WO2009084354A1 - 3相交流電動機の巻線切替装置 - Google Patents

3相交流電動機の巻線切替装置 Download PDF

Info

Publication number
WO2009084354A1
WO2009084354A1 PCT/JP2008/071660 JP2008071660W WO2009084354A1 WO 2009084354 A1 WO2009084354 A1 WO 2009084354A1 JP 2008071660 W JP2008071660 W JP 2008071660W WO 2009084354 A1 WO2009084354 A1 WO 2009084354A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
phase
motor
unit
winding switching
Prior art date
Application number
PCT/JP2008/071660
Other languages
English (en)
French (fr)
Inventor
Koji Higashikawa
Kenji Yamada
Katsutoshi Yamanaka
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to JP2009547963A priority Critical patent/JP4662316B2/ja
Priority to CN2008801228323A priority patent/CN101911473B/zh
Publication of WO2009084354A1 publication Critical patent/WO2009084354A1/ja
Priority to US12/789,385 priority patent/US8183817B2/en
Priority to US13/450,471 priority patent/US8269450B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/20Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays for pole-changing

Definitions

  • the present invention relates to a winding switching device for a three-phase AC motor that expands the speed control range by switching the windings of the three-phase AC motor, and includes industrial fields including vehicle drive, machine tool spindle drive, and servo device. It is intended for.
  • FIG. 5 is a diagram illustrating an example of a winding switching device of a conventional three-phase AC motor.
  • a conventional winding switching device will be described with reference to FIG.
  • each phase winding has an intermediate tap (TU2, TV2, TW2), a winding start terminal and a winding end terminal of each phase winding are provided outside the motor, and a winding start terminal of each phase winding.
  • TU1, TV1, TW1 is the inverter 117
  • the winding end terminals (TU3, TV3, TW3) are the full-wave rectifying unit 122 of the winding switching unit 121
  • the intermediate tap is the full-wave rectifying unit 113 of the winding switching unit 112.
  • the output of the full-wave rectifying unit 113 is connected to the semiconductor switch 114 and to a snubber circuit including the resistor 116 and the capacitor 115.
  • the diodes 119 and 120 are inserted to prevent backflow from the snubber circuit to the semiconductor switch 114.
  • the semiconductor switch 114 is turned on / off by a drive circuit 118 that receives a signal from the control unit of the inverter 117.
  • the winding switching unit 121 is also connected on the same principle.
  • the three-phase AC motor 111 is operated.
  • the semiconductor switch 114 of the winding switching unit 112 to which the intermediate tap (TU2, TV2, TW2) is connected is turned off, and the winding end terminals (TU3, TV3,
  • the semiconductor switch 123 of the winding switching unit 121 to which TW3) is connected is turned on. Thereby, the number of windings can be increased, and a large torque can be generated.
  • the semiconductor switch 114 of the winding switching unit 112 to which the intermediate tap (TU2, TV2, TW2) is connected is turned on in order to suppress the back electromotive force due to the three-phase AC motor winding.
  • the semiconductor switch 123 of the winding switching unit 121 to which the winding end terminals (TU3, TV3, TW3) of each phase winding are connected is turned off.
  • the conventional winding switching device has a wide range by turning on / off the full-wave rectification unit output of the winding switching unit by the semiconductor switch and switching the number of windings of the three-phase AC motor according to the speed region. The output characteristics are obtained.
  • the motor current continues to flow through the full-wave rectifier 122 and the semiconductor switch 123. This inherently disturbs the sine wave current flowing through the full wave rectifier 113 and the semiconductor switch 114. Further, a current flows through the resistor 125 constituting the snubber circuit, and the sine wave current is disturbed.
  • the motor winding transitions from the excited state to the non-excited state, the current is not switched instantaneously in order to release the energy stored in the motor winding inductance, and the motor should be a sine wave originally.
  • the current was disturbed. This problem causes, for example, an output torque ripple and a speed ripple in a machine tool spindle drive device, and adversely affects the quality of a processed product.
  • the current control is adversely affected by the disturbance of the motor current.
  • the two winding switching units 112 and 121 separately operate in the low speed region and the high speed region, the signals for controlling these are also separated into the low speed winding control signal and the high speed winding control signal. Yes.
  • the invention according to claim 1 is a three-phase AC motor in which each phase winding has an intermediate tap, and the intermediate tap, a winding start terminal, and a winding end terminal are provided outside the motor, and the three-phase AC motor An inverter that supplies a variable voltage of a variable frequency to the winding start terminal of each phase winding, a plurality of winding switching units that appropriately switch the intermediate tap and the winding end terminal of each phase winding,
  • a winding switching device for a three-phase AC motor that includes a drive circuit that receives a drive signal from an inverter and controls the winding switching unit, each of the winding switching units has a common cathode of three diodes.
  • a diode is connected in antiparallel to each of the connected diode portions and the three power semiconductor switch elements, and the emitters of the power semiconductor switch elements are connected in common to each other,
  • Each collector of the power semiconductor switch element is connected to the anode of each diode of the diode section, and each connection point between each collector of the power semiconductor switch element and each diode anode of the diode section is connected to the three-phase alternating current
  • One end of a positive charging resistor is connected to the DC positive side bus of the inverter unit, the changeover switch unit connected to the winding end terminal or the intermediate tap of each phase winding of the electric motor, and the positive side charging resistor Connect the other end of the capacitor to the positive side of the capacitor, connect the negative side of the capacitor to one end of the negative side charging resistor, and connect the other end of the negative side charging resistor to the DC negative side bus of the inverter unit
  • a potential fixing unit in which the positive side of the capacitor is connected to the cathodes of the dio
  • a state detector for detecting a conduction state of the power semiconductor switch element constituting the changeover switch unit; And a comparator for detecting an abnormality of the winding switching unit based on the output signal of the state detector and the drive signal.
  • the state detector is configured such that all of the power semiconductor switch elements are in a conductive state, and the power It is characterized by detecting that all the semiconductor switch elements for use are in a non-conducting state.
  • the state detector has an insulating function.
  • the comparator in the winding switching device for a three-phase AC motor according to the second aspect, includes an exclusive OR circuit, and the output signal of the state detector and the drive signal The abnormality of the winding switching unit is detected by the exclusive OR.
  • the cathode of the diode unit of the winding switching unit when controlling the power semiconductor switch element of the changeover switch unit to which the intermediate tap of the three-phase AC motor and the diode unit anode terminal are connected, the cathode of the diode unit of the winding switching unit Because it has a potential fixing section that maintains the DC potential at the DC bus voltage value, the energy stored in the motor inductance can be released, the current can be switched instantaneously, and the three-phase can be instantaneously performed without disturbing the motor current waveform. It is possible to provide a winding switching device for an AC motor that can switch the winding of the AC motor.
  • the conduction state of the power semiconductor switch element of the changeover switch portion is detected by the state detector, the output signal of the state detector and the drive signal for driving the changeover switch portion,
  • the three-phase AC motor winding switching device that detects abnormalities such as incorrect wiring in the winding switching unit and failure of the switch switch unit, and prevents abnormal operation and device breakdown in advance. Can be provided.
  • the state detector since the state detector has an insulating function, even if the operating potentials of the control unit of the inverter and the main circuit unit and the winding switching unit are different, the winding switching unit Abnormalities can be detected.
  • winding switching apparatus of the three-phase alternating current motor of this invention The figure which shows the operation
  • the figure which shows 2nd Example of the winding switching apparatus of the three-phase alternating current motor of this invention Detailed view showing an example of the circuit configuration of the state detector and the comparator in the second embodiment of the winding switching device of the three-phase AC motor of the present invention
  • FIG. 1 is a diagram showing a first embodiment of a winding switching device for a three-phase AC motor according to the present invention.
  • 1 is a three-phase AC motor
  • 2 and 11 are winding switching units
  • 3 and 12 are diode units
  • 4 and 13 are switching switches
  • 5 and 14 are positive charging resistors
  • 6 and 15 are capacitors.
  • 7 is an inverter
  • 8 and 16 are drive circuits
  • 9 is a DC positive bus
  • 10 is a DC negative bus
  • 17 and 18 are drive signals
  • 21 and 22 are negative charging resistors
  • 23 and 24 are potential fixing portions. It is.
  • the inverter 7 includes a control unit and a main circuit.
  • the three-phase AC motor 1 includes one intermediate tap (TU2, TV2, TW2), a winding start terminal (TU1, TV1, TW1) and a winding end terminal (TU3, TV3) for each phase winding. TW3) is provided outside the motor.
  • the winding start terminal (TU1, TV1, TW1) of each phase winding of the three-phase AC motor 1 is connected to the inverter 7, the winding end terminal (TU3, TV3, TW3) is connected to the winding switching unit 11, and the intermediate tap (TU2, TV2). , TW2) are connected to the winding switching unit 2, respectively.
  • the drive circuit 8 receives the drive signal 17 from the control unit of the inverter 7, drives the winding switching unit 2, and outputs a control signal to the changeover switch unit 4.
  • the drive circuit 16 also receives a drive signal 18 from the control unit of the inverter 7, drives the winding switching unit 11, and outputs a control signal to the changeover switch unit 13.
  • the winding switching unit 2 includes a diode unit 3, a changeover switch unit 4, a potential fixing unit 23, and a protection diode unit 19.
  • the diode unit 3 includes three diodes, and the cathodes of the diodes are commonly connected to each other.
  • the changeover switch unit 4 is composed of three power semiconductor switch elements and diodes connected in parallel thereto, and the collector of each power semiconductor switch element is connected to the anode of each diode of the diode unit 3, respectively.
  • the emitters of the power semiconductor switch elements are connected in common with each other.
  • Each connection point between the anode of each diode of the diode unit 3 and the collector of each power semiconductor switch element of the changeover switch unit 4 is an intermediate tap (TU2, TV2) of each phase winding of the three-phase AC motor 1 for each phase. , TW2).
  • the potential fixing unit 23 includes a positive charging resistor 5, a capacitor 6, and a negative charging resistor 21, and one end of the positive charging resistor 5 is connected to the DC positive bus 9 of the inverter unit 7. The other end of the resistor 5 is connected to the positive side of the capacitor 6. The negative side of the capacitor 6 is connected to one end of the negative side charging resistor 21, and the other end of the negative side charging resistor 21 is connected to the DC negative side bus 10.
  • a connection point between the positive side of the capacitor 6 and the charging resistor 5 is connected to a commonly connected cathode of the diode unit 3.
  • the anode of each diode is connected to the negative side of the capacitor 6, and the cathode is connected to the intermediate tap (TU2, TV2, TW2) of each phase winding.
  • the symbol of IGBT is used for the power semiconductor switch element, but an optimal power semiconductor switch element may be used according to the voltage and current.
  • the winding switching unit 11 is connected and configured in the same manner as the winding switching unit 2.
  • the winding switching unit 11 includes a diode unit 12, a changeover switch unit 13, a potential fixing unit 24, and a protection diode unit 20.
  • the diode unit 12 is composed of three diodes, and the cathodes of the diodes are commonly connected to each other.
  • the changeover switch unit 13 is composed of three power semiconductor switch elements and diodes connected in reverse parallel thereto, and the collector of each power semiconductor switch element is connected to the anode of each diode of the diode unit 12, respectively.
  • the emitters of the power semiconductor switch elements are connected in common with each other.
  • the potential fixing unit 24 includes a positive charging resistor 14, a capacitor 15, and a negative charging resistor 22, and one end of the positive charging resistor 14 is connected to the DC positive bus 9 of the inverter unit 7. The other end of 14 is connected to the positive side of the capacitor 15. The negative side of the capacitor 15 is connected to one end of the negative side charging resistor 22, and the other end of the negative side charging resistor 22 is connected to the DC negative side bus 10.
  • a connection point between the positive side of the capacitor 15 and the positive side charging resistor 14 is connected to a commonly connected cathode of the diode unit 12.
  • the anode of each diode is connected to the negative side of the capacitor 15, and the cathode is connected to the winding end terminal (TU3, TV3, TW3) of each phase winding.
  • the symbol of IGBT is used for the power semiconductor switch element, but an optimal power semiconductor switch element may be used according to the voltage and current.
  • the changeover switch unit 4 is turned on and the changeover switch unit 13 is turned off.
  • the intermediate taps (TU2, TV2, TW2) of the respective phase windings of the three-phase AC motor 1 are short-circuited with each other through the changeover switch unit 4, and are configured by TU1-TU2, TV1-TV2, TW1-TW2.
  • Star connection As a result, the number of windings can be reduced and the back electromotive force of the three-phase AC motor 1 can be suppressed as compared with the case where the winding end terminals (TU3, TV3, TW3) of each phase winding are short-circuited. And high speed operation is possible.
  • the changeover switch unit 13 is turned on and the changeover switch unit 4 is turned off.
  • the winding end terminals (TU3, TV3, TW3) of the three-phase AC motor 1 are short-circuited through the changeover switch unit 13, and each phase winding is constituted by TU1-TU3, TV1-TV3, TW1-TW3. It becomes possible to obtain sufficient torque at low speed. In this way, a wide output characteristic (speed-torque control range) can be obtained by controlling the selector switch unit 4 and the selector switch unit 13 in accordance with the operation speed.
  • the present invention is different from the prior art in that a current is instantaneously switched by connecting a capacitor to the winding switching unit in a charged state, and from the DC negative bus 10 of the inverter 7 to the protection diode unit 19 and the protection diode unit. 20 is connected to an intermediate tap (TU2, TV2, TW2) of each phase winding and a winding end terminal (TU3, TV3, TW3) of each phase winding via 20 respectively.
  • TU2, TV2, TW2 an intermediate tap
  • TU3, TV3, TW3 winding end terminal
  • the current is instantaneously switched by connecting a capacitor to the winding switching unit in a charged state, so that the motor current waveform is not disturbed.
  • the current reduction rate may be increased.
  • the current reduction rate di / dt is as shown in (Formula 1).
  • di / dt V / L (Formula 1)
  • V is a capacitor voltage
  • L is a motor winding inductance.
  • FIG. 2 is a diagram showing an operation waveform (simulation waveform) at the time of winding switching in the first embodiment of the winding switching device for a three-phase AC motor according to the present invention.
  • 2A shows a voltage waveform of the capacitor
  • FIG. 2B shows a current waveform flowing in the motor winding.
  • A is a capacitor voltage waveform when the initial charging voltage is 350 V in the method of the present invention
  • B is a capacitor voltage waveform when there is no initial charging in the conventional method.
  • C is a current waveform flowing in the motor winding when the initial charging voltage is 350 V in the method of the present invention
  • D is a current waveform flowing in the motor winding when there is no initial charging in the conventional method.
  • the common connection point of the power semiconductor switch elements of the changeover switch unit 4 is The motor becomes a neutral point of the motor through the windings TU1-TU2, TV1-TV2, TW1-TW2 of the three-phase AC motor 1, the power semiconductor switch element of the changeover switch unit 4, and a diode connected in reverse parallel thereto. Current flows.
  • the changeover switch unit 13 When switching from the high-speed winding to the low-speed winding, the changeover switch unit 13 is turned on and the changeover switch unit 4 is turned off.
  • the capacitor 6 is connected between the DC positive bus 9 and the DC negative bus 10 of the inverter 7 via the positive charging resistor 5 and the negative charging resistor 21 and is initially charged in advance.
  • the motor winding is switched in that state, that is, when the changeover switch unit 4 is turned off, the energy stored in the motor inductance is absorbed by the capacitor 6 through the diode unit 3.
  • the protection diode parts 19 and 20 cause some abnormality during motor driving, and when the main circuit part of the inverter 7 is base-blocked, a path for the return current caused by the motor inductance is secured, and the inverter 7 and the coil are switched.
  • the part 2 and the winding switching part 11 are inserted for the purpose of preventing damage.
  • the inverter 7 causes the main circuit portion to be base-blocked, if there are the protection diode portion 19 and the protection diode portion 20, the motor winding
  • the energy Q resulting from the current flowing in the inductance is consumed by charging the electrolytic capacitor (not shown), the capacitor 6 and the capacitor 15 installed in the main circuit portion of the inverter 7.
  • the energy Q is as shown in (Formula 2).
  • Q (1/2) ⁇ L ⁇ i 2 (Formula 2)
  • L is the inductance of the motor winding
  • i the current flowing through the motor winding.
  • the protective diode unit 19 it is impossible to secure a path for the return current, and it becomes impossible to absorb the energy Q caused by the current flowing in the motor winding, and the DC positive side bus voltage value of the inverter 7 suddenly increases. As a result, the inverter 7 and the winding switching unit are destroyed. In order to prevent such destruction without the protection diode unit 19 and the protection diode unit 20, it is necessary to increase the breakdown voltage of the main circuit unit of the inverter 7 and the winding switching units 2 and 11.
  • a winding switching device for a three-phase AC motor can be provided.
  • the number of intermediate taps of each phase winding of the three-phase AC motor 1 is one.
  • the number of intermediate taps of each phase winding of the three-phase AC motor 1 is two or more.
  • the number of intermediate taps of each phase winding of the three-phase AC motor 1 is two, the number of winding switching units is three, and the number of intermediate taps of each phase winding of the three-phase AC motor 1 is three.
  • the number of winding switching units is one more than the number of intermediate taps of each phase winding of the three-phase AC motor 1, such as four winding switching units.
  • the winding can be switched by appropriately switching the winding end terminal of each phase winding of the three-phase AC motor 1 and the intermediate tap.
  • FIG. 3 is a diagram showing a second embodiment of the winding switching device for a three-phase AC motor according to the present invention.
  • 25 and 27 are state detectors
  • 26 and 28 are comparators
  • 255 and 275 are winding switching unit ON state signals
  • 256 and 276 are * winding switching unit OFF state signals
  • 264 and 284 are This is a winding switching unit abnormality signal.
  • the difference between the present embodiment and the first embodiment is that a state detector that detects the conduction state of each power semiconductor switch element that constitutes the changeover switch portion of the winding switching portion, the detection result, and the control portion of the inverter And a comparator that detects an abnormality of the winding switching unit based on the drive signal output from the.
  • the state detector 25 detects the conduction state of each power semiconductor switch element that constitutes the changeover switch unit 4, and when all the power semiconductor switch elements that constitute the changeover switch unit 4 are in a conduction state (High).
  • the winding switching unit on-state signal 255 and the switching switch unit 4 are all in a non-conductive state (Low).
  • the winding switching unit off-state signal 256 is a comparator. 26.
  • the state detector 27 detects the conduction state of the power semiconductor switch elements constituting the changeover switch unit 13, and when all the power semiconductor switch elements constituting the changeover switch unit 13 are in the conduction state (High).
  • the winding switching unit ON state signal 275 and the switching switch unit 13 are all in a non-conductive state (Low). * The winding switching unit OFF state signal 276 is compared. To the device 28.
  • the comparator 26 detects the winding switching unit abnormality based on the winding switching unit ON state signal 255, the * winding switching unit OFF state signal 256, and the drive signal 17 from the control unit of the inverter 7, and switches the winding. If the part is abnormal, the winding switching part abnormality signal 264 is set to (High) and output to the control unit of the inverter 7. Further, the comparator 28 detects a winding switching unit abnormality based on the winding switching unit on-state signal 275, the * winding switching unit off-state signal 276, and the drive signal 18 from the control unit of the inverter 7. If the line switching unit is abnormal, the winding switching unit abnormality signal 284 is set to (High) and output to the control unit of the inverter 7.
  • the control unit of the inverter 7 inputs the winding switching unit abnormality signal 264 and the winding switching unit abnormality signal 284, and when either becomes (High), it is determined that there is an abnormality, and the main circuit of the inverter 7 Appropriate processing, such as blocking parts.
  • FIG. 4 is a detailed view showing an example of a state detector and a comparator in the second embodiment of the winding switching device for a three-phase AC motor according to the present invention, which is a portion related to the winding switching unit 2. Since the state detector 27 and the comparator 28 related to the winding switching unit 11 are the same, description thereof will be omitted.
  • 251 is a photocoupler (3)
  • 252 is a pull-up resistor (6)
  • 253 is a NOR (negative OR) gate
  • 254 is a NAND (negative AND) gate
  • 261 and 262 are XOR (
  • An exclusive OR gate 263 is an OR gate.
  • the state detector 25 includes three photocouplers 251, six pull-up resistors 252, a three-input NOR gate 253, and a three-input NAND gate 254.
  • the anodes of the respective light emitting diodes of the three photocouplers 251 are connected to the gate drive power source V D of the power semiconductor switch element of the changeover switch unit 4 through the pull-up resistors 252, respectively.
  • the cathodes of the light emitting diodes of the three photocouplers 251 are connected to the collectors of the power semiconductor switch elements of the changeover switch unit 4, respectively.
  • the emitter of the power semiconductor switches of the switching unit 4 all connected to the ground G D of the power supply gate drive, wherein in particular does not have to process.
  • the emitters of the phototransistors of the three photocouplers 251 are all connected to the control power supply ground GL .
  • the collectors of the phototransistors of the three photocouplers 251 are connected to the control power supply V L via the pull-up resistors 252 and to the input terminals of the NOR gate 253 and the NAND gate 254, respectively.
  • the output of the NOR gate 253 is a winding switching unit on state signal 255
  • the output of the NAND gate 254 is a * winding switching unit off state signal 256.
  • the state detector 25 uses the photocoupler 251 and has an insulation function. However, when the control unit, the main circuit unit, and the winding switching unit of the inverter 7 are operated at the same potential. It is not necessary for the state detector 25 to have an insulating function.
  • the comparator 26 includes an XOR gate 261, an XOR gate 262, and an OR gate 263.
  • the XOR gate 261 receives the winding switching unit ON state signal 255 and the drive signal 17 and outputs an exclusive OR to the OR gate 263.
  • the XOR gate 262 receives the * winding switching unit OFF state signal 256 and the drive signal 17 and outputs an exclusive OR to the OR gate 263.
  • the OR gate 263 receives the output signals of the XOR gate 261 and the XOR gate 262 and outputs a logical sum as a winding switching unit abnormality signal 264 to the control unit of the inverter 7.
  • the winding switching unit OFF state signal 256 becomes (High). Then, since the drive signal 17 is (Low), the output of the XOR gate 261 becomes (Low), the output of the XOR gate 262 becomes (High), and the winding switching unit abnormality signal 264 that is the output of the OR gate 263 is (High). Thus, when there is an abnormality in the winding switching unit 2, the winding switching unit abnormality signal 264 is always (High). Therefore, the state of the winding switching unit abnormality signal 264 is monitored by the control unit of the inverter 7, and when it becomes (High), it is determined that an abnormality has occurred in the winding switching unit, and the main circuit operation can be stopped. .
  • the state detector detects the conduction state of the power semiconductor switch element of the changeover switch unit, and compares the output signal of the state detector with the drive signal that drives the changeover switch unit to It is possible to detect an abnormality such as a miswiring of a switching unit or a failure of a changeover switch unit, and therefore to provide a winding switching device for a three-phase AC motor that can prevent abnormal operation and device breakdown in advance. it can.
  • the present invention can realize a motor drive that requires a wide range of constant output characteristics, it can be applied to a spindle drive device of a machine tool and a vehicle drive device such as a hybrid vehicle or an electric vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

 モータ電流の切替えを速くし、正弦波電流の乱れを最小限に抑え、さらに誤配線や部品異常を検知し、異常運転や装置破壊を未然に防ぐことを可能とする、3相交流電動機の巻線切替装置を提供する。  巻線切替部(2(11))において、インバータ(7)の直流正側母線(9)と直流負側母線(10)との間に正側充電抵抗器(5(14))と負側充電抵抗器(21(22))とコンデンサ(6(15))を直列接続し、コンデンサ正側をダイオード部(3(12))のカソードと接続し、コンデンサ電位をインバータ直流母線電圧値と同一にした状態で、高速巻線と低速巻線の切替を行う。また、状態検出器(25(27))と比較器(26(28))により誤配線や部品異常を検知する。

Description

3相交流電動機の巻線切替装置
 本発明は、3相交流電動機の巻線を切替えることによって、速度制御範囲を拡大する3相交流電動機の巻線切替装置に関するものであり、車両駆動、工作機械主軸駆動、サーボ装置を含む産業分野を対象とするものである。
 インバータで駆動される工作機械の主軸や車両の駆動装置において、低速領域で十分に大きいトルクを得るとともに、高速領域での運転を可能にするための手段として、巻線切替方法が採用されている。(例えば特許文献1参照)
 図5は、従来の3相交流電動機の巻線切替装置の一例を示す図である。従来の巻線切替装置について図5に基づいて説明する。
 3相交流電動機111は、各相巻線が中間タップ(TU2、TV2、TW2)と各相巻線の巻き始め端子と巻き終り端子がモータ外部に設けてあり、各相巻線の巻き始め端子(TU1、TV1、TW1)がインバータ117に、巻き終り端子(TU3、TV3、TW3)が巻線切替部121の全波整流部122に、中間タップが巻線切替部112の全波整流部113に、各々接続される。全波整流部113の出力は、半導体スイッチ114に接続されるとともに、抵抗器116とコンデンサ115から成るスナバ回路に接続される。ダイオード119、120はスナバ回路から半導体スイッチ114への逆流防止のために挿入される。半導体スイッチ114は、インバータ117の制御部からの信号を受けるドライブ回路118によってオン/オフされる。ここでは、巻線切替部112に関してのみ説明したが、巻線切替部121に関しても同様の原理で接続される。
 以上の構成で、3相交流電動機111の運転を行う。低速で十分に大きいトルクを得る場合は、中間タップ(TU2、TV2、TW2)が接続される巻線切替部112の半導体スイッチ114をオフとし、各相巻線の巻き終り端子(TU3、TV3、TW3)が接続される巻線切替部121の半導体スイッチ123をオンとする。これにより巻線数を増やすことができ、大きいトルクを発生させることができる。また、高速領域で運転する場合は、3相交流電動機巻線による逆起電力を抑えるために、中間タップ(TU2、TV2、TW2)が接続される巻線切替部112の半導体スイッチ114をオンとし、各相巻線の巻き終り端子(TU3、TV3、TW3)が接続される巻線切替部121の半導体スイッチ123をオフとする。
 このように、従来の巻線切替装置は、巻線切替部の全波整流部出力を半導体スイッチによってオン/オフし、3相交流電動機の巻線数を速度領域に応じて切替えることで、幅広い出力特性を得ているのである。
特開2003-111492号公報(第6頁、図1)
 従来の巻線切替装置は、例えば、低速巻線から高速巻線に巻線を切替えた場合に、モータ巻線TU2‐TU3、TV2‐TV3、 TW2‐TW3に残っている電流が速やかにゼロにならないために、全波整流器122と半導体スイッチ123を介してモータ電流が流れ続ける。これにより本来、全波整流器113と半導体スイッチ114に流れる正弦波電流が乱れる。また、スナバ回路を構成する抵抗器125に電流が流れて正弦波電流が乱れる。
 このように、モータ巻線が励磁状態から非励磁状態に遷移する際に、モータ巻線インダクタンスに蓄えられたエネルギーを放出するために瞬時に電流が切替わらず、本来、正弦波であるべきモータ電流が乱れてしまうという問題があった。
 この問題は、例えば工作機械主軸駆動装置においては、出力トルクリップル、速度リップルを生じさせ、加工製品の品質に悪影響を与えてしまう。また、モータ電流の乱れにより、電流制御にも悪影響を与えていた。
 また、2つに分離された巻線切替部112、121が低速領域と高速領域の運転を別々に司るため、これらを制御する信号も低速巻線制御信号と高速巻線制御信号に分離されている。ところが、ユニット組立て時に低速側に高速側の制御信号、高速側に低速側の制御信号を誤って配線してしまった場合(通常は、このような誤配線をするものではないが)、低速領域の運転時には、所望のトルクを得るために必要な電流が大きく増加し、過電流等の異常運転を引き起こす。また、高速運転時にはモータ各相の誘起電圧が異常に上昇し、モータを駆動するインバータおよび巻線切替装置の電力用半導体スイッチ素子を過電圧破壊させる。また、巻線切替部の電力用半導体スイッチ素子が故障すると単相運転や過電流運転などの異常運転を引き起こす。
 本発明はこのような問題点に鑑みてなされたものであり、モータ電流の切替えを速くして、正弦波電流の乱れを最小限に抑えるとともに、誤配線や装置故障を検知し、異常運転や装置破壊を未然に防ぐことを可能とする3相交流電動機の巻線切替装置を提供することを目的とする。
 上記問題を解決するため、本発明は、次のように構成したのである。
 請求項1に記載の発明は、各相の巻線が中間タップを有し、前記中間タップと巻き始め端子と巻き終り端子とをモータ外部に設けた3相交流電動機と、前記3相交流電動機の前記各相巻線の前記巻き始め端子に可変周波の可変電圧を供給するインバータと、前記各相巻線の前記中間タップおよび前記巻き終り端子をそれぞれ適宜切替える複数の巻線切替部と、前記インバータからのドライブ信号を受け、前記巻線切替部を制御するドライブ回路とを備える3相交流電動機の巻線切替装置において、前記巻線切替部はそれぞれ、3個のダイオードの各カソードを互いに共通接続したダイオード部と、3個の電力用半導体スイッチ素子にそれぞれダイオードを逆並列接続し、前記電力用半導体スイッチ素子の各エミッタを互いに共通接続し、前記電力用半導体スイッチ素子の各コレクタを前記ダイオード部の各ダイオードのアノードにそれぞれ接続し、前記電力用半導体スイッチ素子の各コレクタと前記ダイオード部の各ダイオードのアノードとの各接続点を前記3相交流電動機の前記各相巻線の前記巻き終り端子または前記中間タップにそれぞれ接続した切替スイッチ部と、前記インバータ部の直流正側母線に正側充電抵抗器の一端を接続し、前記正側充電抵抗器の他端をコンデンサの正側に接続し、前記コンデンサの負側を負側充電抵抗器の一端に接続し、前記負側充電抵抗器の他端を前記インバータ部の直流負側母線に接続し、前記コンデンサの正側が前記ダイオード部の各ダイオードの互いに共通接続されたカソードに接続している電位固定部と、前記電位固定部のコンデンサの負側に各アノードをそれぞれ接続し、各カソードを前記ダイオード部の各ダイオードのアノードと前記切替スイッチ部の各電力用半導体スイッチ素子のコレクタとの各接続点にそれぞれ接続した保護ダイオード部とを備えることを特徴とするものである。
 また、請求項2に記載の発明は、請求項1に記載の3相交流電動機の巻線切替装置において、前記切替スイッチ部を構成する電力用半導体スイッチ素子の導通状態を検出する状態検出器と、前記状態検出器の出力信号と前記ドライブ信号とに基づいて巻線切替部の異常を検出する比較器とを備えることを特徴とするものである。
 また、請求項3記載の発明は、請求項2記載の3相交流電動機の巻線切替装置において、前記状態検出器は、前記電力用半導体スイッチ素子のすべてが導通状態であること、および前記電力用半導体スイッチ素子のすべてが非導通状態であることを検出することを特徴とするものである。
 また、請求項4記載の発明は、請求項2記載の3相交流電動機の巻線切替装置において、前記状態検出器は、絶縁機能を有していることを特徴とするものである。
 また、請求項5記載の発明は、請求項2記載の3相交流電動機の巻線切替装置において、前記比較器は、排他的論理和回路を備え、前記状態検出器の出力信号と前記ドライブ信号との排他的論理和により巻線切替部の異常を検出することを特徴とするものである。
 請求項1に記載の発明によると、3相交流電動機の中間タップと、ダイオード部アノード端子が接続された切替スイッチ部の電力用半導体スイッチ素子を制御する際、巻線切替部のダイオード部のカソードの電位を直流母線電圧値に保つ電位固定部を備えているので、モータインダクタンスに蓄えられたエネルギーを放出することができ、瞬時に電流が切替わり、モータ電流波形を乱すことなく即座に3相交流電動機の巻線を切替えることを可能とする交流電動機の巻線切替装置を提供することができる。
 また、請求項2ないし5に記載の発明によると、切替スイッチ部の電力用半導体スイッチ素子の導通状態を状態検出器により検出し、状態検出器の出力信号と切替スイッチ部を駆動するドライブ信号とを比較することにより、巻線切替部の誤配線や切替スイッチ部の故障などの異常を検知し、異常運転や装置破壊を未然に防ぐことを可能とする3相交流電動機の巻線切替装置を提供することができる。
 また、請求項4に記載の発明によると、状態検出器が絶縁機能を有しているので、インバータの制御部ならびに主回路部および巻線切替部の動作電位が異なっていても巻線切替部の異常を検出することができる。
本発明の3相交流電動機の巻線切替装置の第1実施例を示す図 本発明の3相交流電動機の巻線切替装置の第1実施例の巻線切替時の動作波形(シミュレーション波形)を示す図 本発明の3相交流電動機の巻線切替装置の第2実施例を示す図 本発明の3相交流電動機の巻線切替装置の第2実施例における状態検出器および比較器の回路構成の一例を示す詳細図 従来の3相交流電動機の巻線切替装置の一例を示す図
符号の説明
1、111 3相交流電動機
2、11、112、121 巻線切替部
3、12 ダイオード部
4、13 切替スイッチ部
5、14 正側充電抵抗器
6、15、115、124 コンデンサ
7、117 インバータ
8、16、118、127 ドライブ回路
9 直流正側母線
10 直流負側母線
17、18 ドライブ信号
19、20 保護ダイオード部
21、22 負側充電抵抗器
23、24 電位固定部
25、27 状態検出器
26、28 比較器
113、122 全波整流部
114、123 半導体スイッチ
116、125 抵抗器
119、120、128、129 ダイオード
251 フォトカプラ
252 プルアップ抵抗器
253 NORゲート
254 NANDゲート
255、275 巻線切替部オン状態信号
256、276 *巻線切替部オフ状態信号
261、262 XORゲート
263 ORゲート
264、284 巻線切替部異常信号
 以下、本発明の実施の形態について図を参照して説明する。
 実際のインバータには様々な機能や手段が内蔵されているが、図には本発明に関係する機能や手段のみを記載し説明することとする。また、以下同一名称には極力同一符号を付け重複説明を省略する。
 図1は、本発明の3相交流電動機の巻線切替装置の第1実施例を示す図である。図1において、1は3相交流電動機、2および11は巻線切替部、3および12はダイオード部、4および13は切替スイッチ部、5および14は正側充電抵抗器、6および15はコンデンサ、7はインバータ、8および16はドライブ回路、9は直流正側母線、10は直流負側母線、17および18はドライブ信号、21および22は負側充電抵抗器、23および24は電位固定部である。
 インバータ7は、制御部と主回路から構成される。
 3相交流電動機1は、各相の巻線に、それぞれ1つの中間タップ(TU2、TV2、TW2)と各相巻線の巻き始め端子(TU1、TV1、TW1)および巻き終り端子(TU3、TV3、TW3)がモータ外部に設けてある。
 3相交流電動機1の各相巻線の巻き始め端子(TU1、TV1、TW1)はインバータ7に、巻き終り端子(TU3、TV3、TW3)は巻線切替部11に、中間タップ(TU2、TV2、TW2)は巻線切替部2に、各々接続される。
 ドライブ回路8は、インバータ7の制御部からドライブ信号17を受信し、巻線切替部2を駆動し、切替スイッチ部4に制御信号を出力する。また、ドライブ回路16は、インバータ7の制御部からドライブ信号18を受信し、巻線切替部11を駆動し、切替スイッチ部13に制御信号を出力する。
 ここで先ず、巻線切替部2に関して説明する。
 巻線切替部2は、ダイオード部3、切替スイッチ部4、電位固定部23、および保護ダイオード部19から構成される。
 ダイオード部3は、3個のダイオードから成り、各ダイオードのカソードは互いに共通接続されている。
 切替スイッチ部4は、3個の電力用半導体スイッチ素子とこれにそれぞれ逆並列接続されたダイオードとから成り、各電力用半導体スイッチ素子のコレクタはダイオード部3の各ダイオードのアノードにそれぞれ接続し、各電力用半導体スイッチ素子のエミッタは互いに共通接続されている。
 ダイオード部3の各ダイオードのアノードと切替スイッチ部4の各電力用半導体スイッチ素子のコレクタとの各接続点は、各相毎に3相交流電動機1の各相巻線の中間タップ(TU2、TV2、TW2)と各々接続されている。
 電位固定部23は、正側充電抵抗器5とコンデンサ6と負側充電抵抗器21から成り、正側充電抵抗器5の一端はインバータ部7の直流正側母線9に接続され、正側充電抵抗器5の他端はコンデンサ6の正側に接続される。コンデンサ6の負側は負側充電抵抗器21の一端に接続され、負側充電抵抗器21の他端は直流負側母線10に接続される。コンデンサ6の正側と充電抵抗器5との接続点はダイオード部3の共通接続されたカソードに接続されている。
 保護ダイオード部19は、各ダイオードのアノードがコンデンサ6の負側にそれぞれ接続され、カソードが各相巻線の中間タップ(TU2、TV2、TW2)にそれぞれ接続されている。
 ここで電力用半導体スイッチ素子はIGBTの記号を用いているが、電圧・電流に応じて最適な電力用半導体スイッチ素子を用いればよい。
 なお、巻線切替部11に関しても、巻線切替部2と全く同様に接続構成されている。
 巻線切替部11は、ダイオード部12、切替スイッチ部13、電位固定部24、および保護ダイオード部20から構成される。
 ダイオード部12は、3個のダイオードから成り、各ダイオードのカソードは互いに共通接続されている。
 切替スイッチ部13は、3個の電力用半導体スイッチ素子とこれにそれぞれ逆並列接続されたダイオードとから成り、各電力用半導体スイッチ素子のコレクタはダイオード部12の各ダイオードのアノードにそれぞれ接続し、各電力用半導体スイッチ素子のエミッタは互いに共通接続されている。
 ダイオード部12の各ダイオードのアノードと切替スイッチ部13の各電力用半導体スイッチ素子のコレクタとの各接続点は、各相毎に3相交流電動機1の巻き終り端子(TU3、TV3、TW3)と各々接続されている。
 電位固定部24は、正側充電抵抗器14とコンデンサ15と負側充電抵抗器22から成り、正側充電抵抗器14の一端はインバータ部7の直流正側母線9に接続され、充電抵抗器14の他端はコンデンサ15の正側に接続される。コンデンサ15の負側は負側充電抵抗器22の一端に接続され、負側充電抵抗器22の他端は直流負側母線10に接続される。コンデンサ15の正側と正側充電抵抗器14との接続点はダイオード部12の共通接続されたカソードに接続されている。
 保護ダイオード部20は、各ダイオードのアノードがコンデンサ15の負側にそれぞれ接続され、カソードが各相巻線の巻き終り端子(TU3、TV3、TW3)にそれぞれ接続されている。
 ここで電力用半導体スイッチ素子はIGBTの記号を用いているが、電圧・電流に応じて最適な電力用半導体スイッチ素子を用いればよい。
 切替スイッチ部4をオンするときは、切替スイッチ部4の電力用半導体スイッチ素子すべてにオン信号を出力する。すると、順方向電圧が加わっている電力用半導体スイッチ素子には電流が流れ、逆方向電圧が加わっている電力用半導体スイッチ素子には電流は流れないが、その電力用半導体スイッチ素子に逆並列接続されているダイオードを電流が流れ、3相交流電動機1の各相巻線の中間タップ(TU2、TV2、TW2)が互いに短絡状態となる。
 切替スイッチ部4をオフするときは、切替スイッチ部4の電力用半導体スイッチ素子すべてにオフ信号を出力する。すると、切替スイッチ部4のすべての電力用半導体スイッチ素子がオフになって3相交流電動機1の各相巻線の中間タップ(TU2、TV2、TW2)が開放状態となる。
 また、切替スイッチ部13をオンするときは、切替スイッチ部13の電力用半導体スイッチ素子すべてにオン信号を出力する。すると、順方向電圧が加わっている電力用半導体スイッチ素子には電流が流れ、逆方向電圧が加わっている電力用半導体スイッチ素子には電流は流れないが、その電力用半導体スイッチ素子に逆並列接続されているダイオードを電流が流れ、3相交流電動機1の巻き終り端子(TU3、TV3、TW3)が互いに短絡状態となる。
 切替スイッチ部13をオフするときは、切替スイッチ部13の電力用半導体スイッチ素子すべてにオフ信号を出力する。すると、切替スイッチ部13のすべての電力用半導体スイッチ素子がオフになって3相交流電動機1の巻き終り端子(TU3、TV3、TW3)が開放状態となる。
 つぎに、3相交流電動機1の高速運転時の動作を説明する。
 この場合、切替スイッチ部4をオンし、切替スイッチ部13をオフとする。これにより、切替スイッチ部4を通して、3相交流電動機1の各相巻線の中間タップ(TU2、TV2、TW2)が互いに短絡状態となり、TU1-TU2、TV1-TV2、TW1-TW2で構成されるスター結線となる。
 これにより各相巻線の巻き終り端子(TU3、TV3、TW3)を短絡状態とした場合より巻線数が少なくなり3相交流電動機1の逆起電力が抑えられるため、十分な電流を流すことができ、高速運転が可能となる。
 また、低速運転の場合、切替スイッチ部13をオンし、切替スイッチ部4をオフとする。これにより、切替スイッチ部13を通して、3相交流電動機1の巻き終り端子(TU3、TV3、TW3)が短絡状態となり、各相巻線が、TU1‐TU3、TV1-TV3、TW1‐TW3で構成されるスター結線となり、低速で十分なトルクを得ることが可能となる。このように運転速度に応じて、切替スイッチ部4、および切替スイッチ部13を制御することで広い出力特性(速度-トルク制御範囲)を得ることができる。
 本発明が従来技術と異なる点は、巻線切替部にコンデンサを充電状態で接続することで瞬時に電流を切替える点と、インバータ7の直流負側母線10から保護ダイオード部19、および保護ダイオード部20を介して各相巻線の中間タップ(TU2、TV2、TW2)および各相巻線の巻き終り端子(TU3、TV3、TW3)に各々接続されている点である。
 従来の巻線切替方式では、モータ巻線が励磁状態から非励磁状態に遷移する際に、モータインダクタンスに蓄えられたエネルギーを放出するために、瞬時に電流が切替わらずモータ電流が乱れるという問題があったが、本発明の巻線切替方式では、巻線切替部にコンデンサを充電状態で接続することで瞬時に電流が切替わるために、モータ電流波形を乱すことがない。
 ここで、巻線切替部にコンデンサを充電状態で接続すると、電流が瞬時に切替わる理由を説明しておく。
 巻線切替時にモータ巻線に残っている電流を速やかにゼロにするには、電流減少率をあげればよい。電流減少率di/dtは、(式1)で示すとおりである。
  di/dt = V/L               (式1)
 ここで、Vはコンデンサ電圧、Lはモータ巻線インダクタンスである。
 コンデンサ電圧Vを高電位に保つことで電流減少率をあげることができ、電流を速やかにゼロにすることができる。
 その動作を低速巻線から高速巻線へ遷移させた場合について説明する。
 低速巻線から高速巻線へ遷移させる場合は、切替スイッチ部4をオンして、切替スイッチ部13をオフにする。
 コンデンサ15は、正側充電抵抗器14と負側充電抵抗器22を介して、インバータ7の直流正側母線9、および直流負側母線10との間に接続され、予め初期充電されている。その状態でモータ巻線を切替えると、即ち、切替スイッチ部13をオフすると、モータインダクタンスに蓄えられたエネルギーはダイオード部12を通してコンデンサ15で吸収される。このとき、コンデンサ15の電圧は初期充電電圧値(直流母線電圧値)より上昇するが、モータ巻線に流れる電流は速やかにゼロとなる。
 図2は、本発明の3相交流電動機の巻線切替装置の第1実施例の巻線切替時の動作波形(シミュレーション波形)を示す図である。図2(a)はコンデンサの電圧波形、図2(b)はモータ巻線に流れる電流波形である。図2(a)において、Aは本発明の方式で初期充電電圧が350Vの場合のコンデンサの電圧波形、Bは従来方式で初期充電がない場合のコンデンサの電圧波形である。また、図2(b)において、Cは本発明の方式で初期充電電圧が350Vの場合のモータ巻線に流れる電流波形、Dは従来方式で初期充電がない場合のモータ巻線に流れる電流波形である。
 コンデンサの初期充電電圧を350Vと0Vの場合で比較すると、初期充電電圧が350V時の方が、電流減少率が高く、速やかに、ゼロになっている。
 このことより、コンデンサの初期充電の有無でモータ巻線に流れる電流がゼロになるまでの時間が違うことがわかる。
 切替スイッチ部4がオフ状態の時は、巻線切替部2にはモータ電流は通電されていないので、切替スイッチ部4をオンにすると切替スイッチ部4の電力用半導体スイッチ素子の共通接続点がモータ中性点となり、3相交流電動機1の巻線TU1‐TU2、TV1‐TV2、TW1‐TW2と、切替スイッチ部4の電力用半導体スイッチ素子およびこれらに逆並列接続されたダイオードを介してモータ電流が流れる。
 また、高速巻線から低速巻線へ遷移させた場合についても、全く同様の原理である。
 つぎに、高速巻線から低速巻線へ遷移させた場合の動作について説明する。
 高速巻線から低速巻線へ遷移させる場合は、切替スイッチ部13をオンして、切替スイッチ部4をオフにする。
 コンデンサ6は、正側充電抵抗器5と負側充電抵抗器21を介して、インバータ7の直流正側母線9、および直流負側母線10との間に接続され、予め初期充電されている。その状態でモータ巻線を切替えると、即ち、切替スイッチ部4をオフすると、モータインダクタンスに蓄えられたエネルギーはダイオード部3を通してコンデンサ6で吸収される。このとき、コンデンサ6の電圧は初期充電電圧値(直流母線電圧値)より上昇するが、モータ巻線に流れる電流は速やかにゼロとなる。
 また、切替スイッチ部13をオンすることで、切替スイッチ部13の電力用半導体スイッチ素子の共通接続点がモータ中性点となり、3相交流電動機1の巻線TU1‐TU3、TV1-TV3、TW1‐TW3と、切替スイッチ部13の電力用半導体スイッチ素子およびこれらに逆並列接続されたダイオードを介してモータ電流が流れる。
 以上のような構成で動作させることで、モータ電流波形を乱すことなく即座に3相交流電動機の巻線を切替えることを可能とする3相交流電動機の巻線切替装置を提供することができる。
 次に、保護ダイオード部の動作について説明する。
 保護ダイオード部19および20は、モータ駆動中に何らかの異常をきたし、インバータ7の主回路部がベースブロックされた場合に、モータインダクタンスに起因する還流電流の経路を確保し、インバータ7と巻線切替部2、巻線切替部11を破壊から防ぐ目的で挿入される。
 3相交流電動機が通電中に何らかの異常をきたし(例えば、モータロックなど)、インバータ7が主回部をベースブロックさせた場合、保護ダイオード部19、および保護ダイオード部20があると、モータ巻線のインダクタンスに流れていた電流に起因するエネルギーQは、インバータ7の主回路部に設置されている電解コンデンサ(図示せず)、コンデンサ6、およびコンデンサ15を充電することで消費される。
 エネルギーQは、(式2)で示すとおりである。
  Q = (1/2)・L・i2              (式2)
 ここで、Lはモータ巻線のインダクタンス、iはモータ巻線に流れていた電流である。
 以下に具体的にエネルギー経路を説明する。
 仮に、U相モータ巻線の中間タップTU2の点において、モータからインバータに向かってモータ電流が流れていた場合を想定する。この場合、中間タップTU2を起点とし、インバータ内部のフリーホイールダイオードを通り、コンデンサ6よりもインピーダンスが低い主回路コンデンサを充電し、直流負側母線10を通り、保護ダイオード部19を介して、中間タップTU2を終点とする閉回路に還流電流が流れる。このとき、保護ダイオード部19が無いと、還流電流の経路を確保できず、モータ巻線に流れていた電流に起因するエネルギーQを吸収できなくなり、インバータ7の直流正側母線電圧値が急激に上昇し、インバータ7や巻線切替部が破壊にいたる。
 保護ダイオード部19、および保護ダイオード部20なしで、このような破壊を防止するためには、インバータ7の主回路部、ならびに巻線切替部2および11の耐圧を高くする必要がある。
 このような構成で動作させることで、インバータ7の主回路部、ダイオード部3および12、ならびに切替スイッチ部4および13の耐圧を高くしなくても、モータ異常時の還流電流による装置破壊を防止する3相交流電動機の巻線切替装置を提供することができる。
 実施例1では、3相交流電動機1の各相巻線の中間タップが1個の場合の例を説明しているが、3相交流電動機1の各相巻線の中間タップが2個以上の場合であっても同様である。
 例えば、3相交流電動機1の各相巻線の中間タップが2個の場合であれば、巻線切替部の数を3個とし、3相交流電動機1の各相巻線の中間タップが3個の場合であれば、巻線切替部の数を4個とするなど、3相交流電動機1の各相巻線の中間タップの数よりも1つ多い数の巻線切替部を備えれば、3相交流電動機1の各相巻線の巻き終り端子および前記中間タップをそれぞれ適宜切替えることで、巻線切替を行うことができる。
 図3は、本発明の3相交流電動機の巻線切替装置の第2実施例を示す図である。図3において、25および27は状態検出器、26および28は比較器であり、255および275は巻線切替部オン状態信号、256および276は*巻線切替部オフ状態信号、264および284は巻線切替部異常信号である。
 本実施例が実施例1と異なっている点は、巻線切替部の切替スイッチ部を構成する各電力用半導体スイッチ素子の導通状態を検出する状態検出器と、その検出結果とインバータの制御部から出力されるドライブ信号とに基づいて巻線切替部の異常を検出する比較器を備えている点である。
 まず、状態検出器および比較器の動作の概要について説明する。
 状態検出器25は、切替スイッチ部4を構成する各電力用半導体スイッチ素子の導通状態を検出して、切替スイッチ部4を構成する各電力用半導体スイッチ素子すべてが導通状態のときに(High)となる巻線切替部オン状態信号255、および切替スイッチ部4を構成する各電力用半導体スイッチ素子すべてが非導通状態のときに(Low)となる*巻線切替部オフ状態信号256を比較器26に出力する。
 また、状態検出器27は、切替スイッチ部13を構成する電力用半導体スイッチ素子の導通状態を検出して、切替スイッチ部13を構成する各電力用半導体スイッチ素子すべてが導通状態のときに(High)となる巻線切替部オン状態信号275、および切替スイッチ部13を構成する各電力用半導体スイッチ素子すべてが非導通状態のときに(Low)となる*巻線切替部オフ状態信号276を比較器28に出力する。
 比較器26は、巻線切替部オン状態信号255、*巻線切替部オフ状態信号256、およびインバータ7の制御部からのドライブ信号17に基づいて巻線切替部異常を検出して巻線切替部異常であれば、巻線切替部異常信号264を(High)にしてインバータ7の制御部に出力する。
 また、比較器28は、巻線切替部オン状態信号275、*巻線切替部オフ状態信号276、およびインバータ7の制御部からのドライブ信号18に基づいて巻線切替部異常を検出して巻線切替部異常であれば、巻線切替部異常信号284を(High)にしてインバータ7の制御部に出力する。
 インバータ7の制御部は、巻線切替部異常信号264および巻線切替部異常信号284を入力し、どちらか一方でも(High)になったら、異常であると判断して、インバータ7の主回路部を遮断するなど適切な処理を行う。
 つぎに、状態検出器および比較器の構成例ならびに動作の詳細について説明する。
 図4は、本発明の3相交流電動機の巻線切替装置の第2実施例における状態検出器および比較器の一例を示す詳細図であり、巻線切替部2に関する部分である。
 巻線切替部11に関する状態検出器27および比較器28も同様であるので、説明は省略する。
 図4において、251はフォトカプラ(3個)、252はプルアップ抵抗器(6個)、253はNOR(否定論理和)ゲート、254はNAND(否定論理積)ゲート、261および262はXOR(排他的論理和)ゲート、263はOR(論理和)ゲートである。
 まず、状態検出器25の構成について説明する。
 状態検出器25は、3個のフォトカプラ251、6個のプルアップ抵抗器252、3入力のNORゲート253、および3入力のNANDゲート254で構成される。
 3個のフォトカプラ251の各発光ダイオードのアノードは、それぞれプルアップ抵抗器252を介して切替スイッチ部4の電力用半導体スイッチ素子のゲートドライブ用電源Vに接続する。
 また、3個のフォトカプラ251の各発光ダイオードのカソードは、切替スイッチ部4の各電力用半導体スイッチ素子のコレクタにそれぞれ接続する。
 切替スイッチ部4の各電力用半導体スイッチ素子のエミッタは、すべてゲートドライブ用電源のグランドGに接続されているので、ここではとくに、処理する必要はない。
 3個のフォトカプラ251の各フォトトランジスタのエミッタは、すべて制御用電源のグランドGに接続する。
 3個のフォトカプラ251の各フォトトランジスタのコレクタは、それぞれプルアップ抵抗器252を介して制御用電源Vに接続すると共に、NORゲート253、およびNANDゲート254の各入力端にそれぞれ接続する。
 NORゲート253の出力が巻線切替部オン状態信号255であり、NANDゲート254の出力が*巻線切替部オフ状態信号256である。
 本実施例では、状態検出器25がフォトカプラ251を使用して、絶縁機能を有しているが、インバータ7の制御部、主回路部、および巻線切替部を同電位で動作させる場合には、状態検出器25が絶縁機能を有する必要はない。
 つぎに、状態検出器25の動作について説明する。
 切替スイッチ部4の各電力用半導体スイッチ素子がオンすると、ゲートドライブ用電源Vからプルアップ抵抗252、フォトカプラ251、電力用半導体素スイッチ素子、ゲートドライブ用電源グランドGの経路で電流が流れ、フォトカプラ251のフォトトランジスタがオンする。すると、NORゲート253、およびNANDゲート254のすべての入力端子が(Low)となるので、NORゲート253の出力である巻線切替部オン状態信号255は(High)となり、NANDゲート254の出力である*巻線切替部オフ状態信号256も(High)となる。
 また、切替スイッチ部4の各電力用半導体スイッチ素子がオフすると、フォトカプラ251の発光ダイオードに電流が流れず、フォトカプラ251のフォトトランジスタもオフする。すると、NORゲート253、およびNANDゲート254のすべての入力端子が(High)となるので、NORゲート253の出力である巻線切替部オン状態信号255は(Low)となり、NANDゲート254の出力である*巻線切替部オフ状態信号256も(Low)となる。
 つぎに、比較器26の構成について説明する。
 比較器26は、XORゲート261、XORゲート262、およびORゲート263で構成される。
 XORゲート261は、巻線切替部オン状態信号255およびドライブ信号17を入力し、排他的論理和をORゲート263に出力する。
 XORゲート262は、*巻線切替部オフ状態信号256およびドライブ信号17を入力し、排他的論理和をORゲート263に出力する。
 ORゲート263は、XORゲート261およびXORゲート262の出力信号を入力し、論理和を巻線切替部異常信号264としてインバータ7の制御部に出力する。
 つぎに、比較器26の動作について説明する。
 切替スイッチ部4の電力用半導体スイッチ素子のすべてが導通状態の時、巻線切替部オン状態信号255と*巻線切替部オフ状態信号256は、ともに(High)となる。すると、ドライブ信号17は(High)であるので、XORゲート261とXORゲート262の出力は(Low)となり、ORゲート263の出力である巻線切替部異常信号264は(Low)となる。
 また、切替スイッチ部4の電力用半導体スイッチ素子のすべてが非導通状態の時、巻線切替部オン状態信号255と*巻線切替部オフ状態信号256は、ともに(Low)となる。すると、ドライブ信号17は(Low)であるので、XORゲート261とXORゲート262の出力は(Low)となり、ORゲート263の出力である巻線切替部異常信号264は(Low)となる。
 このように、巻線切替部2が正常動作の場合、巻線切替部異常信号264は必ず(Low)となる。
 ところが、ドライブ信号17が(High)であるにも関わらず、切替スイッチ部4の電力用半導体スイッチ素子のいずれか一つでも非導通状態の時、巻線切替部オン状態信号255は(Low)となり、*巻線切替部オフ状態信号256は(High)となる。すると、ドライブ信号17は(High)であるので、XORゲート261の出力は(High)となり、XORゲート262の出力は(Low)となり、ORゲート263の出力である巻線切替部異常信号264は(High)となる。
 また、ドライブ信号17が(Low)であるにも関わらず、切替スイッチ部4の電力用半導体スイッチ素子のいずれか一つでも導通状態の時、巻線切替部オン状態信号255は(Low)となり、*巻線切替部オフ状態信号256は(High)となる。すると、ドライブ信号17は(Low)であるので、XORゲート261の出力は(Low)となり、XORゲート262の出力は(High)となり、ORゲート263の出力である巻線切替部異常信号264は(High)となる。
このように、巻線切替部2に異常があった場合、巻線切替部異常信号264は必ず(High)となる。
 従って、インバータ7の制御部で巻線切替部異常信号264の状態を監視し、(High)になったら、巻線切替部に異常が発生したと判断し、主回路動作を停止することができる。
 本実施例によると、切替スイッチ部の電力用半導体スイッチ素子の導通状態を状態検出器により検出し、状態検出器の出力信号と切替スイッチ部を駆動するドライブ信号とを比較することにより、巻線切替部の誤配線や切替スイッチ部の故障などの異常を検出することができるので、異常運転や装置破壊を未然に防ぐことを可能とする3相交流電動機の巻線切替装置を提供することができる。
 本発明によって広範囲の定出力特性が要求される電動機駆動を実現することができるため、工作機械の主軸駆動装置、ならびにハイブリッド自動車や電気自動車などの車両駆動装置にも適用できる。

Claims (5)

  1.  各相の巻線が中間タップを有し、前記中間タップと巻き始め端子と巻き終り端子とをモータ外部に設けた3相交流電動機と、前記3相交流電動機の前記各相巻線の前記巻き始め端子に可変周波の可変電圧を供給するインバータと、前記各相巻線の前記中間タップおよび前記巻き終り端子をそれぞれ適宜切替える複数の巻線切替部と、前記インバータからのドライブ信号を受け、前記巻線切替部を制御するドライブ回路とを備える3相交流電動機の巻線切替装置において、
     前記巻線切替部はそれぞれ、3個のダイオードの各カソードを互いに共通接続したダイオード部と、
     3個の電力用半導体スイッチ素子にそれぞれダイオードを逆並列接続し、前記電力用半導体スイッチ素子の各エミッタを互いに共通接続し、前記電力用半導体スイッチ素子の各コレクタを前記ダイオード部の各ダイオードのアノードにそれぞれ接続し、前記電力用半導体スイッチ素子の各コレクタと前記ダイオード部の各ダイオードのアノードとの各接続点を前記3相交流電動機の前記各相巻線の前記巻き終り端子または前記中間タップにそれぞれ接続した切替スイッチ部と、
     前記インバータ部の直流正側母線に正側充電抵抗器の一端を接続し、前記正側充電抵抗器の他端をコンデンサの正側に接続し、前記コンデンサの負側を負側充電抵抗器の一端に接続し、前記負側充電抵抗器の他端を前記インバータ部の直流負側母線に接続し、前記コンデンサの正側が前記ダイオード部の各ダイオードの互いに共通接続されたカソードに接続している電位固定部と、
     前記電位固定部のコンデンサの負側に各アノードをそれぞれ接続し、各カソードを前記ダイオード部の各ダイオードのアノードと前記切替スイッチ部の各電力用半導体スイッチ素子のコレクタとの各接続点にそれぞれ接続した保護ダイオード部とを備えることを特徴とする3相交流電動機の巻線切替装置。
  2.  前記切替スイッチ部を構成する電力用半導体スイッチ素子の導通状態を検出する状態検出器と、前記状態検出器の出力信号と前記ドライブ信号とに基づいて巻線切替部の異常を検出する比較器とを備えることを特徴とする請求項1に記載の3相交流電動機の巻線切替装置。
  3.  前記状態検出器は、前記電力用半導体スイッチ素子のすべてが導通状態であること、および前記電力用半導体スイッチ素子のすべてが非導通状態であることを検出することを特徴とする請求項2に記載の3相交流電動機の巻線切替装置。
  4.  前記状態検出器は、絶縁機能を有していることを特徴とする請求項2に記載の3相交流電動機の巻線切替装置。
  5.  前記比較器は、排他的論理和回路を備え、前記状態検出器の出力信号と前記ドライブ信号との排他的論理和により巻線切替部の異常を検出することを特徴とする請求項3に記載の3相交流電動機の巻線切替装置。
PCT/JP2008/071660 2007-12-27 2008-11-28 3相交流電動機の巻線切替装置 WO2009084354A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009547963A JP4662316B2 (ja) 2007-12-27 2008-11-28 交流電動機の巻線切替装置およびその巻線切替システム
CN2008801228323A CN101911473B (zh) 2007-12-27 2008-11-28 三相交流电动机的绕组切换装置
US12/789,385 US8183817B2 (en) 2007-12-27 2010-05-27 Apparatus for switching windings of AC three-phase motor
US13/450,471 US8269450B2 (en) 2007-12-27 2012-04-19 Winding switching apparatus and winding switching system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007336294 2007-12-27
JP2007-336294 2007-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/789,385 Continuation US8183817B2 (en) 2007-12-27 2010-05-27 Apparatus for switching windings of AC three-phase motor

Publications (1)

Publication Number Publication Date
WO2009084354A1 true WO2009084354A1 (ja) 2009-07-09

Family

ID=40824076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071660 WO2009084354A1 (ja) 2007-12-27 2008-11-28 3相交流電動機の巻線切替装置

Country Status (5)

Country Link
US (2) US8183817B2 (ja)
JP (1) JP4662316B2 (ja)
CN (1) CN101911473B (ja)
TW (1) TWI383575B (ja)
WO (1) WO2009084354A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207010A (ja) * 2009-03-05 2010-09-16 Yaskawa Electric Corp 三相交流電動機駆動システムの巻線切替装置
WO2011087126A1 (ja) * 2010-01-18 2011-07-21 ヤマハ発動機株式会社 鞍乗型車両
JP2012227979A (ja) * 2011-04-14 2012-11-15 Yaskawa Electric Corp 交流電動機の巻線切替装置及び交流電動機駆動システム
JP2013207919A (ja) * 2012-03-28 2013-10-07 Asmo Co Ltd 3相交流電動機に備えた巻線切換装置、3相交流電動機に備えた巻線切換装置の切換スイッチング素子のショート故障検出方法及び3相交流電動機に備えた巻線切換装置の切換スイッチング素子のオープン故障検出方法
JP2013223298A (ja) * 2012-04-13 2013-10-28 Jtekt Corp 回転電機
CN103828199A (zh) * 2011-09-29 2014-05-28 株式会社安川电机 马达驱动装置和车辆
CN104868580A (zh) * 2014-05-27 2015-08-26 安徽华盛科技控股股份有限公司 Cit异步无间断静态切换开关系统及其控制方法
CN103828199B (zh) * 2011-09-29 2016-11-30 株式会社安川电机 马达驱动装置和车辆
WO2018078842A1 (ja) * 2016-10-31 2018-05-03 三菱電機株式会社 空気調和機及び駆動装置
WO2019021448A1 (ja) 2017-07-28 2019-01-31 三菱電機株式会社 空気調和機
WO2019163125A1 (ja) * 2018-02-26 2019-08-29 三菱電機株式会社 電動機駆動装置及び冷凍サイクル適用機器
JP2019154163A (ja) * 2018-03-02 2019-09-12 株式会社日立製作所 回転機駆動システム

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382069B2 (ja) * 2011-07-04 2014-01-08 株式会社安川電機 インバータ装置および電動機ドライブシステム
CN102565612B (zh) * 2011-12-29 2014-04-30 陶永茂 变电站母线故障及绝缘自动检测装置
JP5464224B2 (ja) * 2012-03-14 2014-04-09 株式会社安川電機 モータ駆動装置および車両
JP5476407B2 (ja) * 2012-03-14 2014-04-23 株式会社安川電機 モータ駆動装置および車両
US9461565B2 (en) * 2012-06-13 2016-10-04 Siemens Aktiengesellschaft Systems, apparatus, and methods for soft starting large AC motors with a variable frequency drive
JP5569606B1 (ja) * 2013-02-01 2014-08-13 株式会社安川電機 インバータ装置および電動機ドライブシステム
CN103281034B (zh) * 2013-05-03 2015-05-13 哈尔滨工业大学 多相电机绕组切换电路
KR102195710B1 (ko) 2014-01-28 2020-12-28 삼성전자주식회사 비엘디씨 모터 및 이를 이용하는 청소기
JP6543907B2 (ja) * 2014-10-08 2019-07-17 三菱自動車工業株式会社 車両用モータ装置
CN104767466B (zh) * 2015-04-21 2017-08-18 山东理工大学 一种绕组自动切换的起动发电系统
CN105356513B (zh) * 2015-12-14 2017-09-12 阳光电源股份有限公司 逆变器接线错误自适应方法及其装置、应用,光伏系统
GB2549086B (en) 2016-03-30 2022-09-07 Advanced Electric Machines Group Ltd Electrical sub-assembly
CN106411218A (zh) * 2016-04-12 2017-02-15 江苏东航空机械有限公司 一种三相交流永磁磁阻同步高速电机切换电路
CN105914767B (zh) * 2016-06-20 2018-06-29 杭州杰能动力有限公司沈阳分公司 一种电动汽车驱动装置与电能变换控制方法
CN110235352B (zh) * 2017-04-13 2022-08-09 深圳市海浦蒙特科技有限公司 多速多功率电机控制方法及控制系统
JP6845818B2 (ja) * 2018-02-09 2021-03-24 株式会社Soken 回転電機の駆動装置
TWI800328B (zh) 2021-10-15 2023-04-21 台達電子工業股份有限公司 程式燒錄裝置及其電流保護檢測方法
TWI834322B (zh) * 2022-09-30 2024-03-01 新唐科技股份有限公司 比較器檢測電路及其檢測方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153990A (en) * 1980-04-28 1981-11-28 Mitsubishi Electric Corp Speed controller for motor
JPS5741498U (ja) * 1980-08-18 1982-03-06
JP2003111492A (ja) * 2001-10-03 2003-04-11 Yaskawa Electric Corp 3相交流電動機の巻線切換装置
JP2007236179A (ja) * 2006-03-02 2007-09-13 Sofutoronikusu Kk モータ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741498A (en) * 1980-08-22 1982-03-08 Aisin Seiki Co Ltd Axial fan for engine
US4384312A (en) * 1981-07-29 1983-05-17 Tecumseh Products Company Line break protection for multispeed motor
US4467257A (en) * 1982-10-07 1984-08-21 A. O. Smith Corporation Multiple speed induction motor
US5227710A (en) * 1989-12-28 1993-07-13 The Alexander J. Lewus Revocable Inter Vivos (Living) Trust Multiple speed single phase motor
US5212436A (en) * 1991-12-06 1993-05-18 Texas Instruments Incorporated Single phase motor start system
US5300871A (en) * 1992-08-21 1994-04-05 Chien Luen Industries Company, Ltd., Inc. Dual capacitor speed control apparatus and method for electric motor
FI96371C (fi) * 1994-05-13 1996-06-10 Abb Industry Oy Menetelmä verkkovaihtosuuntaajan kautta siirrettävän tehon säätämiseksi
US5514943A (en) * 1994-07-18 1996-05-07 Carrier Corporation Multi-speed motor control system
US6445101B2 (en) * 2000-03-09 2002-09-03 General Electric Company Clutchless motor drive system
WO2001091279A1 (en) * 2000-05-23 2001-11-29 Vestas Wind Systems A/S Variable speed wind turbine having a matrix converter
US6650552B2 (en) * 2001-05-25 2003-11-18 Tdk Corporation Switching power supply unit with series connected converter circuits
US6815926B2 (en) * 2002-02-06 2004-11-09 Emerson Electric Co. Single phase induction motor with partially shared windings
US6707214B1 (en) * 2002-08-28 2004-03-16 Emerson Electric Co. PSC motor having a 4/6-pole common winding and having an additional 4-pole winding
EP1592123B1 (en) * 2004-04-24 2009-12-02 Lg Electronics Inc. Variable speed motor
US7746025B2 (en) * 2005-02-14 2010-06-29 Lg Electronics Inc. Variable speed motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153990A (en) * 1980-04-28 1981-11-28 Mitsubishi Electric Corp Speed controller for motor
JPS5741498U (ja) * 1980-08-18 1982-03-06
JP2003111492A (ja) * 2001-10-03 2003-04-11 Yaskawa Electric Corp 3相交流電動機の巻線切換装置
JP2007236179A (ja) * 2006-03-02 2007-09-13 Sofutoronikusu Kk モータ装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207010A (ja) * 2009-03-05 2010-09-16 Yaskawa Electric Corp 三相交流電動機駆動システムの巻線切替装置
WO2011087126A1 (ja) * 2010-01-18 2011-07-21 ヤマハ発動機株式会社 鞍乗型車両
JP2012227979A (ja) * 2011-04-14 2012-11-15 Yaskawa Electric Corp 交流電動機の巻線切替装置及び交流電動機駆動システム
CN103828199A (zh) * 2011-09-29 2014-05-28 株式会社安川电机 马达驱动装置和车辆
CN103828199B (zh) * 2011-09-29 2016-11-30 株式会社安川电机 马达驱动装置和车辆
JP2013207919A (ja) * 2012-03-28 2013-10-07 Asmo Co Ltd 3相交流電動機に備えた巻線切換装置、3相交流電動機に備えた巻線切換装置の切換スイッチング素子のショート故障検出方法及び3相交流電動機に備えた巻線切換装置の切換スイッチング素子のオープン故障検出方法
JP2013223298A (ja) * 2012-04-13 2013-10-28 Jtekt Corp 回転電機
CN104868580A (zh) * 2014-05-27 2015-08-26 安徽华盛科技控股股份有限公司 Cit异步无间断静态切换开关系统及其控制方法
KR20190040288A (ko) * 2016-10-31 2019-04-17 미쓰비시덴키 가부시키가이샤 공기 조화기 및 구동 장치
WO2018078842A1 (ja) * 2016-10-31 2018-05-03 三菱電機株式会社 空気調和機及び駆動装置
JPWO2018078842A1 (ja) * 2016-10-31 2019-06-24 三菱電機株式会社 空気調和機及び駆動装置
KR102258612B1 (ko) * 2016-10-31 2021-05-31 미쓰비시덴키 가부시키가이샤 공기 조화기 및 구동 장치
US11863099B2 (en) 2016-10-31 2024-01-02 Mitsubishi Electric Corporation Air conditioner and driving device
WO2019021448A1 (ja) 2017-07-28 2019-01-31 三菱電機株式会社 空気調和機
US11398790B2 (en) 2017-07-28 2022-07-26 Mitsubishi Electric Corporation Air conditioner
WO2019163125A1 (ja) * 2018-02-26 2019-08-29 三菱電機株式会社 電動機駆動装置及び冷凍サイクル適用機器
CN111727557A (zh) * 2018-02-26 2020-09-29 三菱电机株式会社 电动机驱动装置以及制冷环路应用设备
JPWO2019163125A1 (ja) * 2018-02-26 2020-12-17 三菱電機株式会社 電動機駆動装置及び冷凍サイクル適用機器
CN111727557B (zh) * 2018-02-26 2023-04-21 三菱电机株式会社 电动机驱动装置以及制冷环路应用设备
JP2019154163A (ja) * 2018-03-02 2019-09-12 株式会社日立製作所 回転機駆動システム
JP7033958B2 (ja) 2018-03-02 2022-03-11 株式会社日立製作所 回転機駆動システム

Also Published As

Publication number Publication date
TW200941917A (en) 2009-10-01
CN101911473A (zh) 2010-12-08
TWI383575B (zh) 2013-01-21
US20100237815A1 (en) 2010-09-23
US20120206083A1 (en) 2012-08-16
JPWO2009084354A1 (ja) 2011-05-19
US8269450B2 (en) 2012-09-18
US8183817B2 (en) 2012-05-22
JP4662316B2 (ja) 2011-03-30
CN101911473B (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
JP4662316B2 (ja) 交流電動機の巻線切替装置およびその巻線切替システム
US9106155B2 (en) Three-level power conversion circuit system
JP4752772B2 (ja) 交流電動機の巻線切替装置及びその巻線切替システム
US9812990B1 (en) Spare on demand power cells for modular multilevel power converter
JP5396920B2 (ja) 三相交流電動機駆動システムの巻線切替装置
CN111656666B (zh) 电力转换装置
CN108336942A (zh) 三相电机驱动电路
US10014815B2 (en) Control apparatus and control method of AC rotary machine
US20150054439A1 (en) Method and device for operating an electronically commutated electrical machine in the event of a fault
JP3999226B2 (ja) 電動機制御装置
US9543878B2 (en) Drive unit and transport machine
JP2019009894A (ja) 検出装置
JP6879188B2 (ja) 駆動装置の異常判定装置
CN111264024B (zh) 逆变器装置及其控制电路以及马达驱动系统
JP2016127677A (ja) 電力変換装置
WO2019187402A1 (ja) 制動回路および電力変換装置
JP7109631B1 (ja) 電力変換装置
WO2019053974A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP2018133849A (ja) 並列インバータ装置
WO2020217853A1 (ja) 電気機器
WO2023286627A1 (ja) 電力変換装置および電力変換方法
JP6197950B2 (ja) 安全制御装置
JP2003088094A (ja) 電力変換装置とその帰還ダイオード故障検出回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122832.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009547963

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08866767

Country of ref document: EP

Kind code of ref document: A1