WO2018078842A1 - 空気調和機及び駆動装置 - Google Patents

空気調和機及び駆動装置 Download PDF

Info

Publication number
WO2018078842A1
WO2018078842A1 PCT/JP2016/082210 JP2016082210W WO2018078842A1 WO 2018078842 A1 WO2018078842 A1 WO 2018078842A1 JP 2016082210 W JP2016082210 W JP 2016082210W WO 2018078842 A1 WO2018078842 A1 WO 2018078842A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
line
current
inverter
voltage
Prior art date
Application number
PCT/JP2016/082210
Other languages
English (en)
French (fr)
Inventor
崇 山川
有澤 浩一
憲嗣 岩崎
啓介 植村
慎也 豊留
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680089711.8A priority Critical patent/CN109863685B/zh
Priority to EP16920249.6A priority patent/EP3534533B1/en
Priority to KR1020197008074A priority patent/KR102258612B1/ko
Priority to JP2018547068A priority patent/JP6824282B2/ja
Priority to US16/334,834 priority patent/US11863099B2/en
Priority to PCT/JP2016/082210 priority patent/WO2018078842A1/ja
Publication of WO2018078842A1 publication Critical patent/WO2018078842A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H9/563Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle for multipolar switches, e.g. different timing for different phases, selecting phase with first zero-crossing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/02Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for optimising the efficiency at low load

Definitions

  • the present invention relates to an air conditioner and a drive device, and more particularly, to an air conditioner and a drive device capable of switching a connection state of a coil of an electric motor.
  • connection state such as a Y connection state and a ⁇ connection state in accordance with the rotation speed (load) of the motor. For example, if it is an air conditioning load, the motor is driven in the Y-connection state under the intermediate condition that contributes to the annual power consumption and is driven in the ⁇ connection state under the rated condition. It is possible to increase the output under rated conditions that require higher air conditioning capability.
  • a connection switching unit including a semiconductor SW such as a mechanical SW (Switch) such as a relay and a contactor or a bidirectional SW is used. And a connection state can be switched by controlling a connection switching part with the signal from control parts, such as a microcomputer.
  • control parts such as a microcomputer.
  • Patent Document 1 discloses an abnormality diagnosis method for detecting an abnormality in an inverter switching element, a current detection circuit, and a winding by detecting a slope of a motor current when a pulse is applied between two phases.
  • the abnormality diagnosis method described in Patent Document 1 can detect a short circuit or the like of the winding itself, but cannot detect an abnormality such as a short circuit or an open circuit of the connection switching unit.
  • an object of the present invention is to be able to detect an abnormality in the connection switching unit.
  • An air conditioner is an air conditioner that uses a refrigeration cycle, the compressor that compresses a refrigerant used in the refrigeration cycle, a converter that generates a DC voltage, and the DC voltage.
  • a inverter that generates a three-phase AC voltage, and a plurality of coils to which the three-phase AC voltage is applied
  • an electric motor that generates a driving force for driving the compressor, and a connection state of the plurality of coils
  • a connection switching unit that switches between the first connection state and the second connection state, and a control unit that detects an abnormality of the connection switching unit.
  • a driving apparatus is a driving apparatus that drives an electric motor having a plurality of coils, a converter that generates a DC voltage, a three-phase AC voltage generated from the DC voltage, and the coils
  • An inverter applied to the plurality of coils a connection switching unit that switches a connection state of the plurality of coils between a first connection state and a second connection state, and a control unit that detects an abnormality of the connection switching unit. It is characterized by that.
  • an abnormality in the connection switching unit can be detected.
  • FIG. 1 is a block diagram schematically showing a configuration of an air conditioner according to Embodiments 1 to 4.
  • FIG. 1 is a schematic configuration diagram of an outdoor unit according to Embodiments 1 to 4.
  • FIG. 3 is a schematic diagram illustrating a first example of a connection state between an electric motor and a connection switching unit in the first embodiment. It is a block diagram which shows roughly the structure of the indoor unit in Embodiment 1 and 2.
  • FIG. (A) And (B) is the schematic which shows the hardware structural example of Embodiment 1 and 2.
  • FIG. 3 is a flowchart showing an abnormality detection sequence by the control device in the first embodiment.
  • Embodiment 1 it is the schematic which shows the 1st example of the drive signal of an inverter, an interphase electric current, and a bus current.
  • Embodiment 1 it is the schematic which shows the 2nd example of the drive signal of an inverter, an interphase electric current, and bus-line current.
  • Embodiment 1 it is the schematic which shows the 3rd example of the drive signal of an inverter, an interphase electric current, and a bus current.
  • FIG. 6 is a schematic diagram illustrating a second example of a connection state between the electric motor and the connection switching unit in the first embodiment.
  • 4 is a time chart for explaining a first timing for performing an abnormality detection sequence in the first embodiment.
  • 10 is a flowchart showing an abnormality detection sequence by the control device in the second embodiment.
  • 10 is a flowchart showing an abnormality detection sequence by the control device in the third embodiment.
  • 10 is a flowchart showing an abnormality detection sequence by a control device in a fourth embodiment.
  • FIG. 1 is a block diagram schematically showing a configuration of an air conditioner 100 using a refrigeration cycle according to the first embodiment.
  • the air conditioner 100 includes an outdoor unit 110 installed outdoors, an indoor unit 150 installed indoors, and a remote controller 160.
  • FIG. 2 is a schematic configuration diagram of the outdoor unit 110.
  • the outdoor unit 110 includes an electric motor 111, an outdoor air conditioning unit 114, and a driving device 120.
  • the electric motor 111 generates a driving force for driving a specific part included in the outdoor air-conditioning unit 114 using a plurality of coils to which the three-phase AC voltage from the driving device 120 is applied.
  • the electric motor 111 receives a three-phase AC voltage from the driving device 120 via the U-phase power line 113U, the V-phase power line 113V, and the W-phase power line 113W.
  • Motor 111 includes U-phase coil 112U connected to U-phase power line 113U, V-phase coil 112V connected to V-phase power line 113V, and W-phase coil 112W connected to W-phase power line 113W. Is provided.
  • the outdoor air conditioning unit 114 performs an outdoor operation in the refrigeration cycle.
  • the outdoor air conditioning unit 114 includes devices such as a compressor 114a, an outdoor heat exchanger 114b, and an outdoor fan 114c.
  • the compressor 114a obtains driving force from the electric motor 111 and compresses the refrigerant used in the refrigeration cycle.
  • the outdoor heat exchanger 114b performs heat exchange of the refrigerant.
  • the outdoor fan 114c is a fan for the outdoor unit 110 that blows air to the outdoor heat exchanger 114b.
  • the drive device 120 is a device for controlling each part of the outdoor unit 110 and driving the electric motor 111.
  • Drive device 120 includes a power supply 121, a reactor 122, a converter 123, an inverter 126, a connection switching unit 128, a current detection circuit 134, a control device 135, and a communication unit 136.
  • the power source 121 is an AC power source that outputs an AC voltage.
  • the converter 123 receives an AC voltage from the power supply 121 via the reactor 122 and generates a DC voltage by performing rectification and smoothing on the AC voltage.
  • Converter 123 includes bridge diodes 124A to 124D that rectify an AC voltage and a smoothing capacitor 125 that smoothes an output voltage.
  • Inverter 126 receives a DC voltage input from converter 123, generates a three-phase AC voltage from the DC voltage, and outputs the generated three-phase AC voltage to electric motor 111.
  • the inverter 126 includes a first U-phase switching element 126Ua, a second U-phase switching element 126Ub, a first V-phase switching element 126Va, a second V-phase switching element 126Vb, a first W-phase switching element 126Wa, and a first Two W-phase switching elements 126Wb are connected in a U-phase, V-phase, and W-phase three-phase bridge.
  • the first U-phase switching element 126Ua corresponds to the U-phase upper arm
  • the second U-phase switching element 126Ub corresponds to the U-phase lower arm
  • First U-phase switching element 126Ua and second U-phase switching element 126Ub are connected to U-phase power line 113U.
  • the first U-phase switching element 126Ua is connected in parallel with the first U-phase diode 127Ua
  • the second U-phase switching element 126Ub is connected in parallel with the second U-phase diode 127Ub. Yes.
  • the first V-phase switching element 126Va corresponds to the V-phase upper arm
  • the second V-phase switching element 126Vb corresponds to the V-phase lower arm
  • the first V-phase switching element 126Va and the second V-phase switching element 126Vb are connected to the V-phase power line 113V.
  • a first V-phase diode 127Va is connected in parallel to the first V-phase switching element 126Va
  • a second V-phase diode 127Vb is connected in parallel to the second V-phase switching element 126Vb. Yes.
  • the first W-phase switching element 126Wa corresponds to the W-phase upper arm
  • the second W-phase switching element 126Wb corresponds to the W-phase lower arm
  • First W-phase switching element 126Wa and second W-phase switching element 126Wb are connected to W-phase power line 113W.
  • the first W-phase switching element 126Wa is connected in parallel with the first W-phase diode 127Wa
  • the second W-phase switching element 126Wb is connected in parallel with the second W-phase diode 127Wb. Yes.
  • Each of the switching elements 126Ua to 126Wb can be configured by a transistor such as an IGBT (insulated gate transistor).
  • the switching elements 126Ua to 126Wb are turned on and off by a drive signal DS from the control device 135.
  • the connection switching unit 128 switches the connection state of the plurality of coils included in the electric motor 111 between the first connection state and the second connection state.
  • the second connection state is a state in which the line voltage of the inverter 126 is lower than that in the first connection state.
  • the first connection state is a Y connection state
  • the second connection state is a ⁇ connection state.
  • the connection switching unit 128 includes a U-phase switch 129U, a V-phase switch 129V, and a W-phase switch 129W.
  • U-phase switch 129U is a switching unit that switches the connection destination of U-phase coil 112U.
  • V-phase switch 129V is a switching unit that switches the connection destination of V-phase coil 112V.
  • W-phase switch 129W is a switching unit that switches the connection destination of W-phase coil 112W.
  • FIG. 3 is a schematic diagram illustrating a connection state between the electric motor 111 and the connection switching unit 128.
  • One end 112Ua of the U-phase coil 112U is connected to the U-phase power line 113U, and the other end 112Ub of the U-phase coil 112U is connected to the common contact 130U of the U-phase switch 129U.
  • the first switching contact 131U of the U-phase switch 129U is connected to the first switching contact 131V of the V-phase switch 129V and the first switching contact 131W of the W-phase switch 129W.
  • the second switching contact 132U of the U-phase switch 129U is connected to the V-phase power line 113V.
  • the U-phase switch 129U can switch the connection with the common contact 130U between the first switching contact 131U and the second switching contact 132U.
  • One end 112Va of the V-phase coil 112V is connected to the V-phase power line 113V, and the other end 112Vb of the V-phase coil 112V is connected to the common contact 130V of the V-phase switch 129V.
  • the first switching contact 131V of the V-phase switch 129V is connected to the first switching contact 131U of the U-phase switch 129U and the first switching contact 131W of the W-phase switch 129W.
  • the second switching contact 132V of the V-phase switch 129V is connected to the W-phase power line 113W.
  • the V-phase switch 129V can switch the connection with the common contact 130V between the first switching contact 131V and the second switching contact 132V.
  • One end 112Wa of the W-phase coil 112W is connected to the W-phase power line 113W, and the other end 112Wb of the W-phase coil 112W is connected to the common contact 130W of the W-phase switch 129W.
  • the first switching contact 131W of the W-phase switch 129W is connected to the first switching contact 131U of the U-phase switch 129U and the first switching contact 131V of the V-phase switch 129V.
  • Second switching contact 132W of W-phase switch 129W is connected to U-phase power line 113U.
  • the W-phase switch 129W can switch the connection with the common contact 130W between the first switching contact 131W and the second switching contact 132W.
  • connection switching unit 128 Since the connection switching unit 128 is configured as described above, the common contact 130U and the first switching contact 131U are connected in the U-phase switch 129U, and the common contact 130V and the first switching contact 131V are connected in the V-phase switch 129V. And connecting the common contact 130W and the first switching contact 131W in the W-phase switch 129W to connect the motor 111 to the other end 112Ub of the U-phase coil 112U and the other end 112Vb and W of the V-phase coil 112V.
  • the Y-connection state in which the other end 112Wb of the phase coil 112W is connected can be achieved.
  • the common contact 130U and the second switching contact 132U are connected in the U-phase switch 129U
  • the common contact 130V and the second switching contact 132V are connected in the V-phase switch 129V
  • the common contact 130W in the W-phase switch 129W.
  • the one end 112Ua of the U-phase coil 112U and the other end 112Wb of the W-phase coil 112W are connected to the U-phase power line 113U, and one end 112Va of the V-phase coil 112V and The other end 112Ub of the U-phase coil 112U is connected to the V-phase power line 113V, and one end 112Wa of the W-phase coil 112W and the other end 112Vb of the V-phase coil 112V can be in a ⁇ connection state connected to the W-phase power line 113W. .
  • the U-phase switch 129U, the V-phase switch 129V, and the W-phase switch 129W use the switching signals CSU, CSV, CSW from the control device 135 to connect the common contacts 130U to 130C to the first switching contacts 131U to 131W.
  • the second switching contacts 132U to 132W can be individually switched.
  • the U-phase switch 129U, the V-phase switch 129V, and the W-phase switch 129W are described as c-contact switches, these are not limited to such examples.
  • the U-phase switch 129U, the V-phase switch 129V, and the W-phase switch 129W may be any switches that can be opened and closed in both directions.
  • the U-phase switch 129U, the V-phase switch 129V, and the W-phase switch 129W may be configured by combining a contact switches or b contact switches, or may be semiconductor switches.
  • the U-phase switch 129U, the V-phase switch 129V, and the W-phase switch 129W preferably have low conduction loss when turned on, and a mechanical switch such as a relay or a contactor can be used.
  • a switching element to which a WBG (Wide Band Gap) semiconductor such as SiC or GaN is applied as these switches the on-resistance is small, and the element heat generation can be suppressed with low loss.
  • WBG Wide Band Gap
  • the Y-connection state is adopted, so that loss on the light load (Y connection) side can be reduced, and the contribution of the light load can be reduced. This is suitable for the high air conditioner 100.
  • the shunt resistor 133 converts the current flowing through the buses L1 and L2 when the inverter 126 is switched into a voltage proportional to the current and transmits the voltage to the current detection circuit 134.
  • the current detection circuit 134 is a current detection unit that detects the current value of the current on the input side of the inverter 126. Although the current detection circuit 134 detects the current value of the bus current (input current) of the inverter 126 in the first embodiment, the detection of the current value is not limited to such an example. For example, the current value of the current on the input side of the inverter 126 may be calculated from the phase current of the inverter 126.
  • the control device 135 is a control unit that controls each unit of the outdoor unit 110.
  • the control device 135 controls the outdoor air conditioning unit 114, the inverter 126, and the connection switching unit 128.
  • the control device 135 detects an abnormality in the connection switching unit 128.
  • the control device 135 controls the inverter 126 and the connection switching unit 128 to detect an abnormality in the connection switching unit 128 based on the current value detected by the current detection circuit 134. A method for detecting an abnormality in the control device 135 will be described later.
  • the control device 135 detects an abnormality in the connection switching unit 128, the control device 135 notifies the indoor unit 150 of the abnormality detection via the communication unit 136.
  • the control device 135 can individually control the U-phase switch 129U, the V-phase switch 129V, and the W-phase switch 129W.
  • the control device 135 includes a U-phase control line 135U for controlling the U-phase switch 129U, a V-phase control line 135V for controlling the V-phase switch 129V, and a W-phase for controlling the W-phase switch 129W.
  • the control line 135W is connected to the connection switching unit 128 by three control lines. Then, control device 135 can control switching of U-phase switch 129U by transmitting U-phase switching signal CSU for controlling U-phase switch 129U from U-phase control line 135U to U-phase switch 129U. it can.
  • control device 135 transmits V phase switching signal CSV from V phase control line 135V to V phase switch 129V, and W phase switching signal CSW is transmitted from W phase control line 135W to W phase switch 129W.
  • V phase switching signal CSV from V phase control line 135V to V phase switch 129V
  • W phase switching signal CSW is transmitted from W phase control line 135W to W phase switch 129W.
  • the communication unit 136 communicates with the indoor unit 150.
  • the communication unit 136 transmits a notification signal indicating that an abnormality of the connection switching unit 128 has been detected to the indoor unit 150 in accordance with an instruction from the control device 135.
  • the communication unit 136 performs communication using a power line.
  • the communication unit 136 performs communication using the communication line. Note that the outdoor unit 110 and the indoor unit 150 can be connected using a wireless or dedicated cable or the like, and the communication unit 136 may perform communication using such a connection.
  • FIG. 4 is a block diagram schematically showing the configuration of the indoor unit 150 in the first embodiment.
  • the indoor unit 150 includes an indoor air conditioning unit 151, a first communication unit 152, a second communication unit 153, a display unit 154, and a control unit 155.
  • the indoor air conditioning unit 151 performs an indoor operation in the refrigeration cycle.
  • the indoor air conditioning unit 151 includes devices such as an indoor heat exchanger 151a and an indoor fan 151b.
  • the indoor heat exchanger 151a performs heat exchange of the refrigerant.
  • the indoor fan 151b is a fan for the indoor unit 150 that blows air to the indoor heat exchanger 151a.
  • the first communication unit 152 performs communication with the outdoor unit 110.
  • the 2nd communication part 153 communicates between the remote control 160 or the smart phone 161 as a user terminal.
  • the display unit 154 displays contents instructed by the control unit 155.
  • the control unit 155 controls each unit of the indoor unit 150.
  • the control unit 155 notifies the user that an abnormality in the connection switching unit 128 has been detected.
  • the control unit 155 performs notification to the user by performing at least one of display on the display unit 154, display on the remote controller 160, and display on the smartphone 161.
  • control unit 155 instructs the display unit 154 to display on the display unit 154 that an abnormality in the connection switching unit 128 has been detected.
  • control unit 155 causes the second communication unit 153 to transmit a specific signal indicating that the abnormality of the connection switching unit 128 is detected to the remote control 160, thereby causing the remote control 160 to detect the abnormality of the connection switching unit 128. Can be displayed to indicate that has been detected.
  • the second communication unit 153 can be configured by a communication interface using infrared rays, for example.
  • control unit 155 causes the second communication unit 153 to transmit notification data indicating that an abnormality of the connection switching unit 128 is detected to the smartphone 161, so that the smartphone 161 has an abnormality in the connection switching unit 128.
  • a display indicating that it has been detected can be performed.
  • the second communication unit 153 can be configured by a communication interface of a wireless LAN (Local Area Network).
  • the remote controller 160 functions as an input receiving unit that receives input of various instructions. For example, the remote controller 160 receives an input for starting the operation of the air conditioner 100.
  • the smartphone 161 may function as an input reception unit.
  • a part or all of the control device 135 of the outdoor unit 110 and the control unit 155 of the indoor unit 150 described above are stored in the memory 10 and the memory 10 as shown in FIG. It can be configured with a processor 11 such as a CPU (Central Processing Unit) that executes the program being executed.
  • a processor 11 such as a CPU (Central Processing Unit) that executes the program being executed.
  • Such a program may be provided through a network, or may be provided by being recorded on a recording medium.
  • control device 135 and the control unit 155 may include a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, and an ASIC. (Application Specific Integrated Circuits) or FPGA (Field Programmable Gate Array) or the like.
  • FIG. 6 is a flowchart showing an abnormality detection sequence by control device 135 in the first embodiment.
  • the connection switching unit 128 is in the Y connection state or the ⁇ connection state.
  • the control device 135 sets the current value detected by the current detection circuit 134 as the first current value (S10). For example, the control device 135 supplies the drive signal DS to the inverter 126 so as to turn on only the first U-phase switching element 126Ua and the second V-phase switching element 126Vb, so that the U-phase power line 113U and the V-phase are turned on. A voltage is applied only to the power line 113V. At this time, for example, as shown in FIG.
  • connection switching unit 128 if the connection switching unit 128 is in the Y-connection state, if there is no abnormality in the connection switching unit 128, current flows in the U-phase coil 112U and the V-phase coil 112V. Flowing. The current value of the bus current at this time is detected as the first current value.
  • the control device 135 sets the current value detected by the current detection circuit 134 as the second current value (S11). For example, the control device 135 supplies the drive signal DS to the inverter 126 so as to turn on only the first V-phase switching element 126Va and the second W-phase switching element 126Wb, so that the V-phase power line 113V and the W-phase are turned on. A voltage is applied only to the power line 113W. At this time, for example, as shown in FIG.
  • connection switching unit 128 if the connection switching unit 128 is in the Y-connection state, if there is no abnormality in the connection switching unit 128, current is supplied to the V-phase coil 112V and the W-phase coil 112W. Flowing. The current value of the bus current at this time is detected as the second current value.
  • the control device 135 sets the current value detected by the current detection circuit 134 as the third current value (S12). For example, the control device 135 supplies the drive signal DS to the inverter 126 so that only the first W-phase switching element 126Wa and the second U-phase switching element 126Ub are turned on, so that the W-phase power line 113W and the U-phase are turned on. A voltage is applied only to the power line 113U. At this time, for example, as shown in FIG.
  • connection switching unit 128 if the connection switching unit 128 is in the Y connection state, if there is no abnormality in the connection switching unit 128, current flows in the W-phase coil 112 ⁇ / b> W and the U-phase coil 112 ⁇ / b> U. Flowing. The current value of the bus current at this time is detected as the third current value.
  • control apparatus 135 detects the presence or absence of abnormality of the connection switching part 128 by comparing a 1st electric current value, a 2nd electric current value, and a 3rd electric current value (S13).
  • a method for detecting the presence / absence of abnormality of the connection switching unit 128 by the control device 135 will be described with reference to FIGS.
  • connection switching unit 128 is in the Y-connection state as shown in FIG. 2 and the connection switching unit 128 has no abnormality will be described with reference to FIG.
  • symbols shown in FIG. 7 will be described.
  • Symbol UP indicates the driving signal DS of the first U-phase switching element 126Ua
  • symbol VP indicates the driving signal DS of the first V-phase switching element 126Va
  • symbol WP indicates the first W-phase switching element 126Wa.
  • the drive signal DS is shown.
  • Symbol UN indicates the drive signal DS for the second U-phase switching element 126Ub
  • symbol VN indicates the drive signal DS for the second V-phase switching element 126Vb
  • symbol WN indicates the second W-phase switching element.
  • a drive signal DS of the element 126Wb is shown.
  • the symbol Iu indicates the current value of the U-phase power line 113U as a positive value in the direction from the inverter 126 to the motor 111
  • the symbol Iv indicates the current value of the V-phase power line 113V as the direction from the inverter 126 to the motor 111. It is shown as a positive value
  • symbol Iw shows the current value of W-phase power line 113W as a positive value in the direction from inverter 126 to electric motor 111.
  • the symbol I indicates the current value of the bus current detected by the current detection circuit 134.
  • the first W-phase switching element 126Wa When the first W-phase switching element 126Wa is turned on and the second U-phase switching element 126Ub is turned on at time t3, a current flows through the W-phase coil 112W and the U-phase coil 112U, and the current detection circuit At 134, the current is detected as a third current value.
  • the first current value, the second current value, and the third current value may be peak values or average values.
  • the first current value, the second current value, and the third current value are substantially the same value.
  • FIG. 8 shows a case where the U-phase switch 129U has an open failure.
  • the symbols shown in FIG. 8 are the same as those in FIG.
  • the U-phase switch 129U is opened. Then, no current flows through the U-phase coil 112U and the V-phase coil 112V. Therefore, the current detection circuit 134 does not detect the first current value.
  • the first V-phase switching element 126Va is turned on and the second W-phase switching element 126Wb is turned on at time t5
  • a current flows through the V-phase coil 112V and the W-phase coil 112W
  • the current detection circuit At 134, the current is detected as a second current value.
  • the current detection circuit 134 does not detect the third current value. Therefore, as shown in FIG. 8, when the connection switching unit 128 has an open failure, any one of the first current value, the second current value, and the third current value is not detected.
  • FIG. 9 shows a case where the U-phase switch 129U has caused a short-circuit failure on the second switching contact 132U side as shown in FIG.
  • the symbols shown in FIG. 9 are the same as those in FIG.
  • the U-phase switch 129U If the switching contact 132U is short-circuited, current flows through the U-phase coil 112U, but no current flows through the V-phase coil 112V. Therefore, the current detection circuit 134 detects the current value when the current flows only through the U-phase coil 112U as the first current value.
  • the current detection circuit 134 detects the current value when the current flows through the U-phase coil 112U, the V-phase coil 112V, and the W-phase coil 112W as the third current value. Therefore, as shown in FIG. 9, when there is a short circuit failure in the connection switching unit 128, at least one of the first current value, the second current value, and the third current value is different from the other one. Detected as different values.
  • control device 135 compares the first current value, the second current value, and the third current value, for example, so that the absolute value of these differences falls within a predetermined threshold range. Therefore, it can be determined that there is no abnormality in the connection switching unit 128, and when the absolute value of these differences exceeds a predetermined threshold range or when the current value cannot be detected, the connection is switched. It can be determined that the switching unit 128 is abnormal.
  • the drive signal DS to the inverter 126 is a pulse signal.
  • the current detection circuit 134 can generate a U-phase signal.
  • the current value depending on the resistance can be detected without depending on the inductance of the coil 112U, the V-phase coil 112V, and the W-phase coil 112W. In this case, it is desirable that the first current value, the second current value, and the third current value are average values.
  • a voltage is applied to U-phase power line 113U and V-phase power line 113V to detect the first current value, and voltage is applied to V-phase power line 113V and W-phase power line 113W. Is applied to detect the second current value, and the third current value is detected by applying a voltage to the W-phase power line 113W and the U-phase power line 113U. It is not limited to such an example. For example, any one of the U-phase power line 113U, the V-phase power line 113V, and the W-phase power line 113W is a first line, the other is a second line, and the remaining is a third line.
  • the inverter 126 applies a voltage only to the first line and the second line, the first current value is detected, and the inverter 126 applies a voltage only to the second line and the third line.
  • the second current value may be detected, and the inverter 126 may apply a voltage only to the third line and the first line to detect the third current value.
  • the coil (112U, 112V, 112W) having one end (112Ua, 112Va, 112Wa) connected to the first line becomes the first coil, and the one end (112Ua, 112Va, 112Wa) is connected to the second line.
  • the coil (112U, 112V, 112W) having one end (112Ua, 112Va, 112Wa) connected to the third wire is the third coil.
  • the switches (129U, 129V, 129W) for switching the connection destination of the other end (112Ub, 112Vb, 112Wb) of the first coil serve as the first switching unit, and the other end (112Ub, 112Vb, 112Wb) of the second coil.
  • the control device 135 when the control device 135 detects an abnormality in the connection switching unit 128, the control device 135 can notify the user and can take action according to the failure mode. For example, when the connection switching unit 128 has an open failure, the control device 135 stops (stops) the operation of the air conditioner 100. Moreover, the control apparatus 135 drives the air conditioner 100 by Y connection, when the connection switching part 128 has a short circuit failure by the switching contact of the Y connection side. Furthermore, the control device 135 drives the air conditioner 100 with the ⁇ connection when the connection switching unit 128 is short-circuited at the switching contact on the ⁇ connection side. By driving in this way, the air conditioner 100 can wait for repair by the support while continuing operation.
  • the control device 135 performs the abnormality detection sequence.
  • the connection switching unit 128 breaks down, an abnormal connection state occurs, and other circuits may also break down due to overcurrent or excessive heat generation.
  • the compressor 114a may be stalled. For this reason, it is desirable that the abnormality detection sequence by the control device 135 is performed before the compressor 114a is started.
  • the indoor fan 151b starts to be driven (T01), and the outdoor fan of the outdoor unit 110 is started.
  • the drive of 114c is started (T02), and the compressor 114a of the outdoor unit 110 is driven (T04).
  • the remote control 160 will transmit a driving
  • the abnormality detection sequence may be performed at any timing as long as it is before the start of the compressor 114a. However, in order to make it difficult for noise to be detected, the abnormality detection sequence should be performed after the indoor fan 151b is started. In addition, it is more desirable to be performed after the outdoor fan 114c is started to be driven. By doing in this way, the sound which generate
  • an operation instruction signal from the remote controller 160 is input to the indoor unit 150 (T10), driving of the indoor fan 151b is started (T12), and the outdoor fan 114c of the outdoor unit 110 is started.
  • driving is started (T13) and the compressor 114a of the outdoor unit 110 is driven (T14)
  • an abnormality detection sequence is performed immediately after the operation instruction signal from the remote controller 160 is input to the indoor unit 150. Also good. That is, the abnormality detection sequence may be performed in response to the remote controller 160 receiving an input for starting the operation of the air conditioner 100 from the user. In this way, an abnormal state can be detected and notified while the user is gazing at the remote controller 160 or the indoor unit 150.
  • an abnormality in the connection switching unit 128 can be easily detected.
  • the air conditioner 200 according to Embodiment 2 includes an outdoor unit 210, an indoor unit 150, and a remote controller 160.
  • the indoor unit 150 and the remote controller 160 of the air conditioner 200 according to Embodiment 2 are the same as the indoor unit 150 and the remote controller 160 of Embodiment 1.
  • the outdoor unit 210 according to Embodiment 2 includes an electric motor 111, an outdoor air conditioning unit 114, and a drive device 220.
  • Electric motor 111 and outdoor air conditioning unit 114 of outdoor unit 210 according to Embodiment 2 are the same as electric motor 111 and outdoor air conditioning unit 114 of Embodiment 1.
  • the driving device 220 includes a power source 121, a reactor 122, a converter 123, an inverter 126, a connection switching unit 128, a shunt resistor 133, a current detection circuit 134, a control device 235, and a communication unit. 136.
  • the driving device 220 in the second embodiment is the same as the driving device 120 in the first embodiment except for the control device 235.
  • the control device 235 in the second embodiment is a control unit that controls each unit of the outdoor unit 210.
  • the control device 235 particularly controls the outdoor air conditioning unit 114, the inverter 126, and the connection switching unit 128.
  • the control device 235 in the second embodiment is different from the control device 135 in the first embodiment in a sequence for controlling the inverter 126 and the connection switching unit 128 to detect an abnormality in the connection switching unit 128.
  • FIG. 13 is a flowchart showing an abnormality detection sequence by the control device 235 according to the second embodiment.
  • control device 235 sets the connection switching unit 128 to the Y-connection state, and applies a voltage to only the U-phase power line 113U and the V-phase power line 113V, and the current value detected by the current detection circuit 134 is the first value.
  • the current value is set (S20).
  • the control device 235 switches the U-phase switch 129U of the connection switching unit 128 to the second switching contact 132U side and applies a current only to the U-phase power line 113U and the V-phase power line 113V.
  • the current value detected by the circuit 134 is set as a second current value (S21).
  • the control device 235 transmits the U-phase switching signal CSU to the connection switching unit 128 via the U-phase control line 135U, thereby switching the U-phase switch 129U to the second switching contact 132U side.
  • control device 235 provides the drive signal DS to the inverter 126 to turn on only the first U-phase switching element 126Ua and the second V-phase switching element 126Vb, so that the U-phase power line 113U and the V-phase are turned on. A voltage is applied only to the power line 113V.
  • control device 235 determines whether or not there is an abnormality in U-phase switch 129U by comparing the first current value and the second current value (S22).
  • step S20 if there is no abnormality in U-phase switch 129U, a current flows through U-phase coil 112U and V-phase coil 112V.
  • step S21 if there is no abnormality in U-phase switch 129U, a current flows in U-phase coil 112U. For this reason, the first current value should be about half of the second current value. Therefore, control device 235 can determine that there is no abnormality in U-phase switch 129U when the first current value and the second current value are different values. Note that the control device 235 determines that the first current value and the second current value are different values based on whether or not the absolute value of the difference between the two exceeds a predetermined threshold value. be able to.
  • the control device 235 sets the current value detected by the current detection circuit 134 to the third value. (S23).
  • the control device 235 switches the V-phase switch 129V of the connection switching unit 128 to the second switching contact 132V side and applies a voltage only to the V-phase power line 113V and the W-phase power line 113W to detect current.
  • the current value detected by the circuit 134 is set as a fourth current value (S24).
  • the control device 235 transmits the V-phase switching signal CSV to the connection switching unit 128 via the V-phase control line 135V, thereby switching the V-phase switch 129V to the second switching contact 132V.
  • control device 235 provides the drive signal DS to the inverter 126 to turn on only the first V-phase switching element 126Va and the second W-phase switching element 126Wb, so that the V-phase power line 113V and the W-phase are turned on. A voltage is applied only to the power line 113W.
  • control device 235 compares the third current value with the fourth current value to determine whether or not the V-phase switch 129V is abnormal (S25).
  • step S23 if there is no abnormality in the V-phase switch 129V, a current flows through the V-phase coil 112V and the W-phase coil 112W.
  • step S25 if there is no abnormality in the V-phase switch 129V, a current flows through the V-phase coil 112V. Therefore, control device 235 can determine that there is no abnormality in V-phase switch 129V when the third current value and the fourth current value are different values. This determination method is the same as in step S22.
  • control device 235 sets the connection switching unit 128 to the Y-connection state and applies the current value detected by the current detection circuit 134 to the fifth when the voltage is applied only to the W-phase power line 113W and the U-phase power line 113U. (S26).
  • the control device 235 switches the W-phase switch 129W of the connection switching unit 128 to the second switching contact 132W side, applies a voltage only to the W-phase power line 113W and the U-phase power line 113U, and detects the current detection circuit.
  • the current value detected in 134 is set as a sixth current value (S27).
  • the control device 235 transmits the W-phase switching signal CSW to the connection switching unit 128 via the W-phase control line 135W, thereby switching the W-phase switch 129W to the second switching contact 132W side.
  • control device 235 provides the drive signal DS to the inverter 126 to turn on only the first W-phase switching element 126Wa and the second U-phase switching element 126Ub, thereby enabling the W-phase power line 113W and the U-phase.
  • a voltage is applied only to the power line 113U.
  • control device 235 determines whether or not W-phase switch 129W is abnormal by comparing the fifth current value and the sixth current value (S28).
  • step S26 if there is no abnormality in W-phase switch 129W, a current flows through W-phase coil 112W and U-phase coil 112U.
  • step S27 if there is no abnormality in W-phase switch 129W, a current flows through W-phase coil 112W. Therefore, control device 235 can determine that there is no abnormality in W-phase switch 129W when the fifth current value and the sixth current value are different values. This determination method is the same as in step S22.
  • a voltage is applied to the U-phase power line 113U and the V-phase power line 113V to detect the first current value and the second current value, and the V-phase power line 113V and W A voltage is applied to phase power line 113W to detect a third current value and a fourth current value, and a voltage is applied to W phase power line 113W and U phase power line 113U to obtain a fifth current value and a fourth current value.
  • the current value of 6 is detected, the present embodiment is not limited to such an example.
  • any one of the U-phase power line 113U, the V-phase power line 113V, and the W-phase power line 113W is a first line, the other is a second line, and the remaining is a third line.
  • the inverter 126 applies a voltage only to the first line and the second line, and the first current value and the second current value are detected, and the inverter 126 detects only the second line and the third line.
  • the third current value and the fourth current value are detected by applying a voltage to the inverter 126, and the inverter 126 applies the voltage only to the third line and the second line, and the fifth current value and the sixth current value are detected. May be detected.
  • the coil (112U, 112V, 112W) having one end (112Ua, 112Va, 112Wa) connected to the first line becomes the first coil, and the one end (112Ua, 112Va, 112Wa) is connected to the second line.
  • the coil (112U, 112V, 112W) having one end (112Ua, 112Va, 112Wa) connected to the third wire is the third coil.
  • the switches (129U, 129V, 129W) for switching the connection destination of the other end (112Ub, 112Vb, 112Wb) of the first coil serve as the first switching unit, and the other end (112Ub, 112Vb, 112Wb) of the second coil.
  • an abnormality in the connection switching unit 128 can be detected more accurately.
  • the present invention is not limited to the first and second embodiments described above.
  • the flow shown in FIG. 6 is performed in one of the Y connection state and the ⁇ connection state, but for example, in either the Y connection state or the ⁇ connection state, FIG.
  • the flow shown in FIG. 6 is performed on the other hand, whereby the abnormality of the connection switching unit 128 can be detected more accurately.
  • the current value detected in step S10 is the fourth current value
  • the current value detected in step S11 is the fifth current value
  • the first threshold value and the second threshold value are prepared as the threshold values used in step S13 in FIG. 6, and the control device 135 determines that the absolute value of the difference is the first threshold value.
  • the control device 135 determines that the absolute value of the difference is the first threshold value.
  • it is within the range of the threshold value of 1 it is determined that the connection switching unit 128 is normal, and when the absolute value of the difference exceeds the second threshold value, it is determined that the connection switching unit 128 is abnormal.
  • the absolute value of the difference exceeds the first threshold and is equal to or less than the second threshold, the flow shown in FIG. 6 can be performed in the other state.
  • the flow shown in FIG. 13 may be performed.
  • the air conditioner 300 according to Embodiment 3 includes an outdoor unit 310, an indoor unit 150, and a remote controller 160.
  • Indoor unit 150 and remote controller 160 of air conditioner 300 according to Embodiment 3 are the same as indoor unit 150 and remote controller 160 of Embodiment 1.
  • the outdoor unit 310 according to Embodiment 3 includes an electric motor 111, an outdoor air conditioning unit 114, and a drive device 320.
  • Electric motor 111 and outdoor air-conditioning unit 114 of outdoor unit 310 according to Embodiment 3 are the same as electric motor 111 and outdoor air-conditioning unit 114 of Embodiment 1.
  • the drive device 320 in the third embodiment includes a power supply 121, a reactor 122, a converter 123, an inverter 126, a connection switching unit 128, a shunt resistor 133, a current detection circuit 134, a control device 335, and a communication unit. 136.
  • the drive device 320 in the third embodiment is the same as the drive device 120 in the first embodiment except for the control device 335.
  • the control device 335 in the third embodiment is a control unit that controls each unit of the outdoor unit 310.
  • the control device 335 particularly controls the outdoor air conditioning unit 114, the inverter 126, and the connection switching unit 128.
  • the control device 335 in the third embodiment is different from the control device 135 in the first embodiment in a sequence for controlling the inverter 126 and the connection switching unit 128 to detect an abnormality in the connection switching unit 128.
  • FIG. 14 is a flowchart illustrating an abnormality detection sequence by the control device 335 according to the third embodiment.
  • the connection switching unit 128 is in the Y connection state or the ⁇ connection state.
  • control device 335 applies the current value detected by current detection circuit 134 when a voltage is applied so that current flows only in the direction from U-phase power line 113U to V-phase power line 113V and W-phase power line 113W. 1 (S30). For example, control device 335 turns on only first U-phase switching element 126Ua, second V-phase switching element 126Vb, and second W-phase switching element 126Wb by providing drive signal DS to inverter 126. Thus, a voltage is applied so that current flows only in the direction from the U-phase power line 113U to the V-phase power line 113V and the W-phase power line 113W. At this time, for example, as shown in FIG.
  • connection switching unit 128 if the connection switching unit 128 is in the Y-connection state, the U-phase coil 112U, the V-phase coil 112V, and the W-phase can be used if there is no abnormality in the connection switching unit 128.
  • a current flows through the coil 112W.
  • the current value of the bus current at this time is detected as the first current value.
  • control device 335 applies the current value detected by current detection circuit 134 when a voltage is applied so that current flows only in the direction from V-phase power line 113V to U-phase power line 113U and W-phase power line 113W.
  • the second current value is set (S31).
  • control device 335 turns on only first V-phase switching element 126Va, second U-phase switching element 126Ub, and second W-phase switching element 126Wb by providing drive signal DS to inverter 126.
  • a voltage is applied so that current flows only in the direction from the V-phase power line 113V to the U-phase power line 113U and the W-phase power line 113W.
  • connection switching unit 128 if the connection switching unit 128 is in the Y-connection state, the U-phase coil 112U, the V-phase coil 112V, and the W-phase can be used if there is no abnormality in the connection switching unit 128.
  • a current flows through the coil 112W.
  • the current value of the bus current at this time is detected as the second current value.
  • control device 335 applies the current value detected by current detection circuit 134 when a voltage is applied so that current flows only in the direction from W-phase power line 113W to U-phase power line 113U and V-phase power line 113V.
  • the third current value is set (S32).
  • control device 335 turns on only first W-phase switching element 126Wa, second U-phase switching element 126Ub, and second V-phase switching element 126Vb by providing drive signal DS to inverter 126.
  • a voltage is applied so that current flows only in the direction from the W-phase power line 113W to the U-phase power line 113U and the V-phase power line 113V.
  • connection switching unit 128 if the connection switching unit 128 is in the Y-connection state, the U-phase coil 112U, the V-phase coil 112V, and the W-phase can be used if there is no abnormality in the connection switching unit 128.
  • a current flows through the coil 112W.
  • the current value of the bus current at this time is detected as the third current value.
  • control apparatus 335 detects the presence or absence of abnormality of the connection switching part 128 by comparing a 1st electric current value, a 2nd electric current value, and a 3rd electric current value (S33).
  • the method for comparison here is the same as in the first embodiment.
  • the connection switching unit 128 if the connection switching unit 128 is in the Y-connection state, the first current value, the second current value, and the third current value are determined if there is no abnormality in the connection switching unit 128.
  • the current value is the same value (normal value).
  • the U-phase switch 129U has caused an open failure, no current flows through the U-phase coil 112U, the V-phase coil 112V, and the W-phase coil 112W in step S30. Therefore, the current detection circuit 134 does not detect the first current value.
  • step S31 current flows through the V-phase coil 112V and W-phase coil 112W, but no current flows through the U-phase coil 112U.
  • the second current value is 3/4 of the normal value.
  • step S32 current flows through the V-phase coil 112V and the W-phase coil 112W, but no current flows through the U-phase coil 112U.
  • the third current value is 3/4 of the normal value.
  • step S30 a current flows through the U-phase coil 112U, but the V-phase coil 112V and the W-phase coil 112W. Almost no current flows through.
  • the first current value is 3/2 of the normal value.
  • the second current value is 9/4 of the normal value. Furthermore, when the U-phase switch 129U has caused a short-circuit failure on the second switching contact 132U side, in step S32, current flows only in the V-phase coil 112V and the W-phase coil 112W. Then, the third current value is 3/4 of the normal value.
  • control device 335 compares the first current value, the second current value, and the third current value, for example, so that the absolute value of these differences is within a predetermined threshold range. Therefore, it can be determined that there is no abnormality in the connection switching unit 128, and when the absolute value of these differences exceeds a predetermined threshold range or when the current value cannot be detected, the connection is switched. It can be determined that the switching unit 128 is abnormal.
  • the first current value is detected by applying a voltage so that current flows only in the direction from the U-phase power line 113U to the V-phase power line 113V and the W-phase power line 113W.
  • a voltage is applied so that current flows only in the direction from the V-phase power line 113V to the U-phase power line 113U and the W-phase power line 113W
  • the second current value is detected, and the W-phase power line 113W to the U-phase power line 113U and
  • the present embodiment is not limited to such an example.
  • any one of the U-phase power line 113U, the V-phase power line 113V, and the W-phase power line 113W is a first line, the other is a second line, and the remaining is a third line.
  • the inverter 126 applies a voltage so that the current flows only in the first direction from the first line to the second line and the third line, and the first current value is detected.
  • a voltage is applied so that current flows only in the second direction from the second line to the first line and the third line, the second current value is detected, and the inverter 126 is connected from the third line.
  • the third current value may be detected by applying a voltage so that the current flows only in the third direction to the first line and the second line.
  • the inverter 126 applies a voltage so that the current flows only in the first direction from the first line and the second line to the third line, and the first current value is detected.
  • the voltage is applied so that the current flows only in the second direction from the second line and the third line to the first line, and the second current value is detected.
  • the third current value may be detected by applying a voltage so that the current flows only in the third direction from the line and the third line to the second line.
  • the coil (112U, 112V, 112W) whose one end (112Ua, 112Va, 112Wa) is connected to the first wire is the first coil, and the one end (112Ua, 112Va, 112Wa) is connected to the second line. Is connected to the coil (112U, 112V, 112W) is the second coil, and the coil (112U, 112V, 112W) is connected to the third wire at one end (112Ua, 112Va, 112Wa). It becomes a coil.
  • the switches (129U, 129V, 129W) for switching the connection destination of the other end (112Ub, 112Vb, 112Wb) of the first coil serve as the first switching unit, and the other end (112Ub, 112Vb, 112Wb) of the second coil.
  • the air conditioner 400 according to Embodiment 4 includes an outdoor unit 410, an indoor unit 150, and a remote controller 160.
  • the indoor unit 150 and the remote controller 160 of the air conditioner 400 according to Embodiment 4 are the same as the indoor unit 150 and the remote controller 160 of Embodiment 1.
  • the outdoor unit 410 according to Embodiment 4 includes an electric motor 111, an outdoor air conditioning unit 114, and a drive device 420.
  • Electric motor 111 and outdoor air-conditioning unit 114 of outdoor unit 410 according to Embodiment 4 are the same as electric motor 111 and outdoor air-conditioning unit 114 of Embodiment 1.
  • the driving device 420 in the fourth embodiment includes a power source 121, a reactor 122, a converter 123, an inverter 126, a connection switching unit 128, a shunt resistor 133, a current detection circuit 134, a control device 435, and a communication unit. 136.
  • the drive device 420 in the fourth embodiment is the same as the drive device 120 in the first embodiment except for the control device 435.
  • the control device 435 in the fourth embodiment is a control unit that controls each unit of the outdoor unit 410.
  • the control device 435 particularly controls the outdoor air conditioning unit 114, the inverter 126, and the connection switching unit 128.
  • the control device 435 in the fourth embodiment is different from the control device 135 in the first embodiment in a sequence for controlling the inverter 126 and the connection switching unit 128 to detect an abnormality in the connection switching unit 128.
  • FIG. 15 is a flowchart showing an abnormality detection sequence by the control device 435 in the fourth embodiment.
  • control device 435 sets the connection switching unit 128 to the Y connection state, and applies a voltage so that current flows only in the direction from the U-phase power line 113U to the V-phase power line 113V and the W-phase power line 113W.
  • the current value detected by the detection circuit 134 is set as a first current value (S40).
  • control device 435 switches the U-phase switch 129U of the connection switching unit 128 to the second switching contact 132U side so that current flows only in the direction from the U-phase power line 113U to the V-phase power line 113V and the W-phase power line 113W.
  • the current value detected by the current detection circuit 134 is set as the second current value (S41).
  • control device 435 determines whether or not the U-phase switch 129U is abnormal by comparing the first current value and the second current value (S42). For example, control device 435 can determine that there is no abnormality in U-phase switch 129U when the first current value and the second current value are different values. Note that the control device 435 determines that the first current value and the second current value are different from each other based on whether or not the absolute value of the difference between the two exceeds a predetermined threshold value. be able to.
  • the current value detected by the current detection circuit 134 is set as a third current value (S43).
  • the control device 435 switches the V-phase switch 129V of the connection switching unit 128 to the second switching contact 132V side so that the current flows only in the direction from the V-phase power line 113V to the U-phase power line 113U and the W-phase power line 113W.
  • the current value detected by the current detection circuit 134 is set as a fourth current value (S44).
  • control device 435 determines whether or not the V-phase switch 129V is abnormal by comparing the third current value and the fourth current value (S45). For example, control device 435 can determine that there is no abnormality in V-phase switch 129V when the third current value and the fourth current value are different values. This determination method is the same as in step S42.
  • the current value detected by the current detection circuit 134 is set as a fifth current value (S46).
  • control device 435 switches the W-phase switch 129W of the connection switching unit 128 to the second switching contact 132W side so that current flows only in the direction from the W-phase power line 113W to the U-phase power line 113U and the V-phase power line 113V.
  • a voltage is applied so as to flow, and the current value detected by the current detection circuit 134 is set as a sixth current value (S47).
  • control device 435 determines whether or not the W-phase switch 129W is abnormal by comparing the fifth current value and the sixth current value (S48). For example, control device 435 can determine that there is no abnormality in W-phase switch 129W when the fifth current value and the sixth current value are different values. This determination method is the same as in step S42.
  • a voltage is applied so that current flows only in the direction from the U-phase power line 113U to the V-phase power line 113V and the W-phase power line 113W, and the first current value and second Current value is detected, a voltage is applied so that current flows only in the direction from the V-phase power line 113V to the U-phase power line 113U and the W-phase power line 113W, and the third current value and the fourth current value are detected.
  • the voltage is applied so that the current flows only in the direction from the W-phase power line 113W to the U-phase power line 113U and the V-phase power line 113V, and the fifth current value and the sixth current value are detected.
  • the present embodiment is not limited to such an example.
  • any one of the U-phase power line 113U, the V-phase power line 113V, and the W-phase power line 113W is a first line, the other is a second line, and the remaining is a third line.
  • the inverter 126 applies a voltage so that the current flows only in the first direction from the first line to the second line and the third line, and the first current value and the second current value are A voltage is applied so that the inverter 126 passes a current only in the second direction from the second line to the first line and the third line, and the third current value and the fourth current value are detected.
  • the inverter 126 applies a voltage so that the current flows only in the third direction from the third line to the first line and the second line, and the fifth current value and the sixth current are applied.
  • a value may be detected.
  • the inverter 126 applies a voltage so that the current flows only in the first direction from the first line and the second line to the third line, and the first current value and the second current are applied.
  • a value is detected, and the inverter 126 applies a voltage so that the current flows only in the second direction from the second line and the third line to the first line, and the third current value and the fourth
  • the current value is detected, the inverter 126 applies a voltage so that the current flows only in the third direction from the first line and the third line to the second line, and the fifth current value and the sixth May be detected.
  • the coil (112U, 112V, 112W) having one end (112Ua, 112Va, 112Wa) connected to the first wire becomes the first coil, and the one end (112Ua, 112Va, The coil (112U, 112V, 112W) to which 112Wa is connected becomes the second coil, and the coil (112U, 112V, 112W) to which one end (112Ua, 112Va, 112Wa) is connected to the third wire is the first coil. 3 coils.
  • the switches (129U, 129V, 129W) for switching the connection destination of the other end (112Ub, 112Vb, 112Wb) of the first coil serve as the first switching unit, and the other end (112Ub, 112Vb, 112Wb) of the second coil.
  • the present invention is not limited to the third and fourth embodiments described above.
  • the flow shown in FIG. 14 is performed in one of the Y connection state and the ⁇ connection state.
  • the flow shown in FIG. 14 is performed in any one of the Y connection state and the ⁇ connection state, FIG.
  • the flow shown in FIG. 14 is performed on the other hand, whereby the abnormality of the connection switching unit 128 can be detected more accurately.
  • the current value detected in step S30 is the fourth current value
  • the current value detected in step S31 is the fifth current value
  • step S32 Is the sixth current value.
  • the first threshold value and the second threshold value are prepared as the threshold values used in step S33 in FIG. 14, and the control device 335 determines that the absolute value of the difference is When it is within the range of the first threshold, it is determined that the connection switching unit 128 is normal, and when the absolute value of the difference exceeds the second threshold, the connection switching unit 128 is abnormal. If the absolute value of the difference exceeds the first threshold and is equal to or smaller than the second threshold, the flow shown in FIG. 14 can be performed in the other state.
  • the flow shown in FIG. 15 may be performed.
  • connection switching unit 128 As described above, according to the first to fourth embodiments, it is possible to easily detect an abnormality in the connection switching unit 128 based on the current value detected by the current detection circuit 134.
  • failure of the air conditioners 100 and 200 such as a stall of the compressor 114a can be prevented by performing an abnormality detection sequence before the compressor 114a is driven.
  • the sound generated during the abnormality detection sequence can be drowned out by the sound of the indoor fan 151b, so that the user in the room does not feel uncomfortable.
  • the sound generated outdoors during the abnormality detection sequence can be drowned out by the sound of the outdoor outdoor fan 114c, so that the user in the room feels uncomfortable. Disappears.
  • an abnormality detection sequence triggered by the remote controller 160 accepting an operation start input it is possible to notify the abnormality immediately after the operation of the remote controller 160. It can be performed. In such a case, the abnormality detection sequence is performed before the indoor fan 151b is driven, so that the user can be notified more reliably when an abnormality occurs.
  • an abnormality of the connection switching unit 128 can be easily detected. Furthermore, for example, when the connection switching unit 128 when the power of the air conditioner 100 is turned off is either one of the first connection state and the second connection state, By performing the abnormality detection sequence, it is possible to detect an abnormality in the connection switching unit 128 without operating the connection switching unit 128. For this reason, wasteful power consumption due to the switching operation can be suppressed, and shortening of the life due to an increase in the number of operations of the connection switching unit 128 can be suppressed.
  • the abnormality switching sequence is performed on the other side, so that the connection switching unit is more reliably performed. 128 abnormalities can be detected.
  • the U-phase switch 129U, the V-phase switch 129V, and the W-phase switch 129W can operate individually, the power capacity required for the switching operation is suppressed as compared with the case where all the switches are operated simultaneously. Therefore, the power supply circuit can be configured with a small capacity. Thereby, the cost increase due to the increase in capacity of the power supply circuit can be suppressed. Furthermore, by operating these switches individually, it is possible to detect the location of failure more accurately.
  • the presence or absence of the abnormality is more reliably detected. can do.
  • the U-phase switch 129U, the V-phase switch 129V, and the W-phase switch 129W a semiconductor switch, in particular, a switching element using a WBG semiconductor is used, so that the on-resistance is small and the element heat generation can be suppressed with low loss.
  • Air conditioner 110, 210, 310, 410 Outdoor unit, 111 electric motor, 112U U phase coil, 112V V phase coil, 112W W phase coil, 113U U phase power line, 113V V phase power line, 113W W phase power line, 114 outdoor air conditioning unit, 114a compressor, 114b outdoor heat exchanger, 114c outdoor fan, 120, 220, 320, 420 drive unit, 121 power source, 122 reactor, 123 converter, 126 inverter, 128 connection switching unit, 129U U-phase switch, 129V V-phase switch, 129W W-phase switch, 134 current detection circuit, 135, 235, 335, 435 control device, 136 communication unit, 150 rooms Machine, 151 indoor air conditioning unit, 152 a first communication unit, 153 second communication unit, 154 display unit, 155 control unit, 160 remote controller, 161 smartphone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

冷凍サイクルで用いられる冷媒を圧縮する圧縮機(114a)と、直流電圧を生成するコンバータ(123)と、直流電圧から三相交流電圧を生成するインバータ(126)と、三相交流電圧が印加される複数のコイル(112U、112V、112W)を用いて、圧縮機(114a)を駆動するための駆動力を発生する電動機(111)と、複数のコイル(112U、112V、112W)の結線状態を、第1の結線状態及び第2の結線状態の間で切り換える結線切換部(128)と、結線切換部(128)の異常を検出する制御装置(135)とを備える。

Description

空気調和機及び駆動装置
 本発明は、空気調和機及び駆動装置に関し、特に、電動機のコイルの結線状態を切り換えることのできる空気調和機及び駆動装置に関する。
 電動機の回転数(負荷)に応じて、Y結線状態及びΔ結線状態といった結線状態を切り換えることで、効率的に電動機を駆動する方法が提案されている。例えば、空調負荷であれば、年間消費電力に対する寄与度が高い中間条件では、電動機をY結線状態にて駆動し、定格条件ではΔ結線状態で駆動することで、負荷の小さい中間条件の効率を向上させ、高い空調能力が必要となる定格条件では高出力化が可能である。
 結線状態をY結線状態とΔ結線状態との間で切り換えるためには、リレー及びコンタクタといった機械式SW(SWitch)又は双方向SWといった半導体SWからなる結線切換部が用いられる。そして、マイコン等の制御部からの信号にて、結線切換部を制御することで、結線状態を切り換えることができる。
 ここで、結線切換部が故障した場合、結線異常状態となり、システムの動作不具合又は二次故障といった拡大被害が発生するおそれがある。
 特許文献1には、パルス印加時のモータ電流の傾きを二相間で検出する事で、インバータのスイッチング素子、電流検出回路及び巻線の異常を検出する異常診断方法が開示されている。
特開平10-023795号公報
 特許文献1に記載された異常診断方法は、巻線自体の短絡等を検出することはできるが、結線切換部の短絡及び開放といった異常を検出することはできない。
 そこで、本発明は、結線切換部の異常を検出することができるようにすることを目的とする。
 本発明の一態様に係る空気調和機は、冷凍サイクルを用いた空気調和機であって、前記冷凍サイクルで用いられる冷媒を圧縮する圧縮機と、直流電圧を生成するコンバータと、前記直流電圧から三相交流電圧を生成するインバータと、前記三相交流電圧が印加される複数のコイルを用いて、前記圧縮機を駆動するための駆動力を発生する電動機と、前記複数のコイルの結線状態を、第1の結線状態及び第2の結線状態の間で切り換える結線切換部と、前記結線切換部の異常を検出する制御部と、を備えることを特徴とする。
 本発明の一態様に係る駆動装置は、複数のコイルを有する電動機を駆動する駆動装置であって、直流電圧を生成するコンバータと、前記直流電圧から三相交流電圧を生成し、前記複数のコイルに印加するインバータと、前記複数のコイルの結線状態を、第1の結線状態及び第2の結線状態の間で切り換える結線切換部と、前記結線切換部の異常を検出する制御部と、を備えることを特徴とする。
 本発明の一態様によれば、結線切換部の異常を検出することができる。
実施の形態1~4に係る空気調和機の構成を概略的に示すブロック図である。 実施の形態1~4に係る室外機の概略構成図である。 実施の形態1における、電動機と結線切換部との接続状態の第1例を示す概略図である。 実施の形態1及び2における室内機の構成を概略的に示すブロック図である。 (A)及び(B)は、実施の形態1及び2のハードウェア構成例を示す概略図である。 実施の形態1における制御装置による異常検出シーケンスを示すフローチャートである。 実施の形態1において、インバータの駆動信号、相間電流及び母線電流の第1の例を示す概略図である。 実施の形態1において、インバータの駆動信号、相間電流及び母線電流の第2の例を示す概略図である。 実施の形態1において、インバータの駆動信号、相間電流及び母線電流の第3の例を示す概略図である。 実施の形態1における、電動機と結線切換部との接続状態の第2例を示す概略図である。 実施の形態1において、異常検出シーケンスを行う第1のタイミングを説明するためのタイムチャートである。 実施の形態1において、異常検出シーケンスを行う第2のタイミングを説明するためのタイムチャートである。 実施の形態2における制御装置による異常検出シーケンスを示すフローチャートである。 実施の形態3における制御装置による異常検出シーケンスを示すフローチャートである。 実施の形態4における制御装置による異常検出シーケンスを示すフローチャートである。
実施の形態1.
 図1は、実施の形態1に係る、冷凍サイクルを用いた空気調和機100の構成を概略的に示すブロック図である。
 空気調和機100は、室外に設置される室外機110と、室内に設置される室内機150と、リモコン160とを備える。
 図2は、室外機110の概略構成図である。
 室外機110は、電動機111と、室外空調部114と、駆動装置120とを備える。
 電動機111は、駆動装置120からの三相交流電圧が印加される複数のコイルを用いて、室外空調部114に含まれている特定の部分を駆動する駆動力を発生する。電動機111は、U相電力線113U、V相電力線113V及びW相電力線113Wを介して、駆動装置120から三相交流電圧の印加を受ける。そして、電動機111は、U相電力線113Uに接続されているU相コイル112Uと、V相電力線113Vに接続されているV相コイル112Vと、W相電力線113Wに接続されているW相コイル112Wとを備える。
 室外空調部114は、冷凍サイクルにおける室外側の動作を行う。例えば、室外空調部114は、圧縮機114a、室外熱交換器114b、及び、室外ファン114c等の装置を有する。
 圧縮機114aは、電動機111から駆動力を得て、冷凍サイクルで用いられる冷媒の圧縮を行う。
 室外熱交換器114bは、冷媒の熱交換を行う。
 室外ファン114cは、室外熱交換器114bに送風する室外機110用のファンである。
 駆動装置120は、室外機110の各部を制御するとともに、電動機111を駆動するための装置である。
 駆動装置120は、電源121と、リアクトル122と、コンバータ123と、インバータ126と、結線切換部128と、電流検出回路134と、制御装置135と、通信部136とを備える。
 電源121は、交流電圧を出力する交流電源である。
 コンバータ123は、電源121からリアクトル122を介して交流電圧を受けて、交流電圧に対して整流及び平滑化等を行うことで、直流電圧を生成する。
 コンバータ123は、交流電圧を整流するブリッジダイオード124A~124Dと、出力電圧を平滑化する平滑コンデンサ125とを備える。
 インバータ126は、コンバータ123からの直流電圧の入力を受けて、その直流電圧から三相交流電圧を生成して、生成された三相交流電圧を電動機111に出力する。
 インバータ126は、第1のU相スイッチング素子126Ua、第2のU相スイッチング素子126Ub、第1のV相スイッチング素子126Va、第2のV相スイッチング素子126Vb、第1のW相スイッチング素子126Wa及び第2のW相スイッチング素子126Wbが、U相、V相及びW相の3相ブリッジ接続されている。
 第1のU相スイッチング素子126Uaは、U相上アーム、第2のU相スイッチング素子126Ubは、U相下アームに相当する。第1のU相スイッチング素子126Ua及び第2のU相スイッチング素子126Ubは、U相電力線113Uに接続されている。
 なお、第1のU相スイッチング素子126Uaには、第1のU相ダイオード127Uaが並列に接続され、第2のU相スイッチング素子126Ubには、第2のU相ダイオード127Ubが並列に接続されている。
 第1のV相スイッチング素子126Vaは、V相上アーム、第2のV相スイッチング素子126Vbは、V相下アームに相当する。第1のV相スイッチング素子126Va及び第2のV相スイッチング素子126Vbは、V相電力線113Vに接続されている。
 なお、第1のV相スイッチング素子126Vaには、第1のV相ダイオード127Vaが並列に接続され、第2のV相スイッチング素子126Vbには、第2のV相ダイオード127Vbが並列に接続されている。
 第1のW相スイッチング素子126Waは、W相上アーム、第2のW相スイッチング素子126Wbは、W相下アームに相当する。第1のW相スイッチング素子126Wa及び第2のW相スイッチング素子126Wbは、W相電力線113Wに接続されている。
 なお、第1のW相スイッチング素子126Waには、第1のW相ダイオード127Waが並列に接続され、第2のW相スイッチング素子126Wbには、第2のW相ダイオード127Wbが並列に接続されている。
 それぞれのスイッチング素子126Ua~126Wbは、例えば、IGBT(絶縁ゲート形トランジスタ)等のトランジスタにより構成することができる。
 また、それぞれのスイッチング素子126Ua~126Wbのオン及びオフは、制御装置135からの駆動信号DSにより制御される。
 結線切換部128は、電動機111が備える複数のコイルの結線状態を、第1の結線状態と第2の結線状態との間で切り換える。ここで、第2の結線状態は、第1の結線状態よりもインバータ126の線間電圧が低くなる状態である。例えば、第1の結線状態は、Y結線状態であり、第2の結線状態は、Δ結線状態である。
 結線切換部128は、U相スイッチ129Uと、V相スイッチ129Vと、W相スイッチ129Wとを備える。
 U相スイッチ129Uは、U相コイル112Uの接続先を切り換える切換部である。
 V相スイッチ129Vは、V相コイル112Vの接続先を切り換える切換部である。
 W相スイッチ129Wは、W相コイル112Wの接続先を切り換える切換部である。
 図3は、電動機111と結線切換部128との接続状態を示す概略図である。
 U相コイル112Uの一端112Uaは、U相電力線113Uに接続されており、U相コイル112Uの他端112Ubは、U相スイッチ129Uの共通接点130Uに接続されている。
 そして、U相スイッチ129Uの第1の切換接点131Uは、V相スイッチ129Vの第1の切換接点131V及びW相スイッチ129Wの第1の切換接点131Wに接続されている。
 また、U相スイッチ129Uの第2の切換接点132Uは、V相電力線113Vに接続されている。
 そして、U相スイッチ129Uは、共通接点130Uとの接続を、第1の切換接点131U及び第2の切換接点132Uの間で切り換えることができる。
 V相コイル112Vの一端112Vaは、V相電力線113Vに接続されており、V相コイル112Vの他端112Vbは、V相スイッチ129Vの共通接点130Vに接続されている。
 そして、V相スイッチ129Vの第1の切換接点131Vは、U相スイッチ129Uの第1の切換接点131U及びW相スイッチ129Wの第1の切換接点131Wに接続されている。
 また、V相スイッチ129Vの第2の切換接点132Vは、W相電力線113Wに接続されている。
 そして、V相スイッチ129Vは、共通接点130Vとの接続を、第1の切換接点131V及び第2の切換接点132Vの間で切り換えることができる。
 W相コイル112Wの一端112Waは、W相電力線113Wに接続されており、W相コイル112Wの他端112Wbは、W相スイッチ129Wの共通接点130Wに接続されている。
 そして、W相スイッチ129Wの第1の切換接点131Wは、U相スイッチ129Uの第1の切換接点131U及びV相スイッチ129Vの第1の切換接点131Vに接続されている。
 また、W相スイッチ129Wの第2の切換接点132Wは、U相電力線113Uに接続されている。
 そして、W相スイッチ129Wは、共通接点130Wとの接続を、第1の切換接点131W及び第2の切換接点132Wの間で切り換えることができる。
 結線切換部128は、以上のように構成されているため、U相スイッチ129Uにおいて共通接点130U及び第1の切換接点131Uを接続し、V相スイッチ129Vにおいて共通接点130V及び第1の切換接点131Vを接続し、及び、W相スイッチ129Wにおいて共通接点130W及び第1の切換接点131Wを接続することで、電動機111を、U相コイル112Uの他端112Ub、V相コイル112Vの他端112Vb及びW相コイル112Wの他端112Wbが接続されたY結線状態にすることができる。
 一方、U相スイッチ129Uにおいて共通接点130U及び第2の切換接点132Uを接続し、V相スイッチ129Vにおいて共通接点130V及び第2の切換接点132Vを接続し、及び、W相スイッチ129Wにおいて共通接点130W及び第2の切換接点132Wを接続することで、電動機111を、U相コイル112Uの一端112Ua及びW相コイル112Wの他端112WbがU相電力線113Uに接続され、V相コイル112Vの一端112Va及びU相コイル112Uの他端112UbがV相電力線113Vに接続され、W相コイル112Wの一端112Wa及びV相コイル112Vの他端112VbがW相電力線113Wに接続されたΔ結線状態にすることができる。
 ここで、U相スイッチ129U、V相スイッチ129V及びW相スイッチ129Wは、制御装置135からの切換信号CSU、CSV、CSWにより、共通接点130U~130Cの接続先を第1の切換接点131U~131W及び第2の切換接点132U~132Wの間で、個別に切り換えることができる。
 U相スイッチ129U、V相スイッチ129V及びW相スイッチ129Wは、それぞれc接点スイッチとして記載されているが、これらはこのような例に限定されるものではない。U相スイッチ129U、V相スイッチ129V及びW相スイッチ129Wは、それぞれ、双方向に開閉することのできるスイッチであればよい。例えば、U相スイッチ129U、V相スイッチ129V及びW相スイッチ129Wは、a接点スイッチ又はb接点スイッチが組み合わされて構成されていてもよく、また、半導体スイッチであってもよい。
 なお、U相スイッチ129U、V相スイッチ129V及びW相スイッチ129Wは、オン時の導通損失が小さいものが好適であり、リレー又はコンタクタといった機械スイッチを用いることができる。しかしながら、これらのスイッチとして、SiC又はGaNといったWBG(Wide Band Gap)半導体を適用したスイッチング素子を使用することで、オン抵抗が小さく、低損失で素子発熱も抑制することができる。特に駆動中に結線状態を切換える際には、これらのスイッチを半導体にて構成した方が好適である。
 また、半導体としてはノーマリオンの素子がオン状態の場合に、Y結線状態となる構成とすることで、軽負荷(Y結線)側での損失を低減することができ、軽負荷の寄与度が高い空気調和機100に対して好適である。
 図2に戻り、シャント抵抗133は、インバータ126のスイッチング時に母線L1、L2に流れる電流を、その電流に比例した電圧に変換し、電流検出回路134に伝達する。
 電流検出回路134は、インバータ126の入力側の電流の電流値を検出する電流検出部である。実施の形態1では、電流検出回路134は、インバータ126の母線電流(入力電流)の電流値を検出しているが、電流値の検出は、このような例に限定されるものではない。例えば、インバータ126の相電流により、インバータ126の入力側の電流の電流値を算出してもよい。
 制御装置135は、室外機110の各部を制御する制御部である。制御装置135は、特に、室外空調部114、インバータ126及び結線切換部128を制御する。
 ここで、制御装置135は、結線切換部128の異常を検出する。例えば、制御装置135は、インバータ126及び結線切換部128を制御して、電流検出回路134で検出された電流値に基づいて、結線切換部128の異常を検出する。制御装置135での異常の検出方法については、後述する。
 そして、制御装置135は、結線切換部128の異常を検出した場合には、通信部136を介して、室内機150に異常の検出を通知する。
 制御装置135は、U相スイッチ129U、V相スイッチ129V及びW相スイッチ129Wを個別に制御することができる。例えば、制御装置135は、U相スイッチ129Uを制御するためのU相制御線135U、V相スイッチ129Vを制御するためのV相制御線135V、及び、W相スイッチ129Wを制御するためのW相制御線135Wの三本の制御線で結線切換部128と接続されている。そして、制御装置135は、U相スイッチ129Uを制御するためのU相切換信号CSUを、U相制御線135UからU相スイッチ129Uに送信することで、U相スイッチ129Uのスイッチングを制御することができる。同様に、制御装置135は、V相切換信号CSVを、V相制御線135VからV相スイッチ129Vに送信することで、また、W相切換信号CSWを、W相制御線135WからW相スイッチ129Wに送信することで、V相スイッチ129V及びW相スイッチ129Wのそれぞれのスイッチングを制御することができる。
 通信部136は、室内機150との間で通信を行う。例えば、通信部136は、制御装置135からの指示に従い、結線切換部128の異常が検出されたことを示す通知信号を室内機150に送信する。
 室外機110と室内機150とが3線で接続され、通信線を有しない場合には、通信部136は、電力線を用いて、通信を行う。一方、室外機110と室内機150とが4線で接続され、通信線を有する場合には、通信部136は、その通信線を用いて、通信を行う。なお、室外機110と室内機150とを、無線又は専用の有線等を用いて接続することもでき、通信部136は、このような接続を用いて、通信を行ってもよい。
 図4は、実施の形態1における室内機150の構成を概略的に示すブロック図である。
 室内機150は、室内空調部151と、第1の通信部152と、第2の通信部153と、表示部154と、制御部155とを備える。
 室内空調部151は、冷凍サイクルにおける室内側の動作を行う。例えば、室内空調部151は、室内熱交換器151a及び室内ファン151b等の装置を備える。
 室内熱交換器151aは、冷媒の熱交換を行う。
 室内ファン151bは、室内熱交換器151aに送風を行う、室内機150用のファンである。
 第1の通信部152は、室外機110との間で通信を行う。
 第2の通信部153は、リモコン160又はユーザ端末としてのスマートフォン161との間で通信を行う。
 表示部154は、制御部155から指示された内容の表示を行う。
 制御部155は、室内機150の各部を制御する。
 ここで、制御部155は、第1の通信部152が、室外機110からの通知信号を受信した場合には、結線切換部128の異常が検出されたことをユーザに通知する。例えば、制御部155は、表示部154への表示、リモコン160での表示及びスマートフォン161での表示の少なくとも何れか一つを行うことで、ユーザへの通知を行う。
 具体的には、制御部155は、表示部154に指示することで、結線切換部128の異常が検出されたことを示す表示を表示部154に行わせる。
 また、制御部155は、第2の通信部153に、結線切換部128の異常が検出されたことを示す特定の信号をリモコン160へ送信させることで、リモコン160に、結線切換部128の異常が検出されたことを示す表示を行わせることができる。このような場合、第2の通信部153は、例えば、赤外線を用いた通信インターフェースにより構成することができる。
 さらに、制御部155は、第2の通信部153に、結線切換部128の異常が検出されたことを示す通知データをスマートフォン161へ送信させることで、スマートフォン161に、結線切換部128の異常が検出されたことを示す表示を行わせることができる。このような場合、第2の通信部153は、無線LAN(Local Area Network)の通信インターフェースにより構成することができる。
 リモコン160は、各種指示の入力を受け付ける入力受付部として機能する。例えば、リモコン160は、空気調和機100の運転を開始する入力を受け付ける。なお、スマートフォン161が、入力受付部として機能してもよい。
 以上に記載された室外機110の制御装置135及び室内機150の制御部155の一部又は全部は、例えば、図5(A)に示されているように、メモリ10と、メモリ10に格納されているプログラムを実行するCPU(Central Processing Unit)等のプロセッサ11とにより構成することができる。このようなプログラムは、ネットワークを通じて提供されてもよく、また、記録媒体に記録されて提供されてもよい。
 また、制御装置135及び制御部155の一部又は全部は、例えば、図5(B)に示されているように、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuits)又はFPGA(Field Programmable Gate Array)等の処理回路12で構成することもできる。
 次に、室外機110の制御装置135が結線切換部128の異常を検出する動作について説明する。
 図6は、実施の形態1における制御装置135による異常検出シーケンスを示すフローチャートである。
 ここでは、結線切換部128は、Y結線状態又はΔ結線状態になっているものとする。
 まず、制御装置135は、U相電力線113U及びV相電力線113Vのみに電圧を印加した場合において、電流検出回路134で検出された電流値を第1の電流値とする(S10)。例えば、制御装置135は、インバータ126に駆動信号DSを与えることにより、第1のU相スイッチング素子126Ua及び第2のV相スイッチング素子126Vbのみをオンにすることで、U相電力線113U及びV相電力線113Vのみに電圧を印加する。このとき、例えば、図2に示されているように、結線切換部128がY結線状態であるとすると、結線切換部128に異常がなければ、U相コイル112U及びV相コイル112Vに電流が流れる。このときの母線電流の電流値が第1の電流値として検出される。
 次に、制御装置135は、V相電力線113V及びW相電力線113Wのみに電圧を印加した場合において、電流検出回路134で検出された電流値を第2の電流値とする(S11)。例えば、制御装置135は、インバータ126に駆動信号DSを与えることにより、第1のV相スイッチング素子126Va及び第2のW相スイッチング素子126Wbのみをオンにすることで、V相電力線113V及びW相電力線113Wのみに電圧を印加する。このとき、例えば、図2に示されているように、結線切換部128がY結線状態であるとすると、結線切換部128に異常がなければ、V相コイル112V及びW相コイル112Wに電流が流れる。このときの母線電流の電流値が第2の電流値として検出される。
 次に、制御装置135は、W相電力線113W及びU相電力線113Uのみに電圧を印加した場合において、電流検出回路134で検出された電流値を第3の電流値とする(S12)。例えば、制御装置135は、インバータ126に駆動信号DSを与えることにより、第1のW相スイッチング素子126Wa及び第2のU相スイッチング素子126Ubのみをオンにすることで、W相電力線113W及びU相電力線113Uのみに電圧を印加する。このとき、例えば、図2に示されているように、結線切換部128がY結線状態であるとすると、結線切換部128に異常がなければ、W相コイル112W及びU相コイル112Uに電流が流れる。このときの母線電流の電流値が第3の電流値として検出される。
 そして、制御装置135は、第1の電流値、第2の電流値及び第3の電流値を比較することにより、結線切換部128の異常の有無を検出する(S13)。
 以下、図7~図10を用いて、制御装置135による結線切換部128の異常の有無の検出方法について説明する。
 結線切換部128が図2に示されているようにY結線状態であり、結線切換部128に異常がない場合について、図7を用いて説明する。
 ここで、図7に示されている記号について説明する。
 記号UPは、第1のU相スイッチング素子126Uaの駆動信号DSを示し、記号VPは、第1のV相スイッチング素子126Vaの駆動信号DSを示し、記号WPは、第1のW相スイッチング素子126Waの駆動信号DSを示す。
 また、記号UNは、第2のU相スイッチング素子126Ubの駆動信号DSを示し、記号VNは、第2のV相スイッチング素子126Vbの駆動信号DSを示し、記号WNは、第2のW相スイッチング素子126Wbの駆動信号DSを示す。
 さらに、記号Iuは、U相電力線113Uの電流値をインバータ126から電動機111に向かう方向を正の値として示し、記号Ivは、V相電力線113Vの電流値をインバータ126から電動機111に向かう方向を正の値として示し、記号Iwは、W相電力線113Wの電流値をインバータ126から電動機111に向かう方向を正の値として示す。
 加えて、記号Iは、電流検出回路134で検出される母線電流の電流値を示す。
 図7に示されているように、時間t1で、第1のU相スイッチング素子126Uaをオンにし、第2のV相スイッチング素子126Vbをオンにした場合には、U相コイル112U及びV相コイル112Vに電流が流れて、電流検出回路134でその電流が第1の電流値として検出される。
 時間t2で、第1のV相スイッチング素子126Vaをオンにし、第2のW相スイッチング素子126Wbをオンにした場合には、V相コイル112V及びW相コイル112Wに電流が流れて、電流検出回路134でその電流が第2の電流値として検出される。
 時間t3で、第1のW相スイッチング素子126Waをオンにし、第2のU相スイッチング素子126Ubをオンにした場合には、W相コイル112W及びU相コイル112Uに電流が流れて、電流検出回路134でその電流が第3の電流値として検出される。
 ここで、第1の電流値、第2の電流値及び第3の電流値は、ピーク値であってもよく、平均値であってもよい。
 そして、図7に示されているように、結線切換部128に異常がない場合には、第1の電流値、第2の電流値及び第3の電流値は、ほぼ同様の値となる。
 次に、結線切換部128が図2に示されているようにY結線状態であり、結線切換部128に異常がある第1の場合について、図8を用いて説明する。図8では、U相スイッチ129Uが開放故障を起こしている場合を示している。
 ここで、図8に示されている記号は、図7と同様である。
 図8に示されているように、時間t4で、第1のU相スイッチング素子126Uaをオンにし、第2のV相スイッチング素子126Vbをオンにした場合でも、U相スイッチ129Uが開放していると、U相コイル112U及びV相コイル112Vに電流は流れない。従って、電流検出回路134では、第1の電流値は検出されない。
 時間t5で、第1のV相スイッチング素子126Vaをオンにし、第2のW相スイッチング素子126Wbをオンにした場合には、V相コイル112V及びW相コイル112Wに電流が流れて、電流検出回路134でその電流が第2の電流値として検出される。
 時間t6で、第1のW相スイッチング素子126Waをオンにし、第2のU相スイッチング素子126Ubをオンにした場合でも、U相スイッチ129Uが開放していると、W相コイル112W及びU相コイル112Uに電流は流れない。従って、電流検出回路134では、第3の電流値は検出されない。
 従って、図8に示されているように、結線切換部128に開放故障がある場合には、第1の電流値、第2の電流値及び第3の電流値の何れか二つが検出されない。
 次に、結線切換部128が図2に示されているようにY結線状態であり、結線切換部128に異常がある第2の場合について、図9を用いて説明する。図9では、図10に示されているようにU相スイッチ129Uが第2の切換接点132U側に短絡故障を起こしている場合を示している。
 ここで、図9に示されている記号は、図7と同様である。
 図9に示されているように、時間t7で、第1のU相スイッチング素子126Uaをオンにし、第2のV相スイッチング素子126Vbをオンにした場合には、U相スイッチ129Uが第2の切換接点132U側に短絡していると、U相コイル112Uに電流は流れるが、V相コイル112Vには電流は流れない。従って、電流検出回路134では、U相コイル112Uにのみ電流が流れた場合の電流値が第1の電流値として検出される。
 時間t8で、第1のV相スイッチング素子126Vaをオンにし、第2のW相スイッチング素子126Wbをオンにした場合には、V相コイル112V及びW相コイル112Wに電流が流れて、電流検出回路134でその電流が第2の電流値として検出される。
 時間t9で、第1のW相スイッチング素子126Waをオンにし、第2のU相スイッチング素子126Ubをオンにした場合には、U相スイッチ129Uが第2の切換接点132U側に短絡していると、W相コイル112W及びU相コイル112Uに電流が流れるとともに、V相コイル112Vにも電流が流れる。従って、電流検出回路134では、U相コイル112U、V相コイル112V及びW相コイル112Wに電流が流れた場合の電流値が第3の電流値として検出される。
 従って、図9に示されているように、結線切換部128に短絡故障がある場合には、第1の電流値、第2の電流値及び第3の電流値の少なくとも1つが別の1つと異なった値として検出される。
 以上のように、制御装置135は、第1の電流値、第2の電流値及び第3の電流値を比較することで、例えば、これらの差の絶対値が予め定められた閾値の範囲内にあれば、結線切換部128に異常がないと判断することができ、これらの差の絶対値が予め定められた閾値の範囲を超える場合又は電流値を検出することができない場合には、結線切換部128に異常があると判断することができる。
 なお、図7~図9では、インバータ126への駆動信号DSをパルス信号としているが、例えば、駆動信号DSを、デューティ比を固定したPWM信号とすることにより、電流検出回路134は、U相コイル112U、V相コイル112V及びW相コイル112Wのインダクタンスに依存せずに、抵抗に依存した電流値を検出することができる。この場合、第1の電流値、第2の電流値及び第3の電流値は、平均値であることが望ましい。
 なお、図6に示されているフローチャートでは、U相電力線113UとV相電力線113Vとに電圧を印加して、第1の電流値を検出し、V相電力線113VとW相電力線113Wとに電圧を印加して、第2の電流値を検出し、W相電力線113WとU相電力線113Uとに電圧を印加して、第3の電流値を検出しているが、本実施の形態は、このような例に限定されない。例えば、U相電力線113U、V相電力線113V及びW相電力線113Wの何れか一つを第1の線とし、他の一つを第2の線とし、残りを第3の線とする。そして、インバータ126が第1の線及び第2の線のみに電圧を印加して、第1の電流値が検出され、インバータ126が第2の線及び第3の線のみに電圧を印加して、第2の電流値が検出され、インバータ126が第3の線及び第1の線のみに電圧を印加して、第3の電流値が検出されてもよい。
 このような場合、第1の線に一端(112Ua、112Va、112Wa)が接続されているコイル(112U、112V、112W)が第1のコイルとなり、第2の線に一端(112Ua、112Va、112Wa)が接続されているコイル(112U、112V、112W)が第2のコイルとなり、第3の線に一端(112Ua、112Va、112Wa)が接続されているコイル(112U、112V、112W)が第3のコイルとなる。
 また、第1のコイルの他端(112Ub、112Vb、112Wb)の接続先を切り換えるスイッチ(129U、129V、129W)が第1の切換部となり、第2のコイルの他端(112Ub、112Vb、112Wb)の接続先を切り換えるスイッチ(129U、129V、129W)が第2の切換部となり、第3のコイルの他端(112Ub、112Vb、112Wb)の接続先を切り換えるスイッチ(129U、129V、129W)が第3の切換部となる。
 ここで、制御装置135は、結線切換部128の異常を検出した場合には、ユーザへの通知を行うとともに、故障モードに応じた対応を行うことができる。例えば、結線切換部128が開放故障している場合には、制御装置135は、空気調和機100の運転を停止(中止)する。また、制御装置135は、結線切換部128がY結線側の切換接点で短絡故障している場合は、空気調和機100をY結線で駆動する。さらに、制御装置135は、結線切換部128がΔ結線側の切換接点で短絡故障している場合は、空気調和機100をΔ結線で駆動とする。このように駆動することで、空気調和機100は、運転継続しつつサポートによる修理を待つことも可能である。
 次に、制御装置135が異常検出シーケンスを行うタイミングについて説明する。
 ここで、結線切換部128が故障した場合、異常な結線状態になり、過電流又は過剰な発熱等により他の回路も故障してしまうおそれがある。また、脱調状態に気づけず運転を継続した場合、圧縮機114aがストールしてしまうおそれがある。
 このため、制御装置135による異常検出シーケンスは、圧縮機114aの起動する前に行われることが望ましい。
 例えば、図11に示されているように、リモコン160からの運転指示信号が室内機150に入力された場合(T00)、室内ファン151bの駆動が開始され(T01)、室外機110の室外ファン114cの駆動が開始され(T02)、室外機110の圧縮機114aが駆動される(T04)。このような場合、時間T02と時間T04との間の時間T03において、制御装置135による異常検出シーケンスが行われることが望ましい。
 なお、リモコン160は、ユーザから空気調和機100の運転を開始する入力を受け付けると、室内機150に運転指示信号を送信する。
 このようにすることで、圧縮機114aの起動時間が長くなることを抑制することができる。なお、異常検出シーケンスは、圧縮機114aの起動よりも前であれば、どのタイミングで実施されても問題ないが、騒音が検知されにくくするためには、室内ファン151bの駆動開始後に行われることが望ましく、さらに、室外ファン114cの駆動開始後に行われることがより望ましい。このようにすることで、異常検出シーケンスで発生する音をユニット駆動音の中で相対的に小さくすることができる。
 また、図12に示されているように、リモコン160からの運転指示信号が室内機150に入力され(T10)、室内ファン151bの駆動が開始され(T12)、室外機110の室外ファン114cの駆動が開始され(T13)、室外機110の圧縮機114aが駆動される(T14)場合において、リモコン160からの運転指示信号が室内機150に入力された直後に、異常検出シーケンスが行われてもよい。即ち、リモコン160がユーザから空気調和機100の運転を開始する入力を受け付けたことを契機として、異常検出シーケンスが行われてもよい。このようにすることで、ユーザがリモコン160又は室内機150に注視している内に、異常状態を検出して通知することができる。
 以上のように、実施の形態1によれば、結線切換部128の異常を容易に検出することができる。
実施の形態2.
 図1に示されているように、実施の形態2に係る空気調和機200は、室外機210と、室内機150と、リモコン160とを備える。
 実施の形態2に係る空気調和機200の室内機150及びリモコン160は、実施の形態1の室内機150及びリモコン160と同様である。
 図2に示されているように、実施の形態2に係る室外機210は、電動機111と、室外空調部114と、駆動装置220とを備える。
 実施の形態2に係る室外機210の電動機111及び室外空調部114は、実施の形態1の電動機111及び室外空調部114と同様である。
 実施の形態2における駆動装置220は、電源121と、リアクトル122と、コンバータ123と、インバータ126と、結線切換部128と、シャント抵抗133と、電流検出回路134と、制御装置235と、通信部136とを備える。
 実施の形態2における駆動装置220は、制御装置235を除いて、実施の形態1における駆動装置120と同様である。
 実施の形態2における制御装置235は、室外機210の各部を制御する制御部である。制御装置235は、特に、室外空調部114、インバータ126及び結線切換部128を制御する。
 ここで、実施の形態2における制御装置235は、インバータ126及び結線切換部128を制御して、結線切換部128の異常を検出するシーケンスにおいて、実施の形態1における制御装置135と異なっている。
 図13は、実施の形態2における制御装置235による異常検出シーケンスを示すフローチャートである。
 まず、制御装置235は、結線切換部128をY結線状態にして、U相電力線113U及びV相電力線113Vのみに電圧を印加した場合において、電流検出回路134で検出された電流値を第1の電流値とする(S20)。
 次に、制御装置235は、結線切換部128のU相スイッチ129Uを第2の切換接点132U側に切り換えさせて、U相電力線113U及びV相電力線113Vのみに電圧を印加した場合において、電流検出回路134で検出された電流値を第2の電流値とする(S21)。
 例えば、制御装置235は、U相制御線135Uを介して、結線切換部128にU相切換信号CSUを送信することで、U相スイッチ129Uを第2の切換接点132U側に切り換えさせる。そして、制御装置235は、インバータ126に駆動信号DSを与えることにより、第1のU相スイッチング素子126Ua及び第2のV相スイッチング素子126Vbのみをオンにすることで、U相電力線113U及びV相電力線113Vのみに電圧を印加する。
 そして、制御装置235は、第1の電流値と第2の電流値とを比較することで、U相スイッチ129Uの異常の有無を判断する(S22)。
 ステップS20では、U相スイッチ129Uに異常がなければ、U相コイル112U及びV相コイル112Vに電流が流れる。一方、ステップS21では、U相スイッチ129Uに異常がなければ、U相コイル112Uに電流が流れる。このため、第1の電流値は、第2の電流値の約半分になるはずである。従って、制御装置235は、第1の電流値と第2の電流値とが異なる値となっている場合には、U相スイッチ129Uに異常がないと判断することができる。なお、制御装置235は、第1の電流値と第2の電流値とが異なる値となっていることを、両者の差の絶対値が予め定められた閾値を超えているか否かにより判断することができる。
 次に、制御装置235は、結線切換部128をY結線状態にして、V相電力線113V及びW相電力線113Wのみに電圧を印加した場合において、電流検出回路134で検出された電流値を第3の電流値とする(S23)。
 次に、制御装置235は、結線切換部128のV相スイッチ129Vを第2の切換接点132V側に切り換えさせて、V相電力線113V及びW相電力線113Wのみに電圧を印加した場合において、電流検出回路134で検出された電流値を第4の電流値とする(S24)。
 例えば、制御装置235は、V相制御線135Vを介して、結線切換部128にV相切換信号CSVを送信することで、V相スイッチ129Vを第2の切換接点132Vに切り換えさせる。そして、制御装置235は、インバータ126に駆動信号DSを与えることにより、第1のV相スイッチング素子126Va及び第2のW相スイッチング素子126Wbのみをオンにすることで、V相電力線113V及びW相電力線113Wのみに電圧を印加する。
 そして、制御装置235は、第3の電流値と第4の電流値とを比較することで、V相スイッチ129Vの異常の有無を判断する(S25)。
 ステップS23では、V相スイッチ129Vに異常がなければ、V相コイル112V及びW相コイル112Wに電流が流れる。一方、ステップS25では、V相スイッチ129Vに異常がなければ、V相コイル112Vに電流が流れる。従って、制御装置235は、第3の電流値と第4の電流値とが異なる値となっている場合には、V相スイッチ129Vに異常がないと判断することができる。この判断の仕方は、ステップS22と同様である。
 次に、制御装置235は、結線切換部128をY結線状態にして、W相電力線113W及びU相電力線113Uのみに電圧を印加した場合において、電流検出回路134で検出された電流値を第5の電流値とする(S26)。
 次に、制御装置235は、結線切換部128のW相スイッチ129Wを第2の切換接点132W側に切り換えさせて、W相電力線113W及びU相電力線113Uのみに電圧を印加して、電流検出回路134で検出された電流値を第6の電流値とする(S27)。
 例えば、制御装置235は、W相制御線135Wを介して、結線切換部128にW相切換信号CSWを送信することで、W相スイッチ129Wを第2の切換接点132W側に切り換えさせる。そして、制御装置235は、インバータ126に駆動信号DSを与えることにより、第1のW相スイッチング素子126Wa及び第2のU相スイッチング素子126Ubのみをオンにすることで、W相電力線113W及びU相電力線113Uのみに電圧を印加する。
 そして、制御装置235は、第5の電流値と第6の電流値とを比較することで、W相スイッチ129Wの異常の有無を判断する(S28)。
 ステップS26では、W相スイッチ129Wに異常がなければ、W相コイル112W及びU相コイル112Uに電流が流れる。一方、ステップS27では、W相スイッチ129Wに異常がなければ、W相コイル112Wに電流が流れる。従って、制御装置235は、第5の電流値と第6の電流値とが異なる値となっている場合には、W相スイッチ129Wに異常がないと判断することができる。この判断の仕方は、ステップS22と同様である。
 なお、図13に示されているフローチャートでは、U相電力線113UとV相電力線113Vとに電圧を印加して、第1の電流値及び第2の電流値を検出し、V相電力線113VとW相電力線113Wとに電圧を印加して、第3の電流値及び第4の電流値を検出し、W相電力線113WとU相電力線113Uとに電圧を印加して、第5の電流値及び第6の電流値を検出しているが、本実施の形態は、このような例に限定されない。例えば、U相電力線113U、V相電力線113V及びW相電力線113Wの何れか一つを第1の線とし、他の一つを第2の線とし、残りを第3の線とする。そして、インバータ126が第1の線及び第2の線のみに電圧を印加して、第1の電流値及び第2の電流値が検出され、インバータ126が第2の線及び第3の線のみに電圧を印加して、第3の電流値及び第4の電流値が検出され、インバータ126が第3の線及び第2の線のみに電圧を印加して、第5の電流値及び第6の電流値が検出されてもよい。
 このような場合、第1の線に一端(112Ua、112Va、112Wa)が接続されているコイル(112U、112V、112W)が第1のコイルとなり、第2の線に一端(112Ua、112Va、112Wa)が接続されているコイル(112U、112V、112W)が第2のコイルとなり、第3の線に一端(112Ua、112Va、112Wa)が接続されているコイル(112U、112V、112W)が第3のコイルとなる。
 また、第1のコイルの他端(112Ub、112Vb、112Wb)の接続先を切り換えるスイッチ(129U、129V、129W)が第1の切換部となり、第2のコイルの他端(112Ub、112Vb、112Wb)の接続先を切り換えるスイッチ(129U、129V、129W)が第2の切換部となり、第3のコイルの他端(112Ub、112Vb、112Wb)の接続先を切り換えるスイッチ(129U、129V、129W)が第3の切換部となる。
 以上のように、実施の形態2によれば、より正確に、結線切換部128の異常を検出することができる。
 本発明は、以上の実施の形態1及び2に限定されるものではない。
 例えば、実施の形態1では、Y結線状態及びΔ結線状態の何れか一方で図6に示されているフローを行っているが、例えば、Y結線状態及びΔ結線状態の何れか一方で図6に示されているフローを行い、異常が検出された場合に、他方で図6に示されているフローを行うことで、より正確に結線切換部128の異常を検出することができる。
 他方で図6に示されているフローが行われた場合、ステップS10で検出される電流値を第4の電流値、ステップS11で検出される電流値を第5の電流値、及び、ステップS12で検出される電流値を第6の電流値とする。
 また、この場合図6のステップS13で用いる閾値として第1の閾値及び第2の閾値(第1の閾値<第2の閾値)を用意しておき、制御装置135は、差の絶対値が第1の閾値の範囲内である場合には、結線切換部128が正常であると判断し、差の絶対値が第2の閾値を超えた場合には、結線切換部128に異常があると判断し、差の絶対値が第1の閾値を超えて第2の閾値以下である場合に、他方の状態で図6に示されているフロー行うこともできる。
 また、図6に示されているフローで異常が検出された場合に、図13に示されているフローが行われてもよい。
実施の形態3.
 図1に示されているように、実施の形態3に係る空気調和機300は、室外機310と、室内機150と、リモコン160とを備える。
 実施の形態3に係る空気調和機300の室内機150及びリモコン160は、実施の形態1の室内機150及びリモコン160と同様である。
 図2に示されているように、実施の形態3に係る室外機310は、電動機111と、室外空調部114と、駆動装置320とを備える。
 実施の形態3に係る室外機310の電動機111及び室外空調部114は、実施の形態1の電動機111及び室外空調部114と同様である。
 実施の形態3における駆動装置320は、電源121と、リアクトル122と、コンバータ123と、インバータ126と、結線切換部128と、シャント抵抗133と、電流検出回路134と、制御装置335と、通信部136とを備える。
 実施の形態3における駆動装置320は、制御装置335を除いて、実施の形態1における駆動装置120と同様である。
 実施の形態3における制御装置335は、室外機310の各部を制御する制御部である。制御装置335は、特に、室外空調部114、インバータ126及び結線切換部128を制御する。
 ここで、実施の形態3における制御装置335は、インバータ126及び結線切換部128を制御して、結線切換部128の異常を検出するシーケンスにおいて、実施の形態1における制御装置135と異なっている。
 図14は、実施の形態3における制御装置335による異常検出シーケンスを示すフローチャートである。
 ここでは、結線切換部128は、Y結線状態又はΔ結線状態になっているものとする。
 まず、制御装置335は、U相電力線113UからV相電力線113V及びW相電力線113Wへの方向にのみ電流を流すように電圧を印加した場合において、電流検出回路134で検出された電流値を第1の電流値とする(S30)。例えば、制御装置335は、インバータ126に駆動信号DSを与えることにより、第1のU相スイッチング素子126Ua、第2のV相スイッチング素子126Vb及び第2のW相スイッチング素子126Wbのみをオンにすることで、U相電力線113UからV相電力線113V及びW相電力線113Wへの方向にのみ電流を流すように電圧を印加する。このとき、例えば、図2に示されているように、結線切換部128がY結線状態であるとすると、結線切換部128に異常がなければ、U相コイル112U、V相コイル112V及びW相コイル112Wに電流が流れる。このときの母線電流の電流値が第1の電流値として検出される。
 次に、制御装置335は、V相電力線113VからU相電力線113U及びW相電力線113Wへの方向にのみ電流を流すように電圧を印加した場合において、電流検出回路134で検出された電流値を第2の電流値とする(S31)。例えば、制御装置335は、インバータ126に駆動信号DSを与えることにより、第1のV相スイッチング素子126Va、第2のU相スイッチング素子126Ub及び第2のW相スイッチング素子126Wbのみをオンにすることで、V相電力線113VからU相電力線113U及びW相電力線113Wへの方向にのみ電流を流すように電圧を印加する。このとき、例えば、図2に示されているように、結線切換部128がY結線状態であるとすると、結線切換部128に異常がなければ、U相コイル112U、V相コイル112V及びW相コイル112Wに電流が流れる。このときの母線電流の電流値が第2の電流値として検出される。
 次に、制御装置335は、W相電力線113WからU相電力線113U及びV相電力線113Vへの方向にのみ電流を流すように電圧を印加した場合において、電流検出回路134で検出された電流値を第3の電流値とする(S32)。例えば、制御装置335は、インバータ126に駆動信号DSを与えることにより、第1のW相スイッチング素子126Wa、第2のU相スイッチング素子126Ub及び第2のV相スイッチング素子126Vbのみをオンにすることで、W相電力線113WからU相電力線113U及びV相電力線113Vへの方向にのみ電流を流すように電圧を印加する。このとき、例えば、図2に示されているように、結線切換部128がY結線状態であるとすると、結線切換部128に異常がなければ、U相コイル112U、V相コイル112V及びW相コイル112Wに電流が流れる。このときの母線電流の電流値が第3の電流値として検出される。
 そして、制御装置335は、第1の電流値、第2の電流値及び第3の電流値を比較することにより、結線切換部128の異常の有無を検出する(S33)。ここでの比較に仕方については、実施の形態1と同様である。
 例えば、図2に示されているように、結線切換部128がY結線状態であるとすると、結線切換部128に異常がなければ、第1の電流値、第2の電流値及び第3の電流値は、同じ値(正常値)となる。
 ここで、例えば、U相スイッチ129Uが開放故障を起こしている場合には、ステップS30では、U相コイル112U、V相コイル112V及びW相コイル112Wに電流は流れない。従って、電流検出回路134では、第1の電流値は検出されない。また、U相スイッチ129Uが開放故障を起こしている場合には、ステップS31では、V相コイル112V及びW相コイル112Wに電流は流れるが、U相コイル112Uには電流は流れない。そして、第2の電流値は、正常値の3/4の値となる。さらに、U相スイッチ129Uが開放故障を起こしている場合には、ステップS32では、V相コイル112V及びW相コイル112Wに電流は流れるが、U相コイル112Uには電流は流れない。そして、第3の電流値は、正常値の3/4の値となる。
 また、例えば、U相スイッチ129Uが第2の切換接点132U側に短絡故障を起こしている場合には、ステップS30では、U相コイル112Uに電流は流れるが、V相コイル112V及びW相コイル112Wにはほとんど電流は流れない。そして、第1の電流値は、正常値の3/2の値となる。また、U相スイッチ129Uが第2の切換接点132U側に短絡故障を起こしている場合には、ステップS31では、V相電力線113V及びU相電力線113Uの間には、U相コイル112Uのみが存在し、V相電力線113V及びW相電力線113Wの間には、V相コイル112V及びW相コイル112Wのみが存在するようになる。このため、第2の電流値は、正常値の9/4の値となる。さらに、U相スイッチ129Uが第2の切換接点132U側に短絡故障を起こしている場合には、ステップS32では、V相コイル112V及びW相コイル112Wのみに電流が流れる。そして、第3の電流値は、正常値の3/4の値となる。
 以上のように、制御装置335は、第1の電流値、第2の電流値及び第3の電流値を比較することで、例えば、これらの差の絶対値が予め定められた閾値の範囲内にあれば、結線切換部128に異常がないと判断することができ、これらの差の絶対値が予め定められた閾値の範囲を超える場合又は電流値を検出することができない場合には、結線切換部128に異常があると判断することができる。
 なお、図14に示されているフローチャートでは、U相電力線113UからV相電力線113V及びW相電力線113Wへの方向にのみ電流を流すように電圧を印加して、第1の電流値を検出し、V相電力線113VからU相電力線113U及びW相電力線113Wへの方向にのみ電流を流すように電圧を印加して、第2の電流値を検出し、W相電力線113WからU相電力線113U及びV相電力線113Vへの方向にのみ電流を流すように電圧を印加して、第3の電流値を検出しているが、本実施の形態は、このような例に限定されない。例えば、U相電力線113U、V相電力線113V及びW相電力線113Wの何れか一つを第1の線とし、他の一つを第2の線とし、残りを第3の線とする。そして、インバータ126が第1の線から第2の線及び第3の線への第1の方向にのみ電流を流すように電圧を印加して、第1の電流値が検出され、インバータ126が第2の線から第1の線及び第3の線への第2の方向にのみ電流を流すように電圧を印加して、第2の電流値が検出され、インバータ126が第3の線から第1の線及び第2の線への第3の方向にのみ電流を流すように電圧を印加して、第3の電流値が検出されてもよい。
 さらに、例えば、インバータ126が第1の線及び第2の線から第3の線への第1の方向にのみ電流を流すように電圧を印加して、第1の電流値が検出され、インバータ126が第2の線及び第3の線から第1の線への第2の方向にのみ電流を流すように電圧を印加して、第2の電流値が検出され、インバータ126が第1の線及び第3の線から第2の線への第3の方向にのみ電流を流すように電圧を印加して、第3の電流値が検出されてもよい。
 これらの場合、第1の線に一端(112Ua、112Va、112Wa)が接続されているコイル(112U、112V、112W)が第1のコイルとなり、第2の線に一端(112Ua、112Va、112Wa)が接続されているコイル(112U、112V、112W)が第2のコイルとなり、第3の線に一端(112Ua、112Va、112Wa)が接続されているコイル(112U、112V、112W)が第3のコイルとなる。
 また、第1のコイルの他端(112Ub、112Vb、112Wb)の接続先を切り換えるスイッチ(129U、129V、129W)が第1の切換部となり、第2のコイルの他端(112Ub、112Vb、112Wb)の接続先を切り換えるスイッチ(129U、129V、129W)が第2の切換部となり、第3のコイルの他端(112Ub、112Vb、112Wb)の接続先を切り換えるスイッチ(129U、129V、129W)が第3の切換部となる。
実施の形態4.
 図1に示されているように、実施の形態4に係る空気調和機400は、室外機410と、室内機150と、リモコン160とを備える。
 実施の形態4に係る空気調和機400の室内機150及びリモコン160は、実施の形態1の室内機150及びリモコン160と同様である。
 図2に示されているように、実施の形態4に係る室外機410は、電動機111と、室外空調部114と、駆動装置420とを備える。
 実施の形態4に係る室外機410の電動機111及び室外空調部114は、実施の形態1の電動機111及び室外空調部114と同様である。
 実施の形態4における駆動装置420は、電源121と、リアクトル122と、コンバータ123と、インバータ126と、結線切換部128と、シャント抵抗133と、電流検出回路134と、制御装置435と、通信部136とを備える。
 実施の形態4における駆動装置420は、制御装置435を除いて、実施の形態1における駆動装置120と同様である。
 実施の形態4における制御装置435は、室外機410の各部を制御する制御部である。制御装置435は、特に、室外空調部114、インバータ126及び結線切換部128を制御する。
 ここで、実施の形態4における制御装置435は、インバータ126及び結線切換部128を制御して、結線切換部128の異常を検出するシーケンスにおいて、実施の形態1における制御装置135と異なっている。
 図15は、実施の形態4における制御装置435による異常検出シーケンスを示すフローチャートである。
 まず、制御装置435は、結線切換部128をY結線状態にして、U相電力線113UからV相電力線113V及びW相電力線113Wへの方向にのみ電流を流すように電圧を印加した場合において、電流検出回路134で検出された電流値を第1の電流値とする(S40)。
 次に、制御装置435は、結線切換部128のU相スイッチ129Uを第2の切換接点132U側に切り換えさせて、U相電力線113UからV相電力線113V及びW相電力線113Wへの方向にのみ電流を流すように電圧を印加した場合において、電流検出回路134で検出された電流値を第2の電流値とする(S41)。
 そして、制御装置435は、第1の電流値と第2の電流値とを比較することで、U相スイッチ129Uの異常の有無を判断する(S42)。例えば、制御装置435は、第1の電流値と第2の電流値とが異なる値となっている場合には、U相スイッチ129Uに異常がないと判断することができる。なお、制御装置435は、第1の電流値と第2の電流値とが異なる値となっていることを、両者の差の絶対値が予め定められた閾値を超えているか否かにより判断することができる。
 次に、制御装置435は、結線切換部128をY結線状態にして、V相電力線113VからU相電力線113U及びW相電力線113Wへの方向にのみ電流を流すように電圧を印加した場合において、電流検出回路134で検出された電流値を第3の電流値とする(S43)。
 次に、制御装置435は、結線切換部128のV相スイッチ129Vを第2の切換接点132V側に切り換えさせて、V相電力線113VからU相電力線113U及びW相電力線113Wへの方向にのみ電流を流すように電圧を印加した場合において、電流検出回路134で検出された電流値を第4の電流値とする(S44)。
 そして、制御装置435は、第3の電流値と第4の電流値とを比較することで、V相スイッチ129Vの異常の有無を判断する(S45)。例えば、制御装置435は、第3の電流値と第4の電流値とが異なる値となっている場合には、V相スイッチ129Vに異常がないと判断することができる。この判断の仕方は、ステップS42と同様である。
 次に、制御装置435は、結線切換部128をY結線状態にして、W相電力線113WからU相電力線113U及びV相電力線113Vへの方向にのみ電流を流すように電圧を印加した場合において、電流検出回路134で検出された電流値を第5の電流値とする(S46)。
 次に、制御装置435は、結線切換部128のW相スイッチ129Wを第2の切換接点132W側に切り換えさせて、W相電力線113WからU相電力線113U及びV相電力線113Vへの方向にのみ電流を流すように電圧を印加して、電流検出回路134で検出された電流値を第6の電流値とする(S47)。
 そして、制御装置435は、第5の電流値と第6の電流値とを比較することで、W相スイッチ129Wの異常の有無を判断する(S48)。例えば、制御装置435は、第5の電流値と第6の電流値とが異なる値となっている場合には、W相スイッチ129Wに異常がないと判断することができる。この判断の仕方は、ステップS42と同様である。
 なお、図15に示されているフローチャートでは、U相電力線113UからV相電力線113V及びW相電力線113Wへの方向にのみ電流を流すように電圧を印加して、第1の電流値及び第2の電流値を検出し、V相電力線113VからU相電力線113U及びW相電力線113Wへの方向にのみ電流を流すように電圧を印加して、第3の電流値及び第4の電流値を検出し、W相電力線113WからU相電力線113U及びV相電力線113Vへの方向にのみ電流を流すように電圧を印加して、第5の電流値及び第6の電流値を検出しているが、本実施の形態は、このような例に限定されない。例えば、U相電力線113U、V相電力線113V及びW相電力線113Wの何れか一つを第1の線とし、他の一つを第2の線とし、残りを第3の線とする。そして、インバータ126が第1の線から第2の線及び第3の線への第1の方向にのみ電流を流すように電圧を印加して、第1の電流値及び第2の電流値が検出され、インバータ126が第2の線から第1の線及び第3の線への第2の方向にのみ電流を流すように電圧を印加して、第3の電流値及び第4の電流値が検出され、インバータ126が第3の線から第1の線及び第2の線への第3の方向にのみ電流を流すように電圧を印加して、第5の電流値及び第6の電流値が検出されてもよい。
 また、例えば、インバータ126が第1の線及び第2の線から第3の線への第1の方向にのみ電流を流すように電圧を印加して、第1の電流値及び第2の電流値が検出され、インバータ126が第2の線及び第3の線から第1の線への第2の方向にのみ電流を流すように電圧を印加して、第3の電流値及び第4の電流値が検出され、インバータ126が第1の線及び第3の線から第2の線への第3の方向にのみ電流を流すように電圧を印加して、第5の電流値及び第6の電流値が検出されてもよい。
 これらのような場合、第1の線に一端(112Ua、112Va、112Wa)が接続されているコイル(112U、112V、112W)が第1のコイルとなり、第2の線に一端(112Ua、112Va、112Wa)が接続されているコイル(112U、112V、112W)が第2のコイルとなり、第3の線に一端(112Ua、112Va、112Wa)が接続されているコイル(112U、112V、112W)が第3のコイルとなる。
 また、第1のコイルの他端(112Ub、112Vb、112Wb)の接続先を切り換えるスイッチ(129U、129V、129W)が第1の切換部となり、第2のコイルの他端(112Ub、112Vb、112Wb)の接続先を切り換えるスイッチ(129U、129V、129W)が第2の切換部となり、第3のコイルの他端(112Ub、112Vb、112Wb)の接続先を切り換えるスイッチ(129U、129V、129W)が第3の切換部となる。
 本発明は、以上の実施の形態3及び4に限定されるものではない。
 例えば、実施の形態3では、Y結線状態及びΔ結線状態の何れか一方で図14に示されているフローを行っているが、例えば、Y結線状態及びΔ結線状態の何れか一方で図14に示されているフローを行い、異常が検出された場合に、他方で図14に示されているフローを行うことで、より正確に結線切換部128の異常を検出することができる。
 他方で図14に示されているフローが行われた場合、ステップS30で検出される電流値を第4の電流値、ステップS31で検出される電流値を第5の電流値、及び、ステップS32で検出される電流値を第6の電流値とする。
 また、この場合、図14のステップS33で用いる閾値として第1の閾値及び第2の閾値(第1の閾値<第2の閾値)を用意しておき、制御装置335は、差の絶対値が第1の閾値の範囲内である場合には、結線切換部128が正常であると判断し、差の絶対値が第2の閾値を超えた場合には、結線切換部128に異常があると判断し、差の絶対値が第1の閾値を超えて第2の閾値以下である場合に、他方の状態で図14に示されているフロー行うこともできる。
 また、図14に示されているフローで異常が検出された場合に、図15に示されているフローが行われてもよい。
 以上のように、実施の形態1~4によれば、電流検出回路134で検出された電流値に基づいて、容易に結線切換部128の異常を検出することができる。
 また、圧縮機114aが駆動する前に、異常検出シーケンスを行うことで、圧縮機114aのストール等の空気調和機100、200の故障を防止することができる。
 また、室内ファン151bの駆動後に、異常検出シーケンスを行うことで、異常検出シーケンス時に発生する音を室内ファン151bの音でかき消すことができるため、室内にいるユーザが違和感を受けることがなくなる。
 また、室外ファン114cの駆動後に、異常検出シーケンスを行うことで、異常検出シーケンス時に室外で発生する音を室外の室外ファン114cの音でかき消すことができるため、室内にいるユーザが違和感を受けることがなくなる。
 また、リモコン160が運転開始の入力を受け付けたことを契機として、異常検出シーケンスを行うことで、リモコン160の操作後すぐに異常の通知を行うことができるため、確実にユーザにこのような通知を行うことができる。
 このような場合、室内ファン151bの駆動前に、異常検出シーケンスが行われることで、異常発生時に、より確実にユーザに通知を行うことができる。
 実施の形態1によれば、第1の結線状態又は第2の結線状態において検出される複数の電流値を比較すればよいため、結線切換部128の異常を容易に検出することができる。
 さらに、例えば、空気調和機100の電源がオフとなっている際の結線切換部128が第1の結線状態及び第2の結線状態の何れか一方である場合には、その一方の状態において、異常検出シーケンスを行うことで、結線切換部128を動作させずに、結線切換部128の異常を検出することができる。このため、切り換え動作による無駄な電力の消費を抑えることができるともに、結線切換部128の動作回数の増加による寿命の短縮化を抑えることができる。
 また、第1の結線状態及び第2の結線状態の何れか一方で行われた異常検出シーケンスで異常が検出された場合に、その他方で異常検出シーケンスを行うことで、より確実に結線切換部128の異常を検出することができる。
 また、U相スイッチ129U、V相スイッチ129V及びW相スイッチ129Wは、個別に動作することができるため、全てのスイッチを同時に動作させる場合に比べて、切換動作に必要な電源容量を抑制することが可能となり、少容量の電源回路で構成することができる。これにより、電源回路の大容量化によるコストアップを抑制することができる。さらに、これらのスイッチを個別に動作させることで、より正確に、故障の発生箇所を検出することができる。
 また、U相スイッチ129U、V相スイッチ129V又はW相スイッチ129Wの切り換え前と、切り換え後とで、検出される電流値に基づいて異常の検出を行うことで、より確実に異常の有無を検出することができる。
 U相スイッチ129U、V相スイッチ129V及びW相スイッチ129Wとして、半導体スイッチ、特に、WBG半導体を用いたスイッチング素子を用いることで、オン抵抗が小さく,低損失で素子発熱も抑制することができる。
 100,200,300,400 空気調和機、 110,210,310,410 室外機、 111 電動機、 112U U相コイル、 112V V相コイル、 112W W相コイル、 113U U相電力線、 113V V相電力線、 113W W相電力線、 114 室外空調部、 114a 圧縮機、 114b 室外熱交換器、 114c 室外ファン、 120,220,320,420 駆動装置、 121 電源、 122 リアクトル、 123 コンバータ、 126 インバータ、 128 結線切換部、 129U U相スイッチ、 129V V相スイッチ、 129W W相スイッチ、 134 電流検出回路、 135,235,335,435 制御装置、 136 通信部、 150 室内機、 151 室内空調部、 152 第1の通信部、 153 第2の通信部、 154 表示部、 155 制御部、 160 リモコン、 161 スマートフォン。

Claims (22)

  1.  冷凍サイクルを用いた空気調和機であって、
     前記冷凍サイクルで用いられる冷媒を圧縮する圧縮機と、
     直流電圧を生成するコンバータと、
     前記直流電圧から三相交流電圧を生成するインバータと、
     前記三相交流電圧が印加される複数のコイルを用いて、前記圧縮機を駆動するための駆動力を発生する電動機と、
     前記複数のコイルの結線状態を、第1の結線状態及び第2の結線状態の間で切り換える結線切換部と、
     前記結線切換部の異常を検出する制御部と、を備えること
     を特徴とする空気調和機。
  2.  前記空気調和機の運転を開始する入力を受け付ける入力受付部をさらに備え、
     前記制御部は、前記入力受付部が前記入力を受けた後、前記圧縮機が駆動する前に、前記結線切換部の異常を検出すること
     を特徴とする請求項1に記載の空気調和機。
  3.  室内機用のファンをさらに備え、
     前記制御部は、前記ファンが駆動した後に、前記結線切換部の異常を検出すること
     を特徴とする請求項2に記載の空気調和機。
  4.  室外機用のファンをさらに備え、
     前記制御部は、前記ファンが駆動した後に、前記結線切換部の異常を検出すること
     を特徴とする請求項2に記載の空気調和機。
  5.  前記空気調和機の運転を開始する入力を受け付ける入力受付部をさらに備え、
     前記制御部は、前記入力受付部による前記入力の受け付けを契機として、前記結線切換部の異常を検出すること
     を特徴とする請求項1に記載の空気調和機。
  6.  室内機用のファンをさらに備え
     前記制御部は、前記入力受付部が前記入力を受け付けた後、前記ファンが駆動する前に、前記結線切換部の異常を検出すること
     を特徴とする請求項5に記載の空気調和機。
  7.  前記インバータの入力側の電流の電流値を検出する電流検出部をさらに備え、
     前記制御部は、前記電流値に基づいて、前記結線切換部の異常を検出すること
     を特徴とする請求項1から6の何れか一項に記載の空気調和機。
  8.  前記結線切換部は、前記複数のコイルの結線状態を、前記第1の結線状態及び前記第2の結線状態の何れか一方にし、
     前記インバータ及び前記電動機は、第1の線、第2の線及び第3の線で接続されており、
     前記インバータは、前記第1の線及び前記第2の線、前記第2の線及び前記第3の線、並びに、前記第3の線及び前記第1の線の組み合わせのそれぞれに順番に電圧を印加し、
     前記電流検出部は、
     前記インバータが前記第1の線及び前記第2の線にのみ電圧を印加した場合における前記インバータの入力側の電流の電流値を第1の電流値として検出し、
     前記インバータが前記第2の線及び前記第3の線にのみ電圧を印加した場合における前記インバータの入力側の電流の電流値を第2の電流値として検出し、
     前記インバータが前記第3の線及び前記第1の線にのみ電圧を印加した場合における前記インバータの入力側の電流の電流値を第3の電流値として検出し、
     前記制御部は、前記第1の電流値、前記第2の電流値及び前記第3の電流値を比較することで、前記結線切換部の異常を検出すること
     を特徴とする請求項7に記載の空気調和機。
  9.  前記結線切換部は、前記複数のコイルの結線状態を、前記第1の結線状態及び前記第2の結線状態の何れか一方にし、
     前記インバータ及び前記電動機は、第1の線、第2の線及び第3の線で接続されており、
     前記インバータは、前記第1の線から前記第2の線及び前記第3の線への第1の方向にのみ、前記第2の線から前記第1の線及び前記第3の線への第2の方向にのみ、並びに、前記第3の線から前記第1の線及び前記第2の線への第3の方向にのみのそれぞれに順番に電流を流すように電圧を印加し、
     前記電流検出部は、
     前記インバータが前記第1の方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第1の電流値として検出し、
     前記インバータが前記第2の方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第2の電流値として検出し、
     前記インバータが前記第3の方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第3の電流値として検出し、
     前記制御部は、前記第1の電流値、前記第2の電流値及び前記第3の電流値を比較することで、前記結線切換部の異常を検出すること
     を特徴とする請求項7に記載の空気調和機。
  10.  前記結線切換部は、前記複数のコイルの結線状態を、前記第1の結線状態及び前記第2の結線状態の何れか一方にし、
     前記インバータ及び前記電動機は、第1の線、第2の線及び第3の線で接続されており、
     前記インバータは、前記第1の線及び前記第2の線から前記第3の線への第1の方向にのみ、前記第2の線及び前記第3の線から前記第1の線への第2の方向にのみ、並びに、前記第1の線及び前記第3の線から前記第2の線への第3の方向にのみのそれぞれに順番に電流を流すように電圧を印加し、
     前記電流検出部は、
     前記インバータが前記第1の方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第1の電流値として検出し、
     前記インバータが前記第2の方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第2の電流値として検出し、
     前記インバータが前記第3の方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第3の電流値として検出し、
     前記制御部は、前記第1の電流値、前記第2の電流値及び前記第3の電流値を比較することで、前記結線切換部の異常を検出すること
     を特徴とする請求項7に記載の空気調和機。
  11.  前記制御部は、前記第1の電流値、前記第2の電流値及び前記第3の電流値の少なくとも何れか一つが別の一つと異なる値である場合、又は、前記第1の電流値、前記第2の電流値及び前記第3の電流値の少なくとも一つが検出されない場合に、前記結線切換部に異常があると判断すること
     を特徴とする請求項8から10の何れか一項に記載の空気調和機。
  12.  前記制御部は、前記第1の電流値、前記第2の電流値及び前記第3の電流値のそれぞれの差の絶対値が、予め定められた閾値を超える場合に、前記第1の電流値、前記第2の電流値及び前記第3の電流値の少なくとも何れか一つが別の一つと異なる値であると判断すること
     を特徴とする請求項11に記載の空気調和機。
  13.  前記結線切換部は、前記電流検出部が前記第1の電流値、前記第2の電流値及び前記第3の電流値を検出した後に、前記複数のコイルの結線状態を、前記第1の結線状態及び前記第2の結線状態の何れか他方にし、
     前記インバータは、前記第1の線及び前記第2の線、前記第2の線及び前記第3の線、並びに、前記第3の線及び前記第1の線の組み合わせのそれぞれに順番に電圧を印加し、
     前記電流検出部は、
     前記インバータが前記第1の線及び前記第2の線にのみ電圧を印加した場合における前記インバータの入力側の電流の電流値を第4の電流値として検出し、
     前記インバータが前記第2の線及び前記第3の線にのみ電圧を印加した場合における前記インバータの入力側の電流の電流値を第5の電流値として検出し、
     前記インバータが前記第3の線及び前記第1の線にのみ電圧を印加した場合における前記インバータの入力側の電流の電流値を第6の電流値として検出し、
     前記制御部は、前記第4の電流値、前記第5の電流値及び前記第6の電流値を比較することで、前記結線切換部の異常を検出すること
     を特徴とする請求項8に記載の空気調和機。
  14.  前記結線切換部は、前記電流検出部が前記第1の電流値、前記第2の電流値及び前記第3の電流値を検出した後に、前記複数のコイルの結線状態を、前記第1の結線状態及び前記第2の結線状態の何れか他方にし、
     前記インバータは、前記第1の線から前記第2の線及び前記第3の線への第1の方向にのみ、前記第2の線から前記第1の線及び前記第3の線への第2の方向にのみ、並びに、前記第3の線から前記第1の線及び前記第2の線への第3の方向にのみのそれぞれに電流を流すように順番に電圧を印加し、
     前記電流検出部は、
     前記インバータが前記第1の方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第4の電流値として検出し、
     前記インバータが前記第2の方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第5の電流値として検出し、
     前記インバータが前記第3の方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第6の電流値として検出し、
     前記制御部は、前記第4の電流値、前記第5の電流値及び前記第6の電流値を比較することで、前記結線切換部の異常を検出すること
     を特徴とする請求項9に記載の空気調和機。
  15.  前記結線切換部は、前記電流検出部が前記第1の電流値、前記第2の電流値及び前記第3の電流値を検出した後に、前記複数のコイルの結線状態を、前記第1の結線状態及び前記第2の結線状態の何れか他方にし、
     前記インバータは、前記第1の線及び前記第2の線から前記第3の線への第1の方向にのみ、前記第2の線及び前記第3の線から前記第1の線への第2の方向にのみ、並びに、前記第1の線及び前記第3の線から前記第2の線への第3の方向にのみのそれぞれに電流を流すように順番に電圧を印加し、
     前記電流検出部は、
     前記インバータが前記第1の方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第4の電流値として検出し、
     前記インバータが前記第2の方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第5の電流値として検出し、
     前記インバータが前記第3の方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第6の電流値として検出し、
     前記制御部は、前記第4の電流値、前記第5の電流値及び前記第6の電流値を比較することで、前記結線切換部の異常を検出すること
     を特徴とする請求項10に記載の空気調和機。
  16.  前記インバータ及び前記電動機は、第1の線、第2の線及び第3の線で接続されており、
     前記複数のコイルは、前記第1の線に一端が接続された第1のコイル、前記第2の線に一端が接続された第2のコイル及び前記第3の線に一端が接続された第3のコイルであり、
     前記結線切換部は、
     前記第1のコイルの他端の接続先を切り換える第1の切換部と、
     前記第2のコイルの他端の接続先を切り換える第2の切換部と、
     前記第3のコイルの他端の接続先を切り換える第3の切換部と、を備え、
     前記第1の切換部、前記第2の切換部及び前記第3の切換部は、前記制御部からの指示に応じて、接続先を個別に切り換えること
     を特徴とする請求項7に記載の空気調和機。
  17.  前記電流検出部は、
     前記結線切換部が、前記複数のコイルの結線状態を、前記第1の結線状態及び前記第2の結線状態の何れか一方にし、前記インバータが前記第1の線及び前記第2の線にのみ電圧を印加した場合における前記インバータの入力側の電流の電流値を第1の電流値として検出し、
     前記第1の切換部のみが、前記第1のコイルの接続先を切り換えた後に、前記インバータが、前記第1の線及び前記第2の線にのみ電圧を印加した場合における前記インバータの入力側の電流の電流値を第2の電流値として検出し、
     前記制御部は、前記第1の電流値及び前記第2の電流値を比較することで、前記第1の切換部の異常を検出すること
     を特徴とする請求項16に記載の空気調和機。
  18.  前記電流検出部は、
     前記結線切換部が、前記複数のコイルの結線状態を、前記第1の結線状態及び前記第2の結線状態の何れか一方にし、前記インバータが前記第1の線から前記第2の線及び前記第3の線への方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第1の電流値として検出し、
     前記第1の切換部のみが、前記第1のコイルの接続先を切り換えた後に、前記インバータが前記第1の線から前記第2の線及び前記第3の線への方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第2の電流値として検出し、
     前記制御部は、前記第1の電流値及び前記第2の電流値を比較することで、前記第1の切換部の異常を検出すること
     を特徴とする請求項16に記載の空気調和機。
  19.  前記電流検出部は、
     前記結線切換部が、前記複数のコイルの結線状態を、前記第1の結線状態及び前記第2の結線状態の何れか一方にし、前記インバータが前記第1の線及び前記第2の線から前記第3の線への方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第1の電流値として検出し、
     前記第1の切換部のみが、前記第1のコイルの接続先を切り換えた後に、前記インバータが前記第1の線及び前記第2の線から前記第3の線への方向にのみ電流を流すように電圧を印加した場合における前記インバータの入力側の電流の電流値を第2の電流値として検出し、
     前記制御部は、前記第1の電流値及び前記第2の電流値を比較することで、前記第1の切換部の異常を検出すること
     を特徴とする請求項16に記載の空気調和機。
  20.  前記第1の切換部、前記第2の切換部及び前記第3の切換部は、半導体スイッチであること
     を特徴とする請求項16から19の何れか一項に記載の空気調和機。
  21.  前記半導体スイッチは、WBG半導体を用いたスイッチング素子であること
     を特徴とする請求項20に記載の空気調和機。
  22.  複数のコイルを有する電動機を駆動する駆動装置であって、
     直流電圧を生成するコンバータと、
     前記直流電圧から三相交流電圧を生成し、前記複数のコイルに印加するインバータと、
     前記複数のコイルの結線状態を、第1の結線状態及び第2の結線状態の間で切り換える結線切換部と、
     前記結線切換部の異常を検出する制御部と、を備えること
     を特徴とする駆動装置。
PCT/JP2016/082210 2016-10-31 2016-10-31 空気調和機及び駆動装置 WO2018078842A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680089711.8A CN109863685B (zh) 2016-10-31 2016-10-31 空气调和机以及驱动装置
EP16920249.6A EP3534533B1 (en) 2016-10-31 2016-10-31 Air conditioner
KR1020197008074A KR102258612B1 (ko) 2016-10-31 2016-10-31 공기 조화기 및 구동 장치
JP2018547068A JP6824282B2 (ja) 2016-10-31 2016-10-31 空気調和機及び駆動装置
US16/334,834 US11863099B2 (en) 2016-10-31 2016-10-31 Air conditioner and driving device
PCT/JP2016/082210 WO2018078842A1 (ja) 2016-10-31 2016-10-31 空気調和機及び駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082210 WO2018078842A1 (ja) 2016-10-31 2016-10-31 空気調和機及び駆動装置

Publications (1)

Publication Number Publication Date
WO2018078842A1 true WO2018078842A1 (ja) 2018-05-03

Family

ID=62024601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082210 WO2018078842A1 (ja) 2016-10-31 2016-10-31 空気調和機及び駆動装置

Country Status (6)

Country Link
US (1) US11863099B2 (ja)
EP (1) EP3534533B1 (ja)
JP (1) JP6824282B2 (ja)
KR (1) KR102258612B1 (ja)
CN (1) CN109863685B (ja)
WO (1) WO2018078842A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7364015B1 (ja) 2022-11-21 2023-10-18 三菱電機ビルソリューションズ株式会社 回転電機の結線切替装置、回転電機及び回転電機の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6128201B1 (ja) * 2015-12-28 2017-05-17 ダイキン工業株式会社 電源装置、その電源装置を用いたインバータ装置、並びにコンバータ装置、及びそのインバータ装置又はコンバータ装置を用いた冷凍装置、並びに空気清浄器
EP3660409B1 (en) * 2017-07-28 2022-07-27 Mitsubishi Electric Corporation Air conditioner
CN107218711B (zh) * 2017-07-31 2019-11-08 青岛海信日立空调系统有限公司 一种空调器及其控制方法
JP7380543B2 (ja) * 2020-12-24 2023-11-15 株式会社豊田自動織機 車載用インバータ装置及び車載用流体機械
KR102478881B1 (ko) * 2020-12-28 2022-12-16 엘지전자 주식회사 모터 구동 장치 및 이를 구비하는 공기조화기
KR102478880B1 (ko) * 2021-01-13 2022-12-16 엘지전자 주식회사 모터 구동 장치 및 이를 구비하는 공기조화기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228513A (ja) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
WO2009084354A1 (ja) * 2007-12-27 2009-07-09 Kabushiki Kaisha Yaskawa Denki 3相交流電動機の巻線切替装置
WO2016051456A1 (ja) * 2014-09-29 2016-04-07 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド 巻線切替モータ駆動装置、巻線切替モータの駆動制御方法、及びそれらを用いた冷凍空調機器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265489A (ja) * 1990-03-15 1991-11-26 Canon Electron Inc モータ駆動回路
JPH04255428A (ja) * 1991-02-08 1992-09-10 Sanyo Electric Co Ltd 電動機駆動用の電源装置
JPH077962A (ja) * 1993-06-17 1995-01-10 Hitachi Ltd インバータの故障検出装置
JP3704400B2 (ja) 1996-07-03 2005-10-12 ファナック株式会社 モータのインバータ駆動制御装置における異常診断方法
JP2007151300A (ja) * 2005-11-28 2007-06-14 Nissan Motor Co Ltd 駆動回路の制御装置及び制御方法
JP4749852B2 (ja) * 2005-11-30 2011-08-17 日立オートモティブシステムズ株式会社 モータ駆動装置及びそれを用いた自動車
US7679307B2 (en) * 2006-01-20 2010-03-16 Carrier Corporation Electronic method for starting a compressor
US7602137B2 (en) * 2006-02-20 2009-10-13 Black & Decker Inc. Electronically commutated motor and control system
JP5127612B2 (ja) * 2007-08-02 2013-01-23 三菱電機株式会社 モータ駆動制御装置並びに空気調和機、換気扇及びヒートポンプタイプの給湯機
JP4906836B2 (ja) 2008-04-07 2012-03-28 三菱電機株式会社 電動機駆動装置および冷凍空気調和装置ならびに電動機駆動方法
JP5565757B2 (ja) 2011-04-14 2014-08-06 株式会社安川電機 交流電動機の巻線切替装置及び交流電動機駆動システム
WO2013061469A1 (ja) * 2011-10-28 2013-05-02 三菱電機株式会社 直流電源装置および電動機駆動装置
US9746216B2 (en) * 2012-06-29 2017-08-29 Mitsubishi Electric Corporation Heat pump device, heat pump system, air conditioner, and freezer
JP2015056918A (ja) * 2013-09-10 2015-03-23 トヨタ自動車株式会社 車両の駆動ユニット
JP6017481B2 (ja) * 2014-03-05 2016-11-02 ファナック株式会社 絶縁抵抗検出機能を備えたモータ駆動装置及びモータの絶縁抵抗検出方法
CN104167975B (zh) * 2014-08-18 2016-06-22 华中科技大学 一种基于相切换的多相永磁电机调速系统及其调速方法
JP2014241720A (ja) 2014-08-22 2014-12-25 Ntn株式会社 電気自動車用駆動モータの診断装置
JP6491455B2 (ja) * 2014-10-28 2019-03-27 シャープ株式会社 電動機
US9806641B2 (en) 2014-11-06 2017-10-31 Rockwell Automation Technologies, Inc. Detection of electric motor short circuits
CN104767463B (zh) * 2015-03-18 2018-02-16 中国科学院电工研究所 一种具有容错功能的电机驱动装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228513A (ja) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
WO2009084354A1 (ja) * 2007-12-27 2009-07-09 Kabushiki Kaisha Yaskawa Denki 3相交流電動機の巻線切替装置
WO2016051456A1 (ja) * 2014-09-29 2016-04-07 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド 巻線切替モータ駆動装置、巻線切替モータの駆動制御方法、及びそれらを用いた冷凍空調機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534533A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7364015B1 (ja) 2022-11-21 2023-10-18 三菱電機ビルソリューションズ株式会社 回転電機の結線切替装置、回転電機及び回転電機の製造方法
JP2024074310A (ja) * 2022-11-21 2024-05-31 三菱電機ビルソリューションズ株式会社 回転電機の結線切替装置、回転電機及び回転電機の製造方法

Also Published As

Publication number Publication date
CN109863685B (zh) 2022-07-01
KR102258612B1 (ko) 2021-05-31
KR20190040288A (ko) 2019-04-17
EP3534533B1 (en) 2023-04-19
EP3534533A4 (en) 2019-09-04
US11863099B2 (en) 2024-01-02
JPWO2018078842A1 (ja) 2019-06-24
US20200021231A1 (en) 2020-01-16
EP3534533A1 (en) 2019-09-04
CN109863685A (zh) 2019-06-07
JP6824282B2 (ja) 2021-02-03

Similar Documents

Publication Publication Date Title
WO2018078842A1 (ja) 空気調和機及び駆動装置
JP5115636B2 (ja) 電力変換回路および空気調和装置
US11031895B2 (en) Motor drive system and air conditioner
US20120134184A1 (en) Multi-level inverter having dual controller
JP6710338B2 (ja) 空気調和機
WO2019026125A1 (ja) 電動機駆動装置及び冷凍サイクル適用機器
JP6739654B2 (ja) 電動機の駆動装置及び冷凍サイクル装置
WO2019163125A1 (ja) 電動機駆動装置及び冷凍サイクル適用機器
JP2007028752A (ja) エレベータ電動機制御装置
JP5471152B2 (ja) 電動機駆動方法
JP2007089308A (ja) コンバータ回路および冷凍・空調装置
KR102564593B1 (ko) 모터 구동 장치 및 공기 조화기
JP2010110085A (ja) インバータ装置及びそれを用いた空調機
JP6762175B2 (ja) モータ制御装置および空気調和機
JP2013135516A (ja) 電力変換装置及び空気調和機
JP7038906B2 (ja) 電動機制御装置およびこれを備えた空気調和装置
WO2022176078A1 (ja) 電動機駆動装置、冷凍サイクル装置、空気調和機、給湯器および冷蔵庫
JP5310882B2 (ja) インバータ装置、空調機およびインバータ装置の制御方法
JP2009148016A (ja) 共用プリント基板およびそれを用いた直流電源回路
JP2010239764A (ja) マトリックスコンバータおよびそれを用いた空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547068

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197008074

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016920249

Country of ref document: EP

Effective date: 20190531