WO2018079161A1 - フィルムおよびそれを用いてなる積層シートと積層構造体 - Google Patents

フィルムおよびそれを用いてなる積層シートと積層構造体 Download PDF

Info

Publication number
WO2018079161A1
WO2018079161A1 PCT/JP2017/034567 JP2017034567W WO2018079161A1 WO 2018079161 A1 WO2018079161 A1 WO 2018079161A1 JP 2017034567 W JP2017034567 W JP 2017034567W WO 2018079161 A1 WO2018079161 A1 WO 2018079161A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
film according
tan
less
Prior art date
Application number
PCT/JP2017/034567
Other languages
English (en)
French (fr)
Inventor
青山滋
吉田昌平
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017550639A priority Critical patent/JPWO2018079161A1/ja
Publication of WO2018079161A1 publication Critical patent/WO2018079161A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Definitions

  • the present invention includes a film having excellent vibration damping properties and good dimensional stability and heat resistance, a laminated sheet comprising the film and an adhesive layer, and a group comprising the film and glass, metal and fiber reinforced plastic.
  • the present invention relates to a laminated structure in which one or more selected materials are integrated.
  • Polyester especially polyethylene terephthalate (PET) and polyethylene-2,6-naphthalene dicarboxylate resins are excellent in mechanical properties, thermal properties, chemical resistance, electrical properties, and moldability, and are used in various applications.
  • the polyester film made from the polyester, especially the biaxially oriented polyester film is a copper-clad laminate, solar cell backsheet, adhesive tape, flexible printed circuit board, membrane switch, planar, due to its mechanical and electrical properties.
  • electrical insulation materials such as motor insulation materials, magnetic recording materials, capacitor materials, packaging materials, automotive materials, building materials, photographic applications, graphic applications, thermal transfer applications, etc. in use.
  • transdermal absorbent is obtained by providing an adhesive containing a drug on a base film, and a polyester film such as a PET film is mainly used.
  • the polyester film has a high rigidity, there are problems such as a gore at the time of use and a sound when the film moves, etc., and it is required to enhance the wearing feeling at the time of use and to suppress the sound.
  • a flexible device to be worn on the human body is also required to improve the wearing feeling and suppress sound.
  • Patent Document 1 a material in which a large amount of particles are added to rubber or elastomer has been used as a material for suppressing vibration and sound.
  • Patent Document 2 a material in which particles are contained in a polyvinyl butyral resin in the middle of glass is used.
  • Patent Document 3 a film may be attached to the blade surface.
  • JP 2011-38069 A International Publication No. 2009/131195 Pamphlet JP 2011-52683 A
  • vibration-damping materials based on conventional rubber and ordinary elastomers have problems such as poor heat resistance and dimensional stability, such as electronic parts and automobiles.
  • Application to applications requiring high heat resistance and durability has been limited.
  • Silicone elastomers are excellent in heat resistance, but tend to be smoked for use in electronic parts due to the problem of silicon contamination.
  • a normal polyester film is excellent in dimensional stability, it is rigid and it is difficult to suppress vibration, sound, and impact (hereinafter, a characteristic that suppresses vibration, sound, and impact is referred to as vibration suppression).
  • vibration suppression a characteristic that suppresses vibration, sound, and impact
  • the film stretches when the adhesive layer is processed, so it is difficult to achieve both dimensional stability and noise suppression and noise suppression. Met.
  • an object of the present invention is to provide a film excellent in all of vibration damping properties, dimensional stability, and heat resistance, as well as a laminated sheet and a laminated structure having excellent vibration damping properties, dimensional stability, and heat resistance. To provide a body.
  • the present invention has the following configuration. That is, (1) 25 ° C. in a direction (direction b) in which the orientation parameter determined by orientation measurement by Raman spectroscopy in the film thickness direction has a layer (region I) having a thickness of 1.5 or more and the Young's modulus is the smallest in the film plane. A film in which tan ⁇ b is 0.03 or more, where loss tangent in direction b at 10 Hz is tan ⁇ b. (2) When the loss tangent in the direction (direction a) perpendicular to the direction b at 25 ° C.
  • the film according to (1) in the range. (3) The film according to (1) or (2), having a layer (region II) having an orientation parameter of less than 1.5. (4) The ratio TII / TI between the sum TI ( ⁇ m) of the thickness of the region I and the sum TII ( ⁇ m) of the thickness of the region II is in the range of 1/4 to 15/1. the film.
  • the ratio TB / TA of the sum TA ( ⁇ m) of the thickness of the A layer and the sum TB ( ⁇ m) of the thickness of the B layer is in a range of 1/4 to 15/1. the film.
  • the melting point TmA of the resin composition constituting the A layer is 230 ° C. or more and 280 ° C. or less
  • the melting point TmB of the resin composition constituting the B layer is 140 ° C. or more and 240 ° C. or less (7) or The film as described in (8).
  • thermoplastic elastomer in the B layer is a polyester elastomer.
  • the B layer contains a filler, and the content of the filler is in the range of 1 to 50% by weight with respect to the entire resin composition constituting the B layer.
  • Film. (13) The film according to any one of (7) to (12), wherein the A layer is present on at least one side surface layer.
  • the laminated structure according to (16) which is used for any one of a wind power generator, an automobile, a railway, and an aircraft.
  • a film that is excellent in heat resistance and dimensional stability, has no fear of silicon contamination, and has excellent vibration damping and shape followability.
  • Such films include copper-clad laminates, solar cell backsheets, adhesive tapes, flexible printed circuit boards, membrane switches, sheet heating elements, flat cables, and other electrically insulating materials, capacitor materials, housing materials, automobiles and railways. ⁇ Suitable for aircraft damping materials, building damping materials, and other applications where damping and heat resistance are important, wind power blades and aircraft structure protection materials, medical materials, and flexible devices Can be used.
  • a laminate sheet in which an adhesive layer is provided on the film and a laminate in which the film and one or more materials selected from the group consisting of glass, metal, and fiber reinforced plastic are integrated.
  • a structure By using it as a structure, it is possible to provide a quieter electronic device, automobile, railroad, aircraft, and a wind power generator with high power generation efficiency and durability.
  • a film by integrating such a film with one or more materials selected from the group consisting of woven and non-woven fabrics, gore and noise are suppressed, wearing feeling is good, and dimensional stability during processing is good. It becomes possible to provide a medical material.
  • the film of the present invention has a layer (region I) having an orientation parameter of 1.5 or more determined by orientation measurement by Raman spectroscopy in the film thickness direction, and has the smallest Young's modulus in the film plane (direction b).
  • the orientation parameter is an index of molecular orientation / crystallization. The higher the orientation parameter, the more the molecule is oriented / crystallized, and the higher the heat resistance and dimensional stability.
  • the loss tangent is an index of the viscoelasticity of the film material.
  • tan ⁇ b is particularly 0 in a state having a layer (region I) having an orientation parameter of 1.5 or more.
  • the film having a thickness of 0.03 or more can achieve both high heat resistance and dimensional stability, and excellent vibration damping.
  • the film of the present invention first, it is necessary to have a layer (region I) having an orientation parameter of 1.5 or more determined by orientation measurement by Raman spectroscopy in the film thickness direction.
  • required by Raman spectroscopy here is obtained by measuring a film cross section by Raman spectroscopy, and is defined by the intensity ratio of the peak which has a strong sensitivity with respect to anisotropy. For example, it can be obtained by the following method. When there are a plurality of peaks having a strong sensitivity to anisotropy, such as when a plurality of resins are mixed, the orientation parameter is obtained using the peak with the highest peak intensity.
  • the main component constituting the layer is an aromatic polyester resin
  • A1 When the polarized light in the parallel direction is irradiated with respect to the in-plane direction of the film and the polarized light in the vertical direction is irradiated, the Raman band is obtained in each case.
  • the orientation parameter is defined by the ratio I (parallel) / I (vertical) between I (parallel) and I (vertical).
  • the main component constituting the layer is an aliphatic polyester resin
  • the Raman band is obtained.
  • the peak intensity of C O stretching vibration in the vicinity of a wave number of 1730 cm ⁇ 1 is obtained, the peak intensity when irradiated with polarized light in the parallel direction is I (parallel), and the polarized light in the vertical direction Let I (vertical) be the peak intensity when irradiated.
  • the orientation parameter is defined by the ratio I (vertical) / I (parallel) between I (vertical) and I (parallel).
  • the main component constituting the layer is a polyethylene resin
  • C1 A Raman band is obtained when polarized light in a parallel direction is irradiated with respect to the in-plane direction of the film.
  • C2 Among the obtained Raman bands, the peak intensity of the symmetric CC stretching vibration near the wave number 1130 cm ⁇ 1 and the peak intensity of the asymmetric CC stretching vibration near 1060 cm ⁇ 1 are obtained, respectively.
  • the peak intensity of the stretching vibration is I (symmetric)
  • the peak intensity of the asymmetric CC vibration is I (asymmetric).
  • C3 The orientation parameter is defined by the ratio I (symmetric) / I (asymmetric) between I (symmetric) and I (asymmetric).
  • (D1) A Raman band is obtained when polarized light in a parallel direction is irradiated with respect to the in-plane direction of the film.
  • the peak intensity of I is C (C)
  • the peak intensity of C—H stretching vibration is I (C—H).
  • the orientation parameter is defined by the ratio I (CC) / I (CH) of I (CC) and I (CH).
  • the orientation parameter determined by the above-described orientation measurement by Raman spectroscopy in the film thickness direction needs to have a layer (region I) of 1.5 or more, and more preferably the orientation parameter 2 0.0 or more, more preferably 3.0 or more.
  • a layer (region I) having an orientation parameter of 1.5 or more high heat resistance and dimensional stability can be imparted.
  • the upper limit of the orientation parameter is not particularly limited, but is substantially 30 or less, more preferably 20 or less.
  • the orientation parameter is only 1.5 (region I)
  • the molecular chain is tensioned and becomes rigid, the loss tangent is lowered and the vibration damping property may be lost. Therefore, it is also preferable to have a layer (region II) having an orientation parameter of less than 1.5.
  • the film of the present invention has a layer (region II) having an orientation parameter of less than 1.5, the ratio TII / ⁇ of the sum TI ( ⁇ m) of the thickness of the region I and the sum TII ( ⁇ m) of the thickness of the region II.
  • the TI is preferably 1/4 to 15/1. More preferably, it is 1/1 or more and 10/1 or less. More preferably, it is 3/1 or more and 8/1 or less. If TII / TI is less than 1/4, the vibration damping property and the shape following property may be deteriorated. Moreover, when TII / TI exceeds 15/1, the heat resistance and dimensional stability of the film tend to decrease. In the film of the present invention, by setting TII / TI to 1 ⁇ 4 or more and 15/1 or less, it is possible to obtain a film satisfying all of vibration damping properties, heat resistance, dimensional stability, and shape followability.
  • tan ⁇ b may be 0.03 or more when the loss tangent in the direction b at 25 ° C. and 10 Hz in the direction with the smallest Young's modulus (direction b) in the film plane is tan ⁇ b. is necessary. More preferably, tan ⁇ b is 0.05 or more, further preferably 0.08 or more, and particularly preferably 0.1 or more. By setting tan ⁇ b to 0.03 or more, it becomes possible to impart vibration damping properties to the film.
  • the upper limit of tan ⁇ b is not particularly limited, but is substantially 1 or less from the viewpoint of achieving both dimensional stability, heat resistance and vibration damping properties.
  • the ratio of tan ⁇ a and tan ⁇ b at 25 ° C. and 10 Hz is tan ⁇ a / tan ⁇ b is 1/3 to 3 / 1 is preferred. More preferably, it is 1/2 to 1/2, and still more preferably 1 / 1.5 to 1.5 / 1.
  • the resin constituting the film of the present invention is not particularly limited.
  • Preferred examples include (i) aromatic polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, and polybutylene terephthalate; Biodegradable resins such as aliphatic polyester resins, aliphatic aromatic polyesters, polysaccharides and polymers containing starch, (iii) acrylic resins such as poly (meth) acrylates, (iv) polyethylene, polypropylene, polymethylpentene, poly Polyolefin resins such as isoprene, epoxy-modified polyolefin, acid-modified polyolefin, alicyclic polyolefin resin, (v) polyamide resin, polycarbonate, polystyrene, polyether, polyesteramide, polyester Other resins such as terester, polyvinyl chloride, polyvinyl alcohol, polyacetal, polyphenylene sulfide, poly
  • the constituent resin is preferably polyester from the viewpoint of heat resistance, dimensional stability, and the like.
  • polyester from the viewpoint of heat resistance, dimensional stability, and the like.
  • the film of the present invention preferably includes a layer (A layer) mainly composed of crystalline polyester and a layer (B layer) mainly composed of a thermoplastic elastomer.
  • a main component represents the component contained 50 mass% or more with respect to object.
  • the crystalline polyester is a polyester in which main components include a dicarboxylic acid component and a diol component, and a temperature increase rate of 20 ° C./in accordance with JIS K7122 (1987).
  • the resin is heated from 25 ° C. to 300 ° C. at a rate of temperature increase of 20 ° C./min (1stRUN), held in that state for 5 minutes, then rapidly cooled to below 25 ° C., and again from room temperature to 20 ° C./min.
  • 1stRUN temperature increase rate
  • the resin has a crystal melting heat quantity ⁇ HmA determined from the peak area of the melting peak of 15 J / g or more. More preferably, a resin having a heat of crystal melting of ⁇ HmA of 20 J / g or more, more preferably 25 J / g or more, and particularly preferably 30 J / g or more is used.
  • a structural component shows the minimum unit which can be obtained by hydrolyzing polyester.
  • dicarboxylic acid component constituting the crystalline polyester examples include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, Aliphatic dicarboxylic acids such as methyl malonic acid and ethyl malonic acid, adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1 , 4-Naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-dip
  • oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of oxyacids, etc., to the carboxyl group terminal of the carboxylic acid component described above.
  • oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of oxyacids, etc.
  • these may be used independently or may be used in multiple types as needed.
  • diol component constituting the polyester examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol.
  • Aliphatic diols such as cyclohexanedimethanol, spiroglycol and isosorbide, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9′-bis (4 Examples include, but are not limited to, diols such as -hydroxyphenyl) fluorene and aromatic diols, and a combination of a plurality of the above-mentioned diols. Moreover, these may be used independently or may be used in multiple types as needed.
  • the ratio of the aromatic dicarboxylic acid constituent component to the total dicarboxylic acid constituent component in the crystalline polyester in the layer A is preferably 90 mol% or more and 100 mol% or less. More preferably, it is 95 mol% or more and 100 mol% or less. More preferably, it is 98 mol% or more and 100 mol% or less, particularly preferably 99 mol% or more and 100 mol% or less, and most preferably 100 mol%, that is, all of the dicarboxylic acid components may be aromatic carboxylic acid components. If the ratio of the aromatic dicarboxylic acid constituent component is less than 90 mol%, the heat resistance may decrease.
  • the ratio of the aromatic dicarboxylic acid component in the total dicarboxylic acid component in the crystalline polyester in the A layer is 90 mol% or more and 100 mol% or less, in the production method described later, Orientation and crystallization are facilitated, and a highly heat-resistant film can be obtained.
  • the repeating unit of the crystalline polyester of the A layer that is, the main repeating unit composed of a dicarboxylic acid component and a diol component is ethylene terephthalate, ethylene-2,6-naphthalenedicarboxylate, propylene terephthalate, Those composed of butylene terephthalate, 1,4-cyclohexylenedimethylene terephthalate, and ethylene-2,6-naphthalenedicarboxylate are preferably used, and these are preferably the main repeating units.
  • the main repeating unit as used herein means that the total of the above repeating units is 80 mol% or more, more preferably 90 mol% or more of all repeating units in the case of the crystalline polyester contained in the polyester layer (A layer). More preferably, it is 95 mol% or more.
  • ethylene terephthalate and ethylene-2,6-naphthalenedicarboxylate are preferably the main repeating units from the viewpoint of low cost, easy polymerization and excellent heat resistance.
  • ethylene terephthalate is used as the main repeating unit, a cheap and versatile heat-resistant film can be obtained, and ethylene-2,6-naphthalenedicarboxylate is used as the main repeating unit. If so, a film with better heat resistance can be obtained.
  • a polyester can be obtained by appropriately combining the above-described constituent components (dicarboxylic acid and diol) and polycondensing them.
  • the crystalline polyester of layer A has 3 carboxyl groups and / or hydroxyl groups. It is also preferable that at least two constituent components are copolymerized. In that case, the copolymerization rate of the component having three or more carboxyl groups and / or hydroxyl groups is preferably 0.005 mol% or more and 2.5 mol% with respect to all the components of the crystalline polyester.
  • the intrinsic viscosity (IV) of the crystalline polyester constituting the polyester layer (A layer) is preferably 0.6 or more. More preferably, it is 0.65 or more, More preferably, it is 0.68 or more, Most preferably, it is 0.7 or more. If IV is less than 0.6, lamination with a layer (B layer) containing a thermoplastic elastomer as a main component is difficult, entanglement between molecules becomes too small, and mechanical properties cannot be obtained, Deterioration of mechanical properties over time is likely to proceed and may become brittle.
  • the IV of the crystalline polyester constituting the polyester layer (A layer) is 0.6 or more, laminating property with the layer (B layer) mainly comprising a thermoplastic elastomer, and the film High mechanical properties can be obtained.
  • the upper limit of IV is not particularly determined, it is preferably 1.0 or less, more preferably 0.9 from the viewpoint that the polymerization time is long, which is disadvantageous in cost and difficult to melt extrusion. It is as follows.
  • a method using a polyester obtained by performing discharge, stranding, cutting and chipping, and an intrinsic viscosity lower than the target there is a method of using a polyester obtained by forming a chip once and then performing solid phase polymerization.
  • the IV of the polyester layer (A layer) is 0.65 or more
  • the intrinsic viscosity lower than the target is temporarily reduced in that thermal deterioration can be suppressed and the number of carboxyl group terminal groups can be reduced. It is preferable to use a method using a polyester obtained by forming a chip and then performing solid phase polymerization.
  • the melting point TmA of the crystalline polyester constituting the polyester layer (A layer) is preferably 230 ° C. or higher and 280 ° C. or lower.
  • the melting point TmA here is a melting point TmA obtained by DSC (Differential Scanning Calorimetry) in the temperature rising process (temperature rising rate: 20 ° C./min) and based on JIS K-7121 (1987) as described above. The temperature was increased from 25 ° C. to the melting point of the polyester + 50 ° C. at a rate of temperature increase of 20 ° C./min (1stRUN), held in that state for 5 minutes, then rapidly cooled to 25 ° C. or lower, and again from room temperature to 20 ° C.
  • the melting point TmA of the crystalline polyester is determined by the temperature at the peak top in the crystal melting peak of 2ndRun obtained by raising the temperature to 300 ° C. at a rate of temperature increase of ° C./min. More preferably, melting
  • the melting point TmA of the crystalline polyester constituting the polyester layer (A layer) by setting the melting point TmA of the crystalline polyester constituting the polyester layer (A layer) to 230 ° C. or higher and 280 ° C. or lower, a film having heat resistance can be obtained.
  • the highest peak top temperature is preferably within the above range.
  • the number of carboxyl group terminal groups of the crystalline polyester constituting the polyester layer (A layer) is preferably 40 equivalents / t or less. More preferably, it is 30 equivalent / t or less, More preferably, it is 20 equivalent / t or less. If it exceeds 40 equivalents / t, even if the structure is controlled, the catalytic action by protons derived from the carboxyl group end groups is strong, hydrolysis and thermal decomposition are promoted, and deterioration may be more likely to proceed than a normal film.
  • an esterification reaction between a dicarboxylic acid component and a diol component is performed, and when a predetermined melt viscosity is obtained by melt polymerization, A method of solid-phase polymerization after stranding, cutting and chipping, 2) From the end of the ester exchange reaction or esterification reaction to the initial stage of the polycondensation reaction (intrinsic viscosity is less than 0.3). It can be obtained by using a polyester obtained by a combination of methods of adding, etc. Moreover, it can obtain also by adding a buffering agent and terminal blocker at the time of shaping
  • a hydrolysis-resistant agent can be added in combination with the polyester.
  • a hydrolysis-resistant agent is a compound that reacts with and bonds to a carboxyl group or a hydroxyl end group of a polyester to eliminate the catalytic activity of protons derived from the carboxyl group end group.
  • the upper limit of the content of the hydrolysis-resistant agent is preferably 2% by weight or less with respect to the polyester layer, more preferably 1% by weight, from the viewpoint that an excessive hydrolysis-resistant agent may reduce flame retardancy. More preferably, it is 0.8% by weight or less.
  • various additives such as an antioxidant, a heat stabilizer, a weather stabilizer, an ultraviolet absorber, an organic lubricant, a pigment, a dye, an organic or inorganic fine particle, a filler are contained in the A layer.
  • Materials, antistatic agents, nucleating agents, and the like may be added to such an extent that their properties are not deteriorated.
  • the thermoplastic elastomer which is the main component of the B layer, is a polymer that exhibits thermoplastic properties when heated to the melting point or higher, while exhibiting rubber elasticity properties at room temperature.
  • Specific examples include polyester elastomers, polystyrene elastomers, polyolefin elastomers, polyamide elastomers, and the like.
  • thermoplastic elastomer used for the B layer of the film of the present invention examples include polyester elastomers, polystyrene elastomers, polyolefin elastomers, polyamide elastomers and the like.
  • polyester elastomers examples include block copolymers of aromatic polyesters and aliphatic polyesters, and block copolymers of aromatic polyesters and aliphatic polyethers. Among them, aromatic polyesters and aliphatic polyesters. A block copolymer with ether is preferred.
  • the aromatic polyester in the polyester elastomer is preferably a polybutylene terephthalate resin and / or a polyethylene terephthalate resin.
  • the polybutylene terephthalate resin refers to a polyester using terephthalic acid as a dicarboxylic acid component or a combination of terephthalic acid and isophthalic acid and using 1,4-butanediol as a diol component.
  • the polyethylene terephthalate resin refers to a polyester using terephthalic acid as a dicarboxylic acid component or a dicarboxylic acid component in which terephthalic acid and isophthalic acid are combined and ethylene glycol as a diol component.
  • Part of the component (less than 50 mol%) was replaced with another dicarboxylic acid component or oxycarboxylic acid component, or part of the diol component (less than 50 mol%) was replaced with a low molecular diol component other than the ethylene glycol component Polyester may be used.
  • the aliphatic polyether in the polyester elastomer is preferably a polyalkylene glycol resin, and the types thereof include polyethylene glycol resin, polypropylene glycol resin, polybutylene glycol resin, polytetramethylene glycol resin.
  • polyethylene glycol resin polypropylene glycol resin
  • polybutylene glycol resin polytetramethylene glycol resin
  • examples thereof include, but are not limited to, resins, polyhexylene glycol, polyheptylene glycol resins, polyoctylene glycol resins, polydodecylene glycol resins, and copolymers thereof. Of these, polytetramethylene glycol resins and / or polyethylene glycol resins are more preferable.
  • the polyalkylene glycol-based resin refers to an aliphatic polyether having polyalkylene glycol as a main component, but a part of the polyether portion (less than 50% by mass) is dioxygen other than the alkylene glycol component. It may be an aliphatic polyether replaced with a component.
  • the polytetramethylene glycol resin refers to a polyalkylene glycol having polytetramethylene glycol as a main component, and a part (less than 50% by mass) of an aliphatic polyether moiety is converted into a tetramethylene glycol component. Aliphatic polyethers replaced with other dioxy components may be used.
  • the polyethylene glycol-based resin refers to a polyalkylene glycol having polyethylene glycol as a main component, and a part (less than 50% by mass) of the aliphatic polyether portion is formed with a dioxy component other than the ethylene glycol component. It may be a substituted aliphatic polyether.
  • an aliphatic polyether resin such as an aliphatic resin is an aliphatic polyether in which a part of the aliphatic polyether portion (less than 50% by mass) is replaced with a dioxy component other than the aliphatic polyether component. Also good.
  • the “main” means a case where 50% by mass or more is occupied when the entire aliphatic polyether portion is 100% by mass.
  • polyester elastomers examples include “Hytrel (registered trademark)” manufactured by Toray DuPont, “Perprene (registered trademark)” manufactured by Toyobo, and “Primalloy (registered trademark)” manufactured by Mitsubishi Chemical Corporation. And “PRIT”, “OKY” manufactured by Bell Polyester Products.
  • the polystyrene elastomer includes a block copolymer of polystyrene and polybutadiene, a block copolymer of polystyrene and hydrogenated polybutadiene, and a block copolymer of polystyrene and polyisoprene.
  • examples thereof include a block copolymer, a block copolymer of polystyrene and hydrogenated polyisoprene, and a block copolymer of polystyrene and polyisobutylene.
  • the polystyrene elastomer of the present invention is at least one selected from the group consisting of an acid anhydride group, carboxyl group, amino group, imino group, alkoxysilyl group, silanol group, silyl ether group, hydroxyl group, and epoxy group.
  • the functional group may be modified.
  • polystyrene-based elastomer examples include SBS (styrene-butadiene-styrene copolymer), SEBS (styrene-ethylene / butylene-styrene copolymer), SIS (styrene-isoprene-styrene copolymer), and SEPS (styrene-ethylene / propylene-). Styrene copolymer).
  • Examples of commercially available polystyrene elastomers include “Clayton (registered trademark)” manufactured by Clayton Polymer Japan, “Dynalon (registered trademark)” manufactured by JSR, “Tuftec (registered trademark)” manufactured by Asahi Kasei Corporation, “S.O.E.”, “Tufprene (registered trademark)”, “Asaprene (registered trademark)”, Kuraray's "Septon (registered trademark)”, Aron Kasei's AR-FL series, etc. .
  • the first aspect of the polyolefin elastomer is one selected from the group consisting of polyethylene and polypropylene, and polybutadiene, hydrogenated polybutadiene, polyisoprene, hydrogenated polyisoprene, poly It is a copolymer with one selected from the group consisting of isobutylene and ⁇ -olefin.
  • the form of copolymerization may be either block copolymerization or graft copolymerization, but only in the case of one selected from the group consisting of polyethylene and polypropylene and a copolymer consisting of ⁇ -olefin, the form of copolymerization is random copolymerization. It may be polymerization.
  • the ⁇ -olefin is an olefin having a double bond at one end of a molecular chain, and 1-octene is preferably used.
  • the second aspect of the polyolefin-based elastomer is one selected from the group consisting of polyethylene and polypropylene, and an ethylene-propylene copolymer and an ethylene-propylene-diene copolymer. , Ethylene-butene copolymer, ethylene-octene copolymer, and hydrogenated styrene-butadiene copolymer.
  • the ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-butene copolymer, and ethylene-octene copolymer may be partially or completely cross-linked.
  • the polyolefin elastomer is an acid anhydride group, carboxyl group, amino group, imino group, alkoxysilyl group, silanol group, silyl ether group, hydroxyl group and epoxy group. It may be modified with at least one functional group selected from the group consisting of
  • polyolefin-based elastomers include “Milastomer (registered trademark)” manufactured by Mitsui Chemicals, “Esporex (registered trademark)” manufactured by Sumitomo Chemical Co., Ltd. and “Thermolan (registered trademark)” manufactured by Mitsubishi Chemical Corporation. “Zerasu (registered trademark)”, “Engage (registered trademark)” manufactured by Dow Chemical Co., Ltd., and the like.
  • thermoplastic elastomer of the B layer of the film of the present invention examples include a block copolymer of polyamide and aliphatic polyester, and a block copolymer of polyamide and aliphatic polyether.
  • polyamide-based elastomers include “UBESTA (registered trademark)” manufactured by Ube Industries, “Daiamide (registered trademark)”, “Vestamide (registered trademark) E” manufactured by Daicel Evonik, and Arkema Corporation.
  • Ube Industries Ube Industries
  • Miamide registered trademark
  • Vestamide registered trademark
  • Arkema Corporation Arkema Corporation
  • PEBAX registered trademark
  • thermoplastic elastomer may be used alone or in combination of two or more.
  • thermoplastic elastomers it is more preferable to use a polyester-based elastomer as a main component from the viewpoint that the laminateability with the A layer and the adhesiveness between the A layer and the B layer can be further enhanced.
  • the melting point TmB of the thermoplastic elastomer constituting the B layer is preferably 140 ° C. or higher and 240 ° C. or lower.
  • the melting point TmB here is a melting point TmB obtained by DSC in the temperature rising process (temperature rising rate: 20 ° C./min), and from 25 ° C. to a thermoplastic elastomer by a method based on JIS K-7121 (1987). Heat to a melting point of + 50 ° C. at a heating rate of 20 ° C./min (1st RUN), hold in that state for 5 minutes, then rapidly cool to ⁇ 100 ° C.
  • the melting point TmB of the thermoplastic elastomer is defined as the peak top temperature in the crystal melting peak of 2ndRun obtained by raising the temperature to 270 ° C. More preferably, the melting point TmB is 145 ° C. or higher and 235 ° C. or lower, more preferably 150 ° C. or higher and 230 ° C. or lower. If the melting point TmB is less than 145 ° C., lamination with the crystalline polyester may be difficult or the heat resistance of the obtained film may be inferior, and if the melting point TmB exceeds 240 ° C., This is not preferable because vibration damping may be reduced.
  • the melting point TmB of the thermoplastic elastomer constituting the B layer by setting the melting point TmB of the thermoplastic elastomer constituting the B layer to 140 ° C. or higher and 240 ° C. or lower, a film having good lamination properties, heat resistance, and vibration damping properties can be obtained.
  • the highest peak top temperature is preferably within the above range.
  • the B layer preferably contains a filler, and the content of the filler is preferably 1% by weight or more and 50% by weight or less based on the entire resin composition constituting the B layer. More preferably, it is 10 to 45 weight%, More preferably, it is 20 to 40 weight%.
  • Examples of the filler herein include gold, silver, copper, platinum, palladium, rhenium, vanadium, osmium, cobalt, iron, zinc, ruthenium, praseodymium, chromium, nickel, aluminum, tin, zinc, titanium, tantalum, Metals such as zirconium, antimony, indium, yttrium, lanthanum, zinc oxide, titanium oxide, cesium oxide, antimony oxide, tin oxide, indium tin oxide, yttrium oxide, lanthanum oxide, zirconium oxide, aluminum oxide, magnesium oxide, oxide Metal oxides such as silicon, lithium fluoride, magnesium fluoride, aluminum fluoride, cryolite and other metal fluorides, metal phosphates such as calcium phosphate, carbonates such as calcium carbonate, sulfates such as barium sulfate, Boron nitride, Examples thereof include nitrides such as carbon nitride, silicates such as talc
  • filler Two or more kinds may be used.
  • the filler by setting the filler to 1% by weight or more, it becomes possible to improve the vibration damping property and further to increase the thermal conductivity.
  • it when it is set to 50% by weight or less, a good film forming property can be obtained when a film is produced by the production method described later.
  • the filler used for the B layer of the film of the present invention is preferably needle-like particles or plate-like particles having an aspect ratio of 2 or more.
  • the acicular particles referred to here enclose the primary particles 1 with a circumscribed cuboid 2, the longest one side of the circumscribed cuboid 2 is length (l), the shortest one is thickness (t), When the remaining side is defined as the width (b), the ratio l / t of the length (l) to the thickness (t) is 2 or more, and at the same time, the ratio of the length (l) to the width (b). Particles with l / b greater than 2.
  • plate-like particle refers to the primary particle 1 surrounded by a circumscribed cuboid 2 as shown in FIG. 1, the longest one side of the circumscribed cuboid 2 being length (l), the shortest one being thickness (t), When the remaining side is defined as the width (b), the ratio l / t of the length (l) to the thickness (t) is 2 or more, and at the same time, the ratio of the length (l) to the width (b). Particles having 1 / b of 1 or more and 2 or less. Further, the aspect ratio here is the ratio 1 / t of the length (l) and the thickness (t) of the needle-like particles or plate-like particles.
  • the aspect ratio is more preferably 3 or more, and still more preferably 5 or more.
  • the film of the present invention by containing acicular particles or plate-like particles in the B layer, it is possible to impart vibration damping properties after enhancing the dimensional stability by the film, and further increase the thermal conductivity. It becomes possible.
  • the long diameter (the length of the longest side of the circumscribed cuboid when the primary particles are surrounded by the circumscribed cuboid) is preferably 0.1 ⁇ m or more. It is 20 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less, and further preferably 2 ⁇ m or more and 8 ⁇ m or less.
  • the thickness is less than 0.1 ⁇ m, the interfacial area is excessively increased and the thermal conductivity is lowered, which is not preferable.
  • the thickness exceeds 20 ⁇ m the film-forming property is deteriorated. Sexuality gets worse.
  • by adjusting the major axis of the needle-like particles or plate-like particles to 0.1 ⁇ m or more and 20 ⁇ m or less, it is possible to achieve both vibration damping properties, thermal conductivity and film forming properties.
  • various additives such as an antioxidant, a heat stabilizer, a weather stabilizer, an ultraviolet absorber, an organic lubricant, a pigment, a dye, organic fine particles, an antistatic agent, A nucleating agent or the like may be added to such an extent that the characteristics are not deteriorated.
  • the film of the present invention preferably has a structure in which an A layer containing the crystalline polyester as a main component and a B layer containing the thermoplastic elastomer as a main component are laminated.
  • the laminated structure of the film of the present invention is (i) a two-layer structure composed of A layer / B layer, (ii) a three-layer structure composed of A layer / B layer / A layer, or B layer / A layer / B layer, iii) A layer / B layer /.../ B layer, B layer / A layer /..../ A layer, A layer / B layer /.../ A layer, B layer / A layer / .. ./Multilayer laminated structure in which A layer and B layer are alternately laminated, such as / B layer, (iv) A layer / B layer / other layer, other layer / A layer / B layer, A layer / Other layers / B layers, and combinations thereof.
  • the film of the present invention is preferably formed by laminating a total of 9 or more layers, in which A layer mainly composed of crystalline polyester and B layer mainly composed of thermoplastic elastomer are alternately laminated.
  • each thermoplastic elastomer is homogeneously compared with a film having a number of layers of less than 9 by forming a film in which layers of 9 or more layers are alternately laminated as the above-described configuration. Therefore, film forming properties and mechanical properties can be stabilized.
  • the dimensional stability and heat resistance of the film can be further improved by arranging a plurality of A layers mainly composed of crystalline polyester in the thickness direction of the film. Further, it is possible to impart unique optical characteristics such as an interference reflection function and polarization reflection.
  • the B layer is on at least one side surface layer.
  • the B layer mainly comprising a thermoplastic elastomer has cushioning properties, when integrated with a sheet material made of one or more materials selected from the group consisting of glass, metal, and fiber reinforced plastic, Adhesiveness becomes good, and it becomes possible to further improve vibration damping.
  • the A layer and B layer constituting the film of the present invention it is also mentioned as a preferred embodiment that the A layer is at least on one side surface layer.
  • the A layer mainly composed of crystalline polyester on the surface can impart surface hardness, chemical resistance, and slipperiness of the film, and can have the same handleability as a normal film.
  • Various functional layers antistatic layer, adhesion layer with other materials, ultraviolet resistant layer for having ultraviolet resistance, flame retardant layer for imparting flame resistance, to improve impact resistance and scratch resistance
  • the film of the present invention preferably has a slight endothermic peak between the melting point TmA of the resin composition constituting the A layer and the melting point TmB of the resin composition constituting the B layer.
  • the minute endothermic peak is a minute endothermic peak that is confirmed in a temperature rising process (temperature rising rate: 20 ° C./min) in differential scanning calorimetry (DSC). Having this peak means that the layer B is once heat-treated at a temperature equal to or higher than the melting point, the molecular chain is relaxed and the loss tangent is increased, and the tan ⁇ a and tan ⁇ b of the film can be increased.
  • the A layer can eliminate residual stress during stretching and orientation crystallization, which will be described later, and can form a layer (region I) having an orientation parameter of 1.5 or more.
  • a layer (region I) having an orientation parameter of 1.5 or more As a result, it is possible to increase the tan ⁇ a and tan ⁇ b of the film while having a layer (region I) having an orientation parameter of 1.5 or more.
  • the minute endothermic peak temperature Tmeta is TmB + 10 ° C. or higher and the melting point TmA of the crystalline polyester of the A layer is ⁇ 10 ° C. or lower. More preferably, it is TmB + 15 ° C. or more and TmA ⁇ 15 ° C. or less.
  • Tmeta is a value in a temperature raising process (temperature raising rate: 20 ° C./min) obtained by differential scanning calorimetry (hereinafter also abbreviated as DSC). Specifically, in the 1stRUN differential scanning calorimetry chart obtained by heating (1stRUN) from 25 ° C to 300 ° C at a rate of temperature increase of 20 ° C / min by a method based on JIS K-7121 (1999). Tmeta is defined as the minute endothermic peak temperature before the crystal melting peak of the A layer. By setting the temperature range of the minute endothermic peak Tmeta to TmB + 10 ° C. or more and TmA ⁇ 10 ° C.
  • the B layer is sufficiently relaxed without degrading the orientation of the A layer.
  • the tan ⁇ a and tan ⁇ b of the film while having the region I it is possible to satisfy dimensional stability, heat resistance and vibration damping properties, and shape followability at a higher level.
  • the total thickness of the film of the present invention is preferably from 10 ⁇ m to 300 ⁇ m, more preferably from 20 ⁇ m to 200 ⁇ m, and most preferably from 30 ⁇ m to 150 ⁇ m.
  • the total thickness of the film is less than 10 ⁇ m, the vibration damping property of the film is deteriorated.
  • the thickness is greater than 300 ⁇ m, for example, when the film of the present invention is integrated with a sheet material made of one or more materials selected from the group consisting of glass, metal, and fiber reinforced plastic, the integrated sheet The overall thickness of the film may become too thick.
  • the ratio between the two TB / TA is preferably 1/4 to 15/1 or less.
  • the thicknesses TA and TB are the sum of the respective thicknesses. More preferably, it is 1/1 to 10/1. More preferably, it is 3/1 or more and 8/1 or less. If TB / TA is less than 1/4, the vibration damping property and the shape following property may be deteriorated.
  • V / Wb is 1 or less when the content of the filler in the B layer is Wb (mass%) and the porosity is V (volume%).
  • the porosity here is defined as the porosity V (volume%) by the ratio of the area of the void in the cross-sectional area of the film in the cross-sectional SEM (scanning electron microscope) image of the B layer.
  • V / Wb is more preferably 0.8 or less, still more preferably 0.6 or less, and particularly preferably 0.5 or less. If V / Wb exceeds 1, the air having a low thermal conductivity occupies a large amount in the film, resulting in a decrease in transparency and thermal conductivity of the film.
  • V / Wb The lower limit of V / Wb is zero.
  • V / Wb the layer of the thermoplastic elastomer of the B layer is stretched in at least a uniaxial direction by the method described later.
  • heat treatment may be performed at a temperature not lower than the melting point TmB and not higher than the melting point TmA of the crystalline polyester of the A layer.
  • Eb when the Young's modulus of the film having the smallest Young's modulus in the film plane (direction b) is Eb, Eb is preferably 0.2 GPa or more and 2.5 GPa or less.
  • the Young's modulus is measured by changing the direction of the Young's modulus of the film every 10 ° in the plane of the film, and the Young's modulus in the direction where the Young's modulus is smallest (direction b) is defined as Eb.
  • Eb is more preferably 0.4 GPa to 2 GPa, still more preferably 0.5 GPa to 1.8 GPa, and particularly preferably 0.7 GPa to 1.5 GPa.
  • the film of the present invention has an Ea / Eb ratio Ea / Eb of 1/1 to 3/1, where Ea is the Young's modulus of the film in the direction perpendicular to the direction b (direction a). It is preferable to be in the range. More preferably, it is 1/1 to 1/2, and more preferably 1/1 to 1 / 1.5.
  • Ea / Eb By setting Ea / Eb to 1/1 to 3/1, it is possible to obtain a film that is excellent in dimensional stability in any of the in-plane directions of the film and hardly breaks.
  • the film of the present invention preferably has a breaking elongation in the direction b of 50% or more. More preferably, it is 100% or more, More preferably, it is 120% or more. If the breaking elongation is less than 50%, the vibration damping property may be lowered, or the shape following property may be deteriorated when bonded to a complicated shape.
  • the upper limit of the elongation at break is not particularly limited, but is substantially 500% or less from the viewpoint of achieving both dimensional stability, heat resistance and vibration damping properties, and shape followability.
  • the film of the present invention preferably has a stress at 100% elongation in the direction b of 100 MPa or less. More preferably, it is 60 MPa or less, More preferably, it is 50 MPa or less. If the stress at the time of elongation exceeds 100 MPa, the molecular chain is in a tensioned state or becomes rigid, so that the vibration damping property may be reduced, or the shape followability may deteriorate when bonded to a complicated shape. . In the film of the present invention, by setting the stress at 100% elongation to 100 MPa or less, it is possible to achieve both shape followability in addition to high vibration damping properties.
  • the lower limit of the stress at the time of elongation is not particularly limited, but is substantially 1 MPa or more from the viewpoint of achieving both dimensional stability, heat resistance, vibration damping properties, and shape followability.
  • the film of the present invention preferably has a thermal conductivity of 0.15 W / mK or more. More preferably, it is 0.18 W / mK or more, More preferably, it is 0.20 W / mK or more.
  • motor insulating materials for example, wind power generation insulating sheets, hybrid motor sheets, air conditioner motor sheets, etc.
  • solar battery back sheets electrical insulating materials used for electronic components (for example, electronic components) Adhesive tape, flexible printed circuit board, membrane switch, etc.).
  • the film of the present invention preferably has a surface specific resistance of 10 13 ⁇ / ⁇ or more.
  • motor insulating materials for example, wind power generation insulating sheets, hybrid motor sheets, air conditioner motor sheets, etc.
  • solar battery back sheets electrical insulating materials used for electronic components (for example, electronic components) Adhesive tape, flexible printed circuit board, membrane switch, etc.).
  • the film of the present invention includes a polyester layer, an antistatic layer, an adhesive layer for bonding with other materials, an adhesion layer, an ultraviolet resistant layer for having ultraviolet resistance, and a flame retardant layer for imparting flame resistance.
  • Any layer such as a hard coat layer for improving impact resistance and scratch resistance can be formed according to the application to be used.
  • a laminated sheet provided with an adhesive layer is particularly preferable.
  • the film of the present invention is also preferably a laminated structure formed by integrating with one or more materials selected from the group consisting of glass, metal, and fiber reinforced plastic. By setting it as such a laminated structure, it can also be used as a structure of a wind power generator, a motor vehicle, a railway, and an aircraft.
  • the film of the present invention is also preferably a laminated structure integrated with one or more materials selected from the group consisting of woven and nonwoven fabrics. By setting it as such a laminated structure, it becomes possible to use it suitably for medical use.
  • Examples of the resin constituting one or more materials selected from the group consisting of woven fabric and nonwoven fabric include polyamide resins, polyamideimide resins, polyimide resins, polyester resins, polysulfide resins, polysulfone resins, polysulfoxide resins. Examples thereof include resins, polyether sulfone resins, polyether resins, polyether ketone resins, polyether ether ketone resins, polycarbonate resins, polyolefin resins, urethane resins, and acrylic resins.
  • one or more materials selected from the group consisting of the glass, metal, and fiber reinforced plastic, and / or one or more materials selected from the group consisting of woven fabric and non-woven fabric are used in the present invention. It may be provided on one side of the film or on both sides. It is also a preferable aspect to use a plurality of materials together. It is appropriately selected according to the purpose and application.
  • the crystalline polyester as the raw material is subjected to a polycondensation reaction from the above-mentioned dicarboxylic acid component and diol component through an esterification reaction or a transesterification reaction, and an intrinsic viscosity of 0. It is obtained by setting it to 4 or more.
  • transesterification reaction catalyst such as magnesium acetate, calcium acetate, manganese acetate, cobalt acetate, calcium acetate, etc.
  • an ethylene glycol solution of germanium dioxide, antimony trioxide, titanium alkoxide, titanium chelate compound, or the like can be used.
  • additives include, for example, magnesium acetate for the purpose of imparting electrostatic application characteristics, and calcium acetate as a co-catalyst, and can be added within a range that does not hinder the effects of the present invention. Further, various particles may be added to add film slipperiness, or internal precipitation particles using a catalyst may be included.
  • thermoplastic elastomer used for the B layer of the film of the present invention can be a commercially available one, but in the case of a polyester elastomer, it can also be obtained by the same method as the above crystalline polyester. .
  • thermoplastic elastomer when a thermoplastic elastomer contains a filler, the method is performed by melt-kneading the thermoplastic elastomer and the filler in advance using a vent type twin-screw kneading extruder or a tandem type extruder.
  • the method is preferred.
  • a high-concentration master pellet with a large addition amount compared to the content of the filler in the B layer is prepared, and is mixed with a thermoplastic elastomer and diluted to obtain a predetermined content of the filler in the B layer. Is preferable from the viewpoints of stretchability, mechanical properties, heat resistance, and the like.
  • the concentration of the filler in the high-concentration master pellet is preferably 20% by mass or more and 80% by mass or less. More preferably, they are 25 to 70 mass%, More preferably, they are 30 to 60 mass%, Most preferably, they are 40 to 60 mass%.
  • the amount is less than 20% by mass, the amount of master pellets to be added to the B layer is increased, and as a result, the amount of the thermoplastic elastomer deteriorated to the B layer is increased and the stretchability, mechanical properties, heat resistance, etc. are decreased. There is. If it exceeds 80% by mass, it may be difficult to form a master pellet, or it may be difficult to mix uniformly when the master pellet is mixed with a thermoplastic elastomer.
  • thermoplastic elastomer thermoplastic elastomer containing a filler
  • Two different materials are put into two extruders, melted and co-extruded on a cast drum cooled from the die and processed into a sheet (co-extrusion method), a sheet made of a single film and a coating layer
  • a method in which raw materials are put into an extruder, melt extruded and laminated while extruding from a die (melt laminating method), and a layer B and a layer B to be laminated are separately produced and thermocompression-bonded by a heated roll group or the like ( Thermal laminating method), bonding method via an adhesive (adhesion method), and other methods in which the material for the B layer is dissolved in a solvent and the solution is applied onto the previously prepared A layer (coating method) , And combinations of these can be used.
  • the coextrusion method is preferable in terms of high productivity and higher adhesion between the layers of the obtained laminated film.
  • the laminated structure can be realized by a method similar to that described in paragraphs [0053] to [0063] of Japanese Patent Application Laid-Open No. 2007-307893, for example. it can.
  • the crystalline polyester and the thermoplastic elastomer are dried in hot air or under vacuum as necessary, and then supplied to separate extruders.
  • the resin melted by heating is made uniform in the extrusion amount of the resin by a gear pump or the like, and foreign matter, modified resin, or the like is removed through a filter or the like.
  • These resins are fed into a laminating apparatus, laminated, and then coextruded onto a cast drum cooled from a die to obtain a casting sheet.
  • a laminating apparatus a multi-manifold die, a feed block, a static mixer, or the like can be used.
  • the film of the present invention has a multilayer laminated structure
  • a feed block having 9 or more fine slits in order to efficiently obtain the structure.
  • the apparatus since the apparatus does not become extremely large, there is little foreign matter due to thermal degradation, and high-precision lamination is possible even when the number of laminations is extremely large. Also, the stacking accuracy in the width direction is significantly improved as compared with the prior art.
  • the thickness of each layer can be adjusted with the shape (length, width) of a slit, it is possible to achieve arbitrary layer thickness.
  • the molten laminate which was introduced into a T die die and widened, and extruded into a sheet shape, was closely cooled and solidified by electrostatic application on a drum maintained at a surface temperature of 25 ° C. obtain.
  • the discharged sheet is brought into close contact with the cooling body by an electrostatic force by using an electrode such as a wire shape, a tape shape, a needle shape, or a knife shape, and is rapidly cooled and solidified.
  • a method for bringing the discharged sheet into close contact with the cooling body a method of blowing air from a slit-like, spot-like, or planar device or a method using a nip roll is also preferably performed.
  • the film of the present invention can be obtained by biaxially stretching the casting sheet thus obtained.
  • the stretching temperature is biaxially stretched at a temperature equal to or higher than the glass transition temperature TgA of the crystalline polyester.
  • TgA glass transition temperature
  • the biaxial stretching method in addition to the sequential biaxial stretching method in which the longitudinal direction and the width direction are separated separately, any of the simultaneous biaxial stretching methods in which the longitudinal direction and the width direction are simultaneously stretched. It doesn't matter. Examples of stretching conditions are as follows: 1) In the case of simultaneous biaxial stretching, a temperature in the range of the glass transition temperature TgA to TgA + 15 ° C.
  • the first axis Stretching is performed at a glass transition temperature TgA to TgA + 15 ° C. or less (more preferably TgA + 10 ° C. or less) of the crystalline polyester of the A layer, and the second axis is stretched at a temperature in the range of TgA + 5 ° C. to TgA + 25 ° C. Is mentioned.
  • the stretching ratio is 1.5 times or more and 4 times or less in both the longitudinal direction and the width direction in both simultaneous biaxial stretching and sequential biaxial stretching. More preferably, they are 2.0 times or more and 3.5 times or less, More preferably, they are 2.5 times or more and 3.5 times or less.
  • the area draw ratio which combined the draw ratio of the longitudinal direction and the draw ratio of the width direction is 4 times or more and 20 times or less, More preferably, they are 6 times or more and 18 times or less, More preferably, they are 8 times or more and 16 times or less.
  • the area stretch ratio is less than 4, the orientation of the crystalline polyester (A) of the obtained film is low, and the mechanical strength and heat resistance of the obtained film may be lowered.
  • the area stretch ratio exceeds 20 times, there is a tendency that breakage tends to occur during stretching.
  • the temperature is not less than 1 second and not more than 30 seconds at a temperature Th of not less than TgA and less than the melting point TmA of the crystalline polyester of layer A.
  • Heat treatment is performed, and after cooling gradually, cool to room temperature.
  • the heat treatment temperature Th is more preferably not less than the melting point TmB of the thermoplastic elastomer of the B layer, not more than the melting point TmA of the crystalline polyester of the A layer, and more preferably of the thermoplastic elastomer of the B layer.
  • the heat treatment is preferably performed at a temperature of the melting point TmB + 10 ° C.
  • a relaxation treatment of 3 to 12% may be performed in the width direction or the longitudinal direction as necessary.
  • a film can be obtained by performing a corona discharge treatment or the like in order to further improve the adhesion to other materials and winding it up.
  • the laminated structure integrated with one or more materials selected from the group consisting of the film of the present invention and glass, metal, and fiber reinforced plastic can be obtained by the following method.
  • the method there are a method in which a material to be laminated with the above-mentioned film is thermocompression-bonded with a heated group of rolls (thermal lamination method), a method in which the material is laminated through an adhesive (adhesion method), and a method in which these are combined. Can be used.
  • the laminated structure integrated with one or more materials selected from the group consisting of the film of the present invention, woven fabric and nonwoven fabric can be obtained by the following method.
  • the method there are a method in which a material to be laminated with the above-mentioned film is thermocompression-bonded with a heated group of rolls (thermal lamination method), a method in which the material is laminated through an adhesive (adhesion method), and a method in which these are combined. Can be used.
  • the present invention it is possible to provide a film that is excellent in heat resistance and dimensional stability, has no fear of silicon contamination, and has excellent vibration damping properties.
  • Such films include copper-clad laminates, solar cell backsheets, adhesive tapes, flexible printed circuit boards, membrane switches, sheet heating elements, flat cables, and other electrically insulating materials, capacitor materials, housing materials, automobiles and railways.
  • Suitable for aircraft damping materials, building damping materials and other applications where damping and heat resistance are important, wind power blades and aircraft structure protection materials, medical materials, and flexible devices Can be used for
  • the film of the present invention is integrated with at least one material selected from the group consisting of one or more materials selected from the group consisting of glass, metal, and fiber reinforced plastic, and from the group consisting of woven and non-woven fabrics.
  • A. Lamination structure (number of layers, layer thickness, etc.): The number of laminated films was determined by observing, using a transmission electron microscope (TEM), a sample obtained by cutting a cross section using a microtome. That is, using a transmission electron microscope H-7100FA type (manufactured by Hitachi, Ltd.), a cross-sectional photograph of the film was taken under the condition of an acceleration voltage of 75 kV, and the layer configuration and each layer thickness were measured. In some cases, a staining technique using RuO 4 or OsO 4 was used to increase the contrast.
  • TEM transmission electron microscope
  • the thin film layer thickness is 50 nm or more and 500 nm.
  • observation was carried out at a magnification of 10,000 times.
  • the obtained TEM photographic image was captured at an image size of 720 dpi using a scanner (CanoScan D1230U manufactured by Canon Inc.).
  • the obtained data whose brightness changes periodically is differentiated, and the maximum and minimum values of the differential curve are read by a VBA (Visual Basic for Applications) program.
  • the layer thickness was calculated with the interval between the minimum regions as the layer thickness of one layer. This operation was performed for each photograph, the number of layers in all layers was calculated, and layer thickness TA of layer A and layer thickness TB of layer B were obtained.
  • TgA of crystalline polyester, melting point TmA, heat of crystal melting ⁇ HmA, melting point TmB of thermoplastic elastomer The thermal characteristics of the crystalline polyester used as a raw material are as follows. The crystalline polyester is subjected to a differential scanning calorimeter “Robot DSC-RDC220” manufactured by Seiko Denshi Kogyo according to JIS K7122 (1987). Measurement was performed using session “SSC / 5200” in the following manner.
  • the glass transition temperature is a step-like change portion of the glass transition, and is determined according to JIS K7121 (1987) “9.3 Determination of glass transition temperature (1) Intermediate glass transition temperature.
  • the glass transition temperature TgA of the crystalline polyester was determined by the method described in “Tmg” (the point where the straight line equidistant from the extended straight line of each baseline in the vertical axis direction and the curve of the stepwise change portion of the glass transition intersect) ) Further, the melting point TmA of the crystalline polyester was determined by the temperature at the peak top in the crystal melting peak of 2ndRun.
  • the thermal properties (glass transition temperature TgB, melting point TmB) of the thermoplastic elastomer used as a raw material are 20 ° C. from 25 ° C. to the melting point of the thermoplastic elastomer + 50 ° C. in the same manner as described above using the thermoplastic elastomer. Heated at a heating rate of 1 min / min (1stRUN), held in that state for 5 min, then rapidly cooled to below ⁇ 100 ° C., and again raised from room temperature to 270 ° C. at a heating rate of 20 ° C./min
  • the melting point TmB of the thermoplastic elastomer was determined by the peak top temperature in the crystal melting peak of 2ndRun obtained as described above. Further, the heats of crystal melting ⁇ HmA and ⁇ HmB were determined based on “9. How to determine transition heat” of JISK7122 (1987).
  • Young's modulus Ea, Eb, elongation at break, stress at 100% elongation Based on ASTM-D882 (1997 edition), the breaking elongation of the film was measured by measuring the breaking elongation when a sample was cut into a size of 1 cm ⁇ 20 cm and pulled at a chucking distance of 5 cm and a pulling speed of 300 mm / min. Further, the Young's modulus was obtained from the obtained load-strain curve. In addition, the measurement was performed 5 times for each sample, and the average value was evaluated.
  • any direction is set to 0 °, and the measurement is similarly performed by changing the direction from ⁇ 90 ° to 90 ° every 10 ° within the film plane.
  • the direction (direction b) in which the Young's modulus was minimized was determined, and the Young's modulus Eb and the breaking elongation were determined.
  • Young's modulus Ea, breaking elongation, and stress at 100% elongation in a direction (direction a) orthogonal to the direction b in the same plane were determined.
  • Orientation parameters A sample cut out of a cross-section using a microtome was measured with an inVIA micro-Raman spectrophotometer manufactured by RENISHA. Objective lens: 100 times, beam diameter: 1 ⁇ m, light source: second harmonic of YAG laser (wavelength: 532 nm), laser power was measured under the conditions of: 100 mW, diffraction grating: Single 3000 gr / mm, slit: 65 ⁇ m, detector: CCD / RENISHA 1024 ⁇ 256. When a plurality of peaks having a strong sensitivity to anisotropy exist, such as when a plurality of resins are mixed, the orientation parameter was obtained using the peak with the highest peak intensity.
  • the main component constituting the layer is an aliphatic polyester resin
  • B1 When the polarized light in the direction parallel to the in-plane direction of the film is irradiated and when the polarized light in the direction perpendicular to the film is irradiated, a Raman band is obtained for each.
  • the orientation parameter is defined by the ratio I (vertical) / I (parallel) between I (vertical) and I (parallel).
  • (C1) A Raman band is obtained when polarized light in a direction parallel to the in-plane direction of the film is irradiated.
  • (C2) of the obtained Raman bands determined peak intensities of symmetry C-C stretching vibration of 1130 cm -1 vicinity, and 1060 cm -1 vicinity of the asymmetric C-C stretching peak intensity of vibration, respectively, symmetrical C-C stretch
  • the peak intensity of vibration is I (symmetric)
  • the peak intensity of asymmetric CC vibration is I (asymmetric).
  • the orientation parameter is defined by the ratio I (symmetric) / I (asymmetric) between I (symmetric) and I (asymmetric).
  • (D1) A Raman band is obtained when polarized light in a direction parallel to the in-plane direction of the film is irradiated.
  • the orientation parameter is defined by the ratio I (CC) / I (CH) of I (CC) and I (CH).
  • the above measurement is performed while changing the position in the thickness direction by 0.6 ⁇ m from one surface side of the film, and the sum TI ( ⁇ m) of the thickness of the region (region I) in which the orientation parameter in the film thickness direction is 1.5 or more And the sum TII ( ⁇ m) of the thickness of the region (region II) of less than 1.5.
  • the measurement was performed by changing the position of the cross section parallel to the direction a and the cross section parallel to the direction b at five positions in the film surface direction. ) Thickness TI ( ⁇ m) and the thickness TII ( ⁇ m) of the region less than 1.5 (region II).
  • the temperature dependence of the loss tangent of the laminated structure is measured in the same manner as described above for the direction b of the film in the laminated structure.
  • the loss tangent value tan ⁇ B at 25 ° C. was determined from the temperature dispersion of the tangent.
  • Thermal conductivity The film was coated with a laser light absorbing spray (Fine Chemical Japan Co., Ltd. Black Guard Spray FC-153) and dried, then a 10 mm square sample was cut out and measured using a Xe flash analyzer LFA447 Nanoflash. The thermal diffusivity ⁇ (m 2 / s) in the film thickness direction was measured at a temperature of 25 ° C. In addition, the measurement was implemented 4 times and the thermal conductivity was calculated
  • Thermal conductivity (W / mK) ⁇ (m 2 / s) ⁇ specific heat (J / kg ⁇ K) ⁇ density (Kg / m 3 ) (2)
  • fever used the value calculated
  • the density was determined by using a sample obtained by cutting a film to a size of 30 mm ⁇ 40 mm, and using an electronic hydrometer (SD-120L manufactured by Mirage Trading Co., Ltd.) and an atmosphere having a room temperature of 23 ° C. and a relative humidity of 65%. The density was measured 3 times and the average of the obtained values was used.
  • the elongation retention is 80% or more
  • B The elongation retention is 50% or more and less than 80%
  • C The elongation retention is 30% or more and less than 50%
  • D The elongation retention is less than 30%, or the film shape is If you can't keep it. In the case of A, B or C, the heat resistance is good, and the case of A is the best.
  • the heat resistance of the laminated structure is measured in the same manner as described above for each of the direction a and the direction b of the film in the laminated structure, and the elongation retention rate is calculated. did.
  • the film was cut into strips having a width of 1 cm and a length of 15 cm, and a line parallel to the width direction was drawn 2.5 cm inside from both ends in the length direction to accurately measure the distance L0 between the two parallel lines. .
  • the strip sample was heat-treated in a hot air oven at 150 ° C. for 30 minutes, and after cooling, the distance L1 between the two parallel lines was accurately measured.
  • the thermal contraction rate (%) was calculated from the dimension before treatment and the dimension after treatment by the following formula (4).
  • the heat shrinkage rate of the film was determined by the average of the obtained heat shrinkage rates in the direction a and the direction b, and was determined as follows.
  • S When the heat shrinkage rate is 1% or less: S When it exceeds 1% and is 2% or less: A In case of more than 2% and less than 3%: B In case of more than 3% and less than 5%: C If it exceeds 5% or the film shape cannot be maintained: D It was. In the case of S or A or B or C, the dimensional stability is good, and S is the best.
  • the dimensional stability of the laminated structure is measured in the same manner as described above for each of the direction a and the direction b of the film in the laminated structure.
  • the heat shrinkage rate of the laminated structure was determined by the average of the heat shrinkage rates in a and the direction b, and was determined as follows.
  • S When it exceeds 1% and is 2% or less: A In case of more than 2% and less than 3%: B In case of more than 3% and less than 5%: C If it exceeds 5% or the shape cannot be maintained: D It was. In the case of S or A or B or C, the dimensional stability is good, and S is the best.
  • J. et al. Stackability The appearance of the film was visually observed and judged as follows. A: The flow mark is not confirmed. B: The flow mark is confirmed very slightly. C: A clear flow mark is confirmed. In the case of A or B, the lamination property is good, and the case of A is the best.
  • Interlayer adhesion The surface of the film was subjected to a cross-cut test according to JIS-K5600-5-6 (1999 edition), and the film remaining after the test was determined as follows. The test was conducted 10 times, and the average value was used for determination. A: Remaining number is 70/100 or more B: Remaining number is 30/100 or more, less than 70/100 C: Remaining number is less than 30/100 If A or B, interlayer Adhesion is good, and the case of A is the best.
  • the surface specific resistance of the film was measured with a digital ultrahigh resistance microammeter R8340 (manufactured by Advantest). The measurement was carried out at 10 arbitrary positions within the surface of each side of the film, and the average value was obtained. The surface resistivity was determined by the lower average value obtained. Further, the measurement was performed using a measurement sample that was left overnight in a room at 23 ° C. and 65% Rh. Using the obtained value, determination was made as follows. A is a practical range. A: The surface specific resistance is 10 13 ⁇ / ⁇ or more. C: The surface specific resistance is less than 10 13 ⁇ / ⁇ .
  • Crystalline polyester PET-1: Using dimethyl terephthalate as the acid component and ethylene glycol as the diol component, added to the polyester pellets from which germanium oxide (polymerization catalyst) can be obtained so as to be 300 ppm in terms of germanium atoms, and performing a polycondensation reaction. And an intrinsic viscosity of 0.54 polyethylene terephthalate pellets was obtained. The obtained polyethylene terephthalate was dried and crystallized at 160 ° C. for 6 hours, and then subjected to solid phase polymerization at 220 ° C. and a vacuum degree of 0.3 Torr for 8 hours to obtain polyethylene terephthalate having an intrinsic viscosity of 0.80.
  • the glass transition temperature TgA of this resin was 83 ° C., the melting point TmA 255 ° C., and the heat of crystal fusion was ⁇ HmA 35 J / g. ⁇
  • Thermoplastic elastomer (A1) Polyester elastomer (trade name “Hytrel®” 2501 manufactured by Toray DuPont Co., Ltd .; block copolymer of polybutylene terephthalate resin and polytetramethylene glycol resin, melting point TmB is 160 ° C.).
  • ⁇ particle Talc GH-7 (produced by Hayashi Kasei Co., Ltd.) was used. It is a plate-like particle having a major axis of 5.8 ⁇ m and an aspect ratio of 10.
  • Example 1-1 Using a film-forming apparatus equipped with two single-screw extruders, crystalline polyester PET-1 vacuum-dried at 180 ° C. for 3 hours as a raw material for layer A is charged into the first extruder and melted at 280 ° C. I let you. Polyester elastomer A1 which was vacuum-dried at 120 ° C. for 6 hours as a raw material for layer B was put into a second extruder and melted at 240 ° C. Next, while the A layer material supplied from the first extruder is weighed with a gear pump on both sides of the B layer material supplied from the second extruder, the thickness ratio becomes 1: 8: 1. Combined and introduced into a T die die.
  • the laminated body extruded into a sheet form from the inside of the T die die is closely cooled and solidified by an electrostatic application method on a drum maintained at a surface temperature of 25 ° C., and laminated in three layers alternately in the thickness direction.
  • a casting sheet having a structure was obtained.
  • the casting sheet was preheated with a group of rolls heated to a temperature of 87 ° C., then stretched three times in the longitudinal direction (longitudinal direction) using a heating roll having a temperature of 90 ° C., and a roll having a temperature of 25 ° C.
  • the film was cooled to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, it is led to a preheating zone at a temperature of 80 ° C. in the tenter, and continuously in a heating zone at a temperature of 100 ° C. in a direction perpendicular to the longitudinal direction (width direction).
  • the film was stretched 3 times.
  • a heat treatment was performed at a temperature of 220 ° C. for 20 seconds in the heat treatment zone 1 in the tenter, a heat treatment of 150 ° C. was further performed in the heat treatment zone 2, and a heat treatment was performed at a temperature of 100 ° C. in the heat treatment zone 3.
  • a relaxation treatment of 4% was performed between heat treatment zone 1 and heat treatment zone 2. Then, after gradually cooling uniformly, it was wound up to obtain a biaxially stretched film having a thickness of 50 ⁇ m.
  • the results of evaluating the properties of the obtained film are shown in Table 1-1.
  • the film was found to be excellent in lamination, flatness, vibration damping, heat resistance, and dimensional stability.
  • the obtained film and polyester nonwoven fabric “PURELY (registered trademark)” thickness 30 ⁇ m) manufactured by Awa Paper Co., Ltd., using a heat laminating machine composed of a metal roll and a silicone rubber roll, With the silicone roll side set to 150 ° C., the metal roll side was superposed so as to be a polyester nonwoven fabric and the silicone roll side was a film, and bonded together at a linear pressure of 5 kgf / cm and a speed of 2 m / min to obtain a laminated structure. .
  • the results of evaluating the characteristics of the obtained laminated structure are shown in Table 1-1. It was found that the laminated structure was excellent in vibration damping, heat resistance and dimensional stability.
  • Examples 1-1 to 1-34 A film having a thickness of 50 ⁇ m was prepared in the same manner as in Example 1 except that the raw materials to be fed into the extruder for the A layer and B layer, the number of layers, the layer thickness ratio, and the stretching conditions were as shown in Tables 1-1 to 1-4. Obtained.
  • the A-layer raw material supplied from the first extruder and the B-layer raw material supplied from the second extruder are respectively measured with a gear pump. Then, they were merged by a laminating apparatus having 9 slits and introduced into a T die die.
  • the method for forming a laminate was carried out according to the description in paragraphs [0053] to [0056] of JP-A-2007-307893.
  • the length and interval of the slits were all constant.
  • the obtained laminate has 5 layers of A layers and 4 layers of B layers, and has a laminated structure in which layers are alternately laminated in the thickness direction, and both surface layers are composed of A layers.
  • Examples 1-15 and 1-28 to 1-31 they were similarly merged by a laminating apparatus having 51 slits and introduced into a T-die die.
  • 26 layers and 25 layers are 25 layers, and have a laminated structure in which the layers are alternately laminated in the thickness direction, and both surface layers are composed of A layers.
  • Tables 1-1 to 1-4 It was found to be a film having excellent lamination properties, flatness, vibration damping properties, heat resistance, and dimensional stability.
  • Example 1-1 a laminated structure was obtained using the obtained film in the same manner as in Example 1-1.
  • the results of evaluating the characteristics of the obtained laminated structure are shown in Tables 1-1 to 1-4. It was found that the laminated structure was excellent in vibration damping, heat resistance and dimensional stability.
  • Examples 2-1 to 2-34 Both surface layers are composed of B layers, and a polyester film having a thickness of 50 ⁇ m is obtained in the same manner as in Example 1-1 except that the number of layers, the layer thickness ratio, and the stretching conditions are as shown in Tables 2-1 to 2-4. It was. The results of evaluating the properties of the obtained films are shown in Tables 2-1 to 2-4. The film was found to be excellent in lamination, flatness, vibration damping, heat resistance, and dimensional stability.
  • Example 1-1 A polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1-1 and Example 2-1, except that the number of layers, the layer thickness ratio, and the stretching conditions were as shown in Table 1-4 and Table 2-4. However, the film was broken and the film could not be obtained.
  • Example 1-2 and 2-2 A polyester film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1-1 and Example 2-1, except that the number of layers, the layer thickness ratio, and the stretching conditions were as shown in Table 1-4 and Table 2-4. The results of evaluating the properties of the obtained films are shown in Tables 1-4 and 2-4. The vibration damping properties were inferior to those of Example 1-1 and Example 2-1.
  • Example 1-1 a laminated structure was obtained using the obtained film in the same manner as in Example 1-1.
  • Tables 1-4 and 2-4 show the results of evaluating the characteristics of the obtained laminated structure. The vibration damping properties were inferior to those of Example 1-1 and Example 2-1.
  • Example 1-1 and Example 2-1 A casting sheet having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1-1 and Example 2-1, except that the number of layers, the layer thickness ratio, and the stretching conditions were as shown in Table 1-4 and Table 2-4. The results of evaluating the characteristics of the obtained sheets are shown in Tables 1-4 and 2-4. The heat resistance was inferior to that of Example 1-1 and Example 2-1.
  • Example 1-1 a laminated structure was obtained using the obtained film in the same manner as in Example 1-1.
  • Tables 1-4 and 2-4 show the results of evaluating the characteristics of the obtained laminated structure. The heat resistance was inferior to that of Example 1-1 and Example 2-1.
  • Example 3 A polyester film having a thickness of 50 ⁇ m was obtained as in Example 1-1 except that the B layer was not formed (only the A layer) as shown in Table 1-5. The results of evaluating the properties of the obtained film are shown in Table 1-5. The vibration damping property was inferior to that of the example.
  • Example 1-1 a laminated structure was obtained using the obtained film in the same manner as in Example 1-1.
  • Tables 1-4 and 2-4 show the results of evaluating the characteristics of the obtained laminated structure. The vibration damping properties were inferior to those of Example 1-1 and Example 2-1.
  • Example 1-1 A casting sheet having a thickness of 50 ⁇ m was obtained as in Example 1-1 except that the A layer was not formed (only the B layer) as shown in Table 1-5. The results of evaluating the properties of the obtained sheet are shown in Table 1-5. The dimensional stability was inferior to that of the example.
  • a laminated structure was produced using the obtained film in the same manner as in Example 1-1. However, the film was too deformed during processing, or the film was melted and adhered to the roll. A structure could not be obtained.
  • the present invention it is possible to provide a film that is excellent in heat resistance and dimensional stability, has no fear of silicon contamination, and has excellent vibration damping properties.
  • Such films include copper-clad laminates, solar cell backsheets, adhesive tapes, flexible printed circuit boards, membrane switches, planar heating elements, flat cables, and other electrically insulating materials, capacitor materials, housing materials, and automotive materials. Suitable for applications where vibration control and heat resistance are important, such as railway materials, aircraft materials, and building materials, wind power blades and aircraft structure protection materials, medical materials, and flexible devices Can be used.
  • the film of the present invention is preferably used by being integrated with a sheet material composed of one or more materials selected from the group consisting of glass, metal and fiber reinforced plastic.
  • a laminated sheet provided with an adhesive layer on the film, or a laminated structure formed by integrating the film and one or more materials selected from the group consisting of glass, metal, and fiber reinforced plastic It is possible to provide quieter electronic devices, automobiles, railways, airplanes, and wind power generators with high power generation efficiency and durability. Furthermore, by integrating such a film with one or more materials selected from the group consisting of woven and non-woven fabrics, a medical material with a good fit and good dimensional stability can be obtained, which can suppress gore and noise. It becomes possible to provide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

フィルム厚み方向へのラマン分光による配向測定により求められる配向パラメーターが1.5以上の層(領域I)を有し、フィルム面内でヤング率が最も小さい方向(方向b)の25℃10Hzでの方向bの損失正接をtanδbとしたとき、tanδbが0.03以上であるフィルム、およびそれを用いてなる積層シートと積層構造体。本発明により、耐熱性および寸法安定性に優れ、かつ、制振性、形状追従性に優れたフィルムと、それを用いた積層シートと積層構造体が提供される。

Description

フィルムおよびそれを用いてなる積層シートと積層構造体
 本発明は、優れた制振性を有するとともに良好な寸法安定性、耐熱性を有するフィルムと、該フィルムと粘着層からなる積層シート、および該フィルムとガラス、金属、繊維強化プラスチックからなる群から選ばれる1種以上の材料とが一体化されてなる積層構造体に関する。
 ポリエステル(特にポリエチレンテレフタレート(PET)や、ポリエチレン-2、6-ナフタレンジカルボキシレートなど)樹脂は機械特性、熱特性、耐薬品性、電気特性、成形性に優れ、様々な用途に用いられている。そのポリエステルをフィルム化したポリエステルフィルム、中でも二軸配向ポリエステルフィルムは、その機械特性、電気的特性などから、銅貼り積層板、太陽電池用バックシート、粘着テープ、フレキシブルプリント基板、メンブレンスイッチ、面状発熱体、もしくはフラットケーブル、モーター絶縁材料などの電気絶縁材料、磁気記録材料や、コンデンサ用材料、包装材料、自動車用材料、建築材料、写真用途、グラフィック用途、感熱転写用途などの各種工業材料として使用されている。
 また、近年、電子部品の小型化が進み、高集積化され、また取り扱われるデータ量が膨大となってきている。それに伴い、その動作安定性のために、それに用いられる部品等の微小振動制御が極めて重要になってきている。例えば、ハードディスクなどの作動高速化に当たっては、僅かな設計外の微小振動が、読み込みの速度に大きく影響を与えたりしており、モーター等の絶縁材料、回路材料、筐体材料など、従来のポリエステルフィルムが使用されている部分(モーター等の絶縁フィルム、電子部品用粘着テープ、フレキシブルプリント基板、メンブレンスイッチなど)においても、微小振動を抑制することが重要となっている。
 また、自動車分野や鉄道分野、航空機分野においては、室内空間の静寂性向上の要求が高まり、風切り音などの外部からのごく僅かな微小振動や、エンジンノイズなどを抑える技術が求められている。
 また、風力発電分野では、駆動中の鳥などの衝突に対して振動や衝撃を抑え、ブレード等の破損を防止するため、衝撃を吸収する技術が求められている。
 また、医療用分野においては、患者の負担低減のため、経皮吸収剤等のフィルムを貼り付ける形の薬の適用範囲が拡大してきている。この経皮吸収剤は薬剤を含有する粘着剤を基材のフィルム上に設けたものであり、PETフィルムなどのポリエステルフィルムが主に用いられている。しかしながら、ポリエステルフィルムは剛性が高いので使用時にゴワ付き、またフィルムが動く際に音がする等の問題があり、使用時の装着感を高め、音を抑制することが求められている。さらには人体に装着するフレキシブルデバイスにおいても同様に装着感を高め、音を抑制することが求められている。
 従来、振動や音を抑える材料として、ゴムやエラストマーに多量の粒子を添加したものが用いられている(特許文献1)。また、自動車用途においては、たとえば窓においてはガラスの中間にポリビニルブチラール系樹脂に粒子を含有させたものが用いられている(特許文献2)。また、風力発電用途においてはブレード表面にフィルムを貼り合わせたりする場合がある(特許文献3)
特開2011-38069号公報 国際公開第2009/131195号パンフレット 特開2011-52683公報
 しかしながら、従来のゴムや、通常のエラストマー(ウレタン系、アクリル系、オレフィン系など)をベースとした制振材料は耐熱性や寸法安定性等の特性が乏しいといった問題があり、電子部品や自動車といった高耐熱、高耐久を要求される用途への適用は制限があった。また、シリコーン系エラストマーは耐熱性に優れるものの、シリコンの汚染の問題で電子部品への使用を嫌煙される傾向にある。
 また、通常のポリエステルフィルムは寸法安定性に優れるものの、剛直であり、振動、音や衝撃を抑えることは困難であった(以下、振動、音や衝撃を抑える特性を制振性と称す)。また、医療用用途においても、エラストマーをベースとしたフィルムでは、粘着層等を加工する際に、フィルムが伸びてしまうため、寸法安定性とゴワ付きや音を抑制することを両立させることは困難であった。また、フレキシブルデバイスにおいても加工時の寸法安定性とゴワ付きや音を抑制することを両立させることは困難であった。
 そこで本発明の課題は、制振性および寸法安定性、耐熱性の全てに優れたフィルムを提供するとともに、それを用いた制振性および寸法安定性、耐熱性に優れた積層シートと積層構造体を提供することにある。
 上記課題を解決するために、本発明は以下の構成をとる。すなわち、
(1)フィルム厚み方向へのラマン分光による配向測定により求められる配向パラメーターが1.5以上の層(領域I)を有し、フィルム面内でヤング率が最も小さい方向(方向b)の25℃10Hzでの方向bの損失正接をtanδbとしたとき、tanδbが0.03以上であるフィルム。
(2)25℃10Hzでの、方向bとはフィルム面内で垂直な方向(方向a)の損失正接をtanδaとしたとき、tanδaとtanδbの比tanδa/tanδbが1/3~3/1の範囲にある(1)に記載のフィルム。
(3)前記配向パラメーターが1.5未満の層(領域II)を有する(1)または(2)に記載のフィルム。
(4)前記領域Iの厚みの和TI(μm)と、前記領域IIの厚みの和TII(μm)の比TII/TIが1/4~15/1の範囲にある(3)に記載のフィルム。
(5)方向bのフィルムのヤング率をEb(GPa)、方向bとはフィルム面内で垂直な方向(方向a)のフィルムのヤング率をEa(GPa)としたときに、EaとEbの比Ea/Ebが1/1~3/1の範囲にある(1)~(4)のいずれかに記載のフィルム。
(6)方向bの100%伸張時応力が100MPa以下である(1)~(5)のいずれかに記載のフィルム。
(7)少なくとも2層を有するフィルムであって、結晶性ポリエステルを主たる成分とする層(A層)と、熱可塑性エラストマーを主たる成分とする層(B層)を含む(1)~(6)のいずれかに記載のフィルム。
(8)前記A層の厚みの和TA(μm)と、前記B層の厚みの和TB(μm)の比TB/TAが1/4~15/1の範囲にある(7)に記載のフィルム。
(9)前記A層を構成する樹脂組成物の融点TmAが230℃以上280℃以下であり、前記B層を構成する樹脂組成物の融点TmBが140℃以上240℃以下である(7)または(8)に記載のフィルム。
(10)前記A層を構成する樹脂組成物の融点TmAと前記B層を構成する樹脂組成物の融点TmBの間に微少吸熱ピークを有する(7)~(9)のいずれかに記載のフィルム。
(11)前記B層中の前記熱可塑性エラストマーがポリエステル系エラストマーである(7)~(10)のいずれかに記載のフィルム。
(12)前記B層が充填材を含み、その充填材の含有率がB層を構成する樹脂組成物全体に対して1~50重量%の範囲にある(7)~(11)のいずれかに記載のフィルム。
(13)前記A層が少なくとも片側表層に存在する(7)~(12)のいずれかに記載のフィルム。
(14)前記B層が少なくとも片側表層に存在する(7)~(12)のいずれかに記載のフィルム。
(15)(1)~(14)のいずれかに記載のフィルム上に粘着層を形成してなる積層シート。
(16)(1)~(14)のいずれかに記載のフィルムと、ガラス、金属、繊維強化プラスチックからなる群から選ばれる1種以上の材料とが一体化されてなる積層構造体。
(17)風力発電機、自動車、鉄道、航空機のいずれかに用いられる(16)に記載の積層構造体。
(18)(1)~(14)のいずれかに記載のフィルムと、織布、不織布からなる群から選ばれる1種以上の材料とが一体化されてなる積層構造体。
(19)医療用に用いられる(18)に記載の積層構造体。
(20)フレキシブルデバイスに用いられる(1)~(14)のいずれかに記載のフィルム。
 本発明によれば、耐熱性や寸法安定性に優れ、シリコンの汚染の懸念のない、かつ制振性、形状追従性に優れるフィルムを提供することができる。かかるフィルムは、銅貼り積層板、太陽電池用バックシート、粘着テープ、フレキシブルプリント基板、メンブレンスイッチ、面状発熱体、もしくはフラットケーブルなどの電気絶縁材料、コンデンサ用材料、筐体材料、自動車・鉄道・航空機用制振材料、建築制振材料をはじめとした制振性と耐熱性が重視されるような用途、風力発電ブレードや航空機の構造体保護用材料、医療用材料、フレキシブルデバイスに好適に使用することができる。特には、かかるフィルム自体の他、該フィルムに粘着層を設けた積層シートや、該フィルムとガラス、金属、繊維強化プラスチックからなる群から選ばれる1種以上の材料とが一体化されてなる積層構造体として用いることで、より静粛な電子機器、自動車、鉄道、航空機、及び発電効率や耐久性の高い風力発電機を提供することができる。さらには、かかるフィルムと織布、不織布からなる群から選ばれる1種以上の材料とを一体化することで、ゴワ付きや音が抑制され、装着感が良く、加工時の寸法安定性の良い医療用材料を提供することが可能となる。
粒子を外接直方体で囲んだ模式図である。
 以下に、本発明について、実施の形態とともに詳細に説明する。
 本発明のフィルムは、フィルム厚み方向へのラマン分光による配向測定により求められる配向パラメーターが1.5以上の層(領域I)を有し、フィルム面内でヤング率が最も小さい方向(方向b)の25℃10Hzでの方向bの損失正接をtanδbとしたとき、tanδbが0.03以上であるフィルムとする必要がある。配向パラメーターは分子の配向・結晶化の指標であり、配向パラメーターが高いほど分子が配向・結晶化していることを表し、耐熱性や寸法安定性が高くなる。また、損失正接はフィルム材料の粘弾性の指標であり、損失正接が大きくなるほど、粘性が高くなり、外部からの振動を吸収し、熱エネルギーへと変換するのが容易となる。また、材料自身からの音の発生も抑えられる。その結果、制振性が高くなる。通常のフィルムの場合、配向パラメーターが高くなるほど、剛直となるため制振性は失われる。それに対し、本発明においては、所定の配向パラメーターとなる領域を有する状態下で高損失正接とした結果、とくに、配向パラメーターが1.5以上の層(領域I)を有する状態下でtanδbが0.03以上であるフィルムとした結果、高い耐熱性および寸法安定性と、優れた制振性との両立を可能としたものである。すなわち、配向パラメーターが1.5以上の層(領域I)を有するという要件と、tanδbが0.03以上であるという要件の両方を満たすことによってはじめて、高い耐熱性および寸法安定性と、優れた制振性との両方を満たすフィルムが完成されたのである。
 このように、本発明のフィルムにおいて、まず、フィルム厚み方向へのラマン分光による配向測定により求められる配向パラメーターが1.5以上の層(領域I)を有することが必要である。ここでいうラマン分光により求められる配向パラメーターとは、フィルム断面をラマン分光法により測定して得られるもので、異方性に対し強い感度を有するピークの強度比にて定義されるものである。例えば以下の方法で測定することにより得られるものである。なお、複数の樹脂が混合されている場合など、異方性に対し強い感度を有するピークが複数存在する場合などは、最もピーク強度が高いピークを用いて配向パラメーターを求める。
[層を構成する主たる成分が芳香族ポリエステル系樹脂の場合]
 以下の(a1)~(a3)の方法により得ることが出来る。
(a1)フィルム面内方向に対し、平行方向の偏光を照射した場合、および垂直方向の偏光を照射した場合、それぞれにおいてラマンバンドを求める。
(a2)得られたラマンバンドのうち、波数1615cm-1近傍のC=C伸縮振動のピーク強度をそれぞれ求め、平行方向の偏光を照射した場合のピーク強度をI(平行)、垂直方向の偏光を照射した場合のピーク強度をI(垂直)とする。
(a3)I(平行)とI(垂直)の比I(平行)/I(垂直)にて配向パラメーターとする。
[層を構成する主たる成分が脂肪族ポリエステル系樹脂の場合]
 以下の(b1)~(b3)の方法により得ることが出来る。
(b1)フィルム面内方向に対し、平行方向の偏光を照射した場合、および垂直方向の偏光を照射した場合、それぞれにおいてラマンバンドを求める。
(b2)得られたラマンバンドのうち、波数1730cm-1近傍のC=O伸縮振動のピーク強度をそれぞれ求め、平行方向の偏光を照射した場合のピーク強度をI(平行)、垂直方向の偏光を照射した場合のピーク強度をI(垂直)とする。
(b3)I(垂直)とI(平行)の比I(垂直)/I(平行)にて配向パラメーターとする。
[層を構成する主たる成分がポリエチレン系樹脂の場合]
 以下の(c1)~(c3)の方法により得ることが出来る。
(c1)フィルム面内方向に対し、平行方向の偏光を照射した場合のラマンバンドを求める。
(c2)得られたラマンバンドのうち、波数1130cm-1近傍の対称C-C伸縮振動のピーク強度、および1060cm-1近傍の非対称C-C伸縮振動のピーク強度をそれぞれ求め、対称C-C伸縮振動のピーク強度をI(対称)、非対称C-C振動のピーク強度をI(非対称)とする。
(c3)I(対称)とI(非対称)の比I(対称)/I(非対称)にて配向パラメーターとする。
[層を構成する主たる成分がポリプロピレン系樹脂の場合]
 以下の(d1)~(d3)の方法により得ることが出来る。
(d1)フィルム面内方向に対し、平行方向の偏光を照射した場合のラマンバンドを求める。
(d2)得られたラマンバンドのうち、波数810cm-1近傍のC-C伸縮振動のピーク強度、および波数840cm-1近傍のC-H伸縮振動のピーク強度をそれぞれ求め、C-C伸縮振動のピーク強度をI(C-C)、C-H伸縮振動のピーク強度をI(C―H)とする。
(d3)I(C-C)とI(C-H)の比I(C-C)/I(C-H)にて配向パラメーターとする。
[層を構成する主たる成分がポリアミド系樹脂の場合]
 以下の(e1)~(e3)の方法により得ることが出来る。
(e1)フィルム面内方向に対し、平行方向の偏光を照射した場合、および垂直方向の偏光を照射した場合、それぞれにおいてラマンバンドを求める。
(e2)得られたラマンバンドのうち、波数1650cm-1近傍のC=O伸縮振動のピーク強度をそれぞれ求め、平行方向の偏光を照射した場合のピーク強度をI(平行)、垂直方向の偏光を照射した場合のピーク強度をI(垂直)とする。
(e3)I(垂直)とI(平行)の比I(垂直)/I(平行)にて配向パラメーターとする。
 本発明のフィルムにおいては、フィルム厚み方向への上述のラマン分光による配向測定により求められる配向パラメーターが1.5以上の層(領域I)を有することが必要であり、より好ましくは、配向パラメーター2.0以上、更に好ましくは3.0以上である。配向パラメーターが1.5以上の層(領域I)を有することで、高い耐熱性と寸法安定性を付与することが可能となる。なお、配向パラメーターの上限は特に制限されるものではないが、実質30以下、より好ましくは20以下である。
 本発明のフィルムにおいて、配向パラメーターが1.5以上の(領域I)のみであると、分子鎖が緊張して剛直となり、損失正接が低下して制振性は失われる場合がある。そのため、配向パラメーターが1.5未満の層(領域II)も有することが好ましい。
 本発明のフィルムにおいて、配向パラメーターが1.5未満の層(領域II)を有する場合、前記領域Iの厚みの和TI(μm)と、領域IIの厚みの和TII(μm)の比TII/TIが1/4~15/1であるのが好ましい。より好ましくは1/1以上10/1以下である。更に好ましくは3/1以上8/1以下である。TII/TIが1/4に満たないと、制振性や、形状追従性が低下することがある。また、TII/TIが15/1を越えると、フィルムの耐熱性や寸法安定性が低下する傾向にある。本発明のフィルムにおいて、TII/TIを1/4以上15/1以下とすることで、制振性、耐熱性、寸法安定性、形状追従性を全て満たしたフィルムとすることが可能となる。
 本発明のフィルムにおいては、さらに、フィルム面内でヤング率が最も小さい方向(方向b)の25℃10Hzでの方向bの損失正接をtanδbとしたとき、tanδbが0.03以上であることが必要である。より好ましくはtanδbが0.05以上、更に好ましくは0.08以上、特に好ましくは0.1以上である。tanδbを0.03以上とすることによって、フィルムに制振性を付与することが可能となる。なお、tanδbの上限は特に制限されるものではないが、寸法安定性、耐熱性と制振性との両立という観点からは、実質1以下である。
 本発明のフィルムにおいて、方向bとはフィルム面内で垂直な方向(方向a)の損失正接をtanδaとしたとき、25℃10Hzでのtanδaとtanδbの比tanδa/tanδbが1/3~3/1であるのが好ましい。より好ましくは1/2~1/2、更に好ましくは1/1.5~1.5/1である。tanδa/tanδbを1/3~3/1とすることによって、フィルム面内のいかなる方向の振動においても優れた制振性を発現することが可能となる。
 通常の場合、配向パラメーターを高めるためにはフィルムを延伸するのが有効であるが、その場合分子鎖が緊張して剛直となり、損失正接が低下して制振性は失われる傾向にある。そのため、従来は、配向パラメーターを1.5以上の領域Iを有した上で、tanδbを0.03以上とすることは困難であった。本発明のフィルムにおいて、配向パラメーターを1.5以上の領域Iを有した上でtanδbを0.03以上とするための方法について、以下詳述する。
 本発明のフィルムを構成する樹脂は、特に限定されないが、好ましい例として、(i)ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレートなどの芳香族ポリエステル系樹脂、(ii)脂肪族ポリエステル樹脂、脂肪族芳香族ポリエステル、多糖類、デンプンを含むポリマーなどの生分解性樹脂、(iii)ポリ(メタ)アクリレートなどアクリル系樹脂、(iv)ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリイソプレン、エポキシ変性ポリオレフィン、酸変性ポリオレフィン、脂環式ポリオレフィン樹脂などのポリオレフィン系樹脂、(v)ポリアミド系樹脂、ポリカーボネート、ポリスチレン、ポリエーテル、ポリエステルアミド、ポリエーテルエステル、ポリ塩化ビニル、ポリビニルアルコール、ポリアセタール、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリウレタン、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、ポリエステルエラストマー、ポリアミドエラストマー、ポリオレフィンエラストマーなどのその他の樹脂、(vi)エポキシ樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂を硬化して得られるもの、およびこれらを成分とする共重合体、またはこれらの混合物などが挙げられる。その中でも、ポリエステル系樹脂(芳香族ポリエステル系樹脂、脂肪族ポリエステル系樹脂)、ポリエチレン系樹脂、ポリアミド系樹脂のいずれかの樹脂を主成分とすることが好ましい。
 本発明のフィルムにおいて、耐熱性、寸法安定性等の観点から、構成する樹脂はポリエステルが好ましい。以下、ポリエステルの場合について詳細を記載する。
 本発明のフィルムは、結晶性ポリエステルを主たる成分とする層(A層)と、熱可塑性エラストマーを主たる成分とする層(B層)を含むのが好ましい。なお、本発明において、主たる成分とは、対象に対して50質量%以上含む成分を表す。
 本発明のフィルムにおいて、結晶性ポリエステルとは、主たる構成成分が、ジカルボン酸構成成分とジオール構成成分を有してなるポリエステルであり、かつJIS K7122(1987)に準じて、昇温速度20℃/minで樹脂を25℃から300℃まで20℃/分の昇温速度で加熱し(1stRUN)、その状態で5分間保持後、次いで25℃以下となるよう急冷し、再度室温から20℃/minの昇温速度で300℃まで昇温を行って得られた2ndRUNの示差走査熱量測定チャートにおいて、融解ピークのピーク面積から求められる結晶融解熱量ΔHmAが、15J/g以上である樹脂である。より好ましくは結晶融解熱量がΔHmA20J/g以上、さらに好ましくは25J/g以上、特に好ましくは30J/g以上の樹脂を用いるのがよい。A層を構成するポリエステルとして、結晶性ポリエステルとすることで、後述する製造方法において、配向・結晶化が容易となり、高耐熱のフィルムとすることができる。なお、本明細書において、構成成分とはポリエステルを加水分解することで得ることが可能な最小単位のことを示す。
 かかる結晶性ポリエステルを構成するジカルボン酸構成成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、イソソルビド、シクロヘキサンジカルボン酸、デカリンジカルボン酸、などの脂環族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルエンダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸等芳香族ジカルボン酸などのジカルボン酸、もしくはそのエステル誘導体が挙げられるがこれらに限定されない。また、上述のカルボン酸構成成分のカルボキシル基末端に、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸類、およびその誘導体や、オキシ酸類が複数個連なったもの等を付加させたものも好適に用いられる。また、これらは単独で用いても、必要に応じて、複数種類用いても構わない。
 また、かかるポリエステルを構成するジオール構成成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール等の脂肪族ジオール類、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール類、ビスフェノールA、1,3―ベンゼンジメタノール,1,4-ベンセンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレン、芳香族ジオール類等のジオール、上述のジオールが複数個連なったものなどが例として挙げられるがこれらに限定されない。また、これらは単独で用いても、必要に応じて、複数種類用いても構わない。
 また、本発明のフィルムにおいて、A層中の結晶性ポリエステル中の全ジカルボン酸構成成分中の芳香族ジカルボン酸構成成分の割合は、90モル%以上100モル%以下が好ましい。より好ましくは95モル%以上100モル%以下が好ましい。更に好ましくは98モル%以上100モル%以下、特に好ましくは99モル%以上100モル%以下、最も好ましくは100モル%、すなわちジカルボン酸構成成分全てが芳香族カルボン酸構成成分であるのが良い。芳香族ジカルボン酸構成成分の割合が90モル%に満たないと、耐熱性が低下したりする場合がある。本発明のフィルムにおいて、A層中の結晶性ポリエステル中の全ジカルボン酸構成成分中の芳香族ジカルボン酸構成成分の割合を90モル%以上100モル%以下とすることで、後述する製造方法において、配向・結晶化が容易となり、高耐熱のフィルムとすることができる。
 本発明のフィルムにおいて、A層の結晶性ポリエステルの繰り返し単位、すなわち、ジカルボン酸構成成分とジオール構成成分からなる主たる繰り返し単位は、エチレンテレフタレート、エチレン-2,6-ナフタレンジカルボキシレート、プロピレンテレフタレート、ブチレンテレフタレート、1,4-シクロヘキシレンジメチレンテレフタレート、エチレン-2,6-ナフタレンジカルボキシレートからなるものが好適に用いられ、これらが主たる繰り返し単位となることが好ましい。なお、ここでいう主たる繰り返し単位とは、上記繰り返し単位の合計が、ポリエステル層(A層)に含まれる結晶性ポリエステルの場合は、全繰り返し単位の80モル%以上、より好ましくは90モル%以上、更に好ましくは95モル%以上である。
 さらには低コストで、より容易に重合が可能で、かつ耐熱性に優れるという点で、エチレンテレフタレート、エチレン-2,6-ナフタレンジカルボキシレートが主たる繰り返し単位であることが好ましい。この場合、エチレンテレフタレートを主たる繰り返し単位として用いた場合はより安価で汎用性のある耐熱性を有するフィルムを得ることができ、またエチレン-2,6-ナフタレンジカルボキシレートをより主たる繰り返し単位として用いた場合はより耐熱性に優れるフィルムとすることができる。
 上述の構成成分(ジカルボン酸とジオール)を適宜組み合わせて、重縮合させることでポリエステルを得ることができるが、本発明のフィルムにおいて、A層の結晶性ポリエステルは、カルボキシル基および/または水酸基を3つ以上有する構成成分などが共重合されていることも好ましい。その場合は、カルボキシル基および/または水酸基を3つ以上有する構成成分の共重合率が、結晶性ポリエステルの全構成成分に対して0.005モル%以上2.5モル%であることが好ましい。
 本発明のフィルムにおいて、ポリエステル層(A層)を構成する結晶性ポリエステルの固有粘度(IV)は0.6以上であることが好ましい。より好ましくは0.65以上、更に好ましくは0.68以上、特に好ましくは0.7以上である。IVが0.6に満たないと、熱可塑性エラストマーを主たる成分とする層(B層)との積層が困難であったり、分子間の絡み合いが少なくなりすぎて、機械物性が得られなかったり、経時での機械特性の劣化が進行しやすくなり、脆化しやすくなる場合がある。本発明のフィルムにおいて、ポリエステル層(A層)を構成する結晶性ポリエステルのIVを0.6以上とすることによって、熱可塑性エラストマーを主たる成分とする層(B層)との積層性、およびフィルムの高い機械特性を得ることができる。なお、IVの上限は特に決められるものではないが、重合時間が長くなるためコスト的に不利であったり、溶融押出が困難となるという点から好ましくは1.0以下、更に好ましくは0.9以下である。
 なお、上記固有粘度とするには、溶融重合によって所定の溶融粘度になった時点で吐出、ストランド化、カッティングを行い、チップ化することにより得られるポリエステルを用いる方法と、目標より低めの固有粘度で一旦チップ化し、その後固相重合を行うことにより得られるポリエステルを用いる方法がある。これらのうち、特にポリエステル層(A層)のIVを0.65以上とする場合には、熱劣化を抑えられ、かつカルボキシル基末端基数を低減できるという点で、目標より低めの固有粘度で一旦チップ化し、その後固相重合を行うことにより得られるポリエステルを用いる方法を用いるのが好ましい。
 本発明のフィルムにおいて、ポリエステル層(A層)を構成する結晶性ポリエステルの融点TmAは230℃以上280℃以下であることが好ましい。ここでいう融点TmAとはDSC(示差走査熱量測定)により得られる、昇温過程(昇温速度:20℃/min)における融点TmAであり、上述と同様にJIS K-7121(1987)に基づいた方法により、25℃からポリエステルの融点+50℃まで20℃/分の昇温速度で加熱し(1stRUN)、その状態で5分間保持し、次いで25℃以下となるよう急冷し、再度室温から20℃/分の昇温速度で300℃まで昇温を行って得られた2ndRunの結晶融解ピークにおけるピークトップの温度でもって結晶性ポリエステルの融点TmAとする。より好ましくは融点TmAが235℃以上275℃以下、更に好ましくは240℃以上265℃以下である。融点TmAが230℃に満たないと、フィルムの耐熱性に劣ったりすることがあり好ましくなく、また、融点TmAが280℃を越えると、押出加工が困難となる場合があるため好ましくない。本発明のフィルムにおいて、ポリエステル層(A層)を構成する結晶性ポリエステルの融点TmAを230℃以上280℃以下とすることにより、耐熱性を有するフィルムとすることができる。なお、複数の結晶融解ピークトップが現れる場合は、最も高いピークトップ温度が上記範囲内であることが好ましい。
 本発明のフィルムにおいて、ポリエステル層(A層)を構成する結晶性ポリエステルのカルボキシル基末端基数は40等量/t以下であることが好ましい。より好ましくは30等量/t以下、さらに好ましくは20等量/t以下である。40等量/tを超えると、構造制御したとしても、カルボキシル基末端基由来のプロトンによる触媒作用が強く、加水分解や熱分解が促進され通常のフィルムより劣化が進行しやすくなる場合がある。なお、カルボキシル基末端基数を40等量/t以下とするには、1)ジカルボン酸構成成分とジオール構成成分とのエステル化反応をさせ、溶融重合によって所定の溶融粘度になった時点で吐出、ストランド化、カッティングを行い、チップ化したのち、固相重合する方法、2)緩衝剤をエステル交換反応またはエステル化反応終了後から重縮合反応初期(固有粘度が0.3未満)までの間に添加する方法、等の組み合わせ等により得られたポリエステルを用いることにより得ることができる。また、緩衝剤や末端封止剤を成形時に添加することによっても得ることができる。
 ここで、上記ポリエステルと組み合わせて耐加水分解剤を添加することもできる。耐加水分解剤とはポリエステルのカルボキシル基または水酸基末端基と反応して結合し、カルボキシル基末端基由来のプロトンの触媒活性を消失させる化合物のことであり、具体的には、オキサゾリン基、エポキシ基、カルボジイミド基、イソシアネート基等の置換基を有する化合物等が挙げられる。耐加水分解剤を用いる場合は、A層に対して0.01重量%以上含有させることが好ましい。より好ましくは0.1重量%以上である。上記ポリエステルと組み合わせて耐加水分解剤を添加することによって、ポリエステルの劣化を抑制することができ、機械特性、耐熱性をより高めることが可能となる。なお、耐加水分解剤の含有量の上限は過剰な耐加水分解剤が難燃性を低下させる場合があるという点からポリエステル層に対して2重量%以下が好ましく、より好ましくは1重量%、さらに好ましくは0.8%重量%以下である。
 本発明のフィルムにおいて、A層中には、各種添加剤、例えば、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機系易滑剤、顔料、染料、有機または無機の微粒子、充填材、帯電防止剤、核剤などがその特性を悪化させない程度に添加されていてもよい。
 本発明のフィルムにおいて、B層の主たる成分である熱可塑性エラストマーとは、融点以上に加熱すると熱可塑性の性質を示す一方、常温ではゴム弾性の性質を示すポリマーである。具体的には、ポリエステル系エラストマー、ポリスチレン系エラストマー、ポリオレフィン系エラストマー、ポリアミド系エラストマーなどが挙げられる。
 本発明のフィルムのB層に用いる熱可塑性エラストマーとしても、ポリエステル系エラストマー、ポリスチレン系エラストマー、ポリオレフィン系エラストマー、ポリアミド系エラストマーなどが挙げられる。
 ポリエステル系エラストマーとしては、芳香族ポリエステルと脂肪族ポリエステルとのブロック共重合体、および、芳香族ポリエステルと脂肪族ポリエーテルとのブロック共重合体が挙げられるが、その中でも芳香族ポリエステルと脂肪族ポリエーテルとのブロック共重合体であることが好ましい。
 ポリエステル系エラストマー中の芳香族ポリエステルとしては、ポリブチレンテレフタレート系樹脂および/またはポリエチレンテレフタレート系樹脂であることが好ましい。ここで、ポリブチレンテレフタレート系樹脂とは、ジカルボン酸成分としてテレフタル酸、またはテレフタル酸とイソフタル酸を組合せたものを用い、ジオール成分として1,4-ブタンジオールを用いたポリエステルをいうものとするが、このジカルボン酸成分の一部(50モル%未満)を他のジカルボン酸成分やオキシカルボン酸成分で置き換えたり、ジオール成分の一部(50モル%未満)をブタンジオール成分以外の低分子ジオール成分で置き換えたりしたポリエステルであってもよい。また、ポリエチレンテレフタレート系樹脂とは、ジカルボン酸成分としてテレフタル酸、またはテレフタル酸とイソフタル酸を組合せたジカルボン酸成分を用い、ジオール成分としてエチレングリコールを用いたポリエステルをいうものとするが、このジカルボン酸成分の一部(50モル%未満)を他のジカルボン酸成分やオキシカルボン酸成分で置き換えたり、ジオール成分の一部(50モル%未満)をエチレングリコール成分以外の低分子ジオール成分で置き換えたりしたポリエステルであってもよい。
 また、ポリエステル系エラストマー中の脂肪族ポリエーテルとしては、ポリアルキレングリコール系樹脂であることが好ましく、その種類として、ポリエチレングリコール系樹脂、ポリプロピレングリコール系樹脂、ポリブチレングリコール系樹脂、ポリテトラメチレングリコール系樹脂、ポリへキシレングリコール、ポリへプチレングリコール系樹脂、ポリオクチレングリコール系樹脂、ポリドデシレングリコール系樹脂、また、これらの共重合物などが挙げられるがその限りではない。そのなかでも、ポリテトラメチレングリコール系樹脂および/またはポリエチレングリコール系樹脂であることがさらに好ましい。ここで、ポリアルキレングリコール系樹脂とは、ポリアルキレングリコールを主たる成分とする脂肪族ポリエーテルをいうものとするが、ポリエーテル部分の一部(50質量%未満)を、アルキレングリコール成分以外のジオキシ成分で置き換えた脂肪族ポリエーテルであってもよい。また、ポリテトラメチレングリコール系樹脂とは、ポリテトラメチレングリコールを主たる成分とするポリアルキレングリコールをいうものとするが、脂肪族ポリエーテル部分の一部(50質量%未満)を、テトラメチレングリコール成分以外のジオキシ成分で置き換えた脂肪族ポリエーテルであってもよい。さらに、ポリエチレングリコール系樹脂とは、ポリエチレングリコールを主たる成分とするポリアルキレングリコールをいうものとするが、脂肪族ポリエーテル部分の一部(50質量%未満)を、エチレングリコール成分以外のジオキシ成分で置き換えた脂肪族ポリエーテルであってもよい。その他、ポリエチレングリコール系樹脂、ポリプロピレングリコール系樹脂、ポリブチレングリコール系樹脂、ポリテトラメチレングリコール系樹脂、ポリへキシレングリコール、ポリへプチレングリコール系樹脂、ポリオクチレングリコール系樹脂、ポリドデシレングリコール系樹脂等の脂肪族ポリエーテル系樹脂についても同様に、脂肪族ポリエーテル部分の一部(50質量%未満)を、脂肪族ポリエーテル成分以外のジオキシ成分で置き換えた脂肪族ポリエーテルであってもよい。ここで、「主たる」とは、脂肪族ポリエーテル部分全体を100質量%とした際、50質量%以上を占める場合をいうものとする。
 ポリエステル系エラストマーとして市販されているものとしては、東レ・デュポン社製の“ハイトレル(登録商標)”、東洋紡社製の“ペルプレン(登録商標)”、三菱化学社製の“プリマロイ(登録商標)”、ベルポリエステルプロダクツ社製の“PRIT”、“OKY”などが挙げられる。
 本発明のフィルムのB層の熱可塑性エラストマーにおいて、ポリスチレン系エラストマーとしては、ポリスチレンとポリブタジエンとのブロック共重合体、ポリスチレンと水素添加ポリブタジエンとのブロック共重合体、ポリスチレンとポリイソプレンとのブロック共重合体、ポリスチレンと水素添加ポリイソプレンとのブロック共重合体、ポリスチレンとポリイソブチレンとのブロック共重合体を挙げることができる。また、本発明のポリスチレン系エラストマーは、酸無水物基、カルボキシル基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基、及びエポキシ基からなる群から選ばれる少なくとも1種の官能基で変性されていてもよい。
 ポリスチレン系エラストマーとして、具体的には、SBS(スチレン-ブタジエン-スチレンコポリマー)、SEBS(スチレン-エチレン/ブチレン-スチレンコポリマー)、SIS(スチレン-イソプレン-スチレンコポリマー)、SEPS(スチレン-エチレン/プロピレン-スチレンコポリマー)などが挙げられる。
 ポリスチレン系エラストマーとして市販されているものとしては、クレイトンポリマージャパン社製の“クレイトン(登録商標)”、JSR社製の“ダイナロン(登録商標)”、旭化成社製の“タフテック(登録商標)”、“S.O.E.”、“タフプレン(登録商標)”、“アサプレン(登録商標)”、クラレ社製の“セプトン(登録商標)”、アロン化成社製のAR-FLシリーズなどが挙げられる。
 本発明のフィルムのB層の熱可塑性エラストマーにおいて、ポリオレフィン系エラストマーの第1の態様は、ポリエチレンおよびポリプロピレンからなる群より選ばれる1つと、ポリブタジエン、水素添加ポリブタジエン、ポリイソプレン、水素添加ポリイソプレン、ポリイソブチレン、及びα-オレフィンからなる群より選ばれる1つとの共重合体である。共重合の形態は、ブロック共重合、グラフト共重合のいずれでもよいが、ポリエチレンおよびポリプロピレンからなる群より選ばれる1つと、α-オレフィンからなる共重合体の場合のみ、共重合の形態はランダム共重合であってもよい。前記α-オレフィンとは、分子鎖の片末端に二重結合を有するオレフィンのことであり、1-オクテンなどが好ましく用いられる。
 本発明のフィルムのB層の熱可塑性エラストマーにおいて、ポリオレフィン系エラストマーの第2の態様は、ポリエチレンおよびポリプロピレンからなる群より選ばれる1つと、エチレン‐プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-ブテン共重合体、エチレン-オクテン共重合体、水素添加スチレン-ブタジエン共重合体からなる群より選ばれる1つとのブレンド物である。このとき、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-ブテン共重合体、エチレン-オクテン共重合体は、部分的もしくは完全に架橋されていてもよい。
 また、本発明のフィルムのB層の熱可塑性エラストマーにおいて、ポリオレフィン系エラストマーは、酸無水物基、カルボキシル基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基およびエポキシ基からなる群から選ばれる少なくとも1種の官能基で変性されていてもよい。
 ポリオレフィン系エラストマーとして市販されているものとしては、三井化学社製の“ミラストマー(登録商標)”、住友化学社製“エスポレックス(登録商標)”、三菱化学社製の“サーモラン(登録商標)”、“ゼラス(登録商標)”、ダウ・ケミカル社製“エンゲージ(登録商標)”などが挙げられる。
 本発明のフィルムのB層の熱可塑性エラストマーにおいて、ポリアミド系エラストマーとしては、ポリアミドと脂肪族ポリエステルとのブロック共重合体、ポリアミドと脂肪族ポリエーテルとのブロック共重合体を挙げることができる。
 ポリアミド系エラストマーとして市販されているものとしては、宇部興産社製の“UBESTA(登録商標)”、ダイセル・エボニック社製の“ダイアミド(登録商標)”、“ベスタミド(登録商標)E”、アルケマ社製の“PEBAX(登録商標)などが挙げられる。
 本発明のフィルムのB層において、熱可塑性エラストマーは、1種単独であっても、2種以上を組み合わせてもよい。上記熱可塑性エラストマーのうち、ポリエステル系エラストマーを主たる成分とすることが、A層との積層性およびA層とB層との接着性をより高められるという点でより好ましい。
 本発明のフィルムにおいて、B層を構成する熱可塑性エラストマーの融点TmBは140℃以上240℃以下であることが好ましい。ここでいう融点TmBとはDSCにより得られる、昇温過程(昇温速度:20℃/min)における融点TmBであり、JIS K-7121(1987)に基づいた方法により、25℃から熱可塑性エラストマーの融点+50℃まで20℃/分の昇温速度で加熱し(1stRUN)、その状態で5分間保持し、次いで-100℃以下となるよう急冷し、再度室温から20℃/分の昇温速度で270℃まで昇温を行って得られた2ndRunの結晶融解ピークにおけるピークトップの温度でもって熱可塑性エラストマーの融点TmBとする。より好ましくは融点TmBが145℃以上235℃以下、更に好ましくは150℃以上230℃以下である。融点TmBが145℃に満たないと、結晶性ポリエステルとの積層が困難となったり、得られたフィルムの耐熱性に劣ったりすることがあり好ましくなく、また、融点TmBが240℃を越えると、制振性が低下したりする場合があるため好ましくない。本発明のフィルムにおいて、B層を構成する熱可塑性エラストマーの融点TmBを140℃以上240℃以下とすることにより、良好な積層性、耐熱性、制振性を有するフィルムとすることができる。なお、複数の結晶融解ピークトップがあらわれる場合は、最も高いピークトップ温度が上記範囲内であることが好ましい。
 本発明のフィルムにおいて、B層が充填材を含み、その充填材の含有率がB層を構成する樹脂組成物全体に対して1重量%以上50重量%以下であるのが好ましい。より好ましくは10重量%以上45重量%以下、更に好ましくは20重量%以上40重量%以下である。ここでいう充填材としては、例えば、金、銀、銅、白金、パラジウム、レニウム、バナジウム、オスミウム、コバルト、鉄、亜鉛、ルテニウム、プラセオジウム、クロム、ニッケル、アルミニウム、スズ、亜鉛、チタン、タンタル、ジルコニウム、アンチモン、インジウム、イットリウム、ランタニウム等の金属、酸化亜鉛、酸化チタン、酸化セシウム、酸化アンチモン、酸化スズ 、インジウム・スズ酸化物、酸化イットリウム、酸化ランタニウム 、酸化ジルコニウム、酸化アルミニウム 、酸化マグネシウム、酸化ケイ素等の金属酸化物、フッ化リチウム、フッ化マグネシウム 、フッ化アルミニウム 、氷晶石等の金属フッ化物、リン酸カルシウム等の金属リン酸塩、炭酸カルシウム等の炭酸塩、硫酸バリウム等の硫酸塩、窒化ホウ素、窒化炭素などの窒化物、タルク、マイカ、カオリンなどのケイ酸塩、その他カーボン、フラーレン、カーボンファイバー、カーボンナノチューブなどの炭素系化合物等が挙げられる。また、これらの充填材は2種類以上用いてもよい。本発明のフィルムにおいて、充填材を1重量%以上とすることでより、制振性を高めることが可能となり、さらには熱伝導率を高めることが可能となる。また50重量%以下とすることで後述する製造方法にてフィルムを製造する際に、良好な製膜性を得ることができる。
 本発明のフィルムのB層に用いられる充填材は、アスペクト比2以上の針状粒子、または板状粒子であるのが好ましい。ここでいう針状粒子とは、図1に示すように一次粒子1を外接直方体2で囲み、その外接直方体2の最も長い一辺を長さ(l)、最も短い一辺を厚さ(t)、残りの一辺を幅(b)と定義した場合に、長さ(l)と厚さ(t)の比l/tが2以上であり、同時に、長さ(l)と幅(b)の比l/bが2よりも大きい粒子である。ここでいう板状粒子とは、一次粒子1を図1に示すような外接直方体2で囲み、その外接直方体2の最も長い一辺を長さ(l)、最も短い一辺を厚さ(t)、残りの一辺を幅(b)と定義した場合に、長さ(l)と厚さ(t)の比l/tが2以上であり、同時に、長さ(l)と幅(b)の比l/bが1以上2以下の粒子である。また、ここでいうアスペクト比とは、針状粒子あるいは板状粒子の長さ(l)と厚さ(t)の比l/tである。アスペクト比はより好ましくは3以上、更に好ましくは5以上である。本発明のフィルムにおいて、B層に、針状粒子、あるいは板状粒子を含有することでフィルムにより寸法安定性を高めた上で制振性を付与することができ、さらに熱伝導率をより高めることが可能となる。
 本発明のフィルムにおいて、充填材が針状粒子または板状粒子である場合、その長径(一次粒子を外接直方体で囲んだときの外接直方体の最も長い一辺を長さ)は好ましくは0.1μm以上20μm以下、更に好ましくは1μm以上10μm以下、更に好ましくは2μm以上8μm以下である。0.1μm未満になると、界面積が多くなりすぎて熱伝導性が低下するため好ましくなく、20μmを超えるとフィルムの製膜性が低下し、特に後述する延伸工程での延伸性が低下し生産性が悪くなる。本発明のフィルムにおいて、針状粒子あるいは板状粒子の長径を0.1μm以上20μm以下とすることによって、制振性、熱伝導性と製膜性を両立することができる。
 本発明のフィルムにおいて、B層中には、各種添加剤、例えば、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機系易滑剤、顔料、染料、有機微粒子、帯電防止剤、核剤などがその特性を悪化させない程度に添加されていてもよい。
 本発明のフィルムは前記結晶性ポリエステルを主たる成分とするA層と前記熱可塑性エラストマーを主たる成分とするB層が積層された構造をとるのが好ましい。本積層構造とすることで、結晶性ポリエステルからなるA層が耐熱性、寸法安定性を付与しつつ、熱可塑性エラストマーからなる層が制振性を付与することが可能となり、フィルムのヤング率を高めつつ、損失正接を高めることが可能となる。本発明のフィルムの積層構成は(i)A層/B層からなる二層構成、(ii)A層/B層/A層、またはB層/A層/B層からなる3層構成、(iii)A層/B層/・・・・/B層、B層/A層/・・・・/A層、A層/B層/・・・・/A層、B層/A層/・・・・/B層などの、A層とB層が交互に積層された多層積層構成、(iv)A層/B層/その他の層、その他の層/A層/B層、A層/その他の層/B層などの構成、およびこれらの組み合わせの構成が挙げられる。その中でも、本発明のフィルムは、特に結晶性ポリエステルを主たる成分とするA層と熱可塑性エラストマーを主たる成分とするB層が交互に合計9層以上積層されてなることが好ましい。本発明のフィルムにおいて、上記構成として層数を9層以上の層が交互に積層されたフィルムとすることによって、層数が9層未満のフィルムと対比して、均質に各々の熱可塑性エラストマーが配されるため、製膜性や機械物性を安定化させることが可能である。また、層数が増加するに従い、フィルムの厚み方向に結晶性ポリエステルを主たる成分とするA層が複数配置されることによって、フィルムの寸法安定性や耐熱性をより向上させることが可能となる。また、干渉反射機能、偏光反射を発現させるといった特異な光学特性の付与も可能となる。
 本発明のフィルムを構成するA層とB層のうち、B層が少なくとも片側表層にあるのが好ましい態様として挙げられる。その場合、熱可塑性エラストマーを主たる成分とするB層がクッション性を有するため、ガラス、金属、繊維強化プラスチックからなる群から選ばれる1種以上の材料からなるシート材料と一体化させた場合に、密着性が良好となり、より制振性を高めることが可能となる。
 本発明のフィルムを構成するA層とB層のうち、A層が少なくとも片側表層にあるのも好ましい態様として挙げられる。その場合、表面の結晶性ポリエステルを主たる成分とするA層が表面硬度、耐薬品性、フィルムの滑り性を付与することが可能となり、通常のフィルムと同じ取扱性とすることができ、本フィルムに後述する各種機能層(帯電防止層、他素材との密着層、耐紫外線性を有するための耐紫外線層、難燃性付与のための難燃層、耐衝撃性や耐擦過性を高めるためのハードコート層など)を形成する際の加工性や加工した層の安定した機能を発現させることが可能となる。
 本発明のフィルムはA層を構成する樹脂組成物の融点TmAとB層を構成する樹脂組成物の融点TmBの間に微少吸熱ピークを有するのが好ましい。ここでいう、微小吸熱ピークとは示差走査熱量測定(DSC)において、昇温過程(昇温速度:20℃/min)において確認される微小な吸熱ピークのことである。本ピークを有することは、B層は融点以上で一旦熱処理されることにより分子鎖が緩和し、損失正接を高められた状態であり、フィルムのtanδa,tanδbを高めることが出来る。またA層は、後述する延伸時の残留応力の解消と配向結晶化が完了させることが出来、配向パラメーターが1.5以上の層(領域I)を形成することが可能となる。これにより、配向パラメーターが1.5以上の層(領域I)を有しつつ、フィルムのtanδa、tanδbを高めることが出来る結果、寸法安定性、耐熱性と制振性とを両立することが可能となる。さらには形状追従性を兼ね備えたものとすることも可能となる。
 本発明のフィルムにおいて、A層を構成する樹脂組成物の融点TmAとB層を構成する樹脂組成物の融点TmBの間に微少吸熱ピークを有する場合、その微少吸熱ピーク温度Tmetaは、B層の熱可塑性エラストマーの融点TmB+10℃以上、A層の結晶性ポリエステルの融点TmA―10℃以下であるのが好ましい。より好ましくはTmB+15℃以上TmA―15℃以下である。ここでいうTmetaとは示差走査熱量測定(以下、DSCと略称することもある。)により得られる、昇温過程(昇温速度:20℃/min)における値である。具体的には、JIS K-7121(1999)に基づいた方法により、25℃から300℃まで20℃/分の昇温速度で加熱(1stRUN)して得られた1stRUNの示差走査熱量測定チャートにおけるA層の結晶融解ピーク前の微少吸熱ピーク温度でもってTmetaとする。微小吸熱ピークTmetaの温度範囲をTmB+10℃以上TmA―10℃以下とすることにより、A層の配向性を落とすことなく、B層が十分緩和されるため、配向パラメーターが1.5以上の層(領域I)を有しつつ、フィルムのtanδa、tanδbをより高めることが出来る結果、寸法安定性、耐熱性と制振性、さらには形状追従性をより高いレベルで満足させることが可能となる。
 本発明のフィルムの総厚みは10μm以上300μm以下であるのが好ましく、さらに好ましくは20μm以上200μm以下、最も好ましくは30μm以上150μm以下である。フィルムの総厚みが10μm未満の場合、フィルムの制振性が悪くなったりする。また、300μmより厚い場合、例えば、本発明のフィルムをガラス、金属、繊維強化プラスチックからなる群から選ばれる1種以上の材料からなるシート材料と一体化させた場合に、その一体化させたシートの全体厚みが厚くなり過ぎる場合がある。
 本発明のフィルムにおいて、結晶性ポリエステルを主たる成分とするA層の層厚みをTA(μm)、熱可塑性エラストマーを主たる成分とするB層の層厚みをTB(μm)としたとき、両者の比TB/TAが1/4~15/1以下であることが好ましい。なお、A層、B層がフィルム中に複数ある場合は、それぞれの厚みの和で以て、厚みTA,TBとする。より好ましくは1/1~以上10/1以下である。更に好ましくは3/1以上8/1以下である。TB/TAが1/4に満たないと、制振性、形状追従性が低下することがある。また、TB/TAが15/1を越えると、フィルムの耐熱性や寸法安定性が低下する傾向にある。本発明のフィルムにおいて、TB/TAを1/4以上15/1以下とすることで、制振性、形状追従性、耐熱性、寸法安定性をすべて満足させたフィルムとすることが可能となる。
 本発明のフィルムにおいて、B層中の充填材の含有量をWb(質量%)および、空隙率をV(体積%)とした場合にV/Wbが1以下であることが好ましい。ここでいう空隙率とは、B層の断面SEM(走査型電子顕微鏡)画像内において、フィルムの断面積の中に占める空隙の面積の割合でもって空隙率V(体積%)とした。V/Wbは、より好ましくは0.8以下、更に好ましくは0.6以下、特に好ましくは0.5以下である。V/Wbが1を超えると、フィルム中に熱伝導率が低い空気が多く占めることとなる結果、フィルムの透明性や、熱伝導性が低下する。V/Wbの下限は0である。本発明のフィルムにおいて、V/Wbを1以下とすることで、高い透明性、熱伝導性を得ることができる。なお、V/Wbを1以下にする方法としては後述する製造方法において、B層に粒子を含有させた状態で、後述する方法にて少なくとも1軸方向に延伸した後にB層の熱可塑性エラストマーの融点TmB以上、A層の結晶性ポリエステルの融点TmA以下の温度で熱処理することなどが挙げられる。
 本発明のフィルムにおいて、フィルム面内でヤング率が最も小さい方向(方向b)のフィルムのヤング率をEbとしたとき、Ebが0.2GPa以上2.5GPa以下であることが好ましい。なお、ここでいうヤング率は、フィルムのヤング率をフィルム面内に10°毎に方向を変えて測定し、そのヤング率が最も小さい方向(方向b)のヤング率をEbとする。Ebは、より好ましくは0.4GPa以上2GPa、更に好ましくは0.5GPa以上1.8GPa以下、特に好ましくは0.7GPa以上1.5GPa以下である。ヤング率Ebを0.2GPa以上とすることで、高い耐熱性と寸法安定性を付与することが可能となる。また、2.5GPa以下とすることによって制振性や形状追従性を付与することが可能となる。
 本発明のフィルムは、方向bとはフィルム面内で垂直な方向(方向a)のフィルムのヤング率をEaとしたときに、EaとEbの比Ea/Ebが1/1~3/1の範囲にあることが好ましい。より好ましくは1/1~1/2、更に好ましくは1/1~1/1.5である。Ea/Ebを1/1~3/1とすることで、フィルム面内方向いずれの方向においても寸法安定性に優れ、また、破断しにくいフィルムとすることができる。
 本発明のフィルムは、方向bの破断伸度が50%以上であるのが好ましい。より好ましくは100%以上、更に好ましくは120%以上である。破断伸度が50%に満たないと、制振性が低下したり、複雑な形状と貼り合わせた際の形状追従性が悪くなる場合がある。本発明のフィルムにおいて、破断伸度を50%以上とすることによって、高い制振性に加えて形状追従性を両立することが出来る。なお、破断伸度の上限は特に制限されるものではないが、寸法安定性、耐熱性と制振性、形状追従性との両立という観点からは、実質500%以下である
 本発明のフィルムは、方向bの100%伸長時応力が、100MPa以下であるのが好ましい。更に好ましくは60MPa以下、更に好ましくは50MPa以下である。伸張時応力が100MPaを超えると、分子鎖が緊張した状況であったり、剛直となるため、制振性が低下したり、複雑な形状と貼り合わせた際の形状追従性が悪くなる場合がある。本発明のフィルムにおいて、100%伸張時応力を100MPa以下とすることで、高い制振性に加えて形状追従性を両立することが出来る。なお、伸張時応力の下限は特に制限されるものではないが、寸法安定性、耐熱性と制振性、形状追従性との両立という観点からは、実質1MPa以上である。
 本発明のフィルムは、熱伝導率が0.15W/mK以上であるのが好ましい。より好ましくは0.18W/mK以上、さらに好ましくは0.20W/mK以上である。本値を満たすことによって、特にモーター絶縁材料(例えば風力発電用絶縁シート、ハイブリッドモーター用シート、エアコンモーター用シートなど)、太陽電池バックシート、電子部品用に用いられる電気絶縁材料(例えば、電子部品用粘着テープ、フレキシブルプリント基板、メンブレンスイッチなど)等に好適に用いることができる。
 本発明のフィルムは表面比抵抗が1013Ω/□以上であるのが好ましい。本値を満たすことによって、特にモーター絶縁材料(例えば風力発電用絶縁シート、ハイブリッドモーター用シート、エアコンモーター用シートなど)、太陽電池バックシート、電子部品用に用いられる電気絶縁材料(例えば、電子部品用粘着テープ、フレキシブルプリント基板、メンブレンスイッチなど)等に好適に用いることができる。
 本発明のフィルムには、ポリエステル層、帯電防止層、他素材との貼り合わせのための粘着層、密着層、耐紫外線性を有するための耐紫外線層、難燃性付与のための難燃層、耐衝撃性や耐擦過性を高めるためのハードコート層など、用いる用途に応じて、任意の層を形成することができる。この中でも本発明のフィルムは他部材と貼り合わせて使用することが多いことから、粘着層を設けた積層シートとするのが特に好ましい。
 また本発明のフィルムは、ガラス、金属、繊維強化プラスチックからなる群から選ばれる1種以上の材料と一体化されてなる積層構造体とすることも好ましい。このような積層構造体とすることで、風力発電機、自動車、鉄道、航空機の構造体として用いることも可能となる。
 また本発明のフィルムは、織布、不織布からなる群から選ばれる1種以上の材料と一体化されてなる積層構造体とすることも好ましい。このような積層構造体とすることで、医療用に好適に用いることが可能となる。
 織布、不織布からなる群から選ばれる1種以上の材料を構成する樹脂としては、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリイミド系樹脂、ポリエステル系樹脂、ポリスルフィド系樹脂、ポリスルホン系樹脂、ポリスルホキシド系樹脂、ポリエーテルスルホン系樹脂、ポリエーテル系樹脂、ポリエーテルケトン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂、ウレタン系樹脂、アクリル系樹脂などが挙げられる。
 本発明の積層構造体において、上記ガラス、金属、繊維強化プラスチックからなる群から選ばれる1種以上の材料、および/または織布、不織布からなる群から選ばれる1種以上の材料は、本発明のフィルムの片側に設けられてもよいし、両側に設けられてもよい。また複数の材料を合わせて用いることも好ましい態様である。目的、用途に合わせて適宜選択される。
 次に、本発明のフィルムの製造方法について、その一例を説明するが、本発明は、かかる例のみに限定されるものではない。
 本発明のフィルムの製造方法において、その原料となる結晶性ポリエステルは、上述のジカルボン酸構成成分、ジオール構成成分とからエステル化反応またはエステル交換反応を経て重縮合反応を行って固有粘度を0.4以上とすることによって得られる。
 また、エステル交換反応を行う際には、酢酸マグネシウム、酢酸カルシウム、酢酸マンガン、酢酸コバルト、酢酸カルシウムなど公知のエステル交換反応触媒を用いることができる。また、重合触媒である三酸化アンチモンなどを添加してもよい。エステル化反応時には水酸化カリウムなどのアルカリ金属を数ppm添加しておくとジエチレングリコールの副生が抑制され、耐熱性や耐加水分解性も改善される。
 また重縮合反応触媒としては、二酸化ゲルマニウムのエチレングリコール溶液、三酸化アンチモン、チタンアルコキシド、チタンキレート化合物などを用いることができる。
 その他の添加物としては、例えば、静電印加特性を付与する目的で酢酸マグネシウム、助触媒として酢酸カルシウムなどを挙げることができ、本発明の効果を妨げない範囲で添加することができる。また、フィルムの滑り性を付与するために各種粒子を添加、あるいは触媒を利用した内部析出粒子を含有させてもよい。
 また、本発明のフィルムのB層に用いられる熱可塑性エラストマーは、市販のものを用いることも可能であるが、ポリエステル系エラストマーの場合は上記結晶性ポリエステルと同様の方法で得ることも可能である。
 本発明のフィルムの製造方法において、熱可塑性エラストマーに充填材を含有させる場合、その方法は、予め熱可塑性エラストマーと充填材をベント式二軸混練押出機やタンデム型押出機を用いて溶融混練する方法が好ましい。ここで、充填材を含有させる際に熱履歴を受けるため、少なからず熱可塑性エラストマーが劣化する。そのため、B層の充填材の含有量に比べて添加量の多い高濃度マスターペレットを作製し、それを熱可塑性エラストマーと混合して希釈し、所定のB層の充填材の含有率とするのが、延伸性、機械特性、耐熱性などの観点から好ましい。
 このとき、高濃度マスターペレット中の充填材の濃度は好ましくは20質量%以上80質量%以下が好ましい。更に好ましくは25質量%以上70質量%以下、更に好ましくは30質量%以上60質量%以下、特に好ましくは40質量%以上60質量%以下である。20質量%に満たない場合、B層へ添加するマスターペレットの量が多くなり、その結果B層に劣化した熱可塑性エラストマーの量が多くなって延伸性、機械特性、耐熱性などが低下する場合がある。また80質量%を越える場合は、マスターペレット化が困難となったり、マスターペレットを熱可塑性エラストマーに混合した場合に均一に混合するのが難しくなったりする場合がある。
 次に、このようにして得られた結晶性ポリエステルと熱可塑性エラストマー、および充填材を含有した熱可塑性エラストマーを用いて、積層フィルムを作製する方法を説明する。
 二つの異なる材料をそれぞれ二台の押出機に投入し、溶融して口金から冷却したキャストドラム上に共押出してシート状に加工する方法(共押出法)、単膜で作製したシートに被覆層原料を押出機に投入して溶融押出して口金から押出しながらラミネートする方法(溶融ラミネート法)、A層と積層するB層をそれぞれ別々に作製し、加熱されたロール群などにより熱圧着する方法(熱ラミネート法)、接着剤を介して貼り合わせる方法(接着法)、その他、B層用の材料を溶媒に溶解させ、その溶液をあらかじめ作製していたA層上に塗布する方法(コーティング法)、およびこれらを組み合わせた方法等を使用することができる。これらの中でも、生産性が高く、かつ得られる積層フィルムの層間の密着性がより高いという点で、共押出法が好ましい。特に、本発明の積層フィルムが多層積層フィルムである場合、その積層構造は、例えば特開2007-307893号公報の〔0053〕~〔0063〕段落に記載の内容と同様の方法により実現することができる。
 共押出法にて積層フィルムを得る場合、結晶性ポリエステルおよび熱可塑性エラストマーは、必要に応じて、熱風中あるいは真空下で乾燥された後、別々の押出機に供給される。押出機内において、加熱溶融された樹脂は、ギアポンプ等で樹脂の押出量を均一化され、フィルター等を介して異物や変性した樹脂などを取り除かれる。これらの樹脂は積層装置に送り込まれ、積層された後、ダイから冷却したキャストドラム上に共押出してキャスティングシートを得る。積層装置としては、マルチマニホールドダイやフィードブロックやスタティックミキサー等を用いることができる。特に、本発明のフィルムが多層積層構成である場合、その構成を効率よく得るためには、9個以上の微細スリットを有するフィードブロックを用いることが好ましい。このようなフィードブロックを用いると、装置が極端に大型化することがないため、熱劣化による異物が少なく、積層数が極端に多い場合でも、高精度な積層が可能となる。また、幅方向の積層精度も従来技術に比較して格段に向上する。また、この装置では、各層の厚みをスリットの形状(長さ、幅)で調整できるため、任意の層厚みを達成することが可能である。
 積層させた後、Tダイ口金に導入して拡幅後、シート状に押出した溶融積層体を、表面温度25℃に保たれたドラム上に静電印加法で密着冷却固化させて、キャスティングシートを得る。その際には、ワイヤー状、テープ状、針状あるいはナイフ状等の電極を用いて、静電気力により、吐出されたシートを冷却体に密着させ、急冷固化させることが好ましい。また、吐出されたシートを冷却体に密着させる方法としては、スリット状、スポット状、面状の装置からエアーを吹き出す方法、ニップロールを用いる方法も好ましく行われる。
 このようにして得られたキャスティングシートを、二軸延伸することにより、本発明のフィルムを得ることができる。その延伸する温度は、結晶性ポリエステルのガラス転移温度TgA以上の温度にて二軸延伸する。二軸延伸する方法としては、長手方向と幅方向の延伸とを分離して行う逐次二軸延伸方法の他に、長手方向と幅方向の延伸を同時に行う同時二軸延伸方法のどちらであっても構わない。延伸条件の一例は、1)同時二軸延伸の場合はA層の結晶性ポリエステルのガラス転移温度TgA以上TgA+15℃以下の範囲の温度、2)逐次二軸延伸の場合は、第1軸目の延伸をA層の結晶性ポリエステルのガラス転移温度TgA以上TgA+15℃以下(より好ましくはTgA+10℃以下)の温度とし、第二軸目の延伸をTgA+5℃以上TgA+25℃以下の範囲の温度で延伸することが挙げられる。
 延伸倍率は、同時二軸延伸、逐次二軸延伸共に、長手方向と幅方向それぞれ1.5倍以上4倍以下とする。より好ましくは2.0倍以上3.5倍以下、更に好ましくは2.5倍以上3.5倍以下である。また、長手方向の延伸倍率と幅方向の延伸倍率を合わせた面積延伸倍率は4倍以上20倍以下、より好ましくは6倍以上18倍以下、更に好ましくは8倍以上16倍以下である。面積延伸倍率が4倍未満であると、得られるフィルムの結晶性ポリエステル(A)の配向性が低く、得られるフィルムの機械強度や耐熱性が低下することがある。また面積延伸倍率が20倍を越えると延伸時に破れを生じ易くなったりする傾向がある。
 得られた二軸延伸フィルムの結晶配向を完了させて、平面性と寸法安定性を付与するために、A層の結晶性ポリエステルのTgA以上融点TmA未満の温度Thで1秒間以上30秒間以下の熱処理を行ない、均一に徐冷後、室温まで冷却する。本発明のフィルムの製造方法において熱処理温度Thは、より好ましくは、B層の熱可塑性エラストマーの融点TmB以上、A層の結晶性ポリエステルの融点TmA以下,更に好ましくは、B層の熱可塑性エラストマーの融点TmB+10℃以上、A層の結晶性ポリエステルの融点TmA―10℃以下の温度で熱処理するのが好ましい。本条件で熱処理することにより、耐熱性や寸法安定性を付与できるだけでなく、延伸工程によって配向したB層の熱可塑性エラストマーの配向をキャンセルして、ランダム化させることが可能となり、それにより制振性をより高めることができる。また形状追従性を高めることも可能である。
 また、上記熱処理工程中では、必要に応じて幅方向あるいは長手方向に3~12%の弛緩処理を施してもよい。続いて必要に応じて、他素材との密着性をさらに高めるためにコロナ放電処理などを行い、それを巻き取ることにより、フィルムを得ることができる。
 本発明のフィルムと、ガラス、金属、繊維強化プラスチックからなる群から選ばれる1種以上の材料と一体化された積層構造体は、以下の方法によって得ることができる。その方法としては上述のフィルムと積層する材料を加熱されたロール群などにより熱圧着する方法(熱ラミネート法)、接着剤を介して貼り合わせる方法(接着法)、およびこれらを組み合わせた方法等が使用することができる。
 本発明のフィルムと、織布、不織布からなる群から選ばれる1種以上の材料と一体化された積層構造体は、以下の方法によって得ることができる。その方法としては上述のフィルムと積層する材料を加熱されたロール群などにより熱圧着する方法(熱ラミネート法)、接着剤を介して貼り合わせる方法(接着法)、およびこれらを組み合わせた方法等が使用することができる。
 本発明によれば、耐熱性や寸法安定性に優れ、シリコンの汚染の懸念がなく、かつ制振性に優れるフィルムを提供することができる。かかるフィルムは、銅貼り積層板、太陽電池用バックシート、粘着テープ、フレキシブルプリント基板、メンブレンスイッチ、面状発熱体、もしくはフラットケーブルなどの電気絶縁材料、コンデンサ用材料、筐体材料、自動車・鉄道・航空機用制振材料、建築用制振材料をはじめとした制振性と耐熱性が重視されるような用途、風力発電ブレードや航空機の構造体保護用材料、医療用材料、フレキシブルデバイスに好適に使用することができる。特には本発明のフィルムは、ガラス、金属、繊維強化プラスチックからなる群から選ばれる1種以上の材料からなるシート材料、織布、不織布からなる群から選ばれる1種以上の材料と一体化されて用いられることも好ましく行われる。かかるフィルムを用いることで、より静粛な電子機器、自動車、鉄道、航空機、及び発電効率や耐久性の高い風力発電機を提供することができる。さらには、かかるフィルムを用いることで、ゴワ付きや音が抑制され、装着感が良く、加工時の寸法安定性の良い医療用材料を提供することが可能となる。
[特性の評価方法]
 以下に、本発明の説明に使用した各特性の評価方法について説明する。
A.積層構成(積層数、層厚みなど):
 フィルムの積層数は、ミクロトームを用いて断面を切り出したサンプルを、透過型電子顕微鏡(TEM)を用いて観察することにより求めた。すなわち、透過型電子顕微鏡H-7100FA型((株)日立製作所製)を用い、加速電圧75kVの条件でフィルムの断面写真を撮影し、層構成および各層厚みを測定した。なお、場合によっては、コントラストを高くするために、RuOやOsOなどを使用した染色技術を用いた。また、1枚の画像に取り込められるすべての層の中で最も厚みの薄い層(薄膜層)の厚みにあわせて、薄膜層厚みが50nm未満の場合は10万倍、薄膜層厚みが50nm以上500nm未満である場合は4万倍、500nm以上である場合は1万倍の拡大倍率にて観察を実施した。
得られたTEM写真画像を、スキャナ(キヤノン(株)製CanoScan D1230U)を用いて画像サイズ720dpiで取り込んだ。画像をビットマップファイル(BMP)もしくは、圧縮画像ファイル(JPEG)でパーソナルコンピューターに保存し、次に、画像処理ソフト Image-Pro Plus ver.4(販売元:プラネトロン(株))を用いて、このファイルを開き、画像解析を行った。画像解析処理は、垂直シックプロファイルモードで、厚み方向位置と幅方向の2本のライン間で挟まれた領域の平均明るさとの関係を、数値データとして読み取った。表計算ソフト(Excel 2000)を用いて、位置(nm)と明るさのデータに対してサンプリングステップ2(間引き2)でデータ採用した後に、5点移動平均の数値処理を施した。さらに、この得られた周期的に明るさが変化するデータを微分し、VBA(Visual Basic for Applications)プログラムにより、その微分曲線の極大値と極小値を読み込み、隣り合う明るさが極大の領域と極小の領域の間隔を1層の層厚みとして層厚みを算出した。この操作を写真毎に行い、全ての層の積層数を算出し、A層の層厚みTA,B層の層厚みTBを得た。
B.結晶性ポリエステルのガラス転移温度TgA、融点TmA、結晶融解熱量ΔHmA、熱可塑性エラストマーの融点TmB:
 原料となる結晶性ポリエステルの熱特性は、結晶性ポリエステルを、JIS K7122(1987)に準じて、セイコー電子工業(株)製示差走査熱量測定装置”ロボットDSC-RDC220”を、データ解析にはディスクセッション”SSC/5200”を用いて、下記の要領にて、測定を実施した。
(1)1stRUN測定
 サンプルパンに結晶性ポリエステルのサンプルを5mgずつ秤量し、昇温速度は20℃/minで樹脂を25℃から300℃まで20℃/分の昇温速度で加熱し、その状態で5分間保持し、次いで25℃以下となるよう急冷した。
(2)2ndRUN
 1stRUN測定が完了した後、直ちに引き続いて、再度室温から20℃/分の昇温速度で300℃まで昇温を行って測定を行った。得られた2ndRUNの示差走査熱量測定チャートにおいて、ガラス転移温度はガラス転移の階段状の変化部分において、JIS K7121(1987)の「9.3ガラス転移温度の求め方(1)中間点ガラス転移温度Tmg」記載の方法で結晶性ポリエステルのガラス転移温度TgAを求めた(各ベースラインの延長した直線から縦軸方向に等距離にある直線とガラス転移の階段状の変化部分の曲線とが交わる点から求めた)。また、2ndRunの結晶融解ピークにおけるピークトップの温度でもって結晶性ポリエステルの融点TmAとした。
 また、原料となる熱可塑性エラストマーの熱特性(ガラス転移温度TgB,融点TmB)は、熱可塑性エラストマーを用いて、上記の方法と同様の方法で25℃から熱可塑性エラストマーの融点+50℃まで20℃/分の昇温速度で加熱(1stRUN)、その状態で5分間保持し、次いで-100℃以下となるよう急冷し、再度室温から20℃/分の昇温速度で270℃まで昇温を行って得られた2ndRunの結晶融解ピークにおけるピークトップの温度でもって熱可塑性エラストマーの融点TmBとした。また、結晶融解熱量ΔHmA,ΔHmBは、結晶融解ピークの熱量をJISK7122(1987)の「9.転移熱の求め方」に基づいて求めた。
C.ヤング率Ea,Eb、破断伸度、100%伸張時応力:
 フィルムの破断伸度はASTM-D882(1997年版)に基づいて、サンプルを1cm×20cmの大きさに切り出し、チャック間5cm、引っ張り速度300mm/minにて引っ張ったときの破断伸度を測定した。また、得られた荷重-歪曲線からヤング率を求めた。なお、測定は各サンプルについて5回ずつ行い、それらの平均値で評価を行った。ヤング率が最大となる方向(方向a)を決定する際には、いずれかの方向を0°とし、フィルム面内に-90°から90°まで10°毎に方向を変えて同様に測定することで、ヤング率が最小となる方向(方向b)を決定し、ヤング率Eb,破断伸度を求めた。そして続いて、方向bと同一の面内で直交する方向(方向a)のヤング率Ea、破断伸度、100%伸張時応力を求めた。
D.配向パラメーター:
 ミクロトームを用いて断面を切り出したサンプルを、RENISHAW社製inVIA顕微ラマン分光光度計にて、対物レンズ:100倍、ビーム径:1μm、光源:YAGレーザーの二次高調波(波長532nm)、レーザーパワー:100mW,回折格子:Single 3000gr/mm、スリット:65μm、検出器:CCD/RENISHAW 1024×256、の条件にて、以下の通り測定を行った。なお、複数の樹脂が混合されている場合など、異方性に対し強い感度を有するピークが複数存在する場合などは、最もピーク強度が高いピークを用いて配向パラメーターを求めた。
[層を構成する主たる成分が芳香族ポリエステル系樹脂の場合]
 以下の(a1)~(a3)の方法により求めた。
(a1)フィルム面内方向に対し平行な方向の偏光を照射した場合、および垂直な方向の偏光を照射した場合、それぞれにおいてラマンバンドを求める。
(a2)得られたラマンバンドのうち、1615cm-1近傍のC=C伸縮振動のピーク強度をそれぞれ求め、平行方向の偏光を照射した場合のピーク強度をI(平行)、垂直方向の偏光を照射した場合のピーク強度をI(垂直)とする。
(a3)I(平行)とI(垂直)の比I(平行)/I(垂直)にて配向パラメーターとする。
[層を構成する主たる成分が脂肪族ポリエステル系樹脂の場合]
 以下の(b1)~(b3)の方法により得ることが出来る。
(b1)フィルム面内方向に対し平行な方向の偏光を照射した場合、および垂直な方向の偏光を照射した場合、それぞれにおいてラマンバンドを求める。
(b2)得られたラマンバンドのうち、波数1730cm-1近傍のC=O伸縮振動のピーク強度をそれぞれ求め、平行方向の偏光を照射した場合のピーク強度をI(平行)、垂直方向の偏光を照射した場合のピーク強度をI(垂直)とする。
(b3)I(垂直)とI(平行)の比I(垂直)/I(平行)にて配向パラメーターとする。
[層を構成する主たる成分がポリエチレン系樹脂の場合]
 以下の(c1)~(c3)の方法により求めた。
(c1)フィルム面内方向に対し平行な方向の偏光を照射した場合にラマンバンドを求める。
(c2)得られたラマンバンドのうち、1130cm-1近傍の対称C-C伸縮振動のピーク強度、および1060cm-1近傍の非対称C-C伸縮振動のピーク強度をそれぞれもとめ、対称C-C伸縮振動のピーク強度をI(対称)、非対称C-C振動のピーク強度をI(非対称)とする。
(c3)I(対称)とI(非対称)の比I(対称)/I(非対称)にて配向パラメーターとする。
[層を構成する主たる成分がポリプロピレン系樹脂の場合]
 以下の(d1)~(d3)の方法により求めた。
(d1)フィルム面内方向に対し平行な方向の偏光を照射した場合にラマンバンドを求める。
(d2)得られたラマンバンドのうち、810cm-1近傍のC-C伸縮振動のピーク強度、および840cm-1近傍のC-H伸縮振動のピーク強度をそれぞれもとめ、C-C伸縮振動のピーク強度をI(C-C)、C-H伸縮振動のピーク強度をI(C―H)とする。
(d3)I(C-C)とI(C-H)の比I(C-C)/I(C-H)にて配向パラメーターとする。
[層を構成する主たる成分がポリアミド系樹脂の場合]
 以下の(e1)~(e3)の方法により求めた。
(e1)フィルム面内方向に対し平行な方向の偏光を照射した場合、および垂直な方向の偏光を照射した場合、それぞれにおいてラマンバンドを求める。
(e2)得られたラマンバンドのうち、1650cm-1近傍のC=O伸縮振動のピーク強度をそれぞれ求め、平行方向の偏光を照射した場合のピーク強度をI(平行)、垂直方向の偏光を照射した場合のピーク強度をI(垂直)とする。
(e3)I(垂直)とI(平行)の比I(垂直)/I(平行)にて配向パラメーターとする。
 上記測定をフィルムの一方の表面側から0.6μmずつ厚み方向に位置を変えながら測定し、フィルム厚み方向での配向パラメーターが1.5以上の領域(領域I)の厚みの和TI(μm)と、1.5未満の領域(領域II)の厚みの和TII(μm)を求めた。なお、測定は方向aに平行な断面、方向bに平行な断面、それぞれについてフィルム面方向に位置を5カ所変えて行い、その平均値でもって、配向パラメーターが1.5以上の領域(領域I)の厚みの和TI(μm)と、1.5未満の領域(領域II)の厚みの和TII(μm)とした。
E.損失正接tanδa,tanδb、tanδB(制振性):
 フィルムの損失正接tanδa,tanδbは、方向a,方向bそれぞれの方向について、幅10mmの短冊状にフィルムを切り出し、JIS-K7244(1999年版)に従って、セイコーインスツルメンツ社製の動的粘弾性測定装置”DMS6100”を用いて求めた。引張モード、駆動周波数は10Hz、チャック間距離は10mm、昇温速度は2℃/minの測定条件にて、フィルムの温度依存性を測定した。この測定結果から、損失正接の温度分散から25℃での損失正接の値tanδa,tanδbを求めた。
 また、積層構造体の損失正接tanδBについては、積層構造体中のフィルムの方向bの方向について、上記と同様に積層構造体の損失正接の温度依存性の測定を行い、この測定結果から、損失正接の温度分散から25℃での損失正接の値tanδBを求めた。
F.B層中の充填材の含有量Wb:
 B層を削りだし、以下の方法で充填材の含有量Wbを求めた。
 B層の質量w1(g)を測定した。次いで、ヘキサフルオロ-2-イソプロパノール中に溶解させ、遠心分離により不溶成分のうち、充填材を分取した。得られた充填材をヘキサフルオロ-2-イソプロパノールにて洗浄、遠心分離した。なお、洗浄作業は、遠心分離後の洗浄液にエタノールを添加しても白濁しなくなるまで繰り返した。充填材の質量w2(g)を求め、下記式(1)から充填材の含有量Wb1を測定した。
 充填材の含有量Wb(質量%)=(w2/w1)×100 (1)
G.熱伝導率:
 フィルムにレーザー光吸収用スプレー(ファインケミカルジャパン(株)製ブラックガードスプレーFC-153)を塗布し乾燥させた後、10mm角の正方形サンプルを切り出し、XeフラッシュアナライザーであるNETZSCH社製LFA447Nanoflashを用い、測定温度25℃でフィルム厚み方向の熱拡散率α(m/s)を測定した。なお、測定は4回実施し、その平均値で以て熱拡散率とした、下記式(2)にて熱伝導率を求めた。
 熱伝導率(W/mK)=α(m/s)×比熱(J/kg・K)×密度(Kg/m) (2)
 なお、比熱は、フィルムを用いて、JIS K 7123(1987年版)に基づいて求められた値を用いた。また、密度は、フィルムを30mm×40mmの大きさに切取った試料を用いて、電子比重計(ミラージュ貿易(株)製SD-120L)を用いて、室温23℃、相対湿度65%の雰囲気にて密度の測定を3回行い、得られた値の平均値を用いた。
H.耐熱性:
 フィルムの方向a、方向bそれぞれについて平行方向にサンプルを1cm×20cmの大きさに切り出し、その短冊状サンプルを150℃の熱風オーブン中にて30分間熱処理し、冷却後、上記C項の手順に従って、破断伸度を求めた。得られた破断伸度の値とC項で得られた破断伸度(熱処理前の破断伸度)を用いて以下の式(3)により伸度保持率を計算した。
 伸度保持率(%)=熱処理前の破断伸度/熱処理後の破断伸度×100   (3)
 得られた伸度保持率を用いて以下の通り判定した。
A:伸度保持率が80%以上
B:伸度保持率50%以上80%未満
C:伸度保持率が30%以上50%未満
D:伸度保持率が30%未満、またはフィルム形状を保てない場合。
 AまたはBまたはCの場合、耐熱性が良好であり、Aの場合が最も優れている。
 また、積層構造体の耐熱性については、積層構造体中のフィルムの方向a,方向bのそれぞれの方向について、上記と同様に積層構造体の耐熱性の測定を行い、伸度保持率を計算した。
A:伸度保持率が80%以上
B:伸度保持率50%以上80%未満
C:伸度保持率が30%以上50%未満
D:伸度保持率が30%未満、またはフィルム形状を保てない場合。
 AまたはBまたはCの場合、耐熱性が良好であり、Aの場合が最も優れている。
I.寸法安定性:
 フィルムを幅1cm、長さ15cmの短冊状に切りだし、長さ方向の両端からそれぞれ2.5cm内側に幅方向と平行な線を引き、2本の平行線間の距離L0を正確に測定した。次いでその短冊状サンプルを150℃の熱風オーブン中にて30分間熱処理し、冷却後、2本の平行線間の距離L1を正確に測定した。処理前の寸法と処理後の寸法から下記式(4)にて熱収縮率(%)を求めた。
 熱収縮率(%)=(L0-L1)/L0×100 (4)
 なお、測定は短冊の長さ方向が方向aに平行な場合、方向b方向に平行な場合、それぞれについて各10サンプル測定を実施し、それぞれの平均値でもって方向aの熱収縮率、方向bの熱収縮率とした。
 得られた方向a、方向bの熱収縮率の平均でもって、本フィルムの熱収縮率とし、以下のように判定した。熱収縮率が
 1%以下の場合:S
 1%を越えて2%以下の場合:A
 2%を越えて3%以下の場合:B
 3%を越えて5%以下の場合:C 
 5%を超える場合、またはフィルム形状を保てない場合:D
とした。SまたはAまたはBまたはCの場合、寸法安定性が良好であり、Sが最も優れている。
 また、積層構造体の寸法安定性については、積層構造体中のフィルムの方向a,方向bのそれぞれの方向について、上記と同様に積層構造体の寸法安定性の測定を行い、得られた方向a、方向bの熱収縮率の平均でもって、本積層構造体の熱収縮率とし、以下のように判定した。熱収縮率が
 1%以下の場合:S
 1%を越えて2%以下の場合:A
 2%を越えて3%以下の場合:B
 3%を越えて5%以下の場合:C
 5%を超える場合、または形状を保てない場合:D
とした。SまたはAまたはBまたはCの場合、寸法安定性が良好であり、Sが最も優れている。
J.積層性:
 フィルムの外観を目視で観察し、以下の通り判定した。
A:フローマークが確認されない
B:ごく僅かにフローマークが確認される
C:明確なフローマークが確認される。
 AまたはBの場合、積層性が良好であり、Aの場合が最も優れている。
K.層間密着性:
 フィルムの表面をJIS-K5600-5-6(1999年版)に従い、クロスカット試験を実施し、試験後にフィルムに残る以下の通り判定した。試験は10回実施し、その平均値を用いて判定した。
A:残存数が70個/100個以上である
B:残存数が30個/100個以上、70個/100個未満残る
C:残存数が30個/100個未満
 AまたはBの場合、層間密着性が良好であり、Aの場合が最も優れている。
L.表面比抵抗:
 フィルムの表面比抵抗はデジタル超高抵抗微小電流計R8340((株)アドバンテスト製)で測定を実施した。測定はフィルムの両面各面において、面内において任意の10カ所で測定を実施し、その平均値をそれぞれ求めた。得られた平均値が低い方の値でもって表面比抵抗とした。また、測定試料は23℃、65%Rhの室内で一晩放置したものを用いて測定を実施した。得られた値を用いて以下の通り判定した。Aが実用範囲である。
A:表面比抵抗が1013Ω/□以上
C:表面比抵抗が1013Ω/□未満。
 以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれら実施例に限定されるものではない。
(原料)
・結晶性ポリエステル:
 PET-1:酸成分としてテレフタル酸ジメチルを、ジオール成分としてエチレングリコールを用い、酸化ゲルマニウム(重合触媒)を得られるポリエステルペレットに対してゲルマニウム原子換算で300ppmとなるように添加し、重縮合反応を行い、固有粘度0.54ポリエチレンテレフタレートペレットを得た。得られたポリエチレンテレフタレートを160℃で6時間乾燥、結晶化させたのち、220℃、真空度0.3Torr、8時間の固相重合を行い、固有粘度0.80のポリエチレンテレフタレートを得た。なおこの樹脂のガラス転移温度TgAは83℃、融点TmA255℃、結晶融解熱量はΔHmA35J/gであった。
・熱可塑性エラストマー:
(A1)
 ポリエステル系エラストマー(東レ・デュポン社製、商品名“ハイトレル(登録商標)”2501;ポリブチレンテレフタレート系樹脂とポリテトラメチレングリコール系樹脂のブロック共重合体、融点TmBが160℃)。
(A2)
 ポリエステル系エラストマー(東レ・デュポン社製、商品名“ハイトレル(登録商標)”5557;ポリブチレンテレフタレート系樹脂とポリテトラメチレングリコール系樹脂のブロック共重合体、融点TmBが208℃)。
(A3)
 ポリエステル系エラストマー(東レ・デュポン社製、商品名“ハイトレル(登録商標)”6347;ポリブチレンテレフタレート系樹脂とポリテトラメチレングリコール系樹脂のブロック共重合体、融点TmBが215℃)。
(A4)
 ポリオレフィン系エラストマー(ダウ・ケミカル社製、商品名“エンゲージ(登録商標)”8402;ポリエチレンと1-オクテンのランダム共重合体、融点TmBが72℃)
(A5)
 ポリアミド系エラストマー(Arkema社製、商品名“PEBAX(登録商標)”5533SP01;ポリアミド12とポリテトラメチレングリコール系樹脂のブロック共重合体、融点TmBが159℃)
・粒子      
 タルク:GH-7(林化成(株)製)を使用した。長径5.8μm、アスペクト比10の板状粒子である。
(参考例1-1)
 熱可塑性エラストマーとしてA1を50質量部、およびタルク50質量部を温度265℃に加熱されたニーディングパドル混練部を1箇所設けた同方向回転タイプのベント式二軸混練押出機(日本製鋼所社製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に供給し、溶融混練後、ストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてタルクを50重量%含有するマスターペレット(MB-1)を作製した。
(実施例1-1)
 2台の単軸押出機を備えた製膜装置を用い、A層原料として180℃の温度で3時間真空乾燥した結晶性ポリエステルPET-1を第一の押出機に投入して280℃で溶融させた。B層原料としてまた120℃で6時間真空乾燥したポリエステル系エラストマーA1を第二の押出機に投入して、240℃で溶融させた。次いで、第一の押出機から供給されるA層原料を第二の押出機から供給されるB層原料の両側にそれぞれギアポンプにて計量しながら、厚み比率が、1:8:1となるよう合流させて、Tダイ口金に導入した。次いで、Tダイ口金内より、シート状に押出した積層体を、表面温度25℃に保たれたドラム上に静電印加法で密着冷却固化させて、厚み方向に交互に3層積層された積層構造を有するキャスティングシートを得た。
 続いて、該キャスティングシートを87℃の温度に加熱したロール群で予熱した後、90℃の温度の加熱ロールを用いて長手方向(縦方向)に3倍延伸を行い、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の80℃の温度の予熱ゾーンに導き、引き続き連続的に100℃の温度の加熱ゾーンで長手方向に直角な方向(幅方向)に3倍延伸した。さらに引き続いて、テンター内の熱処理ゾーン1で220℃の温度で20秒間の熱処理を施し、さらに熱処理ゾーン2で150℃の熱処理を行い、熱処理ゾーン3で100℃の温度で熱処理を行った。なお、熱処理に際し、熱処理ゾーン1-熱処理ゾーン2間で4%の弛緩処理を行った。次いで、均一に徐冷後、巻き取って、厚さ50μmの二軸延伸フィルムを得た。
 得られたフィルムの特性を評価した結果を表1-1に示す。積層性、平面性、制振性、耐熱性、寸法安定性に優れたフィルムであることが分かった。
 また、得られたフィルムと阿波製紙社製のポリエステル不織布“PURELY(商標登録)”(厚み30μm)を、金属ロールとシリコーンゴムロールとからなる熱ラミネート加工機を用いて、金属ロール側を200℃、シリコーンロール側を150℃の設定として、金属ロール側をポリエステル不織布、シリコーンロール側をフィルムとなるように重ね合わせて、線圧5kgf/cm、速度2m/minで貼り合わせて積層構造体を得た。得られた積層構造体の特性を評価した結果を表1-1に示す。制振性、耐熱性、寸法安定性に優れた積層構造体であることがわかった。
(実施例1-1~1-34)
 A層、B層の押出機に投入する原料、および積層数、層厚み比、延伸条件を表1-1~1-4の通りとした以外は実施例1と同様に厚さ50μmのフィルムを得た。なお、実施例1-14、1-24~1-27は第一の押出機から供給されるA層原料と第二の押出機から供給されるB層原料を、それぞれギアポンプにて計量しながら、スリット数9個の積層装置にて合流させて、Tダイ口金に導入した。なお、積層体とする方法は、特開2007-307893号公報〔0053〕~〔0056〕段の記載に従って行った。ここでは、スリットの長さおよび間隔は全て一定とした。得られた積層体は、A層が5層、B層が4層であり、厚み方向に交互に積層された積層構造を有しており、両表層はA層からなる。また、実施例1-15,1-28~1-31については、同様にスリット数51個の積層装置にて合流させて、Tダイ口金に導入し、得られた積層体は、A層が26層、B層が25層であり、厚み方向に交互に積層された積層構造を有しており、両表層はA層からなる。
得られたフィルムの特性を評価した結果を表1-1~1-4に示す。積層性、平面性、制振性、耐熱性、寸法安定性優れたフィルムであることが分かった。
 また得られたフィルムを用いて実施例1-1と同様に積層構造体を得た。得られた積層構造体の特性を評価した結果を表1-1~1-4に示す。制振性、耐熱性、寸法安定性に優れた積層構造体であることがわかった。
(実施例2-1~2-34)
 両表層はB層からなる構成とし、積層数、層厚み比、延伸条件を表2-1~2-4の通りとした以外は実施例1-1と同様に厚さ50μmのポリエステルフィルムを得た。得られたフィルムの特性を評価した結果を表2-1~2-4に示す。積層性、平面性、制振性、耐熱性、寸法安定性に優れたフィルムであることが分かった。
 また得られたフィルムを用いて実施例1-1と同様に積層構造体を得た。得られた積層構造体の特性を評価した結果を表2-1~2-4に示す。制振性、耐熱性、寸法安定性に優れた積層構造体であることがわかった。
(比較例1-1、2-1)
 積層数、層厚み比、延伸条件を表1-4および表2-4の通りとした以外は実施例1-1および実施例2-1と同様に厚さ50μmのポリエステルフィルムを得ようとしたが、フィルム破れが発生し、フィルムを得ることができなかった。
(比較例1-2,2-2)
 積層数、層厚み比、延伸条件を表1-4および表2-4の通りとした以外は実施例1-1および実施例2-1と同様に厚さ50μmのポリエステルフィルムを得た。得られたフィルムの特性を評価した結果を表1-4および表2-4に示す。実施例1-1および実施例2-1と比べて制振性が劣るものであった。
 また得られたフィルムを用いて実施例1-1と同様に積層構造体を得た。得られた積層構造体の特性を評価した結果を表1-4および2-4に示す。実施例1-1および実施例2-1と比べて制振性が劣るものであった。
(比較例1-3,2-3)
 積層数、層厚み比、延伸条件を表1-4および表2-4の通りとした以外は実施例1-1および実施例2-1と同様に厚さ50μmのキャスティングシートを得た。得られたシートの特性を評価した結果を表1-4および表2-4に示す。実施例1-1および実施例2-1と比べて耐熱性が劣るものであった。
 また得られたフィルムを用いて実施例1-1と同様に積層構造体を得た。得られた積層構造体の特性を評価した結果を表1-4および2-4に示す。実施例1-1および実施例2-1と比べて耐熱性が劣るものであった。
(比較例3)
 B層を形成しない(A層のみ)とした以外は表1-5の通りとして実施例1-1と同様に厚さ50μmのポリエステルフィルムを得た。得られたフィルムの特性を評価した結果を表1-5に示す。実施例と比べて制振性、が劣るものであった。
 また得られたフィルムを用いて実施例1-1と同様に積層構造体を得た。得られた積層構造体の特性を評価した結果を表1-4および2-4に示す。実施例1-1および実施例2-1と比べて制振性が劣るものであった。
(比較例4~8)
 A層を形成しない(B層のみ)とした以外は表1-5の通りとして実施例1-1と同様に厚さ50μmのキャストティングシートを得た。得られたシートの特性を評価した結果を表1-5に示す。実施例と比べて寸法安定性に劣るものであった。
 また得られたフィルムを用いて実施例1-1と同様に積層構造体の作製を行ったが、加工時のフィルムの変形が大きすぎて、またはフィルムが溶融してロールに粘着して、積層構造体を得ることができなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
 本発明では、耐熱性や寸法安定性に優れ、シリコンの汚染の懸念のない、かつ制振性に優れるフィルムを提供することができる。かかるフィルムは、銅貼り積層板、太陽電池用バックシート、粘着テープ、フレキシブルプリント基板、メンブレンスイッチ、面状発熱体、もしくはフラットケーブルなどの電気絶縁材料、コンデンサ用材料、筐体材料、自動車用材料、鉄道用材料、航空機用材料、建築材料をはじめとした制振性と耐熱性が重視されるような用途、風力発電ブレードや航空機の構造体保護用材料、医療用材料、フレキシブルデバイスに好適に使用することができる。特には本発明のフィルムは、ガラス、金属、繊維強化プラスチックからなる群から選ばれる1種以上の材料からなるシート材料と一体化されて用いられることも好ましく行われる。かかるフィルム、該フィルムに粘着層を設けた積層シートや、該フィルムとガラス、金属、繊維強化プラスチックからなる群から選ばれる1種以上の材料と一体化されてなる積層構造体を用いることで、より静粛な電子機器、自動車、鉄道、航空機、及び発電効率や耐久性の高い風力発電機を提供することができる。さらには、かかるフィルムに織布、不織布からなる群から選ばれる1種以上の材料と一体化することで、ゴワ付きや音が抑制され、装着感が良く、寸法安定性の良い医療用材料を提供することが可能となる。
1 一次粒子
2 外接直方体
 

Claims (20)

  1.  フィルム厚み方向へのラマン分光による配向測定により求められる配向パラメーターが1.5以上の層(領域I)を有し、フィルム面内でヤング率が最も小さい方向(方向b)の25℃10Hzでの方向bの損失正接をtanδbとしたとき、tanδbが0.03以上であるフィルム。
  2.  25℃10Hzでの、方向bとはフィルム面内で垂直な方向(方向a)の損失正接をtanδaとしたとき、tanδaとtanδbの比tanδa/tanδbが1/3~3/1の範囲にある請求項1に記載のフィルム。
  3.  前記配向パラメーターが1.5未満の層(領域II)を有する請求項1または2に記載のフィルム。
  4.  前記領域Iの厚みの和TI(μm)と、前記領域IIの厚みの和TII(μm)の比TII/TIが1/4~15/1の範囲にある請求項3に記載のフィルム。
  5.  方向bのフィルムのヤング率をEb(GPa)、方向bとはフィルム面内で垂直な方向(方向a)のフィルムのヤング率をEa(GPa)としたときに、EaとEbの比Ea/Ebが1/1~3/1の範囲にある請求項1~4のいずれかに記載のフィルム。
  6.  方向bの100%伸張時応力が100MPa以下である請求項1~5のいずれかに記載のフィルム。
  7.  少なくとも2層を有するフィルムであって、結晶性ポリエステルを主たる成分とする層(A層)と、熱可塑性エラストマーを主たる成分とする層(B層)を含む請求項1~6のいずれかに記載のフィルム。
  8.  前記A層の厚みの和TA(μm)と、前記B層の厚みの和TB(μm)の比TB/TAが1/4~15/1の範囲にある請求項7に記載のフィルム。
  9.  前記A層を構成する樹脂組成物の融点TmAが230℃以上280℃以下であり、前記B層を構成する樹脂組成物の融点TmBが140℃以上240℃以下である請求項7または8に記載のフィルム。
  10.  前記A層を構成する樹脂組成物の融点TmAと前記B層を構成する樹脂組成物の融点TmBの間に微少吸熱ピークを有する請求項7~9のいずれかに記載のフィルム。
  11.  前記B層中の前記熱可塑性エラストマーがポリエステル系エラストマーである請求項7~10のいずれかに記載のフィルム。
  12.  前記B層が充填材を含み、その充填材の含有率がB層を構成する樹脂組成物全体に対して1~50重量%の範囲にある請求項7~11のいずれかに記載のフィルム。
  13.  前記A層が少なくとも片側表層に存在する請求項7~12のいずれかに記載のフィルム。
  14.  前記B層が少なくとも片側表層に存在する請求項7~12のいずれかに記載のフィルム。
  15.  請求項1~14のいずれかに記載のフィルム上に粘着層を形成してなる積層シート。
  16.  請求項1~14のいずれかに記載のフィルムと、ガラス、金属、繊維強化プラスチックからなる群から選ばれる1種以上の材料とが一体化されてなる積層構造体。
  17.  風力発電機、自動車、鉄道、航空機のいずれかに用いられる請求項16に記載の積層構造体。
  18.  請求項1~14のいずれかに記載のフィルムと、織布、不織布からなる群から選ばれる1種以上の材料とが一体化されてなる積層構造体。
  19.  医療用に用いられる請求項18に記載の積層構造体。
  20.  フレキシブルデバイスに用いられる請求項1~14のいずれかに記載のフィルム。
PCT/JP2017/034567 2016-10-28 2017-09-25 フィルムおよびそれを用いてなる積層シートと積層構造体 WO2018079161A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017550639A JPWO2018079161A1 (ja) 2016-10-28 2017-09-25 フィルムおよびそれを用いてなる積層シートと積層構造体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016211462 2016-10-28
JP2016-211462 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018079161A1 true WO2018079161A1 (ja) 2018-05-03

Family

ID=62024697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034567 WO2018079161A1 (ja) 2016-10-28 2017-09-25 フィルムおよびそれを用いてなる積層シートと積層構造体

Country Status (2)

Country Link
JP (1) JPWO2018079161A1 (ja)
WO (1) WO2018079161A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100964A1 (ja) * 2018-11-15 2020-05-22 三菱ケミカル株式会社 積層体及びスタンドアップパウチ
JP7453323B2 (ja) 2022-06-03 2024-03-19 エスケーマイクロワークス 株式会社 塗装保護フィルム及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052337A (ja) * 1983-08-31 1985-03-25 東洋紡績株式会社 食品容器用積層ポリエステルフイルム
JPH07112518A (ja) * 1993-10-18 1995-05-02 Teijin Ltd 積層延伸フイルム
JPH09216302A (ja) * 1996-02-15 1997-08-19 Toray Ind Inc 食品用包装材
JP2001253032A (ja) * 2000-03-10 2001-09-18 Toyo Kohan Co Ltd 熱可塑性樹脂フィルム、熱可塑性樹脂フィルム被覆金属板およびそれを用いた缶
JP2002219774A (ja) * 2001-01-25 2002-08-06 Teijin Ltd 積層延伸ポリエステルフィルム
JP2016016064A (ja) * 2014-07-07 2016-02-01 金星製紙株式会社 食品加熱調理用包装体
JP2017043768A (ja) * 2015-08-26 2017-03-02 東レ株式会社 ポリエステルフィルムおよびそれを用いてなる積層シート

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052337A (ja) * 1983-08-31 1985-03-25 東洋紡績株式会社 食品容器用積層ポリエステルフイルム
JPH07112518A (ja) * 1993-10-18 1995-05-02 Teijin Ltd 積層延伸フイルム
JPH09216302A (ja) * 1996-02-15 1997-08-19 Toray Ind Inc 食品用包装材
JP2001253032A (ja) * 2000-03-10 2001-09-18 Toyo Kohan Co Ltd 熱可塑性樹脂フィルム、熱可塑性樹脂フィルム被覆金属板およびそれを用いた缶
JP2002219774A (ja) * 2001-01-25 2002-08-06 Teijin Ltd 積層延伸ポリエステルフィルム
JP2016016064A (ja) * 2014-07-07 2016-02-01 金星製紙株式会社 食品加熱調理用包装体
JP2017043768A (ja) * 2015-08-26 2017-03-02 東レ株式会社 ポリエステルフィルムおよびそれを用いてなる積層シート

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100964A1 (ja) * 2018-11-15 2020-05-22 三菱ケミカル株式会社 積層体及びスタンドアップパウチ
CN113015625A (zh) * 2018-11-15 2021-06-22 三菱化学株式会社 层叠体及自立袋
JPWO2020100964A1 (ja) * 2018-11-15 2021-09-30 三菱ケミカル株式会社 積層体及びスタンドアップパウチ
EP3882024A4 (en) * 2018-11-15 2021-12-29 Mitsubishi Chemical Corporation Laminate and stand-up pouch
JP7276349B2 (ja) 2018-11-15 2023-05-18 三菱ケミカル株式会社 積層体及びスタンドアップパウチ
US11731406B2 (en) 2018-11-15 2023-08-22 Mitsubishi Chemical Corporation Laminate and stand-up pouch
CN113015625B (zh) * 2018-11-15 2024-05-14 三菱化学株式会社 层叠体及自立袋
JP7453323B2 (ja) 2022-06-03 2024-03-19 エスケーマイクロワークス 株式会社 塗装保護フィルム及びその製造方法

Also Published As

Publication number Publication date
JPWO2018079161A1 (ja) 2019-09-12

Similar Documents

Publication Publication Date Title
TWI476246B (zh) 聚酯薄膜、積層薄膜及使用其之太陽能電池背板、太陽能電池
JP6260314B2 (ja) 二軸配向ポリエステルフィルム
JP5807466B2 (ja) 積層フィルムおよびそれを用いた自動車用窓ガラス
JP6686877B2 (ja) ポリエステルフィルムおよびそれを用いた電気絶縁シート、風力発電機、粘着テープ
KR20150081245A (ko) 폴리에스테르 필름, 상기 필름을 사용한 적층체, 및 상기 적층체와 실란트층을 포함하는 구성체
KR101382845B1 (ko) 이축 배향 필름 적층 보드, 전기 절연 보드 및 기구 부품
JPWO2016021345A1 (ja) 多層積層フィルム
WO2018079161A1 (ja) フィルムおよびそれを用いてなる積層シートと積層構造体
EP3438165B1 (en) Film, electrical insulation sheet using same, adhesive tape, and rotating machine
JP2010184493A (ja) 積層フィルム
JP6205868B2 (ja) 二軸配向ポリエステルフィルム
JP6225495B2 (ja) 多層積層フィルムおよびこれを用いたガラス窓部材
JP2017043768A (ja) ポリエステルフィルムおよびそれを用いてなる積層シート
JP4273855B2 (ja) 積層フィルムおよび包装フィルム
JP6015382B2 (ja) 積層フィルムならびに遮熱部材
JP2017066391A (ja) ポリエステルフィルムおよびそれを用いた電気絶縁シート、風力発電機、粘着テープ
JP5834415B2 (ja) 積層フィルムの製造方法および成型体の製造方法
JPWO2004024446A1 (ja) 二軸配向ポリエステルフィルム
WO2018142662A1 (ja) 配向ポリエステルフィルム
JP2019163450A (ja) フィルム
JP2017177350A (ja) 積層フィルム
KR20240069711A (ko) 적층 필름
JP6476795B2 (ja) 積層フィルム
JP2005254710A (ja) 積層ポリエステルフィルム
JPWO2019069758A1 (ja) 積層フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017550639

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866214

Country of ref document: EP

Kind code of ref document: A1