WO2018074373A1 - 立体造形用組成物および立体造形物の製造方法並びに立体造形物 - Google Patents

立体造形用組成物および立体造形物の製造方法並びに立体造形物 Download PDF

Info

Publication number
WO2018074373A1
WO2018074373A1 PCT/JP2017/037241 JP2017037241W WO2018074373A1 WO 2018074373 A1 WO2018074373 A1 WO 2018074373A1 JP 2017037241 W JP2017037241 W JP 2017037241W WO 2018074373 A1 WO2018074373 A1 WO 2018074373A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
composition
cellulose
weight
fibrous substance
Prior art date
Application number
PCT/JP2017/037241
Other languages
English (en)
French (fr)
Inventor
平邑隆弘
江川祐一郎
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to US16/343,276 priority Critical patent/US20190256689A1/en
Priority to JP2018546299A priority patent/JPWO2018074373A1/ja
Priority to CN201780064855.2A priority patent/CN109906140A/zh
Priority to EP17861849.2A priority patent/EP3530439A4/en
Publication of WO2018074373A1 publication Critical patent/WO2018074373A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/54Aqueous solutions or dispersions

Definitions

  • the present invention relates to a composition for three-dimensional modeling, a method for manufacturing a three-dimensional structure using the composition for three-dimensional modeling, and a three-dimensional structure.
  • This application claims the priority of Japanese Patent Application No. 2016-204840 for which it applied to Japan on October 19, 2016, and uses the content here.
  • Patent Document 1 applies (1) a modeling material diluted with a solvent (including particulate substances such as polymer powder, metal powder, ceramic powder, and a binder (heat or photopolymerizable compound)).
  • a step of forming a thin layer (2) a step of evaporating the solvent in the thin layer, (3) a step of selectively curing a predetermined portion of the thin layer to form a thin plate layer, and (4) a thin plate layer
  • a three-dimensional structure is formed through the process of repeating (1) to (3) above.
  • Patent Document 2 as a particulate material, cellulose in which at least a part forms a sodium salt is used, and a composition obtained by suspending it in water is applied with a squeegee to form a thin layer, It is described that after removing the solvent, a photocurable composition as a binder is selectively applied to a portion where curing is desired, and cured by irradiating with ultraviolet rays, and this is repeated to obtain a three-dimensional structure. Has been.
  • JP 2003-053847 A Japanese Patent Laid-Open No. 2015-212060
  • a predetermined portion of a thin layer is selectively cured, and an uncured modeling material is removed to form a three-dimensional structure.
  • an uncured modeling material is removed to form a three-dimensional structure.
  • a large amount of modeling material is removed, and the material disposal rate is high (or the material utilization rate is low), which increases the cost.
  • stacking increased, work took too much time and it was also a problem that efficiency was bad.
  • the objective of this invention is providing the composition for three-dimensional modeling suitable for manufacturing efficiently the three-dimensional molded item excellent in shape precision with few processes.
  • Another object of the present invention is to provide a composition for three-dimensional modeling that is suitable for efficiently producing a three-dimensional structure excellent in shape accuracy and mechanical strength with few steps.
  • Another object of the present invention is to provide a method for efficiently producing a three-dimensional structure excellent in shape accuracy with a small number of steps using the three-dimensional structure forming composition.
  • Another object of the present invention is to provide a three-dimensional modeled article having excellent shape accuracy, which is made of a solidified product of the three-dimensional modeled composition.
  • a composition for three-dimensional modeling containing a fibrous substance and having high thixotropy has a low viscosity by applying an external force (for example, shear stress), and is excellent.
  • an external force for example, shear stress
  • the present invention provides a composition for three-dimensional modeling characterized by including a fibrous substance as a constituent component and having a TI value at 20 ° C. [viscosity at 6 rpm / viscosity at 60 rpm] of 1.5 or more.
  • the present invention also provides the composition for three-dimensional modeling, wherein the fibrous substance is cellulose.
  • the present invention also provides the above-described composition for three-dimensional modeling, wherein the fibrous material is cellulose having an average degree of unsubstituted hydroxyl group of 2.5 or more.
  • the present invention also provides the above-mentioned composition for three-dimensional modeling, wherein the fibrous material has an average length of 1 to 1000 ⁇ m and an average aspect ratio of 10 to 10,000.
  • the present invention also includes a solvent as a constituent component, the sum of the content of the fibrous material and the solvent is 70% by weight or more of the total amount of the three-dimensional modeling composition, and the content of the fibrous material is the three-dimensional modeling composition
  • the three-dimensional modeling composition is provided in an amount of 15 to 50% by weight based on the total amount of the object.
  • the present invention also provides the above-described three-dimensional composition, wherein the content of the fibrous substance with respect to all solid components contained in the three-dimensional composition is 90% by weight or more.
  • the present invention also provides a three-dimensional molding composition characterized in that it contains cellulose as a constituent component, and the average degree of unsubstituted hydroxyl groups of the cellulose is 2.5 or more.
  • the present invention also uses a discharge device to discharge the three-dimensional modeling composition into a three-dimensional shape, and then manufacture the three-dimensional modeling object by solidifying the discharged three-dimensional modeling composition.
  • a method for manufacturing a product is provided.
  • the present invention also provides a three-dimensional structure made of a solidified product of the three-dimensional structure composition.
  • composition for three-dimensional modeling of the present invention
  • composition exhibits high thixotropic properties
  • it can be discharged into the shape of a desired three-dimensional model using a discharge device or the like.
  • a three-dimensional molded item can be manufactured with high accuracy. That is, it is possible to manufacture a three-dimensional modeled object with simple and few processes of discharge-solidification, and manufacturing a three-dimensional modeled object by modeling a three-dimensional modeled object for each layer and bonding each layer using a binder. It is not necessary to adopt the method to do.
  • the composition of this invention can be discharged to the shape of a desired three-dimensional molded item using a discharge device, the composition can be effectively used without waste. Therefore, the cost can be minimized.
  • cellulose particularly, hydroxyl group-rich cellulose
  • a three-dimensional structure that is lightweight, excellent in mechanical strength, excellent in resource, environment, and safety can be obtained.
  • the three-dimensional modeling composition of the present invention is a three-dimensional modeling composition for use in manufacturing a three-dimensional modeled product (that is, a three-dimensional structure),
  • a 1st aspect is characterized by including a fibrous substance as a structural component and having a TI value at 20 ° C. [viscosity at 6 rpm / viscosity at 60 rpm] of 1.5 or more.
  • the second aspect is characterized in that it contains cellulose as a constituent component, and the average degree of unsubstituted hydroxyl groups of the cellulose is 2.5 or more.
  • composition of the present invention contains a fibrous substance, the fibrous substance is entangled to form a three-dimensional network structure, and a large amount of solvent is constrained by capillarity in the space of the three-dimensional network structure, thereby retaining water retention. , Shape retention and high thixotropy.
  • the thixotropic index (TI value; at 20 ° C.) calculated by the following formula (1) of the composition of the present invention is 1.5 or more (for example, 1.5 to 300, preferably 1.5 to 200, more preferably 1.5 to 100, more preferably 1.5 to 50, still more preferably 2 to 30, particularly preferably 2 to 20, most preferably 3 to 10, particularly preferably 4 to 8).
  • TI value at 20 ° C.
  • TI value viscosity at 6 rpm / viscosity at 60 rpm (1)
  • the thixotropy index (TI value; at 20 ° C.) when the composition of the present invention is an aqueous dispersion having a fibrous substance content of 1% by weight is, for example, 1.5 or more (preferably 1.5). To 50, more preferably 2 to 30, particularly preferably 2 to 20, most preferably 3 to 10, particularly preferably 4 to 8).
  • the viscosity at the rotation speed of 6 rpm and 60 rpm at 20 ° C. can be measured using a rotary viscometer (HAAKE).
  • the fibrous material examples include polysaccharides such as cellulose, amylose, and xylose, polysaccharide derivatives, polysaccharides that form salts, polysaccharide derivatives that form salts; resins such as polyethylene, polypropylene, polyester, and nylon Carbon fiber; aramid fiber; glass fiber and the like. These can be used alone or in combination of two or more. Since the composition of this invention contains a fibrous substance, the solid modeling thing excellent in mechanical strength and dimensional accuracy is obtained by solidifying.
  • polysaccharides are preferable, and cellulose is particularly preferable.
  • cellulose in particular, a hydroxyl group-rich cellulose having a hydroxyl group average unsubstituted degree of 2.5 or more is preferable in that the mechanical strength of the three-dimensional molded article to be obtained can be remarkably improved.
  • the average unsubstituted degree of hydroxyl group of the cellulose rich in hydroxyl group is 2.5 or more, and preferably 2.6 or more, particularly preferably, in that the mechanical strength of the resulting three-dimensional structure can be dramatically improved. Is 2.7 or more, most preferably 2.8 or more.
  • the upper limit is 3.0.
  • the cellulose having an average degree of unsubstituted hydroxyl group of 2.5 or more is a cellulose having a low degree of substitution of hydroxyl group, and the average degree of substitution of hydroxyl group is, for example, less than 1, preferably 0.5 or less, particularly preferably 0.8. 3 or less, most preferably 0.2 or less.
  • cellulose has a secondary hydroxyl group bonded to the 2nd and 3rd carbon atoms of glucose, which is a constituent unit of cellulose, and a primary hydroxyl group bonded to the 6th carbon atom.
  • substitution degree of the hydroxyl group of a cellulose is shown by the number of the substituted hydroxyl groups among three hydroxyl groups which exist in glucose which is a structural unit of a cellulose, and an average substitution degree is the average value.
  • the degree of unsubstituted hydroxyl groups in cellulose is indicated by the number of hydroxyl groups that are not substituted among the three hydroxyl groups present in glucose, which is a constituent unit of cellulose, and the average degree of unsubstituted is the average value.
  • the average degree of unsubstituted hydroxyl group in cellulose can be calculated from, for example, the following formula (2).
  • Average degree of substitution 3.0-(average degree of substitution of hydroxyl groups in cellulose) (2)
  • the hydroxyl group-rich cellulose may partially form a salt within the range where the average degree of unsubstituted hydroxyl group is within the above range.
  • a part of the hydroxyl group of the cellulose forms a salt, the dispersibility of the cellulose in the composition may sometimes be improved, and the mechanical strength and dimensional accuracy of the resulting three-dimensional structure are excellent. There are cases where it can be made.
  • examples of the salt include sodium salt, potassium salt, lithium salt, magnesium salt, calcium salt, ammonium salt and the like.
  • hydroxyl group-rich cellulose may be partially chemically modified within a range where the average degree of unsubstituted hydroxyl group is the above value.
  • the average length (average length L) of the fibrous material is not particularly limited, but is preferably 1 to 1000 ⁇ m, more preferably 50 to 1000 ⁇ m, still more preferably 100 to 900 ⁇ m, and particularly preferably 300 to 800 ⁇ m.
  • the average length L is within this range, the mechanical strength and dimensional accuracy of the three-dimensional structure to be obtained can be improved while preventing scattering and local aggregation of the fibrous substance.
  • the average thickness (average diameter D) of the fibrous material is not particularly limited, but is preferably 1 to 3000 nm, more preferably 100 to 2000 nm, still more preferably 500 to 1500 nm, and particularly preferably 800 to 1500 nm. When the average diameter D is within this range, particularly high thixotropic properties are exhibited. In addition, the mechanical strength and dimensional accuracy of the three-dimensional structure to be obtained can be improved while preventing scattering and local aggregation of the fibrous substance.
  • the average aspect ratio (average length / average thickness) of the fibrous material is not particularly limited, but is preferably 10 to 10,000, more preferably 100 to 2000, still more preferably 200 to 1000, and particularly preferably 300 to 800. . When the average aspect is within this range, the mechanical strength and dimensional accuracy of the three-dimensional structure to be obtained can be improved while preventing scattering and local aggregation of the fibrous substance.
  • the fibrous material may contain some impurities (when the fibrous material is cellulose, examples of impurities include hemicellulose and lignin).
  • cellulose can be produced by a known method such as pulverization, grinding, crushing, and explosion of raw material pulp.
  • fibrous substance for example, commercially available products such as microfibrous cellulose “Cerish” (manufactured by Daicel Finechem Co., Ltd.) and microfibrous aramid “Tiara” (manufactured by Daicel Finechem Co., Ltd.) may be used. .
  • the composition of the present invention preferably contains cellulose (in particular, cellulose having an average degree of unsubstituted hydroxyl group of 2.5 or more) as a fibrous material.
  • cellulose in particular, cellulose having an average degree of unsubstituted hydroxyl group of 2.5 or more
  • the composition of this invention may contain 1 type, or 2 or more types of fibrous materials other than cellulose as a fibrous material, it is with respect to the fibrous material whole quantity contained in the composition of this invention.
  • the cellulose content is, for example, preferably 60% by weight or more, particularly preferably 70% by weight or more, most preferably 80% by weight or more, particularly preferably 90% by weight or more, and the fiber contained in the composition of the present invention.
  • the content of the fibrous substance other than cellulose is preferably 40% by weight or less, particularly preferably 30% by weight or less, most preferably 20% by weight or less, and particularly preferably 10% by weight or less, with respect to the total amount of the fibrous substance.
  • a three-dimensionally shaped product that is particularly excellent in mechanical strength can be obtained by solidifying.
  • the composition of the present invention contains a fibrous substance as a solid component (or non-volatile content).
  • the composition of the present invention may contain one or more other solid components (hereinafter sometimes referred to as “non-fibrous materials”) as a solid component in addition to the fibrous material. Since non-fibrous substances (for example, diamond etc.) have the property of adsorbing to the fibrous substance, adding the non-fibrous substance imparts the characteristics of the non-fibrous substance to the resulting three-dimensional structure. be able to.
  • the composition of this invention may contain the liquid component (or volatile matter) besides a solid component.
  • the three-dimensional modeled object can be manufactured by using only the fibrous substance, or the fibrous substance can be used as the main constituent, or the constituent can be followed by the fibrous substance.
  • the content of the fibrous substance (for example, cellulose, preferably the above hydroxyl-rich cellulose) with respect to the total solid component contained in the composition of the present invention is 90 wt. % Or more, preferably 95% by weight or more, and more preferably 99% by weight or more.
  • the content of the fibrous substance (for example, cellulose, preferably the above-mentioned hydroxyl group-rich cellulose) with respect to all solid components contained in the composition of the present invention is 50. Is preferably 90 to 90% by weight, more preferably 55 to 85% by weight, and still more preferably 60 to 80% by weight.
  • the content of the fibrous substance (for example, cellulose, preferably the above hydroxyl-rich cellulose) relative to the total solid component contained in the composition of the present invention is 0.1 to 50% by weight is preferable, 1 to 40% by weight is more preferable, and 10 to 30% by weight is still more preferable.
  • the content of the fibrous substance in such a range, it is possible to obtain a three-dimensional structure having characteristics mainly derived from the non-fibrous substance while maintaining the characteristics derived from the fibrous substance.
  • the content of the fibrous substance is, for example, 15 to 50% by weight of the total amount of the three-dimensional composition. Is preferable in terms of excellent dispersibility of the fibrous substance and retention of the shape and / or structure of the three-dimensional modeling composition discharged into a three-dimensional shape, more preferably 15 to 45% by weight, and particularly preferably. Is from 15 to 40% by weight, most preferably from 20 to 35% by weight.
  • Non-fibrous material The material of the non-fibrous substance is the same as that of the fibrous substance, and other adhesive components having adhesive properties such as glue, paste, adhesive, adhesive, etc .; synthetic resin, natural polymer, organic pigment, etc.
  • Organic materials inorganic pigments, silica, alumina, zeolite, carbon black, metal oxides such as titanium oxide and iron oxide, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, metals such as silicon nitride and aluminum nitride Nitride, metal carbonates such as magnesium carbonate and calcium carbonate, metal sulfates such as magnesium sulfate and calcium sulfate, metal phosphates such as magnesium phosphate and calcium phosphate, clay, gravel, silica, concrete, cement, diamond, etc.
  • An inorganic material etc. are mentioned.
  • non-fibrous substance examples include a reinforcing material, a dispersant, a surfactant, a lubricant, a moisturizer, an antiseptic, an antibacterial agent, an antioxidant, an ultraviolet absorber, a pH adjuster, and an antifoaming agent.
  • the shape of the non-fibrous substance can be appropriately selected according to the shape and content of the fibrous substance contained in the composition.
  • the average diameter D ′ of the non-fibrous substance is preferably equal to or less than the average length L of the fibrous substance.
  • the average diameter D ′ of the non-fibrous substance is equal to or less than the average diameter D of the fibrous substance.
  • the average diameter D ′ of the non-fibrous substance is set in such a range, the basic skeleton of the shape and / or structure in the three-dimensional structure is formed by the fibrous substance, and the non-fibrous substance adheres to the basic skeleton.
  • a three-dimensional modeled object can be obtained.
  • a basic skeleton having a shape and / or structure in the three-dimensional structure is formed of a non-fibrous material, and a three-dimensional structure in which the basic skeleton is reinforced with a fibrous material can be obtained.
  • the composition of the present invention can contain one or more arbitrary solvents having a relatively low viscosity as a liquid component.
  • the solvent include water, organic solvents, and mixtures thereof.
  • organic solvent examples include alcohols such as methanol, ethanol and propanol; polyols such as ethylene glycol and propylene glycol; alkylene glycol alkyl ethers such as ethylene glycol monomethyl ether and propylene glycol diethyl ether; ethyl acetate and propanoic acid
  • organic acid esters such as methyl and butyl butyrate
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • ketones such as acetone, methyl ethyl ketone and acetylacetone.
  • composition of the present invention contains a hydrophilic fibrous substance such as cellulose as the fibrous substance, it is an organic solvent having a high polarity such as water or alcohols in that the hydrophilic fibrous substance is excellent in dispersibility. Is preferably used.
  • composition of the present invention contains a solvent
  • adjacent fibrous substances are held in contact with each other by hydrogen bonding or thickening with the solvent. Therefore, when discharging using a discharge apparatus, a scattering and local aggregation of a fibrous substance and another additive component can be prevented, and workability
  • the sum of the content of the fibrous material (for example, cellulose, preferably the above-mentioned hydroxyl-rich cellulose) and the solvent is preferably 70% by weight or more of the total amount of the three-dimensional structure forming composition. More preferably, it is 80% by weight or more, particularly preferably 90% by weight or more, and most preferably 95% by weight or more. The upper limit is 100% by weight.
  • the content of the solvent in the composition of the present invention is, for example, 1 part by weight or more with respect to 1 part by weight of a fibrous substance (for example, cellulose, preferably the above hydroxyl-rich cellulose). In view of excellent properties, it is preferably 1.3 parts by weight or more, more preferably 1.5 parts by weight or more, and particularly preferably 1.8 parts by weight or more.
  • a fibrous substance for example, cellulose, preferably the above hydroxyl-rich cellulose.
  • the amount of the composition for three-dimensional modeling discharged into a three-dimensional shape is, for example, 10 parts by weight or less with respect to 1 part by weight of a fibrous substance (for example, cellulose, preferably the above-mentioned cellulose rich in hydroxyl group) and / or Or it is preferable at the point which is excellent in the maintenance of a structure, More preferably, it is 5 weight part or less, More preferably, it is 3 weight part or less, Most preferably, it is 2.5 weight part or less.
  • a fibrous substance for example, cellulose, preferably the above-mentioned cellulose rich in hydroxyl group
  • the content of the solvent in the composition of the present invention can be appropriately adjusted within a range that combines the dispersibility of the fibrous substance and the dischargeability of the composition.
  • the content of the solvent in the composition is preferably 95% by weight or less, more preferably 90% by weight or less, and 85% by weight. % Or less, more preferably 80% by weight or less, further preferably 75% by weight or less, further preferably 70% by weight or less, further preferably 60% by weight or less, and most preferably 50% by weight or less.
  • the content of the solvent in the composition is preferably 50% by weight or more, more preferably 60% by weight or more, and 65% by weight or more. Further preferred.
  • the content of the solvent in the composition of the present invention is 50 to 50 in that the shape and / or structure of the three-dimensional modeling composition discharged in a three-dimensional shape is maintained and the dispersibility and dischargeability of the fibrous substance is excellent. 85% by weight, more preferably 60 to 80% by weight, still more preferably 60 to 75% by weight, and particularly preferably 60 to 70% by weight.
  • the composition of the present invention has high thixotropy, it is excellent in dischargeability when discharged using a discharge device. In addition, it is possible to hold the solid shape formed by the discharge without breaking until it solidifies after the discharge. Therefore, it is suitable for uses for producing a three-dimensional structure using a discharge device, for example, a three-dimensional ink by an inkjet method, that is, a composition discharged from a nozzle of an inkjet printer into a three-dimensional shape and discharged into a three-dimensional shape. Can be suitably used as an ink for use in a method of solidifying a solid to obtain a three-dimensional structure.
  • the manufacturing method of the three-dimensional structure according to the present invention is a method of discharging the three-dimensional structure to a three-dimensional shape by using a discharge device or a method accompanied by application of shear stress (step 1), and then discharging.
  • the three-dimensional structure is manufactured by solidifying the three-dimensional structure composition (step 2).
  • Step 1 is a step of discharging the composition of the present invention into a three-dimensional shape using a discharge device.
  • a discharge device There is no restriction
  • the discharge method is not particularly limited and can be performed intermittently or continuously. Moreover, it can also carry out combining these. For example, when a discharge device having two or more discharge ports is used, the discharge can be intermittently discharged from one discharge port and continuously discharged from the other discharge ports.
  • the shape of the discharge port is not particularly limited, and examples thereof include an injection port in injection molding, an extrusion port in extrusion molding, an inkjet nozzle in an inkjet printer, or a similar shape.
  • the discharge port diameter can be set arbitrarily.
  • a discharge port diameter narrower than the length of the fibrous substance is used, the fibrous substance is oriented in the discharge direction when the composition is discharged, and a three-dimensional structure having a certain fiber orientation can be obtained.
  • a guide for aligning the orientation of the fibrous substance may be provided on the inner wall of the discharge port. In that case, the length of the discharge port is preferably sufficiently longer than the length of the fibrous substance.
  • the driving force for discharging is not particularly limited, but for example, at least one force selected from the group consisting of pressurization, decompression, and gravity can be used.
  • a method of discharging the composition of the present invention into a three-dimensional shape a method of discharging the composition to an area programmed as 3D data, or a base material (for example, a mold) for guiding the shape and / or structure of a three-dimensional structure And a method of discharging the composition into the region determined by (1).
  • the composition of the present invention contains a fibrous substance, and the fibrous substance has a feature that its surface area is relatively large with respect to its volume and its length is relatively long with respect to its diameter. For this reason, adjacent fibrous substances can be held in contact with each other using their surface area and length, thereby maintaining a shape corresponding to a predetermined region. Therefore, the three-dimensional structure forming composition discharged in a three-dimensional shape is held without breaking the shape.
  • the composition of the present invention can be effectively used without waste, and the raw material costs can be minimized.
  • Step 2 is a step of solidifying the three-dimensional structure forming composition discharged in Step 1 into a three-dimensional shape.
  • the composition of the present invention contains a solvent
  • it can be solidified by removing the solvent from the composition for three-dimensional modeling discharged into a three-dimensional shape, and a three-dimensional modeled object that is a solidified product of the composition of the present invention. can get.
  • the method for removing the solvent is not particularly limited, and examples thereof include methods such as heating, decompression, and blowing.
  • the heating temperature and heating time, the degree of decompression and the decompression time, the air flow rate, the air blowing speed, the air blowing temperature, the type and dryness of the gas to be blown, the area to be blown, the direction of the blow, etc. can be arbitrarily selected. .
  • the three-dimensional structure composition discharged into a three-dimensional shape expands due to the expansion of the solvent, resulting in a three-dimensional structure larger than the three-dimensional structure composition discharged into the three-dimensional shape.
  • the composition of the present invention contains a solvent
  • the solvent is removed from between the adjacent fibrous materials in the composition, and the adjacent fibrous materials come into contact with each other.
  • the contact state changes to a bonded state (or a state in which the degree of contact has increased).
  • a three-dimensionally shaped object having a solid shape and excellent mechanical strength is obtained.
  • the composition of the present invention contains cellulose as a fibrous material and contains a solvent
  • the cellulose in the composition is activated by the solvent, and then the solvent is removed. Then, the activated hydroxyl groups of the adjacent celluloses are bonded strongly by hydrogen bonding to each other, and a three-dimensional molded article having excellent mechanical strength is obtained.
  • a hydroxyl group-rich cellulose is contained as a fibrous material, hydrogen bonds are formed densely, so that a three-dimensional structure having a particularly high mechanical strength can be obtained.
  • composition of the present invention if used, a three-dimensional structure is formed for each layer, and a mechanical structure is manufactured without using a method of manufacturing a three-dimensional structure by bonding the layers using a binder. A three-dimensional model with excellent strength can be formed.
  • the composition for three-dimensional modeling discharged into a three-dimensional shape it may be appropriately pressurized.
  • pressurization By pressurization, the contact area and contact frequency of adjacent cellulose can be further increased, and by forming hydrogen bonds to a higher degree, there is a tendency that a three-dimensional structure having extremely excellent mechanical strength is obtained.
  • limiting in particular in the grade of pressurization It can adjust suitably according to a use. For example, when a three-dimensional structure with a high porosity or a low mechanical strength is desired, it is preferable to reduce the degree of pressurization, and when a three-dimensional structure with a low porosity or a high mechanical strength is desired. It is preferable to increase the degree of pressurization.
  • Process 1 and process 2 may be performed sequentially in this order, or may be performed simultaneously.
  • Process 1 and process 2 may be performed sequentially in this order, or may be performed simultaneously.
  • Steps 1 and 2 may be performed in an environment in which at least one condition selected from temperature, humidity, and pressure is set to be constant, or is set to change continuously or intermittently. It may be performed in an environment.
  • the three-dimensional modeled object obtained through the step 2 may be formed by bonding two or more of the three-dimensional modeled objects with an adhesive component to form a three-dimensional modeled object different from the original three-dimensional modeled object.
  • the adhesive component is a thermosetting component or a photocurable component
  • the solid three-dimensional object can be firmly adhered by curing the adhesive component by heating or light irradiation after ejection.
  • the three-dimensional structure of the present invention is a solidified product of the above composition.
  • the three-dimensional modeled object of the present invention is manufactured by, for example, the above three-dimensional modeled manufacturing method.
  • the shape, structure, and size of the three-dimensional structure of the present invention are not particularly limited.
  • the three-dimensional structure of the present invention may be a structure in which two or more three-dimensional structures are bonded via an adhesive layer. That is, in the three-dimensional structure of the present invention, two or more layers of the solidified product of the composition of the present invention and the adhesive layer may form a laminated structure, but the total volume of the three-dimensional structure
  • the proportion of the layer formed by the solidified product of the composition of the present invention is preferably 80% by volume or more, more preferably 90% by volume or more, and further preferably 95% by volume or more. preferable.
  • the three-dimensional modeled article of the present invention contains a fibrous substance (preferably cellulose, particularly preferably cellulose having an average unsubstituted degree of hydroxyl group of 2.5 or more) as a constituent component, and the fibrous model in the total quantity of the three-dimensional modeled product.
  • the proportion of the substance is, for example, 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, particularly preferably 80% by weight or more, most preferably 90% by weight or more, and particularly preferably 95% by weight or more. It is. Therefore, it is lightweight. In particular, when the fibrous material is cellulose, it is lightweight, excellent in safety, carbon neutral, and environmentally friendly.
  • the three-dimensional structure of the present invention is, for example, a craft such as a doll or a model, a member for precision equipment such as an electric / electronic device, a civil engineering building material for a fixed structure such as a house / building / road / bridge, an automobile / train, etc.
  • a craft such as a doll or a model
  • a member for precision equipment such as an electric / electronic device
  • a civil engineering building material for a fixed structure such as a house / building / road / bridge, an automobile / train, etc.
  • -It is suitable as a structural member for transportation tools such as ships and aircraft, functional processed products such as pharmaceuticals, agrochemicals, supplements and foodstuffs, and prototypes for these applications.
  • a mold frame (inner frame length 40 mm ⁇ inner frame width 20 mm ⁇ inner frame height 4 mm) is placed on a support substrate, and the three-dimensional molding composition is placed in the mold using a syringe (discharge port diameter 5 mm). It was discharged and filled in to obtain a three-dimensional structure 1.
  • a weight (length 40 mm ⁇ width 20 mm, weight 10 g) is placed on the three-dimensional structure 1 and the solvent is removed in a heating and drying furnace (50 ° C. ⁇ 24 hours). The weight was removed, and a three-dimensional model 2 was obtained.
  • the obtained three-dimensional model 2 had high shape accuracy. Moreover, it has high mechanical strength, and even when it naturally dropped on a polypropylene plate (thickness 1 cm) from a height of 10 cm, its three-dimensional shape was maintained without breaking.
  • Example 2 Same as Example 1 except that a mixture of serisch PC110S (100 parts by weight) and silica gel “Nipsil E-200A” (10 parts by weight manufactured by Tosoh Corporation) as a non-fibrous material was used as the three-dimensional modeling composition. Thus, the three-dimensional structure 1 and the three-dimensional structure 2 were obtained. The obtained three-dimensional model 2 had the same high shape accuracy and high mechanical strength as the three-dimensional model 2 obtained in Example 1.
  • Example 3 The three-dimensional model 1 and the three-dimensional model 1 were prepared in the same manner as in Example 1 except that a mixture of serisch PC110S (100 parts by weight) and a polyvinyl pyrrolidone (weight average molecular weight 50000, 10 parts by weight) as an adhesive component was used. A three-dimensional model 2 was obtained. The obtained three-dimensional model 2 had the same high shape accuracy and high mechanical strength as the three-dimensional model 2 obtained in Example 1.
  • Example 4 Using the same three-dimensional modeling composition as in Example 1, a three-dimensional model 1 and a three-dimensional model 2 were manufactured by the following procedure.
  • a base material (length 80 mm ⁇ width 10 mm ⁇ thickness 2 mm) is placed on a support substrate, and the composition for three-dimensional modeling is formed into a semi-cylindrical shape on the base material using a syringe (discharge port diameter 5 mm). It discharged so that it might serve, and the three-dimensional molded item 1 was obtained.
  • the three-dimensional structure 1 was subjected to solvent removal in a heating and drying furnace (50 ° C. ⁇ 24 hours) to obtain a three-dimensional structure 2.
  • the obtained three-dimensional model 2 had the same high shape accuracy and high mechanical strength as the three-dimensional model 2 obtained in Example 1.
  • Example 5 Using the same three-dimensional modeling composition as in Example 1, a three-dimensional model 2 was manufactured by the following procedure.
  • a mold (inner frame length 40 mm ⁇ inner frame width 20 mm ⁇ inner frame height 4 mm) is placed on a support substrate, and the three-dimensional modeling composition is placed in the mold using a syringe (discharge port diameter 5 mm). Discharging and filling were performed, and at the same time, hot air was blown onto the discharged 3D modeling composition to remove the solvent, thereby obtaining 3D modeling object 2.
  • the obtained three-dimensional model 2 had the same high shape accuracy and high mechanical strength as the three-dimensional model 2 obtained in Example 1.
  • Example 6 As a composition for three-dimensional modeling, except that serisch PC110S (100 parts by weight) and a 10% aqueous sodium hydroxide solution (20 parts by weight) were mixed, and a mixture in which at least a part of hydroxyl groups of cellulose contained was sodium salt was used.
  • serisch PC110S 100 parts by weight
  • a 10% aqueous sodium hydroxide solution 20 parts by weight
  • a mixture in which at least a part of hydroxyl groups of cellulose contained was sodium salt was used.
  • a three-dimensional structure 1 and a three-dimensional structure 2 were obtained.
  • the obtained three-dimensional model 2 had the same high shape accuracy as the three-dimensional model 2 obtained in Example 1, but the mechanical strength was low, and a polypropylene plate (thickness 1 cm) from a height of 10 cm. )
  • a composition for three-dimensional modeling comprising a fibrous substance as a constituent component and having a TI value at 20 ° C. [viscosity at 6 rpm / viscosity at 60 rpm] of 1.5 or more. [2] The composition for three-dimensional modeling according to [1], wherein the fibrous substance is cellulose. [3] The composition for three-dimensional modeling according to [1], wherein the fibrous substance is cellulose having an average degree of unsubstituted hydroxyl group of 2.5 or more.
  • the average length of the fibrous material (preferably cellulose, particularly preferably cellulose having a hydroxyl group having an average unsubstituted degree of 2.5 or more) is 1 to 1000 ⁇ m, and the average aspect ratio is 10 to 10,000.
  • the composition further contains a solvent, the sum of the content of the fibrous material and the solvent is 70% by weight or more of the total amount of the three-dimensional modeling composition, and the content of the fibrous material is the total amount of the three-dimensional modeling composition
  • the content of the fibrous material preferably cellulose, particularly preferably cellulose having an average degree of unsubstituted hydroxyl of 2.5 or more
  • a solvent is further included as a constituent component, and the sum of the content of cellulose and the solvent in which the average degree of unsubstituted hydroxyl group is 2.5 or more is 70% by weight or more of the total amount of the three-dimensional modeling composition.
  • a three-dimensional modeled product comprising a solidified product of the three-dimensional modeled composition according to any one of [1] to [12].
  • the proportion of the fibrous material preferably cellulose, particularly preferably cellulose whose average unsubstituted degree of hydroxyl group is 2.5 or more
  • the proportion of the fibrous material is 50% by weight or more.
  • Three-dimensional model A three-dimensional modeling composition used for manufacturing a three-dimensional modeling object by intermittently and / or continuously discharging the composition, and including a fibrous substance as a constituent component Composition.
  • the three-dimensional body according to [16], wherein the fibrous substance is any one or more selected from the group consisting of polysaccharides, polysaccharide derivatives, polysaccharides that form salts, and polysaccharide derivatives that form salts.
  • Composition for modeling [18] The composition for three-dimensional modeling according to [16] or [17], wherein the polysaccharide is cellulose. [19] The three-dimensional structure forming composition according to [16] or [17], wherein the fibrous material has an average length (average length L) of 1 to 1000 ⁇ m. [20] The three-dimensional structure forming composition according to [16] or [17], wherein the fibrous material has an average thickness (average diameter D) of 1 to 10,000 nm.
  • the composition for three-dimensional modeling of the present invention can be easily produced in a short process by three-dimensional modeling excellent in shape accuracy and mechanical strength by being discharged and solidified into a desired three-dimensional modeling shape.
  • the three-dimensional model obtained has high mechanical strength and is excellent in resources, environment, and safety because it uses cellulose as a raw material. Materials for crafts, precision equipment, civil engineering and building materials, transportation tools Suitable as a structural member, a functional processed product, etc.

Abstract

形状精度に優れた立体造形物を、少ない工程で効率よく製造するのに適した立体造形用組成物を提供する。 本発明の立体造形用組成物は、構成成分として繊維状物質を含み、20℃におけるTI値[6rpmにおける粘度/60rpmにおける粘度]が1.5以上であることを特徴とする。前記繊維状物質としてはセルロースが好ましく、特に水酸基の平均未置換度が2.5以上であるセルロースが好ましい。また、前記繊維状物質は平均長さが1~1000μmであり、平均アスペクト比が10~10000であることが好ましい。

Description

立体造形用組成物および立体造形物の製造方法並びに立体造形物
 本発明は、立体造形用組成物、及び前記立体造形用組成物を用いた立体造形物の製造方法、並びに立体造形物に関する。本願は、2016年10月19日に日本に出願した、特願2016-204840号の優先権を主張し、その内容をここに援用する。
 立体造形物を層毎に造形する技術が知られている。
 例えば特許文献1には、(1)溶媒で希釈された造形材料(ポリマー粉末、金属粉末、セラミック粉末等の粒子状物質と、結着剤(熱又は光重合性化合物)とを含む)を塗布して薄層を形成する工程、(2)前記薄層中の溶媒を蒸発させる工程、(3)薄層の所定部分を選択的に硬化させて薄板層を形成する工程、(4)薄板層の上に更に前記(1)~(3)を繰り返し行う工程を経て、三次元構造体を形成することが記載されている。
 また、特許文献2には、粒子状物質として、少なくとも一部がナトリウム塩を形成しているセルロースを使用し、これを水で懸濁してなる組成物をスキージ塗布して薄層を形成し、溶媒を除去した後、硬化を所望する部分に選択的に結着剤としての光硬化性組成物を塗布し、紫外線を照射して硬化させ、これを繰り返すことで立体造形物を得ることが記載されている。
特開2003-053847号公報 特開2015-212060号公報
 しかし、立体造形物を層毎に造形する方法では、薄層の所定部分を選択的に硬化させ、未硬化の造形材料を除去して立体造形物を形成するため、立体造形物の形状や大きさによっては造形材料が大量に除去され、材料の廃棄率が高い(若しくは、材料の有効利用率が低い)ことからコストが嵩むことが問題であった。また、立体造形物を層毎に造形するために、積層数が多くなると作業に時間がかかりすぎ、効率が悪いことも問題であった。
 従って、本発明の目的は、形状精度に優れた立体造形物を、少ない工程で効率よく製造するのに適した立体造形用組成物を提供することにある。
 本発明の他の目的は、形状精度及び機械強度に優れた立体造形物を、少ない工程で効率よく製造するのに適した立体造形用組成物を提供することにある。
 本発明の他の目的は、前記立体造形用組成物を用いて、形状精度に優れた立体造形物を、少ない工程で効率よく製造する方法を提供することにある。
 本発明の他の目的は、前記立体造形用組成物の固化物からなる、形状精度に優れた立体造形物を提供することにある。
 本発明者らは上記課題を解決するため鋭意検討した結果、繊維状物質を含み、チキソトロピー性が高い立体造形用組成物は、外力(例えば、せん断応力)を付与することにより低粘度化し、優れた流動性を発現するため、吐出装置等を使用した吐出性が良好であること、吐出後は、外力が付与されなくなることで急激に粘度が上昇するため、吐出された組成物は、その形状が崩れること無く保持されること、所望の立体形状に吐出して、これを固化すれば、層毎に造形し、結着剤を使用して各層を接着することで立体造形物を製造する方法を採用せずとも、形状精度に優れた立体造形物を形成することができることを見出して、本発明を完成させた。
 すなわち、本発明は、構成成分として繊維状物質を含み、20℃におけるTI値[6rpmにおける粘度/60rpmにおける粘度]が1.5以上であることを特徴とする立体造形用組成物を提供する。
 本発明は、また、繊維状物質がセルロースである、前記の立体造形用組成物を提供する。
 本発明は、また、繊維状物質が水酸基の平均未置換度が2.5以上のセルロースである、前記の立体造形用組成物を提供する。
 本発明は、また、繊維状物質の平均長さが1~1000μmであり、平均アスペクト比が10~10000である、前記の立体造形用組成物を提供する。
 本発明は、また、構成成分として更に溶媒を含み、繊維状物質と溶媒の含有量の和が立体造形用組成物全量の70重量%以上であり、繊維状物質の含有量が立体造形用組成物全量の15~50重量%である、前記の立体造形用組成物を提供する。
 本発明は、また、立体造形用組成物に含まれる全固形成分に対する繊維状物質の含有量が90重量%以上である、前記の立体造形用組成物を提供する。
 本発明は、また、構成成分としてセルロースを含み、前記セルロースの水酸基の平均未置換度が2.5以上であることを特徴とする立体造形用組成物を提供する。
 本発明は、また、吐出装置を使用して、前記立体造形用組成物を立体形状に吐出し、その後、吐出された立体造形用組成物を固化することにより立体造形物を製造する、立体造形物の製造方法を提供する。
 本発明は、また、前記立体造形用組成物の固化物からなる立体造形物を提供する。
 本発明の立体造形用組成物(以下、「組成物」と称する場合がある)は高いチキソトロピー性を示すので、吐出装置等を使用して所望の立体造形物の形状に吐出することができ、これを固化することで立体造形物を精度良く製造することができる。すなわち、吐出-固化という簡便、且つ少ない工程で立体造形物を製造することができ、立体造形物を層毎に造形し、結着剤を使用して各層を接着することで立体造形物を製造する方法を採用する必要がない。また、本発明の組成物は、吐出装置を使用して所望の立体造形物の形状に吐出することができるため、組成物を無駄なく有効利用することができる。そのため、コストを最小限に抑制することができる。
 そして、繊維状物質としてセルロース(特に、水酸基リッチなセルロース)を使用すれば、軽量であり、機械強度に優れ、資源面、環境面、及び安全面に優れた立体造形物が得られる。
 [立体造形用組成物]
 本発明の立体造形用組成物は、立体造形物(すなわち、三次元構造体)を製造する用途に用いる立体造形用組成物であって、
 第1の態様は、構成成分として繊維状物質を含み、20℃におけるTI値[6rpmにおける粘度/60rpmにおける粘度]が1.5以上であることを特徴とする。
 第2の態様は、構成成分としてセルロースを含み、前記セルロースの水酸基の平均未置換度が2.5以上であることを特徴とする。
 本発明の組成物は繊維状物質を含み、前記繊維状物質が絡まり合い、三次元網目構造を形成し、三次元網目構造の空間に毛管現象で多くの溶媒が束縛されることで、保水性、保型性、及び高チキソトロピー性を示す。
 本発明の組成物の、下記式(1)で算出されるチキソトロピーインデックス(TI値;20℃における)は1.5以上(例えば1.5~300、好ましくは1.5~200、より好ましくは1.5~100、更に好ましくは1.5~50、更に好ましくは2~30、特に好ましくは2~20、最も好ましくは3~10、とりわけ好ましくは4~8)である。そのため、吐出装置で吐出すると、せん断応力が付与されることによって繊維状物質の三次元網目構造が破壊、或いは配向方向が整えられて低粘度化し、流動性が高まるため、良好な吐出性を発揮することができる。また、吐出後は、せん断応力の付与が無くなることにより繊維状物質が再び三次元網目構造を形成するため、急激に粘度が上昇して優れた形状保持性を発揮することができる。
  TI値=6rpmにおける粘度/60rpmにおける粘度  (1)
 また、本発明の組成物が、繊維状物質の含有量が1重量%の水分散液である場合のチキソトロピーインデックス(TI値;20℃における)は、例えば1.5以上(好ましくは1.5~50、より好ましくは2~30、特に好ましくは2~20、最も好ましくは3~10、とりわけ好ましくは4~8)である。
 尚、20℃における、回転数6rpm及び60rpmにおける粘度は、回転式粘度計(HAAKE)を使用して測定することができる。
 前記繊維状物質としては、例えば、セルロース、アミロース、キシロース等の多糖類、多糖類の誘導体、塩を形成した多糖類、塩を形成した多糖類の誘導体;ポリエチレン、ポリプロピレン、ポリエステル、ナイロン等の樹脂類;カーボン繊維類;アラミド繊維類;ガラス繊維類等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。本発明の組成物は繊維状物質を含むため、固化することで、機械的強度や寸法精度に優れた立体造形物が得られる。
 前記繊維状物質としては、なかでも多糖類が好ましく、特にセルロースが好ましい。また、セルロースのなかでも、とりわけ、水酸基の平均未置換度が2.5以上である水酸基リッチなセルロースが、得られる立体造形物の機械的強度を飛躍的に向上することができる点で好ましい。
 水酸基リッチなセルロースの、水酸基の平均未置換度は2.5以上であり、得られる立体造形物の機械的強度を飛躍的に向上することができる点で、好ましくは2.6以上、特に好ましくは2.7以上、最も好ましくは2.8以上である。尚、上限は3.0である。
 水酸基の平均未置換度が2.5以上であるセルロースとは、水酸基の置換度が低いセルロースであり、水酸基の平均置換度は、例えば1未満、好ましくは0.5以下、特に好ましくは0.3以下、最も好ましくは0.2以下である。
 尚、セルロースは、セルロースの構成単位であるグルコースの2位、及び3位炭素原子に結合する2級水酸基と、6位炭素原子に結合する1級水酸基とを有する。そして、セルロースの水酸基の置換度は、セルロースの構成単位であるグルコースに存在する3つの水酸基のうち、置換された水酸基の数で示され、平均置換度はその平均値である。また、セルロースの水酸基の未置換度は、セルロースの構成単位であるグルコースに存在する3つの水酸基のうち、置換されていない水酸基の数で示され、平均未置換度はその平均値である。
 セルロースの水酸基の平均未置換度は、例えば、下記式(2)から算出できる。
 平均未置換度=3.0-(セルロースの水酸基の平均置換度) (2)
 前記の水酸基リッチなセルロースは、水酸基の平均未置換度が上記値となる範囲内において、その一部が塩を形成していてもよい。セルロースの水酸基の一部が塩を形成することにより、組成物中におけるセルロースの分散性を優れたものにすることができる場合があり、得られる立体造形物の機械的強度や寸法精度を優れたものにすることができる場合がある。セルロースの水酸基の一部が塩を形成する場合、塩の種類としては、例えば、ナトリウム塩、カリウム塩、リチウム塩、マグネシウム塩、カルシウム塩、アンモニウム塩等が挙げられる。
 また、前記の水酸基リッチなセルロースは、水酸基の平均未置換度が上記値となる範囲内において、その一部が化学修飾されていても良い。
 前記繊維状物質の平均長さ(平均長L)は、特に限定されないが、1~1000μmが好ましく、50~1000μmがより好ましく、100~900μmが更に好ましく、300~800μmが特に好ましい。平均長Lがこの範囲内にあることにより、前記繊維状物質の飛散や局所的な凝集を防止しながら、得られる立体造形物の機械的強度や寸法精度を優れたものにすることができる。
 前記繊維状物質の平均太さ(平均径D)は、特に限定されないが、1~3000nmが好ましく、100~2000nmがより好ましく、500~1500nmが更に好ましく、800~1500nmが特に好ましい。平均径Dがこの範囲内にあると、特に高いチキソトロピー性を示す。また、前記繊維状物質の飛散や局所的な凝集を防止しながら、得られる立体造形物の機械的強度や寸法精度を優れたものにすることができる。
 前記繊維状物質の平均アスペクト比(平均長さ/平均太さ)は、特に限定されないが、10~10000が好ましく、100~2000がより好ましく、200~1000が更に好ましく、300~800が特に好ましい。平均アスペクトがこの範囲内にあることにより、前記繊維状物質の飛散や局所的な凝集を防止しながら、得られる立体造形物の機械的強度や寸法精度を優れたものにすることができる。
 前記繊維状物質は多少の不純物(繊維状物質がセルロースである場合、不純物としては、例えば、ヘミセルロースやリグニン等が挙げられる)を含んでいても良い。
 前記繊維状物質として、例えばセルロースは、原料パルプの粉砕、摩砕、解砕、爆砕等の公知の方法によって製造することができる。
 前記繊維状物質としては、例えば、微小繊維状セルロース「セリッシュ」(ダイセルファインケム(株)製)、微小繊維状アラミド「ティアラ」(ダイセルファインケム(株)製)等の市販品を使用しても良い。
 本発明の組成物は、繊維状物質としてセルロース(特に、水酸基の平均未置換度が2.5以上であるセルロース)を含有することが好ましい。また、本発明の組成物は、繊維状物質としてセルロースと共に、セルロース以外の繊維状物質を1種又は2種以上含有していてもよいが、本発明の組成物に含まれる繊維状物質全量に対する前記セルロースの含有量は、例えば60重量%以上が好ましく、特に好ましくは70重量%以上、最も好ましくは80重量%以上、とりわけ好ましくは90重量%以上であり、本発明の組成物に含まれる繊維状物質全量に対する前記セルロース以外の繊維状物質の含有量は、例えば40重量%以下が好ましく、特に好ましくは30重量%以下、最も好ましくは20重量%以下、とりわけ好ましくは10重量%以下である。前記セルロースを上記範囲で含有すると、固化することにより機械的強度に特に優れた立体造形物を得ることができる。
 本発明の組成物は、固形成分(若しくは不揮発分)として繊維状物質を含有する。本発明の組成物は、固形成分として繊維状物質以外にも他の固形成分(以下「非繊維状物質」と称する場合がある)を1種又は2類以上含んでいても良い。非繊維状物質(例えば、ダイヤモンド等)は繊維状物質に吸着する性質を有することから、非繊維状物質を添加することで、得られる立体造形物に前記非繊維状物質が有する特性を付与することができる。また、本発明の組成物は固形成分以外にも、液状成分(若しくは揮発分)を含有していてもよい。
 立体造形物は、事実上繊維状物質のみで製造することもできるし、繊維状物質を主たる構成成分とすることもできるし、繊維状物質を従たる構成成分とすることもできる。
 事実上繊維状物質のみで立体造形物を製造する場合、本発明の組成物に含まれる全固形成分に対する繊維状物質(例えばセルロース、好ましくは上記の水酸基リッチなセルロース)の含有量は、90重量%以上が好ましく、95重量%以上がより好ましく、99重量%以上が更に好ましい。繊維状物質の含有量をこのような範囲とすることにより、繊維状物質に由来する特性を有する立体造形物を得ることができる。
 繊維状物質を主たる構成成分として立体造形物を製造する場合、本発明の組成物に含まれる全固形成分に対する繊維状物質(例えばセルロース、好ましくは上記の水酸基リッチなセルロース)の含有量は、50~90重量%が好ましく、55~85重量%がより好ましく、60~80重量%が更に好ましい。繊維状物質の含有量をこのような範囲とすることにより、繊維状物質と非繊維状物質に由来する特性を併有する立体造形物を得ることができる。
 繊維状物質を従たる構成成分として立体造形物を製造する場合、本発明の組成物に含まれる全固形成分に対する繊維状物質(例えばセルロース、好ましくは上記の水酸基リッチなセルロース)の含有量は、0.1~50重量%が好ましく、1~40重量%がより好ましく、10~30重量%が更に好ましい。繊維状物質の含有量をこのような範囲とすることにより、繊維状物質に由来する特性を保持しながら、主として非繊維状物質に由来する特性を有する立体造形物を得ることができる。
 本発明の組成物が構成成分として後述の溶媒を含む場合、繊維状物質(例えばセルロース、好ましくは上記の水酸基リッチなセルロース)の含有量は、立体造形用組成物全量の例えば15~50重量%であることが、繊維状物質の分散性と、立体形状に吐出された立体造形用組成物の形状及び/又は構造の保持性に優れる点で好ましく、より好ましくは15~45重量%、特に好ましくは15~40重量%、最も好ましくは20~35重量%である。
(非繊維状物質)
 前記非繊維状物質の材質としては、繊維状物質と同じものや、その他、例えば、糊、ペースト、接着剤、粘着剤等の接着性を有する接着成分;合成樹脂、天然高分子、有機顔料等の有機系材料;無機顔料、シリカ、アルミナ、ゼオライト、カーボンブラック、酸化チタンや酸化鉄等の金属酸化物、水酸化マグネシウムや水酸化アルミニウム等の金属水酸化物、窒化ケイ素や窒化アルミニウム等の金属窒化物、炭酸マグネシウムや炭酸カルシウム等の金属炭酸塩、硫酸マグネシウムや硫酸カルシウム等の金属硫酸塩、リン酸マグネシウムやリン酸カルシウム等の金属リン酸塩、粘土、砂礫、シリカ、コンクリート、セメント、ダイヤモンド等の無機系材料等が挙げられる。
 機能面からみた前記非繊維状物質としては、例えば、補強材、分散剤、界面活性剤、潤滑剤、保湿剤、防腐剤、抗菌剤、酸化防止剤、紫外線吸収剤、pH調整剤、消泡剤、着色剤、導電性材料、半導体材料、誘電性材料、絶縁性材料、金属ナノ粒子、医薬、農薬、サプリメント、食材等が挙げられる。
 前記非繊維状物質の形状は、組成物に含まれる繊維状物質の形状や含有量に応じて、適宜選択することができる。
 繊維状物質を主たる構成成分として立体造形物を製造する場合、非繊維状物質の平均径D’は、繊維状物質の平均長L以下であることが好ましい。非繊維状物質の平均径D’をそのような範囲とすることにより、立体造形物中において非繊維状物質同士が隣接する頻度を減少させ、立体造形物の機械的強度を優れたものにすることができる。
 繊維状物質を従たる構成成分として立体造形物を製造する場合、非繊維状物質の平均径D’は、繊維状物質の平均径Dと同程度かそれ以下であることが好ましい。非繊維状物質の平均径D’をそのような範囲とすることにより、立体造形物中の形状及び/又は構造の基本骨格は繊維状物質によって形成され、その基本骨格に非繊維状物質が付着したような立体造形物を得ることができる。または、立体造形物中の形状及び/又は構造の基本骨格は非繊維状物質によって形成され、その基本骨格を繊維状物質で補強したような立体造形物を得ることができる。
(液状成分:溶媒)
 本発明の組成物は、液状成分として比較的粘度が低い任意の溶媒を1種又は2種以上含有することができる。前記溶媒としては、例えば、水、有機溶媒、及びこれらの混合物等が挙げられる。
 前記有機溶媒としては、例えば、メタノール、エタノール、プロパノール等のアルコール類;エチレングリコール、プロピレングリコール等のポリオール類;エチレングリコールモノメチルエーテル、プロピレングリコールジエチルエーテル等のアルキレングリコールアルキルエーテル類;酢酸エチル、プロパン酸メチル、酪酸ブチル等の有機酸エステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;アセトン、メチルエチルケトン、アセチルアセトン等のケトン類等が挙げられる。
 本発明の組成物が繊維状物質としてセルロース等の親水性の繊維状物質を含有する場合は、親水性の繊維状物質の分散性に優れる点で、水やアルコール類等の極性が高い有機溶媒を使用することが好ましい。
 本発明の組成物が溶媒を含むと、隣接する繊維状物質が、溶媒との水素結合や増粘によって相互に接触した状態で保持される。そのため、吐出装置を使用して吐出する際に、繊維状物質や他の添加成分の飛散や局所的な凝集を防止することができ、立体造形物の製造における作業性を高めることができる。
 構成成分として溶媒を含む場合、繊維状物質(例えばセルロース、好ましくは上記の水酸基リッチなセルロース)と溶媒の含有量の和は、立体造形用組成物全量の例えば70重量%以上であることが好ましく、より好ましくは80重量%以上、特に好ましくは90重量%以上、最も好ましくは95重量%以上である。尚、上限は100重量%である。
 また、本発明の組成物における溶媒の含有量は、繊維状物質(例えばセルロース、好ましくは上記の水酸基リッチなセルロース)1重量部に対して、例えば1重量部以上であることが、セルロースの分散性に優れる点で好ましく、より好ましくは1.3重量部以上、更に好ましくは1.5重量部以上、特に好ましくは1.8重量部以上である。また、繊維状物質(例えばセルロース、好ましくは上記の水酸基リッチなセルロース)1重量部に対して、例えば10重量部以下であることが、立体形状に吐出された立体造形用組成物の形状及び/又は構造の保持性に優れる点で好ましく、より好ましくは5重量部以下、更に好ましくは3重量部以下、特に好ましくは2.5重量部以下である。
 本発明の組成物における溶媒の含有量は、繊維状物質の分散性と組成物の吐出性とを兼ね備える範囲において適宜調整することができる。立体形状に吐出された立体造形用組成物の形状及び/又は構造を保持する観点からは、組成物における溶媒の含有量は、95重量%以下が好ましく、90重量%以下がより好ましく、85重量%以下が更に好ましく、80重量%以下が更に好ましく、75重量%以下が更に好ましく、70重量%以下が更に好ましく、60重量%以下が更に好ましく、50重量%以下が最も好ましい。一方、繊維状物質の分散性と組成物の塗布性を向上する観点からは、組成物における溶媒の含有量は、50重量%以上が好ましく、60重量%以上がより好ましく、65重量%以上が更に好ましい。
 本発明の組成物における溶媒の含有量は、立体形状に吐出された立体造形用組成物の形状及び/又は構造を保持すると共に、繊維状物質の分散性と吐出性に優れる点で、50~85重量%好ましく、60~80重量%がより好ましく、60~75重量%が更に好ましく、60~70重量%が特に好ましい。
 本発明の組成物は高チキソトロピー性を有するため、吐出装置を使用して吐出する際の吐出性に優れる。また、吐出後、固化するまでの間は、吐出によって形成された立体形状を崩すこと無く保持することができる。そのため、吐出装置を使用して立体造形物を製造する用途に適しており、例えば、インクジェット法による立体造形用インク、すなわちインクジェットプリンタのノズルから立体形状に吐出し、立体形状に吐出された組成物を固化して立体造形物を得る方法に用いるインクとして好適に使用することができる。
[立体造形物の製造方法]
 本発明の立体造形物の製造方法は、吐出装置を使用して、若しくは、せん断応力の付与を伴う方法で、上記立体造形用組成物を立体形状に吐出し(工程1)、その後、吐出された立体造形用組成物を固化する(工程2)ことにより立体造形物を製造することを特徴とする。
 工程1は、本発明の組成物を、吐出装置を使用して立体形状に吐出する工程である。吐出装置としては特に制限が無く、例えば、インクジェットプリンタ、ディスペンサー、シリンジ等を、目的とする立体造形物の形状や構造に応じて適宜選択して使用することができる。
 前記吐出装置を用いて組成物を吐出する場合、吐出方法には特に制限が無く、間欠的又は連続的に行うことができる。また、これらを組み合わせて行うこともできる。例えば、2つ以上の吐出口を有する吐出装置を用いる場合に、1つの吐出口からは間欠的に吐出させ、他の吐出口からは連続的に吐出させることもできる。
 吐出口の形状としては、特に限定されないが、例えば、射出成形における射出口、押出成形における押出口、インクジェットプリンタにおけるインクジェットノズル、またはこれらに類似した形状が挙げられる。
 吐出口径は任意に設定することができる。繊維状物質の長さより狭い吐出口径を用いる場合、組成物を吐出する際に繊維状物質が吐出方向に配向され、一定の繊維配向性を有する立体造形物を得ることができる。また、吐出口の内壁に繊維状物質の配向を揃えるためのガイドが設けられていても良い。その場合、吐出口の長さは繊維状物質の長さに比べて十分に長いことが好ましい。
 吐出するための駆動力は、特に限定されないが、例えば、加圧、減圧、及び重力からなる群から選択される少なくとも1種の力を使用することができる。
 本発明の組成物を立体形状に吐出する方法としては、3Dデータとしてプログラミングされた領域に組成物を吐出する方法や、立体造形物の形状及び/又は構造をガイドする基材(例えば、金型)によって決定された領域内に組成物を吐出する方法が挙げられる。
 本発明の組成物は繊維状物質を含み、当該繊維状物質は、その体積に対して表面積が比較的大きく、また、その径に対して長さが比較的長いという特徴を有する。そのため、隣接する繊維状物質は、その表面積や長さを利用して相互に接触することにより、所定の領域に応じた形状を保持することが可能となる。そのため、立体形状に吐出された立体造形用組成物はその形状が崩れること無く保持される。
 以上のような吐出方法を採用することにより、本発明の組成物を無駄なく有効利用することができ、原材料コストを最小限に抑制することができる。
 工程2は、工程1において立体形状に吐出された立体造形用組成物を固化する工程である。
 本発明の組成物が溶媒を含有する場合、立体形状に吐出された立体造形用組成物から溶媒を除去することにより固化することができ、本発明の組成物の固化物である立体造形物が得られる。
 溶媒を除去する方法としては、特に限定されないが、加熱、減圧、送風等の方法が挙げられる。加熱温度や加熱時間、減圧度や減圧時間、送風量、送風速度、送風温度、送風する気体の種類や乾燥度、送風する対象となる領域、送風の方向等は、任意に選択することができる。
 急激に減圧して溶媒を除去する場合、溶媒の膨張によって立体形状に吐出された立体造形用組成物が膨張し、結果的に立体形状に吐出された立体造形用組成物より大きい立体造形物を得ることができる。
 本発明の組成物が溶媒を含有する場合、本発明の組成物を固化することにより、組成物中の隣接する繊維状物質の間から溶媒が除去され、隣接する繊維状物質が相互に接触する表面積や頻度が著しく増加することにより、接触状態が接合状態(若しくは、接触の程度が高まった状態)に変化する。これにより、形状が固く保持され、優れた機械的強度を有する立体造形物が得られる。
 例えば、本発明の組成物が繊維状物質としてセルロースを含有し、且つ溶媒を含有する場合、組成物中のセルロースは、その表面が溶媒によって活性化された状態となり、その後、溶媒が除去されると、隣接するセルロースの活性化された水酸基が互いに水素結合することにより強固に接合され、機械的強度に優れた立体造形物が得られる。特に、繊維状物質として水酸基リッチなセルロースを含有する場合は水素結合が密に形成されるため、特に高い機械強度を有する立体造形物が得られる。そのため、本発明の組成物を使用すれば、立体造形物を層毎に造形し、結着剤を使用して層間を接着することで立体造形物を製造する方法を採用せずとも、機械的強度に優れた立体造形物を形成することができる。
 また、立体形状に吐出された立体造形用組成物を固化する際には、適度に加圧しても良い。加圧により、隣接するセルロースの接触面積や接触頻度を更に高めることができ、より高度に水素結合を形成させることにより、極めて優れた機械的強度を有する立体造形物が得られる傾向がある。加圧の程度は特に制限が無く、用途に応じて適宜調整することができる。例えば、空隙率が高い、若しくは機械強度が低い立体造形物を所望する場合は加圧の程度を低くすることが好ましく、空隙率が低い、若しくは機械的強度が高い立体造形物を所望する場合は加圧の程度を高くすることが好ましい。また、加圧方法にも特に制限は無い。
 工程1と工程2は、この順で、順次実施しても良いし、同時に実施しても良い。例えば、加熱、減圧、送風がなされた密閉容器内に本発明の組成物を吐出する方法を用いた場合、吐出とほぼ同時に固化が進行して立体造形物を得ることができる。
 工程1及び工程2は、温度、湿度、及び圧力から選択される少なくとも1つの条件が、一定に設定された環境下で実施してもよいし、連続的若しくは間欠的に変化するよう設定された環境下で実施してもよい。
 また、工程2を経て得られた立体造形物は、その2つ以上を接着成分によって接着して、元の立体造形物とは異なる立体造形物を形成しても良い。接着成分が熱硬化性成分または光硬化性成分である場合は、吐出後、加熱または光照射によって接着成分を硬化させることで立体造形物を強固に接着することができる。
[立体造形物]
 本発明の立体造形物は、上記組成物の固化物からなる。本発明の立体造形物は、例えば、上記立体造形物の製造方法によって製造される。
 本発明の立体造形物の形状や、構造、大きさは特に限定されない。
 また、本発明の立体造形物は、2つ以上の立体造形物が接着剤層を介して結合されたものであってもよい。すなわち、本発明の立体造形物は、本発明の組成物の固化物によって形成される層と、接着剤層の2層以上が積層構造を形成していても良いが、立体造形物の全体積における、本発明の組成物の固化物によって形成される層の占める割合は、80体積%以上であることが好ましく、90体積%以上であることがより好ましく、95体積%以上であることが更に好ましい。
 本発明の立体造形物は、繊維状物質(好ましくはセルロース、特に好ましくは水酸基の平均未置換度が2.5以上であるセルロース)をその構成成分として含有し、立体造形物全量における前記繊維状物質の占める割合は、例えば50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上、とりわけ好ましくは95重量%以上である。そのため軽量である。また、特に繊維状物質がセルロースである場合は、軽量であり、安全性に優れ、且つカーボン・ニュートラルであり環境に優しい。
 本発明の立体造形物は、例えば、人形や模型等の工芸品、電気・電子機器等の精密機器向けの部材、家屋・建物・道路・橋梁等の固定構築物向けの土木建築資材、自動車・列車・船舶・航空機等の運送用具向けの構造部材、医薬・農薬・サプリメント・食材等の機能性加工品等、及びこれら用途の試作品として好適である。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 実施例1
 立体造形用組成物として、繊維状物質である微細繊維状セルロース「セリッシュPC110S」(ダイセルファインケム(株)製、固形成分(=微細繊維状セルロース)35%、水65%、1%水分散液の20℃におけるTI値[6rpmにおける粘度/60rpmにおける粘度]=4.2、含有するセルロースの水酸基の平均未置換度:3.0、セルロース繊維平均長さ:600μm、平均アスペクト比:600)を用いて、立体造形物1(=立体形状に吐出された立体造形用組成物)および立体造形物2(=立体形状に吐出された立体造形用組成物の固化物)を以下の手順により製造した。
 まず、支持基板上に型枠(内枠長さ40mm×内枠幅20mm×内枠高さ4mm)を戴置し、前記立体造形用組成物をシリンジ(吐出口径5mm)を用いて前記型枠内に吐出・充填し、立体造形物1を得た。
 次に、前記立体造形物1の上に錘(長さ40mm×幅20mm、重さ10g)を載せ、加熱乾燥炉(50℃×24時間)にて溶媒除去を行った後、前記型枠および錘を外して、立体造形物2を得た。
 得られた立体造形物2は、高い形状精度を有していた。また、高い機械的強度を有しており、10cmの高さからポリプロピレン板(厚さ1cm)上に自然落下させても、その立体形状は崩れること無く維持された。
 実施例2
 立体造形用組成物として、セリッシュPC110S(100重量部)と非繊維状物質としてシリカゲル「Nipsil E-200A」(東ソー(株)製、10重量部)の混合物を用いた以外は実施例1と同様にして、立体造形物1および立体造形物2を得た。得られた立体造形物2は、実施例1で得られた立体造形物2と同程度の高い形状精度と高い機械的強度を有していた。
 実施例3
 立体造形用組成物として、セリッシュPC110S(100重量部)と粘着成分としてポリビニルピロリドン(重量平均分子量50000、10重量部)の混合物を用いた以外は実施例1と同様にして、立体造形物1および立体造形物2を得た。得られた立体造形物2は、実施例1で得られた立体造形物2と同程度の高い形状精度と高い機械的強度を有していた。
 実施例4
 実施例1と同じ立体造形用組成物を用いて、立体造形物1および立体造形物2を以下の手順により製造した。
 まず、支持基板上に基材(長さ80mm×幅10mm×厚さ2mm)を戴置し、前記立体造形用組成物をシリンジ(吐出口径5mm)を用いて前記基材上に半円筒状に盛り付けるように吐出して、立体造形物1を得た。
 次に、前記立体造形物1を加熱乾燥炉(50℃×24時間)にて溶媒除去を行い、立体造形物2を得た。得られた立体造形物2は、実施例1で得られた立体造形物2と同程度の高い形状精度と高い機械的強度を有していた。
 実施例5
 実施例1と同じ立体造形用組成物を用いて、立体造形物2を以下の手順により製造した。
 支持基板上に型枠(内枠長さ40mm×内枠幅20mm×内枠高さ4mm)を戴置し、前記立体造形用組成物をシリンジ(吐出口径5mm)を用いて前記型枠内に吐出・充填し、それとほぼ同時に、吐出した立体造形用組成物に熱風を吹き付けて溶媒除去を行い、立体造形物2を得た。得られた立体造形物2は、実施例1で得られた立体造形物2と同程度の高い形状精度と高い機械的強度を有していた。
 実施例6
 立体造形用組成物として、セリッシュPC110S(100重量部)と10%水酸化ナトリウム水溶液(20重量部)を混合して、含有するセルロースの水酸基の少なくとも一部をナトリウム塩とした混合物を用いた以外は、実施例1と同様にして、立体造形物1および立体造形物2を得た。
 得られた立体造形物2は、実施例1で得られた立体造形物2と同等の高い形状精度を有していたが、機械的強度が低く、10cmの高さからポリプロピレン板(厚さ1cm)上に自然落下させると、その立体形状が崩れた。
 以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記する。
[1] 構成成分として繊維状物質を含み、20℃におけるTI値[6rpmにおける粘度/60rpmにおける粘度]が1.5以上であることを特徴とする立体造形用組成物。
[2] 繊維状物質がセルロースである、[1]に記載の立体造形用組成物。
[3] 繊維状物質が水酸基の平均未置換度が2.5以上のセルロースである、[1]に記載の立体造形用組成物。
[4] 繊維状物質(好ましくはセルロース、特に好ましくは水酸基の平均未置換度が2.5以上であるセルロース)の平均長さが1~1000μmであり、平均アスペクト比が10~10000である、[1]~[3]の何れか1つに記載の立体造形用組成物。
[5] 構成成分として更に溶媒を含み、繊維状物質と溶媒の含有量の和が立体造形用組成物全量の70重量%以上であり、繊維状物質の含有量が立体造形用組成物全量の15~50重量%である、[1]~[4]の何れか1つに記載の立体造形用組成物。
[6] 繊維状物質1重量部に対する溶媒の含有量が1~10重量部である、[5]に記載の立体造形用組成物。
[7] 立体造形用組成物に含まれる全固形成分に対する繊維状物質(好ましくはセルロース、特に好ましくは水酸基の平均未置換度が2.5以上であるセルロース)の含有量が90重量%以上である、[1]~[6]の何れか1つに記載の立体造形用組成物。
[8] 構成成分としてセルロースを含み、前記セルロースの水酸基の平均未置換度が2.5以上であることを特徴とする立体造形用組成物。
[9] 水酸基の平均未置換度が2.5以上であるセルロースの平均長さが1~1000μmであり、平均アスペクト比が10~10000である、[8]に記載の立体造形用組成物。
[10] 構成成分として更に溶媒を含み、水酸基の平均未置換度が2.5以上であるセルロースと溶媒の含有量の和が立体造形用組成物全量の70重量%以上であり、水酸基の平均未置換度が2.5以上であるセルロースの含有量が立体造形用組成物全量の15~50重量%である、[8]又は[9]に記載の立体造形用組成物。
[11] 水酸基の平均未置換度が2.5以上であるセルロース1重量部に対する溶媒の含有量が1~10重量部である、[8]~[10]の何れか1つに記載の立体造形用組成物。
[12] 立体造形用組成物に含まれる全固形成分に対する水酸基の平均未置換度が2.5以上であるセルロースの含有量が90重量%以上である、[8]~[11]の何れか1つに記載の立体造形用組成物。
[13] 吐出装置を使用して、[1]~[12]の何れか1つに記載の立体造形用組成物を立体形状に吐出し、その後、吐出された立体造形用組成物を固化することにより立体造形物を製造する、立体造形物の製造方法。
[14] [1]~[12]の何れか1つに記載の立体造形用組成物の固化物からなる立体造形物。
[15] 立体造形物全量における繊維状物質(好ましくはセルロース、特に好ましくは水酸基の平均未置換度が2.5以上であるセルロース)の占める割合が50重量%以上である、[14]に記載の立体造形物。
[16] 組成物を間欠的及び/又は連続的に吐出することによる立体造形物の製造に用いる立体造形用組成物であって、構成成分として繊維状物質を含むことを特徴とする立体造形用組成物。
[17] 繊維状物質が多糖類、多糖類の誘導体、塩を形成した多糖類、および塩を形成した多糖類誘導体からなる群から選ばれる何れか1つ以上である[16]に記載の立体造形用組成物。
[18] 多糖類がセルロースである[16]又は[17]に記載の立体造形用組成物。
[19] 繊維状物質の平均長さ(平均長L)が1~1000μmである[16]又は[17]に記載の立体造形用組成物。
[20] 繊維状物質の平均太さ(平均径D)が1~10000nmである[16]又は[17]に記載の立体造形用組成物。
[21] 組成物における液状成分の含有量が50重量%以上である[16]又は[17]に記載の立体造形用組成物。
[22] 組成物における液状成分の含有量が50重量%未満である[16]又は[17]に記載の立体造形用組成物。
[23] 組成物に含まれる全固形成分に対する繊維状物質の含有量が90重量%以上である[16]又は[17]に記載の立体造形用組成物。
[24] 組成物を間欠的及び/又は連続的に吐出する方法による立体造形物の製造方法であって、組成物が構成成分として繊維状物質を含むことを特徴とする立体造形物の製造方法。
[25] 組成物として、[16]に記載の立体造形用組成物を用いる[24]に記載の製造方法。
[26] 吐出する方法が1つ又は2つ以上の吐出口を有するデバイスを用いて吐出する方法である[24]に記載の製造方法。
[27] 吐出口の内壁にガイドが設けられている[26]に記載の製造方法。
[28] 吐出するための駆動力が加圧、減圧、重力からなる群から選ばれる何れか1つ又は2つ以上の力の組み合わせである[24]に記載の製造方法。
[29] 立体造形物の形状及び/又は構造をガイドする基材によって予め決定された領域に対して組成物を吐出する[24]に記載の製造方法。
[30] 予め作成された所定のコンピュータ・プログラムに基づいて吐出を制御する装置を用いる[24]に記載の製造方法。
[31] 加熱、冷却、加湿、乾燥、加圧、減圧からなる群から選ばれる何れか1つ又は2つ以上の条件により、静的及び/又は動的に調整された環境で実施される[24]に記載の製造方法。
[32] 構成成分として繊維状物質を含むことを特徴とする立体造形物であって、立体造形物の全体積に対して積層構造により構成される部分の占める割合が80体積%未満である立体造形物。
 本発明の立体造形用組成物は、所望の立体造形物の形状に吐出し、固化させることで、形状精度及び機械強度に優れた立体造形物を短い工程で簡便に製造することができる。また、得られた立体造形物は、高い機械強度を有すると共に、セルロースを原料とするため資源面、環境面、及び安全面に優れ、工芸品、精密機器向けの部材、土木建築資材、運送用具向け構造部材、機能性加工品等として好適である。

Claims (9)

  1.  構成成分として繊維状物質を含み、20℃におけるTI値[6rpmにおける粘度/60rpmにおける粘度]が1.5以上であることを特徴とする立体造形用組成物。
  2.  繊維状物質がセルロースである、請求項1に記載の立体造形用組成物。
  3.  繊維状物質が水酸基の平均未置換度が2.5以上のセルロースである、請求項1に記載の立体造形用組成物。
  4.  繊維状物質の平均長さが1~1000μmであり、平均アスペクト比が10~10000である、請求項1~3の何れか1項に記載の立体造形用組成物。
  5.  構成成分として更に溶媒を含み、繊維状物質と溶媒の含有量の和が立体造形用組成物全量の70重量%以上であり、繊維状物質の含有量が立体造形用組成物全量の15~50重量%である、請求項1~4の何れか1項に記載の立体造形用組成物。
  6.  立体造形用組成物に含まれる全固形成分に対する繊維状物質の含有量が90重量%以上である、請求項1~5の何れか1項に記載の立体造形用組成物。
  7.  構成成分としてセルロースを含み、前記セルロースの水酸基の平均未置換度が2.5以上であることを特徴とする立体造形用組成物。
  8.  吐出装置を使用して、請求項1~7の何れか1項に記載の立体造形用組成物を立体形状に吐出し、その後、吐出された立体造形用組成物を固化することにより立体造形物を製造する、立体造形物の製造方法。
  9.  請求項1~7の何れか1項に記載の立体造形用組成物の固化物からなる立体造形物。
PCT/JP2017/037241 2016-10-19 2017-10-13 立体造形用組成物および立体造形物の製造方法並びに立体造形物 WO2018074373A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/343,276 US20190256689A1 (en) 2016-10-19 2017-10-13 Three-dimensional molding composition, method for producing three-dimensional molded article, and three-dimensional molded article
JP2018546299A JPWO2018074373A1 (ja) 2016-10-19 2017-10-13 立体造形用組成物および立体造形物の製造方法並びに立体造形物
CN201780064855.2A CN109906140A (zh) 2016-10-19 2017-10-13 立体造型用组合物、立体造型物的制造方法以及立体造型物
EP17861849.2A EP3530439A4 (en) 2016-10-19 2017-10-13 THREE-DIMENSIONAL MOLDING METHOD, METHOD FOR PRODUCING A THREE-DIMENSIONAL MOLDED BODY AND THREE-DIMENSIONAL MOLDED BODY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-204840 2016-10-19
JP2016204840 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018074373A1 true WO2018074373A1 (ja) 2018-04-26

Family

ID=62018635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037241 WO2018074373A1 (ja) 2016-10-19 2017-10-13 立体造形用組成物および立体造形物の製造方法並びに立体造形物

Country Status (6)

Country Link
US (1) US20190256689A1 (ja)
EP (1) EP3530439A4 (ja)
JP (1) JPWO2018074373A1 (ja)
CN (1) CN109906140A (ja)
TW (1) TW201819156A (ja)
WO (1) WO2018074373A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026702A (ja) * 2017-07-28 2019-02-21 東洋レヂン株式会社 熱可塑性複合樹脂、該樹脂を用いた3dプリンタ用フィラメント及びそれらの製造方法
JP2020090004A (ja) * 2018-12-04 2020-06-11 太平洋セメント株式会社 押出し方式付加製造装置用水硬性組成物の選択方法、造形物の製造方法、および押出し方式付加製造装置用水硬性組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053847A (ja) 2001-06-22 2003-02-26 Three D Syst Inc 固体自由形状造形において高粘度の造形材料を使用するためのリコーティングシステム
JP2015212060A (ja) 2014-05-07 2015-11-26 セイコーエプソン株式会社 三次元造形用組成物、三次元造形物の製造方法および三次元造形物
WO2015180844A1 (en) * 2014-05-30 2015-12-03 Borregaard As Microfibrillated cellulose
JP2016204840A (ja) 2015-04-15 2016-12-08 日立建機株式会社 建設機械の表示システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9339489B2 (en) * 2013-03-15 2016-05-17 Aprecia Pharmaceuticals Company Rapid disperse dosage form containing levetiracetam
DE102013018182A1 (de) * 2013-10-30 2015-04-30 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053847A (ja) 2001-06-22 2003-02-26 Three D Syst Inc 固体自由形状造形において高粘度の造形材料を使用するためのリコーティングシステム
JP2015212060A (ja) 2014-05-07 2015-11-26 セイコーエプソン株式会社 三次元造形用組成物、三次元造形物の製造方法および三次元造形物
WO2015180844A1 (en) * 2014-05-30 2015-12-03 Borregaard As Microfibrillated cellulose
JP2016204840A (ja) 2015-04-15 2016-12-08 日立建機株式会社 建設機械の表示システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3530439A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026702A (ja) * 2017-07-28 2019-02-21 東洋レヂン株式会社 熱可塑性複合樹脂、該樹脂を用いた3dプリンタ用フィラメント及びそれらの製造方法
JP2020090004A (ja) * 2018-12-04 2020-06-11 太平洋セメント株式会社 押出し方式付加製造装置用水硬性組成物の選択方法、造形物の製造方法、および押出し方式付加製造装置用水硬性組成物
JP7142552B2 (ja) 2018-12-04 2022-09-27 太平洋セメント株式会社 押出し方式付加製造装置用水硬性組成物の選択方法、および造形物の製造方法

Also Published As

Publication number Publication date
TW201819156A (zh) 2018-06-01
US20190256689A1 (en) 2019-08-22
EP3530439A1 (en) 2019-08-28
JPWO2018074373A1 (ja) 2019-08-22
EP3530439A4 (en) 2020-06-03
CN109906140A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
KR102601424B1 (ko) 금속 또는 플라스틱의 주조된 부품 또는 섬유 복합 바디 제조에 적합한 몰드 및 코어 제조 방법, 상기 방법에서 사용된 몰드 기재 및 결합제 및 상기 방법에 따라 제조된 몰드 및 코어
Tan et al. Recent progress on polymer materials for additive manufacturing
Wang et al. 3D vertically aligned BNNS network with long-range continuous channels for achieving a highly thermally conductive composite
CN106242507B (zh) 一种直接成型3d陶瓷打印用粘土泥料及其制备方法和应用
Xing et al. Fabrication and characterization of SiC whiskers toughened Al2O3 paste for stereolithography 3D printing applications
KR101120156B1 (ko) 3d 인쇄 시스템으로부터의 외관 모형용 열가소성 분말물질 시스템
JP4799416B2 (ja) 2成分系の硬化可能な組成物
JP6613659B2 (ja) 立体造形物及びその製造方法
KR20170098246A (ko) 물 유리를 포함하는 결합제를 사용하여 몰드 및 코어를 층 대 층으로 구성하는 방법, 및 물 유리를 포함하는 결합제
CN104558689A (zh) 一种填料组合物及其应用
TWI522430B (zh) 立體成型組合物
Tessier et al. Development of novel melt-compounded starch-grafted polypropylene/polypropylene-grafted maleic anhydride/organoclay ternary hybrids.
WO2018074373A1 (ja) 立体造形用組成物および立体造形物の製造方法並びに立体造形物
Jiang et al. Lignin‐based materials for additive manufacturing: chemistry, processing, structures, properties, and applications
CN104412024A (zh) 绝热体及其制造方法
Liu et al. Solid freeform fabrication of epoxidized soybean oil/epoxy composites with di‐, tri‐, and polyethylene amine curing agents
JP2018015955A (ja) 3dプリンター用樹脂組成物
CN110845965A (zh) 一种用于3dp工艺的粘结剂及其制备方法和应用
WO2019146474A1 (ja) 立体造形用樹脂組成物、立体造形物、および立体造形物の製造方法
Zhang 3D Freeze Nano Printing for Multiscale, Multifunctional Porous Materials
EP3371124A1 (en) A process for providing inorganic polymer ceramic-like materials
CN106278087A (zh) 一种基于石膏基粉改性的3d打印材料
Kim et al. Advanced Additive Manufacturing of Structurally‐Colored Architectures
DE102019005605A1 (de) Verfahren zur Herstellung eines additiv gefertigten Produkts aus einem mineralischen Ausgangsmaterial mittels direkter Laserversinterung sowie ein nach diesem Verfahren hergestelltes Leichtbauteil
Tetik 3D freeze printing of functional aerogels

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017861849

Country of ref document: EP

Effective date: 20190520