WO2018072497A1 - 一种旋转压缩机 - Google Patents

一种旋转压缩机 Download PDF

Info

Publication number
WO2018072497A1
WO2018072497A1 PCT/CN2017/093153 CN2017093153W WO2018072497A1 WO 2018072497 A1 WO2018072497 A1 WO 2018072497A1 CN 2017093153 W CN2017093153 W CN 2017093153W WO 2018072497 A1 WO2018072497 A1 WO 2018072497A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
crankshaft
rotary compressor
eccentric portion
compressor according
Prior art date
Application number
PCT/CN2017/093153
Other languages
English (en)
French (fr)
Inventor
赵旭敏
叶晓飞
竺宁凯
陈辉
王伟
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2018072497A1 publication Critical patent/WO2018072497A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components

Definitions

  • the present invention relates to the technical field of air conditioner compressors, and in particular to a rotary compressor capable of preventing wear of an eccentric portion of a crankshaft.
  • Rotary compressors are widely used in the field of air conditioning as refrigerant compressors, which are capable of increasing the temperature and pressure of the sucked refrigerant vapor, and then discharging it to the condenser for exothermic condensation.
  • the compressor includes a body, the first bearing is installed inside the body, the second bearing is mounted on one side of the first bearing, and the cylinder is installed between the first bearing and the second bearing, and the crankshaft sequentially passes through the motor component and the first A bearing is installed inside the cylinder.
  • the crankshaft is formed with an eccentric portion deviating from the shaft center at one end of the cylinder, and a roller is mounted on the eccentric portion.
  • the motor assembly drives the crankshaft to rotate, and the eccentric portion rotates together with the roller.
  • the high pressure chamber and the low pressure chamber are formed inside, and the low temperature and low pressure refrigerant is compressed by the high pressure chamber, and when a certain pressure is reached, it is discharged from the exhaust valve of the high pressure chamber.
  • the technical problem to be solved by the present invention is to overcome the defect that the lower end of the crankshaft eccentric portion is worn when the lower end of the eccentric portion of the crankshaft abuts against the second bearing in the prior art, thereby providing an eccentric portion and a second portion of the crankshaft.
  • the present invention provides a rotary compressor including: a body; a crankshaft having an eccentric portion rotatably mounted in the body through first and second bearings sleeved on both sides of the eccentric portion; The eccentric portion drives a cylinder disposed in the body to perform work of compressed gas; and an axial limiting structure is disposed between the second bearing and a corresponding connecting portion of the crankshaft for making the eccentric portion An axial gap is maintained between the second bearings.
  • the axis of rotation of the crankshaft is vertically disposed, and the second bearing is located below the eccentric portion.
  • the axial limiting structure includes a downwardly facing first support surface disposed at a lower end of the crankshaft and a second disposed on the second bearing upward to support the first support surface of the crankshaft Support surface.
  • the lower end of the crankshaft is formed with a constricted portion; the transition surface of the constricted portion is perpendicular to the axis of rotation of the crankshaft, and the transition surface of the constricted portion constitutes the first supporting surface.
  • An annular groove is formed on the inner side of the second bearing, and a circlip bearing retaining ring is engaged in the annular groove, and the upward facing side of the bearing retainer constitutes the second supporting surface.
  • a lower portion of the inner side of the second bearing is formed with a radially reduced portion, a transition surface of the radially reduced portion is perpendicular to an axis of rotation of the crankshaft, and a transition surface of the radially reduced portion constitutes the second support surface.
  • An oil chamber is disposed at a lower portion of the body, and the second bearing and a lower end of the crankshaft are immersed in the oil chamber.
  • the axial limiting structure further includes an annular limiting groove formed at a lower end of the crankshaft, and a circlip type crank ring retaining ring is engaged in the limiting groove and located on an outer end surface side of the second bearing, And maintaining an axial gap between the eccentric portion and the first bearing.
  • a distance H1 between the crankshaft retaining ring and the outer end surface of the second bearing is smaller than a distance H2 between the eccentric portion and the first bearing.
  • the axial limiting structure comprising a downwardly facing first support surface disposed at a lower end of the crankshaft and a second bearing upwardly disposed for supporting the crankshaft
  • the second support surface of the first support surface; the second support surface abuts the first support surface to raise the crankshaft to a certain height, thereby preventing the eccentric portion of the crankshaft from contacting the upper end surface of the second bearing.
  • a lower end of the crankshaft is formed with a constricted portion; a transition surface of the constricted portion is perpendicular to an axis of rotation of the crankshaft, and a transition surface of the constricted portion constitutes the first portion a support surface; the second support surface abuts against the first support surface to ensure that the crankshaft remains vertically more stably.
  • the rotary compressor provided by the present invention has an annular retaining groove formed on the inner side of the second bearing, a circlip bearing retaining ring is engaged in the annular retaining groove, and the bearing retaining ring is configured to face upward.
  • the second supporting surface since the annular groove is formed on the inner side surface of the second bearing, if only the closed ring is used, it is difficult to install the limiting structure into the annular groove, and the circlip type bearing is used.
  • the retaining ring is provided with an opening, and the diameter of the opening ring can be adjusted by an external force, so that the limiting structure is stably placed inside the annular groove.
  • a lower portion of the inner side of the second bearing is formed with a radially reduced portion, a transition surface of the radially reduced portion is perpendicular to an axis of rotation of the crankshaft, and a transition of the radially reduced portion Forming the second support surface;
  • the second bearing shrinks radially inward to form a second support surface, the second support surface supports a first support surface of the crankshaft, and the crankshaft is vertical on the second support surface Rotate straight.
  • the axial limiting structure further includes an annular limiting groove formed at a lower end of the crankshaft, and a circlip type crank ring retaining ring is engaged in the limiting slot and located at the a second bearing outer end side for maintaining an axial gap between the eccentric portion and the first bearing; when the crankshaft is biased upward by an external force, the crank ring retaining ring and the second bearing Since the outer end faces are in contact, since the crank ring retaining ring itself is integrated with the crankshaft, further upward movement of the crankshaft can be restricted by the crankshaft retaining ring, thereby preventing the upper end surface of the eccentric portion and the lower end surface of the first bearing Friction occurs between them.
  • a distance H1 between the crank ring retaining ring and the outer end surface of the second bearing is smaller than a distance H2 between the eccentric portion and the first bearing; since H1 ⁇ H2, Therefore, when the crank ring retains against the outer end surface of the second bearing, the upper end surface of the eccentric portion and the first bearing still have a gap, thereby preventing the upper end surface of the eccentric portion from the first bearing Friction occurs between the lower end faces.
  • FIG. 1 is a schematic structural view of an embodiment of a rotary compressor provided by the present invention
  • FIG. 2 is a schematic structural view of the crankshaft in the embodiment of the rotary compressor provided by the present invention
  • FIG 3 is a schematic view showing the assembly structure of a second bearing and a crankshaft in the embodiment of the rotary compressor provided by the present invention.
  • the present embodiment provides a rotary compressor including: a body 1; a crankshaft 2 having an eccentric portion 21 through a first bearing 13 and a second bearing 4 sleeved on both sides of the eccentric portion 21 Rotatablely mounted in the body 1; the cylinder 5 disposed in the body is driven by the eccentric portion 21 to perform work of compressed gas; and the second bearing 4 is disposed between the corresponding connecting portion of the crankshaft 2 There is an axial limiting structure for maintaining an axial gap between the eccentric portion 21 and the second bearing 4.
  • crankshaft 2 can be raised to a certain height, thereby preventing contact between the eccentric portion 21 and the second bearing 4, thereby avoiding friction between the two to generate noise and causing compression. Machine power consumption increases.
  • the rotary compressor is vertically placed, and the rotation axis of the crankshaft 2 is vertically disposed.
  • the second bearing 4 is located below the eccentric portion 21, and at this time, due to the action of the axial limiting structure, the eccentric portion 21 acts on the second bearing 4 at a certain distance to avoid friction between the two, and the vertical placement takes up.
  • the small space is advantageous for miniaturization of the device.
  • the axial limiting structure includes a downward facing first supporting surface 22 disposed at a lower end of the crankshaft 2 and disposed on the second bearing 4 upward. a second support surface 41 for supporting the first support surface 22 of the crankshaft 2.
  • the second supporting surface 41 abuts against the first supporting surface 22 to raise the crankshaft 2 to a certain height, thereby preventing the eccentric portion 21 of the crankshaft 2 from coming into contact with the upper end surface of the second bearing 4.
  • the crankshaft 2 is rotated by the motor assembly 11, the eccentric portion 21 of the crankshaft 2 is connected with a roller 3, and the roller 3 is rotated in the cylinder 5, and the liquid separator
  • the refrigerant in 12 flows into the cylinder 5, and the refrigerant in the cylinder 5 is compressed and discharged by the rotation of the roller 3.
  • the first supporting surface 22 will rotate on the second supporting surface 41, and since the contact area between the two is small, the friction between the two can be effectively reduced.
  • the lower end of the crankshaft 2 is formed with a constricted portion; the transition surface of the constricted portion is perpendicular to the rotation axis of the crankshaft 2, and the transition surface of the constricted portion constitutes the First support surface 22.
  • the second support surface 41 abuts against the first support surface 22 to ensure that the crankshaft 2 remains vertical.
  • an inner annular groove 6 is formed on the inner side of the second bearing 4, and a circlip bearing retaining ring 7 is engaged in the annular retaining groove 6, and the bearing retaining ring is facing The upper side constitutes the second support surface 41.
  • the annular groove 6 is placed on the inner side surface of the second bearing 4, if only the closed ring is used, it is difficult to mount the limiting structure into the annular groove, and the circlip type bearing retaining ring 7 is used.
  • the opening is provided by itself, and the diameter of the opening ring can be adjusted by an external force, so that the circlip bearing retaining ring 7 is stably placed inside the annular groove 6.
  • retaining rings may be used instead of the retaining ring retaining ring, as long as the bearing retaining ring is provided with an opening, so that the bearing retaining ring can be adjusted by an external force to make it tightly attached.
  • the annular groove is described.
  • the lower portion of the body 1 is provided with an oil chamber 8, and the second bearing 4 and the lower end of the crankshaft 2 are immersed in the oil chamber 8.
  • the second bearing 4 Since the second bearing 4 is immersed in the oil chamber 8, the lubrication between the second support surface 41 and the first support surface 22 is obtained, the friction between the two can be reduced, and noise generation can be prevented.
  • the axial limiting structure further includes an annular limiting groove 23 formed at a lower end of the crankshaft 2, and a circlip type crank ring 10 is engaged in the limiting slot.
  • the inner end of the second bearing 4 is located on the side of the outer end surface for maintaining an axial gap between the eccentric portion 21 and the first bearing 13.
  • crank ring 10 When the crankshaft 2 is upwardly displaced by the external force, the crank ring 10 will be in contact with the outer end surface of the second bearing 4, and since the crank ring 10 itself is integrally connected with the crankshaft 2, it can be restricted by the crank ring 10 Further upward movement of the crankshaft 2 prevents friction between the upper end surface of the eccentric portion 21 and the lower end surface of the first bearing 13.
  • a distance H1 between the crank ring 10 and an outer end surface of the second bearing 4 is smaller than a distance H2 between the eccentric portion 21 and the first bearing 13.
  • the second bearing 4 is replaced with a radially lower portion formed on the inner lower portion, and a transition surface of the radially reduced portion is perpendicular to the rotation axis of the crankshaft 2,
  • the transition surface of the radially reduced portion constitutes the second support surface.
  • the second bearing 4 is contracted radially inward to form a second supporting surface, and the second supporting surface supports the first supporting surface 22 of the crankshaft 2, so that the crankshaft 2 is vertically rotated on the second supporting surface, due to The contact area between the two is small, so the friction generated is small, and the noise generated by the friction can be effectively prevented.
  • the rotary compressor is replaced with a horizontal position in the above-described Embodiment 1 or Embodiment 2, and the eccentric portion 21 and the second bearing 4 are horizontal due to the axial limit structure.
  • the direction maintains a first gap, effectively avoiding friction between the two.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rolling Contact Bearings (AREA)
  • Compressor (AREA)

Abstract

一种旋转压缩机,包括:机体(1);曲轴(2),具有偏心部(21),通过套设在偏心部(21)两侧的第一轴承(13)和第二轴承(4)可转动地安装在机体(1)内;通过偏心部(21)带动设置在机体内的气缸(5)进行压缩气体做功;第二轴承(4)与曲轴(2)的相应连接部分之间设有轴向限位结构,用于使偏心部(21)与第二轴承(4)之间保持轴向间隙。旋转压缩机通过轴向限位结构将曲轴提升一定高度,从而防止偏心部与第二轴承之间发生接触,从而避免二者之间出现摩擦产生噪音,造成压缩机功耗增大。

Description

一种旋转压缩机 技术领域
本发明涉及空调压缩机技术领域,具体涉及一种可防止曲轴的偏心部表面发生磨损的旋转压缩机。
背景技术
旋转压缩机被广泛用在空调领域作为制冷剂压缩机使用,其能够使吸入的制冷剂蒸气提高温度和压力后,向冷凝器排出进行放热冷凝。
现有技术中,压缩机包括机体,第一轴承安装在机体内部,第二轴承安装在第一轴承的一侧,第一轴承和第二轴承之间安装有气缸,曲轴依次通过电机组件和第一轴承安装在气缸内部,曲轴在气缸内的一端成型有偏离轴心的偏心部,偏心部上安装有滚子,使用过程中,电机组件带动曲轴转动,偏心部和滚子一起转动,在气缸内部形成高压仓和低压仓,低温低压的冷媒经过高压仓的压缩,当到达一定压力后,从高压仓的排气阀排出。
但是,在现有技术中,曲轴的偏心部的下端贴靠在第二轴承的上端,导致在曲轴转动时,曲轴的偏心部下端面磨损,产生噪声。同时,由于曲轴受到摩擦力,使得电机组件的负荷过大,进而使得压缩机的功耗增大。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中曲轴偏心部下端贴靠第二轴承所导致的曲轴转动时曲轴偏心部下端磨损的缺陷,从而提供一种可以防止曲轴偏心部与第二轴承发生磨损的旋转压缩机。
因此,本发明提供一种旋转压缩机,包括:机体;曲轴,具有偏心部,通过套设在所述偏心部两侧的第一轴承和第二轴承可转动地安装在所述机体内;通过所述偏心部带动设置在所述机体内的气缸进行压缩气体做功;所述第二轴承与所述曲轴的相应连接部分之间设有轴向限位结构,用于使所述偏心部与所述第二轴承之间保持轴向间隙。
所述曲轴的旋转轴线竖直设置,所述第二轴承位于所述偏心部的下方。
所述轴向限位结构包括设置在所述曲轴的下端的朝下的第一支撑面及设置在所述第二轴承朝上的用于支撑所述曲轴的所述第一支撑面的第二支撑面。
所述曲轴的下端成型有缩颈部;所述缩颈部的过渡面垂直于所述曲轴的转动轴线,所述缩颈部的过渡面构成所述第一支撑面。
所述第二轴承内侧成型有环形挡槽,一个卡簧式轴承挡圈卡接在所述环形挡槽内,所述轴承挡圈朝上的侧面构成所述第二支撑面。
所述第二轴承内侧下部成型有径向缩小部分,所述径向缩小部分的过渡面垂直于所述曲轴的转动轴线,所述径向缩小部分的过渡面构成所述第二支撑面。
所述机体的下部设有油腔,所述第二轴承及所述曲轴的下端浸在所述油腔中。
所述轴向限位结构还包括成型在所述曲轴下端的环形限位槽,一个卡簧式曲轴挡圈卡接在所述限位槽内且位于所述第二轴承外端面一侧,用于保持所述偏心部与所述第一轴承之间的轴向间隙。
所述曲轴挡圈与所述第二轴承外端面之间的距离H1小于所述偏心部与所述第一轴承之间的距离H2。
本发明技术方案,具有如下优点:
1.本发明提供的旋转压缩机,所述第二轴承与所述曲轴的相应连接部分之间设有轴向限位结构,用于使所述偏心部与所述第二轴承之间保持轴向间隙;即通过所述限位结构,可以防止所述偏心部与所述第二轴承之间发生接触,从而避免二者之间出现摩擦产生噪音,造成压缩机功耗增大。
2.本发明提供的旋转压缩机,所述第二轴承位于所述偏心部的下方;本发明优先旋转压缩机竖直放置,第二轴承位于所述偏心部的下方;占用的空间小,有利于装置的小型化。
3.本发明提供的旋转压缩机,所述轴向限位结构包括设置在所述曲轴的下端的朝下的第一支撑面及设置在所述第二轴承朝上的用于支撑所述曲轴的所述第一支撑面的第二支撑面;所述第二支撑面与所述第一支撑面相抵,从而将曲轴提升至一定高度,进而防止曲轴偏心部与第二轴承的上端面相接触。
4.本发明提供的旋转压缩机,所述曲轴的下端成型有缩颈部;所述缩颈部的过渡面垂直于所述曲轴的转动轴线,所述缩颈部的过渡面构成所述第一支撑面;所述第二支撑面顶靠在所述第一支撑面的下方,从而确保所述曲轴更稳定地保持竖直。
5.本发明提供的旋转压缩机,所述第二轴承内侧成型有环形挡槽,一个卡簧式轴承挡圈卡接在所述环形挡槽内,所述轴承挡圈朝上的侧面构成所述第二支撑面;由于环形挡槽开设在所述第二轴承的内侧面上,因此如果仅仅采用封闭圆环,则很难将限位结构安装至环形凹槽内,而采用卡簧式轴承挡圈,其自身设有开口,可以通过外力调整开口圆环直径的大小,进而使限位结构稳定地放置于环形挡槽内部。
6.本发明提供的旋转压缩机,所述第二轴承内侧下部成型有径向缩小部分,所述径向缩小部分的过渡面垂直于所述曲轴的转动轴线,所述径向缩小部分的过渡面构成所述第二支撑面;第二轴承径向向内收缩形成第二支撑面,所述第二支撑面支撑曲轴的第一支撑面,使所述曲轴在所述第二支撑面上竖直转动。
7.本发明提供的旋转压缩机,所述机体的下部设有油腔,所述第二轴承及所述曲轴的下端浸在所述油腔中;由于所述第二轴承浸入油腔中,使得所述第二支撑面和所述第一支撑面之间得到润滑,可以减小二者之间的摩擦,防止噪音产生。
8.本发明提供的旋转压缩机,所述轴向限位结构还包括成型在所述曲轴下端的环形限位槽,一个卡簧式曲轴挡圈卡接在所述限位槽内且位于所述第二轴承外端面一侧,用于保持所述偏心部与所述第一轴承之间的轴向间隙;当所述曲轴受到外力发生向上偏移时,曲轴挡圈会与第二轴承的外端面相接触,由于曲轴挡圈自身与曲轴连为一体,因此可以通过曲轴挡圈限制所述曲轴的进一步的向上运动,进而防止所述偏心部的上端面与所述第一轴承的下端面之间发生摩擦。
9.本发明提供的旋转压缩机,所述曲轴挡圈与所述第二轴承外端面之间的距离H1小于所述偏心部与所述第一轴承之间的距离H2;由于H1<H2,因此当曲轴挡圈贴靠在所述第二轴承的外端面时,所述偏心部的上端面与第一轴承之间仍具有缝隙,进而防止所述偏心部的上端面与所述第一轴承的下端面之间发生摩擦。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的旋转压缩机实施例的结构示意图;
图2为本发明提供的旋转压缩机实施例中所述曲轴的结构示意图;
图3为本发明提供的旋转压缩机实施例中第二轴承与曲轴的装配结构示意图。
附图标记说明:1-机体;2-曲轴;21-偏心部;22-第一支撑面;23-环形限位槽;13-第一轴承;4-第二轴承;41-第二支撑面;5-气缸;6-环形挡槽;7-卡簧式轴承挡圈;8-油腔;10-卡簧式曲轴挡圈;11-电机组件;12-分液器;3-滚子。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
如图1所示,本实施例提供一种旋转压缩机,包括:机体1;曲轴2,具有偏心部21,通过套设在所述偏心部21两侧的第一轴承13和第二轴承4可转动地安装在所述机体1内;通过所述偏心部21带动设置在所述机体内的气缸5进行压缩气体做功;所述第二轴承4与所述曲轴2的相应连接部分之间设有轴向限位结构,用于使所述偏心部21与所述第二轴承4之间保持轴向间隙。
即通过所述限位结构,可以将所述曲轴2提升一定高度,从而防止所述偏心部21与所述第二轴承4之间发生接触,从而避免二者之间出现摩擦产生噪音,造成压缩机功耗增大。
如图1所示,本实施例中所述旋转压缩机竖直放置,曲轴2的旋转轴线竖直设置, 第二轴承4位于所述偏心部21的下方,此时由于轴向限位结构的作用,使得偏心部21作用在第二轴承4上方一定距离,避免二者之间发生摩擦,竖直放置占用的空间较小,有利于装置的小型化。
本实施例中,如图2和图3所示,所述轴向限位结构包括设置在所述曲轴2的下端的朝下的第一支撑面22及设置在所述第二轴承4朝上的用于支撑所述曲轴2的所述第一支撑面22的第二支撑面41。
所述第二支撑面41与所述第一支撑面22相抵,从而将曲轴2提升至一定高度,进而防止曲轴2偏心部21与第二轴承4的上端面相接触。
具体地,当所述旋转压缩机工作时,所述曲轴2在电机组件11的带动下发生转动,曲轴2的偏心部21连接有滚子3,滚子3在气缸5中转动,分液器12中的冷媒流入气缸5中,通过滚子3的转动对气缸5中的冷媒进行压缩并排出。此时所述第一支撑面22将在所述第二支撑面41上进行转动,由于二者之间的接触面积很小,因此可以有效地减小二者之间的摩擦力。
具体地,如图2所示,所述曲轴2的下端成型有缩颈部;所述缩颈部的过渡面垂直于所述曲轴2的转动轴线,所述缩颈部的过渡面构成所述第一支撑面22。所述第二支撑面41顶靠在所述第一支撑面22的下方,从而确保所述曲轴2保持竖直。
本实施例中,如图3所示,所述第二轴承4内侧成型有环形挡槽6,一个卡簧式轴承挡圈7卡接在所述环形挡槽6内,所述轴承挡圈朝上的侧面构成所述第二支撑面41。
由于环形挡槽6放置在所述第二轴承4的内侧面上,因此如果仅仅采用封闭圆环,则很难将限位结构安装至环形凹槽内,而采用卡簧式轴承挡圈7,其自身设有开口,可以通过外力调整开口圆环直径的大小,进而使卡簧式轴承挡圈7稳定地放置于环形挡槽6内部。
当然,本实施例中也可以采用其它挡圈来代替所述卡簧式轴承挡圈,只要所述轴承挡圈上设有开口即可,这样可以通过外力来调整轴承挡圈使其贴紧所述环形凹槽。
本实施例中,如图1所示,所述机体1的下部设有油腔8,所述第二轴承4及所述曲轴2的下端浸在所述油腔8中。
由于所述第二轴承4浸入油腔8中,使得所述第二支撑面41和所述第一支撑面22之间得到润滑,可以减小二者之间的摩擦,并能够防止噪音产生。
本实施例中,如图3所示,所述轴向限位结构还包括成型在所述曲轴2下端的环形限位槽23,一个卡簧式曲轴挡圈10卡接在所述限位槽内且位于所述第二轴承4外端面一侧,用于保持所述偏心部21与所述第一轴承13之间的轴向间隙。
当所述曲轴2受到外力发生向上偏移时,曲轴挡圈10会与第二轴承4的外端面相接触,由于曲轴挡圈10自身与曲轴2连为一体,因此可以通过曲轴挡圈10限制所述曲轴2的进一步的向上运动,进而防止所述偏心部21的上端面与所述第一轴承13的下端面之间发生摩擦。
具体地,所述曲轴挡圈10与所述第二轴承4外端面之间的距离H1小于所述偏心部21与所述第一轴承13之间的距离H2。
由于H1<H2,因此当曲轴挡圈10贴靠在所述第二轴承4的外端面时,所述偏心部21的上端面与第一轴承13之间仍具有缝隙,进而防止所述偏心部21的上端面与所述第一轴承13的下端面之间发生摩擦。
实施例2
本实施例在上述实施例1的基础上,所述第二轴承4替换为内侧下部成型有径向缩小部分,所述径向缩小部分的过渡面垂直于所述曲轴2的转动轴线,所述径向缩小部分的过渡面构成所述第二支撑面。第二轴承4径向向内收缩形成第二支撑面,所述第二支撑面支撑曲轴2的第一支撑面22,使所述曲轴2在所述第二支撑面上竖直转动,由于二者之间的接触面积较小,因此产生的摩擦力很小,可以有效地防止摩擦产生的噪音。
作为可变换的实施例,本实施例在上述实施例1或实施例2中所述旋转压缩机替换为水平放置,由于所述轴向限位结构,使得偏心部21与第二轴承4在水平方向保持有第一间隙,从而有效地避免了二者之间发生摩擦。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (9)

  1. 一种旋转压缩机,包括:
    机体(1);
    曲轴(2),具有偏心部(21),通过套设在所述偏心部(21)两侧的第一轴承(13)和第二轴承(4)可转动地安装在所述机体(1)内;通过所述偏心部(21)带动设置在所述机体内的气缸(5)进行压缩气体做功;
    其特征在于,
    所述第二轴承(4)与所述曲轴(2)的相应连接部分之间设有轴向限位结构,用于使所述偏心部(21)与所述第二轴承(4)之间保持轴向间隙。
  2. 根据权利要求1所述的旋转压缩机,其特征在于,所述曲轴(2)的旋转轴线竖直设置,所述第二轴承(4)位于所述偏心部(21)的下方。
  3. 根据权利要求2所述的旋转压缩机,其特征在于,所述轴向限位结构包括设置在所述曲轴(2)的下端的朝下的第一支撑面(22)及设置在所述第二轴承(4)朝上的用于支撑所述曲轴(2)的所述第一支撑面(22)的第二支撑面(41)。
  4. 根据权利要求3所述的旋转压缩机,其特征在于,所述曲轴(2)的下端成型有缩颈部;所述缩颈部的过渡面垂直于所述曲轴(2)的转动轴线,所述缩颈部的过渡面构成所述第一支撑面(22)。
  5. 根据权利要求4所述的旋转压缩机,其特征在于,所述第二轴承(4)内侧成型有环形挡槽(6),一个卡簧式轴承挡圈(7)卡接在所述环形挡槽(6)内,所述轴承挡圈朝上的侧面构成所述第二支撑面(41)。
  6. 根据权利要求4所述的旋转压缩机,其特征在于,所述第二轴承(4)内侧下部成型有径向缩小部分,所述径向缩小部分的过渡面垂直于所述曲轴(2)的转动轴线,所述径向缩小部分的过渡面构成所述第二支撑面(41)。
  7. 根据权利要求2所述的旋转压缩机,其特征在于,所述机体的下部设有油腔(8),所述第二轴承(4)及所述曲轴(2)的下端浸在所述油腔(8)中。
  8. 根据权利要求1所述的旋转压缩机,其特征在于,所述轴向限位结构还包括成型在所述曲轴(2)下端的环形限位槽(23),一个卡簧式曲轴挡圈(10)卡接在所述限位槽内且位于所述第二轴承(4)外端面一侧,用于保持所述偏心部(21)与所述第 一轴承(13)之间的轴向间隙。
  9. 根据权利要求8所述的旋转压缩机,其特征在于,所述曲轴挡圈(10)与所述第二轴承(4)外端面之间的距离H1小于所述偏心部(21)与所述第一轴承(13)之间的距离H2
PCT/CN2017/093153 2016-10-18 2017-07-17 一种旋转压缩机 WO2018072497A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610906611.1A CN106368951B (zh) 2016-10-18 2016-10-18 一种旋转压缩机
CN201610906611.1 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018072497A1 true WO2018072497A1 (zh) 2018-04-26

Family

ID=57894960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093153 WO2018072497A1 (zh) 2016-10-18 2017-07-17 一种旋转压缩机

Country Status (2)

Country Link
CN (1) CN106368951B (zh)
WO (1) WO2018072497A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106368951B (zh) * 2016-10-18 2020-06-16 珠海格力电器股份有限公司 一种旋转压缩机
CN109185149B (zh) * 2018-11-07 2024-05-17 珠海格力节能环保制冷技术研究中心有限公司 旋转压缩机及空调系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083197A (ja) * 2003-09-04 2005-03-31 Matsushita Electric Ind Co Ltd 密閉型回転式圧縮機
JP2009024651A (ja) * 2007-07-23 2009-02-05 Panasonic Corp 密閉型ロータリ圧縮機及びその製造方法
CN101806304A (zh) * 2009-12-31 2010-08-18 珠海格力电器股份有限公司 具有曲轴轴向止推的旋转压缩机
CN101881275A (zh) * 2009-05-08 2010-11-10 乐金电子(天津)电器有限公司 旋转式压缩机
CN102678566A (zh) * 2011-03-18 2012-09-19 乐金电子(天津)电器有限公司 旋转式压缩机
CN204312332U (zh) * 2014-12-12 2015-05-06 广东美芝制冷设备有限公司 压缩机
CN104653459A (zh) * 2014-12-12 2015-05-27 广东美芝制冷设备有限公司 压缩机
CN106368951A (zh) * 2016-10-18 2017-02-01 珠海格力节能环保制冷技术研究中心有限公司 一种旋转压缩机
CN206257049U (zh) * 2016-10-18 2017-06-16 珠海格力节能环保制冷技术研究中心有限公司 一种旋转压缩机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211670A (ja) * 1988-02-19 1989-08-24 Sanyo Electric Co Ltd 圧縮機のスラスト受装置
JPH08219054A (ja) * 1995-02-14 1996-08-27 Sanyo Electric Co Ltd 竪型回転式密閉圧縮機
CN200971861Y (zh) * 2006-07-07 2007-11-07 西安庆安制冷设备股份有限公司 一种具有曲轴轴向止推结构的转子式压缩机
CN101205922A (zh) * 2006-12-20 2008-06-25 乐金电子(天津)电器有限公司 推力板以及具有推力板的涡旋压缩机
CN201696298U (zh) * 2010-03-23 2011-01-05 珠海格力电器股份有限公司 下消声器支撑偏心曲轴的旋转压缩机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083197A (ja) * 2003-09-04 2005-03-31 Matsushita Electric Ind Co Ltd 密閉型回転式圧縮機
JP2009024651A (ja) * 2007-07-23 2009-02-05 Panasonic Corp 密閉型ロータリ圧縮機及びその製造方法
CN101881275A (zh) * 2009-05-08 2010-11-10 乐金电子(天津)电器有限公司 旋转式压缩机
CN101806304A (zh) * 2009-12-31 2010-08-18 珠海格力电器股份有限公司 具有曲轴轴向止推的旋转压缩机
CN102678566A (zh) * 2011-03-18 2012-09-19 乐金电子(天津)电器有限公司 旋转式压缩机
CN204312332U (zh) * 2014-12-12 2015-05-06 广东美芝制冷设备有限公司 压缩机
CN104653459A (zh) * 2014-12-12 2015-05-27 广东美芝制冷设备有限公司 压缩机
CN106368951A (zh) * 2016-10-18 2017-02-01 珠海格力节能环保制冷技术研究中心有限公司 一种旋转压缩机
CN206257049U (zh) * 2016-10-18 2017-06-16 珠海格力节能环保制冷技术研究中心有限公司 一种旋转压缩机

Also Published As

Publication number Publication date
CN106368951B (zh) 2020-06-16
CN106368951A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
US8721304B2 (en) Sealed compressor
US10233930B2 (en) Rotary compressor having two cylinders
US9719512B2 (en) Hermetically sealed rotary compressor and refrigeration cycle device
WO2018072497A1 (zh) 一种旋转压缩机
CN105889076A (zh) 涡旋压缩机的主机架及涡旋压缩机
JP6351749B2 (ja) スクロール圧縮機
JP5612628B2 (ja) 密閉型圧縮機
JP6184648B1 (ja) 軸受ユニット及び圧縮機
CN104653459B (zh) 压缩机
JP4749136B2 (ja) スクロール圧縮機
JP6704309B2 (ja) 密閉型圧縮機
JP2012077728A (ja) ロータリー圧縮機
JP2013104328A (ja) 密閉型圧縮機
JP2013241848A (ja) 密閉型圧縮機および該密閉型圧縮機を備える冷蔵庫
JP2014092238A (ja) スラスト玉軸受
JP2014227838A (ja) 圧縮機
JP5845401B2 (ja) 密閉型圧縮機
WO2020215724A1 (zh) 用于涡旋压缩机的主轴承座和涡旋压缩机
JP5152018B2 (ja) ロータリー式圧縮機
JP5680500B2 (ja) 密閉形圧縮機及びこれを用いた冷蔵庫
JP6441119B2 (ja) 回転式圧縮機及び冷凍サイクル装置
JP2017031812A (ja) 密閉型圧縮機
WO2017149820A1 (ja) 軸受ユニット及び圧縮機
JP2011094546A (ja) スクロール圧縮機
JP5957683B2 (ja) 密閉型圧縮機およびこれを備えた冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861372

Country of ref document: EP

Kind code of ref document: A1