WO2018079602A1 - ゴム組成物およびゴム架橋物 - Google Patents

ゴム組成物およびゴム架橋物 Download PDF

Info

Publication number
WO2018079602A1
WO2018079602A1 PCT/JP2017/038509 JP2017038509W WO2018079602A1 WO 2018079602 A1 WO2018079602 A1 WO 2018079602A1 JP 2017038509 W JP2017038509 W JP 2017038509W WO 2018079602 A1 WO2018079602 A1 WO 2018079602A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
polymer
monocyclic olefin
olefin ring
opening polymer
Prior art date
Application number
PCT/JP2017/038509
Other languages
English (en)
French (fr)
Inventor
角替 靖男
晋吾 奥野
広幸 似鳥
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US16/344,320 priority Critical patent/US11267956B2/en
Priority to EP17865938.9A priority patent/EP3533829B1/en
Priority to JP2018547719A priority patent/JP6950705B2/ja
Priority to CN201780064239.7A priority patent/CN109844008B/zh
Publication of WO2018079602A1 publication Critical patent/WO2018079602A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3322Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from cyclooctene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to a rubber composition containing a solid rubber and a liquid monocyclic olefin ring-opening polymer, and more specifically, a rubber cross-linked product having high tensile strength and excellent heat resistance and ozone resistance.
  • the present invention relates to a rubber composition that can be provided.
  • Liquid diene elastomers such as liquid polybutadiene and liquid polyisoprene have a double bond in the polymer main chain and are excellent in rubber elasticity. By mixing with solid rubber, processability, hardness, and mechanical strength of the rubber It is widely used as a modifier for improving elongation. Also known is a modified liquid diene elastomer in which a modifying group is introduced into a liquid diene elastomer for the purpose of increasing the affinity for a solid rubber and further the affinity for an inorganic filler or introducing a crosslinking point. ing.
  • Patent Document 1 discloses the presence of a modifying group-containing olefin.
  • Patent Document 1 discloses a technique for obtaining a cyclic olefin ring-opening polymer having a modifying group at a polymer chain end by metathesis ring-opening polymerization of a cyclic olefin using a ruthenium catalyst.
  • Patent Document 1 discloses that the introduction amount of the modifying group in the obtained cyclic olefin ring-opening polymer can be adjusted by adjusting the ratio of the modifying group-containing olefin and the cyclic olefin.
  • Patent Document 2 discloses that a cyclic olefin opening in which a part of a carbon-carbon double bond in a main chain structure of a cyclic olefin ring-opening polymer having a weight average molecular weight of 1,000 to 100,000 is hydrogenated is hydrogenated. Cyclic polymer hydrides are disclosed.
  • Patent Documents 1 and 2 do not disclose a technique for obtaining a liquid product as a cyclic olefin ring-opening polymer, and therefore cannot be applied as a substitute material for the liquid diene elastomer described above. there were.
  • a cyclic olefin ring-opening polymer is hydrogenated, but a hydrogenated reaction results in a resinous polymer.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a rubber composition that can provide a crosslinked rubber having high tensile strength and excellent heat resistance and ozone resistance. .
  • the inventors of the present invention blend a specific amount of a liquid monocyclic olefin ring-opening polymer having a weight average molecular weight within a specific range with respect to a solid rubber.
  • the weight average molecular weight (Mw) is 1,000 to 50,000 with respect to 100 parts by weight of the solid rubber (A) having a weight average molecular weight (Mw) of 100,000 or more.
  • a rubber composition containing 1 to 100 parts by weight of a liquid monocyclic olefin ring-opening polymer (B) is provided.
  • the monocyclic olefin ring-opening polymer (B) is a polymer composed only of a structural unit derived from a monocyclic monoolefin, or a structural unit derived from a monocyclic monoolefin and a monocyclic monoolefin.
  • a copolymer composed of a structural unit derived from a monomer copolymerizable with an olefin is preferred.
  • the monocyclic olefin ring-opening polymer (B) is a polymer comprising only a structural unit derived from cyclopentene, or a structural unit derived from cyclopentene and a monomer copolymerizable with cyclopentene. It is preferably a copolymer composed of derived structural units.
  • the melt viscosity of the monocyclic olefin ring-opening polymer (B) measured at 25 ° C. using a Brookfield viscometer is preferably 3,000 Pa ⁇ s or less.
  • the monocyclic olefin ring-opening polymer (B) preferably has a glass transition temperature of ⁇ 50 ° C. or lower.
  • the rubber (A) is preferably at least one rubber selected from the group consisting of natural rubber, polyisoprene rubber, styrene butadiene rubber, and polybutadiene rubber.
  • the rubber composition of the present invention preferably further contains an inorganic filler.
  • the rubber composition of the present invention preferably further contains a crosslinking agent.
  • a rubber cross-linked product obtained by cross-linking the above rubber composition is provided.
  • a rubber composition that has a high tensile strength and can give a rubber cross-linked product excellent in heat resistance and ozone resistance, and obtained using such a rubber composition, has a high tensile strength. It is possible to provide a rubber cross-linked product excellent in heat resistance and ozone resistance.
  • the rubber composition of the present invention has a weight average molecular weight (Mw) of 1,000 to 50,000 with respect to 100 parts by weight of the solid rubber (A) having a weight average molecular weight (Mw) of 100,000 or more.
  • a composition comprising 1 to 100 parts by weight of a liquid monocyclic olefin ring-opening polymer (B).
  • the solid rubber (A) used in the present invention has a weight average molecular weight (Mw) of 100,000 or more and has a solid state at room temperature (25 ° C.) (does not exhibit fluidity at room temperature (25 ° C.), There is no particular limitation as long as it is a rubber-like polymer having shape-retaining properties.
  • the solid rubber (A) usually has a Mooney viscosity (ML1 + 4, 100 ° C.) of 20 or more as measured in accordance with JIS K6300.
  • the solid rubber (A) is not particularly limited.
  • natural rubber NR
  • polyisoprene rubber IR
  • SBR styrene butadiene rubber
  • BR polybutadiene rubber
  • styrene-isoprene copolymer rubber Conjugated diene rubbers such as butadiene-isoprene copolymer rubber, polyisoprene-SBR block copolymer rubber, polystyrene-polybutadiene-polystyrene block copolymer, emulsion-polymerized styrene-acrylonitrile-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, and ethylene Olefin rubbers such as propylene diene rubber (EPDM) and ethylene-propylene rubber; non-olefin rubbers such as acrylic rubber, epichlorohydrin rubber, fluorine rubber, silicon rubber, chloroprene
  • the compatibility with the liquid monocyclic olefin ring-opening polymer (B) is high, and the effects obtained by blending the liquid monocyclic olefin ring-opening polymer (B), that is, heat resistance and ozone resistance.
  • Olefin rubber is preferable, conjugated diene rubber is more preferable, and natural rubber, polyisoprene rubber, styrene butadiene rubber, and polybutadiene rubber are particularly preferable.
  • the solid rubber (A) may have a polystyrene-equivalent weight average molecular weight (Mw) of 100,000 or more as measured by gel permeation chromatography. From the viewpoint of further increasing the weight, the weight average molecular weight (Mw) is more preferably 200,000 or more, and more preferably 300,000 or more. The upper limit of the weight average molecular weight (Mw) is not particularly limited, but is preferably 2,000,000 or less.
  • the liquid monocyclic olefin ring-opening polymer (B) used in the present invention is a polymer containing a repeating unit formed by ring-opening polymerization of a monocyclic olefin as a repeating unit constituting its main chain.
  • the liquid monocyclic olefin ring-opening polymer (B) used in the present invention preferably has a ratio of repeating units formed by ring-opening polymerization of monocyclic olefins to 70 mol% or more based on all repeating units. More preferably, it is 75 mol% or more, and further preferably 80 mol% or more. However, as long as the characteristics of the monocyclic olefin ring-opening polymer are maintained, it may contain repeating units derived from other monomers copolymerizable with the monocyclic olefin, and may be derived from other monomers.
  • the ratio of the repeating unit is preferably 30 mol% or less, more preferably 25 mol% or less, and further preferably 20 mol% or less with respect to all repeating units.
  • the monocyclic olefin is a hydrocarbon compound having one ring and having a carbon-carbon double bond in the ring, and the number of carbon-carbon double bonds may be one or plural. (However, aromatic rings are not included).
  • monocyclic olefins include monocyclic monoolefins having one carbon-carbon double bond in the ring, such as cyclobutene, cyclopentene, cyclohexene, cycloheptene, and cyclooctene; 1,4-cyclohexadiene, 1 Monocyclic dienes having two carbon-carbon double bonds in the ring such as 1,4-cycloheptadiene and 1,5-cyclooctadiene; Carbon-carbon double bonds such as 1,5,9-cyclododecatriene Are monocyclic trienes having 3 in the ring; and the like.
  • a monocyclic monoolefin is preferable, and cyclopentene is more preferable from the viewpoint of compatibility with the solid rubber (A).
  • the monocyclic olefin may have a substituent or may not have a substituent, and the substituent is not particularly limited.
  • an alkyl group such as a methyl group or an ethyl group may be used. Can be mentioned.
  • Examples of the other monomer copolymerizable with the monocyclic olefin include a polycyclic cyclic monoolefin, a polycyclic cyclic diene, and a polycyclic cyclic triene.
  • Examples of the polycyclic monoolefin, polycyclic diene, and polycyclic triene include 2-norbornene, dicyclopentadiene, 1,4-methano-1,4,4a, 9a-tetrahydro-9H-fluorene, Tetracyclo [6.2.1.1 3,6 .
  • Examples include norbornene compounds which may have a substituent such as 0 2,7 ] dodec-4-ene.
  • polycyclic monoolefin and polycyclic diene are preferable, and 2-norbornene and dicyclopentadiene are more preferable.
  • liquid monocyclic olefin ring-opening polymer (B) is a copolymer
  • a copolymer of one type of monocyclic olefin and one or more monomers other than the monocyclic olefin is used.
  • the ratio of the structural units derived from all monocyclic olefins contained in the monocyclic olefin ring-opening polymer is within the above range. And it is sufficient.
  • liquid monocyclic olefin ring-opening polymer (B) used in the present invention from the viewpoint of excellent heat resistance and ozone resistance, only a structural unit derived from monocyclic monoolefin is used as a repeating unit constituting the main chain. Or a structural unit derived from a monomer that is copolymerizable with a monocyclic monoolefin (including a structural unit derived from a monocyclic olefin other than a monocyclic monoolefin).
  • the proportion of structural units derived from monocyclic monoolefins is set to all repeating units. On the other hand, it is preferably 70 mol% or more, more preferably 75 mol% or more, and further preferably 80 mol% or more. On the other hand, the proportion of the structural unit derived from the monomer copolymerizable with the monocyclic monoolefin is preferably 30 mol% or less, more preferably 25 mol% or less, based on the total repeating units. More preferably, it is not more than mol%.
  • the proportion of the structural unit derived from cyclopentene is 70 mol with respect to all repeating units. % Or more, preferably 75 mol% or more, more preferably 80 mol% or more.
  • the proportion of structural units derived from a monomer copolymerizable with cyclopentene is preferably 30 mol% or less, more preferably 25 mol% or less, and more preferably 20 mol% or less, based on all repeating units. More preferably.
  • the weight average molecular weight (Mw) of the liquid monocyclic olefin ring-opening polymer (B) used in the present invention is a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography. 000 to 50,000, preferably 1,500 to 45,000, more preferably 2,000 to 40,000. If the weight average molecular weight (Mw) is too low, the resulting rubber cross-linked product will be inferior in mechanical strength such as tensile strength. On the other hand, if the weight average molecular weight (Mw) is too high, monocyclic olefin ring opening The polymer will not exhibit a liquid state.
  • / Mn) is not particularly limited, but is usually 4.0 or less, preferably 3.5 or less, and more preferably 3.0 or less.
  • the liquid monocyclic olefin ring-opening polymer (B) used in the present invention is a liquid polymer, that is, a heavy polymer having a liquid state at room temperature (25 ° C.) (having fluidity at room temperature (25 ° C.)). Specifically, a polymer having fluidity at room temperature (25 ° C.) such that the melt viscosity measured at 25 ° C. using a Brookfield viscometer is 3,000 Pa ⁇ s or less. is there. In the present invention, by using such a liquid monocyclic olefin ring-opening polymer (B), it is possible to improve the blending into the solid rubber (A), which is obtained.
  • the rubber cross-linked product can have high tensile strength and excellent heat resistance and ozone resistance.
  • the melt viscosity at a temperature of 25 ° C. of the liquid monocyclic olefin ring-opening polymer (B) used in the present invention is preferably 2,000 Pa ⁇ s or less, more preferably 1,000 Pa ⁇ s or less, and further preferably 300 Pa. -S or less.
  • the cis / trans ratio is not particularly limited, but the heat resistance and ozone resistance can be further improved. From the standpoint that it can be increased, the range is preferably 15/85 to 60/40, and more preferably 15/85 to 40/60.
  • the cis / trans ratio can be measured by measuring a 13 C-NMR spectrum of the liquid monocyclic olefin ring-opened polymer (B).
  • the method for setting the cis / trans ratio of the liquid monocyclic olefin ring-opening polymer (B) in the above range is not particularly limited.
  • the monocyclic olefin is polymerized to form a liquid monocyclic olefin ring-opening polymer (B).
  • Examples thereof include a method for controlling the polymerization conditions in obtaining the ring polymer (B).
  • the glass transition temperature (Tg) of the liquid monocyclic olefin ring-opening polymer (B) used in the present invention is excellent in low-temperature characteristics of the resulting rubber cross-linked product and has rubber elasticity.
  • the temperature is preferably ⁇ 50 ° C. or lower, more preferably ⁇ 60 ° C. or lower, and further preferably ⁇ 70 ° C. or lower.
  • the glass transition temperature of the liquid monocyclic olefin ring-opening polymer (B) can be determined by, for example, co-polymerizing the cis / trans ratio in the double bond existing in the repeating unit or the liquid monocyclic olefin ring-opening polymer (B). In the case of combining, it can be adjusted by adjusting the content ratio of the structural unit derived from the monomer copolymerizable with the monocyclic olefin.
  • liquid monocyclic olefin ring-opening polymer (B) used in the present invention may have any melt viscosity as long as the melt viscosity measured at 25 ° C. using a Brookfield viscometer is in the above range, but has a melting point.
  • the melting point (Tm) is preferably less than 25 ° C.
  • the monocyclic olefin ring-opening polymer is a liquid polymer at room temperature (25 ° C.), and the effects of the present invention are obtained. It becomes easy to be done.
  • the melting point (Tm) of the liquid monocyclic olefin ring-opening polymer (B) can be adjusted, for example, by adjusting the cis / trans ratio in the double bond existing in the repeating unit, or the liquid monocyclic olefin ring-opening polymer. It can adjust by adjusting the kind and content ratio of the repeating unit contained in (B).
  • the melting point (Tm) can be lowered.
  • the content ratio of the cyclooctene unit is increased, the melting point (Tm) is increased, and rubber properties at normal temperature may be deteriorated.
  • the liquid monocyclic olefin ring-opening polymer (B) used in the present invention may have a molecular structure consisting of only carbon atoms and hydrogen atoms.
  • An atom may be contained, and more specifically, a modifying group containing an atom selected from the group consisting of an atom of Group 15 of the periodic table, an atom of Group 16 of the periodic table, a silicon atom, and a halogen atom is provided on the side. You may make it contain in a chain or a polymer chain end.
  • Such a modifying group is selected from the group consisting of a nitrogen atom, an oxygen atom, a phosphorus atom, a sulfur atom, a silicon atom, and a halogen atom from the viewpoint of affinity with the inorganic filler when an inorganic filler is added.
  • a modifying group containing an atom is more preferred, and among these, a modifying group containing an atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a silicon atom is more preferred.
  • modifying groups include amino groups, hydroxyl groups, hydroxycarbonyl groups, carboxylic anhydride groups, acryloyloxy groups, methacryloyloxy groups, epoxy groups, oxysilyl groups, and halogen atoms.
  • an amino group, a hydroxyl group, a hydroxycarbonyl group, a methacryloyloxy group, and an oxysilyl group are preferable.
  • the oxysilyl group include an alkoxysilyl group, an aryloxysilyl group, an acyloxysilyl group, an alkylsiloxysilyl group, an arylsiloxysilyl group, and a hydroxysilyl group.
  • the alkoxysilyl group is a group in which one or more alkoxy groups are bonded to a silicon atom. Specific examples thereof include a trimethoxysilyl group, a (dimethoxy) (methyl) silyl group, and a (methoxy) (dimethyl) silyl group. Group, triethoxysilyl group, (diethoxy) (methyl) silyl group, (ethoxy) (dimethyl) silyl group, (dimethoxy) (ethoxy) silyl group, (methoxy) (diethoxy) silyl group, tripropoxysilyl group, tributoxy A silyl group etc. are mentioned.
  • liquid monocyclic olefin ring-opening polymer (B) used in the present invention has both polymer chain ends even if a modified group is introduced only at one polymer chain end (one end).
  • a modification group may be introduced at both ends, or a mixture of these may be used.
  • a liquid monocyclic olefin ring-opening polymer into which a modifying group is introduced may be mixed with a liquid monocyclic olefin ring-opening polymer into which no modifying group is introduced.
  • the introduction ratio of the modifying group at the polymer chain end of the liquid monocyclic olefin ring-opening polymer (B) is not particularly limited, but from the viewpoint of the affinity with the inorganic filler in the case of incorporating the inorganic filler,
  • the percentage value of the ratio of the number of modifying groups to the number of polymer chains in the liquid monocyclic olefin ring-opening polymer (B) is preferably 60% or more, more preferably 80% or more, and still more preferably 100. % Or more.
  • the method for measuring the introduction ratio of the modifying group to the end of the polymer chain is not particularly limited. For example, the peak area ratio corresponding to the modifying group determined by 1 H-NMR spectrum measurement and the gel permeation chromatography It can be determined from the number average molecular weight (Mn) determined from
  • the method for synthesizing the liquid monocyclic olefin ring-opening polymer (B) used in the present invention is not particularly limited as long as the target polymer is obtained, and may be synthesized according to a conventional method. Examples include a method of ring-opening polymerization of a monomer containing a monocyclic olefin using a ruthenium carbene complex as a ring-opening polymerization catalyst in the presence of an agent.
  • the ruthenium carbene complex is not particularly limited as long as it is a ring-opening polymerization catalyst for monocyclic olefins.
  • Specific examples of ruthenium carbene complexes preferably used include bis (tricyclohexylphosphine) benzylidene ruthenium dichloride, bis (triphenylphosphine) -3,3-diphenylpropenylidene ruthenium dichloride, dichloro- (3-phenyl-1H-indene -1-ylidene) bis (tricyclohexylphosphine) ruthenium (II), (3-phenyl-1H-indene-1-ylidene) bis (tricyclohexylphosphine) ruthenium dichloride, bis (tricyclohexylphosphine) t-butylvinylideneruthenium dichloride Bis (1,3-diisopropylimidazoline-2-y
  • the amount of the ruthenium carbene complex used is not particularly limited, but the molar ratio of (metal ruthenium in the catalyst: monomer containing monocyclic olefin) is usually 1: 2,000 to 1: 2,000. , 000, preferably 1: 5,000 to 1: 1,500,000, more preferably 1: 10,000 to 1: 1,000,000. If the amount of ruthenium carbene complex used is too small, the polymerization reaction may not proceed sufficiently. On the other hand, if the amount is too large, removal of the catalyst residue from the resulting monocyclic olefin ring-opening polymer becomes difficult, and various properties may be deteriorated when a rubber cross-linked product is obtained.
  • the molecular weight modifier examples include olefin compounds such as 1-butene, 1-pentene, 1-hexene and 1-octene; 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1,6- And diolefin compounds such as heptadiene, 2-methyl-1,4-pentadiene, and 2,5-dimethyl-1,5-hexadiene.
  • olefin compounds such as 1-butene, 1-pentene, 1-hexene and 1-octene
  • 1,4-pentadiene 1,4-hexadiene
  • 1,5-hexadiene 1,5-hexadiene
  • 1,6- And diolefin compounds such as heptadiene, 2-methyl-1,4-pentadiene, and 2,5-dimethyl-1,5-hexadiene.
  • the amount of the molecular weight modifier used is not particularly limited and may be set according to the target weight average molecular weight (Mw), but is preferably based on 100 parts by weight of the monomer containing a monocyclic olefin used for polymerization.
  • the amount is 0.1 to 20 parts by weight, more preferably 0.15 to 15 parts by weight, still more preferably 0.2 to 10 parts by weight.
  • the soot polymerization reaction may be carried out in the absence of a solvent or in a solution.
  • the solvent used is inactive in the polymerization reaction, and is not particularly limited as long as it is a solvent that can dissolve a monomer or a polymerization catalyst containing a monocyclic olefin used for polymerization. It is preferable to use a solvent, an ether solvent or a halogen solvent.
  • hydrocarbon solvent examples include aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; aliphatic hydrocarbons such as n-hexane, n-heptane, and n-octane; cyclohexane, cyclopentane, methylcyclohexane, and the like. Alicyclic hydrocarbons; and the like.
  • the ether solvent examples include diethyl ether, cyclopentyl methyl ether, 1,2-dimethoxyethylene, tetrahydrofuran and the like.
  • halogen-based solvent examples include alkyl halogens such as dichloromethane and chloroform; aromatic halogens such as chlorobenzene and dichlorobenzene.
  • the polymerization temperature is not particularly limited, but is usually set in the range of ⁇ 50 to 100 ° C.
  • the polymerization reaction time is preferably 1 minute to 72 hours, more preferably 5 minutes to 20 hours. After the polymerization conversion rate reaches a predetermined value, the polymerization reaction can be stopped by adding a known polymerization terminator to the polymerization system.
  • the olefin compound having a modifying group is not particularly limited as long as it is a compound containing at least one ethylenically unsaturated bond and one modifying group in the molecule.
  • the modifying group include an amino group, a hydroxyl group, a hydroxycarbonyl group, a carboxylic anhydride group, a methacryloyloxy group, an epoxy group, an oxysilyl group, and a halogen atom.
  • Examples of the olefin compound having an amino group include allylamine, N-allylaniline, N-allylbenzylamine, 4-aminostyrene, 2-butene-1,4-diamine, and 3-hexene-2,5-diamine. .
  • Examples of the olefin compound having a hydroxyl group include allyl alcohol, 3-buten-1-ol, 4-penten-1-ol, 4-hexen-1-ol, 4-hepten-1-ol, and 5-decene-1. -Ol, 5-hexen-1-ol, 5-octen-1-ol, 6-hepten-1-ol, 4-hydroxystyrene, 2-allylphenol, allyl 4-hydroxybenzoate, 1-cyclohexyl-2- Examples include buten-1-ol, ethylene glycol monoallyl ether, 3-allyloxy-1,2-propanediol, 2-butene-1,4-diol, and 3-hexene-2,5-diol.
  • Examples of the olefin compound having a hydroxycarbonyl group include 3-butenoic acid, 4-pentenoic acid, 5-hexenoic acid, trans-3-pentenoic acid, vinyl benzoic acid, and trans-3-hexenedioic acid.
  • Examples of the olefin compound having a methacryloyloxy group include cis-1,4-dimethacryloyloxy-2-butene, allyl methacrylate, and 5-hexenyl methacrylate.
  • Examples of the olefin compound having an epoxy group include 1,3-butadiene monoepoxide, allyl glycidyl ether, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene, 1,2,9,10-diepoxy. -5-decene.
  • olefin compounds having an oxysilyl group examples include vinyl (trimethoxy) silane, vinyl (triethoxy) silane, allyl (trimethoxy) silane, allyl (methoxy) (dimethyl) silane, allyl (triethoxy) silane, allyl (ethoxy) (dimethyl) silane.
  • Alkoxysilane compounds such as styryl (trimethoxy) silane, styryl (triethoxy) silane, 2-styrylethyl (triethoxy) silane, allyl (triethoxysilylmethyl) ether, allyl (triethoxysilylmethyl) (ethyl) amine; Aryloxysilane compounds such as triphenoxy) silane, allyl (triphenoxy) silane, allyl (phenoxy) (dimethyl) silane; vinyl (triacetoxy) silane, allyl (triacetoxy) Acyloxysilane compounds such as lan, allyl (diacetoxy) methylsilane, allyl (acetoxy) (dimethyl) silane; alkylsiloxysilane compounds such as allyltris (trimethylsiloxy) silane; arylsiloxysilane compounds such as allyltris (triphenylsiloxy) silane
  • Examples of the olefin compound having a halogen atom include allyl chloride, crotyl chloride, 1,4-dichloro-2-butene, allyl bromide, allyl iodide, crotyl chloride, 1,4-dichloro-2-butene, 1, 4-dibromo-2-butene and the like can be mentioned.
  • the olefin compound which has these modification groups may be used individually by 1 type, and can also use 2 or more types together.
  • the amount of the olefin compound having a modifying group is not particularly limited, and the introduction ratio of the modifying group introduced into the polymer chain end of the liquid monocyclic olefin ring-opening polymer (B), and the target weight average molecular weight ( Mw), but is preferably 0.1 to 20 parts by weight, more preferably 0.15 to 15 parts by weight, and more preferably 0.15 to 15 parts by weight with respect to 100 parts by weight of the monomer containing the monocyclic olefin used in the polymerization.
  • the amount is preferably 0.2 to 10 parts by weight.
  • a polymer solution containing the liquid monocyclic olefin ring-opening polymer (B) can be obtained.
  • a known recovery method may be employed. For example, by mixing the polymer solution with an excess polymer poor solvent, the polymer is precipitated, and the precipitated polymer is recovered and further dried to obtain a liquid monocyclic olefin ring-opening polymer. (B) can be obtained.
  • the polymer solution can be directly dried to evaporate and remove unreacted monocyclic olefin and solvent to obtain a liquid monocyclic olefin ring-opening polymer (B).
  • the ring-opening polymerization catalyst when synthesizing the liquid monocyclic olefin ring-opening polymer (B), in place of the above-described method using the ruthenium carbene complex as the ring-opening polymerization catalyst, the ring-opening polymerization catalyst in the presence of a molecular weight regulator.
  • a method of ring-opening polymerization of a monomer containing a monocyclic olefin using a molybdenum compound or a tungsten compound may be used.
  • molybdenum compound that can be used as a ring-opening polymerization catalyst examples include molybdenum pentachloride, molybdenum oxotetrachloride, molybdenum (phenylimide) tetrachloride, and the like.
  • tungsten compound examples include tungsten hexachloride, tungsten oxotetrachloride, tungsten (phenylimide) tetrachloride, monocatecholate tungsten tetrachloride, bis (3,5-ditertiarybutyl) catecholate tungsten dichloride, bis (2-Chloroetherate) tetrachloride, tungsten oxotetraphenolate and the like.
  • the same method as that using the ruthenium carbene complex described above can be used in the same usage amount.
  • an organic metal compound may be used in combination as a promoter.
  • organometallic compound that can be used as the cocatalyst include organometallic compounds of Group 1, 2, 12, 13 or 14 metal atoms of the periodic table having a hydrocarbon group having 1 to 20 carbon atoms.
  • organolithium compounds, organomagnesium compounds, organozinc compounds, organoaluminum compounds, and organotin compounds are preferably used, organolithium compounds, organotin compounds, and organoaluminum compounds are more preferred, and organoaluminum compounds are particularly preferred.
  • the amount of the organometallic compound used is not particularly limited, but the molar ratio of (molybdenum compound or tungsten compound: organometallic compound) is preferably 1: 0.1 to 10, and 1: 0.5 to 5 Is more preferable.
  • the polymerization reaction conditions in the case of using a molybdenum compound or a tungsten compound as a ring-opening polymerization catalyst may be appropriately set within the range of the conditions in the method using the ruthenium carbene complex described above.
  • the olefin compound having a modifying group is an olefin compound having an amino group, a hydroxyl group, or a hydroxycarbonyl group, an alkyl group, an acyl group, an RC (O) -group (where R is a carbon number of 1 to 10).
  • a protective group such as a saturated hydrocarbon group
  • a silyl group or a metal alkoxide
  • those obtained by reacting an olefin compound having an amino group, a hydroxyl group, or a hydroxycarbonyl group with a trialkylaluminum compound may be used.
  • the amount of the olefin compound having a modifying group protected by a protecting group may be the same as the amount of the olefin compound having a modifying group in the case of using the ruthenium carbene complex.
  • deprotection is performed after the polymerization reaction.
  • the deprotection method is not particularly limited, and may be performed by a known method according to the protective group used. Specific examples include methods such as deprotection by heating, deprotection by hydrolysis or alcoholysis.
  • a polymer solution containing the liquid monocyclic olefin ring-opening polymer (B) can be obtained.
  • the known recovery method described in the case of using the ruthenium carbene complex may be adopted.
  • the liquid monocyclic olefin ring-opened polymer (B) obtained by the above production method may be added with an anti-aging agent such as a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer, if desired. May be. What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc. Furthermore, you may mix
  • an anti-aging agent such as a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer
  • the rubber composition of the present invention comprises 1 to 100 parts by weight of the liquid monocyclic olefin ring-opening polymer (B) with respect to 100 parts by weight of the solid rubber (A) described above. is there.
  • the content of the liquid monocyclic olefin ring-opening polymer (B) in the rubber composition of the present invention is 1 to 100 parts by weight, preferably 2 parts per 100 parts by weight of the solid rubber (A). -80 parts by weight, more preferably 5-60 parts by weight. If the content of the liquid monocyclic olefin ring-opening polymer (B) is too small, the effect of blending the liquid monocyclic olefin ring-opening polymer (B), that is, heat resistance in the case of a rubber cross-linked product. The effect of improving the property and ozone resistance cannot be obtained. On the other hand, when there is too much content of a liquid monocyclic olefin ring-opening polymer (B), the tensile strength of the rubber crosslinked material obtained will fall.
  • the rubber composition of the present invention preferably contains an inorganic filler in addition to the solid rubber (A) and the liquid monocyclic olefin ring-opening polymer (B).
  • an inorganic filler By including an inorganic filler, the mechanical properties of the resulting rubber cross-linked product can be enhanced.
  • the inorganic filler include metal powder such as aluminum powder; inorganic powder such as carbon black, hard clay, talc, calcium carbonate, titanium oxide, calcium sulfate, calcium carbonate, and aluminum hydroxide; organic such as starch and polystyrene powder.
  • powders such as powders
  • short fibers such as glass fibers (milled fibers), carbon fibers, aramid fibers, potassium titanate whiskers; silica, mica;
  • carbon black and silica are preferably used, and carbon black is particularly preferably used.
  • furnace black for example, furnace black, acetylene black, thermal black, channel black, graphite or the like can be used.
  • furnace black is preferably used, and specific examples thereof include SAF, ISAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF, HAF-HS, HAF-LS, MAF, and FEF. Can be mentioned. These may be used alone or in combination of two or more.
  • silica examples include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica.
  • wet method white carbon mainly containing hydrous silicic acid is preferable. These may be used alone or in combination of two or more.
  • the compounding amount of the inorganic filler in the rubber composition of the present invention is preferably 20 to 200 parts by weight, more preferably 25 to 150 parts by weight, further preferably 100 parts by weight of the solid rubber (A). Is 30 to 100 parts by weight.
  • the rubber composition of the present invention preferably further contains a cross-linking agent.
  • a crosslinking agent capable of crosslinking the solid rubber (A) may be appropriately selected according to the type of the solid rubber (A).
  • sulfur is preferably used.
  • the blending amount of the crosslinking agent in the rubber composition of the present invention is preferably 0.5 to 5 parts by weight, more preferably 0.7 to 4 parts by weight with respect to 100 parts by weight of the solid rubber (A). More preferably, it is 1 to 3 parts by weight.
  • the rubber composition of the present invention may be blended with a necessary amount of a compounding agent such as a crosslinking accelerator, a crosslinking activator, an anti-aging agent, an activator, a process oil, a plasticizer, and a wax according to a conventional method. Good.
  • a compounding agent such as a crosslinking accelerator, a crosslinking activator, an anti-aging agent, an activator, a process oil, a plasticizer, and a wax according to a conventional method. Good.
  • crosslinking accelerator examples include N-cyclohexyl-2-benzothiazolylsulfenamide, Nt-butyl-2-benzothiazolylsulfenamide, N-oxyethylene-2-benzothiazolylsulfenamide, Sulfenamide-based crosslinking accelerators such as N-oxyethylene-2-benzothiazolylsulfenamide and N, N′-diisopropyl-2-benzothiazolylsulfenamide; 1,3-diphenylguanidine, 1,3- Guanidine-based cross-linking accelerators such as dioltotolylguanidine and 1-ortho-tolylbiguanidine; thiourea-based cross-linking accelerators; thiazole-based cross-linking accelerators; thiuram-based cross-linking accelerators; dithiocarbamic acid-based cross-linking accelerators; And so on.
  • crosslinking accelerators are used alone or in combination of two or more.
  • the amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the solid rubber (A).
  • the crosslinking activator examples include higher fatty acids such as stearic acid and zinc oxide.
  • the blending amount of the crosslinking activator is not particularly limited, but the blending amount when a higher fatty acid is used as the crosslinking activator is preferably 0.05 to 15 with respect to 100 parts by weight of the solid rubber (A). Parts by weight, more preferably 0.5 to 5 parts by weight.
  • zinc oxide is used as the crosslinking activator, the amount is preferably 0.05 parts per 100 parts by weight of the solid rubber (A). -15 parts by weight, more preferably 0.5-5 parts by weight.
  • Mineral oil or synthetic oil may be used as the process oil.
  • mineral oil aroma oil, naphthenic oil, paraffin oil and the like are usually used.
  • the method for obtaining the rubber composition of the present invention is not particularly limited, and each component may be kneaded according to a conventional method.
  • an inorganic filler that excludes a crosslinking agent and a heat unstable component
  • the compounding agent such as solid rubber (A) and the liquid monocyclic olefin ring-opening polymer (B)
  • the kneaded product is mixed with a crosslinking agent and a heat-unstable component.
  • the kneading temperature of the compounding agent such as an inorganic filler, excluding the crosslinking agent and the heat unstable component, the solid rubber (A), and the liquid monocyclic olefin ring-opening polymer (B) is:
  • the temperature is preferably 70 to 200 ° C, more preferably 100 to 180 ° C.
  • the kneading time is preferably 30 seconds to 30 minutes.
  • the kneaded product is mixed with the crosslinking agent and the heat-unstable component after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
  • the rubber cross-linked product of the present invention can be obtained by cross-linking the above-described rubber composition of the present invention.
  • the crosslinking method is not particularly limited, and may be selected according to the shape and size of the rubber crosslinked product.
  • a mold may be filled with a rubber composition and heated to crosslink simultaneously with molding, or a previously molded rubber composition may be heated to crosslink.
  • the crosslinking temperature is preferably 120 to 200 ° C., more preferably 140 to 180 ° C., and the crosslinking time is usually about 1 to 120 minutes.
  • a heating method a general method used for crosslinking of rubber such as press heating, steam heating, oven heating, hot air heating, etc. may be appropriately selected.
  • the rubber cross-linked product of the present invention thus obtained contains 1 to 100 parts by weight of the liquid monocyclic olefin ring-opening polymer (B) per 100 parts by weight of the solid rubber (A). Since it is obtained using the rubber composition of the present invention, the tensile strength is high, and the heat resistance and ozone resistance are excellent. And the rubber cross-linked product of the present invention makes use of such characteristics, and is used for vehicles such as railways and automobiles, such as anti-vibration rubbers, radiator gaskets, brake fluid sealing materials and water-based liquid sealing materials.
  • Various rubber members such as various sealing materials and accumulator bladders; various rubber members such as anti-vibration rubbers, conveyor belts, electrical wiring and cables used in various industrial machines, and air springs; Rubber materials for bearings used in bridges and buildings; Sealing materials used in various fields such as aerospace and marine fields such as sealing materials, packing, rubber plugs, O-rings; It can be suitably used for various applications such as materials; strength imparting agents for adhesives and adhesives.
  • Weight average molecular weight (Mw) and number average molecular weight (Mn) of liquid monocyclic olefin ring-opening polymer A gel permeation chromatography (GPC) system HLC-8220 (manufactured by Tosoh Corporation) connected two H-type columns HZ-M (manufactured by Tosoh Corporation) in series, with tetrahydrofuran as the solvent and a column temperature of 40 The weight average molecular weight (Mw) and number average molecular weight (Mn) of the liquid monocyclic olefin ring-opening polymer were measured at ° C.
  • GPC gel permeation chromatography
  • a differential refractometer RI-8320 manufactured by Tosoh Corporation was used as a detector.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the liquid monocyclic olefin ring-opening polymer were measured as polystyrene conversion values.
  • melt viscosity of liquid monocyclic olefin ring-opening polymer The melt viscosity at 25 ° C. was measured with a Brookfield viscometer DV-II + Pro (manufactured by Brookfield). The shear rate at the time of measurement was adjusted between 1.2 and 10 sec ⁇ 1 according to the viscosity.
  • a dumbbell-shaped test piece was obtained by punching out the sheet-like rubber cross-linked product in a dumbbell shape No. 6 in a direction parallel to the row direction. And about the obtained dumbbell-shaped test piece, using a tensile tester (product name “TENSOMETER10K”, manufactured by ALPHA TECHNOLOGIES) as a tester, in accordance with JIS K6251 at 23 ° C. and 500 mm / min. , subjected to a tensile test to measure the tensile strength S 0.
  • a tensile tester product name “TENSOMETER10K”, manufactured by ALPHA TECHNOLOGIES
  • change rate ⁇ S of tensile strength before and after heat treatment was determined according to the following formula.
  • the change rate ⁇ S of the tensile strength before and after the heat treatment is preferable because the smaller the absolute value, the smaller the variation due to the heat treatment.
  • Change rate of tensile strength before and after heat treatment ⁇ S (%) ⁇ (tensile strength after heat treatment S 1 (MPa) ⁇ tensile strength before heat treatment S 0 (MPa)) / tensile strength before heat treatment S 0 (MPa) ⁇ ⁇ 100
  • the crack size of the test piece was evaluated according to the following criteria. 1: No cracks can be seen with the naked eye, but can be confirmed with a 10x magnifier. 2: A crack can be confirmed with the naked eye. 3: The crack is deep and relatively large (less than 1 mm). 4: The crack is deep and large (1 mm or more and less than 3 mm). 5: There is a crack of 3 mm or more or is likely to cause cutting.
  • the melt viscosity measured at 25 ° C. was 15 Pa ⁇ s.
  • Example 1 In a Banbury type mixer, 100 parts of polybutadiene rubber (trade name “Nipol BR1220”, manufactured by Nippon Zeon Co., Ltd., weight average molecular weight (Mw): 468,000, Mooney viscosity (ML1 + 4, 100 ° C.): 44, solid at room temperature) After 30 seconds of mastication, 50 parts of the liquid monocyclic olefin ring-opened polymer (B-1) obtained in Synthesis Example 1, 2 parts of stearic acid, 3 parts of zinc oxide, carbon black (trade name “IRB # 8 ”, 60 parts of CONTINENTAL CARBON) and 15 parts of process oil (trade name“ Aromax T-DAE ”, JX Nippon Oil & Energy Corporation) were added and kneaded at 110 ° C.
  • polybutadiene rubber trade name “Nipol BR1220”, manufactured by Nippon Zeon Co., Ltd., weight average molecular weight (Mw): 468,000, Mooney viscosity
  • Example 2 The procedure was carried out except that 20 parts of the liquid monocyclic olefin ring-opening polymer (B-2) obtained in Synthesis Example 2 was used instead of 50 parts of the liquid monocyclic olefin ring-opening polymer (B-1). A rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 Instead of 50 parts of the liquid monocyclic olefin ring-opening polymer (B-1), 10 parts of the liquid monocyclic olefin ring-opening polymer (B-3) obtained in Synthesis Example 3 having hydroxyl groups at both ends were used. Except for the use, a rubber composition and a crosslinked rubber were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 In place of 100 parts of polybutadiene rubber, 100 parts of natural rubber (“SMR-CV60” weight average molecular weight (Mw): 633,000, Mooney viscosity (ML1 + 4, 100 ° C.): 60, solid at normal temperature) was used. A rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 Instead of 100 parts of polybutadiene rubber, styrene butadiene rubber (trade name “Nipol NS616”, manufactured by Nippon Zeon Co., Ltd., weight average molecular weight (Mw): 426,000, Mooney viscosity (ML1 + 4, 100 ° C.): 62, solid at room temperature) Except for using 100 parts, a rubber composition and a crosslinked rubber were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 A rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that 50 parts of the liquid monocyclic olefin ring-opening polymer (B-1) was not blended. Evaluation was performed. The results are shown in Table 1.
  • a rubber composition comprising 1 to 100 parts by weight of a liquid monocyclic olefin ring-opening polymer (B) with respect to 100 parts by weight of a solid rubber (A) is used.
  • the rubber cross-linked product thus obtained had high tensile strength, the rate of change in tensile strength ⁇ S before and after heat treatment was kept low, and was excellent in heat resistance and also in ozone resistance. Examples 1-5).
  • liquid polybutadiene is used as the liquid polymer, the absolute value of the tensile strength change rate ⁇ S before and after the heat treatment is large, the heat resistance is inferior, and the ozone resistance is inferior.
  • Comparative Example 1 Further, even when the liquid polymer was not blended, the absolute value of the tensile strength change rate ⁇ S before and after the heat treatment was large, the heat resistance was inferior, and the ozone resistance was also inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

重量平均分子量(Mw)が100,000以上である固体状のゴム(A)100重量部に対し、重量平均分子量(Mw)が1,000~50,000である液状のモノ環状オレフィン開環重合体(B)を1~100重量部の割合にて含有するゴム組成物を提供する。

Description

ゴム組成物およびゴム架橋物
  本発明は、固体状のゴムと、液状のモノ環状オレフィン開環重合体とを含有するゴム組成物に関し、さらに詳しくは、引張強度が高く、耐熱性および耐オゾン性に優れたゴム架橋物を与えることのできるゴム組成物に関する。
 液状ポリブタジエンや液状ポリイソプレンなどの液状ジエン系エラストマーは、ポリマー主鎖に二重結合を有し、ゴム弾性に優れるため、固体状のゴムに混ぜ合わせることで、ゴムの加工性、硬度、機械強度や伸びを改良する改質剤として広く使用されている。また、固体状のゴムに対する親和性、さらには無機充填剤に対する親和性を高めたり、架橋点を導入することを目的として、液状ジエン系エラストマーに変性基を導入した変性液状ジエン系エラストマーも知られている。
 しかしながら、このような液状ジエン系エラストマーを、固体状のゴムに配合すると、ゴム架橋物とした場合に、引張強度などの機械強度が十分なものではなく、耐熱性や耐オゾン性に劣るという問題があった。そのため、機械強度がより高く、耐熱性や耐オゾン性にも優れる液状エラストマーが求められていた。
 一方、環状オレフィンを連鎖移動剤の存在下でメタセシス開環重合反応することにより環状オレフィン開環重合体を得る技術が知られており、たとえば、特許文献1には、変性基含有オレフィンの存在下でルテニウム触媒を用いて環状オレフィンをメタセシス開環重合することで、重合体鎖末端に変性基を有する環状オレフィン開環重合体を得る技術が開示されている。この特許文献1には、変性基含有オレフィンと環状オレフィンとの割合を調整することにより、得られる環状オレフィン開環重合体における、変性基の導入量を調整できることが開示されている。
 また、特許文献2には、重量平均分子量が1,000~100,000である環状オレフィン開環重合体の主鎖構造中の炭素-炭素二重結合の一部を水素化した、環状オレフィン開環重合体水素化物が開示されている。
 しかしながら、特許文献1,2に記載の技術においては、環状オレフィン開環重合体として液状のものを得る技術について開示するものではなく、そのため、上述した液状ジエン系エラストマーの代替材料として適用できないものであった。特に、特許文献2の技術では、環状オレフィン開環重合体を水素化するものであるが、水素化反応により樹脂状の重合体となってしまうものである。
特表平11-514043号公報 特開2002-317034号公報
 本発明は、このような実状に鑑みてなされたものであり、引張強度が高く、耐熱性および耐オゾン性に優れたゴム架橋物を与えることのできるゴム組成物を提供することを目的とする。
  本発明者らは、上記目的を達成するために鋭意研究を行った結果、固体状のゴムに対し、重量平均分子量が特定の範囲にある液状のモノ環状オレフィン開環重合体を特定量配合することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。
  すなわち、本発明によれば、重量平均分子量(Mw)が100,000以上である固体状のゴム(A)100重量部に対し、重量平均分子量(Mw)が1,000~50,000である液状のモノ環状オレフィン開環重合体(B)を1~100重量部の割合にて含有するゴム組成物が提供される。
 本発明のゴム組成物において、前記モノ環状オレフィン開環重合体(B)が、モノ環状モノオレフィン由来の構造単位のみからなる重合体、または、モノ環状モノオレフィン由来の構造単位と、モノ環状モノオレフィンと共重合可能な単量体由来の構造単位とからなる共重合体であることが好ましい。
 本発明のゴム組成物において、前記モノ環状オレフィン開環重合体(B)が、シクロペンテン由来の構造単位のみからなる重合体、または、シクロペンテン由来の構造単位と、シクロペンテンと共重合可能な単量体由来の構造単位とからなる共重合体であることが好ましい。
 本発明のゴム組成物において、前記モノ環状オレフィン開環重合体(B)の、ブルックフィールド粘度計を用いて温度25℃で測定した溶融粘度が、3,000Pa・s以下であることが好ましい。
 本発明のゴム組成物において、前記モノ環状オレフィン開環重合体(B)のガラス転移温度が、-50℃以下であることが好ましい。
 本発明のゴム組成物において、前記ゴム(A)が、天然ゴム、ポリイソプレンゴム、スチレンブタジエンゴム、およびポリブタジエンゴムからなる群から選ばれる少なくとも1種のゴムであることが好ましい。
 本発明のゴム組成物は、さらに、無機充填剤を含有することが好ましい。
 本発明のゴム組成物は、さらに、架橋剤を含有することが好ましい。
 また、本発明によれば、上記のゴム組成物を架橋してなるゴム架橋物が提供される。
  本発明によれば、引張強度が高く、耐熱性および耐オゾン性に優れたゴム架橋物を与えることのできるゴム組成物、および、このようなゴム組成物を用いて得られ、引張強度が高く、耐熱性および耐オゾン性に優れたゴム架橋物を提供することができる。
 本発明のゴム組成物は、重量平均分子量(Mw)が100,000以上である固体状のゴム(A)100重量部に対し、重量平均分子量(Mw)が1,000~50,000である液状のモノ環状オレフィン開環重合体(B)を1~100重量部の割合にて含有してなる組成物である。
 本発明によれば、このような固体状のゴム(A)に、液状のモノ環状オレフィン開環重合体(B)を配合することで、ゴム架橋物とした場合に、引張強度を高く保ちながら、耐熱性および耐オゾン性を向上させることができるものである。
<固体状のゴム(A)>
 本発明で用いる固体状のゴム(A)は、重量平均分子量(Mw)が100,000以上であり、常温(25℃)において固体状態を有する(常温(25℃)において流動性を示さず、形状保持性を有する)ゴム状の重合体であればよく、特に限定されない。固体状のゴム(A)は、JIS K6300に準拠して測定したムーニー粘度(ML1+4,100℃)が、通常、20以上となるものである。
 固体状のゴム(A)としては、特に限定されないが、たとえば、天然ゴム(NR)、ポリイソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ポリブタジエンゴム(BR)、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合ゴム、ポリイソプレン-SBRブロック共重合ゴム、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体、乳化重合スチレン-アクリロニトリル-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴムといった共役ジエン系ゴムやエチレンプロピレンジエンゴム(EPDM)、エチレン-プロピレンゴムなどのオレフィン系ゴム;アクリルゴム、エピクロロヒドリンゴム、フッ素ゴム、シリコンゴム、クロロプレンゴム、ウレタンゴムなどの非オレフィン系ゴム;などが挙げられる。これらの中でも、液状のモノ環状オレフィン開環重合体(B)との相溶性が高く、液状のモノ環状オレフィン開環重合体(B)を配合することによる効果、すなわち、耐熱性および耐オゾン性の向上効果が大きいという点より、オレフィン系ゴムが好ましく、共役ジエン系ゴムがより好ましく、天然ゴム、ポリイソプレンゴム、スチレンブタジエンゴム、およびポリブタジエンゴムが特に好ましい。
 固体状のゴム(A)としては、ゲルパーミエーションクロマトグラフィーで測定される、ポリスチレン換算の重量平均分子量(Mw)が100,000以上のものであればよいが、得られるゴム架橋物の機械強度をより高めるという観点より、重量平均分子量(Mw)が200,000以上のものがより好ましく、300,000以上のものがさらに好ましい。なお、重量平均分子量(Mw)の上限は特に限定されないが、好ましくは2,000,000以下である。
<液状のモノ環状オレフィン開環重合体(B)>
 本発明で用いる液状のモノ環状オレフィン開環重合体(B)は、その主鎖を構成する繰返し単位として、モノ環状オレフィンを開環重合してなる繰返し単位を含有してなる重合体であって、重量平均分子量(Mw)が1,000~50,000である、液状の重合体である。
 本発明で用いる液状のモノ環状オレフィン開環重合体(B)は、モノ環状オレフィンを開環重合してなる繰返し単位の割合を、全繰返し単位に対して70モル%以上とすることが好ましく、75モル%以上とすることがより好ましく、80モル%以上とすることがさらに好ましい。ただし、モノ環状オレフィン開環重合体の特性を維持する限り、モノ環状オレフィンと共重合可能なその他の単量体に由来する繰返し単位を含有していてもよく、その他の単量体に由来する繰返し単位の割合は、全繰返し単位に対して30モル%以下であることが好ましく、25モル%以下であることがより好ましく、20モル%以下であることがさらに好ましい。モノ環状オレフィンとは、一つの環からなり、環内に炭素-炭素二重結合を有する炭化水素化合物であり、炭素-炭素二重結合の数は、1つでもよいし、複数個であってもよい(ただし、芳香環は含まない)。
 このようなモノ環状オレフィンの具体例としては、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテンなどの炭素-炭素二重結合が環内に1個あるモノ環状モノオレフィン;1,4-シクロヘキサジエン、1,4-シクロヘプタジエン、1,5-シクロオクタジエンなどの炭素-炭素二重結合が環内に2個あるモノ環状ジエン;1,5,9-シクロドデカトリエンなどの炭素-炭素二重結合が環内に3個あるモノ環状トリエン;などが挙げられる。これらのなかでも、モノ環状モノオレフィンが好ましく、固体状のゴム(A)との相溶性の観点から、シクロペンテンがより好ましい。モノ環状オレフィンとしては、置換基を有するものであっても、置換基を有しないものであってもよく、置換基としては、特に限定されないが、例えば、メチル基やエチル基などのアルキル基が挙げられる。
 また、モノ環状オレフィンと共重合可能なその他の単量体としては、多環の環状モノオレフィン、多環の環状ジエン、および多環の環状トリエンなどが挙げられる。多環の環状モノオレフィン、多環の環状ジエン、および多環の環状トリエンとしては、2-ノルボルネン、ジシクロペンタジエン、1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレン、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンなどの置換基を有していてもよいノルボルネン化合物が例示される。これらのなかでも、多環の環状モノオレフィンおよび多環の環状ジエンが好ましく、2-ノルボルネンおよびジシクロペンタジエンがより好ましい。
 また、液状のモノ環状オレフィン開環重合体(B)が共重合体である場合には、1種類のモノ環状オレフィンと、1種または2種以上のモノ環状オレフィン以外の単量体との共重合体、あるいは、2種以上のモノ環状オレフィンの共重合体、さらには、2種以上のモノ環状オレフィンと、1種または2種以上のモノ環状オレフィン以外の単量体との共重合体のいずれであってもよい。モノ環状オレフィン開環重合体が2種以上のモノ環状オレフィン由来の構造単位を有する場合には、モノ環状オレフィン開環重合体に含まれる、全てのモノ環状オレフィン由来の構造単位の割合を上記範囲とすればよい。
 本発明で用いる液状のモノ環状オレフィン開環重合体(B)としては、耐熱性、耐オゾン性が優れるという観点より、その主鎖を構成する繰返し単位として、モノ環状モノオレフィン由来の構造単位のみからなる重合体、または、モノ環状モノオレフィン由来の構造単位と、モノ環状モノオレフィンと共重合可能な単量体由来の構造単位(モノ環状モノオレフィン以外のモノ環状オレフィン由来の構造単位も含む。)とからなる共重合体であることが好ましく、固体状のゴム(A)との相溶性の観点から、シクロペンテン由来の構造単位のみからなる重合体、または、シクロペンテン由来の構造単位と、シクロペンテンと共重合可能な単量体由来の構造単位(シクロペンテン以外のモノ環状オレフィン由来の構造単位も含む。)とからなる共重合体であることがより好ましい。シクロペンテンと共重合可能な単量体としては、モノ環状ジオレフィン、多環の環状モノオレフィン、多環の環状ジエンが好ましく、1,5-シクロオクタジエン、2-ノルボルネン、およびジシクロペンタジエンがより好ましい。
 本発明で用いる液状のモノ環状オレフィン開環重合体(B)をモノ環状モノオレフィン由来の構造単位を含む重合体とする場合は、モノ環状モノオレフィン由来の構造単位の割合を、全繰返し単位に対して70モル%以上とすることが好ましく、75モル%以上とすることがより好ましく、80モル%以上とすることがさらに好ましい。一方、モノ環状モノオレフィンと共重合可能な単量体由来の構造単位の割合は、全繰返し単位に対して30モル%以下であることが好ましく、25モル%以下であることがより好ましく、20モル%以下であることがさらに好ましい。
 また、本発明で用いる液状のモノ環状オレフィン開環重合体(B)をシクロペンテン由来の構造単位を含む重合体とする場合は、シクロペンテン由来の構造単位の割合を、全繰返し単位に対して70モル%以上とすることが好ましく、75モル%以上とすることがより好ましく、80モル%以上とすることがさらに好ましい。一方、シクロペンテンと共重合可能な単量体由来の構造単位の割合は、全繰返し単位に対して30モル%以下であることが好ましく、25モル%以下であることがより好ましく、20モル%以下であることがさらに好ましい。
  本発明で用いる液状のモノ環状オレフィン開環重合体(B)の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィーで測定される、ポリスチレン換算の重量平均分子量(Mw)の値で、1,000~50,000であり、好ましくは1,500~45,000、より好ましくは2,000~40,000である。重量平均分子量(Mw)が低すぎると、得られるゴム架橋物が、引張強度などの機械強度に劣るものとなってしまい、一方、重量平均分子量(Mw)が高すぎると、モノ環状オレフィン開環重合体が液状を呈さなくなってしまう。
  本発明で用いる液状のモノ環状オレフィン開環重合体(B)の、ゲルパーミエーションクロマトグラフィーで測定される、ポリスチレン換算の、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、特に限定されないが、通常4.0以下であり、好ましくは3.5以下であり、より好ましくは3.0以下である。Mw/Mnを上記範囲とすることにより、得られるゴム架橋物の引張強度などの機械強度をより高めることができる。
 また、本発明で用いる液状のモノ環状オレフィン開環重合体(B)は、液状の重合体、すなわち、常温(25℃)において液体状態を有する(常温(25℃)において流動性を有する)重合体であり、具体的には、ブルックフィールド粘度計を用いて温度25℃で測定した溶融粘度が、3,000Pa・s以下となる程度に、常温(25℃)において流動性を有する重合体である。本発明においては、このような液状のモノ環状オレフィン開環重合体(B)を用いることにより、固体状のゴム(A)への配合を良好なものとすることができ、これにより、得られるゴム架橋物を、引張強度が高く、耐熱性および耐オゾン性に優れたものとすることができるものである。本発明で用いる液状のモノ環状オレフィン開環重合体(B)の温度25℃における溶融粘度は、好ましくは2,000Pa・s以下、より好ましくは1,000Pa・s以下であり、さらに好ましくは300Pa・s以下である。
  本発明で用いる液状のモノ環状オレフィン開環重合体(B)を構成する繰返し単位中に存在する二重結合において、そのシス/トランス比は、特に限定されないが、耐熱性および耐オゾン性をより高めることができるという観点から、15/85~60/40の範囲であることが好ましく、15/85~40/60の範囲であることがより好ましい。シス/トランス比は、液状のモノ環状オレフィン開環重合体(B)の13C-NMRスペクトル測定により測定することができる。
 なお、液状のモノ環状オレフィン開環重合体(B)の、シス/トランス比を上記範囲とする方法としては、特に限定されないが、たとえば、モノ環状オレフィンを重合して、液状のモノ環状オレフィン開環重合体(B)を得る際における、重合条件を制御する方法などが挙げられる。一例を挙げると、モノ環状オレフィンを重合する際の重合温度を高くするほど、トランス比率を高くすることができ、また、重合溶液におけるモノマー濃度を低くするほど、トランス比率を高くすることができる。
  本発明で用いる液状のモノ環状オレフィン開環重合体(B)のガラス転移温度(Tg)は、得られるゴム架橋物を低温特性に優れたものとし、ゴム弾性を有するものとするという観点より、好ましくは-50℃以下であり、より好ましくは-60℃以下、さらに好ましくは-70℃以下である。液状のモノ環状オレフィン開環重合体(B)のガラス転移温度は、たとえば、繰返し単位中に存在する二重結合におけるシス/トランス比や液状のモノ環状オレフィン開環重合体(B)を共重合体とする場合は、モノ環状オレフィンと共重合可能な単量体由来の構造単位の含有比率などを調節することによって、調節することができる。
 また、本発明で用いる液状のモノ環状オレフィン開環重合体(B)は、ブルックフィールド粘度計を用いて温度25℃で測定した溶融粘度が上記範囲であるものであればよいが、融点を有するものであってもよく、液状のモノ環状オレフィン開環重合体(B)が融点を有するものである場合、融点(Tm)は、25℃未満であることが好ましい。液状のモノ環状オレフィン開環重合体の融点(Tm)が25℃未満であると、モノ環状オレフィン開環重合体が、常温(25℃)で液状の重合体であり、本発明の効果を得られやすくなる。液状のモノ環状オレフィン開環重合体(B)の融点(Tm)は、たとえば、繰返し単位中に存在する二重結合におけるシス/トランス比を調節することや、液状のモノ環状オレフィン開環重合体(B)に含まれる繰返し単位の種類や含有比率を調整することにより、調節することができる。一例を挙げると、液状のモノ環状オレフィン開環重合体(B)を構成する、モノ環状オレフィン単量体単位のうち、シクロペンテン単位および1,5-シクロオクタジエン単位の含有割合を増加させることにより、融点(Tm)を低くすることができる。その一方で、シクロオクテン単位の含有割合が増加すると、融点(Tm)が高くなってしまい、常温でのゴム特性が低下してしまう場合がある。
  本発明で用いる液状のモノ環状オレフィン開環重合体(B)は、その分子構造が、炭素原子と水素原子のみからなるものであってもよいが、分子構造中に炭素原子および水素原子以外の原子を含有させてもよく、より具体的には、周期表第15族の原子、周期表第16族の原子、ケイ素原子、およびハロゲン原子からなる群から選ばれる原子を含有する変性基を側鎖あるいは重合体鎖末端に含有させてもよい。
 このような変性基としては、無機充填剤を配合させる場合における無機充填剤との親和性の観点より、窒素原子、酸素原子、リン原子、イオウ原子、ケイ素原子、ハロゲン原子からなる群から選ばれる原子を含有する変性基がより好ましく、これらのなかでも、窒素原子、酸素原子、およびケイ素原子からなる群から選ばれる原子を含有する変性基がさらに好ましい。このような変性基の具体例としては、アミノ基、水酸基、ヒドロキシカルボニル基、カルボン酸無水物基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、オキシシリル基およびハロゲン原子などが挙げられ、これらのなかでも、アミノ基、水酸基、ヒドロキシカルボニル基、メタクリロイルオキシ基、オキシシリル基が好ましい。オキシシリル基の具体例としては、アルコキシシリル基、アリーロキシシリル基、アシロキシシリル基、アルキルシロキシシリル基、アリールシロキシシリル基、またはヒドロキシシリル基などが挙げられ、これらのなかでも、アルコキシシリル基が好ましい。アルコキシシリル基は、1つ以上のアルコキシ基がケイ素原子と結合してなる基であり、その具体例としては、トリメトキシシリル基、(ジメトキシ)(メチル)シリル基、(メトキシ)(ジメチル)シリル基、トリエトキシシリル基、(ジエトキシ)(メチル)シリル基、(エトキシ)(ジメチル)シリル基、(ジメトキシ)(エトキシ)シリル基、(メトキシ)(ジエトキシ)シリル基、トリプロポキシシリル基、トリブトキシシリル基などが挙げられる。
 なお、本発明で用いる液状のモノ環状オレフィン開環重合体(B)は、一方の重合体鎖末端(片末端)のみに変性基が導入されたものであっても、両方の重合体鎖末端(両末端)に変性基が導入されたものであってもよく、また、これらが混在したものであってもよい。さらに、変性基が導入された液状のモノ環状オレフィン開環重合体と、変性基が導入されていない液状のモノ環状オレフィン開環重合体とが混在していてもよい。
 液状のモノ環状オレフィン開環重合体(B)の重合体鎖末端における、変性基の導入割合は、特に限定されないが、無機充填剤を配合させる場合における無機充填剤との親和性の観点より、液状のモノ環状オレフィン開環重合体(B)の重合体鎖数に対する変性基の個数の割合の百分率の値で、60%以上であることが好ましく、より好ましくは80%以上、さらに好ましくは100%以上である。なお、重合体鎖末端への変性基の導入割合を測定する方法としては、特に限定されないが、たとえば、H-NMRスペクトル測定により求められる変性基に対応するピーク面積比と、ゲルパーミエーションクロマトグラフィから求められる数平均分子量(Mn)とから求めることができる。
 本発明で用いる液状のモノ環状オレフィン開環重合体(B)の合成方法は、目的とする重合体が得られる限りにおいて、特に限定されず、常法に従って合成すればよいが、たとえば、分子量調整剤の存在下、開環重合触媒としてルテニウムカルベン錯体を用いて、モノ環状オレフィンを含む単量体を開環重合する方法などが挙げられる。
 ルテニウムカルベン錯体としては、モノ環状オレフィンの開環重合触媒となるものであれば、特に限定されない。好ましく用いられるルテニウムカルベン錯体の具体例としては、ビス(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリフェニルホスフィン)-3,3-ジフェニルプロペニリデンルテニウムジクロリド、ジクロロ-(3-フェニル-1H-インデン-1-イリデン)ビス(トリシクロヘキシルホスフィン)ルテニウム(II)、(3-フェニル-1H-インデン-1-イリデン)ビス(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)t-ブチルビニリデンルテニウムジクロリド、ビス(1,3-ジイソプロピルイミダゾリン-2-イリデン)ベンジリデンルテニウムジクロリド、ビス(1,3-ジシクロヘキシルイミダゾリン-2-イリデン)ベンジリデンルテニウムジクロリド、(1,3-ジメシチルイミダゾリン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)エトキシメチリデンルテニウムジクロリド、(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)エトキシメチリデンルテニウムジクロリドなどが挙げられる。
  ルテニウムカルベン錯体の使用量は、特に限定されるものではないが、(触媒中の金属ルテニウム:モノ環状オレフィンを含む単量体)のモル比として、通常1:2,000~1:2,000,000、好ましくは1:5,000~1:1,500,000、より好ましくは1:10,000~1:1,000,000の範囲である。ルテニウムカルベン錯体の使用量が少なすぎると、重合反応が十分に進行しない場合がある。一方、多すぎると、得られるモノ環状オレフィン開環重合体からの触媒残渣の除去が困難となり、ゴム架橋物とした際に各種特性が低下するおそれがある。
 分子量調整剤としては、例えば、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテンなどのオレフィン化合物;1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,6-ヘプタジエン、2-メチル-1,4-ペンタジエン、2,5-ジメチル-1,5-ヘキサジエンなどのジオレフィン化合物;などが挙げられる。
 分子量調整剤の使用量は、特に限定されず、目的とする重量平均分子量(Mw)に応じて設定すればよいが、重合に用いるモノ環状オレフィンを含む単量体100重量部に対し、好ましくは0.1~20重量部、より好ましくは0.15~15重量部、さらに好ましくは0.2~10重量部である。
  重合反応は、無溶媒中で行ってもよく、溶液中で行ってもよい。溶液中で重合する場合、用いられる溶媒は重合反応において不活性であり、重合に用いるモノ環状オレフィンを含む単量体や重合触媒などを溶解させ得る溶媒であれば特に限定されないが、炭化水素系溶媒、エーテル系溶媒またはハロゲン系溶媒を用いることが好ましい。炭化水素系溶媒としては、たとえば、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素;n-ヘキサン、n-ヘプタン、n-オクタンなどの脂肪族炭化水素;シクロヘキサン、シクロペンタン、メチルシクロヘキサンなどの脂環族炭化水素;などが挙げられる。エーテル系溶媒としては、ジエチルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエチレン、テトラヒドロフランなどが挙げられる。また、ハロゲン系溶媒としては、例えば、ジクロロメタン、クロロホルムなどのアルキルハロゲン;クロロベンゼン、ジクロロベンゼンなどの芳香族ハロゲン;などが挙げられる。
  重合温度は、特に限定されないが、通常-50~100℃の範囲で設定される。また、重合反応時間は、好ましくは1分間~72時間、より好ましくは5分間~20時間である。重合転化率が所定の値に達した後、公知の重合停止剤を重合系に加えることにより、重合反応を停止させることができる。
 また、液状のモノ環状オレフィン開環重合体(B)を、重合体鎖末端に変性基を有するものとする場合には、変性基を有するオレフィン化合物の存在下で開環重合を行うことが好ましい。なお、変性基を有するオレフィン化合物は、重合体鎖末端に変性基を導入する作用に加えて、分子量調整剤としても作用するため、変性基を有するオレフィン化合物を使用する場合には、上述した分子量調整剤は使用しないことが望ましい。
 変性基を有するオレフィン化合物としては、分子内にエチレン性不飽和結合および変性基を少なくとも1つずつ含有する化合物であれば、特に限定されない。変性基としては、たとえば、アミノ基、水酸基、ヒドロキシカルボニル基、カルボン酸無水物基、メタクリロイルオキシ基、エポキシ基、オキシシリル基およびハロゲン原子が挙げられる。
 アミノ基を有するオレフィン化合物としては、アリルアミン、N-アリルアニリン、N-アリルベンジルアミン、4-アミノスチレン、2-ブテン-1,4-ジアミン、3-ヘキセン-2,5-ジアミンなどが挙げられる。
 水酸基を有するオレフィン化合物としては、たとえば、アリルアルコール、3-ブテン-1-オール、4-ペンテン-1-オール、4-ヘキセン-1-オール、4-ヘプテン-1-オール、5-デセン-1-オール、5-ヘキセン-1-オール、5-オクテン-1-オール、6-ヘプテン-1-オール、4-ヒドロキシスチレン、2-アリルフェノール、4-ヒドロキシ安息香酸アリル、1-シクロヘキシル-2-ブテン-1-オール、エチレングリコールモノアリルエーテル、3-アリルオキシ-1,2-プロパンジオール、2-ブテン-1,4-ジオール、3-ヘキセン-2,5-ジオールなどが挙げられる。
 ヒドロキシカルボニル基を有するオレフィン化合物としては、たとえば、3-ブテン酸、4-ペンテン酸、5-ヘキセン酸、トランス-3-ペンテン酸、ビニル安息香酸、トランス-3-ヘキセン二酸などが挙げられる。
 カルボン酸無水物基を有するオレフィン化合物としては、アリルコハク酸無水物、(2,7-オクタジエン-1-イル)コハク酸無水物などが挙げられる。
 メタクリロイルオキシ基を有するオレフィン化合物としては、シス-1,4-ジメタクリロイルオキシ-2-ブテン、アリルメタクリレート、5-ヘキセニルメタクリレートなどが挙げられる。
 エポキシ基を有するオレフィン化合物としては、1,3-ブタジエンモノエポキシド、アリルグリシジルエーテル、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセン、1,2,9,10-ジエポキシ-5-デセンなどが挙げられる。
 オキシシリル基を有するオレフィン化合物としては、ビニル(トリメトキシ)シラン、ビニル(トリエトキシ)シラン、アリル(トリメトキシ)シラン、アリル(メトキシ)(ジメチル)シラン、アリル(トリエトキシ)シラン、アリル(エトキシ)(ジメチル)シラン、スチリル(トリメトキシ)シラン、スチリル(トリエトキシ)シラン、2-スチリルエチル(トリエトキシ)シラン、アリル(トリエトキシシリルメチル)エーテル、アリル(トリエトキシシリルメチル)(エチル)アミンなどのアルコキシシラン化合物;ビニル(トリフェノキシ)シラン、アリル(トリフェノキシ)シラン、アリル(フェノキシ)(ジメチル)シランなどのアリーロキシシラン化合物;ビニル(トリアセトキシ)シラン、アリル(トリアセトキシ)シラン、アリル(ジアセトキシ)メチルシラン、アリル(アセトキシ)(ジメチル)シランなどのアシロキシシラン化合物;アリルトリス(トリメチルシロキシ)シランなどのアルキルシロキシシラン化合物;アリルトリス(トリフェニルシロキシ)シランなどのアリールシロキシシラン化合物;1-アリルヘプタメチルトリシロキサン、1-アリルノナメチルテトラシロキサン、1-アリルノナメチルシクロペンタシロキサン、1-アリルウンデカメチルシクロヘキサシロキサンなどのポリシロキサン化合物;1,4-ビス(トリメトキシシリル)-2-ブテン、1,4-ビス(トリエトキシシリル)-2-ブテン、1,4-ビス(トリメトキシシリルメトキシ)-2-ブテンなどのアルコキシシラン化合物;1,4-ビス(トリフェノキシシリル)-2-ブテンなどのアリーロキシシラン化合物;1,4-ビス(トリアセトキシシリル)-2-ブテンなどのアシロキシシラン化合物;1,4-ビス[トリス(トリメチルシロキシ)シリル]-2-ブテンなどのアルキルシロキシシラン化合物;1,4-ビス[トリス(トリフェニルシロキシ)シリル]-2-ブテンなどのアリールシロキシシラン化合物;1,4-ビス(ヘプタメチルトリシロキシ)-2-ブテン、1,4-ビス(ウンデカメチルシクロヘキサシロキシ)-2-ブテンなどのポリシロキサン化合物;などが挙げられる。
 ハロゲン原子を有するオレフィン化合物としては、塩化アリル、クロチルクロリド、1,4-ジクロロ-2-ブテン、臭化アリル、ヨウ化アリル、クロチルクロリド、1,4-ジクロロ-2-ブテン、1,4-ジブロモ-2-ブテンなどが挙げられる。
 なお、これら変性基を有するオレフィン化合物は、1種を単独で使用してもよいし、2種以上を併用することもできる。
 変性基を有するオレフィン化合物の使用量は、特に限定されず、液状のモノ環状オレフィン開環重合体(B)の重合体鎖末端に導入する変性基の導入割合や、目的とする重量平均分子量(Mw)に応じて設定すればよいが、重合に用いるモノ環状オレフィンを含む単量体100重量部に対し、好ましくは0.1~20重量部、より好ましくは0.15~15重量部、さらに好ましくは0.2~10重量部である。なお、変性基を有するオレフィン化合物は、液状のモノ環状オレフィン開環重合体(B)の重合体鎖末端に変性基を導入する作用の他、分子量調整剤としても作用するものであることから、液状のモノ環状オレフィン開環重合体(B)の重量平均分子量(Mw)を上記範囲に制御するという観点からも、変性基を有するオレフィン化合物の使用量は上記範囲とすることが好ましい。
  以上のようにして、液状のモノ環状オレフィン開環重合体(B)を含む、重合体溶液を得ることができる。重合体溶液から重合体を回収する方法は、公知の回収方法を採用すればよい。たとえば、重合体溶液を過剰の重合体の貧溶媒と混合することで、重合体を沈殿させ、沈殿した重合体を回収し、さらにそれを乾燥することで、液状のモノ環状オレフィン開環重合体(B)を得ることができる。あるいは、重合体溶液を直接乾燥して、未反応のモノ環状オレフィンや溶媒を蒸発除去して、液状のモノ環状オレフィン開環重合体(B)を得ることができる。
 あるいは、液状のモノ環状オレフィン開環重合体(B)を合成する際には、開環重合触媒として、上述したルテニウムカルベン錯体を用いる方法に代えて、分子量調整剤の存在下、開環重合触媒としてモリブデン化合物やタングステン化合物を用いて、モノ環状オレフィンを含む単量体を開環重合する方法を用いてもよい。
 開環重合触媒として用いられ得るモリブデン化合物の具体例としては、モリブデンペンタクロリド、モリブデンオキソテトラクロリド、モリブデン(フェニルイミド)テトラクロリドなどが挙げられる。また、タングステン化合物の具体例としては、タングステンヘキサクロリド、タングステンオキソテトラクロリド、タングステン(フェニルイミド)テトラクロリド、モノカテコラートタングステンテトラクロリド、ビス(3,5-ジターシャリブチル)カテコラートタングステンジクロリド、ビス(2-クロロエテレート)テトラクロリド、タングステンオキソテトラフェノレートなどが挙げられる。
 分子量調整剤としては、上述したルテニウムカルベン錯体を用いる方法と同様のものを同様の使用量にて用いることができる。
 また、モリブデン化合物やタングステン化合物を開環重合触媒として用いる場合には、助触媒として、有機金属化合物を組み合わせて使用してもよい。この助触媒として用いられ得る有機金属化合物としては、炭素数1~20の炭化水素基を有する周期表第1、2、12、13または14族金属原子の有機金属化合物が挙げられる。なかでも、有機リチウム化合物、有機マグネシウム化合物、有機亜鉛化合物、有機アルミニウム化合物、有機スズ化合物が好ましく用いられ、有機リチウム化合物、有機スズ化合物、有機アルミニウム化合物がより好ましく用いられ、有機アルミニウム化合物が特に好ましく用いられる。有機金属化合物の使用量は、特に限定されるものではないが、(モリブデン化合物やタングステン化合物:有機金属化合物)のモル比として、1:0.1~10が好ましく、1:0.5~5がより好ましい。
  モリブデン化合物やタングステン化合物を開環重合触媒として用いる場合の重合反応条件などは、上述したルテニウムカルベン錯体を用いる方法における条件の範囲で適宜設定すればよい。
 また、モリブデン化合物やタングステン化合物を開環重合触媒として用いる方法において、液状のモノ環状オレフィン開環重合体(B)を、重合体鎖末端に変性基を有するものとする場合には、上述のルテニウムカルベン錯体を用いる場合と同様に、変性基を有するオレフィン化合物の存在下で開環重合を行うことが好ましい。ただし、モリブデン化合物やタングステン化合物は、一般的に、変性基を有するオレフィン化合物に対する耐性が低いため、変性基を有するオレフィン化合物に代えて、保護基によって保護された変性基を有するオレフィン化合物を用いることが好ましい。
 たとえば、変性基を有するオレフィン化合物が、アミノ基、水酸基、ヒドロキシカルボニル基を有するオレフィン化合物である場合には、アルキル基、アシル基、RC(O)-基(ただしRは炭素数1~10の飽和炭化水素基)、シリル基、金属アルコキシドなどの保護基により保護したものを用いることができる。あるいは、アミノ基、水酸基、またはヒドロキシカルボニル基を有するオレフィン化合物とトリアルキルアルミニウム化合物とを反応させることにより得られたものを用いてもよい。なお、この場合における、保護基によって保護された変性基を有するオレフィン化合物の使用量は、上述のルテニウムカルベン錯体を用いる場合における、変性基を有するオレフィン化合物の使用量と同様とすればよい。
  そして、保護基によって保護された変性基を有するオレフィン化合物を使用した場合には、重合反応後に、脱保護を行う。脱保護の方法としては、特に限定されず、用いた保護基に応じた公知の手法により行えばよい。具体的には、加熱による脱保護、加水分解または加アルコール分解による脱保護などの方法が挙げられる。
 以上のようにして、液状のモノ環状オレフィン開環重合体(B)を含む、重合体溶液を得ることができる。重合体溶液から重合体を回収する方法は、上述のルテニウムカルベン錯体を用いる場合で述べた公知の回収方法を採用すればよい。
 なお、以上のような製造法により得られる液状のモノ環状オレフィン開環重合体(B)には、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤を添加してもよい。老化防止剤の添加量は、その種類などに応じて適宜決定すればよい。さらに、所望により、伸展油を配合してもよい。
<ゴム組成物>
 本発明のゴム組成物は、上述した固体状のゴム(A)100重量部に対し、液状のモノ環状オレフィン開環重合体(B)を1~100重量部の割合で含有してなるものである。
 本発明のゴム組成物中における、液状のモノ環状オレフィン開環重合体(B)の含有量は、固体状のゴム(A)100重量部に対し、1~100重量部であり、好ましくは2~80重量部、さらに好ましくは5~60重量部である。液状のモノ環状オレフィン開環重合体(B)の含有量が少なすぎると、液状のモノ環状オレフィン開環重合体(B)を配合することによる効果、すなわち、ゴム架橋物とした場合における、耐熱性および耐オゾン性の向上効果が得られなくなる。一方、液状のモノ環状オレフィン開環重合体(B)の含有量が多すぎると、得られるゴム架橋物の引張強度が低下してしまう。
 また、本発明のゴム組成物は、固体状のゴム(A)および液状のモノ環状オレフィン開環重合体(B)に加えて、無機充填剤を含有していることが好ましい。無機充填剤を含有させることで、得られるゴム架橋物の機械特性を高めることができる。無機充填剤としては、たとえば、アルミニウム粉末等の金属粉;カーボンブラック、ハードクレー、タルク、炭酸カルシウム、酸化チタン、硫酸カルシウム、炭酸カルシウム、水酸化アルミニウム等の無機粉末;デンプンやポリスチレン粉末等の有機粉末等の粉体;ガラス繊維(ミルドファイバー)、炭素繊維、アラミド繊維、チタン酸カリウムウィスカー等の短繊維;シリカ、マイカ;等が挙げられる。これらの中でも、カーボンブラックやシリカが好適に用いられ、カーボンブラックが特に好適に用いられる。
 カーボンブラックとしては、たとえば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどを用いることができる。これらのなかでも、ファーネスブラックを用いることが好ましく、その具体例としては、SAF、ISAF、ISAF-HS、ISAF-LS、IISAF-HS、HAF、HAF-HS、HAF-LS、MAF、FEFなどが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 シリカとしては、たとえば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカなどを用いることができる。これらのなかでも、含水ケイ酸を主成分とする湿式法ホワイトカーボンが好ましい。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 本発明のゴム組成物中における、無機充填剤の配合量は、固体状のゴム(A)100重量部に対して、好ましくは20~200重量部、より好ましくは25~150重量部、さらに好ましくは30~100重量部である。無機充填剤の配合量を上記範囲とすることにより、得られるゴム架橋物の機械特性を適切に高めることができる。
 また、本発明のゴム組成物は、架橋剤をさらに含有していることが好ましい。架橋剤としては、固体状のゴム(A)の種類に応じて、固体状のゴム(A)を架橋し得る架橋剤を適宜選択すればよいが、たとえば、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、アクリル酸亜鉛類、メチロール基を有するアルキルフェノール樹脂などが挙げられる。これらのなかでも、硫黄が好ましく使用される。本発明のゴム組成物中における、架橋剤の配合量は、固体状のゴム(A)100重量部に対して、好ましくは0.5~5重量部、より好ましくは0.7~4重量部、さらに好ましくは1~3重量部である。
 また、本発明のゴム組成物には、常法に従って、架橋促進剤、架橋活性化剤、老化防止剤、活性剤、プロセス油、可塑剤、ワックスなどの配合剤をそれぞれ必要量配合してもよい。
 架橋促進剤としては、たとえば、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾリルスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾリルスルフェンアミドなどのスルフェンアミド系架橋促進剤;1,3-ジフェニルグアニジン、1,3-ジオルトトリルグアニジン、1-オルトトリルビグアニジンなどのグアニジン系架橋促進剤;チオウレア系架橋促進剤;チアゾール系架橋促進剤;チウラム系架橋促進剤;ジチオカルバミン酸系架橋促進剤;キサントゲン酸系架橋促進剤;などが挙げられる。これらのなかでも、スルフェンアミド系架橋促進剤を含むものが特に好ましい。これらの架橋促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋促進剤の配合量は、固体状のゴム(A)100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部である。
 架橋活性化剤としては、たとえば、ステアリン酸などの高級脂肪酸や酸化亜鉛などが挙げられる。架橋活性化剤の配合量は、特に限定されないが、架橋活性化剤として高級脂肪酸を用いる場合の配合量は、固体状のゴム(A)100重量部に対して、好ましくは0.05~15重量部、より好ましくは0.5~5重量部であり、架橋活性化剤として酸化亜鉛を用いる場合の配合量は、固体状のゴム(A)100重量部に対して、好ましくは0.05~15重量部、より好ましくは0.5~5重量部である。
  プロセス油としては、鉱物油や合成油を用いてよい。鉱物油は、アロマオイル、ナフテンオイル、パラフィンオイルなどが通常用いられる。
 本発明のゴム組成物を得る方法としては、特に限定されず、常法に従って各成分を混練すればよく、一例を挙げると、架橋剤および熱に対して不安定な成分を除く、無機充填剤などの配合剤と、固体状のゴム(A)と、液状のモノ環状オレフィン開環重合体(B)とを混練後、その混練物に架橋剤および熱に対して不安定な成分を混合して目的の組成物を得ることができる。架橋剤および熱に対して不安定な成分を除く、無機充填剤などの配合剤と、固体状のゴム(A)と、液状のモノ環状オレフィン開環重合体(B)との混練温度は、好ましくは70~200℃、より好ましくは100~180℃である。また、混練時間は、好ましくは30秒~30分である。また、その混練物と架橋剤および熱に対して不安定な成分との混合は、通常100℃以下、好ましくは80℃以下まで冷却後に行われる。
<ゴム架橋物>
 本発明のゴム架橋物は、上述した本発明のゴム組成物を架橋することにより得ることができる。
 架橋方法は、特に限定されず、ゴム架橋物の形状、大きさなどに応じて選択すればよい。金型中に、ゴム組成物を充填して加熱することにより成形と同時に架橋してもよく、予め成形しておいたゴム組成物を加熱して架橋してもよい。架橋温度は、好ましくは120~200℃、より好ましくは140~180℃であり、架橋時間は、通常、1~120分程度である。
 また、ゴム架橋物の形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。
 加熱方法としては、プレス加熱、スチーム加熱、オーブン加熱、熱風加熱などのゴムの架橋に用いられる一般的な方法を適宜選択すればよい。
 このようにして得られる本発明のゴム架橋物は、固体状のゴム(A)100重量部に対し、液状のモノ環状オレフィン開環重合体(B)を1~100重量部の割合で配合してなる、本発明のゴム組成物を用いて得られるものであるため、引張強度が高く、耐熱性および耐オゾン性に優れるものである。そして、本発明のゴム架橋物は、このような特性を活かし、鉄道や自動車などの車両に用いられる、防振ゴム、ラジエタ用ガスケット、ブレーキ液用のシール材や水系液体用のシール材などの各種シール材、および、アキュムレーターブラダなどの各種ゴム部材;各種産業機械に用いられる、防振ゴム、コンベヤベルト、電気配線やケーブルなどの電気絶縁用被覆材、および空気バネなどの各種ゴム部材;橋梁や建物に用いられる支承用のゴム材料;シーリング材、パッキン、ゴム栓、O-リングなどの航空・宇宙分野や船舶分野などの各種分野において使用されるシール材;船舶分野において用いられる防舷材;粘着剤や接着剤用の強度付与剤;などの各種用途に好適に用いることができる。
  以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「部」は、特に断りのない限り重量基準である。また、各種の試験および評価は、下記の方法にしたがって行った。
〔液状のモノ環状オレフィン開環重合体の重量平均分子量(Mw)および数平均分子量(Mn)〕
 ゲル・パーミエーション・クロマトグラフィー(GPC)システム HLC-8220(東ソー社製)により、HタイプカラムHZ-M(東ソー社製)二本を直列に連結して用い、テトラヒドロフランを溶媒として、カラム温度40℃にて、液状のモノ環状オレフィン開環重合体の重量平均分子量(Mw)および数平均分子量(Mn)の測定を行った。検出器は示差屈折計RI-8320(東ソー社製)を用いた。液状のモノ環状オレフィン開環重合体の重量平均分子量(Mw)および数平均分子量(Mn)は、ポリスチレン換算値として測定した。
〔液状のモノ環状オレフィン開環重合体のガラス転移温度(Tg)、融点(Tm)〕
 示差走査型熱量計(DSC,製品名「X-DSC7000」、日立ハイテクサイエンス社製)を用いて、-150℃~40℃までを10℃/分の昇温で測定した。
〔液状のモノ環状オレフィン開環重合体中の単量体単位組成比〕
液状のモノ環状オレフィン開環重合体中の単量体単位組成比を、H-NMRスペクトル測定から求めた。
〔液状のモノ環状オレフィン開環重合体の溶融粘度〕
 25℃における溶融粘度を、ブルックフィールド型粘度計DV-II+Pro(ブルックフィールド社製)により測定した。なお、測定時の剪断速度は、粘度に合わせて1.2~10sec-1の間で調整した。
〔液状のモノ環状オレフィン開環重合体の重合体鎖末端の変性基の導入率〕
 液状のモノ環状オレフィン開環重合体を重クロロホルムに溶解させ、液状のモノ環状オレフィン開環重合体を溶解させた重クロロホルム溶液に対し、H-NMRスペクトル測定により、変性基特有のピーク積分値およびオレフィン由来のピーク積分値の比率の測定を行なった。そして、測定したピーク積分値の比率、および上記したGPCによる数平均分子量(Mn)の測定結果に基づいて、重合体鎖末端の変性基導入率を算出した。重合体鎖末端の変性基導入率は、液状のモノ環状オレフィン開環重合体鎖数に対する変性基の個数の割合とした。すなわち、変性基導入率=100%は、1分子の液状のモノ環状オレフィン開環重合体鎖に対し、1個の割合で変性基が導入されている状態を示し、変性基導入率=200%は、1分子の液状のモノ環状オレフィン開環重合体鎖の両末端に変性基が導入されている状態を示す。
〔ゴム架橋物の引張強度〕
 シート状のゴム架橋物を、列理方向に対して平行方向にダンベル状6号形にて打ち抜くことで、ダンベル状試験片を得た。そして、得られたダンベル状試験片について、試験機として引張試験機(製品名「TENSOMETER10K」、ALPHA TECHNOLOGIES社製)を使用し、JIS K6251に準拠して、23℃、500mm/分の条件にて、引張試験を行い、引張強度Sを測定した。
〔ゴム架橋物の熱処理前後の引張強度の変化率〕
 上記引張試験と同様にして、ダンベル状試験片を得て、得られたダンベル状試験片について、ギヤー老化試験機(製品名「AG-1110」、上島製作所社製)にて、100℃、72時間の条件で熱処理を行い、熱処理後の試験片を得た。そして、熱処理後の試験片について、上記引張試験と同様にして引張試験を行い、熱処理後の試験片の引張強度Sを測定した。そして、得られた測定結果から、下記式にしたがって熱処理前後の引張強度の変化率ΔSを求めた。なお、熱処理前後の引張強度の変化率ΔSは、絶対値が小さいほど、熱処理による変動が小さいものであるため、好ましい。
  熱処理前後の引張強度の変化率ΔS(%)={(熱処理後の引張強度S(MPa)-熱処理前の引張強度S(MPa))/熱処理前の引張強度S(MPa)}×100
〔静的オゾン劣化試験〕
 シート状のゴム架橋物をダンベル状1号形にて打ち抜くことで、ダンベル状試験片を得た。ダンベル状試験片について、オゾンウェザーメーター(製品名「OMS・HN」、スガ試験機社製)にて、JIS K6259にしたがって、試験温度40℃、オゾン濃度50pphm、引張ひずみ20%、試験時間24時間で静的オゾン劣化試験を行った。オゾン劣化試験後の試験片について、JIS K 6259にしたがって、き裂状態観察法により、試験片のき裂の大きさを観察することにより、耐オゾン性を評価した。
 なお、試験片のき裂の大きさについては、以下の基準で評価した。
  1:肉眼ではき裂が見えないが、10倍の拡大鏡ではき列が確認できるもの。
  2:き裂が肉眼で確認できるもの。 
  3:き裂が深くて比較的大きいもの(1mm未満)。 
  4:き裂が深くて大きいもの(1mm以上3mm 未満)。
  5:3mm以上のき裂がある又は切断を起こしそうなもの。
〔合成例1〕
 液状のモノ環状オレフィン開環重合体(B-1)の合成
 窒素雰囲気下、磁気攪拌子を入れた耐圧ガラス反応容器に、シクロペンテン1000部、1-ヘキセン21.5部、およびトルエン990部を加えた。次いで、トルエン10部に溶解したジクロロ-(3-フェニル-1H-インデン-1-イリデン)ビス(トリシクロヘキシルホスフィン)ルテニウム(II)0.068部を加え、室温で3時間重合反応を行った。3時間の重合反応後、過剰のビニルエチルエーテルを加えて重合を停止した後、多量のメタノールを加えて、重合体を沈殿させた。次いで、上澄み液を除去することで沈殿物を回収した後、回収した沈殿物について、エバポレーターで残った溶剤を除いた後、50℃で24時間真空乾燥して、液状のモノ環状オレフィン開環重合体(B-1)700部を得た。得られた液状のモノ環状オレフィン開環重合体(B-1)は、Mw=7,600、Mn=4,600、Tg=-92℃、Tm=23℃であった。また、25℃で測定した溶融粘度は9Pa・sであった。
〔合成例2〕
 液状のモノ環状オレフィン開環重合体(B-2)の合成
 シクロペンテン1000部に代えて、シクロオクタジエン1000部を使用した以外は、合成例1と同様にして、液状のモノ環状オレフィン開環重合体(B-2)850部を得た。得られた液状のモノ環状オレフィン開環重合体(B-2)は、Mw=14,800、Mn=8,500、Tg=-104℃であり、Tmは観測されなかった。また、25℃で測定した溶融粘度は20Pa・sであった。
〔合成例3〕
 両末端に水酸基を有する液状のモノ環状オレフィン開環重合体(B-3)の合成
 窒素雰囲気下、磁気攪拌子を入れた耐圧ガラス反応容器に、シクロペンテン750部、2-ノルボルネン250部、シス-2-ブテン-1,4-ジオール28.2部、およびテトラヒドロフラン990部を加えた。次いで、テトラヒドロフラン10部に溶解したジクロロ-(3-フェニル-1H-インデン-1-イリデン)ビス(トリシクロヘキシルホスフィン)ルテニウム(II)0.068部を加え、室温で3時間重合反応を行った。3時間の重合反応後、過剰のビニルエチルエーテルを加えて重合を停止した後、多量のメタノールを加えて、重合体を沈殿させた。次いで、上澄み液を除去することで沈殿物を回収した後、回収した沈殿物について、エバポレーターで残った溶剤を除いた後、50℃で24時間真空乾燥して、両末端に水酸基を有する液状のモノ環状オレフィン開環重合体(B-3)750部を得た。得られた両末端に水酸基を有する液状のモノ環状オレフィン開環重合体(B-3)は、Mw=13,400、Mn=6,300、モノ環状オレフィン開環重合体中のシクロペンテン由来の単量体単位の含有割合は88モル%、2-ノルボルネン由来の単量体単位の含有割合は12モル%、末端変性基導入率は200%、Tg=-72℃であり、Tmは観測されなかった。また、25℃で測定した溶融粘度は15Pa・sであった。
〔実施例1〕
 バンバリー型ミキサー中で、ポリブタジエンゴム(商品名「Nipol BR1220」、日本ゼオン社製、重量平均分子量(Mw):468,000、ムーニー粘度(ML1+4,100℃):44、常温で固体)100部を30秒間素練りし、次いで、合成例1で得られた液状のモノ環状オレフィン開環重合体(B-1)50部、ステアリン酸2部、酸化亜鉛3部、カーボンブラック(商品名「IRB#8」、CONTINENTAL CARBON社製)60部、および、プロセスオイル(商品名「アロマックスT-DAE」、JX日鉱日石エネルギー社製)15部を添加して、110℃にて180秒間混練した後、ラムの上部に残った配合剤をクリーニングした後、さらに150秒間混練し、ミキサーから混練物を排出させた。次いで、得られた混練物を室温まで冷却した後、23℃のオープンロールで、冷却させた混練物と、硫黄1.5部、および、架橋促進剤としてのN-(tert-ブチル)-2-ベンゾチアゾリルスルフェンアミド(商品名「ノクセラーNS-P」、大内新興化学工業社製)0.9部とを混練することで、シート状のゴム組成物を得た。次いで、得られたゴム組成物を160℃で20分間プレス架橋することで、厚さ1mmのシート状のゴム架橋物を得た。そして、得られたシート状のゴム架橋物を用いて、上記方法にしたがって、引張強度および熱処理前後の引張強度の変化率の各測定、ならびに静的オゾン劣化試験を行った。結果を表1に示す。
〔実施例2〕
 液状のモノ環状オレフィン開環重合体(B-1)50部に代えて、合成例2で得られた液状のモノ環状オレフィン開環重合体(B-2)20部を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、実施例1と同様にして評価を行った。結果を表1に示す。
〔実施例3〕
 液状のモノ環状オレフィン開環重合体(B-1)50部に代えて、合成例3で得られた両末端に水酸基を有する液状のモノ環状オレフィン開環重合体(B-3)10部を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、実施例1と同様にして評価を行った。結果を表1に示す。
〔実施例4〕
 ポリブタジエンゴム100部に代えて、天然ゴム(「SMR-CV60」重量平均分子量(Mw):633,000、ムーニー粘度(ML1+4,100℃):60、常温で固体)100部を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、実施例1と同様にして評価を行った。結果を表1に示す。
〔実施例5〕
 ポリブタジエンゴム100部に代えて、スチレンブタジエンゴム(商品名「Nipol NS616」、日本ゼオン社製、重量平均分子量(Mw):426,000、ムーニー粘度(ML1+4,100℃):62、常温で固体)100部を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、実施例1と同様にして評価を行った。結果を表1に示す。
〔比較例1〕
 液状のモノ環状オレフィン開環重合体(B-1)50部に代えて、液状ポリブタジエン(商品名「Krasol LBH-P3000」、クレイバレー社製、重量平均分子量(Mw):3,400、25℃で測定した溶融粘度は20Pa・s)20部を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、実施例1と同様にして評価を行った。結果を表1に示す。
〔比較例2〕
 液状のモノ環状オレフィン開環重合体(B-1)50部を配合しなかった以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、実施例1と同様にして評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、固体状のゴム(A)100重量部に対し、液状のモノ環状オレフィン開環重合体(B)1~100重量部の割合にて配合してなるゴム組成物を用いて得られたゴム架橋物は、引張強度が高く、熱処理前後の引張強度の変化率ΔSが低く抑えられており、耐熱性に優れ、さらには耐オゾン性にも優れたものであった(実施例1~5)。
 一方、液状重合体として、液状ポリブタジエンを使用した場合には、熱処理前後の引張強度の変化率ΔSの絶対値が大きく、耐熱性に劣るものであり、さらには、耐オゾン性にも劣るものであった(比較例1)。
 また、液状重合体を配合しなかった場合においても、熱処理前後の引張強度の変化率ΔSの絶対値が大きく、耐熱性に劣るものであり、さらには、耐オゾン性にも劣るものであった(比較例2)。

Claims (9)

  1.  重量平均分子量(Mw)が100,000以上である固体状のゴム(A)100重量部に対し、
     重量平均分子量(Mw)が1,000~50,000である液状のモノ環状オレフィン開環重合体(B)を1~100重量部の割合にて含有するゴム組成物。
  2.  前記モノ環状オレフィン開環重合体(B)が、モノ環状モノオレフィン由来の構造単位のみからなる重合体、または、モノ環状モノオレフィン由来の構造単位と、モノ環状モノオレフィンと共重合可能な単量体由来の構造単位とからなる共重合体である請求項1に記載のゴム組成物。
  3.  前記モノ環状オレフィン開環重合体(B)が、シクロペンテン由来の構造単位のみからなる重合体、または、シクロペンテン由来の構造単位と、シクロペンテンと共重合可能な単量体由来の構造単位とからなる共重合体である請求項1または2に記載のゴム組成物。
  4.  前記モノ環状オレフィン開環重合体(B)の、ブルックフィールド粘度計を用いて温度25℃で測定した溶融粘度が、3,000Pa・s以下である請求項1~3のいずれかに記載のゴム組成物。
  5.  前記モノ環状オレフィン開環重合体(B)のガラス転移温度が、-50℃以下である請求項1~4のいずれかに記載のゴム組成物。
  6.  前記ゴム(A)が、天然ゴム、ポリイソプレンゴム、スチレンブタジエンゴム、およびポリブタジエンゴムからなる群から選ばれる少なくとも1種のゴムである請求項1~5のいずれかに記載のゴム組成物。
  7.  さらに、無機充填剤を含有する請求項1~6のいずれかに記載のゴム組成物。
  8.  さらに、架橋剤を含有する請求項1~7のいずれかに記載のゴム組成物。
  9.  請求項8に記載のゴム組成物を架橋してなるゴム架橋物。
PCT/JP2017/038509 2016-10-31 2017-10-25 ゴム組成物およびゴム架橋物 WO2018079602A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/344,320 US11267956B2 (en) 2016-10-31 2017-10-25 Rubber composition and rubber crosslinked product
EP17865938.9A EP3533829B1 (en) 2016-10-31 2017-10-25 Rubber composition and rubber crosslinked product
JP2018547719A JP6950705B2 (ja) 2016-10-31 2017-10-25 ゴム組成物およびゴム架橋物
CN201780064239.7A CN109844008B (zh) 2016-10-31 2017-10-25 橡胶组合物及橡胶交联物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016212962 2016-10-31
JP2016-212962 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018079602A1 true WO2018079602A1 (ja) 2018-05-03

Family

ID=62024990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038509 WO2018079602A1 (ja) 2016-10-31 2017-10-25 ゴム組成物およびゴム架橋物

Country Status (5)

Country Link
US (1) US11267956B2 (ja)
EP (1) EP3533829B1 (ja)
JP (1) JP6950705B2 (ja)
CN (1) CN109844008B (ja)
WO (1) WO2018079602A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220932A1 (ja) * 2018-05-16 2019-11-21 日本ゼオン株式会社 ゴム組成物およびゴム架橋物
WO2019220933A1 (ja) * 2018-05-16 2019-11-21 日本ゼオン株式会社 ゴム組成物およびゴム架橋物
JP2020015834A (ja) * 2018-07-26 2020-01-30 日本ゼオン株式会社 耐屈曲疲労性材料用組成物、耐屈曲疲労性材料用架橋物および耐屈曲疲労性材料
WO2021125222A1 (ja) * 2019-12-17 2021-06-24 日本ゼオン株式会社 開環共重合体
JP2023516712A (ja) * 2020-03-03 2023-04-20 エクソンモービル ケミカル パテンツ インコーポレイテッド 大型トラックおよびバスタイヤトレッドのためのゴム配合物ならびにそれに関する方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390709B2 (en) * 2017-09-29 2022-07-19 Zeon Corporation Liquid copolymer formed by ring-opening copolymerization of cyclopentene, crosslinkable composition, and crosslinked rubber object
WO2021113503A1 (en) * 2019-12-04 2021-06-10 Exxonmobil Chemical Patents Inc. Polymers prepared by ring opening metathesis polymerization

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049353A (ja) * 1973-08-14 1975-05-02
JPH11514043A (ja) 1996-08-12 1999-11-30 アモコ・コーポレイション オレフィンメタセシス反応による環状オレフィンからの二官能性テレキリックポリオレフィンの付加生成物の製造方法
JP2002317034A (ja) 2001-04-20 2002-10-31 Nippon Zeon Co Ltd 末端に官能基を有するノルボルネン系開環重合体水素化物及びその製造方法
JP2013144813A (ja) * 2013-04-30 2013-07-25 Nippon Zeon Co Ltd シクロペンテン開環重合体組成物
WO2016060262A1 (ja) * 2014-10-17 2016-04-21 日本ゼオン株式会社 タイヤ用ゴム組成物
JP2016079330A (ja) * 2014-10-20 2016-05-16 日本ゼオン株式会社 サイドウォール用ゴム組成物
JP2016079329A (ja) * 2014-10-20 2016-05-16 日本ゼオン株式会社 タイヤ用ゴム組成物、ゴム架橋物およびタイヤ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2123452A1 (de) * 1971-05-12 1972-11-23 Farbenfabriken Bayer Ag, 5090 Leverkusen Mischungen aus Polyisopren-Kautschuk und Polypentenamer
DE2131354B2 (de) * 1971-06-24 1975-10-30 Chemische Werke Huels Ag, 4370 Marl Verfahren zur Verbesserung der Rohfestigkeit von Kautschukmischungen
JP3606860B2 (ja) * 2000-08-01 2005-01-05 横浜ゴム株式会社 ゴム組成物及びゴム架橋物
JP4502569B2 (ja) * 2002-07-12 2010-07-14 ダイセル・エボニック株式会社 ゴム補強構造体
JP2013094914A (ja) * 2011-11-02 2013-05-20 Honda Motor Co Ltd 切削工具
CN106032428B (zh) * 2015-03-18 2019-01-18 中国石油化工股份有限公司 一种橡胶组合物和硫化橡胶及其制备方法
CN106977636B (zh) * 2016-01-18 2019-06-28 中国石油化工股份有限公司 一种液体反式聚环戊烯橡胶及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049353A (ja) * 1973-08-14 1975-05-02
JPH11514043A (ja) 1996-08-12 1999-11-30 アモコ・コーポレイション オレフィンメタセシス反応による環状オレフィンからの二官能性テレキリックポリオレフィンの付加生成物の製造方法
JP2002317034A (ja) 2001-04-20 2002-10-31 Nippon Zeon Co Ltd 末端に官能基を有するノルボルネン系開環重合体水素化物及びその製造方法
JP2013144813A (ja) * 2013-04-30 2013-07-25 Nippon Zeon Co Ltd シクロペンテン開環重合体組成物
WO2016060262A1 (ja) * 2014-10-17 2016-04-21 日本ゼオン株式会社 タイヤ用ゴム組成物
JP2016079330A (ja) * 2014-10-20 2016-05-16 日本ゼオン株式会社 サイドウォール用ゴム組成物
JP2016079329A (ja) * 2014-10-20 2016-05-16 日本ゼオン株式会社 タイヤ用ゴム組成物、ゴム架橋物およびタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3533829A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220932A1 (ja) * 2018-05-16 2019-11-21 日本ゼオン株式会社 ゴム組成物およびゴム架橋物
WO2019220933A1 (ja) * 2018-05-16 2019-11-21 日本ゼオン株式会社 ゴム組成物およびゴム架橋物
JPWO2019220932A1 (ja) * 2018-05-16 2021-06-17 日本ゼオン株式会社 ゴム組成物およびゴム架橋物
JPWO2019220933A1 (ja) * 2018-05-16 2021-06-24 日本ゼオン株式会社 ゴム組成物およびゴム架橋物
JP7294332B2 (ja) 2018-05-16 2023-06-20 日本ゼオン株式会社 ゴム組成物およびゴム架橋物
JP2020015834A (ja) * 2018-07-26 2020-01-30 日本ゼオン株式会社 耐屈曲疲労性材料用組成物、耐屈曲疲労性材料用架橋物および耐屈曲疲労性材料
JP7081370B2 (ja) 2018-07-26 2022-06-07 日本ゼオン株式会社 耐屈曲疲労性材料用組成物、耐屈曲疲労性材料用架橋物および耐屈曲疲労性材料
WO2021125222A1 (ja) * 2019-12-17 2021-06-24 日本ゼオン株式会社 開環共重合体
JP7556361B2 (ja) 2019-12-17 2024-09-26 日本ゼオン株式会社 開環共重合体
JP2023516712A (ja) * 2020-03-03 2023-04-20 エクソンモービル ケミカル パテンツ インコーポレイテッド 大型トラックおよびバスタイヤトレッドのためのゴム配合物ならびにそれに関する方法

Also Published As

Publication number Publication date
JPWO2018079602A1 (ja) 2019-09-19
US11267956B2 (en) 2022-03-08
CN109844008B (zh) 2021-08-24
CN109844008A (zh) 2019-06-04
EP3533829A1 (en) 2019-09-04
JP6950705B2 (ja) 2021-10-13
EP3533829B1 (en) 2021-11-24
US20190256692A1 (en) 2019-08-22
EP3533829A4 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6950705B2 (ja) ゴム組成物およびゴム架橋物
JP6874683B2 (ja) シクロペンテン開環共重合体
JP7206672B2 (ja) 耐破壊特性材料用組成物、耐破壊特性材料用架橋物および耐破壊特性材料
WO2018079603A1 (ja) 架橋性組成物および架橋体
US11072682B2 (en) Liquid cyclopentene ring-opened polymer, rubber composition, and rubber crosslinked product
US10774174B2 (en) Use of crosslinked rubber
JP6933219B2 (ja) ゴム架橋物
JP7081370B2 (ja) 耐屈曲疲労性材料用組成物、耐屈曲疲労性材料用架橋物および耐屈曲疲労性材料
JP2018070783A (ja) ガスバリア材
JP2018028008A (ja) 高反発材料
JP6878786B2 (ja) ゴム架橋物
JP6862774B2 (ja) 防振ゴム用重合体組成物、ゴム架橋物、および防振ゴム
JP7136083B2 (ja) ゴム組成物およびゴム架橋物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547719

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017865938

Country of ref document: EP

Effective date: 20190531