WO2018072457A1 - Procédé de préparation d'un supercondensateur intégré à ions multiples avec activation alcaline électrochimique - Google Patents

Procédé de préparation d'un supercondensateur intégré à ions multiples avec activation alcaline électrochimique Download PDF

Info

Publication number
WO2018072457A1
WO2018072457A1 PCT/CN2017/087852 CN2017087852W WO2018072457A1 WO 2018072457 A1 WO2018072457 A1 WO 2018072457A1 CN 2017087852 W CN2017087852 W CN 2017087852W WO 2018072457 A1 WO2018072457 A1 WO 2018072457A1
Authority
WO
WIPO (PCT)
Prior art keywords
ldh
cobalt
electrolyte
supercapacitor
nickel
Prior art date
Application number
PCT/CN2017/087852
Other languages
English (en)
Chinese (zh)
Inventor
邵明飞
栗振华
卫敏
段雪
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Publication of WO2018072457A1 publication Critical patent/WO2018072457A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention belongs to the field of synthesis of inorganic nano materials, and particularly relates to a more universal method for preparing multi-ion embedded supercapacitors by electrochemical alkali activation method.
  • supercapacitors In order to enable energy storage equipment to have both high power density and energy density, as well as good cycle stability, researchers have proposed the concept of supercapacitors. It combines the advantages of traditional batteries and traditional capacitors. It has the characteristics of short charging time, long service life, good temperature characteristics, energy saving and environmental protection. It is expected to become an emerging high-efficiency energy storage device.
  • Supercapacitors can be divided into electric double layer capacitors and tantalum capacitors from the energy storage mechanism.
  • the supercapacitor electrode materials currently studied are mainly concentrated on carbon materials, conductive polymers, and inorganic metal oxides/hydroxides. Although supercapacitors have many attractive advantages, their further development and practicality still face enormous challenges.
  • the electrolyte used in the ion-embedded supercapacitor is mainly a neutral metal salt electrolyte, so it has a higher energy storage potential window than the conventional supercapacitor.
  • the research on ion-embedded supercapacitor electrode materials mainly focuses on metal carbide (MC X ), metal sulfide (MS X ) and metal oxide (MO X ), of which MXene is a new type with good electrical conductivity.
  • Layered metal carbides attract the attention of researchers and have become the main force in the development of electrode materials for ion-embedded supercapacitors.
  • Electrode material has low ability to store metal ions, poor conductivity, and preparation cost. Higher, these need to further develop new electrode materials with better performance suitable for rapid insertion/extraction of cations; 2. Most electrode materials have better embedding/extraction properties only for Li + , and for other metal cations (Na + , K + , Ca 2+ , Mg 2+ , Zn 2+ , Al 3+ ) have no storage performance or poor performance. However, considering the content of the earth's crust, the content of Li + in the earth's crust is the lowest relative to other metal cations. Therefore, it is extremely urgent to develop electrode materials suitable for the embedding/extraction of other metal cations.
  • the invention aims at the shortcomings of the current ion-intercalating electrode material in the low capacity of storing metal ions, poor conductivity, high preparation cost, etc., and proposes a metal hydroxide (MOH X ) as a novel ion-embedded supercapacitor electrode material through simple An electrochemical alkali activation method is used to improve the metal ion storage performance of the electrode material.
  • MOH X metal hydroxide
  • An electrochemical alkali activation method is used to improve the metal ion storage performance of the electrode material.
  • Step 1) Activated cobalt or nickel-containing metal hydroxide nanomaterial as positive electrode, 20–50 mL of alkaline solution with a concentration of 1–5 g/L as electrolyte, by cyclic voltammetry, at 1 At a scan rate of –100mV s -1 , cyclically scan 1–50 times at a potential window of 0–(-0.1V) to 0–(-1.5V) for deactivation;
  • the activated cobalt or nickel-containing metal hydroxide of step 1) or the deactivated cobalt or nickel-containing metal hydroxide of step 2) is used as a positive electrode, and 1–5 g/L
  • the nitrate or sulfate electrolyte solution constitutes a multi-ion embedded supercapacitor for ion storage performance testing.
  • the alkaline solution as the electrolyte described in the step 1) or 2) is one or more of KOH, NaOH, and LiOH.
  • the cobalt-containing hydroxide used in the step 1) is one or more of Co(OH) 2 , CoNi-LDH, CoFe-LDH, CoAl-LDH, CoMn-LDH, and CoV-LDH.
  • the nickel-containing hydroxide used in the step 1) is one or more of Ni(OH) 2 , NiFe-LDH, NiAl-LDH, NiMn-LDH, and NiV-LDH.
  • the metal nitrate electrolyte used in the step 3) is: LiNO 3 , NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , Mg(NO 3 ) 2 or Zn(NO 3 ) 2 .
  • the metal sulfate electrolyte used in the step 3) is: Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , MgSO 4 or ZnSO 4 .
  • the invention has the advantages that the activation or deactivation treatment of the cobalt or nickel-containing hydroxide by a simple and rapid electrochemical alkali activation method realizes the storage capacity of the hydroxide electrode material for various metal cations.
  • Intelligent regulation can be effectively applied to ion-embedded supercapacitors; it provides a new and more versatile method to greatly improve the energy storage performance of ion-embedded supercapacitor electrode materials; further broaden the transition metal hydroxide electrode The range of applications of materials in the field of energy storage.
  • Figure 1 is a diagram showing the mechanism of electrochemical alkali activation and deactivation of a metal hydroxide in Example 1, and metal ion cation insertion and removal.
  • Figure 2 is a cyclic voltammetry curve for the storage of different metal cations of cobalt iron hydrotalcite before and after electrochemical alkali activation treatment (represented by AA and BA, respectively) in Example 1.
  • Figure 3 is a graph showing the charge and discharge curves of cobalt iron hydrotalcite for storage of different metal cations before and after electrochemical alkali activation treatment (represented by AA and BA, respectively) in Example 1.
  • Figure 4 is an intelligently controlled cyclic voltammetry curve for lithium ion storage capacity of cobalt iron hydrotalcite treated by electrochemical alkali activation (denoted by AA) and deactivated (represented by DA) in Example 1.
  • Fig. 5 is a graph showing the stability of the cobalt-iron hydrotalcite after the electrochemical alkali activation treatment in Example 1 after 10,000 consecutive charge and discharge tests.
  • step b using the activated cobalt-hydrotalcite nano-array of step 1) as a positive electrode, by cyclic voltammetry, at a scanning rate of 100 mV s -1 , under a potential window of 0 - (-0.6 V), cyclic scanning 5 Deactivation treatment;
  • the cobalt iron hydrotalcite subjected to the activation treatment or deactivation treatment in step 1) or 2) is used as a positive electrode at a concentration of 5 g/L of nitrate (LiNO 3 , NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , Mg(NO). 3 ) 2 , Zn(NO 3 ) 2 ) or sulfate (Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , MgSO 4 , ZnSO 4 ) electrolyte solution for ion storage performance test.
  • nitrate LiNO 3 , NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , Mg(NO). 3 ) 2 , Zn(NO 3 ) 2
  • sulfate Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , MgSO 4 , ZnSO 4
  • step 1) using the activated cobalt-hydrotalcite nanocrystal array of step 1) as a positive electrode, cyclically scanning 10 by a cyclic voltammetry at a scanning rate of 50 mV s -1 at a potential window of 0 - (-0.5 V) Deactivation treatment;
  • b using a cobalt hydroxide nano-array as a positive electrode, by cyclic voltammetry, at a scanning rate of 100 mV s -1 , under a potential window of 0 - 0.1 V, cyclic scanning 20 times, for activation treatment;
  • step b using the activated cobalt oxide nano-array of step 1) as a positive electrode, cyclically scanning 10 by cyclic voltammetry at a scanning rate of 100 mV s -1 under a potential window of 0 - (-0.1 V) Deactivation treatment;
  • the step 1) or 2) activated or deactivated cobalt hydroxide is used as the positive electrode at 5 g/L of nitrate (LiNO 3 , NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , Mg(NO). 3 ) 2 , Zn(NO 3 ) 2 ) or sulfate (Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , MgSO 4 , ZnSO 4 ) electrolyte solution for ion storage performance test.
  • nitrate LiNO 3 , NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , Mg(NO). 3 ) 2 , Zn(NO 3 ) 2
  • sulfate Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , MgSO 4 , ZnSO 4
  • b using a nickel hydroxide nano-array as a positive electrode, by cyclic voltammetry, at a scanning rate of 1-100 mV s -1 , under a potential window of 0-0.1 V, cyclically scanning 5 times for activation treatment;
  • step b using the activated nickel hydroxide nano-array of step 1) as a positive electrode, by cyclic voltammetry, at a scanning rate of 100 mV s -1 , under a potential window of 0 - (-0.1 V), cyclic scanning 5 Deactivation treatment;
  • Step 1) or 2) Activated or deactivated nickel hydroxide is used as the positive electrode at 5 g/L of nitrate (LiNO 3 , NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , Mg ( The ion storage performance test was carried out in an electrolyte solution of NO 3 ) 2 , Zn(NO 3 ) 2 ) or sulfate (Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , MgSO 4 , ZnSO 4 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

L'invention concerne un procédé de préparation d'un supercondensateur intégré à ions multiples avec activation alcaline électrochimique. Un procédé d'activation alcaline électrochimique simple et rapide est employé pour effectuer un traitement d'activation ou de désactivation sur un hydroxyde de métal de transition contenant du cobalt ou du nickel pour réaliser une régulation et une commande intelligentes des matériaux d'électrode à base d'hydroxyde sur la capacité de stockage de divers cations métalliques, et est appliqué à un supercondensateur intégré aux ions. L'invention concerne un procédé universel capable d'améliorer la capacité de stockage de matériaux d'électrode d'un supercondensateur intégré aux ions, et la plage d'application des matériaux d'électrode à hydroxyde de métal de transition est encore élargie dans le domaine du stockage d'énergie.
PCT/CN2017/087852 2016-10-21 2017-06-11 Procédé de préparation d'un supercondensateur intégré à ions multiples avec activation alcaline électrochimique WO2018072457A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610922150.7A CN106409532B (zh) 2016-10-21 2016-10-21 一种电化学碱活化法制备多离子嵌入式超级电容器的方法
CN201610922150.7 2016-10-21

Publications (1)

Publication Number Publication Date
WO2018072457A1 true WO2018072457A1 (fr) 2018-04-26

Family

ID=58013108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087852 WO2018072457A1 (fr) 2016-10-21 2017-06-11 Procédé de préparation d'un supercondensateur intégré à ions multiples avec activation alcaline électrochimique

Country Status (2)

Country Link
CN (1) CN106409532B (fr)
WO (1) WO2018072457A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575730A (zh) * 2020-04-27 2020-08-25 大连理工大学 一种用于海水电解的整体式碳基电极的制备方法
CN113077990A (zh) * 2021-03-17 2021-07-06 三峡大学 一种双电位区间活化提高Co(OH)2超级电容器性能的方法
CN113279009A (zh) * 2021-04-28 2021-08-20 北京化工大学 一种具有空穴传输和助催化双功能光电催化界面的复合光阳极的制备方法
CN116741977A (zh) * 2023-08-16 2023-09-12 中石油深圳新能源研究院有限公司 一种溶解沉积型锰氧化物正极材料及其制备方法和应用
CN117684202A (zh) * 2024-02-02 2024-03-12 东华大学 一种表面修饰的析氧电催化剂及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409532B (zh) * 2016-10-21 2019-08-13 北京化工大学 一种电化学碱活化法制备多离子嵌入式超级电容器的方法
CN107369566A (zh) * 2017-07-27 2017-11-21 桂林理工大学 一种超级电容器用钴镍水滑石电极材料的制备方法及应用
CN110346437B (zh) * 2019-07-15 2022-03-15 北京工商大学 一种基于LDHs/MXene的电化学葡萄糖传感器及其制备和应用
CN111029172A (zh) * 2019-12-31 2020-04-17 青岛科技大学 一种二维层状超级电容器电极材料Ti3C2 MXene的层间结构调控方法
CN112467077A (zh) * 2020-11-29 2021-03-09 西北工业大学 有效增强多种过渡金属氧化物储电性能的普适性电化学改性制备方法
CN112928256A (zh) * 2021-01-25 2021-06-08 北京化工大学 新型钠离子正极材料制备方法
CN113512737B (zh) * 2021-04-01 2022-07-19 安徽大学 一种氢氧化镍电催化剂、制备方法、电化学活化方法及其应用
CN114360927B (zh) * 2022-01-21 2022-09-09 重庆源皓科技有限责任公司 一种氢氧化镍电极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989499A (zh) * 2009-07-29 2011-03-23 美国纳米股份有限公司 非对称电化学超级电容器及其制造方法
CN104779059A (zh) * 2015-04-16 2015-07-15 电子科技大学 使用镍铝水滑石纳米材料作为正极材料的超级电容器
CN104795243A (zh) * 2015-02-04 2015-07-22 三峡大学 一种非对称超级电容器及其制备方法
CN106409532A (zh) * 2016-10-21 2017-02-15 北京化工大学 一种电化学碱活化法制备多离子嵌入式超级电容器的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054590B (zh) * 2009-11-10 2012-08-22 江苏海四达电源股份有限公司 一种高功率超级电容器关键部件镍正极制备技术
CN104637700A (zh) * 2014-12-11 2015-05-20 许大任 一种超级电容器电极材料制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989499A (zh) * 2009-07-29 2011-03-23 美国纳米股份有限公司 非对称电化学超级电容器及其制造方法
CN104795243A (zh) * 2015-02-04 2015-07-22 三峡大学 一种非对称超级电容器及其制备方法
CN104779059A (zh) * 2015-04-16 2015-07-15 电子科技大学 使用镍铝水滑石纳米材料作为正极材料的超级电容器
CN106409532A (zh) * 2016-10-21 2017-02-15 北京化工大学 一种电化学碱活化法制备多离子嵌入式超级电容器的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHAO, MINGFEI ET AL.: "Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications", CHEM. COMMUN., vol. 51, 8 October 2015 (2015-10-08), pages 15880 - 15893, XP055478400, ISSN: 1359-7345 *
XIE, LIJING ET AL.: "CoxNi1−x double hydroxide nanoparticles with ultrahigh specific capacitances assupercapacitor electrode materials", ELECTROCHIMICA ACTA, vol. 78, 18 June 2012 (2012-06-18), pages 205 - 211, XP028931893, ISSN: 0013-4686 *
ZHANG, LUOJIANG ET AL.: "High-performance hybrid supercapacitor with 3D hiera-rchical porous flower-like layered Double hydroxide grown on nickel foam as binder-free electrode", JOURNAL OF POWER SOURCES, vol. 318, 8 April 2016 (2016-04-08), pages 77, XP055478391, ISSN: 0378-7753 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575730A (zh) * 2020-04-27 2020-08-25 大连理工大学 一种用于海水电解的整体式碳基电极的制备方法
CN111575730B (zh) * 2020-04-27 2022-08-19 大连理工大学 一种用于海水电解的整体式碳基电极的制备方法
CN113077990A (zh) * 2021-03-17 2021-07-06 三峡大学 一种双电位区间活化提高Co(OH)2超级电容器性能的方法
CN113279009A (zh) * 2021-04-28 2021-08-20 北京化工大学 一种具有空穴传输和助催化双功能光电催化界面的复合光阳极的制备方法
CN113279009B (zh) * 2021-04-28 2022-05-27 北京化工大学 一种具有空穴传输和助催化双功能光电催化界面的复合光阳极的制备方法
CN116741977A (zh) * 2023-08-16 2023-09-12 中石油深圳新能源研究院有限公司 一种溶解沉积型锰氧化物正极材料及其制备方法和应用
CN116741977B (zh) * 2023-08-16 2024-01-26 中石油深圳新能源研究院有限公司 一种溶解沉积型锰氧化物正极材料及其制备方法和应用
CN117684202A (zh) * 2024-02-02 2024-03-12 东华大学 一种表面修饰的析氧电催化剂及其制备方法
CN117684202B (zh) * 2024-02-02 2024-05-31 东华大学 一种表面修饰的析氧电催化剂及其制备方法

Also Published As

Publication number Publication date
CN106409532B (zh) 2019-08-13
CN106409532A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2018072457A1 (fr) Procédé de préparation d'un supercondensateur intégré à ions multiples avec activation alcaline électrochimique
Xu et al. Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries
CN106876682B (zh) 一种具有多孔结构的氧化锰/镍微米球及其制备和应用
CN111540610B (zh) 一种用于超级电容器的电极材料及其制备方法和用途
CN106057477B (zh) 一种水系可充钠离子电容电池及其制备方法
CN103545123A (zh) 一种兼具锌离子电池和超级电容器的混合储能器件
CN103490050A (zh) 一种多孔石墨烯制备方法及制成产物的应用
CN106450287B (zh) 一种氟氧化铋/氢氧化镍二次碱性电池及其制备方法
CN110010373B (zh) 一种电极嵌锌处理方法及其在电池型超级电容器制备中的应用
CN102903917A (zh) 一种水溶液电解液可充电锌离子电池
Du et al. Core-shell structured Ni3S2@ VO2 nanorods grown on nickel foam as battery-type materials for supercapacitors
CN110615487A (zh) 一种CoNiO2纳米花电极材料的制备方法
CN103500822A (zh) 炭改性纳米Li4Ti5O12与多孔石墨烯复合电极材料的制备方法
CN103219503A (zh) 一种复合电极材料及其制备方法
CN106409528B (zh) 一种ZnFe2O4纳米颗粒/炭纤维复合超级电容器电极材料及其制备方法
Li et al. High-loading cobalt-doped manganese tetroxide on carbon cloth as an electrode material for high-performance zinc ion hybrid capacitors
CN107316999B (zh) 一种基于石墨烯复合的部分非晶化二氧化锡三维自组装锂离子电极材料及其制备方法
JP4731979B2 (ja) リチウムイオンキャパシタ
Song et al. Facile synthesis of γ-MnO2/rice husk-based-activated carbon and its electrochemical properties
Zhou et al. Synthesis and electrochemical performances of Co3O4/graphene as supercapacitor material
Xu et al. Oxygen vacancies of NiMoO 4 nanoneedles on Ni foam for high-performance asymmetric supercapacitors
Wu et al. High-capacity cathode for aqueous zinc-ion battery based on MnOx-modified bismuth vanadate
CN105024061B (zh) 一种水系钠离子电池用尖晶石型锰基氧化物材料的制备方法
CN202712363U (zh) 一种镍锌碳动力蓄电池
Zhao et al. Cabbage-Like NiCo2S4/MoS2 Assemblies as Electrode Materials for Asymmetric Hybrid Capacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862070

Country of ref document: EP

Kind code of ref document: A1