WO2018072457A1 - Procédé de préparation d'un supercondensateur intégré à ions multiples avec activation alcaline électrochimique - Google Patents
Procédé de préparation d'un supercondensateur intégré à ions multiples avec activation alcaline électrochimique Download PDFInfo
- Publication number
- WO2018072457A1 WO2018072457A1 PCT/CN2017/087852 CN2017087852W WO2018072457A1 WO 2018072457 A1 WO2018072457 A1 WO 2018072457A1 CN 2017087852 W CN2017087852 W CN 2017087852W WO 2018072457 A1 WO2018072457 A1 WO 2018072457A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ldh
- cobalt
- electrolyte
- supercapacitor
- nickel
- Prior art date
Links
- 230000004913 activation Effects 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000007772 electrode material Substances 0.000 claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 12
- 230000009849 deactivation Effects 0.000 claims abstract description 10
- 150000002500 ions Chemical class 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 7
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 6
- 239000010941 cobalt Substances 0.000 claims abstract description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000003792 electrolyte Substances 0.000 claims description 21
- 238000002484 cyclic voltammetry Methods 0.000 claims description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 11
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 10
- 239000003513 alkali Substances 0.000 claims description 10
- 239000008151 electrolyte solution Substances 0.000 claims description 10
- 150000004692 metal hydroxides Chemical class 0.000 claims description 10
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 8
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 8
- 229910013553 LiNO Inorganic materials 0.000 claims description 6
- 229910002651 NO3 Inorganic materials 0.000 claims description 6
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 6
- 239000012670 alkaline solution Substances 0.000 claims description 6
- 150000001868 cobalt Chemical class 0.000 claims description 6
- 239000002086 nanomaterial Substances 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 3
- 229910018661 Ni(OH) Inorganic materials 0.000 claims description 2
- 229910001960 metal nitrate Inorganic materials 0.000 claims description 2
- 150000001768 cations Chemical class 0.000 abstract description 11
- 238000004146 energy storage Methods 0.000 abstract description 7
- 230000033228 biological regulation Effects 0.000 abstract description 3
- 229910052723 transition metal Inorganic materials 0.000 abstract description 3
- 150000003624 transition metals Chemical class 0.000 abstract description 3
- 229960001545 hydrotalcite Drugs 0.000 description 14
- 229910001701 hydrotalcite Inorganic materials 0.000 description 14
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 12
- FQMNUIZEFUVPNU-UHFFFAOYSA-N cobalt iron Chemical compound [Fe].[Co].[Co] FQMNUIZEFUVPNU-UHFFFAOYSA-N 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 5
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 5
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 4
- 238000012983 electrochemical energy storage Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 3
- BLJNPOIVYYWHMA-UHFFFAOYSA-N alumane;cobalt Chemical compound [AlH3].[Co] BLJNPOIVYYWHMA-UHFFFAOYSA-N 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical class [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000021148 sequestering of metal ion Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the invention belongs to the field of synthesis of inorganic nano materials, and particularly relates to a more universal method for preparing multi-ion embedded supercapacitors by electrochemical alkali activation method.
- supercapacitors In order to enable energy storage equipment to have both high power density and energy density, as well as good cycle stability, researchers have proposed the concept of supercapacitors. It combines the advantages of traditional batteries and traditional capacitors. It has the characteristics of short charging time, long service life, good temperature characteristics, energy saving and environmental protection. It is expected to become an emerging high-efficiency energy storage device.
- Supercapacitors can be divided into electric double layer capacitors and tantalum capacitors from the energy storage mechanism.
- the supercapacitor electrode materials currently studied are mainly concentrated on carbon materials, conductive polymers, and inorganic metal oxides/hydroxides. Although supercapacitors have many attractive advantages, their further development and practicality still face enormous challenges.
- the electrolyte used in the ion-embedded supercapacitor is mainly a neutral metal salt electrolyte, so it has a higher energy storage potential window than the conventional supercapacitor.
- the research on ion-embedded supercapacitor electrode materials mainly focuses on metal carbide (MC X ), metal sulfide (MS X ) and metal oxide (MO X ), of which MXene is a new type with good electrical conductivity.
- Layered metal carbides attract the attention of researchers and have become the main force in the development of electrode materials for ion-embedded supercapacitors.
- Electrode material has low ability to store metal ions, poor conductivity, and preparation cost. Higher, these need to further develop new electrode materials with better performance suitable for rapid insertion/extraction of cations; 2. Most electrode materials have better embedding/extraction properties only for Li + , and for other metal cations (Na + , K + , Ca 2+ , Mg 2+ , Zn 2+ , Al 3+ ) have no storage performance or poor performance. However, considering the content of the earth's crust, the content of Li + in the earth's crust is the lowest relative to other metal cations. Therefore, it is extremely urgent to develop electrode materials suitable for the embedding/extraction of other metal cations.
- the invention aims at the shortcomings of the current ion-intercalating electrode material in the low capacity of storing metal ions, poor conductivity, high preparation cost, etc., and proposes a metal hydroxide (MOH X ) as a novel ion-embedded supercapacitor electrode material through simple An electrochemical alkali activation method is used to improve the metal ion storage performance of the electrode material.
- MOH X metal hydroxide
- An electrochemical alkali activation method is used to improve the metal ion storage performance of the electrode material.
- Step 1) Activated cobalt or nickel-containing metal hydroxide nanomaterial as positive electrode, 20–50 mL of alkaline solution with a concentration of 1–5 g/L as electrolyte, by cyclic voltammetry, at 1 At a scan rate of –100mV s -1 , cyclically scan 1–50 times at a potential window of 0–(-0.1V) to 0–(-1.5V) for deactivation;
- the activated cobalt or nickel-containing metal hydroxide of step 1) or the deactivated cobalt or nickel-containing metal hydroxide of step 2) is used as a positive electrode, and 1–5 g/L
- the nitrate or sulfate electrolyte solution constitutes a multi-ion embedded supercapacitor for ion storage performance testing.
- the alkaline solution as the electrolyte described in the step 1) or 2) is one or more of KOH, NaOH, and LiOH.
- the cobalt-containing hydroxide used in the step 1) is one or more of Co(OH) 2 , CoNi-LDH, CoFe-LDH, CoAl-LDH, CoMn-LDH, and CoV-LDH.
- the nickel-containing hydroxide used in the step 1) is one or more of Ni(OH) 2 , NiFe-LDH, NiAl-LDH, NiMn-LDH, and NiV-LDH.
- the metal nitrate electrolyte used in the step 3) is: LiNO 3 , NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , Mg(NO 3 ) 2 or Zn(NO 3 ) 2 .
- the metal sulfate electrolyte used in the step 3) is: Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , MgSO 4 or ZnSO 4 .
- the invention has the advantages that the activation or deactivation treatment of the cobalt or nickel-containing hydroxide by a simple and rapid electrochemical alkali activation method realizes the storage capacity of the hydroxide electrode material for various metal cations.
- Intelligent regulation can be effectively applied to ion-embedded supercapacitors; it provides a new and more versatile method to greatly improve the energy storage performance of ion-embedded supercapacitor electrode materials; further broaden the transition metal hydroxide electrode The range of applications of materials in the field of energy storage.
- Figure 1 is a diagram showing the mechanism of electrochemical alkali activation and deactivation of a metal hydroxide in Example 1, and metal ion cation insertion and removal.
- Figure 2 is a cyclic voltammetry curve for the storage of different metal cations of cobalt iron hydrotalcite before and after electrochemical alkali activation treatment (represented by AA and BA, respectively) in Example 1.
- Figure 3 is a graph showing the charge and discharge curves of cobalt iron hydrotalcite for storage of different metal cations before and after electrochemical alkali activation treatment (represented by AA and BA, respectively) in Example 1.
- Figure 4 is an intelligently controlled cyclic voltammetry curve for lithium ion storage capacity of cobalt iron hydrotalcite treated by electrochemical alkali activation (denoted by AA) and deactivated (represented by DA) in Example 1.
- Fig. 5 is a graph showing the stability of the cobalt-iron hydrotalcite after the electrochemical alkali activation treatment in Example 1 after 10,000 consecutive charge and discharge tests.
- step b using the activated cobalt-hydrotalcite nano-array of step 1) as a positive electrode, by cyclic voltammetry, at a scanning rate of 100 mV s -1 , under a potential window of 0 - (-0.6 V), cyclic scanning 5 Deactivation treatment;
- the cobalt iron hydrotalcite subjected to the activation treatment or deactivation treatment in step 1) or 2) is used as a positive electrode at a concentration of 5 g/L of nitrate (LiNO 3 , NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , Mg(NO). 3 ) 2 , Zn(NO 3 ) 2 ) or sulfate (Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , MgSO 4 , ZnSO 4 ) electrolyte solution for ion storage performance test.
- nitrate LiNO 3 , NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , Mg(NO). 3 ) 2 , Zn(NO 3 ) 2
- sulfate Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , MgSO 4 , ZnSO 4
- step 1) using the activated cobalt-hydrotalcite nanocrystal array of step 1) as a positive electrode, cyclically scanning 10 by a cyclic voltammetry at a scanning rate of 50 mV s -1 at a potential window of 0 - (-0.5 V) Deactivation treatment;
- b using a cobalt hydroxide nano-array as a positive electrode, by cyclic voltammetry, at a scanning rate of 100 mV s -1 , under a potential window of 0 - 0.1 V, cyclic scanning 20 times, for activation treatment;
- step b using the activated cobalt oxide nano-array of step 1) as a positive electrode, cyclically scanning 10 by cyclic voltammetry at a scanning rate of 100 mV s -1 under a potential window of 0 - (-0.1 V) Deactivation treatment;
- the step 1) or 2) activated or deactivated cobalt hydroxide is used as the positive electrode at 5 g/L of nitrate (LiNO 3 , NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , Mg(NO). 3 ) 2 , Zn(NO 3 ) 2 ) or sulfate (Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , MgSO 4 , ZnSO 4 ) electrolyte solution for ion storage performance test.
- nitrate LiNO 3 , NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , Mg(NO). 3 ) 2 , Zn(NO 3 ) 2
- sulfate Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , MgSO 4 , ZnSO 4
- b using a nickel hydroxide nano-array as a positive electrode, by cyclic voltammetry, at a scanning rate of 1-100 mV s -1 , under a potential window of 0-0.1 V, cyclically scanning 5 times for activation treatment;
- step b using the activated nickel hydroxide nano-array of step 1) as a positive electrode, by cyclic voltammetry, at a scanning rate of 100 mV s -1 , under a potential window of 0 - (-0.1 V), cyclic scanning 5 Deactivation treatment;
- Step 1) or 2) Activated or deactivated nickel hydroxide is used as the positive electrode at 5 g/L of nitrate (LiNO 3 , NaNO 3 , KNO 3 , Ca(NO 3 ) 2 , Mg ( The ion storage performance test was carried out in an electrolyte solution of NO 3 ) 2 , Zn(NO 3 ) 2 ) or sulfate (Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4 , CaSO 4 , MgSO 4 , ZnSO 4 ).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
L'invention concerne un procédé de préparation d'un supercondensateur intégré à ions multiples avec activation alcaline électrochimique. Un procédé d'activation alcaline électrochimique simple et rapide est employé pour effectuer un traitement d'activation ou de désactivation sur un hydroxyde de métal de transition contenant du cobalt ou du nickel pour réaliser une régulation et une commande intelligentes des matériaux d'électrode à base d'hydroxyde sur la capacité de stockage de divers cations métalliques, et est appliqué à un supercondensateur intégré aux ions. L'invention concerne un procédé universel capable d'améliorer la capacité de stockage de matériaux d'électrode d'un supercondensateur intégré aux ions, et la plage d'application des matériaux d'électrode à hydroxyde de métal de transition est encore élargie dans le domaine du stockage d'énergie.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610922150.7A CN106409532B (zh) | 2016-10-21 | 2016-10-21 | 一种电化学碱活化法制备多离子嵌入式超级电容器的方法 |
CN201610922150.7 | 2016-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018072457A1 true WO2018072457A1 (fr) | 2018-04-26 |
Family
ID=58013108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/087852 WO2018072457A1 (fr) | 2016-10-21 | 2017-06-11 | Procédé de préparation d'un supercondensateur intégré à ions multiples avec activation alcaline électrochimique |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106409532B (fr) |
WO (1) | WO2018072457A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111575730A (zh) * | 2020-04-27 | 2020-08-25 | 大连理工大学 | 一种用于海水电解的整体式碳基电极的制备方法 |
CN113077990A (zh) * | 2021-03-17 | 2021-07-06 | 三峡大学 | 一种双电位区间活化提高Co(OH)2超级电容器性能的方法 |
CN113279009A (zh) * | 2021-04-28 | 2021-08-20 | 北京化工大学 | 一种具有空穴传输和助催化双功能光电催化界面的复合光阳极的制备方法 |
CN116741977A (zh) * | 2023-08-16 | 2023-09-12 | 中石油深圳新能源研究院有限公司 | 一种溶解沉积型锰氧化物正极材料及其制备方法和应用 |
CN117684202A (zh) * | 2024-02-02 | 2024-03-12 | 东华大学 | 一种表面修饰的析氧电催化剂及其制备方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106409532B (zh) * | 2016-10-21 | 2019-08-13 | 北京化工大学 | 一种电化学碱活化法制备多离子嵌入式超级电容器的方法 |
CN107369566A (zh) * | 2017-07-27 | 2017-11-21 | 桂林理工大学 | 一种超级电容器用钴镍水滑石电极材料的制备方法及应用 |
CN110346437B (zh) * | 2019-07-15 | 2022-03-15 | 北京工商大学 | 一种基于LDHs/MXene的电化学葡萄糖传感器及其制备和应用 |
CN111029172A (zh) * | 2019-12-31 | 2020-04-17 | 青岛科技大学 | 一种二维层状超级电容器电极材料Ti3C2 MXene的层间结构调控方法 |
CN112467077A (zh) * | 2020-11-29 | 2021-03-09 | 西北工业大学 | 有效增强多种过渡金属氧化物储电性能的普适性电化学改性制备方法 |
CN112928256A (zh) * | 2021-01-25 | 2021-06-08 | 北京化工大学 | 新型钠离子正极材料制备方法 |
CN113512737B (zh) * | 2021-04-01 | 2022-07-19 | 安徽大学 | 一种氢氧化镍电催化剂、制备方法、电化学活化方法及其应用 |
CN114360927B (zh) * | 2022-01-21 | 2022-09-09 | 重庆源皓科技有限责任公司 | 一种氢氧化镍电极材料的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101989499A (zh) * | 2009-07-29 | 2011-03-23 | 美国纳米股份有限公司 | 非对称电化学超级电容器及其制造方法 |
CN104779059A (zh) * | 2015-04-16 | 2015-07-15 | 电子科技大学 | 使用镍铝水滑石纳米材料作为正极材料的超级电容器 |
CN104795243A (zh) * | 2015-02-04 | 2015-07-22 | 三峡大学 | 一种非对称超级电容器及其制备方法 |
CN106409532A (zh) * | 2016-10-21 | 2017-02-15 | 北京化工大学 | 一种电化学碱活化法制备多离子嵌入式超级电容器的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102054590B (zh) * | 2009-11-10 | 2012-08-22 | 江苏海四达电源股份有限公司 | 一种高功率超级电容器关键部件镍正极制备技术 |
CN104637700A (zh) * | 2014-12-11 | 2015-05-20 | 许大任 | 一种超级电容器电极材料制备方法 |
-
2016
- 2016-10-21 CN CN201610922150.7A patent/CN106409532B/zh active Active
-
2017
- 2017-06-11 WO PCT/CN2017/087852 patent/WO2018072457A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101989499A (zh) * | 2009-07-29 | 2011-03-23 | 美国纳米股份有限公司 | 非对称电化学超级电容器及其制造方法 |
CN104795243A (zh) * | 2015-02-04 | 2015-07-22 | 三峡大学 | 一种非对称超级电容器及其制备方法 |
CN104779059A (zh) * | 2015-04-16 | 2015-07-15 | 电子科技大学 | 使用镍铝水滑石纳米材料作为正极材料的超级电容器 |
CN106409532A (zh) * | 2016-10-21 | 2017-02-15 | 北京化工大学 | 一种电化学碱活化法制备多离子嵌入式超级电容器的方法 |
Non-Patent Citations (3)
Title |
---|
SHAO, MINGFEI ET AL.: "Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications", CHEM. COMMUN., vol. 51, 8 October 2015 (2015-10-08), pages 15880 - 15893, XP055478400, ISSN: 1359-7345 * |
XIE, LIJING ET AL.: "CoxNi1−x double hydroxide nanoparticles with ultrahigh specific capacitances assupercapacitor electrode materials", ELECTROCHIMICA ACTA, vol. 78, 18 June 2012 (2012-06-18), pages 205 - 211, XP028931893, ISSN: 0013-4686 * |
ZHANG, LUOJIANG ET AL.: "High-performance hybrid supercapacitor with 3D hiera-rchical porous flower-like layered Double hydroxide grown on nickel foam as binder-free electrode", JOURNAL OF POWER SOURCES, vol. 318, 8 April 2016 (2016-04-08), pages 77, XP055478391, ISSN: 0378-7753 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111575730A (zh) * | 2020-04-27 | 2020-08-25 | 大连理工大学 | 一种用于海水电解的整体式碳基电极的制备方法 |
CN111575730B (zh) * | 2020-04-27 | 2022-08-19 | 大连理工大学 | 一种用于海水电解的整体式碳基电极的制备方法 |
CN113077990A (zh) * | 2021-03-17 | 2021-07-06 | 三峡大学 | 一种双电位区间活化提高Co(OH)2超级电容器性能的方法 |
CN113279009A (zh) * | 2021-04-28 | 2021-08-20 | 北京化工大学 | 一种具有空穴传输和助催化双功能光电催化界面的复合光阳极的制备方法 |
CN113279009B (zh) * | 2021-04-28 | 2022-05-27 | 北京化工大学 | 一种具有空穴传输和助催化双功能光电催化界面的复合光阳极的制备方法 |
CN116741977A (zh) * | 2023-08-16 | 2023-09-12 | 中石油深圳新能源研究院有限公司 | 一种溶解沉积型锰氧化物正极材料及其制备方法和应用 |
CN116741977B (zh) * | 2023-08-16 | 2024-01-26 | 中石油深圳新能源研究院有限公司 | 一种溶解沉积型锰氧化物正极材料及其制备方法和应用 |
CN117684202A (zh) * | 2024-02-02 | 2024-03-12 | 东华大学 | 一种表面修饰的析氧电催化剂及其制备方法 |
CN117684202B (zh) * | 2024-02-02 | 2024-05-31 | 东华大学 | 一种表面修饰的析氧电催化剂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106409532B (zh) | 2019-08-13 |
CN106409532A (zh) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018072457A1 (fr) | Procédé de préparation d'un supercondensateur intégré à ions multiples avec activation alcaline électrochimique | |
Xu et al. | Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries | |
CN106876682B (zh) | 一种具有多孔结构的氧化锰/镍微米球及其制备和应用 | |
CN111540610B (zh) | 一种用于超级电容器的电极材料及其制备方法和用途 | |
CN106057477B (zh) | 一种水系可充钠离子电容电池及其制备方法 | |
CN103545123A (zh) | 一种兼具锌离子电池和超级电容器的混合储能器件 | |
CN103490050A (zh) | 一种多孔石墨烯制备方法及制成产物的应用 | |
CN106450287B (zh) | 一种氟氧化铋/氢氧化镍二次碱性电池及其制备方法 | |
CN110010373B (zh) | 一种电极嵌锌处理方法及其在电池型超级电容器制备中的应用 | |
CN102903917A (zh) | 一种水溶液电解液可充电锌离子电池 | |
Du et al. | Core-shell structured Ni3S2@ VO2 nanorods grown on nickel foam as battery-type materials for supercapacitors | |
CN110615487A (zh) | 一种CoNiO2纳米花电极材料的制备方法 | |
CN103500822A (zh) | 炭改性纳米Li4Ti5O12与多孔石墨烯复合电极材料的制备方法 | |
CN103219503A (zh) | 一种复合电极材料及其制备方法 | |
CN106409528B (zh) | 一种ZnFe2O4纳米颗粒/炭纤维复合超级电容器电极材料及其制备方法 | |
Li et al. | High-loading cobalt-doped manganese tetroxide on carbon cloth as an electrode material for high-performance zinc ion hybrid capacitors | |
CN107316999B (zh) | 一种基于石墨烯复合的部分非晶化二氧化锡三维自组装锂离子电极材料及其制备方法 | |
JP4731979B2 (ja) | リチウムイオンキャパシタ | |
Song et al. | Facile synthesis of γ-MnO2/rice husk-based-activated carbon and its electrochemical properties | |
Zhou et al. | Synthesis and electrochemical performances of Co3O4/graphene as supercapacitor material | |
Xu et al. | Oxygen vacancies of NiMoO 4 nanoneedles on Ni foam for high-performance asymmetric supercapacitors | |
Wu et al. | High-capacity cathode for aqueous zinc-ion battery based on MnOx-modified bismuth vanadate | |
CN105024061B (zh) | 一种水系钠离子电池用尖晶石型锰基氧化物材料的制备方法 | |
CN202712363U (zh) | 一种镍锌碳动力蓄电池 | |
Zhao et al. | Cabbage-Like NiCo2S4/MoS2 Assemblies as Electrode Materials for Asymmetric Hybrid Capacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17862070 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17862070 Country of ref document: EP Kind code of ref document: A1 |