WO2018079807A1 - セルロースアセテート系非対称中空糸膜 - Google Patents

セルロースアセテート系非対称中空糸膜 Download PDF

Info

Publication number
WO2018079807A1
WO2018079807A1 PCT/JP2017/039247 JP2017039247W WO2018079807A1 WO 2018079807 A1 WO2018079807 A1 WO 2018079807A1 JP 2017039247 W JP2017039247 W JP 2017039247W WO 2018079807 A1 WO2018079807 A1 WO 2018079807A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
blood
membrane
solution
Prior art date
Application number
PCT/JP2017/039247
Other languages
English (en)
French (fr)
Inventor
公洋 馬淵
晴彦 香山
由典 滝井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN201780067442.XA priority Critical patent/CN109890490B/zh
Priority to EP17865100.6A priority patent/EP3533514A4/en
Priority to US16/344,153 priority patent/US11014053B2/en
Priority to JP2018547845A priority patent/JP6699750B2/ja
Publication of WO2018079807A1 publication Critical patent/WO2018079807A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/08Addition of substances to the spinning solution or to the melt for forming hollow filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • D01F2/28Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3413Diafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/023Dense layer within the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/06Surface irregularities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength

Definitions

  • the present invention relates to a hollow fiber membrane made of a cellulose acetate polymer. Specifically, the present invention relates to a hollow fiber membrane having an asymmetric structure containing a cellulose acetate polymer suitable for blood purification use, particularly hemodiafiltration.
  • Blood purification includes methods such as hemodialysis, blood filtration, and hemodiafiltration.
  • hemodialysis blood and dialysate are brought into contact with each other through a semipermeable membrane, and waste products accumulated in the body by a diffusion phenomenon are removed.
  • the purified blood is returned to the body again.
  • treatment is performed 3 times a week for about 4 hours.
  • blood filtration is a method for removing waste products together with body fluids by removing a large amount of ultrafiltration and removing body fluids. Since a large amount of body fluid is removed, it is necessary to inject a replenisher (12 to 20 L / time).
  • Hemofiltration is said to be inferior to removal of low molecular weight waste, although it is superior to removal of medium to high molecular weight waste compared to hemodialysis. Therefore, in recent years, attention has been focused on hemodiafiltration that can efficiently remove waste in a wide range from low molecular weight to high molecular weight by combining hemodialysis and hemofiltration.
  • Patent Documents 1 and 2 there is a hollow fiber membrane that can suppress adsorption and clogging of blood proteins and the like even during mass filtration by improving the uniformity and smoothness of the membrane surface, and is applicable to hemodiafiltration and the like. It is disclosed.
  • prediluted hemodiafiltration that replaces the blood before entering the diafilter
  • postdilution hemodiafiltration that replaces the blood after leaving the diafilter.
  • blood is diluted before entering the diafiltration machine, so the blood concentration of the substance to be removed is lowered and the removal efficiency by diffusion is reduced.
  • post-dilution hemodiafiltration therapy increases the blood concentration in the diafiltration machine, so that the amount of albumin leaked is larger than that of predilution hemodiafiltration therapy, or the protein is clogged into the diafiltration machine.
  • the present invention optimizes the structure of the dense layer on the inner surface of the hollow fiber membrane, suppresses protein adsorption and clogging over time, and exhibits stable performance suitable for post-dilution hemodiafiltration therapy.
  • An object of the present invention is to provide a hollow fiber membrane that can be used.
  • the present invention has the following configuration.
  • a concave portion is observed, an aspect ratio which is a ratio of the length and width of the concave portion is 3 or more and 30 or less, a yield strength in a dry state of the hollow fiber membrane is 30 g / filament or more, and a breaking elongation is 20% / filament.
  • a hollow fiber membrane module including the hollow fiber membrane according to any one of (1) to (3).
  • the hollow fiber membrane By optimizing the structure of the inner surface of the hollow fiber membrane, it becomes possible to suppress protein adsorption and clogging even when the blood flow rate and / or filtration rate is increased. In addition, a hollow fiber membrane applicable to post-dilution hemodiafiltration can be obtained.
  • the hollow fiber membrane of the present invention is included in the category of ultrafiltration membranes. Specifically, the average pore diameter of the pores is about 3 nm to 50 nm, and the molecular weight is several thousand to several hundred thousand polymer materials. And pores having a size that does not transmit the colloidal substance and allows the lower molecular weight substances and ions to pass therethrough.
  • the present inventor is a hollow fiber membrane having a dense layer on at least the inner surface side, and when the inner surface of the hollow fiber membrane is observed with an atomic force microscope, a plurality of oriented in the length direction of the hollow fiber membrane Groove-like recesses are observed, the aspect ratio, which is the ratio of the length and width of the recesses, is 3 or more and 30 or less, the yield strength in the dry state of the hollow fiber membrane is 30 g / filament or more, and the elongation at break is 25%.
  • a cellulose acetate polymer as a material constituting the hollow fiber membrane.
  • the cellulose acetate polymer is preferably cellulose diacetate or cellulose triacetate with a hydroxyl group capped to some extent from the viewpoint of blood compatibility such as suppression of complement activity and low blood coagulation.
  • blood compatibility such as suppression of complement activity and low blood coagulation.
  • a cellulose triacetate having a relatively low viscosity having an acetylation degree of 53 to 62 and a 6% viscosity of more than 140 mPa ⁇ s and less than 200 mPa ⁇ s is preferable.
  • the present invention it is preferable to have a plurality of groove-like recesses oriented in the length direction of the hollow fiber membrane when the inner surface of the hollow fiber membrane is observed under the conditions described later using an atomic force microscope. (FIG. 5). More specifically, it is preferable to have 10 or more groove-like recesses oriented in the length direction of the hollow fiber membrane in an observation field of about 2 ⁇ m square. The detailed reason is unknown, but if the gap between the recesses is set to a specific range, the blood rectification effect is enhanced, so that not only the adsorption of proteins etc. is reduced, but also the transient decrease in leukocytes tends to be suppressed It is in. Therefore, an inner surface on which 15 or more of the concave portions are observed is more preferable.
  • the average length (major axis) of the recesses is preferably 200 nm or more and 500 nm or less. If the length of the concave portion is too short, the blood rectifying effect is lowered, or blood cell components, proteins and the like are likely to remain in the concave portion, and it is difficult to obtain the effect of the present invention. On the other hand, if the length of the recess is too long, the film surface structure tends to be defective, for example, the recess is broken.
  • the average length (major axis) is an average value of five points including the longest and shortest as described later.
  • the average width (minor axis) of the recesses is preferably 10 nm or more and 100 nm or less. If the width of the recess is too short, a sufficient blood flow rectifying effect may not be obtained. On the other hand, if the width of the recess is too wide (too short), blood cell components and proteins tend to remain in the recess, and the effects of the present invention are difficult to obtain.
  • the average width (minor axis) is an average value of five points including the maximum and minimum as will be described later.
  • the aspect ratio (average length / average width), which is the ratio of the average length and average width of the recesses, is preferably 3 or more and 30 or less. If the aspect ratio is too small, the concave portion has a shape that is wide for the length, so that it becomes difficult to obtain a blood flow rectifying effect, and blood components are likely to remain in the concave portion. On the other hand, it is considered that the problem is hardly caused because the aspect ratio is too large.
  • the average depth of the recess is preferably 30 nm or less. If the depth of the concave portion is too large, there is a balance with the width of the concave portion, but stagnation tends to occur in the flow of fluid such as blood, and the permeability of ⁇ 2-microglobulin or the like decreases or the temporal stability of the permeability. May decrease. In addition, the transient decrease in leukocytes may be increased. Moreover, it is preferable that the average depth of the said recessed part is 10 nm or more. On the other hand, if the depth of the recess is too small, a rectifying effect on the flow of fluid such as blood cannot be obtained, and the temporal stability of permeability may be lowered. Therefore, the average depth of the recesses is more preferably 10 nm or more.
  • the hollow fiber membrane has a dense layer on the inner surface side, and portions other than the dense layer have pores expanded to such an extent that they do not become a material permeation resistance.
  • it has a dense layer on the inner surface, and the holes gradually expand toward the outer surface, or the initial holes expand from the inner surface toward the outer surface, and pass through the middle part as it is. It also includes a structure in which the holes are almost constant up to the vicinity of the surface, and the holes expand or contract near the outer surface.
  • the dense layer is a portion in which the presence of voids is not substantially observed in a photograph (FIG. 3) obtained by photographing a cross section of the hollow fiber membrane with a scanning electron microscope (SEM) at a magnification of 3,000. Point to.
  • substantially means that the polymer portion and the void portion are not clearly discriminated visually with a normal photo size (L size).
  • the thickness of the dense layer is preferably 2.5 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • the support layer portion other than the dense layer may have a pore diameter and voids that do not cause permeation resistance of the substance and a thickness that can maintain the membrane shape.
  • the inner diameter of the hollow fiber membrane is preferably 130 ⁇ m or more and less than 280 ⁇ m. If the inner diameter of the hollow fiber membrane is too small, the blood flow linear velocity becomes too high when the blood flow rate is increased, and the blood cell component may be damaged. On the other hand, when the inner diameter of the hollow fiber membrane is too large, the convenience of use is impaired because the size of the module (blood purifier) needs to be increased in order to increase the membrane area.
  • the thickness of the hollow fiber membrane is not particularly limited, but is preferably 18 ⁇ m or more and less than 30 ⁇ m. If the thickness of the hollow fiber membrane is too thin, the permeation performance is improved, but it is difficult to maintain the required strength. On the other hand, if the film thickness is too thick, the permeation resistance of the substance increases and the permeability of the removed substance may be insufficient.
  • the hollow fiber membrane of the present invention it is preferable to form a membrane using a dry and wet spinning method.
  • a cellulose acetate polymer, a solvent, and, if necessary, a non-solvent mixed and dissolved are used.
  • the core liquid a liquid that is coagulable with respect to the cellulose acetate polymer is used.
  • the spinning solution is discharged from the annular part (slit part) of the double-tube nozzle, and at the same time, the core liquid is discharged from the center hole (inner hole), and after passing through the idle part, it is guided to the coagulation bath to form a hollow fiber membrane.
  • the obtained hollow fiber membrane is washed to remove excess solvent, etc., and impregnated with a membrane pore retainer in the hollow portion and pores (or voids) if necessary, and then dried and wound up.
  • the technical means for obtaining the hollow fiber membrane of the present invention will be described in detail below.
  • a liquid that is coagulable with respect to a spinning stock solution containing a cellulose acetate polymer is used as a core solution, and the discharge linear velocity of the spinning solution and the discharge linear velocity of the core solution are made almost constant. is important.
  • substantially constant speed means that the ratio of the discharge linear speed of the spinning dope and the discharge linear speed of the core liquid is adjusted to 0.95 to 1.05.
  • the discharge linear velocity of the spinning dope is a value determined from the cross-sectional area of the annular portion (slit portion) and the discharge amount of the spinning dope, while the discharge linear velocity of the core solution is the annular portion (slit portion).
  • the linear speed ratio (the discharging linear speed of the spinning stock solution) / The discharge linear velocity of the core liquid) is obtained as follows.
  • linear velocity ratio the ratio of the discharge linear velocity of the spinning dope to the discharge linear velocity of the core solution (linear velocity ratio) is too large or too small, the speed difference between the spinning dope and the core solution becomes large, so the flow disturbance at the interface is disturbed. That is, there is a tendency that the surface structure of the film becomes rough (unevenness increases). In particular, such a phenomenon is likely to occur when the core liquid discharge linear velocity is relatively high.
  • the draft ratio represents the drawing speed from the coagulation bath / the discharge linear speed of the spinning dope.
  • the draft ratio is preferably 0.80 to 0.85.
  • the draft ratio is 1.25. If the draft ratio is large, the hollow fiber membrane whose structure is being fixed will be pulled excessively, so that the recess formed on the inner surface will be stretched, and in extreme cases, defects such as tearing of the recess will occur. Will occur.
  • NMP N-methylpyrrolidone
  • dimethylformamide dimethylacetamide
  • dimethylsulfoxide dimethylsulfoxide
  • the non-solvent include ethylene glycol, triethylene glycol (hereinafter sometimes abbreviated as TEG), polyethylene glycol, glycerin, propylene glycol, and alcohols. These solvents and non-solvents have good compatibility with water.
  • the water include ion exchange water, distilled water, RO water, purified water, and ultrapure water.
  • the obtained spinning dope and core solution are simultaneously discharged from the slit portion and the center hole of the double tube nozzle, passed through the aerial running portion, and then immersed in a coagulation bath to be formed into a hollow fiber shape.
  • a nozzle having a slit outer diameter of 250 to 300 ⁇ m and a slit inner diameter of 180 to 230 ⁇ m it is preferable to use a nozzle having a slit outer diameter of 250 to 300 ⁇ m and a slit inner diameter of 180 to 230 ⁇ m.
  • the nozzle temperature is preferably adjusted to 55 to 65 ° C. as the heat medium temperature on the spinning dope side and adjusted to 10 to 15 ° C. as the refrigerant temperature on the core solution side.
  • the temperature of the coagulation bath is preferably adjusted to 40 to 50 ° C.
  • the hollow fiber membrane drawn from the coagulation bath is subsequently washed with water to remove excess solvent and non-solvent, and then immersed in a glycerin bath as necessary to replace the water in the hollow fiber membrane with a glycerin aqueous solution.
  • concentration of glycerin is preferably 85 to 93% by weight.
  • the temperature of the glycerin aqueous solution is preferably adjusted to 88 to 96 ° C.
  • the hollow fiber membrane drawn from the glycerin bath is further dried and wound up.
  • the drying temperature is preferably adjusted to 35 to 60 ° C.
  • the obtained hollow fiber membrane can be crimped, if necessary, and a predetermined number of the hollow fiber membranes can be stored in a case to produce a module having a blood inlet and outlet and a dialysate inlet and outlet.
  • the yield strength measured using a dry hollow fiber membrane is 30 g / filament or more and the elongation at break is 20% / filament or less.
  • a higher yield strength is preferable because the yield of blood purification device (module) production is improved.
  • module blood purification device
  • the elongation at break is too high, the yield of module production is not only reduced, but also during subsequent storage and transportation. There is a problem that the performance change due to the heat history is likely to occur or the reason is not well understood, but there is a problem that the filtration stability is lowered ( ⁇ TMP is increased). Further, if the elongation at break is too low, handling becomes difficult, so 10% / filament or more is preferable, and 15% / filament or more is more preferable.
  • a hollow fiber membrane excellent in balance between performance and handleability can be obtained not only by optimizing the structure of the inner surface but also by setting the strength and elongation in a specific range.
  • the water permeability (UFR) of pure water measured at 37 ° C. is 200 ml / ( m 2 ⁇ hr ⁇ mmHg) to 1500 ml / (m 2 ⁇ hr ⁇ mmHg), a filtration rate of 15 ml / min. using a bovine plasma system.
  • the clearance of ⁇ 2-MG ( ⁇ 2-microglobulin) measured with the above (inner diameter standard membrane area 2.1 m 2 ) was 65 ml / min. 90 ml / min.
  • the leakage of useful proteins such as albumin is 1.5 g / (3 L water removal, membrane area 2.1 m 2 ) or less, it has the following characteristics.
  • a blood test solution is fed at 350 mL / min.
  • the difference between TMP 15 minutes after the start of liquid feeding and TMP 240 minutes later is 13 mmHg or less. 10 mmHg or less is more preferable.
  • the protein adsorption amount test mentioned later when the protein adsorption amount test mentioned later is implemented, it is preferable that it is 5.0 mg / m ⁇ 2 > or less. More preferably, it is 4.5 mg / m 2 or less, and still more preferably 4.0 mg / m 2 or less.
  • the outer diameter, inner diameter, and film thickness of the hollow fiber membrane are passed through an appropriate number so that the hollow fiber membrane does not fall out into a hole of ⁇ 3 mm in the center of the slide glass, and is cut with a razor on the upper and lower surfaces of the slide glass. Then, after obtaining a hollow fiber membrane cross-section sample, it is obtained by measuring the short diameter and long diameter of the hollow fiber membrane cross section using a projector Nikon-V-12A. The short diameter and the long diameter in two directions were measured for each cross section of the hollow fiber membrane, and the respective arithmetic average values were defined as the inner diameter and the outer diameter of the single cross section of the hollow fiber membrane. The film thickness was calculated by (outer diameter ⁇ inner diameter) / 2. Measurements were similarly performed on five cross sections including the maximum and minimum, and the average values were defined as the inner diameter, outer diameter, and film thickness.
  • the membrane area A (m 2 ) of the module was determined based on the inner diameter of the hollow fiber membrane.
  • A n ⁇ ⁇ ⁇ d ⁇ L
  • n is the number of hollow fiber membranes in the dialyzer
  • is the circumference
  • d is the inner diameter (m) of the hollow fiber membrane
  • L is the effective length (m) of the hollow fiber membrane in the dialyzer.
  • viscosity (mPa ⁇ s) flowing time (sec) / viscosity coefficient
  • the viscometer coefficient was measured using the standard solution for calibration of the viscometer and the flowing time (sec) by the same operation as above. It calculated
  • required from the following formula. Viscometer coefficient [standard solution absolute viscosity (mPa ⁇ s) ⁇ solution density (1.235 g / cm 3 )] / [standard solution density (g / cm 3 ) ⁇ standard solution flow time (sec)]
  • the tensile strength of the hollow fiber membrane was determined by using a Tensilon universal testing machine (UTMII manufactured by Toyo Baldwin) to cut one dried hollow fiber membrane into a length of about 15 cm and loosening between the chucks (distance about 10 cm).
  • the hollow fiber membrane was pulled at a crosshead speed of 10 cm / min in a temperature and humidity environment of 20 ⁇ 5 ° C. and 60 ⁇ 10% RH, and measurement was performed.
  • the breaking elongation and breaking strength were read from the obtained chart paper.
  • an auxiliary line is provided from the SS curve, and the point where the two auxiliary lines intersect is defined as the yield point, the strength at that point is the yield strength, and the elongation is the yield elongation. did.
  • a module having a membrane area of 1.5 m 2 based on the inner diameter of the hollow fiber membrane was used, and liquid paraffin was sealed in advance on the dialysate side so that the aqueous solution did not flow into the blood side from the dialysate side.
  • 500 ml of a 37 ° C. albumin aqueous solution adjusted to a concentration of 100 mg / l was prepared, and 200 ml / min. Circulation was performed at a flow rate of 4 hours. The amount of adsorption was determined from the initial concentration of the aqueous albumin solution and the concentration after circulation using the following formula.
  • the obtained FFT image was converted into a jpeg image, and image analysis was performed using image analysis measurement software WinROOF2013 (mitani corporation).
  • the captured image is binarized (color system: RGB, R: threshold value 0 to 170, G: threshold value 0 to 170, B: threshold value 0 to 170), and from the obtained image
  • the major axis of the recess and the minor axis of the recess were measured by automatic measurement, and the aspect ratio was calculated (FIGS. 1 and 2). Five points including the maximum and minimum were measured, and the average major axis and the average minor axis were obtained.
  • Aspect ratio average major axis of recess / average minor axis of recess
  • the hollow fiber membrane was lightly washed to remove the attached glycerin.
  • the hollow fiber membrane wet with water was immediately immersed in liquid nitrogen and frozen, and then taken out from liquid nitrogen.
  • the sample for cross-sectional observation was bent and cut in a frozen state.
  • the obtained sample was fixed to a sample stage, and carbon deposition was performed.
  • the sample after vapor deposition was observed with a scanning electron microscope (S-2500, manufactured by Hitachi) at an acceleration voltage of 5 kV and a magnification of 3,000.
  • the heat medium was set at 65 ° C.
  • the refrigerant was set at 10 ° C.
  • the solidified hollow fiber membrane was drawn out at a speed of 57.0 m / min, subsequently washed with water, treated with glycerin, dried and wound up. In the water washing and glycerin adhesion treatment process, consideration was given to avoiding stretching as much as possible.
  • the obtained hollow fiber membranes were bundled and inserted into a case, and both ends were bonded and fixed with a polyurethane resin, and then a part of the resin was cut to produce a module in which both ends of the hollow fiber membranes were opened.
  • the evaluation results are summarized in Tables 1 and 2.
  • Example 2 A hollow fiber membrane was produced and a module was produced in the same manner as in Example 1 except that the drawing speed from the coagulation liquid was 55.0 m / min.
  • Example 3 A hollow fiber membrane was produced and a module was produced in the same manner as in Example 1 except that the drawing speed from the coagulation liquid was 59.0 m / min.
  • Example 4 A hollow fiber membrane was produced and a module was produced in the same manner as in Example 1 except that the discharge rate of the core liquid was 2.08 cc / min.
  • Example 5 A hollow fiber membrane was produced and a module was produced in the same manner as in Example 1 except that the discharge rate of the core liquid was 2.30 cc / min.
  • Example 6 A hollow fiber membrane was produced and a module was produced in the same manner as in Example 1 except that the spinning solution discharge rate was 1.88 cc / min.
  • Example 7 A hollow fiber membrane was produced and a module was produced in the same manner as in Example 1 except that the amount of spinning solution discharged was 1.70 cc / min.
  • Example 1 A hollow fiber membrane was produced and a module was produced in the same manner as in Example 1 except that the discharge rate of the core liquid was 2.40 cc / min.
  • Comparative Example 2 A hollow fiber membrane was produced and a module was produced in the same manner as in Example 1 except that the discharge rate of the core liquid was 2.00 cc / min.
  • Comparative Example 3 A hollow fiber membrane was produced and a module was produced in the same manner as in Comparative Example 1 except that the drawing speed from the coagulation liquid was 62.0 m / min.
  • Comparative Example 4 A hollow fiber membrane was produced and a module was produced in the same manner as in Comparative Example 2 except that the drawing speed from the coagulation liquid was 53.0 m / min.
  • the hollow fiber membranes of Examples 1 to 7 not only have a low protein adsorption amount on the inner surface of the membrane, but also have excellent filtration stability (small ⁇ TMP) Therefore, blood purification can be performed with high efficiency not only in normal hemodialysis but also in post-dilution type hemodiafiltration conditions that are high load conditions.
  • the hollow fiber membranes of Comparative Examples 1 and 3 have a large aspect ratio of the inner surface of the hollow fiber membrane, and therefore have low filtration stability and are not suitable for hemodiafiltration.
  • the hollow fiber membranes of Comparative Examples 2 and 4 have a problem that the protein adsorption amount is large because the aspect ratio of the inner surface of the hollow fiber membrane is small.
  • the hollow fiber membrane of Comparative Example 5 is not only large in the aspect ratio of the inner surface of the hollow fiber membrane, but also in a preferable balance between the yield strength and the elongation at break because the stretch in the washing step and the glycerin adhesion step is large. Is off. Therefore, the amount of protein adsorbed on the membrane surface was large, and the filtration stability was low.
  • the present invention uses a cellulose acetate polymer, has an asymmetric membrane structure having a dense layer on at least the inner surface of the hollow fiber membrane, and has high water permeability, molecular weight fractionation characteristics, and solute permeability.
  • the biocompatibility was improved, and the performance stability was improved even when severe hemodiafiltration conditions were adopted in patients with large physique
  • a hollow fiber membrane can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • External Artificial Organs (AREA)
  • Artificial Filaments (AREA)

Abstract

【課題】本発明は、中空糸膜の内表面の緻密層の構造を最適化することで、血流量およびろ過量の増加に対応して安定した性能を発現できる中空糸膜を提供することを目的とするものである。 【解決手段】少なくとも内表面側に緻密層を有する中空糸膜であって、前記中空糸膜の内表面を原子間力顕微鏡で観察したとき、前記中空糸膜の長さ方向に配向した複数の溝様凹部が観察され、前記凹部の長さと幅の比であるアスペクト比が3以上30以下であり、前記中空糸膜の乾燥状態における降伏強度が30g/filament以上、破断伸度が20%/filament以下であることを特徴とする中空糸膜。

Description

セルロースアセテート系非対称中空糸膜
 本発明は、セルロースアセテート系ポリマーからなる中空糸膜に関するものである。詳しくは、血液浄化用途、特に血液透析ろ過に適したセルロースアセテート系ポリマーを含む非対称構造を有する中空糸膜に関するものである。
 血液浄化には、血液透析、血液ろ過、血液透析ろ過などの方法がある。血液透析は、血液と透析液とを半透膜を介して接触させ、拡散現象によって体内にたまった老廃物の除去を行うものである。浄化された血液は再び体内に戻される。通常1週間に3回、1回あたりの治療は4時間程度行われる。一方、血液ろ過は、限外ろ過を大量に行い体液を除去することで、体液と共に老廃物の除去を行う方法である。体液が大量に除去されるので補充液(12~20L/回)を注入する必要がある。血液ろ過は、血液透析と比較して中~高分子量の老廃物の除去は優位だが、低分子量の老廃物の除去に劣ると言われている。そこで、近年、血液透析と血液ろ過を組合せることにより、低分子量から高分子量まで幅広い領域の老廃物を効率的に除去可能な血液透析ろ過に注目が集まっており、出願人においても関連する出願を行っている(特許文献1、2)。これらの文献には、膜表面の均一性や平滑性を向上することにより、大量ろ過時においても血中タンパク等の吸着や目詰まりを抑制でき、血液透析ろ過等に適用可能な中空糸膜が開示されている。
特開2009-95515号公報 特開2011-78920号公報
 血液透析ろ過療法には、透析ろ過器に入る前に血液に補液する前希釈血液透析ろ過療法と透析ろ過器から出た後の血液に補液する後希釈血液透析ろ過療法がある。前希釈血液透析ろ過療法は、透析ろ過器に入る前に血液が希釈されるので、除去したい物質の血中濃度が低くなり、拡散による除去効率は低くなるが、透析ろ過器へのタンパクの目詰まりが起こりにくく、経時的な性能低下を招きにくいという利点がある。一方、後希釈血液透析ろ過療法は、透析ろ過器内での血液濃縮が大きくなるので、前希釈血液透析ろ過療法に比べてアルブミンの漏出量が多くなるとか、透析ろ過器へのタンパクの目詰まりが起こりやすいという問題がある。一般に、後希釈血液透析ろ過療法では、前希釈血液透析ろ過療法と同等の効果を得るために、1/3程度の置換液量で済むことから、後希釈血液透析ろ過療法に適応するために、タンパク等のより少ない吸着や目詰まり抑制といった中空糸膜のさらなる改良が求められている。
 本発明は、中空糸膜の内表面の緻密層の構造を最適化することで、経時的なタンパクの吸着や目詰まりを抑制して、後希釈血液透析ろ過療法に好適な安定した性能を発現できる中空糸膜を提供することを目的とするものである。
 本発明は以下の構成を有する。
(1)少なくとも内表面側に緻密層を有する中空糸膜であって、前記中空糸膜の内表面を原子間力顕微鏡で観察したとき、前記中空糸膜の長さ方向に配向した複数の溝様凹部が観察され、前記凹部の長さと幅の比であるアスペクト比が3以上30以下であり、前記中空糸膜の乾燥状態における降伏強度が30g/filament以上、破断伸度が20%/filament以下であることを特徴とする中空糸膜。
(2)前記中空糸膜は、緻密層および支持層からなり、前記支持層は前記緻密層よりも拡大された孔を有することを特徴とする(1)に記載の中空糸膜。
(3)前記中空糸膜が、主としてセルロースアセテート系ポリマーからなることを特徴とする(1)または(2)に記載の中空糸膜。
(4)(1)~(3)のいずれかに記載の中空糸膜が内蔵された中空糸膜モジュール。
 中空糸膜内表面の構造を最適化することで、血流量および/またはろ過量を増加した際にもタンパク等の吸着や目詰まりを抑制することが可能となり、前希釈血液透析ろ過療法だけでなく、後希釈血液透析ろ過療法にも適応可能な中空糸膜を得ることができる。
中空糸膜の内表面の凹部を原子間力顕微鏡で観察したデータをフーリエ変換して得られた画像の一例である。 中空糸膜の内表面の凹部を原子間力顕微鏡で観察したデータをフーリエ変換して得られた画像の他の一例である。 中空糸膜の断面を走査型電子顕微鏡を用いて倍率3,000倍で観察した画像の一例である。 乾燥中空糸膜1本あたりの強伸度の測定結果を示す一例である。 中空糸膜の内表面を原子間力顕微鏡で観察した際の表面形状像である。
 本発明の中空糸膜は、限外ろ過膜の範疇に含まれるものであり、具体的には細孔の平均孔径は3nm~50nm程度、分子量で言えば数千~数十万の高分子物質やコロイド状物質を透過せず、それ以下の中分子物質やイオン類を透過させる大きさの細孔を有するものである。
 従来、血液適合性や性能の向上に対しては、血球成分や血漿タンパクの膜表面への吸着や目詰まりを抑制するために中空糸膜内表面の平滑性を高める方向で開発が進められてきた。しかし、血流量やろ過量の増大に適応するためには従来の開発志向では限界があった。本発明者は、少なくとも内表面側に緻密層を有する中空糸膜であって、前記中空糸膜の内表面を原子間力顕微鏡で観察したとき、前記中空糸膜の長さ方向に配向した複数の溝様凹部が観察され、前記凹部の長さと幅の比であるアスペクト比が3以上30以下であり、前記中空糸膜の乾燥状態における降伏強度が30g/filament以上、破断伸度が25%/filament以下とすることにより、後希釈血液透析ろ過のような中空糸膜にとって過酷な条件での血液浄化療法に用いた場合にも、膜面への血球成分やタンパク等の吸着、目詰まりを抑制することができることを見出し、ついに本発明に到達した。
 本発明において、中空糸膜を構成する材料としては、セルロースアセテート系ポリマーを使用するのが好ましい。セルロースアセテート系ポリマーとしては、補体活性の抑制や血液凝固の低さといった血液適合性の面から水酸基がある程度キャップされたセルロースジアセテートやセルローストリアセテートが好ましい。セルロース系ポリマーを主成分とする中空糸膜を血液浄化に用いると白血球の一過性減少が生じることがあり、血液適合性の面で課題があったが、セルロースの水酸基の一部をアセチル基で置換したセルロースアセテート系ポリマーを用いることにより血液適合性を改善できるメリットがある。具体的には、酢化度が53~62であり、6%粘度が140mPa・s超200mPa・s未満である比較的低粘度のセルローストリアセテートが好ましい。
 本発明において、中空糸膜の内表面を原子間力顕微鏡を用いて後述するような条件で観察した際に、中空糸膜の長さ方向に配向した複数の溝様の凹部を有するのが好ましい(図5)。より詳細には、およそ2μm四方の観測視野において、中空糸膜の長さ方向に配向した溝様の凹部を10以上有するのが好ましい。詳細な理由は不明だが、凹部と凹部の間隔を特定の範囲にすると血液の整流効果が高められるためか、タンパク等の吸着が少なくなるだけでなく、白血球の一過性減少が抑制される傾向にある。そのため、前記凹部が15以上観察される内表面がより好ましい。
 本発明において、前記凹部の平均長さ(長径)は、200nm以上500nm以下であることが好ましい。凹部の長さが短すぎると、血液の整流効果が低下するためか、凹部に血球成分やタンパク等が留まり易くなり、本発明の効果が得られにくい。また、凹部の長さが長すぎると、凹部が裂けるなど膜表面構造の欠陥となりやすい。ここで、平均長さ(長径)は、後述するように最長および最短を含めた5点の平均値である。
 本発明において、前記凹部の平均幅(短径)は、10nm以上100nm以下であることが好ましい。凹部の幅が短すぎると、十分な血流の整流効果が得られないことがある。また、凹部の幅が広すぎる(短すぎる)と、凹部に血球成分やタンパクが留まりやすくなり、本発明の効果が得られにくい。ここで、平均幅(短径)は、後述するように最大および最小を含めた5点の平均値である。
 本発明において、前記凹部の平均長さと平均幅の比であるアスペクト比(平均長さ/平均幅)は、3以上30以下であることが好ましい。アスペクト比が小さすぎると、凹部が長さの割に幅の広い形状となるため、血流の整流効果が得られにくくなり、凹部に血液成分が留まりやすくなる。一方、アスペクト比が大きすぎて問題が起こることはほぼないと考えられる。
 本発明において、前記凹部の平均深さは、30nm以下であることが好ましい。凹部の深さが大きすぎると、凹部の幅との兼ね合いもあるが血液等の流体の流れに淀みが生じやすくなり、β2-マイクログロブリン等の透過性が低下したり、透過性の経時安定性が低下することがある。また、白血球の一過性減少が大きくなることがある。また、前記凹部の平均深さは、10nm以上であることが好ましい。一方、凹部の深さが小さすぎると、血液等の流体の流れに対する整流効果が得られず、透過性の経時安定性が低下することがある。そのため、凹部の平均深さは、10nm以上であることがより好ましい。
 本発明において、中空糸膜は、内表面側に緻密層を有し、前記緻密層以外の部分は物質の透過抵抗とならない程度に拡大された孔を有することが好ましい。具体的には、内表面に緻密層を有し、外表面に向かって次第に孔が拡大するような構造や、内表面から外表面に向かって当初孔が拡大し、そのまま中間部を過ぎて外表面近傍まで孔がほぼ一定で推移し、外表面付近で孔が拡大するか、または縮小するような構造も含む。
 本発明において、緻密層は、中空糸膜断面を走査型電子顕微鏡(SEM)を用いて倍率3,000倍で撮影した写真(図3)において、実質的に空隙の存在が認められない部分を指す。ここで、実質的にとは、通常の写真サイズ(L判)にて目視でポリマー部と空隙部が明確に判別されないことを意味する。緻密層の厚みは2.5μm以下が好ましく、2μm以下がより好ましい。被処理液(血液)を中空糸膜の中空部に流して処理する場合に、緻密層は、物質の透過抵抗を小さくする意味で薄い方が好ましいが、薄すぎると内表面構造の欠陥が緻密層の完全性を損なうおそれがあるので、0.01μm以上が好ましく、0.1μm以上がより好ましい。また、緻密層以外の支持層部は、物質の透過抵抗とならない程度の細孔径や空隙を有するとともに膜形状を維持できる程度の厚みを有するものであればよい。
 本発明において、血液の流動安定性を確保するためには中空糸膜の内径を130μm以上280μm未満とするのが好ましい。中空糸膜の内径が小さすぎると、血流量を増加した際に血流の線速度が高くなりすぎ、血球成分がダメージを受ける可能性がある。一方、中空糸膜の内径が大きすぎると、膜面積を稼ぐためにモジュール(血液浄化器)のサイズを大きくする必要が生じるなど使用の利便性を損なう。
 本発明において、中空糸膜の膜厚は、特に限定されないが、18μm以上30μm未満とするのが好ましい。中空糸膜の膜厚が薄すぎると、透過性能は高まるが必要な強度を維持することが困難になる。また、膜厚が厚すぎると、物質の透過抵抗が大きくなり、除去物質の透過性が不充分となることがある。
 本発明の中空糸膜を得るためには、乾湿式紡糸法を利用して製膜するのが好ましい。紡糸原液は、セルロースアセテート系ポリマー、溶媒、必要により非溶媒を混合溶解したものを用いる。芯液は、セルロースアセテート系ポリマーに対して凝固性のある液体を用いる。2重管ノズルの環状部(スリット部)より紡糸原液を吐出し、同時に中心孔(内孔)より芯液を吐出し、空走部を通過させた後、凝固浴に導き、中空糸膜形状を固定する。得られた中空糸膜を洗浄して過剰の溶媒等を除去し、必要により膜孔保持剤を中空部および細孔(または空隙)内に含浸させた後、乾燥して巻き取る。
 本発明の中空糸膜を得るための技術的手段について、以下詳細に説明する。中空糸膜の内表面の構造を制御するためには、芯液と紡糸原液(ドープ)が接触して膜表面を形成させる工程を厳密に制御することが重要である。すなわち、紡糸原液と芯液の吐出線速度比(線速比)、ドラフト比の最適化が重要である。具体的には、セルロースアセテート系ポリマーを含む紡糸原液に対して凝固性のある液体を芯液として用いた上で、紡糸原液の吐出線速度と芯液の吐出線速度をほぼ等速とすることが重要である。ここで、ほぼ等速とは、紡糸原液の吐出線速度と芯液の吐出線速度との比を0.95~1.05に調整することを意味する。
 本発明において、紡糸原液の吐出線速度は、前記環状部(スリット部)の断面積と紡糸原液の吐出量から求められる値であり、一方、芯液の吐出線速度は、環状部(スリット部)の内径を基準とした断面積と芯液の吐出量から求められる値である。例えば、スリット外径が500μm、スリット内径が300μmの2重管ノズルを用いて、紡糸原液を3cc/min、芯液を2cc/minで吐出する場合について、線速比(紡糸原液の吐出線速度/芯液の吐出線速度)を求めると、下記のようになる。
 紡糸原液の吐出線速度(m/min)=紡糸原液の吐出量/スリット部断面積=3cc/1.26×10-3cm/100=23.8
 芯液の吐出線速度(m/min)=芯液の吐出量/スリット部内径基準の断面積=2cc/7.07×10-4cm/100=28.3
 線速比=紡糸原液の吐出線速度/芯液の吐出線速度=23.8/28.3=0.84
 紡糸原液の吐出線速度と芯液の吐出線速度との比(線速比)が大きすぎても小さすぎても、紡糸原液と芯液との速度差が大きくなるので界面における流れの乱れが生じ、すなわち膜の表面構造が粗くなる(凹凸が大きくなる)傾向がある。特に、芯液の吐出線速度が相対的に速い場合にこのような現象が起こりやすくなる。
 また、本発明において、ドラフト比は、凝固浴からの引出し速度/紡糸原液の吐出線速度を表す。中空糸膜の内表面の構造を本発明の範囲に制御するためには、ドラフト比を0.80~0.85とするのが好ましい。例えば、凝固浴からの引出し速度が50m/min、紡糸原液の吐出線速度が40m/minであれば、ドラフト比は1.25となる。ドラフト比が大きいと、構造が固定化されつつある中空糸膜を過度に引っ張ることになるので、内表面に形成された凹部を引き伸ばすことになり、極端な場合には凹部が裂けるなどの欠陥が生じることになる。また、ドラフト比が小さい場合は、中空糸膜長さ方向に発生した微小な凹凸(皺)を均す効果が得られず、中空糸膜の内表面近傍を流れる流体の整流効果が得られないことがある。
 前記した条件を採用することによって、本発明の中空糸膜の特徴的な構造を達成することができる。以下、前記した条件を採用する前提となるその他の製造条件について説明する。
 本発明において、紡糸原液は、セルロースアセテート系ポリマー、溶媒、非溶媒を混合溶解したものを使用するのが好ましい。具体的には、セルロースアセテート系ポリマー/溶媒/非溶媒=15~20/52~64/16~33の範囲で調製するのが好ましい。
 本発明において、セルロースアセテート系ポリマーの溶媒としては、N-メチルピロリドン(以下、NMPと略記することがある)、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドなどを使用するのが好ましい。また、非溶媒としては、エチレングリコール、トリエチレングリコール(以下、TEGと略記することがある)、ポリエチレングリコール、グリセリン、プロピレングリコール、アルコール類などが挙げられる。これらの溶媒、非溶媒は、水と良好な相溶性を有する。
 本発明において、芯液は、溶媒、非溶媒および水からなる水溶液が使用でき、溶媒/非溶媒/水=0~14/0~6/80~100の範囲で調製するのが好ましいが、非溶媒と水との混合液を用いるのがより好ましく、水単独がさらに好ましい。ここで、水は、イオン交換水、蒸留水、RO水、精製水、超純水などが挙げられる。
 前記得られた紡糸原液および芯液をそれぞれ、2重管ノズルのスリット部および中心孔より同時に吐出し、空中走行部を通過させた後、凝固浴中に浸漬して中空糸状に成形する。内径が200μm程度の中空糸膜を得る場合には、用いるノズルは、スリット外径が250~300μm、スリット内径が180~230μmのものを使用するのが好ましい。また、ノズル温度は、紡糸原液側は熱媒温度として55~65℃に調整し、芯液側は冷媒温度として10~15℃に調整するのが好ましい。
 空中走行部は、紡糸速度にもよるが5mm~100mmとするのが好ましい。また、必要により、空中走行部の湿度や温度をコントロールしても良い。空中走行部を通過させた後、溶媒/非溶媒/水=49~56/21~24/20~30の範囲で調製された凝固浴に浸漬して中空糸膜を形成する。凝固液の水含量が低い方が膜断面の非対称性が高まるため、溶媒/非溶媒/水=52.5~56/22.5~24/20~25がより好ましい。また、凝固浴の温度は、40~50℃に調整するのが好ましい。
 凝固浴から引き出された中空糸膜は、引き続き水洗して過剰の溶媒、非溶媒を除去した後、必要によりグリセリン浴に浸漬して中空糸膜内の水をグリセリン水溶液に置換する。この時、グリセリンの濃度は85~93重量%とするのが好ましい。また、グリセリン水溶液の温度は88~96℃に調整するのが好ましい。
 グリセリン浴から引き出した中空糸膜は、さらに乾燥して巻取る。乾燥温度は、35~60℃に調整するのが好ましい。
 得られた中空糸膜は、必要により、クリンプを付与するなどした後、所定本数をケースに収納して血液の入口および出口、透析液の入口および出口を有するモジュールを作製することができる。
 本発明において、乾燥状態の中空糸膜を用いて測定された降伏強度が30g/filament以上、破断伸度が20%/filament以下であることが好ましい。降伏強度は高い方が、血液浄化器(モジュール)作製の歩留まりがよくなるので好ましいが、破断伸度が高すぎると、逆にモジュール作製の歩留まりが低下するだけでなく、その後の保管中や輸送中の熱履歴による性能変化が起こりやすい問題があるとか、理由はよくわからないがろ過安定性が低くなる(ΔTMPが大きくなる)問題がある。また、破断伸度が低すぎると、取り扱い性が難しくなるので、10%/filament以上が好ましく、15%/filament以上がより好ましい。本発明においては、内表面の構造の最適化だけでなく、強伸度を特定の範囲にすることにより、性能と取り扱い性のバランスに優れた中空糸膜を得ることができる。
 本発明の中空糸膜は、血液透析だけでなく血液透析ろ過や血液ろ過といった過酷な条件での使用を想定しているため、37℃で測定した純水の透水性(UFR)が200ml/(m・hr・mmHg)以上1500ml/(m・hr・mmHg)以下、牛血漿系を用いてろ過流速15ml/min.で測定したβ2-MG(β2-マイクログロブリン)のクリアランス(内径基準の膜面積2.1m)が65ml/min.以上90ml/min.以下、且つアルブミンなどの有用タンパクの漏れ量が1.5g/(3L除水、同膜面積2.1m)以下という基本性能に加えて、以下のような特性を有する。
 すなわち、膜内表面の緻密層へのタンパク吸着などのファウリングを抑制でき、また、ろ過による血液の濃縮が進行した後も高いろ過安定性を維持できるため、後希釈型の血液透析ろ過療法において、安定して高い性能を発現することが期待される。
 本発明において、後述するろ過安定性試験において、血液試験液を血液浄化器(モジュール)の中空糸膜内側(中空部)に350mL/min.で送液し、75mL/min.の割合で血液をろ過したときに、送液開始後15分後のTMPと240分後のTMPの差が13mmHg以下であるのが好ましい。10mmHg以下がより好ましい。
 また、本発明において、後述するタンパク吸着量の試験を実施したときに、5.0mg/m以下であるのが好ましい。より好ましくは、4.5mg/m以下、さらに好ましくは4.0mg/m以下である。
 以下、本発明について実施例を挙げて更に具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
(中空糸膜の外径、内径および膜厚の測定)
 中空糸膜の外径、内径および膜厚は、中空糸膜をスライドグラスの中央に開けられたφ3mmの孔に中空糸膜が抜け落ちない程度に適当本数通し、スライドグラスの上下面でカミソリによりカットし、中空糸膜断面サンプルを得た後、投影機Nikon-V-12Aを用いて中空糸膜断面の短径、長径を測定することにより得られる。中空糸膜断面1個につき2方向の短径、長径を測定し、それぞれの算術平均値を中空糸膜断面1個の内径および外径とした。膜厚は(外径-内径)/2で算出した。最大、最小を含む5断面について同様に測定を行い、平均値を内径、外径および膜厚とした。
(膜面積の計算)
 モジュールの膜面積A(m)は中空糸膜の内径を基準として求めた。
  A=n×π×d×L
ここで、nは透析器内の中空糸膜本数、πは円周率、dは中空糸膜の内径(m)、Lは透析器内の中空糸膜の有効長(m)である。
(6%粘度)
 混合溶剤[塩化メチレン:メタノール=91:9(重量比)]61.67gを三角フラスコに採取し、105±5℃で2時間乾燥した試料3.00gを投入し、密栓した。その後、横振り振盪機で1.5時間振盪し、さらに回転振盪機で1時間振盪して、完全に溶解させた。次に、得られた6wt/vol%溶液の温度を恒温槽で25±1℃に調整し、オストワルト粘度計を用いて計時用標線間の流下時間を測定し、下記式から粘度を求めた。
 6%粘度(mPa・s)=流下時間(sec)/粘度計係数
 なお、粘度計係数は、粘度計校正用標準液を用いて、上記と同様の操作で流下時間(sec)を測定し、下記式から求めた。
 粘度計係数=[標準液絶対粘度(mPa・s)×溶液の密度(1.235g/cm)]/[標準液の密度(g/cm)×標準液の流下時間(sec)]
(破断強伸度、降伏強伸度の測定)
 中空糸膜の強伸度は、テンシロン万能試験機(東洋ボールドウィン社製UTMII)を用い、乾燥した中空糸膜1本を約15cmの長さに切断してチャック間(距離約10cm)に弛みのないよう取り付け、20±5℃、60±10%RHの温湿度環境下、クロスヘッドスピード10cm/minで中空糸膜を引張り、測定を行った。得られたチャート紙より破断伸度と破断強度を読み取った。また、図4に示されるように、S-Sカーブより補助線を設け、二つの補助線が交差した点を降伏点と定義し、その点における強度を降伏強度、伸度を降伏伸度とした。
(タンパク吸着量の測定)
 中空糸膜の内径を基準とした膜面積が1.5mのモジュールを用い、透析液側には予め流動パラフィンを封入しておき、透析液側から水溶液が血液側に流れ込まないようにした。100mg/lの濃度に調整した37℃のアルブミン水溶液を500ml準備して、予め37℃に保温しておいたモジュールの血液側に200ml/min.の流速で4時間循環を行った。吸着量は、アルブミン水溶液の初期濃度と循環後の濃度から、次式を用いて求めた。なお、アルブミン濃度は、A/G B-テストワコー(和光純薬工業社製)を用いてブロムクレゾールグリーン法(BCG法)により求めた。
 吸着量(mg)=(初期濃度-循環後の濃度)×0.5
(ろ過安定性評価)
 クエン酸を添加し、凝固を抑制した37℃の牛血液を用いた。牛血漿で希釈し、ヘマトクリットを30%に調整した。該血液を血液浄化器(モジュール)の中空糸膜内側に350mL/min.で送液し、75mL/min.の割合で血液をろ過した。このとき、ろ液は血液に戻し、循環系とした。溶血を防止する目的で血液浄化器は予め生理食塩水で十分に置換しておいた。循環開始後15分後に所定のろ過流量を得ていることをメスシリンダーにろ液を採取して確認し、同時に透析回路の圧力チャンバー部位でそれぞれ血液入口(Pi)、血液出口(Po)、濾液導出部(Pf)の圧力を測定し、
  TMP=Pf-(Pi+Po)/2
により算出した。同様に240分経過後のTMPを測定し、
  △TMP=│TMP240-TMP15│
により算出した。
(中空糸膜内表面構造の測定)
 評価する中空糸膜の内表面を露出させたものを試料とした。原子間力顕微鏡(AFM)E-Sweep/SPI4000(日立ハイテクサイエンス社)を用いて形態観察を行った。観察モードはDFMモード、スキャナーは20μm Scanner、カンチレバーはDF-3、観測視野は2μm四方とした。装置付属のソフトウェア(SPIWin Version 4.17F7)を用い、平坦化処理を施した。また、FFT像も同ソフトウェアを用いて、平坦化処理を施したAFM像から作成した。平坦化処理は、2次傾き補正とY方向のフラット処理を実施し、観察像に最適な平坦化処理を行う必要がある。得られたFFT像をjpeg像に変換し、画像解析計測ソフトウェアWinROOF2013(mitani corporation)を用いて画像解析を行った。取り込んだ画像を2値化処理(表色系:RGB、R:しきい値0~170、G:しきい値0~170、B:しきい値0~170)を行い、得られた画像より自動計測により凹部の長径と凹部の短径を計測し、アスペクト比を算出した(図1、図2)。最大、最小を含む5点計測し、平均長径および平均短径とした。
 アスペクト比=凹部の平均長径/凹部の平均短径
(中空糸膜構造の観察)
 中空糸膜を軽く水洗して付着しているグリセリンを除去した。水に濡れたままの中空糸膜を速やかに液体窒素中に浸漬して凍結させた後、液体窒素から取り出した。断面観察用のサンプルは凍結状態で折り曲げて切断した。得られたサンプルを試料台に固定し、カーボン蒸着を行った。蒸着後のサンプルについて走査型電子顕微鏡(日立製S-2500)を用いて加速電圧5kV、倍率3,000倍にて観察を行った。
(実施例1)
 セルローストリアセテート(6%粘度=162mPa・s、ダイセル化学工業社)17.3質量%、NMP(三菱化学社)57.89質量%およびTEG(三井化学社)24.81質量%を均一に溶解して紡糸原液を調製した。得られた紡糸原液を2重管ノズルのスリット部より1.80cc/minで吐出し、同時に芯液としてRO水を中心孔より2.18cc/minで吐出した。2重管ノズルは、スリット外径270μm、スリット内径200μmのものを使用した。紡糸原液側は、熱媒を65℃に設定し、芯液側は、冷媒を10℃に設定した。ノズルから吐出された紡糸原液は25mmの空走部を通過させた後、NMP/TEG/水=54.6/23.4/22からなる43℃の凝固液中に導いて固化させた。固化した中空糸膜を57.0m/minの速度で引出し、引き続き水洗、グリセリン付着処理後、乾燥して巻き取った。なお、水洗およびグリセリン付着処理工程においては極力延伸がかからないよう配慮した。得られた中空糸膜を束にしてケースに挿入し、両端をポリウレタン樹脂で接着固定した後、樹脂の一部を切削し、中空糸膜両端が開口したモジュールを作製した。評価結果を表1、2にまとめた。
(実施例2)
 凝固液中からの引出し速度を55.0m/minとした以外は、実施例1と同様にして中空糸膜を製造し、モジュールを作製した。
(実施例3)
 凝固液中からの引出し速度を59.0m/minとした以外は、実施例1と同様にして中空糸膜を製造し、モジュールを作製した。
(実施例4)
 芯液の吐出量を2.08cc/minとした以外は、実施例1と同様にして中空糸膜を製造し、モジュールを作製した。
(実施例5)
 芯液の吐出量を2.30cc/minとした以外は、実施例1と同様にして中空糸膜を製造し、モジュールを作製した。
(実施例6)
 紡糸原液の吐出量を1.88cc/minとした以外は、実施例1と同様にして中空糸膜を製造し、モジュールを作製した。
(実施例7)
 紡糸原液の吐出量を1.70cc/minとした以外は、実施例1と同様にして中空糸膜を製造し、モジュールを作製した。
(比較例1)
 芯液の吐出量を2.40cc/minとした以外は、実施例1と同様にして中空糸膜を製造し、モジュールを作製した。
(比較例2)
 芯液の吐出量を2.00cc/minとした以外は、実施例1と同様にして中空糸膜を製造し、モジュールを作製した。
(比較例3)
 凝固液中からの引出し速度を62.0m/minとした以外は、比較例1と同様にして中空糸膜を製造し、モジュールを作製した。
(比較例4)
 凝固液中からの引出し速度を53.0m/minとした以外は、比較例2と同様にして中空糸膜を製造し、モジュールを作製した。
(比較例5)
 セルローストリアセテート19.0質量%、NMP68.85質量%およびTEG12.15質量%を均一に溶解して紡糸原液を調製した。得られた紡糸原液を2重管ノズルのスリット部より芯液として予め脱気処理した水とともに同時に吐出し、紡糸管により外気と遮断された、空中走行部を通過後、NMP/TEG/水=59.5/10.5/30からなる44℃の凝固液中に導いて固化させた。引き続き、95℃の水洗工程を延伸5%で10秒通過させた後、95℃、88質量%のグリセリン浴を延伸3%で3秒通過させ、ドライヤーで乾燥した。得られた中空糸膜を用いて、実施例1と同様にしてモジュールを作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例1~7の中空糸膜はいずれも、膜内表面へのタンパク吸着量が低く抑えられているだけでなく、ろ過安定性に優れている(ΔTMPが小さい)ので、通常の血液透析だけでなく高負荷条件である後希釈型の血液透析ろ過条件においても高効率に血液浄化を行うことが可能である。これに対して、比較例1、3の中空糸膜は、中空糸膜内表面のアスペクト比が大きいため、ろ過安定性が低く、血液透析ろ過には不向きである。また、比較例2、4の中空糸膜は、中空糸膜内表面のアスペクト比が小さいため、タンパク吸着量が多い問題がある。さらに、比較例5の中空糸膜は、水洗工程およびグリセリン付着工程での延伸が大きいためか、中空糸膜内表面のアスペクト比が大きいだけでなく、降伏強度と破断伸度のバランスが好ましい範囲を外れている。そのため、膜表面へのタンパク吸着量が多く、ろ過安定性も低い結果となった。
 本発明はセルロースアセテート系ポリマーを使用して、中空糸膜の少なくとも内表面に緻密層を有する非対称膜構造を有し、高い透水性および分子量分画特性、溶質透過性能を有する。特に、中空糸膜の内表面の緻密層表面の構造を最適化することで、生体適合性を向上させ、体格の大きな患者で過酷な血液透析ろ過条件を採用しても性能安定性の向上した中空糸膜を提供することができる。
 

Claims (4)

  1.  少なくとも内表面側に緻密層を有する中空糸膜であって、前記中空糸膜の内表面を原子間力顕微鏡で観察したとき、前記中空糸膜の長さ方向に配向した複数の溝様凹部が観察され、前記凹部の長さと幅の比であるアスペクト比が3以上30以下であり、前記中空糸膜の乾燥状態における降伏強度が30g/filament以上、破断伸度が20%/filament以下であることを特徴とする中空糸膜。
  2.  前記中空糸膜は、緻密層および支持層からなり、前記支持層は前記緻密層よりも拡大された孔を有することを特徴とする請求項1に記載の中空糸膜。
  3.  前記中空糸膜が、主としてセルロースアセテート系ポリマーからなることを特徴とする請求項1または2に記載の中空糸膜。
  4.  請求項1~3のいずれかに記載の中空糸膜が内蔵された中空糸膜モジュール。
     
PCT/JP2017/039247 2016-10-31 2017-10-31 セルロースアセテート系非対称中空糸膜 WO2018079807A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780067442.XA CN109890490B (zh) 2016-10-31 2017-10-31 醋酸纤维素系非对称中空纤维膜
EP17865100.6A EP3533514A4 (en) 2016-10-31 2017-10-31 ASYMMETRICAL HOLLOW FIBER MEMBRANE OF CELLULOSE ACETATE TYPE
US16/344,153 US11014053B2 (en) 2016-10-31 2017-10-31 Cellulose acetate-based asymmetric hollow fiber membrane
JP2018547845A JP6699750B2 (ja) 2016-10-31 2017-10-31 セルロースアセテート系非対称中空糸膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-212836 2016-10-31
JP2016212836 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018079807A1 true WO2018079807A1 (ja) 2018-05-03

Family

ID=62024978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039247 WO2018079807A1 (ja) 2016-10-31 2017-10-31 セルロースアセテート系非対称中空糸膜

Country Status (5)

Country Link
US (1) US11014053B2 (ja)
EP (1) EP3533514A4 (ja)
JP (1) JP6699750B2 (ja)
CN (1) CN109890490B (ja)
WO (1) WO2018079807A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113856485B (zh) * 2021-11-05 2024-01-26 无锡达魔材料科技有限公司 一种膜壁内缘致密的气体分离用中空纤维富氮膜制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655047A (ja) * 1992-08-10 1994-03-01 Toyobo Co Ltd 中空糸膜断面の真円化方法
JP2009095515A (ja) 2007-10-18 2009-05-07 Toyobo Co Ltd 大量液置換特性に優れた血液浄化器
JP2011078920A (ja) 2009-10-08 2011-04-21 Toyobo Co Ltd 選択透過性中空糸膜
JP2011212638A (ja) * 2010-04-02 2011-10-27 Toyobo Co Ltd 中空糸膜
WO2016159333A1 (ja) * 2015-03-31 2016-10-06 東レ株式会社 分離膜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0408688B1 (en) 1988-11-10 1994-03-23 Memtec Limited Porous membranes
JP3392141B2 (ja) 1992-11-16 2003-03-31 バクスター インターナショナル インコーポレイテッド 高流量中空糸膜
WO2000009247A1 (fr) * 1998-08-11 2000-02-24 Daicel Chemical Industries, Ltd. Membrane semi-permeable en acetate de cellulose et procede de production associe
US9095818B2 (en) 2009-06-15 2015-08-04 Biovec Transfusion, Llc Method of filtering platelets to remove antiplatelet and anticoagulant agents
CA2655907A1 (en) * 2006-06-27 2008-01-03 Toray Industries, Inc. Polymer separation membrane and process for producing the same
DE102008003090A1 (de) 2008-01-03 2009-07-16 Fresenius Medical Care Deutschland Gmbh Hohlfasermembran
CN101703893B (zh) 2009-11-06 2012-04-18 江苏朗生生命科技有限公司 空心纤维超滤复合膜及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655047A (ja) * 1992-08-10 1994-03-01 Toyobo Co Ltd 中空糸膜断面の真円化方法
JP2009095515A (ja) 2007-10-18 2009-05-07 Toyobo Co Ltd 大量液置換特性に優れた血液浄化器
JP2011078920A (ja) 2009-10-08 2011-04-21 Toyobo Co Ltd 選択透過性中空糸膜
JP2011212638A (ja) * 2010-04-02 2011-10-27 Toyobo Co Ltd 中空糸膜
WO2016159333A1 (ja) * 2015-03-31 2016-10-06 東レ株式会社 分離膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3533514A4

Also Published As

Publication number Publication date
US20200070099A1 (en) 2020-03-05
US11014053B2 (en) 2021-05-25
EP3533514A4 (en) 2020-06-24
JPWO2018079807A1 (ja) 2019-08-08
EP3533514A1 (en) 2019-09-04
CN109890490A (zh) 2019-06-14
CN109890490B (zh) 2021-10-12
JP6699750B2 (ja) 2020-05-27

Similar Documents

Publication Publication Date Title
JP5218044B2 (ja) 性能安定性に優れた中空糸膜および血液浄化器および中空糸膜の製造方法
JP4940576B2 (ja) 中空糸膜および血液浄化器
JP5440332B2 (ja) 中空糸膜
JPH10108907A (ja) 血液浄化膜、その製造方法及び血液浄化用モジュール
JP2792556B2 (ja) 血液浄化用モジュール、血液浄化膜及びその製造方法
JP2008178814A (ja) セルロースアセテート系非対称中空糸膜
JP5217238B2 (ja) 透過性能安定性に優れた多孔質中空糸膜および血液浄化器
JP5212837B2 (ja) 選択透過性中空糸膜
WO2018079807A1 (ja) セルロースアセテート系非対称中空糸膜
WO2018079808A1 (ja) セルロースアセテート系中空糸膜
JP5780319B2 (ja) 中空糸膜
JP2008246402A (ja) 中空糸型血液浄化膜およびその製造方法
JP3424807B2 (ja) 中空糸膜
JPH09220455A (ja) 中空糸型選択分離膜
JP5578210B2 (ja) 多孔質中空糸膜の製造方法
JP2002045662A (ja) 選択透過性中空糸膜
JP2003275300A (ja) 血液浄化用再生セルロース中空糸膜、その製造方法および血液浄化器
JP2011024708A (ja) モジュール組み立て性に優れた血液浄化用中空糸膜およびその製造方法
JP2005021510A (ja) 高透水性中空糸型血液浄化器
JP4455019B2 (ja) 医療透析用中空糸膜及びその製造方法
JP5299617B2 (ja) 中空糸膜の製造方法
JP2010111965A (ja) 耐衝撃性に優れた血液浄化器
JPH0523556A (ja) セルロースジアセテート中空糸
JPH0523555A (ja) 流体分離器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547845

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017865100

Country of ref document: EP

Effective date: 20190531