time t5 is set based on the air ejection time.
  • FIG. 8 shows a graph comparing the air ejection pressure characteristics in the example of the present invention and the comparative example.
  • the alternate long and short dash line indicates a case where the “prepulse signal” is used as an input signal to the charging drive circuit 151.
  • a solid line indicates a case where the “two-stage signal” is used as an input signal to the charging drive circuit 551.
  • the case where the “pulse (rectangular wave) signal” is used as the input signal to the charging drive circuit is indicated by a broken line.
  • a single-stage rectangular drive voltage is applied to the piezoelectric element.
  • a piezoelectric valve with a “pulse signal” as an input signal has excellent response when opening, but the air jet pressure (spout amount) after opening has fluctuated greatly.
  • the input signal is “two-stage signal”
  • the fluctuation of the air ejection pressure (ejection amount) after the valve opening is suppressed as compared with the case of the “pulse signal”.
  • the response at the time of valve opening is greatly inferior.
  • the piezoelectric valve of the present invention in which the input signal is a “pre-pulse signal”, variation in the air ejection pressure (amount of ejection) after the valve opening is suppressed as compared with the case of the “pulse signal”. It can be seen that the response at the time of valve opening is superior to the case of the “two-stage signal”.
  • the piezoelectric valve of the present invention can stably supply the gas even when the gas ejection time becomes long and is excellent in responsiveness when the valve is opened.
  • FIG. 9 is a side sectional view of a principal part showing a simplified internal structure of the optical granular material sorter.
  • FIG. 10 shows a control block diagram in the optical granular material sorter.
  • the optical granular material sorter 610 has a granular material supply unit including a tank 620 and a vibration feeder 630 at an upper portion.
  • An inclined chute 640 having a predetermined width is disposed below the granular material supply unit. The granular material supplied from the granular material supply unit spreads in the width direction on the inclined chute 640 and continuously flows down in a continuous manner, and then is discharged into the air along a predetermined fall trajectory from its lower end.
  • At least a pair of optical detection devices 650a and 650b for imaging a granular object at a granular object detection position O that extends linearly in parallel with the width direction of the inclined chute 640 are arranged to face each other.
  • Each of the optical detection devices 650a and 650b includes imaging means 651a and 651b such as a CCD camera having a built-in CCD line sensor, illumination means 652a and 652b such as fluorescent lamps, and a back as a background when imaging the particulate matter. It consists of grounds 653a, 653b and the like.
  • the blast device 670 includes a blast nozzle 671 in which a plurality of the piezoelectric valves according to the present invention are installed in parallel, and a compressed air supply device 673 that sends compressed air to the blast nozzle 671.
  • the particulate matter discharged from the lower end of the inclined chute 640 is supplied to the blast nozzle 671 provided corresponding to each position in the width direction of the falling locus of the particulate matter. It blows away by jetting air from a plurality of nozzle holes.
  • the piezoelectric element of the piezoelectric valve is electrically connected to the drive circuit of the drive device 672.
  • the granular material discharged from the lower end into the air along a predetermined fall trajectory is the granular material.
  • Images are picked up by the image pickup means 651 a and 651 b of the optical detection devices 650 a and 650 b at the object detection position O, and the image pickup data is sent to the control device 660.
  • the control device 660 specifies a granular material to be removed such as a defective product based on the imaging data, acquires information on the size of the granular material, and the like, and sends an exclusion signal of the defective product to the driving device 672. Send to.
  • the blast device 670 selectively drives the plurality of piezoelectric valves based on the exclusion signal sent to the driving device 672, and the particulate matter extends linearly in parallel with the width direction of the inclined chute 640. Air is blown from each nozzle hole of the blowing nozzle 671 provided corresponding to each position in the width direction on defective products passing through the exclusion position E.
  • the driving device 672 generates a “prepulse signal” in the signal generation unit based on the rejection signal, and uses the prepulse signal as an input signal to the charging drive circuit.
  • a voltage is applied to the piezoelectric element of the piezoelectric valve that is selectively driven.
  • the pre-pulse time t1 and the pause time t2 main pulse input timing
  • Defective products and the like blown off by the blast from each nozzle hole of the blast nozzle 671 are discharged from the defective product discharge port 681 to the outside of the apparatus.
  • non-defective products and the like that have passed through a predetermined drop trajectory without being blown off by the blast are collected from the non-defective product discharge port 682.
  • the optical granular material sorter 610 stably supplies air even when the piezoelectric valve has excellent responsiveness when the valve is opened and the blast time is long. In addition, it is possible to blow out defective products and the like more reliably, so that it is possible to perform stable sorting of granular materials.
  • the granular material to be sorted is typically cereal grains, particularly rice grains, but is not necessarily limited to cereal grains, and the objects should be blown away by a blast. As long as the size and mass are possible, it does not matter.
  • the displacement enlarging mechanism may be arranged asymmetrically with respect to a line connecting the longitudinal axis of the piezoelectric element and the gas discharge path, or only one displacement enlarging mechanism is arranged. It may be done.
  • the valve body may be joined to one end of the arm member.
  • the longitudinal axis of the piezoelectric element may not coincide with the operation direction of the valve body.
  • the piezoelectric valve of the present invention can stably supply the gas even when the gas ejection time becomes long, and also has excellent responsiveness when the valve is opened, and can be used in various fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Sorting Of Articles (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

 気体の噴出時間が長くなる場合でも該気体を安定して供給できるとともに、開弁時の応答性にも優れる圧電式バルブを提供する。 圧電式バルブは、外部から供給される圧縮気体を受け入れる気体圧力室、及び該気体圧力室から前記圧縮気体を排出する気体排出路、を有する圧電式バルブであって、前記気体圧力室に配置され前記気体排出路を開閉する弁体と、前記弁体の動作に必要な駆動力を変位として発生する圧電素子と、前記圧電素子の変位を拡大して前記弁体に作用させる変位拡大機構と、プレパルスとメインパルスからなる信号を発生する信号発生部を有し、該信号発生部で発生する前記信号を駆動回路への入力信号として前記圧電素子に駆動電圧を印加し、該圧電素子を伸長させて前記弁体を開弁駆動する駆動手段と、を備えた。

Description

[規則37.2に基づきISAが決定した発明の名称] 圧電式バルブ、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機
 本発明は、圧電素子の伸縮変位を利用してバルブの開閉を行う圧電式バルブ、該圧電式バルブの駆動方法、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機に関する。
 従来、穀粒や樹脂ペレット等の粒状物をエアを噴出させる手段による噴風により吹き飛ばして良品(求める粒状物)と不良品(排除すべき粒状物)に選別したり、粒状物に混入する異物等を除去したりする光学式粒状物選別機が知られている。
 この種の粒状物選別機は、搬送路の端部から所定の軌跡に沿って落下する粒状物を、不良品等の検出信号に基づいて前記の手段を作動させ、噴風により吹き飛ばし除去することで、該粒状物の選別を行うものである。
 上記粒状物選別機は、連続的かつ大量に落下する粒状物の中から不良品等を噴出するエア(噴風)により吹き飛ばすものであり、当該不良品等のみを他の粒状物を巻き込むことなく精度よく吹き飛ばすためには、噴風ノズルに応答性のよいバルブを備えることが必要となる。
 特許文献1には、圧電素子を利用してバルブの開閉を高速で行う圧電式エアバルブが記載されている。該圧電式エアバルブは、圧電素子の小さな変位をテコの原理に基づき拡大する変位拡大機構を備えるものである。
 そして、上記圧電式エアバルブを利用した噴風ノズルを備える光学式粒状物選別機は、上記圧電式エアバルブが従来の電磁バルブに比べてバルブ開閉時の応答性に優れることから、不良品等を精度よく吹き飛ばし、かつ良品等を巻き込んで吹き飛ばすおそれの少ないものである。
 ところが、上記光学式粒状物選別機は、上記圧電式エアバルブが変位拡大機構を介して弁体を移動させるものであるため、エアの噴風時間が長くなる場合、前記弁体が振動してノズルからの噴風量が変動し、安定した選別作用を得られなくなる問題がある。
 そこで、特許文献2には、圧電素子に印加する駆動電圧を2段電圧とすることで、開弁時における気体排出路からの気体噴出量の変動を抑止する圧電式バルブが記載されている。該圧電式バルブは、弁体を開弁駆動するタイミングで1段目の電圧を圧電素子に印加し、前記開弁に伴い発生する弁体の振動を防止するタイミングで前記1段目の電圧よりも高い2段目の電圧を圧電素子に印加する。これによると、開弁後における気体排出路からの気体噴出量の変動を抑止できるため、気体の噴出時間が長くなる場合でも該気体を安定して供給することができる。
 しかしながら、上記圧電式バルブは、圧電素子に印加する駆動電圧を矩形状の1段電圧とした場合に比べて開弁時の応答性が大きく劣る問題がある。
 また、上記圧電式バルブは、圧電素子に印加する駆動電圧を1段電圧とした場合に比べて駆動装置の回路構成が複雑となり、コスト高となる問題がある。
特開2004-316835号公報 特開2011-241961号公報
 そこで、本発明は、気体の噴出時間が長くなる場合でも該気体を安定して供給できるとともに、開弁時の応答性にも優れる圧電式バルブ及び該圧電式バルブの駆動方法を提供することを目的とする。
 また、本発明は、上記圧電式バルブを利用することで、不良品等をより確実に吹き飛ばすことができ、粒状物の安定した選別作用を得ることができる光学式粒状物選別機を提供することを目的とする。
 上記目的を達成するため、本発明は、外部から供給される圧縮気体を受け入れる気体圧力室、及び該気体圧力室から前記圧縮気体を排出する気体排出路、を有する圧電式バルブであって、前記気体圧力室に配置され前記気体排出路を開閉する弁体と、前記弁体の動作に必要な駆動力を変位として発生する圧電素子と、前記圧電素子の変位を拡大して前記弁体に作用させる変位拡大機構と、プレパルスとメインパルスからなる信号を発生する信号発生部を有し、該信号発生部で発生する前記信号を駆動回路への入力信号として前記圧電素子に駆動電圧を印加し、該圧電素子を伸長させて前記弁体を開弁駆動する駆動手段と、を備えることを特徴とする。
 本発明は、前記駆動手段が、前記弁体を開弁するタイミングで、前記プレパルスに基づいて前記圧電素子に駆動電圧を印加し、前記開弁後における前記気体排出路からの気体噴出量の変動を抑止するタイミングで、前記メインパルスに基づいて前記圧電素子に駆動電圧を印加することが好ましい。
 本発明は、被選別物を移送する移送手段と、該移送手段の端部から落下する被選別物を検出位置において検出する光学検出手段と、該光学検出手段のさらに下方に設けられ当該光学検出手段による検出結果に基づいて被選別物をエアの噴風により吹き飛ばす噴風手段と、を備えてなる光学式粒状物選別機であって、前記噴風手段は、上記いずれかの圧電式バルブを備え、当該圧電式バルブは、前記光学検出手段による検出結果に基づいて、前記駆動手段の信号発生部で前記プレパルスとメインパルスからなる信号を発生し、前記圧電素子を伸長させて前記弁体を開弁駆動することを特徴とする。
 本発明は、外部から供給される圧縮気体を受け入れる気体圧力室、及び該気体圧力室から前記圧縮気体を排出する気体排出路、を有し、前記気体圧力室に配置され前記気体排出路を開閉する弁体と、前記弁体の動作に必要な駆動力を変位として発生する圧電素子と、前記圧電素子の変位を拡大して前記弁体に作用させる変位拡大機構と、前記圧電素子を伸縮変位させて前記弁体を開閉駆動する駆動手段と、を備える圧電式バルブの駆動方法であって、前記駆動手段は、プレパルスとメインパルスからなる信号を発生する信号発生部を有し、該信号発生部で発生する前記信号に基づいて前記圧電素子に駆動電圧を印加し、該圧電素子を伸長させて前記弁体を開弁駆動することを特徴とする。
 本発明は、前記駆動手段が、前記プレパルスに基づく前記圧電素子への電圧印加により、前記弁体を開弁し、前記メインパルスに基づく前記圧電素子への電圧印加により、前記開弁後における前記気体排出路からの気体噴出量の変動を抑止することが好ましい。
 本発明の圧電式バルブは、プレパルスとメインパルスからなる信号を発生する信号発生部を有し、該信号発生部で発生する前記信号を駆動回路への入力信号として前記圧電素子に駆動電圧を印加し、該圧電素子を伸長させて前記弁体を開弁駆動する駆動手段を備えるので、気体の噴出時間が長くなる場合でも該気体を安定して供給できるとともに、開弁時の応答性にも優れるものである。
 また、本発明の圧電式バルブは、前記信号発生部において発生する前記信号を駆動回路への入力信号として、前記圧電素子に特定の電圧値からなる1段の駆動電圧を印加するので、駆動手段の回路構成がシンプルとなり、圧電素子に印加する駆動電圧を2段電圧とする場合に比べコストを低減できる。
 本発明の光学式粒状物選別機は、上記本発明の圧電式バルブを備えるので、噴風時間が長くなる場合であっても、エアを安定して供給することができ、開弁時の応答性の良さと相俟って、不良品等をより確実に吹き飛ばすことができ、粒状物の安定した選別を行うことができる。
 本発明の圧電式バルブの駆動方法によれば、駆動手段が、プレパルスとメインパルスからなる信号を発生する信号発生部を有し、該信号発生部で発生する前記信号に基づいて前記圧電素子に駆動電圧を印加し、該圧電素子を伸長させて前記弁体を開弁駆動するので、当該圧電式バルブは、気体の噴出時間が長くなる場合でも該気体を安定して供給できるとともに、開弁時の応答性にも優れるものとなる。
 また、本発明の圧電式バルブの駆動方法によれば、前記信号発生部で発生する前記信号に基づいて前記圧電素子に特定の電圧値からなる1段の駆動電圧を印加するので、駆動手段の回路構成がシンプルとなり、圧電素子に印加する駆動電圧を2段電圧とする場合に比べコストを低減できる。
圧電式バルブ本体の概略説明図。 圧電式バルブ本体の概略正面図。 圧電式バルブの第1の変形例。 圧電式バルブの第2の変形例。 本発明の圧電式バルブにおける駆動装置の回路構成のブロック図。 本発明の圧電式バルブにおける入力信号と印加電圧を示す図。 本発明の実施例における充電用駆動回路への入力信号のグラフ。 本発明の実施例における圧電素子に印加する駆動電圧のグラフ。 本発明の実施例における気体排出路から噴出するエアの噴出圧特性の関係を示すグラフ。 従来の圧電式バルブにおける駆動装置の回路構成のブロック図。 従来の圧電式バルブにおける入力信号と印加電圧を示す図。 比較例における充電用駆動回路への入力信号のグラフ。 比較例における圧電素子に印加する駆動電圧のグラフ。 比較例における気体排出路から噴出するエアの噴出圧特性を示すグラフ。 本発明の実施例と比較例におけるエア噴出圧特性の比較を示すグラフ。 光学式粒状物選別機の要部側断面図。 図9に示す粒状物選別機の制御ブロック図。
 本発明の実施の形態を図面に基づいて説明する。
<圧電式バルブ>
 図1は、バルブ本体の側面が開放された状態における圧電式バルブの概略説明図であって、図1Aは閉弁時における側面図、図1Bは正面図を示す。
 圧電式バルブ10は、バルブ本体11と、弁体12と、圧電素子13と、変位拡大機構14と、駆動装置15を備える。
 前記バルブ本体11は、外部の圧縮気体供給源(図示せず)から圧縮気体の供給を受ける気体圧力室111、及び該気体圧力室111内の気体を外部に噴出する気体排出路112を有する。
 前記弁体12は、前記バルブ本体11の前記気体圧力室111内に配置され、前記気体排出路112を開閉する。
 前記圧電素子13は、前記バルブ本体11内に配置され該バルブ本体11に一端が固定される。
 前記変位拡大機構14は、前記バルブ本体11の前記気体圧力室111内に配置され、前記圧電素子13の変位を拡大して前記弁体12に作用させる。
 前記駆動装置15は、前記圧電素子13に駆動電圧を印加して電荷を充電し、該圧電素子13を伸長させる充電用駆動回路と、前記充電した電荷を放電し、前記圧電素子13を収縮させる放電用駆動回路を備え、前記圧電素子13を伸縮変位させることにより前記弁体12を開閉駆動する。
 なお、前記駆動装置15は、前記の充電用駆動回路と放電用駆動回路が前記圧電素子と電気的に接続されるものであればよく、例えば前記バルブ本体11と物理的に一体とされる必要はない。
 前記変位拡大機構14は、前記圧電素子13の長手方向軸線と気体排出路112とを結ぶ線(以下、「中心線」という。)に対し対称に一対設けられるものである。
 第1変位拡大機構は、第1ヒンジ16a、第2ヒンジ17a、第1アーム部材18a及び第1板ばね19aで構成される。第1ヒンジ16aの一端はバルブ本体11に接合される。第2ヒンジ17aの一端は前記圧電素子13に取り付けられるキャップ部材131に接合される。前記の第1ヒンジ16a及び第2ヒンジ17aの各他端はいずれも、第1アーム部材18aの基部に接合される。第1アーム部材18aの外側先端部分には、第1板ばね19aの一端が接合され、内端は弁体12の一方側の側端部に接合される。
 一方、第2変位拡大機構は、第3ヒンジ16b、第4ヒンジ17b、第2アーム部材18b及び第2板ばね19bで構成される。第3ヒンジ16bの一端はバルブ本体11に接合される。第4ヒンジ17bの一端は前記圧電素子13に取り付けられるキャップ部材131に接合される。第3ヒンジ16b及び第4ヒンジ17bの各他端はいずれも、第2アーム部材18bの基部に接合される。第2アーム部材18bの外側先端部分には、第2板ばね19bの一端が接合され、内端は弁体12の他方側の側端部に接合される。
 圧電式バルブ10は、図1Aの状態において、駆動装置15により圧電素子13に駆動電圧を印加して電荷を充電すると、当該圧電素子13が図面上右方向に伸長する。当該圧電素子13の伸長に伴う変位は、第1変位拡大機構では、第2ヒンジ17aを力点、第1ヒンジ16aを支点、第1アーム部材18aの先端部を作用点としてテコの原理により拡大され、第1アーム部材18aの外側先端部を大きく変位させる。同様に、当該圧電素子13の伸長に伴う変位は、第2変位拡大機構では、第4ヒンジ17bを力点、第3ヒンジ16bを支点、第2アーム部材18bの先端部を作用点としてテコの原理により拡大され、第2アーム部材18bの外側先端部を大きく変位させる。
 そして、前記第1アーム部材18a及び第2アーム部材18bの各外側先端部における変位は、第1板ばね19a及び第2板ばね19bを介して弁体12を弁座113から離間させ、気体排出路112を開放する。
 一方、圧電式バルブ10は、駆動装置15により上記圧電素子13が電荷を放電すると該圧電素子13が収縮し、当該収縮が第1及び第2変位拡大機構を介して弁体12に伝達され、当該弁体12が弁座113に着座する。
 ここで、図1において、圧電式バルブ10は、気体圧力室111の側面が外部に開放された状態を例として説明したが、内部構造を示すためであって、該気体圧力室111は密閉された状態で使用されることは言うまでもない。
<圧電式バルブの第1変形例>
 図2は、圧電式バルブの第1の変形例であって、バルブ本体の側面が開放された状態を示す。
 当該圧電式バルブ20は、弁体22、圧電素子23、変位拡大機構24を一体化してなるアクチュエータ30を有し、当該アクチュエータ30を、気体圧力室211及び気体排出路212を有するバルブ本体21に対し側方から固定する構成とした点で、図1に示す圧電式バルブ10と相違する。
 なお、ここでは、前記弁体22を開閉駆動する駆動装置(前記の駆動装置15に相当)については図示省略する。
 ここで、前記変位拡大機構24は、前記圧電素子23の変位を拡大する変位拡大部25と、前記圧電素子23の変位を前記変位拡大部25に伝達する変位伝達部26を有する。
 前記変位伝達部26は、前記圧電素子23の一端が接合されるU字状のベース基板27と、前記圧電素子23の他端が接合されるキャップ部材28を有する。
 当該圧電式バルブ20は、前記圧電素子23が、前記U字状のベース基板27の空間内であって該U字状底部と前記キャップ部材28との間に組み込まれ、前記一端が前記ベース基板27に接合され、前記他端が前記キャップ部材28に接合されている。
 当該圧電式バルブ20も、バルブ本体21の側面を密閉した状態で使用されることは言うまでもない。
<圧電式バルブの第2変形例>
 図3は、圧電式バルブの第2の変形例であって、バルブ本体の断面内部の様子を示す。図3に示す圧電式バルブ40は、気体圧力室411を形成するバルブ本体41の前面が開口し、該開口を閉鎖する蓋体42に気体排出路421が形成されており、当該蓋体42に、前記バルブ本体41の内部に配設されるプレート43が一体に形成されるとともに、該プレート43に図2に示すアクチュエータ30が固定されている点で、図2に示す圧電式バルブ20と相違する。
 なお、ここでも、弁体を開閉駆動する駆動装置については図示省略する。
 当該圧電式バルブ40は、前記アクチュエータ30が固定されたプレート43を、前記バルブ本体41における前面の開口から内部に配設するとともに、前記プレート43と一体に形成された前記蓋体42で前記バルブ本体41の前記開口を閉鎖することにより組み立てられる。
[実施例](プレパルス信号)
 図4Aは本発明の圧電式バルブにおける駆動装置の回路構成についてのブロック図、図4Bは前記回路において発生する信号及び圧電素子の印加電圧のタイミングチャートを示す。
 図4Aに示すように、本発明の圧電式バルブにおける駆動装置は、信号発生部150において、プレパルスとメインパルスからなる1つの充電用信号A(以下、「プレパルス信号」という。)を発生し、該プレパルス信号を充電用駆動回路151への入力信号とすることで、圧電素子に電圧を印加して電荷を充電し、該圧電素子を伸長させる。また、前記駆動装置は、信号発生部150において発生する放電用信号Bを放電用駆動回路152への入力信号とすることで、前記圧電素子から前記電荷を放電させ、該圧電素子を収縮させる。
 本発明の圧電式バルブは、図4Bに示すように、前記信号発生部150において発生する信号A(プレパルス信号)を充電用駆動回路151への入力信号として、前記圧電素子に特定の電圧値からなる1段の駆動電圧を印加するので、駆動装置の回路構成がシンプルとなる。
 図5Aは本発明の圧電式バルブにおける充電用駆動回路151への入力信号(プレパルス信号)、図5Bは前記入力信号に基づいて圧電素子に印加する駆動電圧、図5Cは前記駆動電圧によって開弁される気体排出路から噴出するエアの噴出圧特性のグラフを示す。ここでは、圧電式バルブに外部から供給する圧縮気体として圧縮エアを用いた。
 図5A~Cに示すグラフの実験条件は以下のとおりである。
(1)圧縮エア供給圧力:0.25MPa(大気圧下のゲージ圧値)
(2)圧縮エア設定流量:60L/min
(3)入力信号:プレパルス時間t1=0.14ms、休止時間t2=0.03ms、メインパルス時間t3=1.83ms(圧電素子の通電時間:2ms)
(4)エア噴出圧検出位置:気体排出路先端より2mm
 ここで、前記プレパルス時間t1及び休止時間t2(メインパルスの入力のタイミング)、並びに前記プレパルス信号により圧電素子に印加する駆動電圧値は、開弁時におけるエア噴出圧の立ち上がりが早く、かつ開弁後におけるエア噴出圧の変動が抑止される(開弁に伴う反動で弁体が振動するのを防ぐ)最適なタイミング条件等を実験等により予め求めて設定されている。
 また、前記メインパルス時間t3は、エア噴出時間に基づいて設定されている。
[比較例](2段信号)
 図6Aは、特許文献2に記載された、従来の圧電式バルブにおける駆動装置の回路構成についてのブロック図、図6Bは前記回路において発生及び生成する信号、並びに圧電素子の印加電圧のタイミングチャートを示す。
 図6Aに示すように、従来の圧電式バルブにおける駆動装置は、信号発生部550において、矩形波からなる信号A_Hと信号A_Lの2つの充電用信号を発生し、指令値演算回路553において、前記2つの信号を合成して2段からなる合成信号A’(以下、「2段信号」という。)を生成し、該2段信号を充電用駆動回路551への入力信号とすることで、圧電素子に電圧を印加して電荷を充電し、該圧電素子を伸長させる。また、前記駆動装置は、信号発生部550において発生する放電用信号Bを放電用駆動回路552への入力信号とすることで、前記圧電素子から前記電荷を放電させ、該圧電素子を収縮させる。
 従来の圧電式バルブは、図6Bに示すように、信号発生部550において発生する信号A_H及び信号A_Lに基づいて、指令値演算回路553において信号A’(2段信号)を生成し、該信号A’(2段信号)を充電用駆動回路551への入力信号として、前記圧電素子に2段の駆動電圧を印加するものであり、前記圧電素子に印加する1段目の駆動電圧が目標値となるようFB回路554によりフィードバック制御する必要があるので、駆動装置の回路構成が複雑となる。
 図7Aは、従来の圧電式バルブ(比較例)における充電用駆動回路551への入力信号(2段信号)、図7Bは前記入力信号に基づいて圧電素子に印加する駆動電圧、図7Cは前記駆動電圧によって開弁される気体排出路から噴出するエアの噴出圧特性のグラフを示す。なお、ここでも、圧電式バルブに外部から供給する圧縮気体として圧縮エアを用いた。
 図7A~Cに示すグラフの実験条件は以下のとおりである。
(1)圧縮エア供給圧力:0.25MPa(大気圧下のゲージ圧値)
(2)圧縮エア設定流量:60L/min
(3)入力信号:1段目の時間t4=0.26ms、2段目の時間t5=1.74ms(圧電素子の通電時間:2ms)
(4)エア噴出圧検出位置:気体排出路先端より2mm
 ここで、前記1段目の時間t4(2段目の入力のタイミング)、及び前記2段信号により圧電素子に印加する駆動電圧値は、開弁時におけるエア噴出圧の立ち上がりが早く、かつ開弁後におけるエア噴出圧の変動が抑止される(開弁に伴う反動で弁体が振動するのを防ぐ)最適なタイミング条件等を実験等により予め求めて設定されている。
 また、前記2段目の時間t5は、エア噴出時間に基づいて設定されている。
 図8は、本発明の実施例と比較例とにおけるエア噴出圧特性を比較するグラフを示す。
 図8において、一点鎖線は「プレパルス信号」を充電用駆動回路151への入力信号とした場合を示す。また、実線は「2段信号」を充電用駆動回路551への入力信号とした場合を示す。さらに、図8には、「パルス(矩形波)信号」を充電用駆動回路への入力信号とした場合を合わせて破線で示す。なお、「パルス信号」を充電用駆動回路への入力信号とした場合、圧電素子には1段の矩形状の駆動電圧が印加される。
 まず、入力信号を「パルス信号」とした圧電式バルブでは、開弁時の応答性が非常に優れている一方で、開弁後におけるエア噴出圧(噴出量)が大きく変動していることが分かる。
 次に、入力信号を「2段信号」とした従来の圧電式バルブでは、前記「パルス信号」の場合と比較して、開弁後におけるエア噴出圧(噴出量)の変動が抑止される一方で、開弁時の応答性が大きく劣っていることが分かる。
 一方、入力信号を「プレパルス信号」とした本発明の圧電式バルブでは、前記「パルス信号」の場合と比較して、開弁後におけるエア噴出圧(噴出量)の変動が抑止されるとともに、前記「2段信号」の場合と比較して、開弁時の応答性が優れていることが分かる。
 以上より、本発明の圧電式バルブは、気体の噴出時間が長くなる場合でも該気体を安定して供給できるとともに、開弁時の応答性にも優れるものであるといえる。
<光学式粒状物選別機>
 次に、本発明の圧電式バルブを利用した噴風ノズルを備える光学式粒状物選別機について説明する。
 図9は、光学式粒状物選別機の内部構造を簡略化して示した要部側断面図を示す。図10は、光学式粒状物選別機における制御ブロック図を示す。
 光学式粒状物選別機610は、上部にタンク620と振動フィーダ630とからなる粒状物供給部を有する。粒状物供給部の下方には所定幅を有する傾斜状シュート640が配置される。
 前記粒状物供給部から供給された粒状物は、前記傾斜状シュート640上を幅方向に広がって連続状に自然流下した後、その下端から所定の落下軌跡に沿って空中に放出される。
 前記所定の落下軌跡の前後には、前記傾斜状シュート640の幅方向に平行に直線状に延びる粒状物検出位置Oにおいて粒状物を撮像する少なくとも一対の光学検出装置650a,650bが対向して配設される。各光学検出装置650a,650bは、それぞれCCDラインセンサを内蔵するCCDカメラ等の撮像手段651a,651b、蛍光灯等からなる照明手段652a,652b、及び前記粒状物を撮像する際の背景となるバックグラウンド653a,653b等から構成される。
 また、前記粒状物検出位置Oの下方には、不良品等をエアの噴風により除去する噴風装置670が配設される。前記噴風装置670は、上記本発明の圧電式バルブを複数並設して組み込んでなる噴風ノズル671と、該噴風ノズル671に圧縮エアを送る圧縮エア供給装置673を備え、前記各光学検出装置650a,650bの検出結果に基づいて、前記傾斜状シュート640の下端から放出される粒状物を、該粒状物の落下軌跡の幅方向各位置に対応して設けられる前記噴風ノズル671の複数のノズル孔からのエアの噴射により吹き飛ばす。なお、前記圧電式バルブの圧電素子は、駆動装置672の駆動回路と電気的に接続される。
 上記光学式粒状物選別機610において、前記傾斜状シュート640を幅方向に広がって連続状に自然流下した後、その下端から所定の落下軌跡に沿って空中に放出される粒状物は、前記粒状物検出位置Oにおいて前記各光学検出装置650a,650bの撮像手段651a,651bにより撮像され、当該撮像データが制御装置660に送られる。該制御装置660は、前記撮像データに基づいて不良品等の除去すべき粒状物を特定するとともに当該粒状物の大きさ等に関する情報を取得し、前記不良品等の排除信号を前記駆動装置672に送る。
 前記噴風装置670は、前記駆動装置672に送られる前記排除信号に基づいて前記複数の圧電式バルブを選択的に駆動し、前記傾斜状シュート640の幅方向に平行に直線状に延びる粒状物排除位置Eを通過する不良品等に対し、該幅方向の各位置に対応して設けられる前記噴風ノズル671の各ノズル孔からエアを噴風する。
 このとき、前記駆動装置672は、前記排除信号に基づいて、図4に示すように、信号発生部において「プレパルス信号」を発生し、該プレパルス信号を充電用駆動回路への入力信号として、前記選択的に駆動される圧電式バルブの圧電素子に電圧を印加する。
 ここで、前記プレパルス信号において、プレパルス時間t1及び休止時間t2(メインパルスの入力のタイミング)は予め実験等により求めて、駆動装置672に設定されている。
 そして、前記噴風ノズル671の各ノズル孔からの噴風により吹き飛ばされた不良品等は、不良品排出口681から機外に排出される。また、噴風により吹き飛ばされることなく所定の落下軌跡をそのまま通過した良品等は、良品排出口682から回収される。
 以上のように、上記光学式粒状物選別機610は、前記圧電式バルブが、開弁時の応答性に優れるとともに、噴風時間が長くなる場合であっても、エアを安定して供給することができ、不良品等をより確実に吹き飛ばすことができるため、粒状物の安定した選別を行うことができる。
 上記光学式粒状物選別機において、選別対象となる粒状物は、代表的には穀物粒、特に米粒であるが、必ずしも穀物粒に限られるわけではなく、その対象物は、噴風によって吹き飛ばすことが可能な大きさと質量である限り何でも構わない。
 なお、本発明の圧電式バルブは、変位拡大機構が前記圧電素子の長手方向軸線と気体排出路とを結ぶ線に対して非対称に配置されるものでもよいし、変位拡大機構が一つのみ配置されるものでもよい。
 また、本発明の圧電式バルブは、弁体がアーム部材の一端部に接合されるものでもよい。
 さらに、本発明の圧電式バルブは、圧電素子の長手方向軸線が弁体の動作方向に一致するものでなくてもよい。
 本発明は、上記実施の形態に限るものでなく、発明の範囲を逸脱しない限りにおいてその構成を適宜変更できることはいうまでもない

産業上の利用可能性
 本発明の圧電式バルブは、気体の噴出時間が長くなる場合でも該気体を安定して供給できるとともに、開弁時の応答性にも優れるものであり、さまざまな分野において利用できるものである。

符号の説明
10   圧電式バルブ
11   バルブ本体
111   気体圧力室
112   気体排出路
12   弁体
13   圧電素子
14   変位拡大機構
15   駆動装置
150   信号発生部
151   充電用駆動回路
152   放電用駆動回路
18a,18b   アーム部材
19a,19b   板ばね
20   圧電式バルブ
21   バルブ本体
211   気体圧力室
212   気体排出路
22   弁体
23   圧電素子
24   変位拡大機構
30   アクチュエータ
40   圧電式バルブ
41   バルブ本体
411   気体圧力室
42   蓋体
421   気体排出路
43   プレート
55   駆動装置
550   信号発生部
551   充電用駆動回路
552   放電用駆動回路
553   指令値演算回路
554   フィードバック回路
610   光学式粒状物選別機
640   傾斜状シュート
650a,650b   光学検出装置
651a,651b   CCDカメラ(撮像手段)
660   制御装置
670   噴風装置
671   噴風ノズル
672   駆動装置
673   圧縮エア供給装置

Claims (5)

  1.  外部から供給される圧縮気体を受け入れる気体圧力室、及び該気体圧力室から前記圧縮気体を排出する気体排出路、を有する圧電式バルブであって、
     前記気体圧力室に配置され前記気体排出路を開閉する弁体と、
     前記弁体の動作に必要な駆動力を変位として発生する圧電素子と、
     前記圧電素子の変位を拡大して前記弁体に作用させる変位拡大機構と、
     プレパルスとメインパルスからなる信号を発生する信号発生部を有し、該信号発生部で発生する前記信号を駆動回路への入力信号として前記圧電素子に駆動電圧を印加し、該圧電素子を伸長させて前記弁体を開弁駆動する駆動手段と、を備えることを特徴とする圧電式バルブ。
  2.  前記駆動手段は、前記弁体を開弁するタイミングで、前記プレパルスに基づいて前記圧電素子に駆動電圧を印加し、前記開弁後における前記気体排出路からの気体噴出量の変動を抑止するタイミングで、前記メインパルスに基づいて前記圧電素子に駆動電圧を印加する請求項1記載の圧電式バルブ。
  3.  被選別物を移送する移送手段と、該移送手段の端部から落下する被選別物を検出位置において検出する光学検出手段と、該光学検出手段のさらに下方に設けられ当該光学検出手段による検出結果に基づいて被選別物をエアの噴風により吹き飛ばす噴風手段と、を備えてなる光学式粒状物選別機であって、
     前記噴風手段は、請求項1又は2に記載の圧電式バルブを備え、
     当該圧電式バルブは、前記光学検出手段による検出結果に基づいて、前記駆動手段の信号発生部で前記プレパルスとメインパルスからなる信号を発生し、前記圧電素子を伸長させて前記弁体を開弁駆動することを特徴とする光学式粒状物選別機。
  4.  外部から供給される圧縮気体を受け入れる気体圧力室、及び該気体圧力室から前記圧縮気体を排出する気体排出路、を有し、
     前記気体圧力室に配置され前記気体排出路を開閉する弁体と、
     前記弁体の動作に必要な駆動力を変位として発生する圧電素子と、
     前記圧電素子の変位を拡大して前記弁体に作用させる変位拡大機構と、
     前記圧電素子を伸縮変位させて前記弁体を開閉駆動する駆動手段と、を備える圧電式バルブの駆動方法であって、
     前記駆動手段は、プレパルスとメインパルスからなる信号を発生する信号発生部を有し、該信号発生部で発生する前記信号に基づいて前記圧電素子に駆動電圧を印加し、該圧電素子を伸長させて前記弁体を開弁駆動することを特徴とする圧電式バルブの駆動方法。
  5.  前記駆動手段は、前記プレパルスに基づく前記圧電素子への電圧印加により、前記弁体を開弁し、前記メインパルスに基づく前記圧電素子への電圧印加により、前記開弁後における前記気体排出路からの気体噴出量の変動を抑止する請求項4記載の圧電式バルブの駆動方法。
PCT/JP2013/061300 2012-04-20 2013-04-16 圧電式バルブ、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機 WO2013157548A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380020550.3A CN104395658B (zh) 2012-04-20 2013-04-16 压电式阀、该压电式阀的驱动方法及具有利用该压电式阀的喷气单元的光学式粒状物选别机
GB1420439.0A GB2516399B (en) 2012-04-20 2013-04-16 Piezoelectric valve, and optical particulate matter sorter provided with air-blowing means that uses piezoelectric valve
IN2596KON2014 IN2014KN02596A (ja) 2012-04-20 2013-04-16
KR1020147032589A KR102017367B1 (ko) 2012-04-20 2013-04-16 압전식 밸브 및 그 압전식 밸브를 이용한 분풍 수단을 구비하는 광학식 입상물 선별기
US14/395,475 US9114430B2 (en) 2012-04-20 2013-04-16 Piezoelectric valve, and optical particulate matter sorter provided with air-blowing means that uses piezoelectric valve
BR112014026011-7A BR112014026011B1 (pt) 2012-04-20 2013-04-16 Válvula pizoelétrica e separador ótico de material particulado provido com meios de sopro de ar que utiliza válvula pizoelétrica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-096605 2012-04-20
JP2012096605 2012-04-20

Publications (1)

Publication Number Publication Date
WO2013157548A1 true WO2013157548A1 (ja) 2013-10-24

Family

ID=49383504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061300 WO2013157548A1 (ja) 2012-04-20 2013-04-16 圧電式バルブ、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機

Country Status (9)

Country Link
US (1) US9114430B2 (ja)
JP (1) JPWO2013157548A1 (ja)
KR (1) KR102017367B1 (ja)
CN (1) CN104395658B (ja)
BR (1) BR112014026011B1 (ja)
GB (1) GB2516399B (ja)
IN (1) IN2014KN02596A (ja)
TW (1) TWI599736B (ja)
WO (1) WO2013157548A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154390A1 (ja) * 2016-03-08 2017-09-14 株式会社サタケ 圧電式バルブ、該圧電式バルブの駆動方法、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機
WO2018087959A1 (ja) 2016-11-14 2018-05-17 シンフォニアテクノロジー株式会社 圧電式アクチュエータ及び圧電式バルブ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201219184D0 (en) * 2012-10-25 2012-12-12 Buhler Sortex Ltd Adaptive ejector valve array
JP1525031S (ja) * 2014-08-07 2015-06-01
JP6782537B2 (ja) * 2015-10-29 2020-11-11 シンフォニアテクノロジー株式会社 エア噴射機構およびパーツフィーダ
JP6796919B2 (ja) * 2015-10-29 2020-12-09 シンフォニアテクノロジー株式会社 エア噴射機構およびパーツフィーダ
TWI638097B (zh) * 2017-02-20 2018-10-11 研能科技股份有限公司 微型氣體傳輸裝置
JP7300117B2 (ja) * 2019-06-28 2023-06-29 株式会社サタケ 圧電式バルブ及び該圧電式バルブの製造方法
US10802121B1 (en) 2019-10-09 2020-10-13 Ford Global Technologies, Llc Cleaning apparatus for sensor
CN111510018B (zh) 2020-05-20 2022-05-24 矽力杰半导体技术(杭州)有限公司 压电驱动电路和压电驱动方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107372B2 (ja) * 1986-09-04 1995-11-15 株式会社日本自動車部品総合研究所 燃料噴射ポンプ
JP2011241961A (ja) * 2010-05-21 2011-12-01 Satake Corp 圧電式バルブ及び該圧電式バルブを利用する光学式粒状物選別機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142845A (ja) * 1985-12-17 1987-06-26 Aisan Ind Co Ltd インジエクタ用バルブの制御方法
JPH087372Y2 (ja) * 1989-08-22 1996-03-04 宇部日東化成株式会社 識別用着色線条が設けられた螺旋スペーサの着色異常検出装置
JPH07107372A (ja) * 1993-09-29 1995-04-21 Canon Inc 振れ防止装置を備えたビデオカメラ
US5628411A (en) * 1994-12-01 1997-05-13 Sortex Limited Valve devices for use in sorting apparatus ejectors
DE19735156C1 (de) * 1996-11-25 1999-04-29 Fraunhofer Ges Forschung Piezoelektrisch betätigtes Mikroventil
JP2000023474A (ja) * 1998-07-01 2000-01-21 Isuzu Motors Ltd 圧電アクチュエータ及びそれを用いた燃料噴射装置
US8436268B1 (en) * 2002-08-12 2013-05-07 Ecullet Method of and apparatus for type and color sorting of cullet
JP4344164B2 (ja) 2003-04-18 2009-10-14 株式会社サタケ 圧電式エアバルブおよび複合圧電式エアバルブ
DE102004002111B4 (de) * 2004-01-14 2007-04-12 Dbt Gmbh Piezoelektrische Aktoreinheit für den Bergbau
US7355320B2 (en) * 2004-11-10 2008-04-08 Advanced Energy Industries, Inc. Reactive load resonant drive circuit
EP1746318B1 (de) * 2005-07-22 2007-11-14 Delphi Technologies, Inc. Verfahren und Vorrichtung zum Überwachen und Beurteilen der Funktion eines piezoelektrischen Aktors
TWI435196B (zh) * 2009-10-15 2014-04-21 Pivotal Systems Corp 氣體流量控制方法及裝置
EP2673536B1 (en) * 2011-02-10 2015-04-22 Fluid Automation Systems S.A. Electrically actuated valve with a sealing ball
JP5764049B2 (ja) * 2011-12-13 2015-08-12 株式会社サタケ 圧電式バルブ及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107372B2 (ja) * 1986-09-04 1995-11-15 株式会社日本自動車部品総合研究所 燃料噴射ポンプ
JP2011241961A (ja) * 2010-05-21 2011-12-01 Satake Corp 圧電式バルブ及び該圧電式バルブを利用する光学式粒状物選別機

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154390A1 (ja) * 2016-03-08 2017-09-14 株式会社サタケ 圧電式バルブ、該圧電式バルブの駆動方法、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機
GB2563371A (en) * 2016-03-08 2018-12-12 Satake Eng Co Ltd Piezoelectric valve, method for driving said piezoelectric valve and optical particulate sorter provided with air-blowing means that uses said piezoelectric
KR20190039468A (ko) 2016-03-08 2019-04-12 가부시끼가이샤 사따께 압전식 밸브, 그 압전식 밸브의 구동 방법, 및 그 압전식 밸브를 이용한 분풍 수단을 구비하는 광학식 입상물 선별기
US10738905B2 (en) 2016-03-08 2020-08-11 Satake Corporation Piezoelectric valve, method for driving piezoelectric valve, and optical particulate separator equipped with air-jet means using piezoelectric valve
GB2563371B (en) * 2016-03-08 2021-12-08 Satake Eng Co Ltd Piezoelectric valve, method for driving piezoelectric valve, and optical particulate separator equipped with air-jet means using piezoelectric valve
WO2018087959A1 (ja) 2016-11-14 2018-05-17 シンフォニアテクノロジー株式会社 圧電式アクチュエータ及び圧電式バルブ
JP2018080709A (ja) * 2016-11-14 2018-05-24 シンフォニアテクノロジー株式会社 圧電式アクチュエータ及び圧電式バルブ
KR20190080870A (ko) 2016-11-14 2019-07-08 신포니아 테크놀로지 가부시끼가이샤 압전식 액추에이터 및 압전식 밸브
US11009141B2 (en) 2016-11-14 2021-05-18 Sinfonia Technology Co., Ltd. Piezoelectric actuator and piezoelectric valve

Also Published As

Publication number Publication date
CN104395658A (zh) 2015-03-04
GB201420439D0 (en) 2014-12-31
BR112014026011A2 (pt) 2021-05-25
US9114430B2 (en) 2015-08-25
TW201411017A (zh) 2014-03-16
GB2516399A (en) 2015-01-21
BR112014026011B1 (pt) 2021-09-28
TWI599736B (zh) 2017-09-21
KR102017367B1 (ko) 2019-09-02
US20150060337A1 (en) 2015-03-05
CN104395658B (zh) 2016-12-21
JPWO2013157548A1 (ja) 2015-12-21
GB2516399B (en) 2020-08-12
IN2014KN02596A (ja) 2015-05-08
KR20150008141A (ko) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2013157548A1 (ja) 圧電式バルブ、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機
US8662312B2 (en) Piezoelectric valve and optical granular material-sorting apparatus utilizing such piezoelectric valve
WO2017154390A1 (ja) 圧電式バルブ、該圧電式バルブの駆動方法、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機
JP5764049B2 (ja) 圧電式バルブ及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機
CN110226283B (zh) 压电执行元件、异常检测电路、以及压电式阀门系统
JP5986369B2 (ja) 圧電式バルブの組立方法及び圧電式バルブ、並びに該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機
US11858007B2 (en) Optical granular matter sorter
US20230398578A1 (en) Optical sorter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511221

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14395475

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 1420439

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130416

ENP Entry into the national phase

Ref document number: 20147032589

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014026011

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13778538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014026011

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141017

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112014026011

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2425 DE 27/06/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112014026011

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2012-096605 DE 20/04/2012 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DA CITADA PRIORIDADE, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME.

ENP Entry into the national phase

Ref document number: 112014026011

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141017