WO2018074283A1 - レーザ処理装置およびレーザ処理方法 - Google Patents

レーザ処理装置およびレーザ処理方法 Download PDF

Info

Publication number
WO2018074283A1
WO2018074283A1 PCT/JP2017/036660 JP2017036660W WO2018074283A1 WO 2018074283 A1 WO2018074283 A1 WO 2018074283A1 JP 2017036660 W JP2017036660 W JP 2017036660W WO 2018074283 A1 WO2018074283 A1 WO 2018074283A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
discharge port
laser
laser processing
processing apparatus
Prior art date
Application number
PCT/JP2017/036660
Other languages
English (en)
French (fr)
Inventor
石煥 鄭
政志 町田
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to CN201780064615.2A priority Critical patent/CN109844907B/zh
Priority to JP2018507038A priority patent/JP7105187B2/ja
Priority to US16/342,182 priority patent/US11810799B2/en
Publication of WO2018074283A1 publication Critical patent/WO2018074283A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • B23K26/1437Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means for flow rate control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a laser processing apparatus and a laser processing method for performing desired processing by irradiating a target object with laser light.
  • an apparatus for performing an annealing process by irradiating a laser beam to a silicon semiconductor film or the like on a substrate, an apparatus is known that performs a process by forming a local gas atmosphere surrounding a region irradiated with a laser beam on a substrate.
  • Patent Documents 1 and 2 For example, refer to Patent Documents 1 and 2).
  • FIG. 12 is a diagram illustrating an example of a conventional laser processing apparatus.
  • a laser beam irradiation local seal box 110 is provided in the lower part of the top plate of the processing chamber 100, and a laser light introduction window 101 is provided in the upper top plate of the laser light irradiation local seal box 110.
  • a rectifying plate 111 extending in the front and rear directions of the movement of the substrate 120 is continuously formed. Nitrogen gas is introduced into the laser beam irradiation local seal box 110, and the nitrogen gas is released downward through a laser light transmission hole 112 provided on the lower surface of the laser light irradiation local seal box 110.
  • a stage 102 that holds a substrate and is movable in the horizontal direction in the figure is installed.
  • An entrance / exit 104 is provided at a side portion of the processing chamber 100, and the entrance / exit 104 is opened and closed by the operation of the gate valve 103.
  • the gate valve 103 opens the entrance / exit 104 to introduce the substrate 120 into the processing chamber 100, and after the introduction of the substrate 120, the gate valve 103 closes the entrance / exit 104.
  • the substrate 120 is formed with a non-single-crystal semiconductor film (not shown). Note that when the doorway 104 is opened, outside air intrudes into the processing chamber 100.
  • the substrate 120 is held by the stage 102, moves in the processing chamber 100 at a predetermined speed together with the stage 102, and the substrate 120 is irradiated with the laser light 130 through the laser light transmission hole 112.
  • the non-single-crystal semiconductor film is single-crystallized by irradiation with the laser light 130.
  • the gate valve 103 opens the entrance / exit and takes the substrate 120 out of the processing chamber 100.
  • JP 2002-217124 A Japanese Patent No. 5408678
  • gas is ejected toward the substrate along the laser optical axis at the position where the substrate is irradiated with laser light.
  • turbulence occurs around the laser light irradiation position.
  • the gas flow to be injected has been improved to be a laminar flow.
  • attempts have been made to slow down the gas flow rate and reduce the turbulent flow, but it is difficult to form a uniform atmosphere that is the original purpose.
  • turbulent flow occurs, turbulence of gas pressure and temperature occurs.
  • vapor or fine particles of a constituent element for example, Si
  • the semiconductor film for example, Si film
  • the gas suction port of the present invention In a state where turbulent flow is generated or a state where the flow velocity is extremely small, it is difficult to discharge substances generated from the irradiated object such as the vapor and fine particles from the laser beam path.
  • This problem corresponds to the gas suction port of the present invention.
  • the atmosphere stabilized when the substrate is carried in / out around the irradiation position of the laser beam is disturbed by an external gas flow. This problem corresponds to the second or third gas discharge port of the present invention.
  • the present invention has been made in order to solve the above-described problems of the prior art, and prevents laser gas turbulence and allows a uniform atmosphere to be maintained by an arbitrary gas type.
  • An object is to provide an apparatus and a laser processing method.
  • the first aspect of the present invention is In a laser processing apparatus for irradiating a target object while relatively scanning laser light, A scanning moving unit for moving one or both of the object to be processed and the laser beam; A laser beam irradiation unit that irradiates the object to be processed with the laser beam; A gas discharge unit that discharges at least a first gas to an irradiation region irradiated with the laser beam in the object to be processed; The gas discharge portion has a rectifying surface at a position facing the object to be processed during laser light irradiation, and the rectifying surface includes at least the first gas discharge port from which the first gas is discharged, In the scanning direction, one or both of a second gas discharge port and a gas front / rear suction port for discharging a second gas to the object being irradiated with laser light are provided on both outer sides of the first gas discharge port. It is characterized by being.
  • the first gas discharge port is characterized in that the first gas is discharged in a range where the irradiation region is covered.
  • the second gas discharge port and the gas front-rear suction port have shapes that exceed the shape in the width direction of the irradiation region on both sides. It is characterized by being.
  • the invention of the laser processing apparatus of another form is the present invention of the above form,
  • the gas discharge part is provided with one or both of a third gas discharge port and a gas side suction port for discharging a third gas to the object to be moved on both sides in the scanning direction. It is characterized by that.
  • the third gas discharge port and the gas side suction port have shapes that exceed the shape of the irradiation region in the scanning direction on both sides. It is characterized by that.
  • the invention of the laser processing apparatus of another form is the present invention of the form described above, wherein the gas discharge part is one or both of the outer sides of the first gas discharge port, and the second gas discharge port and the gas.
  • a front and rear suction port, and the gas front and rear suction port is located inside the second gas discharge port.
  • the invention of the laser processing apparatus of another form is the invention of the above form, wherein the second gas discharge port emits the second gas toward the lower outside with respect to the first gas discharge port. It has a predetermined discharge angle.
  • another aspect of the invention of the laser processing apparatus according to the present invention of the above aspect is characterized in that the emission angle is 45 degrees or more.
  • the invention of the laser processing apparatus of another form is characterized in that, in the present invention of the above form, the distance between the rectifying surface and the object to be moved is 10 mm or less.
  • the rectifying surface is 10 mm or more longer than the length of the laser beam on the irradiation surface in the scanning direction with respect to the first emission port. It is characterized by extending at a length of.
  • the second gas discharge port is provided at a position separated by 1 mm or more in the scanning direction with respect to the first gas discharge port. It is characterized by being.
  • the invention of the laser processing apparatus of another form is characterized in that, in the present invention of the above form, the laser beam has a line beam shape on an irradiation surface with respect to the object to be processed.
  • the object to be processed is a non-single crystal semiconductor
  • the laser processing apparatus crystallizes the non-single crystal semiconductor. It is characterized by that.
  • the invention of the laser processing apparatus of another form is characterized in that, in the present invention of the above form, the charge is removed and supplied to the second gas discharge port and the third gas discharge port.
  • the invention of the laser processing apparatus of another form is characterized in that, in the present invention of the form, the gas released from the rectifying surface is an inert gas.
  • the third gas is an inert gas in the present invention of the above aspect.
  • the first aspect of the present invention is a laser processing method for irradiating an object to be processed while relatively scanning laser light.
  • Arranging a rectifying surface at a position facing the object to be processed at the irradiation position The first gas is emitted from the rectifying surface to the irradiation region irradiated with the laser beam, and at least in the scanning direction, on both outer sides of the region of the rectifying surface from which the first gas is emitted.
  • one or both of the second gas release and the gas suction is performed.
  • a laser processing method wherein the first gas is discharged on both sides of the rectifying surface area where the first gas is released.
  • One or both of the third gas discharge and the gas suction is performed.
  • Another aspect of the invention of the laser processing method is characterized in that, in the present invention of the above aspect, the amount of suction of the gas is determined in accordance with the amount of discharge of the first gas.
  • a local atmosphere can be formed at least in the vicinity of the laser light irradiation region in the object to be processed, and the generation of turbulence can be avoided by stabilizing the gas flow. Processing by laser light irradiation can be performed in a stable atmosphere.
  • the laser processing apparatus 1 includes a processing chamber 2 and a laser light source 3 installed outside the processing chamber 2, and a laser beam 50 output from the laser light source 3 is guided to the processing chamber 2 through the optical system 4. can do.
  • the optical system 4 includes an attenuator, a lens, a mirror, and the like, and the configuration of the present invention is not particularly limited.
  • a stage 5 that can move in the left-right direction in FIG. 1 is provided, and the substrate 120 can be held by the stage 5.
  • the stage 5 is provided with stage rectifying plates 5A and 5B before and after the moving direction from the installation surface of the substrate 120.
  • the stage rectifying plates 5A and 5B are attached to the substrate 120 so that the height of the stage rectifying plates 5A and 5B substantially matches the height of the substrate 120 when the substrate 120 is installed on the installation surface. More preferably, the heights coincide with each other, or the heights of the stage rectifying plates 5A and 5B are slightly higher than the height of the substrate 120.
  • the length of the stage rectifying plates 5A and 5B is such that the stage rectifying plate 5A does not come out of the laser light transmission hole 11 even if the stage 5 moves to the substrate transfer initial position. 6 It is desirable that the length does not deviate from the laser light transmission hole 11 even if it moves to the opposite end point. Further, at each of the above positions, the stage rectifying plates 5A, 5B are at least of the laser light transmission hole 11 in the scanning direction. It is more desirable to extend to a position that reaches the entire length.
  • the relative scanning of the laser beam is performed by moving the object to be processed by the stage. However, in the present invention, the laser beam side may be moved. And both of the object to be processed may be moved.
  • a non-single crystal semiconductor film (not shown) is formed on the surface of the substrate 120.
  • the substrate 120 corresponds to the object to be processed of the present invention.
  • the stage 5 corresponds to a target object moving device, but the target object moving device is not limited to the stage, and may be, for example, a type in which the target object is moved by gas floating. There are no particular limitations on the configuration of the moving device and the moving method.
  • the side of the processing chamber 2 has an entrance / exit 7 through which the substrate 120 enters and exits, and the entrance / exit 7 is opened and closed by the operation of the door valve 6.
  • the processing chamber 2 has a laser beam introduction window 8 for introducing the laser beam 50 emitted from the optical system 4 from the outside of the processing chamber 2 into the processing chamber 2 at the top plate position.
  • a laser beam irradiation local seal box 10 is provided in the processing chamber 2 below the laser beam introduction window 8, and the laser beam is transmitted through a laser beam transmission hole 11 provided on the lower surface of the laser beam irradiation local seal box 10.
  • Light 50 is irradiated downward.
  • the laser beam 50 has a line beam shape when emitted from the optical system 4 by the optical system 4, and the laser beam transmission hole 11 has a long hole shape through which the laser beam 50 is transmitted. At this time, the end of the short axis or long axis of the laser beam 50 may be shielded by the laser beam transmitting hole 11.
  • a gas introduction hole 12 is formed in the laser light irradiation local seal box 10, and nitrogen gas is supplied from the outside of the laser light irradiation local seal box 10 through the gas introduction hole 12 into the laser light irradiation local seal box 10. be able to.
  • a rectifying plate 13 extends beyond both side walls of the laser light irradiation local seal box 10 in the moving direction of the stage 5.
  • a hole 11 is formed.
  • the laser light irradiation local seal box 10 also serves as the gas discharge part of the present invention, and the laser light transmission hole 11 also serves as the first gas discharge port.
  • a first gas discharge port may be provided separately from the laser light transmission hole 11.
  • the lower surface of the rectifying plate 13 faces the substrate 120 moved by the stage 5 and has a rectifying surface along the same.
  • the rectifying surface preferably has a distance of 10 mm or less from the substrate 120 moved by the stage 5.
  • the rectifying plate 13 has gas front and rear suction ports 15 on both outer sides of the laser beam irradiation local seal box 10 in the moving direction of the stage 5.
  • the gas front / rear suction port 15 has a long hole shape along the laser light transmission hole 11 and has a shape that exceeds both ends of the laser light transmission hole 11 in the longitudinal direction. Further, the gas front / rear suction port 15 is desirably provided at a position close to the laser light transmission hole 11.
  • the door valve 6 is operated to open the entrance 7 and the substrate 120 is introduced into the processing chamber 2 from outside the processing chamber 2 and placed on the stage 5.
  • the doorway 7 is closed by the door valve 6 as soon as the substrate 120 is placed in the processing chamber 2.
  • nitrogen gas is introduced into the laser beam irradiation local seal box 10 from the gas introduction hole 12.
  • Nitrogen gas corresponds to the first gas of the present invention. Nitrogen gas is emitted from the laser light transmission hole 11 downward.
  • the gas front / rear suction port 15 sucks gas through a pump (not shown).
  • the gas suction amount it is desirable to set the gas suction amount to an amount commensurate with the amount of gas emitted from the laser light transmission hole 11. As a result, most of the gas released from the laser beam transmitting hole 11 is sucked from the gas front / rear suction port 15 to form a stable gas flow. If the distance between the gas front / rear suction port 15 and the laser light transmission hole 11 is too small, a sufficient gas flow is not formed. If the distance is too large, it is difficult to stabilize the gas flow.
  • the stage 5 places the substrate 120 and moves rightward in FIG. 1 at a predetermined speed.
  • the stage rectifying plate 5A attached to the stage 5 reaches the gas flow position, the gas flow on the lower side is suppressed, and the gas flow from the laser light transmission hole 11 to the gas front / rear suction port 15 is further stabilized.
  • the laser light source 3 outputs a laser beam 50
  • the optical system 4 performs energy adjustment, beam shaping, homogenization of the beam-like energy intensity, and the like, and is emitted from the optical system 4 in a line beam shape.
  • the laser beam 50 having a line beam shape is introduced into the laser beam irradiation local seal box 10 through the laser beam introduction window 8 and irradiated downward through the laser beam transmission hole 11.
  • the substrate 120 is irradiated with the laser beam 50 on the lower side of the laser beam transmitting hole 11 while moving on the stage 5.
  • the laser beam 50 is scanned relative to the substrate 120.
  • the laser light irradiation region 50A is covered with nitrogen gas, and a local atmosphere in which nitrogen stably flows is formed, so that favorable laser processing is performed.
  • the stage rectifying plate 5 ⁇ / b> B is positioned for a while on the lower side of the laser light transmission hole 11, and reaches from the laser light transmission hole 11 to the front gas front / rear suction port 15. The gas flow becomes more stable and crystallization is better.
  • a non-single-crystal semiconductor film for example, an amorphous silicon film or a polycrystalline silicon film
  • a single-crystal semiconductor film is obtained by laser light irradiation. Therefore, in this embodiment, the laser beam processing apparatus can be said to be a laser beam crystallization apparatus.
  • the door 7 is opened by the door valve 6 and the processed substrate 120 can be carried out of the processing chamber.
  • the first gas discharge port has been described as having front and rear gas suction ports in the moving direction. In addition to this, in addition to this, the gas side on the side of the first gas discharge port is provided. A suction port may be provided.
  • the processing chamber 2 has a laser beam irradiation local seal box 10 and a rectifying plate 13 on the lower surface of the laser beam irradiation local seal box 10.
  • the rectifying plate 13 has a laser light transmission hole 11.
  • the rectifying surface on the lower surface side of the rectifying plate 13 is set so as to have an interval of 10 mm or less from the substrate 120 moving on the stage 5.
  • the rectifying plate 13 has the second gas discharge ports 16 for discharging the second gas on both outer sides of the laser beam irradiation local seal box 10 in the moving direction of the stage 5.
  • a third gas discharge port 17 for discharging a third gas is provided on both sides of the local seal box 10.
  • the second gas discharge port 16 has a long hole shape along the laser light transmission hole 11, and has a shape that exceeds both long ends of the laser light transmission hole 11.
  • the center of the second gas discharge port 16 is preferably provided at the end of the laser beam irradiation local seal box 10.
  • the second gas discharge port 16 has an emission angle ⁇ that is emitted to the outside with respect to the laser light transmission hole 11. It is desirable that the discharge angle ⁇ has an angle of 45 ° or more, where the vertical direction is 0 °. Thereby, gas can be discharge
  • the third gas discharge port 17 has a long hole shape along the side of the laser light transmission hole 11, and has a shape that exceeds both short ends of the laser light transmission hole 11. Furthermore, it is desirable to extend to the vicinity of the second gas discharge port 16.
  • the second gas discharge port 16 and the third gas discharge port 17 are described as discontinuous, but they may be continuous.
  • the first gas, the second gas, and the third gas may be the same type or different types.
  • the purity may be different.
  • an inert gas having high purity such as nitrogen
  • an inert gas having relatively low purity such as nitrogen
  • the second gas and the third gas is used for the second gas and the third gas.
  • the discharge amounts of the second gas and the third gas are not particularly limited, but it is desirable that the discharge amount of the second gas is larger than the discharge amount of the third gas.
  • the substrate 120 is introduced, and nitrogen gas is introduced from the gas introduction hole 12 into the laser beam irradiation local seal box 10. Nitrogen gas is emitted downward from the laser light transmission hole 11. Further, the second gas and the third gas are discharged from the second gas discharge port 16 and the third gas discharge port 17. Thereby, the influence from the outside of the atmosphere on the local atmosphere formed by the gas emitted from the laser beam transmitting hole 11 can be reduced.
  • the outside air intrudes into the processing chamber 2.
  • the release of the second gas and the third gas effectively eliminates the influence of the outside air intrusion and creates a stable local atmosphere. Can be maintained.
  • the gas since the gas is discharged from the second gas discharge port 16 at the discharge angle ⁇ directed outward, the influence from outside the atmosphere can be more reliably eliminated.
  • the third gas discharge port 17 may be provided with an outward discharge angle (> 0 degrees) to discharge gas.
  • the processing chamber 2 has a laser beam irradiation local seal box 10 and a rectifying plate 13.
  • the rectifying plate 13 has a laser light transmission hole 11.
  • the rectifying surface on the lower surface side of the rectifying plate 13 is set so as to have an interval of 10 mm or less from the substrate 120 moving on the stage 5.
  • the rectifying plate 13 is provided with gas front and rear suction ports 18 on both outer sides of the laser beam irradiation local seal box 10 in the moving direction of the stage 5, and the second gas is further provided on the outer side.
  • Each discharge port 16 is formed.
  • the laser beam irradiation local seal box 10 has third gas discharge ports 17 for discharging a third gas on both sides.
  • the gas front / rear suction port 18 and the second gas discharge port 16 have a long hole shape along the laser light transmission hole 11, and have shapes that respectively exceed the long ends of the laser light transmission hole 11. Further, it is desirable that the gas front / rear suction port 18 be close to the laser light transmission hole 11 and the second gas discharge port 16 or the third gas discharge port 17 that discharges the third gas.
  • the second gas discharge port 16 is preferably provided in the vicinity of the outer wall of the laser light irradiation local seal box 10.
  • the second gas discharge port 16 has an emission angle ⁇ 1 that is emitted to the outside with respect to the laser light transmission hole 11.
  • the discharge angle ⁇ 1 is desirably 45 degrees or more.
  • the third gas discharge port 17 has a long hole shape along the side of the laser light transmission hole 11, and has a shape that exceeds the short ends of the laser light transmission hole 11. Furthermore, it is desirable to extend to the vicinity of the second gas discharge port 16.
  • the first gas, the second gas, and the third gas may be the same type or different types. Moreover, it is the same kind of gas, and the purity may be different. For example, an inert gas having high purity (such as nitrogen) is used for the first gas, and an inert gas having relatively low purity (such as nitrogen) is used for the second gas and the third gas. May be.
  • the substrate 120 is introduced, and nitrogen gas is introduced from the gas introduction hole 12 into the laser beam irradiation local seal box 10. Nitrogen gas is emitted downward from the laser light transmission hole 11. Further, the second gas and the third gas are discharged from the second gas discharge port 16 and the third gas discharge port 17. Further, gas suction is performed at the gas front-rear suction port 18.
  • nitrogen gas is introduced into the laser beam irradiation local seal box 10 from the gas introduction hole 12. Nitrogen gas is emitted downward from the laser light transmission hole 11.
  • gas is sucked at the gas front / rear suction port 18, and the gas discharged from the laser light transmission hole 11 is sucked from the gas front / rear suction port 18, and a stable gas flow is formed.
  • the second gas and the third gas are released from the second gas discharge port 16 and the third gas discharge port 17.
  • the second gas and the third gas are released from the second gas discharge port 16 and the third gas discharge port 17.
  • the outside air intrudes, but the influence of this can be effectively eliminated and a stable local atmosphere can be maintained.
  • the gas since the gas is discharged from the second gas discharge port 16 at the discharge angle ⁇ 1 directed outward, it is possible to more reliably eliminate the influence from outside the atmosphere.
  • the third gas discharge port 17 may have an outward discharge angle (> 0 degrees).
  • a gas side suction port may be provided between the third gas discharge port 17 and the laser beam transmission hole 11.
  • the shape of the laser light irradiation local seal box is changed, and the lower surface of the laser light irradiation local seal box 20 is a rectifying surface.
  • the rectifying surface has a distance of 10 mm or less from the moving substrate 120.
  • the laser light irradiation local seal box 20 has an elongated laser light transmission hole 22 at the center of the lower surface, and has gas front and rear suction ports 23 on both outer sides of the laser light transmission hole 22 in the moving direction.
  • the gas front / rear suction port 23 communicates with a gas suction hole 23A provided in the laser light irradiation local seal box 20 through a passage passing through the wall portion of the laser light irradiation local seal box 20, and is not shown in the gas suction hole 23A. Connected to a pump.
  • the gas front / rear suction port 23 has a long hole shape along the laser light transmission hole 22 and has a shape that exceeds both long ends of the laser light transmission hole 22.
  • the gas front / rear suction port 23 is preferably provided at a position close to the laser light transmission hole 22.
  • second gas discharge ports 24 are respectively formed on both outer sides of the gas front and rear suction ports 23.
  • the second gas discharge port 24 communicates with a gas supply hole 24A provided in the laser light irradiation local seal box 20 through a passage passing through the lower wall portion of the laser light irradiation local seal box 20, and the gas supply hole 24A includes It is connected to a gas supply unit (not shown).
  • the laser beam transmitting hole 22 has a third gas discharge port for discharging a third gas on both sides.
  • the second gas discharge port 24 has a long hole shape along the laser light transmission hole 22, and has a shape that exceeds both long ends of the laser light transmission hole 22.
  • the second gas discharge port 24 is desirably provided at a position farther from the laser light transmission hole 22 than the gas front / rear suction port 23. Further, the third gas discharge port has a long hole shape along the side surface of the laser light transmission hole 22, and has a shape that exceeds both short ends of the laser light transmission hole 22.
  • nitrogen gas is introduced into the laser beam irradiation local seal box 20 from the gas introduction hole 21. Nitrogen gas is emitted downward from the laser light transmission hole 22. Further, the second gas and the third gas are released from the second gas discharge port 24 and the third gas discharge port. Further, the gas is sucked at the gas front / rear suction port 23. The gas discharged from the laser beam transmitting hole 11 is sucked by the gas front / rear suction port 23 to form a stable gas flow.
  • the second gas and the third gas are released from the second gas discharge port 24 and the third gas discharge port.
  • the lower surface of the laser light irradiation local seal box 20A is used as a rectifying surface.
  • the rectifying surface has a distance of 10 mm or less from the moving substrate 120.
  • the laser beam irradiation local seal box 20 ⁇ / b> A has a long laser beam transmission hole 22 at the center of the lower surface, and gas front and rear suction ports 23 on both outer sides of the laser beam transmission hole 22 in the moving direction.
  • the gas front / rear suction port 23 communicates with a gas suction hole 23A provided in the laser light irradiation local seal box 20A through a passage passing through the wall portion of the laser light irradiation local seal box 20, and is not shown in the gas suction hole 23A. Connected to a pump.
  • the gas front / rear suction port 23 has a long hole shape along the laser light transmission hole 22 and has a shape that exceeds both long ends of the laser light transmission hole 22.
  • second gas discharge ports 25 are respectively formed on both outer sides of the gas front and rear suction ports 23.
  • the second gas discharge port 25 communicates with a gas supply hole 25A provided in the laser light irradiation local seal box 20A through a passage passing through the lower wall portion of the laser light irradiation local seal box 20A. It is connected to a gas supply unit (not shown).
  • the laser beam transmitting hole 22 has a third gas discharge port for discharging a third gas on both sides.
  • the second gas discharge port 25 has a long hole shape along the laser light transmission hole 22, and has a shape that exceeds both long ends of the laser light transmission hole 22.
  • the second gas discharge port 25 is desirably provided at a position farther from the laser light transmission hole 22 than the gas front / rear suction port 23. Further, the third gas discharge port has a long hole shape along the side surface of the laser light transmission hole 22, and has a shape that exceeds both short ends of the laser light transmission hole 22.
  • the second gas discharge port 25 has a discharge angle inclined outward in the moving direction of the substrate 120 with respect to the laser light transmission hole 22, and the discharge angle is preferably 45 degrees or more.
  • the nitrogen gas is introduced from the gas introduction hole 21 into the laser light irradiation local seal box 20A, the nitrogen gas is released from the laser light transmission hole 22 downward. Further, the second gas and the third gas are released from the second gas outlet 25 and the third gas outlet. Further, the gas is sucked at the gas front / rear suction port 23. The gas emitted from the laser beam transmitting hole 22 is sucked by the gas front / rear suction port 23, and a stable gas flow is formed.
  • the second gas and the third gas are released from the second gas outlet 25 and the third gas outlet.
  • the influence from outside the atmosphere on the local atmosphere formed by the nitrogen gas emitted from the laser beam transmitting hole 22 and flowing to the gas front and rear suction port 23 is reduced.
  • the gas since the gas is discharged from the second gas discharge port 25 at a discharge angle directed outward, it is possible to more reliably eliminate the influence from outside the atmosphere.
  • the third gas discharge port may be provided with an outward discharge angle (> 0 degrees).
  • the following effects can be obtained. 1. Since the gas is not injected toward the substrate from the laser beam irradiation position, there is no cause for disturbing the laminar flow due to an arbitrary gas. 2. Since the rectifying plate for forming the laminar flow can be designed long without being bent, more rectified rectification can be formed. 3. Since substances generated from the irradiated object such as vapor and fine particles are discharged in one direction, they can be quickly removed from the laser light path. 4). 4. When there are many substances generated from irradiated objects such as steam and fine particles, it can be dealt with by increasing the flow velocity. 5. Removal of particles from outside 6. Reduction of stabilization time Static electricity removal
  • an arbitrary gas is allowed to flow between the object to be processed and the rectifying surface installed in parallel with the object to be processed, thereby forming a uniform flow velocity and pressure distribution by the arbitrary gas. be able to.
  • substances generated from the object to be processed such as vapor and fine particles, are discharged from the optical path of the laser beam, thereby realizing a uniform irradiation atmosphere and providing a gas ejection part on the rectifying surface. It is possible to prevent the external gas flow from entering the irradiation position without disturbing the stable atmosphere realized in.
  • the substrate is described as the object to be processed.
  • the object to be processed is not limited to the substrate.
  • the laser processing apparatus has been described as crystallizing a non-single crystal.
  • the processing content of the laser processing apparatus is not limited to this, and a flexible substrate such as a metal substrate or a plastic substrate may be used. It can also be used.
  • the gas input part B is installed around the laser light irradiation position, and the exhaust speed of the gas suction part is adjusted according to the flow rate of the inert gas flowing in the seal box in order to make the irradiation atmosphere an inert gas atmosphere. did.
  • a stable local atmosphere is formed around the irradiation region of the laser beam, and the oxygen concentration does not increase when the substrate is replaced, so that it does not take time to stabilize, and productivity can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Recrystallisation Techniques (AREA)
  • Laser Beam Processing (AREA)

Abstract

被処理体およびレーザ光の一方または両方を移動させる走査移動部と、被処理体にレーザ光を照射するレーザ光照射部と、被処理体においてレーザ光が照射されている照射領域に対し、少なくとも第1のガスを放出するガス放出部と、を備え、ガス放出部は、レーザ光照射中の被処理体と対面する位置に整流面を有し、整流面には、第1のガスが放出される第1ガス放出口と、少なくとも走査方向において、第1ガス放出口の両外側で、レーザ光照射中の被処理体に対し第2のガスを放出する第2ガス放出口およびガス前後吸引口の一方または両方が設けられている。

Description

レーザ処理装置およびレーザ処理方法
 この発明は、被処理体にレーザ光を照射して所望の処理を行うレーザ処理装置およびレーザ処理方法に関するものである。
 基板上のシリコン半導体膜などにレーザ光を照射してアニール処理を行う装置では、基板上で、レーザ光が照射される領域を囲む局所ガス雰囲気を形成して処理を行う装置が知られている(例えば特許文献1、2参照)。
 図12は、従来のレーザ処理装置の一例を示す図である。
 この装置では、処理室100の天板下部にレーザ光照射局所シールボックス110が設けられており、レーザ光照射局所シールボックス110の上部天板にレーザ光導入窓101が設けられている。レーザ光照射局所シールボックス110の下面には、基板120の移動方向前後に伸びる整流板111が連続して形成されている。
 レーザ光照射局所シールボックス110には、窒素ガスが導入され、レーザ光照射局所シールボックス110の下面に設けられたレーザ光透過孔112を通して窒素ガスが下方に放出される。
 また、処理室100内には、基板を保持して図示左右方向に移動可能なステージ102が設置されている。処理室100の側方部には出入り口104が設けられており、出入り口104は、ゲートバルブ103の動作によって開閉される。
 処理に際しては、ゲートバルブ103によって出入り口104を開けて処理室100内に基板120を導入し、基板120の導入後、ゲートバルブ103で出入り口104を閉じる。基板120は、非単結晶半導体膜(図示しない)が形成されている。なお、出入り口104を開けた際には、外気が処理室100内に乱入する。
 基板120は、ステージ102で保持され、ステージ102とともに処理室100内を所定の速度で移動し、レーザ光透過孔112を通してレーザ光130が基板120に照射される。基板120では、レーザ光130の照射により、非単結晶の半導体膜が単結晶化される。レーザ光130の照射に際しては、レーザ光照射局所シールボックス110のレーザ光透過孔112から窒素ガスが放出され、レーザ光の照射領域を囲むように局所ガス雰囲気を形成して外気の影響をできるだけ排除している。処理済みの基板120を取り出す際には、ゲートバルブ103によって出入り口を開けて基板120を処理室100外に取り出している。
特開2002-217124号公報 特許第5408678号公報
 上記に記載したように、従来技術では、基板に対するレーザ光の照射位置には、レーザ光軸に沿ってガスが基板に向かって噴出されている。しかし、レーザ光照射位置にガス流を噴射すると、レーザ光照射位置周辺において乱流が生じる。
 乱流を防ぐために、噴射するガス流を層流とする改良がなされているが、基板へのガス流衝突による乱流発生は避けられない。また、ガス流速を遅くし乱流を穏やかにすることも試みられているが、本来の目的である均一な雰囲気を形成することが困難になる。乱流が生じるとガス圧力や温度の乱れが発生する。その結果レーザに対する光屈折率の変化が生じレーザ光照射位置におけるレーザ強度が不均一となってレーザ光照射処理を均一に行えなくなる。また、レーザ光照射により、半導体膜(例えばSi膜)からは構成元素(例えばSi)の蒸気または微粒子が発生すると、レーザ光の光路上の光屈折率の変化をもたらしたり、レーザを遮ったりする。乱流が生じている状態や流速が著しく小さい状態では、前述の蒸気や微粒子などの被照射物から発生する物質をレーザ光路上から排出することが困難である。この課題は、本発明のガス吸引口に対応するものである。
 さらに、レーザ光の照射位置周辺において、基板の搬入・搬出する際に安定化された雰囲気が外部のガス流により乱れる問題がある。この課題は、本発明の第2または第3ガスの放出口に対応するものである。
 この発明は、上記のような従来のものの課題を解決するためになされたもので、ガス流の乱流を防止して、均一な雰囲気を任意のガス種により維持させることを可能にするレーザ処理装置およびレーザ処理方法を提供することを目的の一つとする。
 すなわち、本発明のレーザ処理装置のうち、第1の形態の本発明は、
 被処理体に対し、レーザ光を相対的に走査しつつ照射するレーザ処理装置において、
 前記被処理体および前記レーザ光の一方または両方を移動させる走査移動部と、
 前記被処理体に前記レーザ光を照射するレーザ光照射部と、
 前記被処理体において前記レーザ光が照射されている照射領域に対し、少なくとも第1のガスを放出するガス放出部と、を備え、
 前記ガス放出部は、レーザ光照射中の前記被処理体と対面する位置に整流面を有し、該整流面には、前記第1のガスが放出される第1ガス放出口と、少なくとも前記走査方向において、前記第1のガス放出口の両外側で、レーザ光照射中の前記被処理体に対し第2のガスを放出する第2ガス放出口およびガス前後吸引口の一方または両方が設けられていることを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、
 前記第1ガス放出口は、前記照射領域が覆われる範囲に第1のガスが放出されるものであることを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、前記第2ガス放出口および前記ガス前後吸引口は、前記照射領域の幅方向形状を両側で超える形状を有していることを特徴とする。
 他の形態のレーザ処理装置の発明は、前記形態の本発明において、
 前記ガス放出部は、前記走査方向の両側方側で、移動する前記被処理体に対し第3のガスを放出する第3ガス放出口およびガス側方吸引口の一方または両方が設けられていることを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、前記第3ガス放出口および前記ガス側方吸引口は、前記照射領域の走査方向における形状を両側で超える形状を有していることを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、前記ガス放出部は、前記第1ガス放出口の両外側の一方または両方で、前記第2ガス放出口と前記ガス前後吸引口とを有し、前記ガス前後吸引口が前記第2ガス放出口の内側に位置していることを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、前記第2ガス放出口が、第1ガス放出口を基準にして、下方外側に向けて第2のガスを放出する所定の放出角を有することを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、前記放出角が45度以上であることを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、前記整流面は、移動する被処理体との間の間隔が10mm以下であることを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、前記整流面は、前記第1放出口を基準にして、走査方向において、照射面上のレーザ光の長さより10mm以上の長さで伸長していることを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、前記第2ガス放出口は、第1ガス放出口を基準にして、走査方向で1mm以上離れた位置に設けられていることを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、前記レーザ光は、前記被処理体に対する照射面上において、ラインビーム形状を有することを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、前記被処理体が非単結晶半導体であり、前記レーザ処理装置は、前記非単結晶半導体を結晶化するものであることを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、除電されて第2ガス放出口および第3ガス放出口に供給されるものであることを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、前記整流面から放出されるガスが不活性ガスであることを特徴とする。
 さらに、他の形態のレーザ処理装置の発明は、前記形態の本発明において、前記第3のガスが不活性ガスであることを特徴とする。
 本発明のレーザ処理方法のうち、第1の形態の本発明は、被処理体に対し、レーザ光を相対的に走査しつつ照射するレーザ処理方法において、
 照射位置にある前記被処理体と対面する位置に整流面を配し、
 該整流面から、前記レーザ光が照射されている照射領域に対し、第1のガスを放出するとともに、少なくとも走査方向において、第1のガスが放出されている前記整流面の区域の両外側で、第2のガスの放出およびガスの吸引の一方または両方を行うことを特徴とする。
 他の形態のレーザ処理方法の発明は、前記形態の本発明において、前記第1のガスの放出の際に、第1のガスが放出されている前記整流面の区域の両側方側で、さらに第3のガスの放出およびガスの吸引の一方または両方を行うことを特徴とする。
 他の形態のレーザ処理方法の発明は、前記形態の本発明において、前記ガスの吸引は、前記第1のガスの放出量に合わせて吸引量が定められていることを特徴とする。
 すなわち、本発明によれば、被処理体における、少なくともレーザ光の照射領域付近に、ガスによる局所雰囲気を形成でき、かつガスの流れを安定させて乱流が生ずるのを回避することができ、安定した雰囲気でレーザ光照射による処理を行うことができる。
本発明の一実施形態のレーザ処理装置の概略を示す正面図である。 同じく、レーザ光照射局所シールボックス周辺の構成を示す拡大した正面図である。 同じく、レーザ光照射局所シールボックスの底面を示す図である。 本発明の他の一実施形態のレーザ処理装置の概略を示す正面図である。 同じく、レーザ光照射局所シールボックス周辺の構成を示す拡大した正面図である。 同じく、レーザ光照射局所シールボックスの底面を示す図である。 本発明のさらに他の実施形態のレーザ処理装置の概略を示す正面図である。 同じく、レーザ光照射局所シールボックス周辺の構成を示す拡大した正面図である。 同じく、レーザ光照射局所シールボックスの底面を示す図である。 本発明のさらに他の実施形態のレーザ処理装置に設けられたレーザ光照射局所シールボックスを示す図である。 本発明のさらに他の実施形態のレーザ処理装置に設けられたレーザ光照射局所シールボックスを示す図である。 従来のレーザ処理装置の概略を示す正面図であって、基板導入時と基板設置後のレーザ光処理時の状態を示す図である。
(実施形態1)
 以下に、本発明の一実施形態を図1~3に基づいて説明する。
 レーザ処理装置1は、処理室2と処理室2外に設置されたレーザ光源3とを有しており、レーザ光源3から出力されたレーザ光50を、光学系4を通して処理室2に導波することができる。光学系4には、アテニュエータ、レンズ、ミラーなどを備えており、本願発明としてはその構成が特に限定されるものではない。
 処理室2内には、図1で左右方向に移動可能なステージ5を有しており、該ステージ5によって基板120を保持することができる。ステージ5は、基板120の設置面から移動方向前後にステージ整流板5A、5Bが設けられている。ステージ整流板5A、5Bは、設置面に基板120を設置した際に、ステージ整流板5A、5Bの高さが基板120の高さに略一致するように基板120に取り付けられている。より望ましくは、前記高さが互いに一致するか、ステージ整流板5A、5Bの高さが基板120の高さよりも僅かに高いものとすることができる。ステージ整流板5A、5Bの長さは、ステージ整流板5Aにおいて、ステージ5が基板搬送初期位置に移動してもレーザ光透過孔11から外れない長さ、ステージ整流板5Bで、ステージ5がドアバルブ6反対側終点まで動いてもレーザ光透過孔11から外れない長さとするのが望ましく、さらには、上記各位置で、走査方向において、ステージ整流板5A、5Bが、少なくともレーザ光透過孔11の長さ全体に至る位置まで伸長しているのが一層望ましい。
 なお、この実施形態では、レーザ光の相対的な走査は、ステージによって被処理体を移動させることにより行うが、本発明としてはレーザ光側を移動させるものであってもよく、また、レーザ光と被処理体の両方を移動させるものであってもよい。
 基板120には、表面側に図示しない非単結晶半導体膜が形成されている。この実施形態では、基板120は、本発明の被処理体に相当する。ステージ5は、被処理体移動装置に相当するが、被処理体移動装置は、ステージに限定されるものではなく、例えば、被処理体をガス浮上させて移動させるようなものでもよく、本発明としては移動装置の構成、移動方法は特に限定されない。
 また、処理室2の側方には、基板120を出入りさせる出入り口7を有し、出入り口7の開閉はドアバルブ6の動作によって行う。
 また、処理室2は、光学系4から出射されたレーザ光50を処理室2外から処理室2内に導入するレーザ光導入窓8を天板位置に有している。
 レーザ光導入窓8の下方側の処理室2内には、レーザ光照射局所シールボックス10が設けられており、レーザ光照射局所シールボックス10の下面に設けられたレーザ光透過孔11を通して、レーザ光50が下方側に照射される。レーザ光50は、光学系4によって光学系4から出射される際にはラインビーム形状を有しており、レーザ光透過孔11は、レーザ光50が透過する長孔形状を有している。この際に、レーザ光50の短軸または長軸の端部をレーザ光透過孔11で遮蔽するようにしてもよい。
 また、レーザ光照射局所シールボックス10には、ガス導入孔12が形成されており、レーザ光照射局所シールボックス10外からガス導入孔12を通してレーザ光照射局所シールボックス10内に窒素ガスを供給することができる。
 レーザ光照射局所シールボックス10の下面には、ステージ5の移動方向において、レーザ光照射局所シールボックス10の両側壁を超えた整流板13が伸長しており、該整流板13に、レーザ光透過孔11が形成されている。レーザ光照射局所シールボックス10は、本発明のガス放出部を兼用し、レーザ光透過孔11は、第1ガス放出口を兼用する。レーザ光透過孔11とは別に第1ガス放出口を設けたものであってもよい。
 整流板13の下面は、ステージ5によって移動する基板120と対面し、かつ沿った整流面を有している。整流面は、ステージ5によって移動する基板120と10mm以下の間隔を有しているのが望ましい。
 整流板13には、ステージ5の移動方向において、レーザ光照射局所シールボックス10の両外側にそれぞれガス前後吸引口15を有している。ガス前後吸引口15は、レーザ光透過孔11に沿った長孔形状を有しており、レーザ光透過孔11の長尺方向両端をそれぞれ超える形状を有している。また、ガス前後吸引口15はレーザ光透過孔11に近い位置に設けることが望ましい。
 次に、レーザ処理装置1における動作について説明する。
 処理の開始に伴って、ドアバルブ6を動作させて出入り口7を開口し、処理室2外から基板120を処理室2内に導入し、ステージ5上に設置する。基板120の導入に際しては、基板120を処理室2内に収めると直ちにドアバルブ6によって出入り口7を閉鎖する。
 基板120の導入とともに、ガス導入孔12からレーザ光照射局所シールボックス10内に窒素ガスを導入する。窒素ガスは、本発明の第1のガスに相当する。窒素ガスは、レーザ光透過孔11から下方側に向けて窒素ガスを放出する。また、ガス前後吸引口15では、図示しないポンプなどを介してガスの吸引がなされる。ガスの吸引量は、レーザ光透過孔11から放出されるガス量に見合う量に設定するのが望ましい。これによりレーザ光透過孔11から放出するガスの殆どがガス前後吸引口15から吸引されて、安定したガスの流れが形成される。なお、ガス前後吸引口15とレーザ光透過孔11との距離は、あまりに小さいと、十分なガスの流れが形成されず、前記距離があまりに大きいと、ガス流の安定化が難しくなる。
 一方、ステージ5は、基板120を載置して、図1で右方向に所定速度で移動する。
 ステージ5に取り付けられたステージ整流板5Aがガスの流れ位置に達すると、下方側のガスの流れが抑制されて、レーザ光透過孔11からガス前後吸引口15に至るガスの流れが一層安定化する。また、レーザ光源3では、レーザ光50が出力され、光学系4でエネルギー調整、ビーム成形、ビーム状のエネルギー強度の均一化などがなされ、ラインビーム形状にして光学系4から出射される。ラインビーム形状としたレーザ光50は、レーザ光導入窓8を通してレーザ光照射局所シールボックス10内に導入され、レーザ光透過孔11を通して下方側に照射される。
 基板120は、ステージ5で移動しつつレーザ光透過孔11の下方側にレーザ光50が照射される。ステージ5が移動することで、レーザ光50は、基板120に対し相対的な走査がなされる。この際には、基板120上において、レーザ光の照射領域50Aは窒素ガスで覆われるとともに、窒素が安定して流れる局所雰囲気が形成されて良好なレーザ処理がなされる。また、基板120がレーザ光透過孔11を通過した後、レーザ光透過孔11の下方側にはステージ整流板5Bがしばらく位置し、レーザ光透過孔11から前方側のガス前後吸引口15に至るガスの流れがより安定した状態になり、結晶化がより良好になされる。
 この実施形態では、非単結晶の半導体膜(例えば非晶質シリコン膜や多結晶シリコン膜など)が形成されており、レーザ光の照射により単結晶化された半導体膜が得られる。したがって、この実施形態では、レーザ光処理装置は、レーザ光結晶化装置といえる。
 処理後は、ドアバルブ6によって出入り口7を開けて処理済みの基板120を処理室外に搬出することができる。
 なお、この実施形態では、第1ガス放出口に対し、移動方向において前後にガス前後吸引口を有するものとして説明したが、さらに、これに加えて第1ガス放出口の側方のガス側方吸引口を備えるものとしてもよい。
(実施形態2)
 次に、他の実施形態のレーザ処理装置1Aを図4~図6に基づいて説明する。
 なお、この実施形態2で、前記実施形態と同様の構成を有するものについては同一の符号を付してその説明を省略または簡略化する。
 この実施形態2においても処理室2には、レーザ光照射局所シールボックス10を有しており、レーザ光照射局所シールボックス10の下面には整流板13を有している。また、整流板13には、レーザ光透過孔11を有している。この実施形態でも、整流板13の下面側の整流面は、ステージ5で移動する基板120と10mm以下の間隔になるように設定されている。
 実施形態2では、整流板13には、ステージ5の移動方向において、レーザ光照射局所シールボックス10の両外側にそれぞれ第2のガスを放出する第2ガス放出口16を有し、レーザ光照射局所シールボックス10の両側方側にそれぞれ第3のガスを放出する第3ガス放出口17を有している。
 第2ガス放出口16は、レーザ光透過孔11に沿った長孔形状を有しており、レーザ光透過孔11の長尺両端をそれぞれ超える形状を有している。また、第2ガス放出口16の中心がレーザ光照射局所シールボックス10の端に設けることが望ましい。
 また、第2ガス放出口16は、レーザ光透過孔11を基準にして、外側に放出する放出角θを有するのが望ましい。放出角θは、鉛直方向を0度として、45度以上の角度を有するのが望ましい。これにより、外側に向けてガスを放出することができる。
 また、第3ガス放出口17は、レーザ光透過孔11の側方に沿った長孔形状を有しており、レーザ光透過孔11の短尺両端をそれぞれ超える形状を有している。さらには、第2ガス放出口16の近傍にまで伸長しているのが望ましい。なお、この実施形態では、第2ガス放出口16と第3ガス放出口17とは非連続なものとして説明しているが、これらが連続した形状とすることも可能である。
 また、第1のガス、第2のガス、第3のガスは、同じ種類でもよく、異なる種類であってもよい。また、同種のガスであって、純度が異なるものであってもよい。例えば、第1のガスに純度の高い不活性ガス(窒素など)を使用し、第2のガス、第3のガスに相対的に純度の低い不活性ガス(窒素など)を使用するものであってもよい。第2のガス、第3のガスは、除電した後に、レーザ光照射局所シールボックス10に供給するのが望ましい(以下も同様である)。また、第2のガスと第3のガスの放出量は特に限定されるものではないが、第2のガスの放出量を第3のガスの放出量よりも多くするのが望ましい。
 次に、レーザ処理装置1Aにおける動作について説明する。
 前記実施形態と同様に、基板120を導入するとともに、ガス導入孔12からレーザ光照射局所シールボックス10内に窒素ガスを導入する。窒素ガスは、レーザ光透過孔11から下方側に向けて放出される。また、第2ガス放出口16および第3ガス放出口17から、第2のガスおよび第3のガスが放出される。これにより、レーザ光透過孔11から放出するガスによって形成される局所雰囲気内に雰囲気外からの影響が及ぶのを低減することができる。
 特に、基板120を処理室2内に導入した際に、外気が乱入するが、第2のガスおよび第3のガスの放出によって、外気乱入による影響を効果的に排除して安定した局所雰囲気を維持することができる。
 また、第2ガス放出口16からは、外側に向けた放出角θでガスが放出されるので、雰囲気外からの影響をより確実に排除することができる。なお、第3ガス放出口17においても同様に外側に向けた放出角(>0度)を設けてガスを放出するようにしてもよい。
(実施形態3)
 次に、他の実施形態のレーザ処理装置1Bを図7~図9に基づいて説明する。
 なお、この実施形態3で前記実施形態1、2と同様の構成を有するものについては同一の符号を付してその説明を省略または簡略化する。
 この実施形態においても処理室2には、レーザ光照射局所シールボックス10を有しており、整流板13を有している。整流板13には、レーザ光透過孔11を有している。この実施形態でも、整流板13の下面側の整流面は、ステージ5で移動する基板120と10mm以下の間隔になるように設定されている。
 この実施形態3では、整流板13には、ステージ5の移動方向において、レーザ光照射局所シールボックス10の両外側にそれぞれガス前後吸引口18が設けられており、その外側に、さらに第2ガス放出口16がそれぞれ形成されている。また、レーザ光照射局所シールボックス10の両側方側にそれぞれ第3のガスを放出する第3ガス放出口17を有している。
 ガス前後吸引口18および第2ガス放出口16は、レーザ光透過孔11に沿った長孔形状を有しており、レーザ光透過孔11の長尺両端をそれぞれ超える形状を有している。また、ガス前後吸引口18がレーザ光透過孔11と第2ガス放出口16もしくは第3のガスを放出する第3ガス放出口17に近接した方が望ましい。また、第2ガス放出口16は、レーザ光照射局所シールボックス10外壁に近接して設けることが望ましい。
 また、第2ガス放出口16は、レーザ光透過孔11を基準にして、外側に放出する放出角θ1を有している。放出角θ1は、45度以上とするのが望ましい。
 第3ガス放出口17は、レーザ光透過孔11の側方に沿った長孔形状を有しており、レーザ光透過孔11の短尺両端をそれぞれ超える形状を有している。さらには、第2ガス放出口16の近傍にまで伸長しているのが望ましい。
 また、第1のガス、第2のガス、第3のガスは、同じ種類でもよく、異なる種類であってもよい。また、同種のガスであって、純度が異なるものであってもよい。例えば、第1のガスに純度の高い不活性ガス(窒素など)を使用し、第2のガス、第3のガスに相対的に純度の低い不活性ガス(窒素など)を使用するものであってもよい。
 次に、レーザ処理装置1Bにおける動作について説明する。
 前記実施形態と同様に、基板120を導入するとともに、ガス導入孔12からレーザ光照射局所シールボックス10内に窒素ガスを導入する。窒素ガスは、レーザ光透過孔11から下方側に向けて放出される。また、第2ガス放出口16および第3ガス放出口17から、第2のガスおよび第3のガスが放出される。さらに、ガス前後吸引口18では、ガスの吸引がなされる。
 基板120の導入とともに、ガス導入孔12からレーザ光照射局所シールボックス10内に窒素ガスを導入する。窒素ガスは、レーザ光透過孔11から下方側に向けて放出される。また、ガス前後吸引口18では、ガスの吸引がなされ、レーザ光透過孔11から放出されるガスがガス前後吸引口18から吸引され、安定したガスの流れが形成される。
 また、第2ガス放出口16および第3ガス放出口17から、第2のガスおよび第3のガスが放出される。これにより、レーザ光透過孔11から放出されてガス前後吸引口18に流れる窒素ガスによって形成される局所雰囲気内に雰囲気外からの影響が及ぶのを低減することができ、局所雰囲気の安定化が特に効果的になる。
 特に、基板120を処理室2内に導入した際に、外気が乱入するが、これによる影響を効果的に排除して安定した局所雰囲気を維持することができる。
 また、第2ガス放出口16からは、外側に向けた放出角θ1でガスが放出されるので、雰囲気外からの影響をより確実に排除することができる。なお、第3ガス放出口17においても同様に外側に向けた放出角(>0度)を設けるようにしてもよい。
 さらに、第3ガス放出口17とレーザ光透過孔11との間に、ガス側方吸引口を設けるようにしてもよい。
(第4実施形態)
 次に、他の実施形態4を図10に基づいて説明する。
 この実施形態は、レーザ光照射局所シールボックスの形状を変更したものであり、レーザ光照射局所シールボックス20の下面を整流面としている。整流面は、移動する基板120と10mm以下の間隔を有している。
 レーザ光照射局所シールボックス20は、下面中央に長尺形状のレーザ光透過孔22を有し、前記移動方向において、レーザ光透過孔22の両外側にガス前後吸引口23を有している。ガス前後吸引口23は、レーザ光照射局所シールボックス20の壁部を通る通路によってレーザ光照射局所シールボックス20に設けられたガス吸引孔23Aに連通しており、ガス吸引孔23Aには図示しないポンプなどに接続される。ガス前後吸引口23は、レーザ光透過孔22に沿った長孔形状を有しており、レーザ光透過孔22の長尺両端をそれぞれ超える形状を有している。また、ガス前後吸引口23はレーザ光透過孔22に近い位置に設けることが望ましい。
 さらに、ガス前後吸引口23の両外側に、第2ガス放出口24がそれぞれ形成されている。第2ガス放出口24は、レーザ光照射局所シールボックス20の下壁部を通る通路によってレーザ光照射局所シールボックス20に設けられたガス供給孔24Aに連通しており、ガス供給孔24Aには図示しないガス供給部などに接続されている。
 また、図示していないが、レーザ光透過孔22の両側方側に第3のガスを放出する第3ガス放出口を有している。
 第2ガス放出口24は、レーザ光透過孔22に沿った長孔形状を有しており、レーザ光透過孔22の長尺両端をそれぞれ超える形状を有している。また、第2ガス放出口24はレーザ光透過孔22からガス前後吸引口23より遠い位置に設けることが望ましい。さらに第3ガス放出口は、レーザ光透過孔22の側面に沿った長孔形状を有しており、レーザ光透過孔22の短尺両端をそれぞれ超える形状を有している。
 この実施形態では、ガス導入孔21からレーザ光照射局所シールボックス20内に窒素ガスを導入する。窒素ガスは、レーザ光透過孔22から下方側に向けて放出される。また、第2ガス放出口24および第3ガス放出口から、第2のガスおよび第3のガスが放出される。さらに、ガス前後吸引口23では、ガスの吸引がなされる。
 レーザ光透過孔11から放出されたガスは、ガス前後吸引口23で吸引され、安定したガスの流れが形成される。
 また、第2ガス放出口24および第3ガス放出口から、第2のガスおよび第3のガスが放出される。これにより、レーザ光透過孔22から放出されてガス前後吸引口23に流れる窒素ガスによって形成される局所雰囲気内に雰囲気外からの影響が及ぶのを低減することができる。
 また、第2ガス放出口24からは、下方にガスが放出され、雰囲気外からの影響を排除する。
(第5実施形態)
 次に、他の実施形態5を図11に基づいて説明する。
 なお、前記各実施形態と同様の構成については同一の符号を付してその説明を省略または簡略化する。
 この実施形態では、実施形態4と同様に、レーザ光照射局所シールボックス20Aの下面を整流面としている。整流面は、移動する基板120と10mm以下の間隔を有している。
 レーザ光照射局所シールボックス20Aは、下面中央に長尺形状のレーザ光透過孔22を有し、前記移動方向において、レーザ光透過孔22の両外側にガス前後吸引口23を有している。ガス前後吸引口23は、レーザ光照射局所シールボックス20の壁部を通る通路によってレーザ光照射局所シールボックス20Aに設けられたガス吸引孔23Aに連通しており、ガス吸引孔23Aには図示しないポンプなどに接続される。ガス前後吸引口23は、レーザ光透過孔22に沿った長孔形状を有しており、レーザ光透過孔22の長尺両端をそれぞれ超える形状を有している。
 さらに、ガス前後吸引口23の両外側に、第2ガス放出口25がそれぞれ形成されている。第2ガス放出口25は、レーザ光照射局所シールボックス20Aの下壁部を通る通路によってレーザ光照射局所シールボックス20Aに設けられたガス供給孔25Aに連通しており、ガス供給孔25Aには図示しないガス供給部などに接続されている。
 また、図示していないが、レーザ光透過孔22の両側方側に第3のガスを放出する第3ガス放出口を有している。
 第2ガス放出口25は、レーザ光透過孔22に沿った長孔形状を有しており、レーザ光透過孔22の長尺両端をそれぞれ超える形状を有している。また、第2ガス放出口25はレーザ光透過孔22からガス前後吸引口23より遠い位置に設けることが望ましい。さらに第3ガス放出口は、レーザ光透過孔22の側面に沿った長孔形状を有しており、レーザ光透過孔22の短尺両端をそれぞれ超える形状を有している。
 なお、第2ガス放出口25は、レーザ光透過孔22を基準にして、基板120の移動方向において外側に傾斜した放出角を有しており、該放出角は45度以上が望ましい。
 ガス導入孔21からレーザ光照射局所シールボックス20A内に窒素ガスを導入すると、窒素ガスは、レーザ光透過孔22から下方側に向けて放出される。また、第2ガス放出口25および第3ガス放出口から、第2のガスおよび第3のガスが放出される。さらに、ガス前後吸引口23では、ガスの吸引がなされる。
 レーザ光透過孔22から放出されたガスは、ガス前後吸引口23で吸引され、安定したガスの流れが形成される。
 また、第2ガス放出口25および第3ガス放出口から、第2のガスおよび第3のガスが放出される。これにより、レーザ光透過孔22から放出されてガス前後吸引口23に流れる窒素ガスによって形成される局所雰囲気内に雰囲気外からの影響が及ぶのを低減する。
 また、第2ガス放出口25からは、外側に向けた放出角でガスが放出されるので、雰囲気外からの影響をより確実に排除することができる。なお、第3ガス放出口においても同様に外側に向けた放出角(>0度)を設けるようにしてもよい。
 上記各実施形態では、以下の効果が得られる。
1.レーザ光照射位置からガスを基板に向けて噴射しないので任意のガスによる層流を乱す要因がなくなる。
2.層流を形成させる整流板を折り曲げることなく長く設計できるので、より整った整流を形成できる。
3.蒸気や微粒子などの被照射物から発生する物質を一方向に向かって排出するため迅速にレーザの光路上から取り除くことができる。
4.蒸気や微粒子などの被照射物から発生する物質が多い場合には、流速を上げることで対応できる
5.外部からのパーティクルの除去
6.安定化時間の短縮
7.静電気の除去
 すなわち、上記各実施形態によれば、被処理体と、被処理体と平行に設置した整流面との間に任意のガスを流すことにより、任意のガスによる均一な流速と圧力分布を形成することができる。さらに、このガス流により、蒸気や微粒子などの被処理体から発生する物質をレーザ光の光路上から排出することにより、均一な照射雰囲気を実現するとともに、整流面にガスの噴出部を設けることで実現した安定雰囲気を乱すことなく、外部のガス流が照射位置に入るのを防ぐことができる。
 なお、各実施形態では、被処理体として基板について説明したが、本発明としては、被処理体が基板に限定されるものではない。また、本願発明では、レーザ処理装置を、非単結晶を結晶化させるものとして説明したが、レーザ処理装置の処理内容がこれに限定されるものではなく、メタル基板やプラスティック基板などのフレキシブル基板などに用いることもできる。
 以下に、本発明の実施例について説明する。
 実施例では以下の条件で試験を行った。

a(アモルファス)-Si膜厚
           50nm
エキシマレーザ    Vyper/波長308nm、600Hz
ビームサイズ     750mm × 0.4mm
照射エネルギー密度  370mJcm-2
ビームスティープネス 70μm
 ガス投入部Bはレーザ光照射位置の周辺に設置されていて、ガス吸入部の排気の速度は照射雰囲気を不活性ガス雰囲気にするためにシールボックス内に流す不活性ガスの流量に合わせて調整した。
 上記により、レーザ光の照射領域周辺では、安定した局所雰囲気が形成され、基板の入れ替え時に酸素濃度が上がらないことにより、安定するまでの時間が掛からず、生産性を向上することができた。
 以上、本発明について、上記各実施形態および実施例に基づいて説明を行ったが、本発明の範囲を逸脱しない限りは、各実施形態に対する適宜の変更が可能である。
 1  レーザ処理装置
 1A レーザ処理装置
 1B レーザ処理装置
 2  処理室
 3  レーザ光源
 4  光学系
 5  ステージ
 6  ドアバルブ
 7  出入り口
 8  レーザ光導入窓
10  レーザ光照射局所シールボックス
11  レーザ光透過孔
12  ガス導入孔
13  整流板
15  ガス前後吸引口
16  第2ガス放出口
17  第3ガス放出口
18  ガス前後吸引口
20  レーザ光照射局所シールボックス
22  レーザ光透過孔
23  ガス前後吸引口
24  第2ガス放出口
25  第2ガス放出口
50  レーザ光
50A 照射領域

Claims (18)

  1.  被処理体に対し、レーザ光を相対的に走査しつつ照射するレーザ処理装置において、
     前記被処理体および前記レーザ光の一方または両方を移動させる走査移動部と、
     前記被処理体に前記レーザ光を照射するレーザ光照射部と、
     前記被処理体において前記レーザ光が照射されている照射領域に対し、少なくとも第1のガスを放出するガス放出部と、を備え、
     前記ガス放出部は、レーザ光照射中の前記被処理体と対面する位置に整流面を有し、
     前記整流面には、前記第1のガスが放出される第1ガス放出口と、少なくとも走査方向において、前記第1ガス放出口の両外側で、レーザ光照射中の前記被処理体に対し第2のガスを放出する第2ガス放出口およびガス前後吸引口の一方または両方が設けられていることを特徴とするレーザ処理装置。
  2.  前記第1ガス放出口は、前記照射領域が覆われる範囲に第1のガスが放出されるものであることを特徴とする請求項1記載のレーザ処理装置。
  3.  前記第2ガス放出口および前記ガス前後吸引口は、前記照射領域の幅方向形状を両側で超える形状を有していることを特徴とする請求項1または2に記載のレーザ処理装置。
  4.  前記ガス放出部は、前記走査方向の両側方側で、移動する前記被処理体に対し第3のガスを放出する第3ガス放出口およびガス側方吸引口の一方または両方が設けられていることを特徴とする請求項1~3のいずれか1項に記載のレーザ処理装置。
  5.  前記第3ガス放出口および前記ガス側方吸引口は、前記照射領域の走査方向における形状を両側で超える形状を有していることを特徴とする請求項4に記載のレーザ処理装置。
  6.  前記ガス放出部は、前記第1ガス放出口の両外側の一方または両方で、前記第2ガス放出口と前記ガス前後吸引口とを有し、前記ガス前後吸引口が前記第2ガス放出口の内側に位置していることを特徴とする請求項1~5のいずれか1項に記載のレーザ処理装置。
  7.  前記第2ガス放出口が、第1ガス放出口を基準にして、下方外側に向けて第2のガスを放出する所定の放出角を有することを特徴とする請求項1~6のいずれか1項に記載のレーザ処理装置。
  8.  前記放出角が45度以上であることを特徴とする請求項7に記載のレーザ処理装置。
  9.  前記整流面は、移動する被処理体との間の間隔が10mm以下であることを特徴とする請求項1~8のいずれか1項に記載のレーザ処理装置。
  10.  前記整流面は、第1ガス放出口を基準にして、走査方向において、照射面上のレーザ光の長さより10mm以上の長さで伸長していることを特徴とする請求項1~9のいずれか1項に記載のレーザ処理装置。
  11.  前記第2ガス放出口は、第1ガス放出口を基準にして、走査方向で1mm以上離れた位置に設けられていることを特徴とする請求項1~10のいずれか1項に記載のレーザ処理装置。
  12.  前記レーザ光は、前記被処理体に対する照射面上において、ラインビーム形状を有することを特徴とする請求項1~11のいずれか1項に記載のレーザ処理装置。
  13.  前記被処理体が非単結晶半導体であり、前記レーザ処理装置は、前記非単結晶半導体を単結晶化するものであることを特徴とする請求項1~12のいずれか1項に記載のレーザ処理装置。
  14.  前記第2のガスおよび前記第3のガスは、除電されて第2ガス放出口および第3ガス放出口に供給されるものであることを特徴とする請求項4に記載のレーザ処理装置。
  15.  前記整流面から放出されるガスが不活性ガスであることを特徴とする請求項1~14のいずれか1項に記載のレーザ処理装置。
  16.  被処理体に対し、レーザ光を相対的に走査しつつ照射するレーザ処理方法において、
     照射位置にある前記被処理体と対面する位置に整流面を有し、
     該整流面から、前記レーザ光が照射されている照射領域に対し、第1のガスを放出するとともに、少なくとも走査方向において、第1のガスが放出されている前記整流面の区域の両外側で、第2のガスの放出およびガスの吸引の一方または両方を行うことを特徴とするレーザ処理方法。
  17.  前記第1のガスの放出の際に、第1のガスが放出されている前記整流面の区域の両側方側で、さらに第3のガスの放出およびガスの吸引の一方または両方を行うことを特徴とする請求項16に記載のレーザ処理方法。
  18.  前記ガスの吸引は、前記第1のガスの放出量に合わせて吸引量が定められていることを特徴とする請求項16または17に記載のレーザ処理方法。
PCT/JP2017/036660 2016-10-20 2017-10-10 レーザ処理装置およびレーザ処理方法 WO2018074283A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780064615.2A CN109844907B (zh) 2016-10-20 2017-10-10 激光处理装置和激光处理方法
JP2018507038A JP7105187B2 (ja) 2016-10-20 2017-10-10 レーザ処理装置およびレーザ処理方法
US16/342,182 US11810799B2 (en) 2016-10-20 2017-10-10 Laser processing apparatus and laser processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016206095 2016-10-20
JP2016-206095 2016-10-20

Publications (1)

Publication Number Publication Date
WO2018074283A1 true WO2018074283A1 (ja) 2018-04-26

Family

ID=62019488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036660 WO2018074283A1 (ja) 2016-10-20 2017-10-10 レーザ処理装置およびレーザ処理方法

Country Status (4)

Country Link
US (1) US11810799B2 (ja)
JP (1) JP7105187B2 (ja)
CN (1) CN109844907B (ja)
WO (1) WO2018074283A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021030586A (ja) * 2019-08-26 2021-03-01 浜松ホトニクス株式会社 活性エネルギ照射ユニット及び活性エネルギ照射装置
EP3827905A1 (en) * 2019-08-26 2021-06-02 Hamamatsu Photonics K.K. Active energy radiation unit and active energy radiation device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322189B2 (ja) * 2019-06-06 2023-08-07 エスエルエム ソルーションズ グループ アーゲー 装置及び方法
US20220203480A1 (en) * 2019-07-31 2022-06-30 Mitsubishi Heavy Industries, Ltd. Laser processing device
JP7542350B2 (ja) * 2020-07-21 2024-08-30 Jswアクティナシステム株式会社 レーザアニール装置、レーザアニール方法、及び半導体装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074466A (ja) * 2003-08-29 2005-03-24 Sumitomo Heavy Ind Ltd レーザ加工用ノズル及びレーザ加工機
JP2006108271A (ja) * 2004-10-04 2006-04-20 Ulvac Japan Ltd アモルファスシリコン膜をポリシリコン膜に変換するための方法および装置
JP2006253285A (ja) * 2005-03-09 2006-09-21 Sumitomo Heavy Ind Ltd レーザ照射装置及びレーザ照射方法
JP2007288128A (ja) * 2006-03-23 2007-11-01 Ihi Corp レーザアニール装置
JP2008311249A (ja) * 2007-06-12 2008-12-25 Japan Steel Works Ltd:The レーザ処理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4845267B2 (ja) 2001-01-15 2011-12-28 東芝モバイルディスプレイ株式会社 レーザアニール装置およびレーザアニール方法
KR20070096845A (ko) 2006-03-23 2007-10-02 스미또모 가가꾸 가부시키가이샤 광학 필름 중첩체의 포장 방법
JP5083708B2 (ja) * 2007-03-28 2012-11-28 株式会社Ihi レーザアニール装置
JP5540476B2 (ja) * 2008-06-30 2014-07-02 株式会社Ihi レーザアニール装置
JP5408678B2 (ja) 2011-11-07 2014-02-05 株式会社日本製鋼所 レーザ処理装置
JP5610486B2 (ja) * 2011-11-18 2014-10-22 株式会社日本製鋼所 レーザ処理装置のガス噴射手段
JP5717146B2 (ja) * 2012-10-23 2015-05-13 株式会社日本製鋼所 レーザラインビーム改善装置およびレーザ処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074466A (ja) * 2003-08-29 2005-03-24 Sumitomo Heavy Ind Ltd レーザ加工用ノズル及びレーザ加工機
JP2006108271A (ja) * 2004-10-04 2006-04-20 Ulvac Japan Ltd アモルファスシリコン膜をポリシリコン膜に変換するための方法および装置
JP2006253285A (ja) * 2005-03-09 2006-09-21 Sumitomo Heavy Ind Ltd レーザ照射装置及びレーザ照射方法
JP2007288128A (ja) * 2006-03-23 2007-11-01 Ihi Corp レーザアニール装置
JP2008311249A (ja) * 2007-06-12 2008-12-25 Japan Steel Works Ltd:The レーザ処理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021030586A (ja) * 2019-08-26 2021-03-01 浜松ホトニクス株式会社 活性エネルギ照射ユニット及び活性エネルギ照射装置
EP3787015A1 (en) * 2019-08-26 2021-03-03 Hamamatsu Photonics K.K. Active energy radiation unit and active energy radiation device
EP3827905A1 (en) * 2019-08-26 2021-06-02 Hamamatsu Photonics K.K. Active energy radiation unit and active energy radiation device
US11298959B2 (en) 2019-08-26 2022-04-12 Hamamatsu Photonics K.K. Active energy radiation unit and active energy radiation device
JP7308691B2 (ja) 2019-08-26 2023-07-14 浜松ホトニクス株式会社 活性エネルギ照射ユニット及び活性エネルギ照射装置
US11806687B2 (en) 2019-08-26 2023-11-07 Hamamatsu Photonics K.K. Active energy radiation unit and active energy radiation device

Also Published As

Publication number Publication date
US11810799B2 (en) 2023-11-07
CN109844907A (zh) 2019-06-04
JP7105187B2 (ja) 2022-07-22
CN109844907B (zh) 2024-02-27
JPWO2018074283A1 (ja) 2019-08-22
US20190326140A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2018074283A1 (ja) レーザ処理装置およびレーザ処理方法
WO2017073561A1 (ja) レーザ処理装置整流装置およびレーザ処理装置
CN113013073B (zh) 气氛形成装置及上浮搬运方法
US10214441B2 (en) Cutting device
JP5408678B2 (ja) レーザ処理装置
US11504911B2 (en) Irradiation device for an apparatus for additively manufacturing three-dimensional objects
JP4947646B2 (ja) レーザ処理装置のガス噴射手段
JP5717146B2 (ja) レーザラインビーム改善装置およびレーザ処理装置
KR101164524B1 (ko) 레이저 빔의 라인 길이 조절이 가능한 레이저 가공 장치
JP2009099917A (ja) レーザーアニール装置
US20200122397A1 (en) Apparatus for additively manufacturing three-dimensional objects
WO2018097087A1 (ja) レーザアニール装置
JP3955592B2 (ja) 処理装置及び処理方法
JP5083708B2 (ja) レーザアニール装置
KR101089624B1 (ko) 에너지 빔의 길이 및 강도 조절이 가능한 레이저 가공 장치
TW201313373A (zh) 刀具頭
KR101183511B1 (ko) 레이저 처리 장치
JP2006253285A (ja) レーザ照射装置及びレーザ照射方法
JP2012064963A (ja) レーザ処理装置のガス噴射手段
WO2011129282A1 (ja) レーザ処理装置
JP2022077183A (ja) 紫外線処理装置および紫外線処理方法
JP2021077731A (ja) レーザ処理装置及びレーザビームのプロファイル測定方法
JP5467578B2 (ja) レーザ処理装置
ITME20110025A1 (it) Metodo di produzione di nano-particelle inorganiche tramite ablazione laser in flusso liquido

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507038

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862114

Country of ref document: EP

Kind code of ref document: A1