WO2018085991A1 - 确定感应电极初始距离发生变化的方法 - Google Patents

确定感应电极初始距离发生变化的方法 Download PDF

Info

Publication number
WO2018085991A1
WO2018085991A1 PCT/CN2016/105086 CN2016105086W WO2018085991A1 WO 2018085991 A1 WO2018085991 A1 WO 2018085991A1 CN 2016105086 W CN2016105086 W CN 2016105086W WO 2018085991 A1 WO2018085991 A1 WO 2018085991A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensing electrode
sensing
real
characteristic data
Prior art date
Application number
PCT/CN2016/105086
Other languages
English (en)
French (fr)
Inventor
桂新涛
陈小祥
钟翔
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2016/105086 priority Critical patent/WO2018085991A1/zh
Priority to CN201680001299.XA priority patent/CN108604136B/zh
Priority to EP16921358.4A priority patent/EP3407169A4/en
Priority to KR1020187024534A priority patent/KR102166563B1/ko
Publication of WO2018085991A1 publication Critical patent/WO2018085991A1/zh
Priority to US16/110,655 priority patent/US10884563B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/144Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors with associated circuitry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04144Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means

Definitions

  • Embodiments of the present invention relate to the field of pressure touch technology, and in particular, to a method for determining a change in an initial distance of a sensing electrode.
  • Portable electronic devices have brought convenience to people's daily work and have become an indispensable tool for people.
  • Portable electronic devices have a variety of input devices, such as buttons, mice, joysticks, laser pointers, touch screens, etc., but touch technology is rapidly applied to various electronic devices due to its good interactivity, allowing users to pass Gesture operation can realize the operation of the terminal, get rid of the traditional mechanical keyboard, and make the human-computer interaction more straightforward.
  • touch technology With the development of touch technology, simple finger touch can not meet the needs of users for more dimensional input. Adding pressure detection technology to touch technology realizes adding another dimension information based on location information, allowing touch screen Can sense finger pressure information, sense the pressure of light pressure and heavy pressure, and call out different corresponding functions, thus providing a better user experience, such as screen press pop-up menu or "small ball", press to speed up the page , left and right scrolling speed, tactile feedback and other effects.
  • the touch detection technology applied to most portable electronic devices adopts a capacitive sensing array, and thus the pressure detecting technology adopts an array capacitor as a detecting pressure sensor, which has a great advantage.
  • the capacitive sensing array is sensitive to the initial distance of the sensing electrode, the portable electronic device may have a situation of falling, twisting, impact, etc. during use, changing the sensing. The initial distance of the electrode further leads to a large deviation in the results of the pressure detection.
  • An object of the embodiments of the present invention is to provide a method for determining a change in an initial distance of a sensing electrode, a self-calibration method for the correspondence between characteristic data and pressure, and a self-calibrating pressure detecting method for at least solving the prior art.
  • an embodiment of the present invention provides a method for determining a change in an initial distance of a sensing electrode, including:
  • the sensing electrode whose initial distance changes is calibrated by the correspondence between the characteristic data of the sensing electrode whose initial distance changes and the pressure.
  • the embodiment of the present invention further provides a self-calibration method for the correspondence between feature data and pressure. After determining the sensing electrode whose initial distance changes, the method includes:
  • the correspondence between the characteristic data of the sensing electrode and the pressure whose initial distance changes is calibrated according to the plurality of sets of characteristic data corresponding to before and after pressing and the relative elastic coefficients of the pre-stored different pressing positions with respect to the respective sensing electrodes.
  • Embodiments of the present invention provide a pressure detection method that can perform self-calibration, including:
  • the real-time characteristic data outputted by each sensing electrode during the pressing is calibrated
  • the pressure of each sensing electrode output under pressure is calculated.
  • the real-time pressure of each sensing electrode output is calculated according to the real-time characteristic data outputted by each sensing electrode in the touch screen when the touch screen is pressed, and the corresponding relationship between the characteristic data and the pressure; Correcting the real-time pressure of each sensing electrode output relative to the relative elastic modulus of each sensing electrode; and determining the initial distance in the sensing electrode according to the deviation between the corrected real-time pressures of different sensing electrode outputs
  • the sensing electrode is changed to calibrate the correspondence between the pre-stored feature data and the pressure, and then according to the change of the current zero point characteristic data of each sensing electrode with respect to the pre-stored zero point data, the real-time output of each sensing electrode under pressure
  • the characterization data is calibrated to self-calibrate the pressure to ensure accurate results of the pressure detection.
  • FIG. 1 is a schematic flow chart of a method for determining a change in an initial distance of a sensing electrode according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of establishing a correspondence relationship between feature data and pressure before leaving the factory in Embodiment 2 of the present invention
  • FIG. 3 is a schematic plan view of a pressure sensing electrode specifically applying the method shown in FIG. 2;
  • 4a and 4b are schematic views showing deformation of a single pressure sensing electrode before and after being pressed
  • Figure 5 is a schematic structural view of a pressure detecting circuit
  • Figure 6 is a schematic diagram showing the results of curve fitting according to the method shown in Figure 2.
  • Figure 7 is another pressure detecting circuit applied to the self-capacitance
  • Figure 8 is a pressure detecting circuit applied to mutual capacitance
  • Embodiment 9 is a schematic flowchart of establishing a relative elastic coefficient in Embodiment 3 of the present invention.
  • FIG. 10 is a schematic diagram of a sensing electrode layout and a logical channel division using the method shown in FIG. 9; FIG.
  • FIG. 11 is a schematic flowchart of a self-calibration method for correspondence between feature data and pressure according to Embodiment 4 of the present invention.
  • FIG. 12 is a schematic flowchart diagram of a specific example of a self-calibration method for correspondence between feature data and pressure according to Embodiment 5 of the present invention.
  • FIG. 13 is a schematic flow chart of a pressure detecting method capable of self-calibration according to Embodiment 6 of the present invention.
  • Figure 14 is a cross-sectional view showing a pressure detecting device according to a seventh embodiment of the present invention.
  • Figure 15 is a cross-sectional view showing a pressure detecting device in an eighth embodiment of the present invention.
  • Figure 16 is a cross-sectional view showing a pressure detecting device in a ninth embodiment of the present invention.
  • FIG. 17 is a schematic plan view showing a plane distribution of a sensing electrode in a pressure detecting device according to Embodiment 10 of the present invention.
  • FIG. 18 is a schematic plan view showing the plane distribution of the sensing electrodes in the pressure detecting device according to the eleventh embodiment of the present invention.
  • FIG. 19 is a schematic plan view showing a plane distribution of a sensing electrode in a pressure detecting device according to Embodiment 12 of the present invention.
  • FIG. 20 is a schematic plan view showing a plane distribution of a calibration pressing point in a pressure detecting device according to Embodiment 13 of the present invention.
  • Figure 21 is a schematic plan view showing the plane distribution of the calibration pressing points in the pressure detecting device of the fourteenth embodiment of the present invention.
  • the real-time pressure of each sensing electrode output is calculated according to the real-time characteristic data outputted by each sensing electrode in the touch screen when the touch screen is pressed and the corresponding relationship between the characteristic data and the pressure; Correcting the real-time pressure of each of the sensing electrodes according to the relative elastic coefficients of the pre-stored different pressing positions with respect to the sensing electrodes; and determining the initial in the sensing electrodes according to the deviation between the corrected real-time pressures of the different sensing electrode outputs
  • the sensing electrode is changed in distance, so as to calibrate the correspondence between the pre-stored characteristic data and the pressure, and then according to the change of the current zero point characteristic data of each sensing electrode with respect to the pre-stored zero point data,
  • the real-time characteristic data of each sensing electrode output is calibrated to self-calibrate the pressure, thus ensuring the accuracy of the pressure detection results.
  • FIG. 1 is a schematic flowchart of a method for determining a change in an initial distance of a sensing electrode according to Embodiment 1 of the present invention; as shown in FIG. 1 , the method includes:
  • the correspondence between the feature data and the pressure may be a correspondence relationship between the feature data and the pressure established before leaving the factory, or may be a calibration of the correspondence between the feature data and the pressure established before leaving the factory.
  • the correspondence between the obtained feature data and the pressure is taken as an example of a calculation rule established before leaving the factory.
  • the relationship between the pressure at the time of pressing and the characteristic data output by each sensing electrode under pressure is established in advance, and when the actual use is in progress, the output of the sensing electrode is
  • the real-time feature data is substituted into the relationship between the feature data and the pressure established before leaving the factory, so that the real-time pressure of each sensor electrode output can be calculated, and the real-time pressure represents the pressure when the touch screen is pressed.
  • the characteristic data outputted by the sensing electrode is related to a specific detecting circuit. If the detecting circuit of the output voltage of the sensing electrode can be detected, the characteristic data may be the magnitude of the voltage, and so on, and so on, and details are not described herein again.
  • the real-time feature data may be feature data calibrated according to the pressure detection method that can be self-calibrated according to FIG. 13 described below.
  • the shape variables at the same sensing electrode may be different when pressed at different positions, but there is a certain relationship between the pressing pressure and the deformation variable, and the determined relationship is determined by the physical structure of the screen body.
  • the relationship corrects the output pressure so that when the different positions on the touch screen are pressed at the same pressure, the system outputs the same pressure.
  • the shape variable of the sensing electrode is approximately linear with the pressure, assuming that the pressure is pressed at Pa at any pressure F a , and the shape variable of a sensing electrode (such as S0) is ⁇ d a0 , directly in
  • the pressure at the reference point of the sensing electrode is such that the pressure at the sensing electrode is still ⁇ d a0 and the pressure is F 0 .
  • the reference electrode is imposed pressure sensing point F 0 and the pressing pressure imposed Pa F a is equivalent to the pressing, the value of feature data corresponding to the sensing electrode is the same.
  • the feature data outputted by the sensing electrode is substituted into the correspondence between the feature data and the pressure in step S101, and the pressure F 0 calculated from the feature data corresponding to the sensing electrode is acquired.
  • the relative elastic coefficient of the position Pa at the sensing electrode S0 is denoted as u a0 .
  • the relative elastic coefficient reflects the difference in the shape of the variable at the same position at any different position on the touch screen, which is mainly determined by the physical structure.
  • u ij For any position P, for each of the sensing electrodes, there is a relative elastic coefficient, which can be written as u ij .
  • S103 Determine, according to the deviation between the real-time pressures of the different sensing electrode outputs, the sensing electrode whose initial distance changes in the sensing electrode, to perform the correspondence between the characteristic data of the sensing electrode whose initial distance changes and the pressure. calibration.
  • the deviation between the real-time pressures of the different sensing electrode outputs may be determined according to the corrected dispersion degree of the real-time pressure of the different sensing electrodes, thereby determining the sensing electrode whose initial distance changes in the sensing electrode.
  • the average difference (MD), the variance ( ⁇ 2 ), and the coefficient of variation (CV) can be calculated according to the corrected real-time pressure of all the sensing electrode outputs, thereby obtaining the degree of dispersion.
  • n the number of sensing electrodes
  • F' i the corrected pressure of the ith sensing electrode
  • the corrected pressures F′ 1 , . . . , F′ 8 are somewhat correct relative to the true pressure, some are too large, some are too small, so " 0" , F' 1 , ..., F' 8 take the pressure output by a certain filtering method as the final pressure output, for example, by taking the average of all the sensing electrodes, taking the weighted average based on the distance between the pressing position and the sensing electrode, and using only the distance The pressure of one or more of the sensing electrodes closest to the pressed position is averaged.
  • FIG. 2 is a schematic flowchart of establishing a correspondence relationship between feature data and pressure before leaving the factory according to Embodiment 2 of the present invention; as shown in FIG. 2, the method includes:
  • sample pressures a plurality of different preset pressures (sample pressures) to press the reference points of the respective sensing electrodes, and acquiring a plurality of feature data (sample data) corresponding to each of the sensing electrodes;
  • the pressing position may be a center point of each sensing electrode, or may be an arbitrary position, which is referred to as a reference point of the sensing electrode, and the reference point is preferentially selected at a position where the sensing electrode shape variable is maximized, such as a center point.
  • the size of the sample pressure can be selected with reference to the maximum pressure and minimum pressure of the user's actual use process.
  • each sensing electrode For each sensing electrode, establish a relationship between the pressure and the feature data according to the plurality of sample pressures and the plurality of feature data output by each of the sensing electrodes, and use the characteristic data of each of the sensing electrodes as The correspondence between pressures.
  • the relationship between the pressure and the feature data is stored in a tabular manner to calculate the real-time pressure of each of the sensing electrode outputs in a manner of looking up the table; or, by curve fitting, between the pressure and the feature data is established. relationship.
  • a relationship is established by curve fitting, and then a storage table is created based on the relationship, such that a smaller step size table can be established with a smaller number of sample pressures.
  • the real-time pressure of each sensing electrode output is calculated according to the manner of looking up the table, if the real-time feature data of the sensing electrode output is between the two sample feature data, the corresponding sensing electrode is calculated by the piecewise approximation method. The real-time pressure of the output.
  • the processing capability of the touch controller is strong, the relationship between the pressure and the feature data is expressed by a curve fitting formula, and the real-time pressure of each sensing electrode output is calculated according to the formula; if the touch control The processing capacity of the device is weak, and the relationship between the pressure and the feature data is stored in a tabular manner to calculate the real-time pressure of each sensing electrode output according to the look-up table. If the real-time characteristic data of the sensing electrode output is between two For the sample feature data, the piecewise approximation method is used to calculate the real-time pressure corresponding to the output of the sensing electrode.
  • FIG. 2 is schematically explained in conjunction with FIGS. 3 to 5.
  • FIG. 3 is a plan view schematically showing a pressure sensing electrode of the method shown in FIG. 2;
  • FIG. 4a and FIG. 4b are schematic diagrams showing deformation of a single pressure sensing electrode before and after compression;
  • FIG. 5 is a schematic structural view of a pressure detecting circuit; Schematic diagram of the curve fitting results of the method shown in 2.
  • the parallel plate capacitance C 2 in the sensing electrode is used as the effective capacitance for pressure detection.
  • the value of the parallel plate capacitance C 2 is C 20 before the pressure is applied, and the initial distance between the two electrodes is d 0 .
  • compression of the parallel plate variable capacitor C-2 is ⁇ d, compression of the parallel plate capacitance value C 2 of
  • the signal on the capacitor Ctp to be detected is amplified by the amplifying circuit;
  • the signal amplified by the amplification circuit is sent to the filter circuit for filtering; then, the output signal of the filter circuit is sent to the demodulation circuit for demodulation to obtain a specific form of characteristic data (Rawdata) (such as a voltage or current signal).
  • the magnitude and phase of the phase are used to reflect the magnitude of the pressure; finally, after Rawdata is sent to the subsequent computing system, the computing system can calculate the current pressure based on Rawdata.
  • ⁇ d is a shape variable generated by a certain pressure F.
  • the parameter ⁇ to be determined is a, b, c, d. That is, each sensing electrode corresponds to a set of parameters ⁇ , and the above (5) can be understood as a hypothesis function model.
  • the curve fitting method is used in the embodiment to determine that the pressure curve of each sensing electrode reflects the corresponding relationship between the characteristic data detected by the sensing electrode and the pressure when pressed at each sensing electrode reference point.
  • RF curve RawData-Force curve
  • R j f j ( ⁇ j ,F)
  • j 0,1,...8, where ⁇ j is the parameter to be determined, corresponding to the jth sensing electrode .
  • the curve fitted by the above method is shown in Fig. 6.
  • the sample pressures are 0g, 100g, 200g, 300g, 400g, 500g, 600g, and these sample data are used for fitting and plotting the fitted Rawdata-Force curve. As can be seen from Figure 6, the sample data can well fall on the fitted Rawdata-Force curve.
  • the sample pressure is not limited to 0g, 100g, 200g, 300g, 400g, 500g, 600g, and may be any pressure within the range, and the number of sample pressures is greater than the parameter ⁇ j .
  • ⁇ j has a total of four components a, b, c, and d, as long as the number of sample pressures is greater than four.
  • FIG. 7 is another detection circuit applied to the self-capacitance
  • FIG. 8 is an application.
  • the parameters ⁇ j in the two cases can be determined by referring to the manner of FIG. 6 above, and details are not described herein again.
  • FIG 7 uses the charge transfer method for pressure detection. It is applied to self-capacitance.
  • Tx is the drive signal. It can be sine wave, square wave and other forms of signals.
  • the basic working principle is as follows:
  • the control switch ⁇ 1 is closed, ⁇ 2 is turned off, the capacitor Ctp to be charged is charged, and the capacitor C1' is discharged; secondly, the control switch ⁇ 1 is turned off, ⁇ 2 is closed, and the capacitor Ctp to be detected is used.
  • Capacitor C1' performs partial voltage charging, C2' performs integral charging; then, the output signal of the integrating circuit is sent to the filtering circuit for filtering processing; then, the output signal of the filtering circuit is sent to the demodulating circuit for demodulation to obtain a specific form
  • the characteristic data (Rawdata) finally, after the feature data (Rawdata) is sent to the subsequent computing system, the computing system can calculate the current pressure based on the current feature data (Rawdata).
  • FIG. 8 is another embodiment of a capacitance detecting method.
  • Tx is a driving signal, and can be various forms of signals such as a sine wave and a square wave.
  • the basic working principle is as follows:
  • the driving signal is coupled to the integral amplification circuit of the back end via the capacitor Ctp to be detected; secondly, the output signal of the integrating amplifier circuit is sent to the filter circuit for filtering processing; then, the output signal of the filter circuit is sent to the demodulation circuit for demodulation To obtain the feature data (Rawdata); finally, after the feature data (Rawdata) is sent to the subsequent computing system, the computing system can calculate the current pressure based on the change of the current feature data (Rawdata).
  • FIG. 9 is a schematic flowchart of establishing a relative elastic coefficient according to Embodiment 3 of the present invention. as shown in FIG. 9, including:
  • a plurality of first relative elastic coefficients between each of the sensing electrodes and each of the logic channels are determined according to a plurality of preset pressures and a plurality of pressures outputted by each of the sensing electrodes, the plurality of first relative states
  • the average value of the elastic coefficient is used as the final relative elastic coefficient between the corresponding sensing electrode and the corresponding logical channel.
  • each sensing electrode corresponds to a feature data, that is, each sensing electrode corresponds to a plurality of feature data when a plurality of preset pressures are pressed, and these are
  • the characteristic data is respectively substituted into the corresponding relationship between the characteristic data and the pressure of each of the sensing electrodes, such as the established fitting curve, thereby obtaining the pressure of each sensing electrode when the preset pressure is pressed.
  • S122 Determine a relative elastic coefficient of each logic channel at each sensing electrode according to a plurality of preset pressures and pressures of the sensing electrodes when the preset pressure is pressed.
  • FIG. 10 is a schematic diagram of a touch array in which the method shown in FIG. 9 is specifically applied; the touch screen is divided into N regions, denoted as C 0 , C 1 , . . . , C N-1 , and in this embodiment, N is 77.
  • u ij is the mean value of a plurality of relative elastic coefficients of the logic channel at each sensing electrode S j of C i according to a plurality of preset pressures .
  • the relative elastic coefficient table can be obtained by using relevant mechanical simulation software.
  • the coordinates at P (the upper left corner be the coordinate zero point) be (x, y)
  • the coordinates at C28, C29, C39, and C40 are (x 28 , y 28 ), (x 29 , y 29 ), (x 39 , y 39 ), (x 40 , y 40 ), with S4 as a reference
  • the relative elastic coefficients at C28, C29, C39, C40 are u 28 , u 29 , u 39 , u 40 .
  • the logical channels use quadratic surface fitting to estimate the relative elastic coefficients.
  • the R-F curve of each sensing electrode and the relative elastic coefficient table can be established according to the above method. Considering the production efficiency, a small number of prototypes can be selected for mass production to establish the R-F curve and relative elastic coefficient table of each sensing electrode as the standard R-F curve and standard.
  • the quasi-relative elastic coefficient table is obtained by correcting the R-F curve and the relative elastic coefficient table of the sensing electrodes of the other prototypes on the standard R-F curve and the relative elastic coefficient table.
  • FIG. 11 is a schematic flowchart of a self-calibration method for correspondence between feature data and pressure according to Embodiment 4 of the present invention; as shown in FIG. 11, after determining an induction electrode whose initial distance changes according to the method described above, It includes:
  • the real-time pressure outputted by each of the sensing electrodes is corrected according to the relative elastic coefficients of the respective logic channels established at the factory relative to the respective sensing electrodes to obtain the corrected pressure.
  • the plurality of sets of feature data corresponding to before and after pressing are real-time feature data before and after pressing the sensing electrode after indicating the factory.
  • the plurality of sets of characteristic data corresponding to before and after pressing and the pre-stored different pressing positions are relative to Corresponding relationship between the relative elastic modulus of each sensing electrode, the characteristic data of each sensing electrode and the pressure, and the correspondence between the characteristic data of the sensing electrode whose initial distance in the sensing electrode changes and the pressure is calibrated;
  • the degree of dispersion of the pressure is determined when the number of sensing electrodes whose initial distance changes in the sensing electrode exceeds a preset number threshold, and the relative sets of characteristic data before and after pressing and the relative positions of the pre-stored different pressing positions with respect to the sensing electrodes
  • the elastic coefficient, the corresponding relationship between the characteristic data of each sensing electrode and the pressure, the equations are solved to solve the calibration parameters, and the correspondence between the characteristic data and the pressure of each sensing electrode is calibrated according to the calibration parameters obtained by
  • FIG. 12 is a schematic flowchart diagram of a specific example of a self-calibration method for correspondence between feature data and pressure according to Embodiment 5 of the present invention; as shown in FIG. 12, it includes:
  • step S502 determining whether the CV exceeds the set first threshold, if the CV exceeds the first threshold, step S503 is performed;
  • R 00 represents the feature data output before pressing S0
  • R 01 represents the feature data output after pressing S0
  • (x, y) represents the current pressed position center coordinate.
  • step S501 If the CV value does not exceed the first threshold, set t to 0, clear the already stored t group of original feature data, and return to step S501 without starting the self-calibration function.
  • step S507 is performed
  • the solved calibration parameter may be to adjust the components of the parameter ⁇ j such that the corrected pressure is as consistent as possible with the real pressure.
  • FIG. 13 is a schematic flow chart of a pressure detecting method capable of self-calibration according to Embodiment 6 of the present invention; as shown in FIG. 13, the method includes:
  • the change of the zero point feature data before and after the factory is taken as an example for description. It should be noted that, in other embodiments or situations, the change of the zero point feature data may be a change of the current zero point data relative to the pre-stored zero point feature data. .
  • the pre-stored zero point feature data is calculated and updated according to the correspondence between the calibrated feature data and the pressure.
  • r 0 represents the original characteristic data when the pressure calculated according to the RF curve established before leaving the factory is zero, that is, the factory zero point data
  • r′ 0 represents the current zero point data when there is no pressing after leaving the factory
  • the corrected characteristic data r 1 The pressure calculated by substituting the RF curve established before leaving the factory is the true pressure F.
  • FIG. 14 is a cross-sectional view of a pressure detecting device according to Embodiment 7 of the present invention; as shown in FIG. 14, the sensing electrode is attached under the LCD, and there is a certain gap between the sensing electrode and the middle frame supporting the LCD module, and the gap is better. Compressive foam padding. Work the system is powered, the LCD module and the block layer Vcom to the system, there is the load sensing pressure detecting electrode and the capacitance C of the LCD module Vcom layer 1, present sensing electrode effectively block the pressure sensing capacitor C 2, C 1 is connected in parallel with C 2 . When the Cover cover is pressed, the Cover cover deforms and the distance between the sensing electrode and the middle frame is reduced, and the capacitance C 2 is increased. At this time, the change of C 1 is basically negligible, and the current change can be determined by detecting the change of C 2 . pressure.
  • FIG. 15 is a cross-sectional view of a pressure detecting device according to Embodiment 8 of the present invention; as shown in FIG. 85, the sensing electrode is pasted on the middle frame of the LCD module through the OCA tape, and the sensing electrode and the LCD module have certain The gap, the Vcom layer is located between the LCD stack 1 and the laminate 2 in the LCD module. After the system is powered on, the Vcom layer and the middle frame of the LCD module will be connected to the system ground.
  • the sensing electrode and the Vcom layer of the LCD module have a capacitance C 1 , and the sensing electrode and the middle frame have a capacitance C 2 , C 1 and C 2 are connected in parallel. connection.
  • the cover cover When the cover is pressed, the cover cover is deformed and the distance between the Vcom layer of the LCD module and the sensing electrode is reduced, and the effective pressure detecting capacitor C 1 is increased. At this time, the change of the load pressure detecting capacitor C 2 is substantially negligible.
  • the current pressure can be determined by detecting the change in C 1 .
  • FIG. 16 is a cross-sectional view of a pressure detecting device according to Embodiment 9 of the present invention; as shown in FIG. 16, the structure is applied to an embodiment in which the LCD module has a metal back frame, but the sensing electrode is attached to the metal back frame of the LCD module. on.
  • FIG. 17 is a schematic plan view showing the plane distribution of the sensing electrodes in the pressure detecting device according to the tenth embodiment of the present invention
  • FIG. 18 is a schematic diagram showing the plane distribution of the sensing electrodes in the pressure detecting device according to the eleventh embodiment of the present invention
  • FIG. 20 is a schematic diagram showing a plane distribution of a reference point in a pressure detecting device according to Embodiment 13 of the present invention; as shown in FIG. 20, a signal-to-noise ratio is high in consideration of an edge position of a pressing portion near a center position of a pressing region.
  • the calibration accuracy can be ensured as much as possible, and a calibration pressing area with a high signal-to-noise ratio is set near the center of the pressing area.
  • the electronic device's display screen marks the calibration pressing area, guiding the user to press multiple times with different pressures to obtain real-time feature data and then calculate the calibration parameters and save them to the system, between the feature data and the pressure.
  • the correspondence is calibrated.
  • the calibration method is the same as the fifth embodiment of the invention described above, and details are not described herein again.
  • Figure 21 is a schematic plan view showing the plane of the pressing reference point in the pressure detecting device of the fourteenth embodiment of the present invention; as shown in Figure 21, unlike the above-described embodiment of Figure 20, two calibration pressing regions are provided. .
  • the calibration pressing area 1 and the calibration pressing area 2 are sequentially marked on the display screen of the electronic device, and the user is guided to press on the two standard pressing areas to obtain real-time characteristic data, and then the calibration parameters are calculated. And save it to the system to calibrate the correspondence between the feature data and the pressure.
  • the calibration method is the same as the fifth embodiment of the present invention, and details are not described herein.
  • the apparatus provided by the embodiments of the present application can be implemented by a computer program.
  • Those skilled in the art should be able to understand that the foregoing unit and module division manners are only one of a plurality of division manners. If the division is other units or modules or does not divide the blocks, as long as the information object has the above functions, it should be in the present application. Within the scope of protection.
  • embodiments of the present application can be provided as a method, apparatus (device), or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种确定感应电极初始距离发生变化的方法,包括:根据触控屏受压时触控屏中各感应电极输出的实时特征数据以及特征数据与压力之间的对应关系,计算每个感应电极输出的实时压力(S101);根据预存的不同按压位置相对于各感应电极的相对弹性系数,对每个感应电极输出的实时压力进行修正(S102);根据修正后的不同感应电极输出的实时压力之间的偏差,确定感应电极中初始距离发生变化的感应电极,以对初始距离发生变化的感应电极的特征数据与压力之间的对应关系进行校准(S103),进而根据每一个感应电极当前零点特征数据相对预存零点数据的变化,对受压时每个感应电极输出的实时特征数据进行校准(S602),以对压力进行自校准,保证了压力检测的结果准确性。

Description

确定感应电极初始距离发生变化的方法 技术领域
本发明实施例涉及压力触控技术领域,尤其涉及一种确定感应电极初始距离发生变化的方法。
背景技术
便携电子设备为人们的日常生活工作带来了不少便利,已成为人们不可或缺的工具。便携电子设备的输入装置有多种,例如按键、鼠标、操纵杆、激光笔、触摸屏等,但是触控技术因其良好的交互性被迅速地应用于各种电子设备,可以让使用者只要通过手势操作即可实现终端的操作,摆脱了传统的机械键盘,使人机交互更为直截了当。
随着触控技术的发展,单纯的手指触控已经不能满足用户更多维度输入的需求,在触控技术中加入压力检测技术,实现了在位置信息基础上增加了另一维度信息,让触摸屏能够感知手指压力信息,感知轻压以及重压的压力,并调出不同的对应功能,从而提供更加良好的用户体验,比如屏幕按压弹出下拉菜单或是“小圆球”,重压加快页面上下、左右的滚动速动,触觉反馈等效果。
目前应用于大多数便携电子设备的触控检测技术采用的是电容式传感阵列,因而压力检测技术采用阵列式电容作为检测压力sensor具有较大的优势。但是,在实现本发明的过程中,发明人发现,由于电容式传感阵列对感应电极的初始距离很敏感,便携电子设备在使用过程中可能会出现跌落、扭曲、撞击等情形,改变了感应电极的初始距离,进一步导致压力检测的结果出现较大的偏差。
发明内容
本发明实施例的目的在于提供一种确定感应电极初始距离发生变化的方法、特征数据与压力之间的对应关系自校准方法、可进行自校准的压力检测方法,用以至少解决现有技术中的上述问题。
为实现本发明实施例的目的,本发明实施例提供了一种确定感应电极初始距离发生变化的方法,其包括:
根据触控屏受压时触控屏中各感应电极输出的实时特征数据以及特征数据与压力之间的对应关系,计算每个感应电极输出的实时压力;
根据预存的不同按压位置相对于各感应电极的相对弹性系数,对每个感应电极输出的实时压力进行修正;
根据修正后的不同感应电极输出的实时压力之间的偏差,确定感应电极 中初始距离发生变化的感应电极,以对初始距离发生变化的感应电极的特征数据与压力之间的对应关系进行校准。
本发明实施例还提供一种特征数据与压力之间的对应关系自校准方法,在确定出初始距离发生变化的感应电极之后,包括:
根据预存的不同按压位置相对于各感应电极的相对弹性系数,对每个感应电极输出的实时压力进行修正得到修正后的实时压力,并确定修正后的压力的离散程度大于预先设定的第一阈值;
根据按压前后对应的多组特征数据以及预存的不同按压位置相对于各感应电极的相对弹性系数,对初始距离发生变化的所述感应电极的特征数据与压力之间的对应关系进行校准。
本发明实施例提供一种可进行自校准的压力检测方法,其包括:
根据上述任一项特征数据与压力之间的对应关系自校准方法获得对特征数据与压力之间的对应关系校准后的特征数据与压力之间的对应关系;
根据每一个感应电极当前零点特征数据相对预存零点数据的变化,对受压时每个感应电极输出的实时特征数据进行校准;
根据每个感应电极校准后的特征数据以及校准后的特征数据与压力之间的对应关系,计算受压时每个感应电极输出的压力大小。
本发明实施例中,通过根据触控屏受压时触控屏中各感应电极输出的实时特征数据以及特征数据与压力之间的对应关系,计算每个感应电极输出的实时压力;再根据预存的不同按压位置相对于各感应电极的相对弹性系数,对每个感应电极输出的实时压力进行修正;以及根据修正后的不同感应电极输出的实时压力之间的偏差,确定感应电极中初始距离发生变化的感应电极,从而实现对预存的特征数据与压力之间的对应关系进行校准,进而根据每一个感应电极当前零点特征数据相对预存零点数据的变化,对受压时每个感应电极输出的实时特征数据进行校准,以对压力进行自校准,从而保证了压力检测的结果准确性。
附图说明
图1为本发明实施例一中确定感应电极初始距离发生变化的方法流程示意图;
图2为本发明实施例二中出厂前建立特征数据与压力之间的对应关系的流程示意图;
图3为具体应用图2所示方法的压力感应电极的平面示意图;
图4a、图4b为单个压力感应电极受压前后的形变示意图;
图5为压力检测电路的结构示意图;
图6为根据图2所示方法的曲线拟合结果示意图。
图7为应用于自电容的另外一种压力检测电路;
图8为应用于互电容的一种压力检测电路;
图8为另一种电容检测方法的实施例;
图9为本发明实施例三中建立相对弹性系数的流程示意图;
图10为具体应用图9所示方法的感应电极布局及逻辑通道划分示意图;
图11为本发明实施例四中特征数据与压力之间的对应关系自校准方法流程示意图;
图12为本发明实施例五中特征数据与压力之间的对应关系自校准方法具体实例流程示意图;
图13为本发明实施例六中可进行自校准的压力检测方法流程示意图;
图14为本发明实施例七压力检测装置的剖视图;
图15为本发明实施例八中压力检测装置的剖视图;
图16为本发明实施例九中压力检测装置的剖视图;
图17为本发明实施例十中压力检测装置中感应电极的平面分布示意图;
图18为本发明实施例十一压力检测装置中感应电极的平面分布示意图;
图19为本发明实施例十二中压力检测装置中感应电极的平面分布示意图;
图20为本发明实施例十三中压力检测装置中校准按压点的平面分布示意图;
图21为本发明实施例十四压力检测装置中校准按压点的平面分布示意图。
具体实施方式
以下将配合图式及实施例来详细说明本申请的实施方式,藉此对本申请如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
本发明下述实施例中,通过根据触控屏受压时触控屏中各感应电极输出的实时特征数据以及特征数据与压力之间的对应关系,计算每个感应电极输出的实时压力;再根据预存的不同按压位置相对于各感应电极的相对弹性系数,对每个感应电极输出的实时压力进行修正;以及根据修正后的不同感应电极输出的实时压力之间的偏差,确定感应电极中初始距离发生变化的感应电极,从而实现对预存的特征数据与压力之间的对应关系进行校准,进而再根据每一个感应电极当前零点特征数据相对预存零点数据的变化,对受压时 每个感应电极输出的实时特征数据进行校准,以对压力进行自校准,从而保证了压力检测的结果准确性。
图1为本发明实施例一中确定感应电极初始距离发生变化的方法流程示意图;如图1所示,其包括:
S101、根据触控屏受压时触控屏中各感应电极输出的实时特征数据以及特征数据与压力之间的对应关系,计算每个感应电极输出的实时压力;
本实施例中,特征数据与压力之间的对应关系可以是出厂前建立的特征数据与压力之间的对应关系,也可以是对出厂前建立的特征数据与压力之间的对应关系进行校准后得到的特征数据与压力之间的对应关系。本实施例中,以特征数据与压力之间的对应关系为出厂前建立的计算规则为例进行说明。
本实施例中,在触控屏出厂前,预先建立受压时的压力大小和受压时每个感应电极输出的特征数据之间的关系,当在实际使用过程中时,将感应电极输出的实时特征数据代入到出厂前建立的特征数据和压力之间的关系中,从而可以计算出每个感应电极输出的实时压力,该实时压力表示触控屏受压时的压力大小。
本实施例中,感应电极输出的特征数据与具体的检测电路有关,如果可检测感应电极输出电压的检测电路,则特征数据可以是电压的大小,其他情形以此类推,在此不再赘述。
特征数据与压力之间的对应关系的详细建立过程可参见下述图2及对应的描述,在此不再详细赘述。
本实施例中,该实时特征数据可以是根据下述图13可进行自校准的压力检测方法校准后的特征数据。
S102、根据预存的不同按压位置相对于各感应电极的相对弹性系数,对每个感应电极输出的实时压力进行修正;
本实施例中,不同位置按压时同一感应电极处的形变量可能会不同,但是按压的压力和形变量会存在确定的关系,这种确定的关系是由屏体的物理结构决定,利用这种关系对输出的压力进行修正,使得触控屏上不同位置以相同的压力按压时,系统输出的压力相同。
在实现本发明的过程中,发明人发现感应电极的形变量与压力近似呈线性关系,假设在Pa处以任意压力Fa进行按压,某感应电极(如S0)的形变量为Δda0,直接在该感应电极基准点处按压使得该感应电极处的形变量仍为Δda0的压力为F0。即对于该感应电极而言,在感应电极的基准点处以压力F0按压与在Pa处以压力Fa按压是等效的,该感应电极对应的特征数据的值是相同的。基于上述分析,容易得到如下关系:
Figure PCTCN2016105086-appb-000001
换言之,在Pa处按压时,将该感应电极输出的特征数据代入到步骤S101 中的特征数据与压力之间的对应关系中,获取由该感应电极对应的特征数据计算到的压力F0
F0再乘以
Figure PCTCN2016105086-appb-000002
即为当前Pa处的真实压力Fa
定义
Figure PCTCN2016105086-appb-000003
为位置Pa在该感应电极S0处的相对弹性系数,记为ua0。该相对弹性系数反映的是在触摸屏上任意不同位置按压观察同一位置处的形变量差异,这个主要由物理结构决定。对于任意位置P,对于每一个感应电极,都存在一个相对弹性系数,可记为uij
有关相对弹性系数的建立可详细参见图9及相应描述。
S103、根据修正后的不同感应电极输出的实时压力之间的偏差,确定感应电极中初始距离发生变化的感应电极,以对初始距离发生变化的感应电极的特征数据与压力之间的对应关系进行校准。
本实施例中,可以根据修正后的不同感应电极输出的实时压力的离散程度,从而确定不同感应电极输出的实时压力之间的偏差,进而确定感应电极中初始距离发生变化的感应电极。
本实施例中,可以根据修正后的所有感应电极输出的实时压力计算平均差(MD)、方差(σ2)、变异系数(CV),从而获得所述离散程度。
平均差:
Figure PCTCN2016105086-appb-000004
方差:
Figure PCTCN2016105086-appb-000005
变异系数:
Figure PCTCN2016105086-appb-000006
上述公式中,n表示感应电极的数量,F′i表示第i个感应电极修正后的压力。
在其他实施例中,在计算按压的压力大小时,修正后的压力F′1,……,F′8中相对于真实压力有些是正确的,有些偏大,有些偏小,因此通过对F′0,F′1,……,F′8采取一定滤波方法输出的压力作为最终的压力输出,比如通过取所有感应电极的均值、基于按压位置与感应电极的距离取加权平均、只用距离按压位置最近的一个或多个感应电极的压力进行平均。
图2为本发明实施例二中出厂前建立特征数据与压力之间的对应关系的流程示意图;如图2所示,其包括:
S111、使用多个不同的预设压力(样本压力)按压各个感应电极的基准点,获取每个感应电极对应的多个特征数据(样本数据);
本实施例中,按压位置可以是各个感应电极的中心点,也可以是任意位置,该位置称为感应电极的基准点,基准点优先选择在使感应电极形变量最大的位置,比如中心点。样本压力的大小可以参照用户实际使用过程的最大压力和最小压力选择若干个压力。
S121、对于每个感应电极,根据多个样本压力以及每个感应电极输出的多个特征数据建立压力与特征数据之间的关系,并将其作为所述每一个感应电极的所述特征数据与压力之间的对应关系。
本实施例中,压力和特征数据之间的关系以表格的方式进行存储,以按照查表的方式计算每个感应电极输出的实时压力;或者,通过曲线拟合建立压力和特征数据之间的关系。或者,通过曲线拟合建立关系,然后根据该关系建立存储表,这样,在较少个数的样本压力下可以建立步进更小的表。
本实施例中,当按照查表的方式计算每个感应电极输出的实时压力时,如果感应电极输出的实时特征数据介于两个样本特征数据之间时,采用分段近似法计算对应感应电极输出的实时压力。
本实施例中,如果触控控制器的处理能力较强,则压力和特征数据之间的关系通过曲线拟合建立公式进行表示,按照公式计算每个感应电极输出的实时压力;如果触控控制器的处理能力较弱,压力和特征数据之间的关系以表格的方式进行存储,以按照查表的方式计算每个感应电极输出的实时压力,如果感应电极输出的实时特征数据介于两个样本特征数据时,采用分段近似法计算对应感应电极输出的实时压力。
下面结合图3-图5,对上述图2进行示意性解释。
图3为具体应用图2所示方法的压力感应电极的平面示意图;图4a、图4b为单个压力感应电极受压前后的形变示意图;图5为压力检测电路的结构示意图;图6为根据图2所示方法的曲线拟合结果示意图。
参见图3,有9个电容式感应电极,每个感应电极相当于一个sensor。再参见图4a、4b,感应电极中的平行板电容C2作为压力检测的有效电容,在受压前平行板电容C2的值为C20,两个电极之间的初始距离为d0,受压后平行板电容C2的形变量为Δd,受压后平行板电容C2的值为
Figure PCTCN2016105086-appb-000007
再参见图5,如果以感应电极为自电容为例,驱动信号经电阻R耦合到待检测电容Ctp(Ctp=C1+C2);其次,待检测电容Ctp上的信号经放大电路进行放大处理;接着,将经放大电路放大后的信号送入滤波电路进行滤波处理;然后,将滤波电路的输出信号送入解调电路进行解调,获取特定形式的特征数据(Rawdata)(如电压或电流信号的幅度、相位大小),用以反映压力大小;最后,将Rawdata送入后续的计算系统后,计算系统就可以根据Rawdata计算出当前的压力大小。
驱动信号为
Figure PCTCN2016105086-appb-000008
放大电路增益为G,那么输出的信号幅度即 Rawdata为
Figure PCTCN2016105086-appb-000009
式(4)中Δd为一定压力F产生的形变量,本发明所涉及的实施例中压力产生的形变为微小形变,F与Δd近似满足胡克定律,即F=kΔd,不同位置对应的k是不同的。式(4)可以写为
Figure PCTCN2016105086-appb-000010
记a=AG,b=wR0C1,c=wR0C20kd0,d=kd0,式(5)可以改写为
Figure PCTCN2016105086-appb-000011
该检测电路下,待确定参数θ即为a,b,c,d。即每一个感应电极对应一组参数θ,上述(5)可理解为一假设函数模型。
为了确定上述θ,本实施例中采用曲线拟合的方式来确定,各感应电极的压力曲线反映在各感应电极基准点处按压时,该感应电极检测到的特征数据与压力之间的对应关系,可以简称为R-F曲线(RawData—Force曲线),记为Rj=fjj,F),j=0,1,…8,其中θj为待确定参数,对应第j个感应电极。
具体方法如下:
a.分别对每个感应电极用n个不同的样本压力Fi,i=1,2,…n在该感应电极的基准点按压,记录下原始特征值(RawData),包括9组原始样本数据:(F1,r01),(F2,r02),…,(Fn,r0n);(F1,r11),(F2,r12),…,(Fn,r1n);……;(F1,r81),(F2,r82),…,(Fn,r8n)。
b.结合各感应电极的R-F曲线Rj=fjj,F),j=0,1,…8的假设函数模型,如上述式(5),利用原始样本数据(F1,r01),(F2,r02),…,(Fn,r0n);(F1,r11),(F2,r12),…,(Fn,r1n);……;(F1,r81),(F2,r82),…,(Fn,r8n)对Rj=fjj,F),j=0,1,…8进行拟合,从而确定出参数θj,j=0,1,…8。
通过上述方法拟合的曲线如图6所示,样本压力为0g、100g、200g、300g、400g、500g、600g,利用这些样本数据进行拟合并绘制拟合到的Rawdata-Force曲线。从图6可以看出,样本数据都能很好地落在拟合到的Rawdata-Force曲线上。
值得说明的是,上述获取样本数据时,样本压力并不只局限于0g、100g、200g、300g、400g、500g、600g,可以是在量程范围内的任意压力,样本压力的个数大于参数θj中分量个数即可,比如上述实施例中θj有a、b、c、d共计4个分量,则只要样本压力的数量大于4个即可。
在计算实时压力时,可以利用确定θj后的R-F曲线Rj=fjj,F),j=0,1,…8计算,当触控处理器的运算能力有限的时候,可以通过如下分段近似线性的方法计算:
1)根据Rj=fjj,F),j=0,1,…8一定的压力间隔step(如50g)建立各感应电极的Rawdata—Force关系表,将此表格事先存储到系统闪存中。
2),假设实时获取到某压力下的第j个感应电极的原始特征值为yj,所述的yj介于两个预设的压力Fi,Fi+1对应的特征数据yj,i,yj,i+1之间,即yj,i>yj≥yj,i+1(或yj,i<yj≤yj,i+1),采用分段近似线性的方法计算压力,即
Figure PCTCN2016105086-appb-000012
表1Rawdata—Force关系表
Figure PCTCN2016105086-appb-000013
需要说明的是,上述以图5中的检测电路还可以有其他替代形式,如图7、图8所示,图7为应用于自电容的另外一种检测电路,图8为一种应用于互电容的检测电路,至于这两种情形下的参数θj可以参照上述图6的方式来确定,详细不再赘述。
图7采用电荷转移的方法进行压力检测,应用于自电容,Tx为驱动信号,可以为正弦波,方波等各种形式的信号,其基本工作原理如下:
首先,将控制开关φ1闭合,φ2断开,对待检测电容Ctp进行充电,同时对电容C1’进行放电处理;其次,将控制开关φ1断开,φ2闭合,利用待检测电容Ctp对电容C1’进行分压充电,C2’进行积分充电;接着,将积分电路的输出信号送入滤波电路进行滤波处理;然后,将滤波电路的输出信号送入解调电路进行解调,获取特定形式的特征数据(Rawdata);最后,将特征数据(Rawdata)送入后续的计算系统后,计算系统就可以根据当前特征数据(Rawdata)计算出当前的压力。
图8为另一种电容检测方法的实施例,Tx为驱动信号,可以为正弦波,方波等各种形式的信号,其基本工作原理如下:
首先,驱动信号经待检测电容Ctp耦合到后端的积分放大电路;其次,将积分放大电路的输出信号送入滤波电路进行滤波处理;接着,将滤波电路的输出信号送入解调电路进行解调,获取特征数据(Rawdata);最后,将特征数据(Rawdata)送入后续的计算系统后,计算系统就可以根据当前特征数据(Rawdata)的变化计算出当前的压力。
图9为本发明实施例三中建立相对弹性系数的流程示意图;如图9所示,包括:
S112、根据使用多个预设压力按压触摸屏上划分出的每个逻辑通道时每个感应电极输出的特征数据以及各感应电极的特征数据与压力之间的对应关系,计算在预设压力按压时各感应电极输出的压力;
本实施例中,根据多个预设压力以及每个感应电极输出的多个压力,确定每个感应电极与每个逻辑通道之间的多个第一相对弹性系数,所述多个第一相对弹性系数的平均值作为对应感应电极与对应逻辑通道之间最终确定的相对弹性系数。
本实施例中,使用多个预设压力按压每个逻辑通道的中心时,每个感应电极对应一特征数据,即多个预设压力按压时每个感应电极会对应多个特征数据,将这些特征数据分别代入到上述各感应电极的特征数据与压力之间的对应关系如建立的拟合曲线中,从而获得在预设压力按压时各感应电极输出的压力。
S122、根据多个预设压力以及在预设压力按压时各感应电极输出的压力确定每个逻辑通道在各感应电极处的相对弹性系数。
根据某一个逻辑通道处具体的预设压力以及各感应电极输出的压力,参照
Figure PCTCN2016105086-appb-000014
即可计算出每个逻辑通道在各感应电极处的相对弹性系数。
图10为具体应用图9所示方法的触控阵列示意图;将触摸屏划分成N个区域,记为C0,C1,…,CN-1,本实施例中,N为77。
(1)分别在每个逻辑通道的中心以m(m≥1)个预设压力F1,F2,…Fm进 行按压,记录下各感应电极的数据,记用预设压力Fk按压逻辑通道Ci时各感应电极的数据为
Figure PCTCN2016105086-appb-000015
k=1,2,…,m,i=1,2,…,N-1。
(2)将(1)中得到的
Figure PCTCN2016105086-appb-000016
k=1,2,…,m,i=1,2,…,N-1代入对应的R-F曲线Rj=fjj,F),j=0,1,…8计算压力,记为
Figure PCTCN2016105086-appb-000017
Figure PCTCN2016105086-appb-000018
k=1,2,…,m,i=1,2,…,N-1。
(3)根据步骤(2)中计算到的压力计算逻辑通道Ci在Sj处的相对弹性系数uij
Figure PCTCN2016105086-appb-000019
i=0,1,…N-1,j=0,1,…8,uij为根据多个预设压力时,逻辑通道在Ci各感应电极Sj处的多个相对弹性系数的均值。
将uij保存到系统,如表2所示。
表2相对弹性系数表
Figure PCTCN2016105086-appb-000020
需要说明的是,除了上述方法也可以通过相关力学仿真软件,得到上述相对弹性系数表。
当考虑到存储空间、量产效率等各种因素时,虚拟通道的数量N是非常有限的,因此,根据触控位置周围若干个逻辑通道相对于各感应电极的相对弹性系数,采用双线性插值法或者曲面拟合法确定任意触控位置相对于各感应电极的相对弹性系数。
设P处的坐标(以左上角为坐标零点)为(x,y),C28,C29,C39,C40处的坐标分别为(x28,y28),(x29,y29),(x39,y39),(x40,y40),以S4为参考时,C28,C29,C39,C40处的相对弹性系数为u28,u29,u39,u40
Y方向插值:
Figure PCTCN2016105086-appb-000021
X方向插值:
Figure PCTCN2016105086-appb-000022
此外,我们也可以选取P处附近的多个逻辑通道通过曲面拟合的方法估计P处的相对弹性系数,比如可以选取C16,C17,C18,C27,C28,C39,C38,C39,C40这9个逻辑通道利用二次曲面拟合估计相对弹性系数。
每台量产样机出厂时,可以按照上述方法建立各感应电极的R-F曲线及建立相对弹性系数表。考虑到生产效率,在批量生产时可以挑选少量的样机建立各感应电极的R-F曲线及相对弹性系数表作为标准R-F曲线与标 准相对弹性系数表,其它样机各感应电极的R-F曲线及相对弹性系数表对标准R-F曲线与相对弹性系数表进行修正得到。
假设在P点按压时,将各感应电极的特征数据带代入各感应电极的特征数据与压力之间的对应关系中输出压力F0,F1,……,F8,利用相对弹性系数修正后压力为up0F0,up1F1,……,up8F8
图11为本发明实施例四中特征数据与压力之间的对应关系自校准方法流程示意图;如图11所示,在根据上述任一项所述方法确定出初始距离发生变化的感应电极之后,其包括:
S401、利用预存的不同按压位置相对于各感应电极的相对弹性系数对按压后的压力进行修正得到修正后的压力,并确定修正后的压力的离散程度大于预先设定第一阈值;
本实施例中,根据出厂前建立的各逻辑通道在不同位置相对于各感应电极的相对弹性系数,对每个感应电极输出的实时压力进行修正得到修正后的压力。
S402、根据按压前后对应的多组特征数据、预存的不同按压位置相对于各感应电极的相对弹性系数以及各感应电极的特征数据与压力之间的对应关系,对初始距离发生变化的感应电极的特征数据与压力之间的对应关系进行校准并更新。
本实施例中,出厂前所述感应电极的特征数据与压力之间的对应关系的建立可参见上述实施例,详细不再赘述。
本实施例中,出厂前不同位置相对于各感应电极的相对弹性系数的建立可参见上述实施例,详细不再赘述。
本实施例中,按压前后对应的多组特征数据是指出厂后,在对感应电极进行按压前后的实时特征数据。
本实施例中,当根据修正后的压力的离散程度判断初始距离发生变化的感应电极数量不超过预先设定的数量阈值时,根据按压前后对应的多组特征数据以及预存的不同按压位置相对于各感应电极的相对弹性系数、各感应电极的特征数据与压力之间的对应关系,对感应电极中初始距离发生变化的感应电极的特征数据与压力之间的对应关系进行校准;当根据修正后的压力的离散程度判断得知感应电极中初始距离发生变化的感应电极数量超过预先设定的数量阈值时,根据按压前后对应的多组特征数据以及预存的不同按压位置相对于各感应电极的相对弹性系数、各感应电极的特征数据与压力之间的对应关系,建立方程组求解校准参数,根据求解得到的校准参数,对每一个感应电极的特征数据与压力之间的对应关系进行校准。此处的数量阈值可以灵活设定,比如当感应电极的总数量为9个时,这个数量阈值为2个,如果有更多个感应电极,可以适当增加这个数量阈值。
图12为本发明实施例五中特征数据与压力之间的对应关系自校准方法具体实例流程示意图;如图12所示,其包括:
S501、检测到有按压发生,计算CV值。
S502、判断CV是否超过设定的第一阈值,如果CV超过第一阈值,执行步骤S503;
S503、记录下此次按压前后的各感应电极的原始特征数据及坐标{R00,R10,…,R80}t,{R01,R11,…,R81}t,(x,y)t,将记录超过第一阈值次数的计数器t加1,即t=t+1(t初值为0);
本步骤中,R00表示按压S0前输出的特征数据,R01表示按压S0后输出的特征数据,(x,y)表示当前按压位置中心坐标。
如果CV值未超过第一阈值,将t置0,清空已经存储的t组原始特征数据,回到步骤S501,不需要启动自校准功能。
S504、判断t是否不小于2,当t>=2时,执行步骤S505;否则,执行步骤S501;
S505、,利用t组按压前后的特征数据{R00,R10,…,R80}1,{R01,R11,…,R81}1,(x,y)1;……;{R00,R10,…,R80}t,{R01,R11,…,R81}t,(x,y)t建立方程组,求解校准参数。((x,y)1与(x,y)t可以相同)
S506、判断是否存在唯一确定的校准参数;
如果是,无法唯一确定校准参数,回到步骤S501;如果能够唯一确定相关校准参数,则执行步骤S507;
S507、利用校准参数以及表2对各感应电极的R-F曲线Rj=fjj,F),j=0,1,…8进行校准,且将t置0,清空已经存储的t组特征数据。
求解出的校准参数可以是调整参数θj的各分量,使得修正后的压力与真实压力尽可能一致。
较为简单地,如果当校正后的压力F′0,F′1,……,F′8中大部分一致,只有少数差异较大时,F′2,……,F′8比较接近,F′0,F′1差异较大时,说明S0,S1的Gap发生了变化。上述图11或者图11的过程可简化为:
以F′2,……,F′8的均值作为真实压力的估计,分别对R0=f00,F),R1=f11,F)进行校准或更新表1。
当F′0,F′1,……,F′8分布较分散,参照上述图11或者图12的方法来校准。
图13为本发明实施例六中可进行自校准的压力检测方法流程示意图;如图13所示,其包括:
S601、根据上述任一实施例中特征数据与压力之间的对应关系自校准方法获校准后的特征数据与压力之间的对应关系;
S602、根据每一个感应电极当前零点特征数据相对预存零点数据的变化,以对受压时每个感应电极输出的实时特征数据进行校准;
S603、根据每个感应电极校准后的特征数据以及获校准后的特征数据与压力之间的对应关系,计算受压时每个感应电极输出的压力大小。
下述结合对上述图13做进一步的示意性解释。以出厂前后的零点特征数据的变化为例进行说明,需要说明的是,在其他实施例或情形下,推而广之,零点特征数据的变化可以是当前零点数据相对预存的零点特征数据的变化。在特征数据与压力之间的对应关系完成校准时,根据校准后的特征数据与压力之间的对应关系计算并更新预存的零点特征数据。
实际应用中比较常见的环境变化就是温度、湿度等,这类因素对R=f(θ,F)曲线的影响在一定范围内表现为整体的抬升或下降,如图14所示。如果直接将出场后的特征数据r′1代入出厂前建立的R-F曲线计算到的压力为F′,显然F′与真实压力F存在较大的偏差。
对于某感应电极(如S0)来说,一定范围内的环境变化,一般有r′0-r0=r′1-r1,即r1=r′1+(r0-r′0),r0表示根据出厂前建立的R-F曲线计算到的压力为零时的原始特征数据即出厂前零点数据,r′0表示出厂后无按压时的当前零点数据,将校正后的特征数据r1代入出厂前建立的R-F曲线计算到的压力为真实压力F。因此,每次压力计算过程中,需要按压前后的数据r′0,r′1,计算当前零点r′0与出厂零点r0=f(θ,0)的偏移量(r0-r′0),并对当前按压对应的特征数据r′1进行更新,即r′1←r′1+(r0-r′0),然后将更新后的r′1代入R=f(θ,F)计算得到真实压力。
图14为本发明实施例七压力检测装置的剖视图;如图14所示,将感应电极贴在LCD下方,感应电极与支撑LCD模组的中框之间存在一定的间隙,间隙由具有较好压缩性的泡棉填充。系统通电工作后,LCD模组的Vcom层与中框将接到系统地,感应电极与LCD模组的Vcom层存在负载压力检测电容C1,感应电极与中框存在有效压力检测电容C2,C1与C2并联连接。当按压Cover盖板时,Cover盖板产生形变并使得感应电极与中框的距离减小,电容C2增大,此时C1的变化基本可以忽略,通过检测C2的变化即可确定当前的压力。
图15为本发明实施例八中压力检测装置的剖视图;如图85所示,该结构中将感应电极通过OCA胶贴在支撑LCD模组的中框上,感应电极与LCD模组存在一定的间隙,Vcom层位于LCD模组中LCD叠层1和叠层2之间。系统通电工作后,LCD模组的Vcom层与中框将接到系统地,感应电极与LCD模组的Vcom层存在电容C1,感应电极与中框存在电容C2,C1与C2并联连接。当按压Cover盖板时,Cover盖板产生形变并使得LCD模组的Vcom层与感应电极的距离减小,有效压力检测电容C1增大,此时负载压力检测电容C2的 变化基本可以忽略,通过检测C1的变化即可确定当前的压力。
上述实施例中背光组件、反射膜的位置关系详细不再赘述。
图16为本发明实施例九中压力检测装置的剖视图;如图16所示,该结构应用于LCD模组具有金属背框的实施例中,只是将感应电极贴在LCD模组的金属背框上。
图17为本发明实施例十中压力检测装置中感应电极的平面分布示意图;图18为本发明实施例十一压力检测装置中感应电极的平面分布示意图;图19为本发明实施例十二中压力检测装置中感应电极的平面分布示意图;如图17、18、19所示,感应电极的数量可以是4个、9个、32个。需要说明的是,感应电极的数量可以根据实际情况灵活设置,不做特别限定。
图20为本发明实施例十三中压力检测装置中按压参考点的平面分布示意图;如图20所示,考虑到靠近按压区域中心位置处相对按压区域的边缘位置,具有较高的信噪比,可以尽可能的保证校准的准确性,在靠近按压区域中心位置处设置了一个具有较高信噪比的校准按压区域。用户手动启动校准App后,电子设备的显示屏上标记校准按压区域,引导用户以不同的压力进行多次按压以获取实时特征数据然后计算校准参数并保存到系统中,对特征数据与压力之间的对应关系进行校准。校准方法同上述发明实施例五,这里不再赘述。
图21为本发明实施例十四压力检测装置中按压参考点的平面分布示意图;如图21所示,与上述图20实施例不同的是,设置了两个校准按压区域。。当用户手动启动校准App后,电子设备的显示屏上先后标记校准按压区域1与校准按压区域2,并引导用户分别在两个标准按压区域上按压,以获取实时特征数据,然后计算出校准参数并保存到系统中,对特征数据与压力之间的对应关系进行校准。校准方法同上述发明实施例五,这里不再赘述
本申请的实施例所提供的装置可通过计算机程序实现。本领域技术人员应该能够理解,上述的单元以及模块划分方式仅是众多划分方式中的一种,如果划分为其他单元或模块或不划分块,只要信息对象的具有上述功能,都应该在本申请的保护范围之内。
本领域的技术人员应明白,本申请的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/ 或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种确定感应电极初始距离发生变化的方法,其特征在于,包括:
    根据触控屏受压时触控屏中各感应电极输出的实时特征数据以及特征数据与压力之间的对应关系,计算每个感应电极输出的实时压力;
    根据预存的不同按压位置相对于各感应电极的相对弹性系数,对每个感应电极输出的实时压力进行修正;
    根据修正后的不同感应电极输出的实时压力之间的偏差,确定感应电极中初始距离发生变化的感应电极,以对初始距离发生变化的感应电极的特征数据与压力之间的对应关系进行校准。
  2. 根据权利要求1所述的方法,其特征在于,每一个感应电极的所述特征数据与压力之间的对应关系的建立包括:使用多个样本压力按压各个感应电极,获得每个感应电极对应的多个特征数据;对于每个感应电极,根据多个样本压力以及每个感应电极输出的多个特征数据建立压力与特征数据之间的关系,并将其作为所述每一个感应电极的所述特征数据与压力之间的对应关系。
  3. 根据权利要求2所述的方法,其特征在于,压力和特征数据之间的关系以表格的方式进行存储,以按照查表的方式计算每个感应电极输出的实时压力;或者,通过曲线拟合建立关系,然后根据所述关系建立存储表,以按照查表的方式计算每个感应电极输出的实时压力。
  4. 根据权利要求3所述的方法,其特征在于,当按照查表的方式计算每个感应电极输出的实时压力时,如果感应电极输出的实时特征数据介于两个样本特征数据之间时,采用分段近似法计算对应感应电极输出的实时压力。
  5. 根据权利要求1所述的方法,其特征在于,每个感应电极相对弹性系数的出厂前建立包括:根据使用多个预设压力按压触摸屏上划分出的每个逻辑通道时每个感应电极输出的实时特征数据以及特征数据与压力之间的对应关系,计算每个感应电极输出的实时压力;根据多个预设压力以及每个感应电极输出的实时压力确定每个逻辑通道在各感应电极处的相对弹性系数。
  6. 根据权利要求5所述的方法,其特征在于,根据多个预设压力以及每个感应电极输出的多个压力,确定每个感应电极与每个逻辑通道之间的多个第一相对弹性系数,所述多个第一相对弹性系数的平均值作为对应感应电极与对应逻辑通道之间最终确定的相对弹性系数。
  7. 根据权利要求5或6所述的方法,其特征在于,根据双线性插值法或者曲面拟合法以及触控位置周围若干个感应电极与每个逻辑通道之间的相对弹性系数确定任意触控位置处的相对弹性系数。
  8. 根据权利要求1所述的方法,其特征在于,根据修正后的不同感应 电极输出的实时压力之间的偏差,确定感应电极中初始距离发生变化的感应电极包括:根据修正后的每个感应电极输出的实时压力的离散程度,确定感应电极中初始距离发生变化的感应电极。
  9. 根据权利要求8所述的方法,其特征在于,根据修正后的所有感应电极输出的实时压力计算平均差或方差或变异系数,以作为所述离散程度。
  10. 一种特征数据与压力之间的对应关系自校准方法,其特征在于,在根据权利要求1-9任一项所述方法确定出初始距离发生变化的感应电极之后,包括:
    根据预存的不同按压位置相对于各感应电极的相对弹性系数,对每个感应电极输出的实时压力进行修正得到修正后的实时压力,并确定修正后的压力的离散程度大于预先设定的第一阈值;
    根据按压前后对应的多组特征数据以及预存的不同按压位置相对于各感应电极的相对弹性系数,对初始距离发生变化的所述感应电极的特征数据与压力之间的对应关系进行校准。
  11. 根据权利要求11所述的方法,其特征在于,所述感应电极的特征数据与压力之间的对应关系的建立包括:使用多个样本压力按压各个感应电极,获得每个感应电极对应的多个特征数据;对于每个感应电极,根据多个样本压力以及每个感应电极输出的多个特征数据建立压力与特征数据之间的关系,并将其作为所述每一个感应电极的所述特征数据与压力之间的对应关系。
  12. 根据权利要求11所述的方法,其特征在于,预存的不同位置相对于各感应电极的相对弹性系数的建立包括:根据使用多个预设压力按压触摸屏上划分出的每个逻辑通道时每个感应电极输出的特征数据以及特征数据与压力之间的对应关系,计算每个感应电极输出的实时压力;根据多个预设压力以及每个感应电极输出的压力确定每个逻辑通道在各感应电极处的相对弹性系数。
  13. 根据权利要求12所述的方法,其特征在于,根据多个预设压力以及每个感应电极输出的多个压力,确定每个感应电极与每个逻辑通道之间的多个第一相对弹性系数,所述多个第一相对弹性系数的平均值作为对应感应电极与对应逻辑通道之间最终确定的相对弹性系数。
  14. 根据权利要求10所述的方法,其特征在于,根据触控位置周围若干个逻辑通道相对于各感应电极的相对弹性系数采用双线性插值法或者曲面拟合法确定任意触控位置相对于各感应电极的相对弹性系数。
  15. 根据权利要求10所述的方法,其特征在于,当根据修正后的压力的离散程度判断得知感应电极中初始距离发生变化的感应电极数量不超过预先设定的数量阈值时,根据按压前后对应的多组特征数据以及预存的不同按 压位置相对于各感应电极的相对弹性系数、各感应电极的特征数据与压力之间的对应关系,对感应电极中初始距离发生变化的感应电极的特征数据与压力之间的对应关系进行校准;或者,
    当根据修正后的压力的离散程度判断得知感应电极中初始距离发生变化的感应电极数量超过预先设定的数量阈值时,根据按压前后对应的多组特征数据以及预存的不同按压位置相对于各感应电极的相对弹性系数、各感应电极的特征数据与压力之间的对应关系,建立方程组求解校准参数,根据求解得到的校准参数,对每一个感应电极的特征数据与压力之间的对应关系进行校准。
  16. 一种可进行自校准的压力检测方法,其特征在于,包括:
    根据权利要求9-15任一项特征数据与压力之间的对应关系自校准方法获得校准后的感应电极的特征数据与压力之间的对应关系;
    根据每一个感应电极的当前零点特征数据相对预存的零点数据的变化,对受压时每个感应电极输出的实时特征数据进行校准;
    根据每个感应电极校准后的特征数据以及校准后的特征数据与压力之间的对应关系,计算受压时每个感应电极输出的压力大小。
  17. 根据权利要求16所述的方法,其特征在于,还包括:手动启动预先设置的应用程序进而显示事先设置的校准按压区域,通过按压事先设置的校准按压区域获取实时特征数据。
  18. 根据权利要求16所述的方法,其特征在于,还包括:根据校准后的每一个感应电极的特征数据与压力之间的对应关系对预存的零点数据进行更新。
PCT/CN2016/105086 2016-11-08 2016-11-08 确定感应电极初始距离发生变化的方法 WO2018085991A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2016/105086 WO2018085991A1 (zh) 2016-11-08 2016-11-08 确定感应电极初始距离发生变化的方法
CN201680001299.XA CN108604136B (zh) 2016-11-08 2016-11-08 确定感应电极初始距离发生变化的方法
EP16921358.4A EP3407169A4 (en) 2016-11-08 2016-11-08 METHOD FOR DETERMINING AN INITIAL DISTANCE CHANGE OF A DETECTION ELECTRODE
KR1020187024534A KR102166563B1 (ko) 2016-11-08 2016-11-08 유도 전극의 초기 거리의 변화를 확정하는 방법
US16/110,655 US10884563B2 (en) 2016-11-08 2018-08-23 Method for determining change of initial distance of sensing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105086 WO2018085991A1 (zh) 2016-11-08 2016-11-08 确定感应电极初始距离发生变化的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/110,655 Continuation US10884563B2 (en) 2016-11-08 2018-08-23 Method for determining change of initial distance of sensing electrode

Publications (1)

Publication Number Publication Date
WO2018085991A1 true WO2018085991A1 (zh) 2018-05-17

Family

ID=62110078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105086 WO2018085991A1 (zh) 2016-11-08 2016-11-08 确定感应电极初始距离发生变化的方法

Country Status (5)

Country Link
US (1) US10884563B2 (zh)
EP (1) EP3407169A4 (zh)
KR (1) KR102166563B1 (zh)
CN (1) CN108604136B (zh)
WO (1) WO2018085991A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111176473A (zh) * 2018-11-12 2020-05-19 北京钛方科技有限责任公司 触控板的按压力识别方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114176365A (zh) * 2021-12-07 2022-03-15 珠海格力电器股份有限公司 一种数据处理方法、装置、电子设备及存储介质
CN114845203B (zh) * 2022-07-01 2022-09-20 龙旗电子(惠州)有限公司 电容式耳机的播放控制方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140109696A1 (en) * 2012-10-18 2014-04-24 Industrial Technology Research Institute Pressure sensing device and clipping apparatus using the same
CN105100427A (zh) * 2015-06-05 2015-11-25 努比亚技术有限公司 电子设备及其防护意外的方法
CN105224132A (zh) * 2015-10-08 2016-01-06 广东欧珀移动通信有限公司 一种压力传感器的校准方法及装置
CN105681562A (zh) * 2016-01-25 2016-06-15 广东欧珀移动通信有限公司 触控力度获取方法、触控压力校准方法及移动终端
CN105739776A (zh) * 2016-01-29 2016-07-06 广东欧珀移动通信有限公司 一种压力值的校准方法、装置及移动终端
CN105912159A (zh) * 2016-04-06 2016-08-31 宸鸿科技(厦门)有限公司 一种压力感测方法及其系统
CN106055157A (zh) * 2016-06-03 2016-10-26 芯海科技(深圳)股份有限公司 一种压力触控设备的灵敏度一致性校准方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4189667B2 (ja) * 2003-10-28 2008-12-03 グンゼ株式会社 タッチパネル装置
US8525799B1 (en) * 2007-04-24 2013-09-03 Cypress Semiconductor Conductor Detecting multiple simultaneous touches on a touch-sensor device
US8525779B2 (en) * 2007-12-05 2013-09-03 Eui Jin OH Character input device
US9454268B2 (en) * 2010-10-12 2016-09-27 Parade Technologies, Ltd. Force sensing capacitive hybrid touch sensor
CN102929422B (zh) * 2011-08-10 2017-04-12 谱瑞科技股份有限公司 力感测电容式混合触摸传感器
US20150277617A1 (en) * 2014-03-28 2015-10-01 Paul Gwin Flexible sensor
KR102246554B1 (ko) * 2014-06-18 2021-04-30 엘지전자 주식회사 휴대용 디스플레이 디바이스 및 그 제어 방법
CN105607775A (zh) * 2016-01-18 2016-05-25 京东方科技集团股份有限公司 压力触摸显示装置及压力触控的方法
CN105677130B (zh) * 2016-04-08 2018-10-02 京东方科技集团股份有限公司 压感触控方法、压感触控装置及压感式触摸屏
TWI605369B (zh) * 2016-08-31 2017-11-11 晨星半導體股份有限公司 互容式壓力感測器以及具有壓力感測功能之觸控顯示裝置與其壓力感測方法
US10061430B2 (en) * 2016-09-07 2018-08-28 Synaptics Incorporated Touch force estimation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140109696A1 (en) * 2012-10-18 2014-04-24 Industrial Technology Research Institute Pressure sensing device and clipping apparatus using the same
CN105100427A (zh) * 2015-06-05 2015-11-25 努比亚技术有限公司 电子设备及其防护意外的方法
CN105224132A (zh) * 2015-10-08 2016-01-06 广东欧珀移动通信有限公司 一种压力传感器的校准方法及装置
CN105681562A (zh) * 2016-01-25 2016-06-15 广东欧珀移动通信有限公司 触控力度获取方法、触控压力校准方法及移动终端
CN105739776A (zh) * 2016-01-29 2016-07-06 广东欧珀移动通信有限公司 一种压力值的校准方法、装置及移动终端
CN105912159A (zh) * 2016-04-06 2016-08-31 宸鸿科技(厦门)有限公司 一种压力感测方法及其系统
CN106055157A (zh) * 2016-06-03 2016-10-26 芯海科技(深圳)股份有限公司 一种压力触控设备的灵敏度一致性校准方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3407169A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111176473A (zh) * 2018-11-12 2020-05-19 北京钛方科技有限责任公司 触控板的按压力识别方法及系统

Also Published As

Publication number Publication date
EP3407169A4 (en) 2019-04-17
US20180364867A1 (en) 2018-12-20
CN108604136A (zh) 2018-09-28
CN108604136B (zh) 2021-05-14
KR20180104721A (ko) 2018-09-21
US10884563B2 (en) 2021-01-05
KR102166563B1 (ko) 2020-10-16
EP3407169A1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
US10234992B2 (en) Force-sensitive touch sensor compensation
US20210157436A1 (en) Controller for use in a device comprising force sensors
US10545604B2 (en) Apportionment of forces for multi-touch input devices of electronic devices
US9851828B2 (en) Touch force deflection sensor
US9323407B2 (en) Electronic device and method of processing user actuation of a touch-sensitive input surface
WO2018049638A1 (zh) 压力检测方法、触控芯片以及压力检测模块
WO2018094602A1 (zh) 一种压力检测方法、装置及设备
WO2018085991A1 (zh) 确定感应电极初始距离发生变化的方法
JP5506982B1 (ja) タッチ入力装置、タッチ入力補正方法、およびコンピュータプログラム
US10429982B2 (en) Method and apparatus for detecting force
CN108139841B (zh) 用于检测压力的方法和装置
US20230205364A1 (en) Pressure calibration method and touch sensitive process apparatus and touch system implementing the method
US11733112B2 (en) Characterization of force-sensor equipped devices
CN113419646A (zh) 压力感应通道的校准方法、装置及电子设备
WO2020147840A1 (zh) 触控板按压力检测方法、装置、存储介质和计算机设备
CN108388373B (zh) 触控方法及可穿戴设备
US11775113B2 (en) Touch sensitive processing apparatus and touch system for calculating pressure calibration function and method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187024534

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024534

Country of ref document: KR

Ref document number: 2016921358

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016921358

Country of ref document: EP

Effective date: 20180824

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE