WO2018070542A1 - 2ピース缶胴の成形方法、その製造装置および2ピース缶胴 - Google Patents

2ピース缶胴の成形方法、その製造装置および2ピース缶胴 Download PDF

Info

Publication number
WO2018070542A1
WO2018070542A1 PCT/JP2017/037278 JP2017037278W WO2018070542A1 WO 2018070542 A1 WO2018070542 A1 WO 2018070542A1 JP 2017037278 W JP2017037278 W JP 2017037278W WO 2018070542 A1 WO2018070542 A1 WO 2018070542A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
wall
processing step
corner
center
Prior art date
Application number
PCT/JP2017/037278
Other languages
English (en)
French (fr)
Inventor
亮 米林
東 昌史
俊樹 野中
伸麻 吉川
吉田 亨
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2018526597A priority Critical patent/JP6458909B2/ja
Publication of WO2018070542A1 publication Critical patent/WO2018070542A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/12Cans, casks, barrels, or drums
    • B65D1/14Cans, casks, barrels, or drums characterised by shape

Definitions

  • the present invention relates to a can that improves the crushing performance and pressure resistance performance of the bottom of the can, a manufacturing method thereof, and a manufacturing apparatus.
  • beverage cans In the field of beverage cans, steel sheets for cans are required to have a thin plate thickness for the purpose of reducing can material costs and transport costs.
  • a two-piece can if the plate thickness is reduced while maintaining the same strength characteristics such as yield stress and tensile strength, the crush performance and pressure resistance of the can bottom will be insufficient, and the can bottom will be deformed when the can is filled with the contents.
  • the crushing performance and pressure resistance performance of the can bottom are said to be proportional to (strength) ⁇ (plate thickness) n , where n is a value of 1.0 or more and 3.0 or less, such as the shape or thickness of the can bottom. Varies depending on the conditions.
  • the crushing performance and pressure resistance performance of the bottom of the can is a function of strength and thickness, so if the thickness of the bottom of the can can be increased by using the deformation behavior during processing of the can, Various performances can be satisfied without an increase. Since it is technically difficult to increase the thickness of the entire bottom of the can only by the behavior during processing, the inventors specify the position of the bottom of the can that contributes to the crushing performance and pressure resistance, and the thickness at that position. The processing method to increase the thickness was found.
  • Patent Document 1 describes a processing method for providing a plate thickness difference near the opening of a can.
  • Patent Document 2 describes a processing method for controlling the plate thickness of the can body surface by swaging.
  • Patent Documents 3 and 4 describe a means for suppressing the flatness of the can bottom and variations in punching ability.
  • FIG. 1 is a cross-section of the bottom of the can. From the flat portion of the can center portion 10b, the center corner portion 10c, the annular recess 10d, the inner wall portion 10e, the grounding portion 10f, the outer wall portion 10g, the outer wall corner portion 10h, and the can barrel corner portion 10i. Is connected to the can body 10j to constitute the bottom of the can.
  • the central portion 10b of the can may not be flat but may bulge out to the inside of the can.
  • FIG. 2 and 3 show the general manufacturing process of the part from the can body to the bottom of the two-piece can.
  • a cup molded product 15 having a diameter larger than that of the final product can is formed from a circular material.
  • FIG. 3 the cup molded product 15 is set on a can-making machine to mold the can.
  • the can making machine is roughly divided into a redrawing step 20a, an ironing step 20b, a can bottom processing step 20d, and a can discharging step 20c.
  • the mold includes an upper mold 21, a plate holder 22 for a redrawing process, a die 23 for a redrawing process, a plurality of ironing molds 24, a lower mold 26 and a pad 27a for can bottom molding, and a stripper 25 for discharge.
  • the pad 27a is connected by a coil spring, a gas cylinder, or the like, so that the material can be pressed by holding the pad 27a with the upper die 21.
  • the lower die 26 may be connected to a coil spring or a gas cylinder in the same manner as the pad 27a. If connected to a coil spring or gas cylinder, when the upper die 21 returns from the bottom dead center to the top dead center, a reaction force causes the upward load on the molded product to easily discharge the molded product out of the machine. Become.
  • FIG. 4 Details of each process in the can manufacturing machine are shown in Figs.
  • the cup molded product 15 is reduced to the diameter of the final product.
  • the ironing process as shown in FIG. 5, the material passes between the upper die 21 and the ironing die 24, so that the can body is squeezed, the thickness of the can body is reduced, and the can body is stretched. Go.
  • a plurality of ironing dies 24 are provided.
  • the can bottom processing step as shown in FIG. 6, after the outer wall portion 10g, the outer wall corner portion 10h, and the can barrel corner portion 10j are pressed by the upper die 21 and the pad 27a, they are sandwiched between the upper die 21 and the lower die 26. A can bottom is formed.
  • the can discharging process as shown in FIG. 7, when the upper mold 21 returns to the upper side of the page, the stripper 25 is caught in the opening of the can and discharged from the can making apparatus.
  • FIG. 8 shows the distribution of the rate of change in the thickness of the plate manufactured by such a conventional processing method.
  • FIG. 8 (i) shows the position at which the plate thickness is measured
  • FIG. 8 (ii) shows the rate of change of the plate thickness with respect to the original thickness.
  • point A is the origin of the center of the can
  • point B is the center of the center corner 10c
  • point C is the vertex of the annular recess 10d
  • point D is the center of the inner wall 10e
  • point E is The apex of the ground contact portion 10f
  • the point F is the midpoint of the outer wall portion 10g
  • the point G is the midpoint of the outer wall corner portion 10h
  • the point H is the midpoint of the can barrel corner portion 10i.
  • Each name such as the center of the can and the center corner is the name as defined in FIG.
  • the material bites into the vertices of the annular recess 10 d and the ground contact portion 10 f, whereby tension is generated between the annular recess 10 d and the ground contact portion 10 f, and points A to F
  • the plate thickness is reduced until reaching the point, and in particular, the plate thicknesses at points C and E, which are the vertices of the curved portion, are greatly reduced. At points C and E, the plate thickness reduction rate at point C is larger.
  • JP 2008-132522 A WO09 / 019841 JP 2000-263170 A JP 2011-236885 A
  • the position of the bottom of the can that contributes to the crushing performance and pressure resistance performance in the two-piece can is specified, and the thickness of that portion is increased during processing to improve the crushing performance and pressure resistance performance of the can bottom.
  • And its manufacturing method and manufacturing apparatus is specified, and its manufacturing method and manufacturing apparatus.
  • the pressure resistance performance is evaluated by evaluating the bulging amount 33 when the internal pressure 30 is applied to the bottom of the can in a state where the vertical movement of the opening end 32 of the can is constrained, and the relationship between the bulging amount and the internal pressure.
  • FIG. Condition 5 in which only the inner wall portion 10e is thickened and Condition 6 in which only the grounding portion 10f is thickened have a smaller bulge amount and higher pressure resistance than the conditions 2 other than the condition 2 in which the entire can bottom is thickened.
  • the condition 6 in which only the grounding portion 10f is thickened is thinner in the pressure resistance than the condition 2 in which the plate thickness of all the can bottoms is increased, and the portion contributing to the pressure resistant performance is the grounding portion 10f. I understand.
  • FIG. 12 shows the relationship between load and displacement when pressed.
  • Condition 6 in which only the ground contact portion 10f is thickened has a higher load and higher crushing performance than conditions other than condition 2 in which the entire can bottom is thickened.
  • Condition 6 is closer to the load than condition 2 in which the plate thickness of all the can bottoms is increased, and it can be seen that the part contributing to the crushing performance is the ground contact portion 10f.
  • the position contributing to the pressure resistance performance and the crushing performance is the grounding portion 10f. If only the position of the grounding portion 10f is a thick can bottom structure, the pressure resistance performance and crush performance can be improved without increasing the weight of the can.
  • a processing method and a manufacturing apparatus for increasing the thickness of the ground contact portion during the processing of the can bottom have been devised.
  • the machining method is a method capable of machining by only one-way reciprocating motion as in a general press device without using a special rotation mechanism or a multi-axis control mechanism.
  • FIG. 13 shows a basic mechanism for increasing the thickness of the grounding portion 10f.
  • the mold for processing the bottom of the can includes the upper mold 21, the pad 27a capable of pressing from the outer wall to the corner of the can body, and the pad capable of pressing from the center of the can to the inner wall through the annular recess. 27b, and a lower mold 27c that can hold the grounding portion.
  • the pad 27a and the pad 27b are connected by a coil spring, a gas cylinder, or the like, and the material can be pressed by the upper mold 21.
  • the mold structure is configured to be held by the pads 27a and 27b before contacting the lower mold 27c.
  • the lower die 27c can obtain the same effect even when connected to a coil spring or a gas cylinder in the same manner as the pad 27a and the pad 27b.
  • the bottom of the can is processed into a preliminary shape so that sagging can be created, and the slack is crushed in the second half of the main processing process to increase the plate thickness of the grounding part. It is a method of processing the bottom.
  • FIG. 14 and FIG. 15 show the pre-processing step 42 in the first half
  • FIGS. 16 and 17 show the main processing step in the second half
  • the first half of the pre-processing step includes a redrawing step 42a, an ironing step 42b, a can bottom pre-processing step 42d, and a can discharging step 42c.
  • 3 is different from the conventional mold configuration in that the pre-processed upper mold 43, the pre-processed lower mold 44d, and the pre-processed pad 44e are different from the conventional upper mold 21 in the depth between the center portion of the can and the grounding portion. As a result, the contact groove 10k is deep.
  • the redrawing process 42a and the ironing process 42b are the same as the conventional processing method of FIG.
  • the initial cup diameter is reduced to the product diameter by redrawing, and the plate thickness of the can body portion is reduced by ironing.
  • the can bottom pre-processing step 42d as shown in FIG. 15, after the pre-processed upper die 43 and the pre-processing pad 44e are finally pressed to the positions of the outer wall portion, the outer wall corner portion, and the can body corner portion, A preliminary shape of the bottom of the can is formed by being sandwiched between the processing upper die 43 and the pre-processing lower die 44d.
  • the pre-processed lower mold 44d may be connected to a mechanism that generates a reaction force such as a spring or a gas cushion so that the molded product can be easily discharged out of the machine after the processing is completed.
  • the latter half of the main processing step 46 includes an upper mold 21 having the same shape as the product bottom, a pad 27a, a pad 27b, a lower mold 27c, and a stripper 25. Molding is started by placing the molded product 45 of the pre-processing step on the stripper 25. As shown in FIG. 17, since the grounding portion is formed deeply in the first half of the process, sagging occurs in the vicinity of the grounding portion similar to FIG. 11 when the material is pressed by the pads 27 a and 27 b. If the upper mold
  • the lower mold 27c may be connected to a mechanism that generates a reaction force such as a spring or a gas cushion so that the molded product can be easily discharged outside the machine after the processing is completed.
  • the present invention has been completed on the basis of the above-mentioned knowledge.
  • the method for manufacturing a can for increasing the plate thickness of the grounding portion described in the following items 1 to 7, the manufacturing apparatus described in the following items 8 to 13, and the following 14 The gist of the shape of the can bottom of items 16 to 16.
  • the can bottom for the molded product in the pre-processing step it is sandwiched between the outer wall and the can body corner, and between the center of the can and the inner wall through the annular recess and the upper mold.
  • a can bottom processing step including a ground contact portion thickening step of crushing and thickening the ground groove portion of the can bottom deeper than the ground groove portion of the can bottom at the time of completion of the molding by the lower mold;
  • a can discharging process for discharging the molded can out of the can manufacturing apparatus
  • the line length X from the center of the can bottom of the upper mold to the corner of the can body in the pre-processing step
  • the line length Y from the center of the top of the upper mold of the can bottom processing process to the corner of the can body
  • a method for forming a two-piece can body comprising using a pre-process upper mold in a pre-process that satisfies the following formula (1) and an upper mold in a can bottom processing process.
  • the apex of the ground groove after completion of the pre-processing step of the ground groove is positioned outside the can from the apex of the annular recess of the pad that forms from the center of the can through the annular recess to the inner wall in the can bottom processing step. 2.
  • the apex of the ground groove after completion of the ground groove pre-processing step is the inner peripheral side wall of the pad that forms from the outer wall portion to the can body corner in the can bottom processing step, and the can in the can bottom processing step. 3.
  • processing is performed so that a vertex of the grounding groove after completion of the pre-machining step of the grounding groove coincides with a vertex of the grounding part of the can body of the final product.
  • F1 K1 ⁇ La ⁇ t ⁇ TS (3)
  • F2 K2 ⁇ Lb ⁇ t ⁇ TS (4) K1 ⁇ 12 (5) K2 ⁇ 12 (6)
  • the strength of the material is TS (MPa)
  • the original plate thickness of the material is t (mm)
  • the line length from the outer wall part after the can body molding to the can body corner through the outer wall corner part is La (mm)
  • the line length from the central corner portion after the can body molding to the inner wall portion through the annular recess is defined as Lb (mm).
  • a manufacturing apparatus for forming a can body of a two-piece can At least a pre-processed upper mold, a pre-processed lower mold, and a pre-processed pad are provided in the cup molding process for molding a cup molded product having a diameter larger than the final product can.
  • the redrawing process for reducing the cup molded product to the final product diameter includes at least an upper die, a redrawing punch, and a redrawing die.
  • the can body is then squeezed to reduce and extend the thickness of the can body, and the staking process includes one or more ironing molds
  • the staking process includes one or more ironing molds
  • the pre-processing step of the ground groove portion of the can bottom at least a pre-processing upper die is provided so that the ground groove portion of the can bottom is deeper than the ground groove portion of the can bottom when the molding is completed
  • the bottom of the can bottom including the grounding portion thickening step, is a lower mold that crushes and thickens the grounding groove portion of the bottom of the can deeper than the grounding groove portion of the can bottom, and the inner wall portion through the annular recess from the center portion of the can bottom
  • a stripper is included in the can discharge process for discharging the molded can body out of the can making device, Furthermore, the line length X from the center of the can bottom of the pre-processing upper mold to the corner of the can body, In the pre-processing upper mold
  • the apex of the ground groove after completion of the pre-processing step of the ground groove is positioned outside the can from the apex of the annular recess of the pad that forms from the center of the can through the annular recess to the inner wall in the can bottom processing step.
  • the top of the ground groove after completion of the pre-machining process of the ground groove is the inner peripheral side wall of the pad that forms the can body corner to outer wall in the can bottom machining process, and the center of the can in the can bottom machining process.
  • a pre-processed upper die that is located between the top and the top of the annular recess of the pad that forms the inner recess through the annular recess, and crushes and increases the thickness of the ground groove on the bottom of the can that is deeper than the ground groove on the bottom of the can Item 8 or 9, wherein the lower mold, a pad for molding from the center of the can bottom to the inner wall through an annular recess, and a pad for molding from the outer wall of the can bottom to the corner of the can body A manufacturing apparatus for forming the two-piece can body described above.
  • a pre-processed upper mold in which the apex of the ground groove after completion of the pre-processing step of the ground groove coincides with the apex of the ground part of the can body of the final product, and a ground groove on the bottom of the can that is deeper than the ground groove on the can bottom.
  • the manufacturing apparatus which shape
  • a two-piece can body characterized in that the thickness of the ground contact portion of the bottom of the can after molding the can body is thicker than the thickness of the material before processing.
  • the line length x from the center of the bottom of the can body to the corner of the can body after completion of the pre-processing step and the line from the center of the bottom of the can body to the corner of the can body after the processing of the can bottom A two-piece can body characterized in that the length y satisfies the range of the following formula (9). 1.00y ⁇ x ⁇ 1.12y (9)
  • the pressure resistance and crushing performance can be improved without increasing the thickness of the material.
  • a large work hardening is added to the portion where the plate thickness of the grounding portion is increased, and the strength of the can bottom increases.
  • the position between the pad 27a, the pad 27b, and the upper die 21 is set as the grounding portion.
  • the thickness of the ground contact portion 10f is increased.
  • the amount and thickness of the ground contact portion 10f that are finally increased are governed by the shape of the molded product 45 in the pre-processing step. Below, the influence which the shape of the molded product 45 of a pre-processing process has on the plate
  • the apex 51 of the ground groove portion is located at a position close to the outside of the can from the inner peripheral side wall 55 of the pad 27a, a defect such as wrinkle does not occur, but in the latter half of the main machining process as shown in FIG.
  • the material hits the portion of the pad 27a that becomes the outer wall corner portion 57, it is difficult for sagging to occur at the position of the grounding portion, and there is a case where the thickness is not increased sufficiently.
  • the apex 51 of the ground groove in the pre-processing step is located between the inner peripheral wall 55 of the pad 27a and the apex 52 of the annular recess of the pad 27b, the state shown in FIG. In this processing step 46, a slack 40 is generated around the grounding portion, and a sufficient thickness increasing effect is obtained. Furthermore, it is desirable that the apex 61 of the grounding portion of the upper die 21, in other words, the position of the apex of the grounding portion of the product molded in this processing step and the apex 51 of the grounding groove portion be matched. This is because in order to increase the thickness of the ground contact portion in the latter half of the main processing step 46, it is better to collect the material at that position in the pre-processing step 42.
  • the position of the apex 51 of the grounding groove portion in the pre-processing step needs to be positioned outside the can from the apex 52 of the annular recess of the pad 27b, and preferably the annular shape of the inner peripheral side wall 55 of the pad 27a and the pad 27b. This is the position between the vertices of the recess 52.
  • the apex 61 of the grounding part of the upper die 21 in other words, the position 51 of the apex of the grounding part and the apex of the grounding groove part of the product molded in this processing step is matched.
  • the length of the slack 40 when it is pressed by the pad 27a and the pad 27b in the latter main processing step 46 is important.
  • the slack 40 is the excess material when pressed by the pads 27a and 27b, and the line length X (from the center of the bottom of the pre-processed upper mold 41 to the corner of the can body in FIG.
  • the relationship between the ratio of the wire lengths X and Y of the pre-processed upper die 41 and the upper die 21 from the center of the can to the can body and the increase rate of the thickness of the ground contact portion with respect to the original thickness of the material was investigated.
  • the material is shown in FIG. 22 when the plate thickness is 0.15 mm and the strength is 460 MPa.
  • the wire length X of the pre-processed upper die 41 needs to be more than 1.00 times and 1.12 times shorter than the wire length Y of the upper die 21.
  • the line length ratio is larger than 1.12 times, buckling 75 occurs in the slack 40 when the crushing is performed as shown in FIG.
  • the ratio of the line length of the pre-processed upper mold 41 to the upper mold 21 must be more than 1.00 times and not more than 1.12 times, and is preferably in the range of 1.07 times to 1.12 times.
  • the distribution of the thickness of the bottom of the can in the invented method is shown in FIG.
  • the result of the invented method is the result when the wire length X of the pre-processed upper die 41 is 6.5% larger than the wire length Y of the upper die 21.
  • Points A to H are as shown in FIG.
  • the plate thickness is greatly increased from the center of the can to the ground contact portion.
  • the thickness of the point E which is the apex of the ground contact portion 10f, is larger than the thickness of the other portions such as the point A at the center of the can, the point D at the inner wall, and the point F at the outer wall, It is larger than the thickness of the material before processing.
  • the thickness of the grounding portion at the completion of molding (final product) (the grounding portion 10f) is changed by changing the depth of the grounding groove portion of the can bottom formed by the pre-processed upper die. It is possible to adjust the thickness of the point E, which is the apex of.
  • the plate thickness of the grounding portion is preferably increased by 5% or more, more preferably 8% or more, more preferably 10% or more compared to the plate thickness of the material before processing.
  • the thickness of the point E, which is the apex of the ground contact portion 10f is increased by 23% compared to the original thickness (that is, the thickness is 123% of the thickness of the material before processing). )
  • there is no problem in the processed can because there is no position where the plate thickness is greatly reduced from the conventional method 20 and it is uniform in the circumferential direction.
  • the invented processing method produces 0.40, that is, 1.7 times the strain.
  • the hardness is 1.26 times that of the base material in the conventional construction method, but is 1.34 times in the invention construction method, and can be hardened.
  • the strength of the material is TS
  • the original plate thickness of the material is t
  • the line length from the product can bottom to the outer wall portion 10g, the outer wall corner portion 10h, and the can barrel corner portion 10i is La
  • the line length to reach the central corner, the annular recess, and the inner wall is Lb.
  • the plate thickness of the material is 0.15 mm and the strength is 460 MPa
  • the range of the load where the slack does not flow out is the range painted in gray in FIG. 25, and it is desirable that K1 ⁇ 12 and K2 ⁇ 12.
  • An important factor for increasing the thickness of the grounding portion 10f is the coefficient of friction of the mold surface.
  • the coefficient of friction of the mold surface In order to increase the thickness of the ground contact portion, it is necessary to prevent the ground portion from flowing out to the outer wall portion and the inner wall portion side when the slack is crushed. In order not to flow out, the movement of the material can be suppressed by increasing the coefficient of friction by providing an uneven surface on the surface of the mold.
  • type 21, the pad 27a, and the pad 27b are 0.05-0.4. The results showing the effect of the friction coefficient are shown in FIG. When the friction coefficient becomes 0.05 or more, the outflow starts to be suppressed.
  • the thickness increase rate increases, and when the friction coefficient is 0.1 or more, the thickness increase rate becomes constant.
  • the coefficient of friction of the mold is larger than 0.4, the roughness of the mold surface increases, and there is a concern that the product may wrinkle when the material slides on the mold during processing.
  • This processing method can be applied to steel plates having a plate thickness of 0.08 mm to 0.30 mm and aluminum plates having a plate thickness of 0.15 mm to 0.45 mm, which are general metal plates for cans.
  • plating treatment such as thin chrome plating or tin plating
  • the resin film is coated, it is applicable even when the plated film is coated with the resin film.
  • Comparative Example 1 Using a steel plate for cans having a tensile strength of 350 MPa and a plate thickness of 0.23 mm, a two-piece can was manufactured by a conventional processing method shown below. First, a cup molded product 15 having a diameter larger than that of the final product can was manufactured. After the cup molded product 15 was redrawn to reduce the diameter to the final product diameter, the can body was squeezed to reduce the plate thickness of the can body and extend it. The inner diameter of the can was reduced to ⁇ 53 mm by redrawing, and the thickness of the can body was reduced from 0.23 mm to 0.08 mm by squeezing the can body.
  • the cup molded product 15 is manufactured, redrawn and ironed, and then the can bottom is formed into a product shape, there is no pre-processing step 42. Therefore, since the line length X of the pre-process upper die 41 cannot be defined, the ratio between the line length X and the line length Y cannot be defined.
  • the plate thickness of the ground contact portion of the obtained can bottom was 0.218 mm, which was 0.95 times smaller than the plate thickness of the material before processing.
  • Example 1 A two-piece can was manufactured by a method according to the present invention using a steel plate for a can having a tensile strength of 350 MPa and a thickness of 0.23 mm.
  • a cup molded product 15 having a diameter larger than that of the final product can was manufactured.
  • the can body was squeezed to reduce the plate thickness of the can body and extend it.
  • the inner diameter of the can was reduced to ⁇ 53 mm by redrawing, and the thickness of the can body was reduced from 0.23 mm to 0.08 mm by squeezing the can body.
  • pre-processing is performed by the pre-process upper die 43 having a shape such that the ground groove portion of the can bottom becomes deeper than the ground groove portion of the can bottom when the molding is completed.
  • the processed product that has undergone the pre-processing step 42 is pressed with a pad 27a that forms from the outer wall to the corner of the can body, and a pad 27b that forms from the center of the can and from the center of the can to the inner wall through the annular recess.
  • the grounding groove on the bottom of the can is crushed to increase the thickness of the grounding portion 10f.
  • FIG. 28 shows the cross-sectional shape of the bottom of the can obtained when crushed.
  • the can was discharged from the mold.
  • the wire length X of the pre-processed upper mold 43 corresponding to the line length from the center of the molded product to the corner of the can body after completion of the pre-processing step 42 and the molded product after completion of the main processing step 46 are obtained.
  • X is set to 1.07 times Y.
  • the plate thickness of the ground contact part at the bottom of the can of the obtained processed product was 0.276 mm, which was 1.20 times larger than the plate thickness of the material before processing.
  • the plate thickness of the grounding portion 10f does not increase, but in the method of the present invention, the plate thickness of the grounding portion increases from the plate thickness before processing.
  • Comparative Example 2 A can was produced by the same processing method as in Example 1. However, the line length X of the pre-processed upper die 43 corresponding to the line length from the center of the molded product after completion of the pre-processing step 42 to the corner of the can body and the center of the molded product after completion of the main processing step 46 As for the line length Y of the upper die 21 corresponding to the length from the section to the can body corner, X is 1.16 times Y.
  • Comparative Example 3 The can bottom was pre-processed with the apex 51 of the grounding groove after completion of the pre-process in Example 1 positioned 15 mm from the center axis of the can.
  • the apex 51 of the grounding groove is located on the inner side of the can than the apex 52 of the annular recess of the pad 27b in the can bottom processing step.
  • the bottom of the can is pressed with a pad 27a that forms from the outer wall to the corner of the can body and a pad 27b that forms from the center of the can through the annular recess to the inner wall.
  • the ground contact groove was crushed to increase the thickness of the ground contact.
  • the wire length X of the pre-processed upper mold 43 corresponding to the line length from the center of the molded product to the corner of the can body after completion of the pre-processing step 42 and the molded product after completion of the main processing step 46 are obtained.
  • X is set to 1.07 times Y.
  • Example 2 The can bottom was pre-processed with the apex 51 of the ground groove after completion of the pre-process in Example 1 at a position 25.5 mm from the center axis of the can.
  • the apex 51 of the grounding groove is located outside the can from the inner peripheral wall 55 of the pad 27a, and is located from the outer wall to the can barrel corner.
  • the bottom of the can is pressed with a pad 27a that forms from the outer wall to the corner of the can body and a pad 27b that forms from the center of the can through the annular recess to the inner wall.
  • the ground contact groove 10f was crushed to increase the thickness of the ground contact portion 10f.
  • the wire length X of the pre-processed upper mold 43 corresponding to the line length from the center of the molded product to the corner of the can body after completion of the pre-processing step 42 and the molded product after completion of the main processing step 46 are obtained.
  • X is set to 1.07 times Y.
  • the plate thickness of the ground contact portion 10f at the bottom of the can of the obtained processed product was 0.251 mm, which was 1.09 times larger than the plate thickness of the material before processing.
  • Example 3 Pre-processing 42 of the can bottom was performed with the vertex 51 of the contact groove after completion of the pre-processing step in Example 1 being 22 mm from the center axis of the can.
  • the apex 51 of the grounding groove portion includes an inner peripheral wall 55 of the pad 27a that forms from the outer wall portion to the can barrel corner portion in the can bottom processing step, and a central corner portion to an annular shape in the can bottom processing step. It is located between the concave portion and the apex 52 of the annular concave portion of the pad 27b forming the inner wall portion.
  • the plate thickness of the ground contact part at the bottom of the can of the obtained processed product was 0.267 mm, which was 1.16 times larger than the plate thickness of the material before processing.
  • the rate of increase in the thickness of the ground contact portion is improved when it is between 55 and the apex 52 of the annular recess of the pad 27b that forms from the center of the can through the annular recess to the inner wall in the can bottom processing step.
  • Example 4 The can bottom was pre-processed with the apex 51 of the grounding groove after completion of the pre-process in Example 1 at a position 23.5 mm from the center axis of the can.
  • the apex of the grounding groove is located at the apex 61 of the grounding part of the upper mold 21 in the main machining process, and corresponds to the apex of the grounding part of the product molded in the main machining process.
  • the bottom of the can is pressed with a pad 27a that forms from the outer wall to the corner of the can body and a pad 27b that forms from the center of the can through the annular recess to the inner wall.
  • the ground contact groove 10f was crushed to increase the thickness of the ground contact portion 10f.
  • the wire length X of the pre-processed upper mold 43 corresponding to the line length from the center of the molded product to the corner of the can body after completion of the pre-processing step 42 and the molded product after completion of the main processing step 46 are obtained.
  • X is set to 1.07 times Y.
  • the plate thickness of the ground contact part at the bottom of the can of the obtained processed product was 0.276 mm, which was 1.2 times larger than the plate thickness of the material before processing.
  • the inner peripheral side wall of the pad 27a in which the apex 51 of the ground groove after the pre-processing step is completed forms from the outer wall portion to the can barrel corner portion in the can bottom processing step.
  • the plate thickness of the grounding portion becomes thicker under the condition located at the top of the portion (the vertex 61 of the grounding portion of the upper mold 21 of this processing step).
  • Example 5 As in Example 4, the can bottom was pre-processed with the apex 51 of the grounding groove after completion of the pre-process being located at a position 23.5 mm from the center axis of the can.
  • the apex of the grounding groove is located at the apex 61 of the grounding part of the upper mold 21 in this processing step.
  • the pre-processed product is pressed with a pad 27a that forms the outer wall portion to the corner of the can body, and a pad 27b that forms from the center portion of the can through the annular recess to the inner wall portion.
  • the grounding groove portion was crushed to increase the thickness of the grounding portion 10f.
  • the wire length X of the pre-processed upper mold 43 corresponding to the line length from the center of the molded product to the corner of the can body after completion of the pre-processing step 42 and the molded product after completion of the main processing step 46 are obtained.
  • X is 1.05 times, 1.07 times, and 1.09 times Y.
  • the plate thickness of the ground contact part at the bottom of the can of the obtained processed product was 0.251 mm when X was 1.05 times Y, and was 1.09 times thicker than the original plate thickness.
  • X was 1.07 times Y, it was 0.276 mm, which was 1.2 times the original plate thickness.
  • X was 1.09 times Y, it was 0.302 mm, which was 1.31 times thicker than the original plate thickness of the material.
  • X is 1.07 times or more of Y in order to increase the thickness of the grounding portion more easily as X is larger and to be 1.2 times or more thicker than the original plate thickness of the material. Further, as in Comparative Example 2, when X is 1.12 times Y or more, molding becomes impossible.
  • Example 6 As in Example 4, the can bottom was pre-processed with the apex 51 of the grounding groove after completion of the pre-process being located at a position 23.5 mm from the center axis of the can. In this case, the apex of the grounding groove is located at the apex 61 of the grounding part of the upper mold 21 in this processing step.
  • the bottom of the can is pressed with a pad 27a that forms from the outer wall to the corner of the can body and a pad 27b that forms from the center of the can through the annular recess to the inner wall.
  • the ground contact groove 10f was crushed to increase the thickness of the ground contact portion 10f.
  • the wire length X of the pre-processed upper mold 43 corresponding to the line length from the center of the molded product to the corner of the can body after completion of the pre-processing step 42 and the molded product after completion of the main processing step 46 are obtained.
  • X is set to 1.07 times Y.
  • F1, F2) (10900N, 7270N)
  • (K1, K2) (13, 13)
  • (F1, F2) (8390N, 1260N)
  • (K1, K2) (15, 15 )
  • (F1, F2) (4470N, 1260N)
  • K1, K2) (8, 15)
  • F1, F2) (8390N, 6710N)
  • K1, K2) (15 8).
  • the strength of the material is TS (MPa), the original plate thickness is t (mm), the line length from the outer wall part to the outer wall corner part to the can body corner is La (mm), the central corner part to the annular recess to the inner wall The line length to reach the part is Lb (mm).
  • (K1, K2) (15, 15)
  • (K1, K2) (8, 15)
  • Example 7 As in Example 4, the can bottom was pre-processed with the apex 51 of the grounding groove after completion of the pre-process being located at a position 23.5 mm from the center axis of the can. In this case, the apex of the grounding groove is located at the apex 61 of the grounding part of the upper mold 21 in this processing step.
  • the bottom of the can is pressed with a pad 27a that forms from the outer wall to the corner of the can body and a pad 27b that forms from the center of the can through the annular recess to the inner wall.
  • the ground contact groove 10f was crushed to increase the thickness of the ground contact portion 10f.
  • the wire length X of the pre-processed upper mold 43 corresponding to the line length from the center of the molded product to the corner of the can body after completion of the pre-processing step 42 and the molded product after completion of the main processing step 46 are obtained.
  • X is set to 1.07 times Y.
  • the plate thickness of the ground contact portion is 0.252 mm, which is 1.1 times the original plate thickness of the material.
  • the plate thickness of the ground contact portion is 0.272 mm, which is 1.18 times the original plate thickness of the material.
  • the plate thickness of the ground contact portion is 0.276 mm, which is 1.2 times the original plate thickness of the material.
  • the plate thickness of the ground contact portion is 0.277 mm, which is 1.2 times the original plate thickness of the material.
  • the friction coefficient was 0.45, the plate thickness of the ground contact portion was 0.277 mm, which was 1.2 times the original plate thickness of the material, but wrinkles appeared on the surface of the can.
  • the larger the friction coefficient the thicker the thickness of the ground contact portion, and preferably 0.05 or more.
  • the friction coefficient is larger than 0.4, wrinkles are likely to appear, so 0.4 or less is preferable.
  • the present invention can be applied to a can, particularly a two-piece can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

本発明は、2ピース缶において、缶用鋼板の板厚を薄くした際に圧潰性能や耐圧性能の低下を抑制するために、圧潰性能や耐圧性能に寄与する缶底の位置を特定し、加工中にその位置の板厚を厚くすることで、缶底の圧潰性能や耐圧性能を向上させる缶、および、その製造方法、製造装置を提供する。 そのため、圧潰性能や耐圧性能に及ぼす缶底の各位置の寄与度を評価し、缶底のうち接地部が各性能に寄与することを明らかにした。接地部の板厚を厚くする加工方法として、予加工工程で缶底の接地溝部が成形完了時の缶底の接地溝部より深くなるような形状に成形した後に、本加工工程で缶胴コーナー部~外壁部、および、缶中央部から環状凹部を経て内壁部までを形成するパッドと上型で挟持して接地部に生じる材料のたるみを下型で押潰す加工方法を特徴とする。

Description

2ピース缶胴の成形方法、その製造装置および2ピース缶胴
 本発明は、缶底の圧潰性能や耐圧性能を向上させる缶、および、その製造方法、製造装置に関する。
 飲料缶の分野においては、缶の素材費や輸送費の低減を目的として、缶用鋼板は板厚を薄くすることが求められている。飲料缶は、缶の上蓋および缶胴から缶底までが一体となった部分の2つに分かれた2ピース缶と、上蓋、缶胴、下蓋の3つに分かれた3ピース缶の2つに分類される。2ピース缶では、降伏応力や引張強度などの強度の特性を同じまま板厚を低下させると、缶底部の圧潰性能や耐圧性能が不足し、缶に内容物を充填した際に缶底が変形したり、ホットコーヒーなど缶を加熱した際に溶液が膨張して缶底が変形したり、輸送中などに衝撃が加わり変形するという課題がある。一般に、缶底の圧潰性能や耐圧性能は(強度)×(板厚)に比例すると言われており、nは1.0以上3.0以下の値であり缶底の形状や板厚などの条件によって変化する。
 缶用鋼板を薄肉化した場合には、鋼板の強度を向上させることで缶底部の諸性能を満たしてきた。しかし、強度を増大させると、延性が低下したり、異方性が大きくなる場合がある。このため、缶の製造時に、割れやしわなどの不良現象が起きることが懸念される。
 先述の通り、缶底部の圧潰性能や耐圧性能は強度と板厚の関数であるため、缶の加工中の変形挙動を利用して缶底の板厚を厚くすることができれば、強度の急激な増加を伴うことなく諸性能を満たすことができる。加工中の挙動だけで缶底全体の板厚を厚くすることは技術的に困難であるので、発明者らは圧潰性能や耐圧性能に寄与する缶底の位置を特定し、その位置の板厚を厚くする加工方法を知見した。
 このような試みについて、過去の文献を調べた。特許文献1には、缶の開口部近傍に板厚差を与える加工方法が記載されている。特許文献2には、スエージング加工によって缶胴面の板厚を制御する加工方法が記載されている。特許文献3や特許文献4には、缶底の平坦度や打検性のバラつきを抑制する手段に関するものが記載されている。しかし、缶の加工中に接地部の板厚を厚くする方法に関するものはなかった。
 次に、2ピース缶の缶胴から缶底までの部分の一般的な缶の製造工程を以下に記す。説明を簡便にするため、缶底の各位置の名称を図1内に示す通りとする。図1は缶底の断面であり、缶中央部10bの平坦な部分から中央コーナー部10c、環状凹部10d、内壁部10e、接地部10f、外壁部10g、外壁コーナー部10h、缶胴コーナー部10iから缶胴部10jに接続されたもので缶底は構成される。缶の種類によっては、缶中央部10bが平坦ではなく缶の内側へ凸に膨らんでいる場合もある。
 2ピース缶の缶胴から缶底までが一体となった部分の一般的な製造工程を図2と図3に示す。まず、図2のように円形の素材から最終製品の缶よりも径が大きなカップ成形品15を成形する。次に、図3のようにカップ成形品15を製缶加工機にセットして缶を成形する。製缶加工機は大きく分けて、再絞り工程20a、しごき加工工程20b、缶底の加工工程20d、缶の排出工程20cに分けられる。金型は、上型21、再絞り工程の板押さえ22、再絞り工程のダイス23、複数のしごき型24、缶底成形用の下型26とパッド27a、排出用のストリッパー25から構成される。パッド27aはコイルスプリングやガスシリンダなどで接続されることで、上型21と挟持することで素材を押さえることが出来る。また、下型26もパッド27aと同様にコイルスプリングやガスシリンダと接続した場合もある。コイルスプリングやガスシリンダと接続していれば、下死点から上死点に上型21が戻る際に、反力で成形品に紙面上方向の荷重が働き成形品を機外へ排出しやすくなる。
 製缶加工機での各工程の詳細を図4~図7に示す.再絞り工程では、図4のように、カップ成形品15を最終製品の直径まで縮径を行う。しごき加工工程では、図5のように、上型21としごき金型24の間を素材が通過することで、缶胴がしごかれて缶胴の板厚を減少し缶胴が伸ばされていく。通常、しごき金型24は複数個設けられる。缶底の加工工程では、図6のように、上型21とパッド27aによって外壁部10g、外壁コーナー部10h、缶胴コーナー部10jが押さえられた後に、上型21と下型26に挟持されることで缶底が形成される。最後に、缶の排出工程は、図7のように、上型21が紙面上側へ戻っていく際に、缶の開口部にストリッパー25が引っかかり製缶装置から外へ排出される。
 このような従来加工方法で製作された板厚の変化率の分布を図8に示す。図8(i)は板厚を測定した位置であり、図8(ii)は元厚に対する板厚の変化率を表す。板厚を測定した位置は、点Aは缶中央部の原点、点Bは中央コーナー部10cの中点、点Cは環状凹部10dの頂点、点Dは内壁部10eの中点、点Eは接地部10fの頂点、点Fは外壁部10gの中点、点Gは外壁コーナー部10hの中点、点Hは缶胴コーナー部10iの中点である。缶中央部や中央コーナー部などの各名称は、図1で定義した通りの名称である。
 下型26と上型21で挟持される際に、環状凹部10dと接地部10fの頂点に材料が食い込むことで、環状凹部10dと接地部10fの間に張力が生じて、点Aから点Fに至るまでが板厚を減少し、特に湾曲部の頂点となる点Cと点Eの板厚は大きく減少する。点Cと点Eでは、点Cの板厚減少率のほうが大きい。
特開2008―132522号公報 WO09/019841号公報 特開2000-263170号公報 特開2011-236885号公報
 本発明では、2ピース缶において圧潰性能や耐圧性能に寄与する缶底の位置を特定し、加工中にその部分の板厚を厚くすることで、缶底の圧潰性能や耐圧性能を向上させる缶、および、その製造方法、製造装置を提供する。
 上記の課題を解決するため、本発明者は次の検討を行った。
 まず、耐圧性能や圧潰性能に寄与する缶底の位置を特定するため、表1のように缶底の各部位に板厚の分布を与えた缶底と缶胴から構成される部分的な解析モデルにて、2次元の軸対称の有限要素法解析(以下、FEMと称する)により各性能を評価した。缶底の各部位の名称は図1で定義した通りである。
Figure JPOXMLDOC01-appb-T000001
 耐圧性能は、図9のように缶の開口端32の上下方向の動きを拘束した状態で、缶底部に内圧30を与えたときの膨出量33を評価し、膨出量と内圧の関係を図10に示す。内壁部10eのみの板厚を厚くした条件5と接地部10fのみの板厚を厚くした条件6は、缶底全体を厚くした条件2以外の条件に比べ膨出量が小さく耐圧性能が高い。特に、接地部10fのみを板厚を厚くした条件6は、缶底すべての板厚を厚くした条件2よりも耐圧性能に肉薄しており、耐圧性能に寄与する部位は接地部10fであることが分かる。
 圧潰性能は、図11のように、固定された台34bに置いた缶を圧子34aで垂直に押した。押したときの荷重と変位量の関係を図12に示す。接地部10fのみの板厚を厚くした条件6は、缶底全体を厚くした条件2以外の条件に比べ荷重が高く圧潰性能が高い。また、条件6は、缶底すべての板厚を厚くした条件2よりも荷重に近づいており、圧潰性能に寄与する部位は接地部10fであることが分かる。
 以上の結果から、耐圧性能や圧潰性能に寄与する位置は接地部10fである。接地部10fの位置のみが厚い缶底の構造であれば、缶の重量を増すことなく耐圧性能や圧潰性能を向上させることが出来る。そこで、缶底の加工中に接地部を厚くする加工方法と製造装置を考案した。加工方法はとくに、特殊な回転機構や多軸の制御機構を使うことなく、一般的なプレス装置のような一方向の往復運動のみで加工可能な方法とした。
 接地部10fの板厚を厚くする基礎的なメカニズムを図13に示す。缶底を加工する金型は、前記の上型21、外壁部から缶胴コーナー部までを押さえることができるパッド27a、および、缶中央部から環状凹部を経て内壁部までを押さえることができるパッド27b、接地部を押さえることが出来る下型27cから構成されるものとする。パッド27aとパッド27bはコイルスプリングやガスシリンダなどで接続されており、上型21により素材を押さえることが出来る。また、下型27cに接触する前に、パッド27aとパッド27bで押さえられる型構造とする。
 図13(i)のように、パッド27aとパッド27bと上型21とで素材を押さえた際に、最終的に接地部10fとなる位置の素材がたるむような状態を作り出すことが出来れば、図13(ii)のように最終的に下型27cと上型27aで素材の接地部10fを押し潰すことで、たるみの分だけ線長が縮むことで接地部10fの板厚を厚くすることが出来る。
 また、図13(iii)のように、下型27cは、パッド27aやパッド27bと同様にコイルスプリングやガスシリンダと接続した場合でも同様の効果が得られる。
 考案した図13の方法では、パッド27aとパッド27bと上型21とで素材を押さえた際に、たるみ40を生じさせることが重要である。しかし、従来の製缶加工方法では、缶底加工の前にある再絞りやしごき加工工程によって、缶底部から缶胴部へ大きな張力が生じるため、たるみ40を生じさせることが難しい。そこで、たるみ40を作り出す方法として、製缶加工機内での工程を2つの工程に分割することを知見した。前半の予加工工程で再絞りやしごき工程を行いつつ、たるみを作り出せるよう缶底を予備形状に加工し、後半の本加工工程でたるみを押し潰して、接地部の板厚を増加させて缶底を加工する方法である。
 前半の予加工工程42を図14と図15、後半の本加工工程を図16と図17に図示する。前半の予加工工程では、再絞り工程42a、しごき加工工程42b、缶底の予加工工程42d、缶の排出工程42cから構成される。図3の従来加工方法とは、予加工上型43、予加工下型44d、予加工パッド44eが従来の金型構成と異なり、従来の上型21よりも缶中央部と接地部との深さが長くなっており、接地溝部10kが深い形状が得られる。再絞り工程42a、しごき加工工程42bは図3の従来加工方法と同様であり、再絞りにより初期のカップの径が製品の径まで縮径され、しごき加工により缶胴部の板厚が減じる。缶底の予加工工程42dでは、図15のように、予加工上型43と予加工パッド44eによって最終的に外壁部、外壁コーナー部、缶胴コーナー部となる位置が押さえられた後に、予加工上型43と予加工下型44dに挟持されることで缶底の予備形状が形成される。缶の排出工程42cでは、予加工上型43が紙面上側へ戻っていく際に、缶の開口部にストリッパー25が引っかかり製缶装置から外へ排出される。この際、予加工下型44dは加工終了後に成形品を機外へ排出しやすいようにスプリングやガスクッションなどの反力を発生させる機構のものと接続していても良い。
 後半の本加工工程46では、図16のように、製品の缶底と同じ形状を有する上型21および、パッド27a、パッド27b、下型27c、ストリッパー25で構成されている。ストリッパー25上に予加工工程の成形品45を置いて成形が開始される。図17のように、前半の工程で接地部が深く成形されているため、パッド27aとパッド27bで素材が押さえられることで、図11と同様の接地部近傍にたるみが生じる。上型21がそのまま下降すると下型27cに押し潰されることで接地部の板厚のみが増加することができる。上型21が上方へ戻る際に、ストリッパーに缶の開口部が引っかかることで装置の外に排出される。この際、下型27cは加工終了後に成形品を機外へ排出しやすいようにスプリングやガスクッションなどの反力を発生させる機構のものと接続していても良い。
 以上の工程により、缶胴部を成形しつつ、接地部10fの板厚を厚くした缶底部を成形することが可能である。
 本発明は、上記の知見に基づいて完成したものであり、下記1項~7項の接地部の板厚を厚くする缶の製造方法、下記8項~13項の製造装置、ならびに、下記14項~16項の缶底の形状を要旨としている。
 1.2ピース缶の缶胴を成形するに当たり、
最終製品の缶よりも径が大きなカップ成形品を成形するカップ成形工程と、
当該カップ成形品を最終製品の直径まで縮径を行う再絞り工程と、
その後缶胴をしごいて当該缶胴の板厚を減少させ伸ばすしごき加工工程と、
缶底の接地溝部が成形完了時の缶底の接地溝部より深くなるような予加工上型により接地溝部を成形する缶底の接地溝部の予加工工程と、
予加工工程の成形品に対し缶底を形成する際に、外壁部から缶胴コーナー部まで、および、缶中央部から環状凹部を経て内壁部までを形成するパッドと上型で挟持した状態で、下型により前記成形完了時の缶底の接地溝部より深い缶底の接地溝部を押し潰し増肉する接地部増肉工程を含む缶底の加工工程と、
成形された缶を製缶装置から外へ排出する缶の排出工程と、
を順に行い、さらに予加工工程の予加工上型の缶底中心から缶胴コーナー部に至るまでの線長Xと、
缶底の加工工程の上型の缶底中心から缶胴コーナー部に至るまでの線長Yが、
下記(1)式の範囲を満たす予加工工程の予加工上型と缶底の加工工程の上型を用いることを特徴とする2ピース缶胴の成形方法。
1.00Y<X≦1.12Y   (1)
 2.前記接地溝部の予加工工程完了後の接地溝部の頂点が、缶底の加工工程にて缶中央部から環状凹部を経て内壁部までを形成するパッドの環状凹部の頂点よりも缶の外側に位置するように加工することを特徴とする1項に記載の2ピース缶胴の成形方法。
 3.前記接地溝部の予加工工程完了後の接地溝部の頂点が、缶底の加工工程にて外壁部から缶胴コーナー部までを形成するパッドの内周側壁と、同缶底の加工工程にて缶中央部から環状凹部を経て内壁部までを形成するパッドの環状凹部の頂点との間に位置するように加工することを特徴とする1項または2項に記載の2ピース缶胴の成形方法。
 4.前記接地溝部の予加工工程完了後の接地溝部の頂点が、最終製品の缶胴の接地部の頂点と一致するように加工することを特徴とする1項乃至3項のいずれか1項に記載の2ピース缶胴の成形方法。
 5.前記線長Xと、前記線長Yが、下記(2)式を満足することを特徴とする1項乃至
4項のいずれか1項に記載の2ピース缶胴の成形方法。
1.07Y≦X≦1.12Y   (2)
 6.缶底の加工工程にて外壁部から缶胴コーナー部までを形成するパッドにかける荷重F1と、缶底の加工工程にて缶中央部から環状凹部を経て内壁部までを形成するパッドにかける荷重F2は、下記(3)(4)式で表され、当該式内の係数K1、K2はそれぞれ(5)(6)式の範囲内であることを特徴とする1項乃至5項のいずれか1項に記載の2ピース缶胴の成形方法。
F1=K1×La×t×TS   (3)
F2=K2×Lb×t×TS   (4)
K1 ≧ 12         (5)
K2 ≧ 12         (6)
ここで、素材の強度をTS(MPa)、素材の元板厚をt(mm)、缶胴成形後の外壁部から外壁コーナー部を経て缶胴コーナーに至るまでの線長をLa(mm)、缶胴成形後の中央コーナー部から環状凹部を経て内壁部に至るまでの線長をLb(mm)とする。
 7.缶底の加工工程における外壁部から缶胴コーナー部までを形成するパッドと、同缶底の加工工程における缶中央部から環状凹部を経て内壁部までを形成するパッドと、同缶底の加工工程における上型の表面の摩擦係数が0.05以上0.4以下であることを特徴とする1項乃至6項のいずれか1項に記載の2ピース缶胴の成形方法。
 8.2ピース缶の缶胴を成形する製造装置であって、
最終製品の缶よりも径が大きなカップ成形品を成形するカップ成形工程には少なくとも予加工上型、予加工下型、予加工パッドを備え、
当該カップ成形品を最終製品の直径まで縮径を行う再絞り工程には少なくとも上型、再絞りパンチ、再絞りダイスを備え、
その後缶胴をしごいて当該缶胴の板厚を減少させ伸ばすしごき加工工程には1または複数のしごき型を備え、
缶底の接地溝部の予加工工程には少なくとも缶底の接地溝部が成形完了時の缶底の接地溝部より深くなるような予加工上型を備え、
接地部増肉工程を含む缶底の加工工程には少なくとも前記缶底の接地溝部より深い缶底の接地溝部を押し潰し増肉する下型、缶底の缶中央部から環状凹部を経て内壁部までを成形するパッド、缶底の外壁部から缶胴コーナー部までを成形するパッドを備え、
成形された缶胴を製缶装置から外へ排出する缶の排出工程にはストリッパーを備え、
さらに予加工工程の予加工上型の缶底中心から缶胴コーナー部に至るまでの線長Xと、
缶底の加工工程の上型の缶底中心から缶胴コーナー部に至るまでの線長Yが、下記(7)式の範囲を満たす予加工工程の予加工上型と缶底の加工工程の上型であることを特徴とする2ピース缶胴を成形する製造装置。
1.00Y<X≦1.12Y   (7)
 9.前記接地溝部の予加工工程完了後の接地溝部の頂点が、缶底の加工工程にて缶中央部から環状凹部を経て内壁部までを形成するパッドの環状凹部の頂点よりも缶の外側に位置するような予加工上型であることを特徴とする8項に記載の2ピース缶胴を成形する製造装置。
 10.前記接地溝部の予加工工程完了後の接地溝部の頂点が、缶底の加工工程にて缶胴コーナー部~外壁部を形成するパッドの内周側壁と、同缶底の加工工程にて缶中央部から環状凹部を経て内壁部までを形成するパッドの環状凹部の頂点との間に位置するような予加工上型、前記缶底の接地溝部より深い缶底の接地溝部を押し潰し増肉する下型、缶底の缶中央部から環状凹部を経て内壁部までを成形するパッド、缶底の外壁部から缶胴コーナー部までを成形するパッドであることを特徴とする8項または9項に記載の2ピース缶胴を成形する製造装置。
 11.前記接地溝部の予加工工程完了後の接地溝部の頂点が、最終製品の缶胴の接地部の頂点と一致するような予加工上型、前記缶底の接地溝部より深い缶底の接地溝部を押し潰し増肉する下型、缶底の缶中央部から環状凹部を経て内壁部までを成形するパッド、缶底の外壁部から缶胴コーナー部までを成形するパッドであることを特徴とする8項乃至10項のいずれか1項に記載の2ピース缶胴を成形する製造装置。
 12.前記線長Xと、前記線長Yが、下記(8)式を満足するような予加工上型、前記缶底の接地溝部より深い缶底の接地溝部を押し潰し増肉する下型、缶底の缶中央部から環状凹部を経て内壁部までを成形するパッド、缶底の外壁部から缶胴コーナー部までを成形するパッドであることを特徴とする8項乃至11項のいずれか1項に記載の2ピース缶胴を成形する製造装置。
1.07Y≦X≦1.12Y   (8)
 13.缶底の加工工程における缶胴コーナー部~外壁部を形成するパッドと、同缶底の加工工程における缶中央部から環状凹部を経て内壁部までを形成するパッドと、同缶底の加工工程における上型の表面の摩擦係数が0.05以上0.4以下であることを特徴とする8項乃至12項のいずれか1項に記載の2ピース缶胴を成形する製造装置。
 14.缶胴成形後の缶底の接地部の板厚が、加工前の素材の板厚よりも厚いことを特徴とする2ピース缶胴。
 15.予加工工程完了後の缶胴における缶底中心から缶胴コーナー部に至るまでの線長xと、缶底の加工工程完了後の缶胴における缶底中心から缶胴コーナー部に至るまでの線長yが、下記(9)式の範囲を満たすことを特徴とする2ピース缶胴。
1.00y<x≦1.12y   (9)
 16.前記線長xと、前記線長yが、下記(10)式を満足することを特徴とする15項に記載の2ピース缶胴。
1.07y≦x≦1.12y   (10)
 加工中に接地部の板厚を厚くすることで、素材の板厚を増大させることなく、耐圧性能や圧潰性能が向上することが出来る。また、接地部の板厚が厚くなった部分には、大きな加工硬化が加わり缶底の強度が増加する。
缶底の断面10であり、各位置における名称を示す図である。 カップ成形品15の加工を示しており、(i)成形前と(ii)成形後の様子を示す図である。 一般的な2ピース缶の製缶加工を示す図である。 一般的な2ピース缶の製缶加工のうち、再絞り加工工程20aの(i)成形中、(ii)再絞り成形が終了直前の様子を示す図である。 一般的な2ピース缶の製缶加工のうち、しごき加工工程20bの(i)成形前、(ii)成形中の様子を示す図である。 一般的な2ピース缶の製缶加工のうち、缶底加工工程の20dの(i)成形前、(ii)成形下死点の様子を示す図である。 一般的な2ピース缶の製缶加工のうち、缶の排出工程の様子20cを示しており、(i)上型21が元の上死点まで戻る際に缶がストリッパー25に接触する前、(ii)ストリッパー25に接触して缶の開口部が引っかかり金型から缶が外れて、機外へ排出される様子を示す図である。 一般的な2ピース缶の製缶加工を経て得られた缶底の板厚の変化率を表しており、(i)は缶底の断面10のうち代表的な各点を示し、(ii)は各点における素材の元板厚からの変化率を示す図である。 耐圧性能に寄与する缶底の位置を調べるために行ったFEM解析の模式図である。 缶底の各位置の板厚を変えて耐圧性能を評価した際、接地部のボトム膨出量と内圧の関係を示す図である。 圧潰性能に寄与する缶底の位置を調べるために行ったFEM解析の模式図である。 缶底の各位置の板厚を変えて圧潰性能を評価した際、圧子に働く荷重と圧子の変位の関係を示す図である。 接地部10fの板厚を厚くするための加工方法の機構を示しており、(i)はパッドaとパッドbで挟持された後の様子、(ii)成形下死点、(iii)はコイルスプリングやガスシリンダに接続された下型27cを示す図である。 接地部の板厚を厚くするための加工方法について、前半の予加工工程42の全体を示す図である。 予加工工程のうち、缶底部を加工する際の(i)成形前と(ii)成形下死点の様子を示す図である。 接地部10fの板厚を厚くするための加工方法について、後半の本加工工程46の全体を示す図である。 本加工工程46のうち、缶底部を加工する際の(i)成形前、(ii)成形中、および、(iii)成形下死点の様子を示すである。 予加工工程の接地溝部の頂点51が環状凹部の頂点52より缶の内側53aに位置すると、缶中央でしわが生じて成形が不可となることを示しており、(i)は本加工工程の成形前、(ii)本加工工程の成形中にしわが発生したことを示す図である。 予加工工程の接地溝部の頂点51がパッド27aの内周側壁55より缶の外側56bに位置すると、接地部の板厚が十分に厚くならないことを示しており、(i)は本加工工程の成形前、(ii)本加工工程の成形中を示す図である。 予加工工程の接地溝部の頂点51が、パッド27aの内周側壁55とパッド27bの環状凹部の頂点52との間の位置62にあるときの図であり、接地部の板厚が厚くなるための最も望ましい条件である。 (i)は予加工上型41の缶底部の線長X、(ii)は本加工の上型21の缶底部の線長Yを示す図である。 予加工上型dの缶底部の線長Xと本加工の上型aの缶底部の線長Yの比であるX/Yと、素材の元厚に対する接地部の板厚の増加率の関係を示した図である。 上型21、パッド27aとパッド27bで挟持された後に、たるみが過大の場合に押し潰すと座屈する様子を示しており、(i)はパッド27aとパッド27bで挟持された後の様子、(ii)成形中を示す図である。 一般的な加工法、および、発明した加工法で作成した缶の各位置における、素材の元厚に対する板厚の変化率を示した図である。 本加工工程におけるパッド27aとパッド27bの荷重の適正範囲を示した図である。 本加工工程における上型21、パッド27aとパッド27bの摩擦係数が接地部の板厚の増加率に及ぼす影響を示した図である。 実施例、比較例で検討した缶の寸法を示した図である。
 以下に、本発明の缶底の形状、缶の製造方法、ならびに、製造装置について、図面を参照しながら説明する。
 予加工工程42では最終製品形状よりも接地溝部が深い形状を得てから、次の本加工工程で図17の通り、パッド27aとパッド27bと上型21とで挟持し接地部となる位置をたるませ、たるみ40を押し潰すことで、接地部10fの板厚を厚くする。発明者らが検討したところ、最終的に接地部10fの板厚が厚くなる量や厚くなるかの可否は、予加工工程の成形品45の形状に律則されることが判明した。以下に、予加工工程の成形品45の形状が接地部の板厚10fに与える影響を示す。
 まず、予加工工程の接地溝部の頂点51の位置については、パッド27bの環状凹部の頂点52よりも缶の外側に位置する必要があることが分かった。
 予加工工程の接地溝部の頂点51がパッド27bの環状凹部の頂点52よりも缶の内側に位置する場合には、図18のように、後半の本加工工程46の際に、上型21とパッド27bの中でたるみが生じることで、しわ54が発生して不良品となるためである。
 加えて、パッド27aの内周側壁55から缶の外側に寄った位置に接地溝部の頂点51があると、しわなどの不良は生じないが、図19のように後半の本加工工程の際に、パッド27aの外壁コーナー部57となる部分に材料が当ることで、接地部の位置にたるみが生じにくくなり、十分に増肉が生じない場合がある。
 一方で、図20のように、予加工工程の接地溝部の頂点51がパッド27aの内周側壁55とパッド27bの環状凹部の頂点52の間の位置にあれば、図17のような状態となり、本加工工程46において接地部まわりに、たるみ40が生じて十分な増肉効果が得られる。さらには、上型21の接地部の頂点61、言い換えると、本加工工程にて成形される製品の接地部の頂点と接地溝部の頂点51の位置を一致させることが望ましい。これは、後半の本加工工程46にて接地部を増肉させるためには、予加工工程42の段階でその位置に材料を集めておいたほうが良いためである。
 以上より、予加工工程の接地溝部の頂点51の位置は、パッド27bの環状凹部の頂点52よりも缶の外側に位置する必要があり、好ましくはパッド27aの内周側壁55とパッド27bの環状凹部52の頂点の間の位置である。最も好ましくは上型21の接地部の頂点61、言い換えると、本加工工程にて成形される製品の接地部の頂点と接地溝部の頂点の位置51を一致させることである。
 次に、接地部10fの板厚を厚くするためには、後半の本加工工程46で、パッド27aとパッド27bで押さえた際のたるみ40の長さが重要となる。たるみ40とはパッド27aとパッド27bで押さえた際に素材が余りの部分であり、図21(i)の予加工上型41の缶底中心から缶胴コーナー部に至るまでの線長X(成形後の缶中心から缶胴に至るまでの、後半の本加工工程の成形前の線長)と、図21(ii)の上型21の缶底中心から缶胴コーナー部に至るまでの線長Y(成形後の缶中心から缶胴に至るまでの、後半の本加工工程の成形後の線長)の差や比と、たるみは相関があると言える。
 そこで、缶中心から缶胴に至るまでの予加工上型41と上型21の線長X、Yの比率と、素材の元厚に対する接地部の板厚の増加率の関係を調査した。素材は、板厚を0.15mm、強度を460MPaとしたときの結果を図22に示す。その結果、予加工上型41の線長Xは上型21の線長Yに比べ1.00倍超1.12倍以下とする必要がある。線長比が1.12倍より大きい場合には、図23のように押し潰す際に、たるみ40に座屈75が生じて成形が不可となる。1.00倍以下では接地部の板厚の増加が期待できない。さらに好ましくは、1.07倍以上1.12倍以下の範囲である。また、1.07倍以下の範囲では線長の比の増大に伴い、板厚の増加率が増えていく。1.07倍以上1.12倍以下の範囲では増加率が飽和し、この範囲の線長の比が望ましいといえる。一方、従って、予加工上型41の上型21に対する線長の比は、1.00倍超1.12倍以下が必須であり、1.07倍以上1.12倍以下の範囲が望ましい。
 また、発明した工法における缶底の板厚の分布を図24に示す。発明した工法の結果は、予加工上型41の線長Xは上型21の線長Yに比べ6.5%大きくしたときの結果である。点A~点Hは、図8(i)の通りである。図3の従来工法20に比べて、缶の中心から接地部にかけて板厚が大きく増加している。特に、接地部10fの頂点である点Eの板厚は、缶中央部の点A、内壁部の点Dや外壁部の点Fなどの他の部位の板厚に比べて大きくなっており、加工前の素材の板厚よりも大きくなっている。つまり、本発明に係る工法によれば、予加工上型により成形される缶底の接地溝部の深さを変化させることにより、成形完了時(最終製品)の接地部の板厚(接地部10fの頂点である点Eの板厚)を調整することができるのである。接地部の板厚は、加工前の素材の板厚に比べ5%以上増加することが好ましく、さらに好ましくは8%以上、より好ましくは10%以上増加するとよい。図24では、接地部10fの頂点である点Eの板厚は、元の板厚に比べ23%増加している(すなわち、加工前の素材の板厚の123%の板厚になっている)ことが分かる。また、従来工法20から大きく板厚が減少した位置もなく、また円周方向でも均一であり、加工された缶に問題はないと言える。
 加えて、副次的な効果として、押し潰すことで大きなひずみが加わり、加工硬化して缶底の強度が増加する。接地部に生じる相当塑性ひずみの量は従来工法では0.24である一方で、発明した加工法では0.40、つまり、1.7倍のひずみが生じる。硬度は、従来工法では母材よりも1.26倍であったものが、発明工法では1.34倍となり、硬くすることができる。
 上型21と予加工上型41の線長の比を基準とすれば、上型21の線長Yに対して、予加工上型41の線長Xをどれだけ伸ばせば良いかを考慮すれば金型構造を設計することが出来るので、簡便であり工業上有用である。
 接地部の板厚を厚くすることに重要な要素として、パッド27aとパッド27bの荷重が挙げられる。これは、後半の本加工工程においてパッド27aとパッド27bの荷重はある程度大きくなければ、接地部を押潰している際の反力でパッドが浮き上がって、接地部の材料が外壁部側や内壁部側に流出して期待した増肉率が得られないためである。パッド27aとパッド27bが上型と挟持する際の荷重はそれぞれ、
  ・パッド27aの荷重=K1×La×t×TS
   係数K1 ≧ 12
  ・パッド27bの荷重=K2×Lb×t×TS
   係数K2 ≧ 12
であることが好ましい。ここで、素材の強度をTS、素材の元板厚をt、製品の缶底の外壁部10g・外壁コーナー部10h・缶胴コーナー部10iに至るまでの線長をLa、製品の缶底の中央コーナー部・環状凹部・内壁部に至るまでの線長をLbとする。素材の板厚を0.15mm、強度を460MPaとしたときに、たるみが流出しない荷重の範囲は図25の灰色に塗った範囲であり、K1≧12、K2≧12にあることが望ましい。
 接地部10fの板厚を厚くすることに重要な要素としては、型表面の摩擦係数も挙げられる。接地部の板厚を厚くするには、たるみを押し潰した際に外壁部と内壁部側に流出しないようにする必要がある。流出しないようにするには、型の表面に凹凸加工を設けることで摩擦係数を高めれば、素材の移動を抑制することができる。発明者が検討したところ、上型21、パッド27a、パッド27bの型表面の摩擦係数は、0.05以上0.4以下であることが好ましいことが分かった。摩擦係数の効果を示した結果を図26に示す。摩擦係数が0.05以上になると流出が抑制されだし、結果として増肉率が増大し、摩擦係数が0.1以上で増肉率が一定となる。型の摩擦係数が0.4より大きくなると型表面の粗さが増すため、加工時に材料が型に摺動した際、製品に疵が生じる懸念があるため、0.4以下が望ましい。
 本加工方法は、一般的な缶用金属板材である板厚0.08mm~0.30mmの鋼板、板厚0.15mm~0.45mmのアルミニウム板へ適用可能である。金属板材の表面に、薄クロムめっきや錫めっきなどのめっき処理されている場合、樹脂フィルムが被覆されている場合、めっき処理されたものに樹脂フィルムを被覆されている場合でも適用可能である。
比較例1
 引張強度350MPa、板厚0.23mmの缶用鋼板を用いて、2ピース缶を次に示す従来の加工方法で製作した。まず、最終製品の缶よりも径が大きなカップ成形品15を製作した。カップ成形品15を最終製品の径まで縮径を行う再絞りをした後に、缶胴をしごいて当該缶胴の板厚を減少させ伸ばした。再絞りにより缶の内径をΦ53mmまで縮径し、缶胴をしごくことで缶胴の板厚を0.23mmから0.08mmまで減肉させた。そして、外壁部から缶胴コーナー部までをパッド27aと上型21で挟持した状態で、缶中央部から環状凹部を経て内壁部までを下型26に素材をプレスして缶底を加工した。得られた缶底の断面形状は図27の通りである。
 この方法では、カップ成形品15を製作して再絞りとしごき成形を行った後に、製品形状となる缶底を成形するため、予加工工程42が存在しない。そのため、予加工上型41の線長Xを定義することができないため、線長Xと線長Yの比率を定義することができない。得られた缶底の接地部の板厚は0.218mmであり、加工前の素材の板厚より0.95倍に減少した。
実施例1
 引張強度350MPa、板厚0.23mmの缶用鋼板を用いて、2ピース缶を本発明に従う方法で製作した。まず、最終製品の缶よりも径が大きなカップ成形品15を製作した。カップ成形品15を最終製品の径まで縮径を行う再絞りをした後に、缶胴をしごいて当該缶胴の板厚を減少させ伸ばした。再絞りにより缶の内径をΦ53mmまで縮径し、缶胴をしごくことで缶胴の板厚を0.23mmから0.08mmまで減肉させた。そして、缶底の接地溝部が成形完了時の缶底の接地溝部より深くなるような形状を有する予加工上型43により、予加工を行う。予加工工程42を行った加工品に対して、外壁部から缶胴コーナー部までを形成するパッド27aと、缶中央部、缶中央部から環状凹部を経て内壁部までを形成するパッド27bで押さえた状態で、缶底の接地溝部を押潰して接地部10fを増肉させる。押し潰した際に得られた缶底の断面形状は図28である。最後に、缶を金型より排出した。このとき、予加工工程42の完了後の成形品の中心部~缶胴コーナー部までの線長に相当する予加工上型43の線長Xと、本加工工程46の完了後の成形品の中心部~缶胴コーナー部までの長さに相当する上型21の線長Yについて、XはYの1.07倍とした。
 得られた加工品の缶底の接地部の板厚は0.276mmであり、加工前の素材の板厚より1.20倍に増加した。比較例1の方法では接地部10fの板厚は増加しないが、本発明の方法では接地部の板厚が、加工前の板厚よりも増加する。
比較例2
 実施例1と同じ加工方法で缶を製作した。ただし、予加工工程42の完了後の成形品の中心部~缶胴コーナー部までの線長に相当する予加工上型43の線長Xと、本加工工程46の完了後の成形品の中心部~缶胴コーナー部までの長さに相当する上型21の線長Yについて、XはYの1.16倍とした。
 結果は、押し潰した接地部の周りで座屈が生じて折れ込んだため、製品を得ることができなかった。このように、X≧1.12Yでは成形が不可である。
比較例3
 実施例1における予加工工程完了後の接地溝部の頂点51が、缶の中心軸から15mmの位置として缶底の予加工を行った。この場合、接地溝部の頂点51は、缶底の加工工程でのパッド27bの環状凹部の頂点52よりも缶の内側の位置にある。予加工を行った加工品に対して、外壁部から缶胴コーナー部までを形成するパッド27aと、缶中央部から環状凹部を経て内壁部までを形成するパッド27bで押さえた状態で、缶底の接地溝部を押潰して接地部を増肉させた。このとき、予加工工程42の完了後の成形品の中心部~缶胴コーナー部までの線長に相当する予加工上型43の線長Xと、本加工工程46の完了後の成形品の中心部~缶胴コーナー部までの長さに相当する上型21の線長Yについて、XはYの1.07倍とした。
 しかしながら、パッド27bで押さえる際に、上型21とパッド27bの間で、座屈が生じてシワとなり、製品を得ることが出来なかった。このように、接地溝部の頂点51は缶底の加工工程でのパッド27bの環状凹部の頂点52よりも缶の内側の位置にある場合には、成形が不可である。
実施例2
 実施例1における予加工工程完了後の接地溝部の頂点51が、缶の中心軸から25.5mmの位置として缶底の予加工を行った。この場合、接地溝部の頂点51はパッド27aの内周側壁55よりも缶の外側にあり、外壁部から缶胴コーナー部までの位置にある。予加工を行った加工品に対して、外壁部から缶胴コーナー部までを形成するパッド27aと、缶中央部から環状凹部を経て内壁部までを形成するパッド27bで押さえた状態で、缶底の接地溝部を押潰して接地部10fを増肉させた。このとき、予加工工程42の完了後の成形品の中心部~缶胴コーナー部までの線長に相当する予加工上型43の線長Xと、本加工工程46の完了後の成形品の中心部~缶胴コーナー部までの長さに相当する上型21の線長Yについて、XはYの1.07倍とした。
 得られた加工品の缶底の接地部10fの板厚は0.251mmであり、加工前の素材の板厚より1.09倍に増加した。
実施例3
 実施例1における予加工工程完了後の接地溝部の頂点51が、缶の中心軸から22mmの位置として缶底の予加工42を行った。この場合、接地溝部の頂点51は、缶底の加工工程にて外壁部から缶胴コーナー部までを形成するパッド27aの内周側壁55と、同缶底の加工工程にて中央コーナー部~環状凹部~内壁部を形成するパッド27bの環状凹部の頂点52との間に位置する。予加工を行った加工品45に対して、外壁部から缶胴コーナー部までを形成するパッド27aと、缶中央部から環状凹部を経て内壁部までを形成するパッド27bで押さえた状態で、缶底の接地溝部を押潰して接地部10fを増肉させた。このとき、予加工工程42の完了後の成形品の中心部~缶胴コーナー部までの線長に相当する予加工上型43の線長Xと、本加工工程46の完了後の成形品の中心部~缶胴コーナー部までの長さに相当する上型21の線長Yについて、XはYの1.07倍とした。
 得られた加工品の缶底の接地部の板厚は0.267mmであり、加工前の素材の板厚より1.16倍に増加した。
 比較例3、実施例2と実施例3の結果を比べると、予加工工程完了後の接地溝部の頂点51が、缶底の加工工程でのパッド27bの環状凹部の頂点52よりも缶の内側の位置になると成形不可であり、缶底の環状凹部の頂点52よりも缶の外側の位置になると成形可能である。実施例2と実施例3の結果を比べると、予加工工程完了後の接地溝部の頂点51が、缶底の加工工程にて外壁部から缶胴コーナー部までを形成するパッド27aの内周側壁55と、同缶底の加工工程にて缶中央部から環状凹部を経て内壁部までを形成するパッド27bの環状凹部の頂点52との間にあったほうが接地部の板厚の増加率が向上する。
実施例4
 実施例1における予加工工程完了後の接地溝部の頂点51が、缶の中心軸から23.5mmの位置として缶底の予加工を行った。この場合、接地溝部の頂点は、本加工工程の上型21の接地部の頂点61に位置し、本加工工程にて成形される製品の接地部の頂点に相当する。予加工を行った加工品に対して、外壁部から缶胴コーナー部までを形成するパッド27aと、缶中央部から環状凹部を経て内壁部までを形成するパッド27bで押さえた状態で、缶底の接地溝部を押潰して接地部10fを増肉させた。このとき、予加工工程42の完了後の成形品の中心部~缶胴コーナー部までの線長に相当する予加工上型43の線長Xと、本加工工程46の完了後の成形品の中心部~缶胴コーナー部までの長さに相当する上型21の線長Yについて、XはYの1.07倍とした。
 得られた加工品の缶底の接地部の板厚は0.276mmであり、加工前の素材の板厚より1.2倍に増加した。
 実施例3と実施例4の結果を比べると、予加工工程完了後の接地溝部の頂点51が、缶底の加工工程にて外壁部から缶胴コーナー部までを形成するパッド27aの内周側壁55と、同缶底の加工工程にて缶中央部から環状凹部を経て内壁部までを形成するパッド27bの環状凹部の頂点52との間の中でも、本加工工程にて成形される製品の接地部の頂点(本加工工程の上型21の接地部の頂点61)に位置する条件の方が、接地部の板厚は厚くなる。
実施例5
 実施例4のように、予加工工程完了後の接地溝部の頂点51が、缶の中心軸から23.5mmの位置として缶底の予加工を行った。この場合、接地溝部の頂点は、本加工工程の上型21の接地部の頂点61に位置する。予加工を行った加工品に対して、外壁部~缶胴
コーナー部を形成するパッド27aと、缶中央部から環状凹部を経て内壁部までを形成するパッド27bで押さえた状態で、缶底の接地溝部を押潰して接地部10fを増肉させた。このとき、予加工工程42の完了後の成形品の中心部~缶胴コーナー部までの線長に相当する予加工上型43の線長Xと、本加工工程46の完了後の成形品の中心部~缶胴コーナー部までの長さに相当する上型21の線長Yについて、XはYの1.05倍、1.07倍、1.09倍とした。
 得られた加工品の缶底の接地部の板厚は、XがYの1.05倍のとき、0.251mmであり元の板厚の1.09倍厚くなった。XがYの1.07倍のとき、0.276mmであり元の板厚の1.2倍厚くなった。XがYの1.09倍のとき、0.302mmであり素材の元板厚の1.31倍厚くなった。
 Xが大きいほど接地部の板厚が増加しやすくなり、素材の元板厚よりも1.2倍以上厚くなるには、XがYの1.07倍以上であることが好ましいといえる。また、比較例2の通り、XがYの1.12倍以上になると成形が不可になる。
実施例6
 実施例4のように、予加工工程完了後の接地溝部の頂点51が、缶の中心軸から23.5mmの位置として缶底の予加工を行った。この場合、接地溝部の頂点は、本加工工程の上型21の接地部の頂点61に位置する。予加工を行った加工品に対して、外壁部から缶胴コーナー部までを形成するパッド27aと、缶中央部から環状凹部を経て内壁部までを形成するパッド27bで押さえた状態で、缶底の接地溝部を押潰して接地部10fを増肉させた。このとき、予加工工程42の完了後の成形品の中心部~缶胴コーナー部までの線長に相当する予加工上型43の線長Xと、本加工工程46の完了後の成形品の中心部~缶胴コーナー部までの長さに相当する上型21の線長Yについて、XはYの1.07倍とした。
 このとき、缶底の加工工程にて缶胴コーナー部~外壁コーナー部~外壁部を形成するパッド27aにかける荷重F1と、缶底の加工工程にて缶中央部~中央コーナー部~環状凹部~内壁部を形成するパッド27bにかける荷重F2は、(F1、F2)=(8400N、1260N)、(4470N、1260N)、(8390N、6710N)を与えた。F1とF2を下記のように表した時、
F1=K1×La×t×TS   (3)
F2=K2×Lb×t×TS   (4)
(F1、F2)=(10900N、7270N)のときは(K1、K2)=(13、13)、(F1、F2)=(8390N、1260N)のときは(K1、K2)=(15、15)、(F1、F2)=(4470N、1260N)のときは(K1、K2)=(8、15)、(F1、F2)=(8390N、6710N)のときは(K1、K2)=(15、8)となる。素材の強度をTS(MPa)、素材の元板厚をt(mm)、外壁部~外壁コーナー部~缶胴コーナーに至るまでの線長をLa(mm)、中央コーナー部~環状凹部~内壁部に至るまでの線長をLb(mm)とする。
 得られた加工品の缶底の接地部の板厚は、(K1、K2)=(13、13)のとき、0.271mmであり元の板厚の1.2倍厚くなった。(K1、K2)=(15、15)のとき、0.276mmであり元の板厚の1.2倍厚くなった。(K1、K2)=(8、15)のとき、0.253mmであり元の板厚の1.08倍厚くなった。(K1、K2)=(15、8)のとき、0.251mmであり元の板厚の1.09倍厚くなった。K1≧12、K2≧12であれば、押し潰す接地部以外の位置をしっかりと押さえられるため十分な板厚の増加率が得られ、好ましい条件と言える。
実施例7
 実施例4のように、予加工工程完了後の接地溝部の頂点51が、缶の中心軸から23.5mmの位置として缶底の予加工を行った。この場合、接地溝部の頂点は、本加工工程の上型21の接地部の頂点61に位置する。予加工を行った加工品に対して、外壁部から缶胴コーナー部までを形成するパッド27aと、缶中央部から環状凹部を経て内壁部までを形成するパッド27bで押さえた状態で、缶底の接地溝部を押潰して接地部10fを増肉させた。このとき、予加工工程42の完了後の成形品の中心部~缶胴コーナー部までの線長に相当する予加工上型43の線長Xと、本加工工程46の完了後の成形品の中心部~缶胴コーナー部までの長さに相当する上型21の線長Yについて、XはYの1.07倍とした。
 また、缶底の加工工程における外壁部から缶胴コーナー部までを形成するパッド27aと、同缶底の加工工程における缶中央部から環状凹部を経て内壁部までを形成するパッド27b、同缶底の加工工程における上型21の表面の摩擦係数を、0.04、0.08、0.12、0.3、0.45として加工を行った。
 摩擦係数が0.04のときは、接地部の板厚は0.252mmであり、素材の元板厚の1.1倍となる。摩擦係数が0.08のときは、接地部の板厚は0.272mmであり、素材の元板厚の1.18倍となる。摩擦係数が0.12のときは、接地部の板厚は0.276mmであり、素材の元板厚の1.2倍となる。摩擦係数が0.3のときは、接地部の板厚は0.277mmであり、素材の元板厚の1.2倍となる。摩擦係数が0.45のときは、接地部の板厚は0.277mmであり、素材の元板厚の1.2倍となったが、缶の表面に疵が現れた。
 よって、摩擦係数が大きいほど、接地部の板厚が厚くなり、0.05以上あることが好ましい。一方で、摩擦係数が0.4より大きくなると、疵が現れやすくなるので、0.4以下が好ましい。
 本発明は、缶、特に2ピース缶に適用することができる。
10:缶底の断面図
10a:缶の中心軸
10b:缶中央部
10c:中央コーナー部
10d:環状凹部
10e:内壁部
10f:接地部
10g:外壁部
10h:外壁コーナー部
10i:缶胴コーナー部
10j:缶胴部
10k:接地溝部
11:カップ成形工程のパンチ
12:カップ成形工程の板押さえ
13:カップ成形工程のダイス
14:成形前の円形状の金属板材
15:成形後のカップ成形品
20:一般的な製缶加工機
20a:再絞り工程
20b:しごき加工工程
20c:缶の排出工程
20d:缶底の加工工程
21:上型
22:再絞り工程の板押さえ
23:再絞り工程のダイス
24:しごき加工の金型
24a:しごき型と金属板材の接触
25:ストリッパー
25a:缶の開口部とストリッパーの接触
26:下型
27a:外壁部~外壁コーナー部~缶胴コーナー部を押さえるパッド
27b:缶中央部~中央コーナー部~環状凹部~内壁部を押さえるパッド
27c:接地部を押し潰す下型
28:再絞り後の直径
29:再絞り前の直径
30:内圧
31:内圧を与えて変形した缶底
32:缶の開口部の端
33:内圧により変形した缶底の膨出量
34a:下降する圧子
34b:固定された台
40:パッド27aとパッド27bで挟持したときに接地部周りに生じる材料のたるみ
41:上型21と下型27cによって、たるみが押し潰されて、板厚が増加した接地部
42:予加工工程
42a:予加工工程における再絞り工程
42b:予加工工程におけるしごき加工工程
42c:予加工工程における缶の排出工程
42d:予加工工程における缶底の加工工程
43:予加工工程の上型
44d:予加工工程の下型
44e:予加工工程のパッド
45:予加工工程の成形品
46:本加工工程
46c:本加工工程における缶の排出工程
46d:本加工工程における缶底の加工工程
51:予加工上型42の接地溝部の頂点
52:パッド27bの環状凹部の頂点
53a:環状凹部の頂点よりも内側の領域
53b:環状凹部の頂点よりも外側の流域
54:パッド27aとパッド27bで挟持した際に、缶中央部で生じるしわ
55:パッド27aの内周側壁
56a:パッド27aの壁部よりも内側の領域
56b:パッド27aの壁部よりも外側の領域
57:パッド27aの外壁部から缶胴コーナー部にかけた範囲
61:上型21の接地部の頂点
62:パッド27bの環状凹部の頂点とパッド27aの壁部との間の位置
71:上型41の缶中央部から缶胴部までの線長X
72:上型21の缶中央部から缶胴部までの線長Y
75:押し込んだ際の座屈

Claims (16)

  1.  2ピース缶の缶胴を成形するに当たり、
    最終製品の缶よりも径が大きなカップ成形品を成形するカップ成形工程と、
    当該カップ成形品を最終製品の直径まで縮径を行う再絞り工程と、
    その後缶胴をしごいて当該缶胴の板厚を減少させ伸ばすしごき加工工程と、
    缶底の接地溝部が成形完了時の缶底の接地溝部より深くなるような予加工上型により接地溝部を成形する缶底の接地溝部の予加工工程と、
    予加工工程の成形品に対し缶底を形成する際に、外壁部から缶胴コーナー部まで、および、缶中央部から環状凹部を経て内壁部までを形成するパッドと上型で挟持した状態で、下型により前記成形完了時の缶底の接地溝部より深い缶底の接地溝部を押し潰し増肉する接地部増肉工程を含む缶底の加工工程と、
    成形された缶を製缶装置から外へ排出する缶の排出工程と、
    を順に行い、さらに予加工工程の予加工上型の缶底中心から缶胴コーナー部に至るまでの線長Xと、
    缶底の加工工程の上型の缶底中心から缶胴コーナー部に至るまでの線長Yが、
    下記(1)式の範囲を満たす予加工工程の予加工上型と缶底の加工工程の上型を用いることを特徴とする2ピース缶胴の成形方法。
    1.00Y<X≦1.12Y   (1)
  2.  前記接地溝部の予加工工程完了後の接地溝部の頂点が、缶底の加工工程にて缶中央部から環状凹部を経て内壁部までを形成するパッドの環状凹部の頂点よりも缶の外側に位置するように加工することを特徴とする請求項1に記載の2ピース缶胴の成形方法。
  3.  前記接地溝部の予加工工程完了後の接地溝部の頂点が、缶底の加工工程にて外壁部から缶胴コーナー部までを形成するパッドの内周側壁と、同缶底の加工工程にて缶中央部から環状凹部を経て内壁部までを形成するパッドの環状凹部の頂点との間に位置するように加工することを特徴とする請求項1または2に記載の2ピース缶胴の成形方法。
  4.  前記接地溝部の予加工工程完了後の接地溝部の頂点が、最終製品の缶胴の接地部の頂点と一致するように加工することを特徴とする請求項1乃至3のいずれか1項に記載の2ピース缶胴の成形方法。
  5.  前記線長Xと、前記線長Yが、下記(2)式を満足することを特徴とする請求項1乃至4のいずれか1項に記載の2ピース缶胴の成形方法。
    1.07Y≦X≦1.12Y   (2)
  6.  缶底の加工工程にて外壁部から缶胴コーナー部までを形成するパッドにかける荷重F1と、缶底の加工工程にて缶中央部から環状凹部を経て内壁部までを形成するパッドにかける荷重F2は、下記(3)(4)式で表され、当該式内の係数K1、K2はそれぞれ(5)(6)式の範囲内であることを特徴とする請求項1乃至5のいずれか1項に記載の2ピース缶胴の成形方法。
    F1=K1×La×t×TS   (3)
    F2=K2×Lb×t×TS   (4)
    K1 ≧ 12         (5)
    K2 ≧ 12         (6)
    ここで、素材の強度をTS(MPa)、素材の元板厚をt(mm)、缶胴成形後の外壁部から外壁コーナー部を経て缶胴コーナーに至るまでの線長をLa(mm)、缶胴成形後の中央コーナー部から環状凹部を経て内壁部に至るまでの線長をLb(mm)とする。
  7.  缶底の加工工程における外壁部から缶胴コーナー部までを形成するパッドと、同缶底の加工工程における缶中央部から環状凹部を経て内壁部までを形成するパッドと、同缶底の加工工程における上型の表面の摩擦係数が0.05以上0.4以下であることを特徴とする請求項1乃至6のいずれか1項に記載の2ピース缶胴の成形方法。
  8.  2ピース缶の缶胴を成形する製造装置であって、
     最終製品の缶よりも径が大きなカップ成形品を成形するカップ成形工程には少なくとも予加工上型、予加工下型、予加工パッドを備え、
     当該カップ成形品を最終製品の直径まで縮径を行う再絞り工程には少なくとも上型、再絞りパンチ、再絞りダイスを備え、
    その後缶胴をしごいて当該缶胴の板厚を減少させ伸ばすしごき加工工程には1または複数のしごき型を備え、
    缶底の接地溝部の予加工工程には少なくとも缶底の接地溝部が成形完了時の缶底の接地溝部より深くなるような予加工上型を備え、
    接地部増肉工程を含む缶底の加工工程には少なくとも前記缶底の接地溝部より深い缶底の接地溝部を押し潰し増肉する下型、缶底の缶中央部から環状凹部を経て内壁部までを成形するパッド、缶底の外壁部から缶胴コーナー部までを成形するパッドを備え、
    成形された缶胴を製缶装置から外へ排出する缶の排出工程にはストリッパーを備え、
    さらに予加工工程の予加工上型の缶底中心から缶胴コーナー部に至るまでの線長Xと、
    缶底の加工工程の上型の缶底中心から缶胴コーナー部に至るまでの線長Yが、下記(7)式の範囲を満たす予加工工程の予加工上型と缶底の加工工程の上型であることを特徴とする2ピース缶胴を成形する製造装置。
    1.00Y<X≦1.12Y   (7)
  9.  前記接地溝部の予加工工程完了後の接地溝部の頂点が、缶底の加工工程にて缶中央部から環状凹部を経て内壁部までを形成するパッドの環状凹部の頂点よりも缶の外側に位置するような予加工上型であることを特徴とする請求項8に記載の2ピース缶胴を成形する製造装置。
  10.  前記接地溝部の予加工工程完了後の接地溝部の頂点が、缶底の加工工程にて外壁部から缶胴コーナー部までを形成するパッドの内周側壁と、同缶底の加工工程にて缶中央部から環状凹部を経て内壁部までを形成するパッドの環状凹部の頂点との間に位置するような予加工上型、前記缶底の接地溝部より深い缶底の接地溝部を押し潰し増肉する下型、缶底の缶中央部から環状凹部を経て内壁部までを成形するパッド、缶底の外壁部から缶胴コーナー部までを成形するパッドであることを特徴とする請求項8または9に記載の2ピース缶胴を成形する製造装置。
  11.  前記接地溝部の予加工工程完了後の接地溝部の頂点が、最終製品の缶胴の接地部の頂点と一致するような予加工上型、前記缶底の接地溝部より深い缶底の接地溝部を押し潰し増肉する下型、缶底の缶中央部から環状凹部を経て内壁部までを成形するパッド、缶底の外壁部から缶胴コーナー部までを成形するパッドであることを特徴とする請求項8乃至10のいずれか1項に記載の2ピース缶胴を成形する製造装置。
  12.  前記線長Xと、前記線長Yが、下記(8)式を満足するような予加工上型、前記缶底の接地溝部より深い缶底の接地溝部を押し潰し増肉する下型、缶底の缶中央部から環状凹部を経て内壁部までを成形するパッド、缶底の外壁部から缶胴コーナー部までを成形するパッドであることを特徴とする請求項8乃至11のいずれか1項に記載の2ピース缶胴を成形する製造装置。
    1.07Y≦X≦1.12Y   (8)
  13.  缶底の加工工程における外壁部から缶胴コーナー部までを形成するパッドと、同缶底の加工工程における缶中央部から環状凹部を経て内壁部までを形成するパッドと、同缶底の加工工程における上型の表面の摩擦係数が0.05以上0.4以下であることを特徴とする請求項8乃至12のいずれか1項に記載の2ピース缶胴を成形する製造装置。
  14.  缶胴成形後の缶底の接地部の板厚が、加工前の素材の板厚よりも厚いことを特徴とする2ピース缶胴。
  15.  予加工工程完了後の缶胴における缶底中心から缶胴コーナー部に至るまでの線長xと、缶底の加工工程完了後の缶胴における缶底中心から缶胴コーナー部に至るまでの線長yが、下記(9)式の範囲を満たすことを特徴とする2ピース缶胴。
    1.00y<x≦1.12y   (9)
  16.  前記線長xと、前記線長yが、下記(10)式を満足することを特徴とする請求項15に記載の2ピース缶胴。
    1.07y≦x≦1.12y   (10)
PCT/JP2017/037278 2016-10-13 2017-10-13 2ピース缶胴の成形方法、その製造装置および2ピース缶胴 WO2018070542A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018526597A JP6458909B2 (ja) 2016-10-13 2017-10-13 2ピース缶胴の成形方法、その製造装置および2ピース缶胴

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016201554 2016-10-13
JP2016-201554 2016-10-13

Publications (1)

Publication Number Publication Date
WO2018070542A1 true WO2018070542A1 (ja) 2018-04-19

Family

ID=61905743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037278 WO2018070542A1 (ja) 2016-10-13 2017-10-13 2ピース缶胴の成形方法、その製造装置および2ピース缶胴

Country Status (2)

Country Link
JP (1) JP6458909B2 (ja)
WO (1) WO2018070542A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020121761A (ja) * 2019-01-30 2020-08-13 東洋製罐グループホールディングス株式会社 シームレス缶体及びシームレス缶体の製造方法
JP2021075341A (ja) * 2019-01-30 2021-05-20 東洋製罐グループホールディングス株式会社 シームレス缶体及びシームレス缶体の製造方法
EP3919200A4 (en) * 2019-01-30 2022-11-02 Toyo Seikan Group Holdings, Ltd. SEAMLESS CAN BODY AND METHOD FOR PRODUCING SEAMLESS CAN BODY
JP2022176310A (ja) * 2021-01-28 2022-11-25 東洋製罐グループホールディングス株式会社 シームレス缶体及びシームレス缶体の製造方法
US11684963B2 (en) * 2017-10-12 2023-06-27 Nippon Steel Corporation Method and apparatus for producing outer panel having character line
TWI840492B (zh) 2019-01-30 2024-05-01 日商東洋製罐集團控股股份有限公司 無縫罐體及無縫罐體之製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202612U (ja) * 1987-06-17 1988-12-27
JPH01116120U (ja) * 1988-01-29 1989-08-04
JPH04367437A (ja) * 1991-06-05 1992-12-18 Kuwabara Yasunaga 底部補強ツーピース缶
JPH07144239A (ja) * 1993-11-19 1995-06-06 Kuwabara Yasunaga シームレス缶の製造方法
JPH11123481A (ja) * 1997-10-24 1999-05-11 Kishimoto Akira シームレス缶及びその成形法
JP2010120062A (ja) * 2008-11-20 2010-06-03 Nissan Motor Co Ltd プレス成形品の製造方法および製造装置、並びにプレス成形品
JP2015150601A (ja) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 プレス部品の増厚加工方法及び車両用プレス部品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01213148A (ja) * 1988-02-18 1989-08-25 Toyo Seikan Kaisha Ltd 一体成形耐圧缶とその製造方法
JPH0528177Y2 (ja) * 1989-05-12 1993-07-20
JPH0796137B2 (ja) * 1989-08-09 1995-10-18 東洋製罐株式会社 シームレス金属缶の製造方法
JP5585756B2 (ja) * 2009-08-11 2014-09-10 東洋製罐株式会社 2ピース缶の製造方法及び製造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202612U (ja) * 1987-06-17 1988-12-27
JPH01116120U (ja) * 1988-01-29 1989-08-04
JPH04367437A (ja) * 1991-06-05 1992-12-18 Kuwabara Yasunaga 底部補強ツーピース缶
JPH07144239A (ja) * 1993-11-19 1995-06-06 Kuwabara Yasunaga シームレス缶の製造方法
JPH11123481A (ja) * 1997-10-24 1999-05-11 Kishimoto Akira シームレス缶及びその成形法
JP2010120062A (ja) * 2008-11-20 2010-06-03 Nissan Motor Co Ltd プレス成形品の製造方法および製造装置、並びにプレス成形品
JP2015150601A (ja) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 プレス部品の増厚加工方法及び車両用プレス部品

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11684963B2 (en) * 2017-10-12 2023-06-27 Nippon Steel Corporation Method and apparatus for producing outer panel having character line
JP2020121761A (ja) * 2019-01-30 2020-08-13 東洋製罐グループホールディングス株式会社 シームレス缶体及びシームレス缶体の製造方法
JP2021075341A (ja) * 2019-01-30 2021-05-20 東洋製罐グループホールディングス株式会社 シームレス缶体及びシームレス缶体の製造方法
EP3919200A4 (en) * 2019-01-30 2022-11-02 Toyo Seikan Group Holdings, Ltd. SEAMLESS CAN BODY AND METHOD FOR PRODUCING SEAMLESS CAN BODY
JP7402835B2 (ja) 2019-01-30 2023-12-21 東洋製罐グループホールディングス株式会社 シームレス缶体及びシームレス缶体の製造方法
TWI840492B (zh) 2019-01-30 2024-05-01 日商東洋製罐集團控股股份有限公司 無縫罐體及無縫罐體之製造方法
JP2022176310A (ja) * 2021-01-28 2022-11-25 東洋製罐グループホールディングス株式会社 シームレス缶体及びシームレス缶体の製造方法
JP2022186750A (ja) * 2021-01-28 2022-12-15 東洋製罐グループホールディングス株式会社 シームレス缶体及びシームレス缶体の製造方法
JP7424448B2 (ja) 2021-01-28 2024-01-30 東洋製罐グループホールディングス株式会社 シームレス缶体及びシームレス缶体の製造方法

Also Published As

Publication number Publication date
JPWO2018070542A1 (ja) 2018-10-11
JP6458909B2 (ja) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6458909B2 (ja) 2ピース缶胴の成形方法、その製造装置および2ピース缶胴
KR101581652B1 (ko) 성형재 제조 방법
JP5952804B2 (ja) 缶の製造
JP3621129B2 (ja) 金属容器本体を成形する方法
CN107405668A (zh) 冲压成形方法、使用了该冲压成形方法的部件的制造方法以及使用该冲压成形方法制造的部件
JP4681420B2 (ja) 形状凍結性に優れたプレス成形方法及びプレス金型
JP2016000430A (ja) 容器、選択的に成形されたカップ、ツーリング及びそれらを製造する方法
JP6673760B2 (ja) 突起部成形装置、突起部成形方法
WO2017150690A1 (ja) 成形材製造方法
JP2010207906A (ja) 形状凍結性に優れたプレス成形方法とプレス成形装置並びに同プレス成形装置の製造方法
JP6242363B2 (ja) 成形材製造方法
EA031219B1 (ru) Пресс-форма для вытяжки с утонением и способ изготовления формованного материала
JP2008132522A (ja) 金属製缶胴およびその製造方法
US20100288822A1 (en) Tube
JP4457671B2 (ja) 金属板のプレス成形方法
JP4879812B2 (ja) 形状凍結性に優れたプレス成形方法
JP4556432B2 (ja) 金属板のプレス成形方法
JP6350498B2 (ja) プレスしわ発生判定方法
JP6738055B2 (ja) プレス成形品の設計方法、プレス成形金型、プレス成形品およびプレス成形品の製造方法
JP2008023535A (ja) 金属板のプレス成形方法
JP6787013B2 (ja) 成形材製造方法
JP6977302B2 (ja) アルミシームレス缶
JPH08321286A (ja) 側壁薄肉化金属缶
JP2004167593A (ja) 形状凍結性に優れたプレス加工方法
JP7417069B2 (ja) 成形材製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018526597

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860270

Country of ref document: EP

Kind code of ref document: A1