WO2018066302A1 - 第1保護膜形成用シート - Google Patents

第1保護膜形成用シート Download PDF

Info

Publication number
WO2018066302A1
WO2018066302A1 PCT/JP2017/032468 JP2017032468W WO2018066302A1 WO 2018066302 A1 WO2018066302 A1 WO 2018066302A1 JP 2017032468 W JP2017032468 W JP 2017032468W WO 2018066302 A1 WO2018066302 A1 WO 2018066302A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
curable resin
meth
buffer layer
test piece
Prior art date
Application number
PCT/JP2017/032468
Other languages
English (en)
French (fr)
Inventor
正憲 山岸
一政 安達
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to SG11201902955QA priority Critical patent/SG11201902955QA/en
Priority to CN201780061254.6A priority patent/CN109791887B/zh
Priority to KR1020197009563A priority patent/KR102412725B1/ko
Priority to JP2018513675A priority patent/JP6344811B1/ja
Publication of WO2018066302A1 publication Critical patent/WO2018066302A1/ja
Priority to PH12019500713A priority patent/PH12019500713A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Definitions

  • the present invention relates to a first protective film forming sheet.
  • a projecting electrode (hereinafter referred to as eutectic solder, high temperature solder, gold, etc.) is formed as a semiconductor chip on a connection pad portion thereof.
  • eutectic solder high temperature solder, gold, etc.
  • these are referred to as “bumps”, and the bumps are brought into contact with the corresponding terminal portions on the chip mounting substrate by a so-called face-down method so as to be melted / diffused.
  • a flip chip mounting method for bonding has been adopted.
  • the semiconductor chip used in this mounting method is obtained by grinding or dicing a surface of a semiconductor wafer having a bump formed on the circuit surface, on the side opposite to the circuit surface (in other words, the bump forming surface). Can be obtained.
  • a curable resin film is applied to the bump forming surface, and this film is cured to be applied to the bump forming surface.
  • a protective film is formed.
  • the semiconductor device is expected to have a higher function, and the size of the semiconductor chip tends to increase.
  • a semiconductor chip having an increased size is likely to be deformed due to warpage in a state where it is mounted on a substrate, and in particular, a crack is likely to be generated in a bump located at an end of the semiconductor chip or in the vicinity thereof.
  • the protective film formed on the bump forming surface is also expected to suppress such damage to the bump.
  • a protective film forming sheet 8 As shown in FIG.
  • the protective film forming sheet 8 is formed by laminating a buffer layer 83 and a curable resin film 82 on a base material 81 in this order.
  • the buffer layer 83 has a buffering action against the force applied to the buffer layer 83 and a layer adjacent thereto.
  • the protective film forming sheet 8 is arranged so that the curable resin film 82 faces the bump forming surface 9 a of the semiconductor wafer 9.
  • the protective film forming sheet 8 is pressure-bonded to the semiconductor wafer 9, and the curable resin film 82 of the protective film forming sheet 8 is applied to the bump forming surface 9 a of the semiconductor wafer 9 as shown in FIG. to paste together. Bonding of the curable resin film 82 at this time is performed while heating the curable resin film 82. As a result, the curable resin film 82 comes into close contact with the bump forming surface 9a of the semiconductor wafer 9 and the surface 91a of the bump 91.
  • the bump 91 penetrates the curable resin film 82, the surface of the surface 91a of the bump 91 is removed. In part, the buffer layer 83 is also in close contact. After the bonding of the curable resin film 82 as described above, the surface (back surface) 9b opposite to the bump forming surface 9a of the semiconductor wafer 9 is ground as necessary, and then applied to the back surface 9b of the semiconductor wafer 9. Separately, a protective film forming sheet for protecting the back surface 9b is attached (not shown).
  • the base material 81 and the buffer layer 83 are peeled from the curable resin film 82.
  • the curable resin film 82 is cured to form a protective film 82 ′ as shown in FIG. 6 (d).
  • the protective film forming sheets disclosed in Patent Documents 1 and 2 both define the physical properties of the curable resin film at the temperature when the sheet is attached to a semiconductor wafer.
  • the degree of distortion of the buffer layer and the curable resin film constituting the sheet is greatly different between the initial stage of application to the semiconductor wafer and the stage after the middle stage. This is also apparent from FIGS. 6 (a) and 6 (b). And if the degree of distortion differs in this way, some physical properties of the buffer layer and the curable resin film will change greatly.
  • the upper part of the bump tends to protrude through the curable resin film.
  • the present invention is a protective film-forming sheet provided with a curable resin film for forming a protective film on the surface of the semiconductor wafer by sticking to the surface having bumps and curing the semiconductor wafer, and the curable resin film
  • An object of the present invention is to provide a novel protective film-forming sheet capable of suppressing the remaining of the curable resin film on the bump upper portion when the is attached to the surface.
  • the present invention comprises a first substrate, a buffer layer formed on the first substrate, and a curable resin film formed on the buffer layer, wherein the curable resin film is a semiconductor wafer.
  • the buffer layer has a diameter of 8 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz.
  • the strain of the test piece of the buffer layer is 300%.
  • the test piece of the buffer layer has a shear elastic modulus of Gb300 ′, and the test piece of the curable resin film having a diameter of 8 mm and a thickness of 1 mm is generated under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the hardening is performed.
  • the shear modulus of the test piece of the curable resin film was Gc300 ′ when the strain of the test piece of the curable resin film was 300%.
  • the Gb300 ′ and the Gc300 ′ are Formula (w1): Gb300 ′ ⁇ Gc300 ′ A first protective film-forming sheet that satisfies the above relationship is provided.
  • the shear elastic modulus Gb200 ′ of the test piece of the buffer layer and the test piece of the curable resin film The shear modulus Gc200 ′ of the test piece of the curable resin film when the strain of Formula (w2): Gb200 ′ ⁇ Gc200 ′ May be satisfied.
  • the shear modulus Gb400 ′ of the test piece of the buffer layer and the test piece of the curable resin film The shear modulus Gc400 ′ of the test piece of the curable resin film when the strain is 400%, Formula (w3): Gb400 ′ ⁇ Gc400 ′ May be satisfied.
  • the shear modulus Gb ′ of the test piece of the buffer layer obtained by the strain dispersion measurement there may be a region where the shear modulus Gb ′ is not constant, and the shear modulus Gb ′ when the strain of the test piece of the buffer layer is 300% may be included in the region.
  • the said curable resin film contains a resin component, Content of the filler of the said curable resin film is 45 mass% or less, The weight of the said resin component The average molecular weight may be 30000 or less.
  • the first protective film can be formed on the surface by sticking the first protective film-forming sheet of the present invention to the surface of the semiconductor wafer having the bumps and curing the curable resin film. And when a curable resin film is stuck on the said surface, the residual of the curable resin film in bump upper part can be suppressed.
  • the first protective film-forming sheet of the present invention includes a first base material, a buffer layer formed on the first base material, and a curability formed on the buffer layer.
  • the curable resin film is used to form a first protective film on the surface of the semiconductor wafer by sticking and curing the surface of the semiconductor wafer having bumps.
  • seat for 1st protective film formation of this invention satisfy
  • Gb300 ′ is the shear modulus of the test piece of the buffer layer when the strain of the test piece of the buffer layer is 300% when the strain dispersion measurement is performed on the test piece of the buffer layer. It is.
  • the strain dispersion measurement was performed by generating strain on a test piece of the buffer layer having a diameter of 8 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the shear modulus G of the test piece of the buffer layer. Do 'by measuring'.
  • Gc300 ′ is a test of the curable resin film when the strain of the test piece of the curable resin film is 300% when the strain dispersion measurement is performed on the test piece of the curable resin film. It is the shear modulus of the piece.
  • the strain dispersion measurement at this time is performed by the same method as that for the test piece of the buffer layer. That is, a strain is generated on a test piece of the curable resin film having a diameter of 8 mm and a thickness of 1 mm under conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the shear modulus G ′ of the test piece of the curable resin film is obtained. By measuring, strain dispersion measurement is performed. As described above, each of the test pieces for performing strain dispersion measurement is a circular film.
  • the first protective film-forming sheet of the present invention is affixed to the surface (also referred to as “bump-forming surface” in this specification) having bumps of a semiconductor wafer through the curable resin film. used.
  • the softened curable resin film spreads between the bumps so as to cover the bumps, and is in close contact with the bump forming surface.
  • the bump is embedded so as to cover the surface in the vicinity of the bump forming surface.
  • the curable resin film in this state finally forms a first protective film by curing.
  • this 1st protective film protects a bump formation surface and a bump in the state closely_contact
  • the first base material and the buffer layer are removed, and the first protective film After the formation, the semiconductor chip is finally incorporated into the semiconductor device in the state of the semiconductor chip provided with the first protective film.
  • the first protective film forming sheet of the present invention when a curable resin film is affixed to the bump forming surface of a semiconductor wafer, the remaining of the curable resin film on the bump upper portion can be suppressed. This is because the curable resin film and the buffer layer satisfy the relationship of the formula (w1). After the middle stage of pasting the first protective film-forming sheet to the semiconductor wafer, at the stage where the degree of distortion of the curable resin film and the buffer layer is greatly different from the initial stage of the pasting (the curable resin film and When the shear elastic modulus of the buffer layer has the above specific relationship, the upper portion of the bump can easily penetrate the curable resin film and protrude.
  • the first protective film forming sheet satisfies the relationship of the formula (w1). That is, for the buffer layer and the curable resin film constituting the first protective film-forming sheet, test pieces having a diameter of 8 mm and a thickness of 1 mm are prepared, and these test pieces are applied under conditions of a temperature of 90 ° C. and a frequency of 1 Hz. Strain dispersion measurement is performed to generate a strain and measure the shear modulus G ′ of these test pieces.
  • the shear elastic modulus Gb300 ′ of the test piece of the buffer layer and when the strain of the test piece of the curable resin film is 300% the shear modulus Gc300 ′ of the test piece of the curable resin film satisfies the relationship of Gb300 ′ ⁇ Gc300 ′.
  • the degree of distortion of the buffer layer constituting the sheet, and the curable resin film Both are greatly different from the degree of strain.
  • the reason why the values (Gb300 ′, Gc300 ′) when the strain of these test pieces is 300% is adopted as the shear modulus G ′ of the test pieces of the buffer layer and the curable resin film is used. ,It is here. If the buffer layer has a different degree of strain, the physical properties of some of the buffer layer change greatly. Similarly, if the degree of the distortion of the curable resin film is different, the physical properties of a part thereof are greatly changed.
  • the upper part of the bump is the curable resin film, especially during the application stage of the curable resin film.
  • the buffer layer and the curable resin film It is important to define the relationship of the shear modulus G ′. Therefore, in the present invention, the relationship of the formula (w1) is satisfied.
  • Gb300 'and Gc300' are shear elastic moduli G 'of the buffer layer and the curable resin film, respectively, at the stage where the degree of these strains is increased.
  • the first protective film forming sheet only needs to satisfy the relationship of the formula (w1), in other words, the value of Gb300 '/ Gc300' may be 1 or more.
  • the value of Gb300 ′ / Gc300 ′ is preferably greater than 1, more preferably 10 or more, and even more preferably 100 or more. It may be 1000 or more.
  • the shear elastic modulus G ′ of the buffer layer and the shear elastic modulus G ′ of the test piece of the buffer layer both adjust the type or content of the components contained in the buffer layer. It can be easily adjusted. For that purpose, what is necessary is just to adjust the kind or content of the component in the composition for buffer layer formation mentioned later for forming a buffer layer, for example, in the composition for buffer layer formation (V) mentioned later It is preferable to adjust the type or content of the main components such as poly ⁇ -olefin.
  • the shear elastic modulus G ′ of the curable resin film and the shear elastic modulus G ′ of the test piece of the curable resin film are both types of components contained in the curable resin film. Or it can adjust easily by adjusting content. For that purpose, what is necessary is just to adjust the kind or content of the containing component in the composition for curable resin film formation mentioned later for forming a curable resin film.
  • the resin layer forming composition (III) described later the polymer component (A), thermosetting component (B), curing accelerator (C) or filler (D) in this composition is used. It is preferable to adjust the type or content of the main components such as
  • the first protective film forming sheet preferably further satisfies the relationship of the following formula (w2) when the strain dispersion measurement is performed.
  • w2 the strain dispersion measurement
  • Gb200 ′ is the shear modulus of the test piece of the buffer layer when the strain of the test piece of the buffer layer is 200%.
  • Gc200 ′ is the shear elastic modulus of the test piece of the curable resin film when the strain of the test piece of the curable resin film is 200%.
  • the first protective film-forming sheet satisfying the relationship of the formula (w2) has a higher effect of suppressing the remaining of the curable resin film on the bump upper part when the curable resin film is attached to the bump forming surface. Become.
  • the first protective film forming sheet preferably satisfies the relationship of the formula (w2), in other words, the value of Gb200 '/ Gc200' is preferably 1 or more. From the viewpoint that the above-described effect of the present invention becomes higher, the value of Gb200 ′ / Gc200 ′ is more preferably greater than 1, more preferably 10 or more, and particularly preferably 100 or more. 1000 or more.
  • the first protective film forming sheet preferably further satisfies the relationship of the following formula (w3) when the strain dispersion measurement is performed.
  • Gb400 ′ ⁇ Gc400 ′... (W3)
  • Gb400 ′ is the shear modulus of the test piece of the buffer layer when the strain of the test piece of the buffer layer is 400%.
  • Gc400 ′ is the shear elastic modulus of the test piece of the curable resin film when the strain of the test piece of the curable resin film is 400%.
  • the first protective film-forming sheet satisfying the relationship of the formula (w3) has a higher effect of suppressing the remaining of the curable resin film on the bump upper part when the curable resin film is attached to the bump forming surface. Become.
  • the first protective film forming sheet satisfies the relationship of the formula (w3), in other words, the value of Gb400 '/ Gc400' is 1 or more.
  • the value of Gb400 ′ / Gc400 ′ is more preferably greater than 1, more preferably 10 or more, and particularly preferably 100 or more. 1000 or more.
  • the first protective film forming sheet satisfies the relationship of the formula (w1) and satisfies at least one of the formulas (w2) and (w3). It is preferable that all the relationships of the above formulas (w1), (w2) and (w3) are satisfied.
  • the sheet for forming the first protective film is a function of the strain of the test piece of the buffer layer and the shear elastic modulus Gb ′ of the test piece of the buffer layer obtained by the strain dispersion measurement (in this specification, In some cases, a region where the shear modulus Gb ′ is not constant (in this specification, sometimes referred to as “variable region Rb”) is present. It is more preferable that the shear elastic modulus Gb ′ when the strain of the test piece is 300% is included in the region (variable region Rb).
  • Such a 1st protective film formation sheet becomes higher in the effect which suppresses the residual of the curable resin film in bump upper part, when a curable resin film is stuck on the said bump formation surface.
  • the sheet for forming the first protective film is a function of the strain of the test piece of the curable resin film obtained by the strain dispersion measurement and the shear modulus Gc ′ of the test piece of the curable resin film (this specification).
  • the shear modulus Gc ′ is not constant (in this specification, sometimes referred to as “variable region Rc”). More preferably, the shear modulus Gc ′ when the strain of the test piece of the curable resin film is 300% is included in the region (variable region Rc).
  • Such a 1st protective film formation sheet becomes higher in the effect which suppresses the residual of the curable resin film in bump upper part, when a curable resin film is stuck on the said bump formation surface.
  • the first protective film forming sheet preferably has a variable region Rb in the function Fb and a variable region Rc in the function Fc.
  • the shear modulus Gb ′ when the strain of the test piece of the buffer layer is 300% is included in the fluctuation region Rb, and the shear modulus of elasticity Gc ′ when the strain of the test piece of the curable resin film is 300%. Is more preferably included in the fluctuation region Rc.
  • the shear modulus is not constant means that “the minimum value (Pa) of the shear modulus is less than 90% of the maximum value (Pa) of the shear modulus” in the target region. It means (the value of [minimum value of shear modulus (Pa)] / [maximum value of shear modulus (Pa)] ⁇ 100 is less than 90).
  • the shear modulus is constant means that “the minimum value (Pa) of the shear modulus is 90% or more of the maximum value (Pa) of the shear modulus” in the target region. means.
  • variable region Rb is present in the function Fb of the first protective film forming sheet, whether or not the variable region Rb is present is determined by adjusting the type or content of the component contained in the buffer layer, as in the case of the above-described shear elastic modulus G ′. It can be easily adjusted.
  • variable region Rc exists is the same as in the case of the above-described shear elastic modulus G ′, the type or content of the component of the curable resin film. By adjusting, it can be adjusted easily.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of the first protective film-forming sheet of the present invention.
  • the drawings used in the following description may show the main portions in an enlarged manner for convenience, and the dimensional ratios of the respective components are the same as the actual ones. Not necessarily.
  • a first protective film forming sheet 1 shown in FIG. 1 includes a first base material 11, a buffer layer 13 formed on the first base material 11, and a curable resin film 12 formed on the buffer layer 13. , Provided. More specifically, in the first protective film forming sheet 1, a buffer layer 13 is laminated on one surface (hereinafter also referred to as “first surface”) 11 a of the first base material 11, and the buffer layer 13 is buffered. The curable resin film 12 is laminated on the surface 13a (hereinafter, also referred to as “first surface”) of the layer 13 opposite to the side on which the first base material 11 is provided. Thus, the first protective film forming sheet 1 is formed by laminating the first base material 11, the buffer layer 13, and the curable resin film 12 in this order in the thickness direction.
  • symbol 12a shows the surface (henceforth a "1st surface") on the opposite side to the side in which the buffer layer 13 of the curable resin film 12 is provided.
  • FIG. 2 is a cross-sectional view schematically showing another embodiment of the first protective film-forming sheet of the present invention.
  • the same components as those shown in the already explained figures are given the same reference numerals as those in the already explained figures, and their detailed explanations are omitted.
  • the first protective film forming sheet 2 shown in FIG. 2 includes an adhesion layer 14 between the first substrate 11 and the buffer layer 13 (the adhesion layer 14 formed on the first substrate 11 and And the buffer layer 13 formed on the adhesion layer 14), except that the first protective film forming sheet 1 shown in FIG. That is, in the first protective film forming sheet 2, the adhesion layer 14 is laminated on the first surface 11 a of the first substrate 11, and the side of the adhesion layer 14 opposite to the side on which the first substrate 11 is provided.
  • a buffer layer 13 is laminated on the surface 14a (hereinafter sometimes referred to as "first surface"), and the first base material 11, the adhesion layer 14, the buffer layer 13 and the curable resin film 12 are in this order. These are laminated in the thickness direction.
  • the first protective film-forming sheet of the present invention is not limited to the one shown in FIGS. 1 and 2, and a part of the configuration shown in FIGS. May be changed, deleted, or added.
  • the first protective film-forming sheet of the present invention has a release film on the outermost layer on the side opposite to the substrate (the curable resin film 12 in the first protective film-forming sheet shown in FIGS. 1 and 2). You may have. Next, each layer constituting the first protective film forming sheet of the present invention will be described.
  • the first base material is in the form of a sheet or film, and examples of the constituent material include various resins.
  • the resin include polyethylenes such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and high density polyethylene (HDPE); other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene, and norbornene resin.
  • Polyolefins such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-norbornene copolymer (ethylene as a monomer)
  • a copolymer obtained by using a vinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer (a resin obtained by using vinyl chloride as a monomer); polystyrene; polycycloolefin; polyethylene terephthalate, polyethylene Naphtha Polyesters such as polyesters, polybutylene terephthalates, polyethylene isophthalates, polyethylene-2,6-naphthalene dicarboxylates, wholly aromatic polyesters in which all the structural units have an aromatic cyclic group; Poly (meth) acrylic acid ester; Polyurethane; Polyurethane acrylate; Polyimide; Polyamide; Polycarbonate; Fluororesin
  • the polymer alloy of the polyester and the other resin is preferably one in which the amount of the resin other than the polyester is relatively small.
  • the resin include a crosslinked resin in which one or more of the resins exemplified so far are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resins can also be mentioned.
  • (meth) acrylic acid is a concept including both “acrylic acid” and “methacrylic acid”.
  • (meth) acrylate is a concept including both “acrylate” and “methacrylate”
  • (meth) acryloyl group Is a concept including both an “acryloyl group” and a “methacryloyl group”.
  • the resin constituting the first base material may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the first substrate may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same or different from each other, and a combination of these layers Is not particularly limited.
  • a plurality of layers may be the same or different from each other” means “all layers may be the same or all layers. May be different, and only some of the layers may be the same ”, and“ a plurality of layers are different from each other ”means that“ at least one of the constituent material and thickness of each layer is different from each other ” "Means.
  • the thickness of the first base material is preferably 5 to 1000 ⁇ m, more preferably 10 to 500 ⁇ m, further preferably 15 to 300 ⁇ m, and particularly preferably 20 to 150 ⁇ m.
  • the “thickness of the first base material” means the thickness of the entire first base material.
  • the thickness of the first base material composed of a plurality of layers means all of the first base material. Means the total thickness of the layers.
  • the first substrate is preferably one having high thickness accuracy, that is, one in which variation in thickness is suppressed regardless of the part.
  • materials that can be used to construct the first base material having such a high thickness precision include, for example, polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, and ethylene-vinyl acetate copolymer. Examples include coalescence.
  • the first base material contains various known additives such as a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst, and a softener (plasticizer) in addition to the main constituent materials such as the resin. You may do it.
  • the first substrate may be transparent or opaque, may be colored according to the purpose, or other layers may be deposited.
  • the first substrate preferably transmits energy rays.
  • the first substrate can be manufactured by a known method.
  • the 1st base material containing resin can be manufactured by shape
  • the buffer layer has a buffering action against the force applied to the buffer layer and the adjacent layer.
  • the “layer adjacent to the buffer layer” is mainly a curable resin film and a first protective film corresponding to the cured product.
  • the buffer layer is in the form of a sheet or film, and the constituent material is not particularly limited as long as the relationship of the formula (w1) is satisfied.
  • Preferred examples of the buffer layer include those containing various resins such as poly ⁇ -olefin.
  • the buffer layer may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same or different from each other. It is not limited.
  • the thickness of the buffer layer is preferably 150 to 1000 ⁇ m, more preferably 150 to 800 ⁇ m, further preferably 200 to 600 ⁇ m, and particularly preferably 250 to 500 ⁇ m.
  • the thickness of the buffer layer means the thickness of the entire buffer layer.
  • the thickness of the buffer layer composed of a plurality of layers means the total thickness of all the layers constituting the buffer layer. means.
  • a buffer layer can be formed using the composition for buffer layer formation containing the constituent material of buffer layers, such as the said resin.
  • the buffer layer can be formed at a target site by extruding the buffer layer forming composition on the surface on which the buffer layer is to be formed.
  • a more specific method for forming the buffer layer will be described later in detail, along with methods for forming other layers.
  • the ratio of the contents of components that do not vaporize at room temperature is usually the same as the ratio of the contents of the components in the buffer layer.
  • “normal temperature” means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
  • composition for buffer layer formation examples include a buffer layer forming composition (V) containing a poly ⁇ -olefin.
  • the poly ⁇ -olefin may have any structural unit derived from ⁇ -olefin. There may be only one type of structural unit of poly ⁇ -olefin, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. That is, the poly ⁇ -olefin may be a homopolymer obtained by polymerizing one kind of monomer, or may be a copolymer obtained by copolymerizing two or more kinds of monomers.
  • the poly ⁇ -olefin is preferably an ethylene- ⁇ -olefin copolymer.
  • the density of the poly ⁇ - olefin is preferably 890 kg / m 3 or less, more preferably 830 a ⁇ 890 kg / m 3, particularly preferably 850 ⁇ 875kg / m 3.
  • density of poly- ⁇ -olefin means a value measured in accordance with ASTM D1505 unless otherwise specified.
  • the melting point of the poly ⁇ -olefin is preferably 55 ° C. or lower, and more preferably 50 ° C. or lower.
  • the melt flow rate (MFR) at 190 ° C. of the poly ⁇ -olefin is preferably 1 to 6 g / 10 minutes, and more preferably 2.5 to 4.5 g / 10 minutes. Further, the melt flow rate (MFR) of poly ⁇ -olefin at 230 ° C. is preferably 2 to 12 g / 10 minutes, and more preferably 4 to 9 g / 10 minutes.
  • melt flow rate of poly ⁇ -olefin means a value measured according to ASTM D1238 unless otherwise specified.
  • the content of the poly ⁇ -olefin in the buffer layer forming composition (V) and the buffer layer is preferably 80 to 100% by mass.
  • composition for forming a buffer layer (V) and the buffer layer may contain other components other than the poly ⁇ -olefin within a range not impairing the effects of the present invention.
  • the other components are not particularly limited and can be appropriately selected depending on the purpose.
  • the buffer layer forming composition (V) and the other components contained in the buffer layer may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrarily selected. it can.
  • the contents of the buffer layer forming composition (V) and the other components of the buffer layer are not particularly limited, and may be appropriately selected depending on the purpose.
  • the curable resin film is a layer for protecting the bump forming surface (in other words, the circuit surface) of the semiconductor wafer and the bump provided on the bump forming surface. It is a curable resin film, and in the second embodiment, it is an energy ray curable resin film.
  • the curable resin film forms a first protective film by curing.
  • the curable resin film is in the form of a sheet or film, and the constituent material is not particularly limited as long as the relationship of the formula (w1) is satisfied.
  • the curable resin film may be either thermosetting or energy ray curable, but is preferably thermosetting.
  • “energy beam” means an electromagnetic wave or charged particle beam having energy quanta, and examples thereof include ultraviolet rays, radiation, and electron beams.
  • Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion H lamp, a xenon lamp, a black light, an LED lamp or the like as an ultraviolet ray source.
  • the electron beam can be emitted by an electron beam accelerator or the like.
  • “energy ray curable” means the property of being cured by irradiation with energy rays
  • “non-energy ray curable” means the property of not being cured even when irradiated with energy rays. .
  • the curable resin film contains a resin component and may or may not contain a filler in addition to the resin component, and preferably has a filler content of 45% by mass or less. .
  • the resin component preferably has a weight average molecular weight of 1000000 or less, such as 800000 or less, 500000 or less, 300000 or less, 200000 or less, 100000 or less, 50000 or 30000 or less. Also good.
  • the lower limit value of the weight average molecular weight of the resin component is not particularly limited, and may be, for example, either 5000 or 8000. When the resin component satisfies these conditions, the first protective film forming sheet has a higher effect of suppressing the remaining of the curable resin film on the bumps.
  • the weight average molecular weight is a polystyrene conversion value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
  • the weight average molecular weight of the resin component can be appropriately adjusted so as to be within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value.
  • Preferable examples of the weight average molecular weight include 5000 to 1000000, 5000 to 800000, 5000 to 500000, 5000 to 300000, 5000 to 200000, 5000 to 100000, 5000 to 50000, and 5000 to 30000.
  • Other preferable examples of the weight average molecular weight include 8000 to 1000000, 8000 to 800000, 8000 to 500000, 8000 to 300000, 8000 to 200000, 8000 to 100,000, 8000 to 50000, and 8000 to 30000.
  • the weight average molecular weight is not limited thereto.
  • the content of the filler of the curable resin film is more preferably 40% by mass or less, and particularly preferably 30% by mass or less.
  • the lower limit of the content of the filler of the curable resin film is not particularly limited.
  • the content of the filler of the curable resin film may be any of 0 mass% or more, 5 mass% or more, and 10 mass% or more.
  • Content of the filler of a curable resin film can be suitably adjusted so that it may become in the range set combining the above-mentioned preferable lower limit and upper limit arbitrarily.
  • Preferable examples of the content of the filler of the curable resin film include 0 to 45% by mass, 0 to 40% by mass, and 0 to 30% by mass.
  • the content of the filler of the curable resin film is not limited to these.
  • the curable resin film preferably contains a resin component, the filler content is 45% by mass or less, and the resin component has a weight average molecular weight of 30000 or less.
  • the types of the resin component and the filler are not particularly limited.
  • Such a curable resin film contains, for example, a resin component, and the filler content is preferably 0 to 45% by mass, more preferably 0 to 40% by mass, and still more preferably 0 to 30% by mass.
  • the resin component has a weight average molecular weight of 30000 or less (for example, 5000 to 30000, 8000 to 30000, etc.).
  • the curable resin film can be formed using a curable resin film-forming composition containing the constituent materials.
  • a curable resin film-forming composition containing the constituent materials.
  • all the components corresponding to the resin in the composition for thermosetting resin film formation and the composition for energy ray curable resin film formation described later are included in the resin component.
  • thermosetting resin film As a preferable thermosetting resin film, the thing containing a polymer component (A) as said resin component, and also containing a thermosetting component (B) is mentioned, for example.
  • thermosetting resin film may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same or different from each other. The combination is not particularly limited.
  • the thickness of the thermosetting resin film is preferably 1 to 100 ⁇ m, more preferably 5 to 75 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • a 1st protective film with higher protective ability can be formed because the thickness of a thermosetting resin film is more than the said lower limit. Moreover, it will be suppressed that it becomes excessive thickness because the thickness of a thermosetting resin film is below the said upper limit.
  • the thickness of the thermosetting resin film means the thickness of the entire thermosetting resin film.
  • the thickness of the thermosetting resin film composed of a plurality of layers means the thermosetting resin film. Means the total thickness of all the layers that make up.
  • thermosetting resin film formation The composition for thermosetting resin film formation >> A thermosetting resin film can be formed using the composition for thermosetting resin film formation containing the constituent material.
  • a thermosetting resin film can be formed in the target site
  • a more specific method for forming the thermosetting resin film will be described in detail later together with the method for forming other layers.
  • the ratio of the content of components that do not vaporize at room temperature in the composition for forming a thermosetting resin film is usually the same as the ratio of the content of the components of the thermosetting resin film.
  • thermosetting resin film-forming composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, Examples include a method using various coaters such as a knife coater, a screen coater, a Meyer bar coater, and a kiss coater.
  • the drying conditions of the composition for forming a thermosetting resin film are not particularly limited. However, when the composition for forming a thermosetting resin film contains a solvent to be described later, it is preferably dried by heating.
  • the composition for forming a thermosetting resin film containing a solvent is preferably dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example.
  • thermosetting resin film forming composition (III) for example, a thermosetting resin film forming composition (III) containing a polymer component (A) and a thermosetting component (B) (in this specification, And may be simply abbreviated as “resin layer forming composition (III)”).
  • the polymer component (A) is a polymer compound for imparting film forming property, flexibility, and the like to the thermosetting resin film, and is a component that can be regarded as formed by polymerization reaction of the polymerizable compound.
  • the polymerization reaction includes a polycondensation reaction.
  • the polymer component (A) contained in the resin layer forming composition (III) and the thermosetting resin film may be only one type, two or more types, and in the case of two or more types, combinations thereof and The ratio can be arbitrarily selected.
  • polymer component (A) examples include acrylic resins (resins having a (meth) acryloyl group), polyvinyl acetals, and the like.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 5000 to 1000000 and more preferably 8000 to 800000.
  • Mw weight average molecular weight
  • the glass transition temperature (Tg) of the acrylic resin is preferably ⁇ 50 to 70 ° C., more preferably ⁇ 30 to 60 ° C.
  • Tg of the acrylic resin is in such a range, when the curable resin film is attached to the bump forming surface, the effect of suppressing the remaining of the curable resin film on the bump upper portion becomes higher.
  • Only one type of monomer constituting the acrylic resin may be used, or two or more types may be used, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • an acrylic resin for example, a polymer of one or more (meth) acrylic acid esters; A copolymer of two or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene and N-methylolacrylamide; One or more (meth) acrylic acid esters, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide, and the like, And the like.
  • Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth ) N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic Heptyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate , Undecyl (me
  • the acrylic resin may have a functional group that can be bonded to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group.
  • the functional group of the acrylic resin may be bonded to another compound via a cross-linking agent (F) described later, or may be directly bonded to another compound not via the cross-linking agent (F). .
  • F cross-linking agent
  • polyvinyl acetal in a polymer component (A) a well-known thing is mentioned.
  • polyvinyl formal, polyvinyl butyral, etc. are mentioned, for example, Polyvinyl butyral is more preferable.
  • polyvinyl butyral include those having structural units represented by the following formulas (i) -1, (i) -2, and (i) -3.
  • the weight average molecular weight (Mw) of polyvinyl acetal is preferably 5000 to 200000, and more preferably 8000 to 100,000.
  • Mw weight average molecular weight
  • the glass transition temperature (Tg) of polyvinyl acetal is preferably 40 to 80 ° C., more preferably 50 to 70 ° C.
  • Tg of the polyvinyl acetal is in such a range, when the curable resin film is attached to the bump forming surface, the effect of suppressing the remaining of the curable resin film on the bump upper portion becomes higher.
  • the ratio of three or more monomers constituting polyvinyl acetal can be arbitrarily selected.
  • the ratio of the content of the polymer component (A) to the total content of all components other than the solvent that is, the content of the polymer component (A) of the thermosetting resin film
  • the amount is preferably 5 to 25% by mass, more preferably 5 to 15% by mass, regardless of the type of the polymer component (A).
  • thermosetting component (B) is a component for forming a hard first protective film by curing the thermosetting resin film using heat as a reaction trigger.
  • the thermosetting component (B) contained in the resin layer forming composition (III) and the thermosetting resin film may be only one type, two or more types, and combinations of two or more types. The ratio can be arbitrarily selected.
  • thermosetting component (B) is preferably an epoxy thermosetting resin.
  • the epoxy thermosetting resin includes an epoxy resin (B1) and a thermosetting agent (B2).
  • the epoxy-based thermosetting resin contained in the resin layer forming composition (III) and the thermosetting resin film may be only one type, two or more types, and when two or more types are combined, The ratio can be arbitrarily selected.
  • Epoxy resin (B1) examples include known ones such as polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, Biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenylene skeleton type epoxy resins, and the like, and bifunctional or higher functional epoxy compounds are listed.
  • the epoxy resin (B1) may be an epoxy resin having an unsaturated hydrocarbon group.
  • An epoxy resin having an unsaturated hydrocarbon group is more compatible with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, the reliability of the package obtained using the 1st sheet
  • Examples of the epoxy resin having an unsaturated hydrocarbon group include compounds obtained by converting a part of the epoxy group of a polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by addition reaction of (meth) acrylic acid or a derivative thereof to an epoxy group. Moreover, as an epoxy resin which has an unsaturated hydrocarbon group, the compound etc. which the group which has an unsaturated hydrocarbon group directly couple
  • the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include ethenyl group (vinyl group), 2-propenyl group (allyl group), (meth) acryloyl group, (meth) An acrylamide group etc. are mentioned, An acryloyl group is preferable.
  • the number average molecular weight of the epoxy resin (B1) is not particularly limited, but is preferably 300 to 30000 from the viewpoints of curability of the thermosetting resin film and strength and heat resistance of the first protective film, and is preferably 400 to It is more preferably 10,000, and particularly preferably 500 to 3,000.
  • the epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1000 g / eq, and more preferably 300 to 800 g / eq.
  • the epoxy resin (B1) may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
  • thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
  • a thermosetting agent (B2) the compound which has 2 or more of functional groups which can react with an epoxy group in 1 molecule is mentioned, for example.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group has been anhydrideized, and the like, and a phenolic hydroxyl group, an amino group, or an acid group has been anhydrideized. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
  • thermosetting agents (B2) examples of the phenolic curing agent having a phenolic hydroxyl group include polyfunctional phenolic resins, biphenols, novolac-type phenolic resins, dicyclopentadiene-based phenolic resins, and aralkylphenolic resins.
  • examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter sometimes abbreviated as “DICY”).
  • the thermosetting agent (B2) may have an unsaturated hydrocarbon group.
  • examples of the thermosetting agent (B2) having an unsaturated hydrocarbon group include compounds in which a part of the hydroxyl group of the phenol resin is substituted with a group having an unsaturated hydrocarbon group, an aromatic ring of the phenol resin, Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
  • the unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
  • thermosetting agents (B2) for example, the number average molecular weight of resin components such as polyfunctional phenolic resin, novolac-type phenolic resin, dicyclopentadiene-based phenolic resin, aralkylphenolic resin, etc. is preferably 300 to 30000, It is more preferably 400 to 10,000, and particularly preferably 500 to 3000.
  • the molecular weight of non-resin components such as biphenol and dicyandiamide is not particularly limited, but is preferably 60 to 500, for example.
  • thermosetting agent (B2) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
  • the content of the thermosetting agent (B2) is 0.1 to 500 parts by mass with respect to 100 parts by mass of the epoxy resin (B1). It is preferably 1 to 200 parts by mass, and may be any of 1 to 150 parts by mass, 1 to 100 parts by mass, and 1 to 75 parts by mass, for example.
  • the content of the thermosetting agent (B2) is equal to or more than the lower limit, curing of the thermosetting resin film is more likely to proceed.
  • the moisture absorption rate of a thermosetting resin film is reduced because the said content of a thermosetting agent (B2) is below the said upper limit, The package obtained using the sheet
  • the content of the thermosetting component (B) (for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)) is heavy. It is preferably 600 to 1000 parts by mass with respect to 100 parts by mass of the combined component (A). When the content of the thermosetting component (B) is within such a range, the effect of suppressing the remaining of the curable resin film on the bumps becomes higher, and a hard first protective film can be formed. . Furthermore, it is preferable to adjust suitably content of a thermosetting component (B) according to the kind of polymer component (A) from the point from which such an effect is acquired more notably.
  • the content of the thermosetting component (B) is the polymer component ( It is preferably 700 to 1000 parts by mass, more preferably 750 to 1000 parts by mass, and particularly preferably 750 to 900 parts by mass with respect to 100 parts by mass of A).
  • the content of the thermosetting component (B) is the polymer component (A ) Is preferably 600 to 1000 parts by mass, more preferably 650 to 1000 parts by mass, and particularly preferably 650 to 950 parts by mass.
  • the resin layer forming composition (III) and the thermosetting resin film may contain a curing accelerator (C).
  • the curing accelerator (C) is a component for adjusting the curing rate of the resin layer forming composition (III).
  • Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (one or more hydrogen atoms are other than hydrogen atoms)
  • the curing accelerator (C) contained in the resin layer forming composition (III) and the thermosetting resin film may be only one type, two or more types, and when two or more types are combined, The ratio can be arbitrarily selected.
  • the content of the curing accelerator (C) is 100 masses of the thermosetting component (B).
  • the amount is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to parts.
  • the effect by using a hardening accelerator (C) is acquired more notably because the said content of a hardening accelerator (C) is more than the said lower limit.
  • the highly polar curing accelerator (C) is deposited in the thermosetting resin film under high temperature and high humidity conditions. The effect of suppressing segregation by moving toward the adhesion interface with the body is enhanced, and the reliability of the package obtained using the first protective film forming sheet is further improved.
  • the resin layer forming composition (III) and the thermosetting resin film may contain a filler (D).
  • the thermosetting resin film contains the filler (D)
  • the first protective film obtained by curing the thermosetting resin film can easily adjust the thermal expansion coefficient. For example, by optimizing the thermal expansion coefficient of the first protective film with respect to the first protective film formation target, the reliability of the package obtained using the first protective film forming sheet is further improved.
  • the thermosetting resin film contains the filler (D)
  • the moisture absorption rate of the first protective film can be reduced, and the heat dissipation can be improved.
  • the filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
  • Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, bengara, silicon carbide, boron nitride, and the like; beads formed by spheroidizing these inorganic fillers; surface modification of these inorganic fillers Products; single crystal fibers of these inorganic fillers; glass fibers and the like.
  • the inorganic filler is preferably silica or alumina.
  • the resin layer forming composition (III) and the filler (D) contained in the thermosetting resin film may be only one kind, two kinds or more, and when there are two kinds or more, combinations and ratios thereof. Can be chosen arbitrarily.
  • the ratio of the content of the filler (D) to the total content of all components other than the solvent Is preferably 45% by mass or less (0 to 45% by mass).
  • the content of the filler (D) is in such a range, the effect of suppressing the remaining of the curable resin film on the bump upper portion becomes higher.
  • the content of the filler (D) in the film is more preferably 5 to 45% by mass, further preferably 5 to 40% by mass, and particularly preferably 10 to 30% by mass.
  • the resin layer forming composition (III) and the thermosetting resin film may contain a coupling agent (E).
  • a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound it is possible to improve the adhesion and adhesion of the thermosetting resin film to the adherend.
  • water resistance improves the 1st protective film obtained by hardening
  • the coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional group of the polymer component (A), the thermosetting component (B), etc., and is preferably a silane coupling agent. More preferred. Preferred examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino Ethylamino) propylmethyldiethoxysilane, 3- (phenyla
  • the coupling agent (E) contained in the resin layer forming composition (III) and the thermosetting resin film may be only one kind, two kinds or more, and in the case of two kinds or more, combinations thereof and The ratio can be arbitrarily selected.
  • the content of the coupling agent (E) is such that the polymer component (A) and the thermosetting component (
  • the total content of B) is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and 0.1 to 5 parts by mass with respect to 100 parts by mass. Is particularly preferred.
  • the content of the coupling agent (E) is equal to or higher than the lower limit, the dispersibility of the filler (D) in the resin is improved and the adhesion of the thermosetting resin film to the adherend is improved.
  • the effect by using a coupling agent (E) etc. is acquired more notably.
  • production of an outgas is suppressed more because the said content of a coupling agent (E) is below the said upper limit.
  • Crosslinking agent (F) In the case of using a polymer component (A) having a functional group such as vinyl group, (meth) acryloyl group, amino group, hydroxyl group, carboxy group, or isocyanate group that can be bonded to other compounds, a composition for forming a resin layer
  • the product (III) and the thermosetting resin film may contain a crosslinking agent (F).
  • the cross-linking agent (F) is a component for bonding the functional group in the polymer component (A) with another compound to cross-link, and by this cross-linking, initial adhesion of the thermosetting resin film Force and cohesion can be adjusted.
  • crosslinking agent (F) examples include organic polyvalent isocyanate compounds, organic polyvalent imine compounds, metal chelate crosslinking agents (crosslinking agents having a metal chelate structure), aziridine crosslinking agents (crosslinking agents having an aziridinyl group), and the like. Is mentioned.
  • organic polyvalent isocyanate compound examples include an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as “aromatic polyvalent isocyanate compound and the like”).
  • a trimer such as the aromatic polyisocyanate compound, isocyanurate and adduct; a terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the polyol compound. Etc.
  • the “adduct body” includes the aromatic polyisocyanate compound, the aliphatic polyisocyanate compound or the alicyclic polyisocyanate compound, and a low amount such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil. It means a reaction product with a molecularly active hydrogen-containing compound.
  • Examples of the adduct include a xylylene diisocyanate adduct of trimethylolpropane as described later.
  • the “terminal isocyanate urethane prepolymer” is as described above.
  • organic polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 Dimethylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Any one of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate is added to all or some hydroxyl groups of a polyol such as propane. Or two or more compounds are added; lysine diisocyanate.
  • a polyol such as propane.
  • organic polyvalent imine compound examples include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, and tetramethylolmethane.
  • -Tri- ⁇ -aziridinylpropionate, N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine and the like.
  • the crosslinking agent (F) When an organic polyvalent isocyanate compound is used as the crosslinking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A).
  • a cross-linked structure is formed on the thermosetting resin film by a reaction between the crosslinking agent (F) and the polymer component (A). Easy to introduce.
  • composition for forming the resin layer (III) and the crosslinking agent (F) contained in the thermosetting resin film may be only one kind, two or more kinds, and in the case of two or more kinds, combinations and ratios thereof. Can be chosen arbitrarily.
  • the content of the crosslinking agent (F) in the resin layer forming composition (III) is 0.01 to 20 with respect to 100 parts by mass of the polymer component (A).
  • the amount is preferably part by mass, more preferably 0.1 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass.
  • the effect by using a crosslinking agent (F) is acquired more notably because the said content of a crosslinking agent (F) is more than the said lower limit.
  • the excessive use of a crosslinking agent (F) is suppressed because the said content of a crosslinking agent (F) is below the said upper limit.
  • the composition (III) for resin layer formation and the thermosetting resin film are the above-mentioned polymer component (A), thermosetting component (B), curing accelerator (C) within the range not impairing the effects of the present invention. ), A filler (D), a coupling agent (E), and a crosslinking agent (F) may be included.
  • the other components include energy ray curable resins, photopolymerization initiators, and general-purpose additives.
  • the general-purpose additives are known and can be arbitrarily selected according to the purpose, and are not particularly limited. Preferred examples include plasticizers, antistatic agents, antioxidants, and colorants (dyes and pigments). ), Gettering agents and the like.
  • the other component contained in the resin layer forming composition (III) and the thermosetting resin film may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are as follows: Can be arbitrarily selected.
  • the content of the resin layer forming composition (III) and the other components of the thermosetting resin film is not particularly limited, and may be appropriately selected depending on the purpose.
  • the resin layer forming composition (III) preferably further contains a solvent.
  • the resin layer forming composition (III) containing a solvent has good handleability.
  • the solvent is not particularly limited. Preferred examples include hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol), and 1-butanol. Esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides (compounds having an amide bond) such as dimethylformamide and N-methylpyrrolidone.
  • the solvent contained in the resin layer forming composition (III) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the solvent contained in the resin layer forming composition (III) is preferably methyl ethyl ketone from the viewpoint that the components in the resin layer forming composition (III) can be more uniformly mixed.
  • the content of the solvent in the resin layer forming composition (III) is not particularly limited, and may be appropriately selected according to the type of components other than the solvent, for example.
  • thermosetting resin film-forming composition such as the resin layer-forming composition (III) can be obtained by blending each component for constituting the composition.
  • the order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • the energy ray curable resin film contains an energy ray curable component (a).
  • the energy ray curable component (a) is preferably uncured, preferably tacky, and more preferably uncured and tacky.
  • the energy ray curable resin film may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same or different from each other. The combination of is not particularly limited.
  • the thickness of the energy ray curable resin film is preferably 1 to 100 ⁇ m, more preferably 5 to 75 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • a first protective film with higher protective ability can be formed.
  • it will be suppressed that it becomes excessive thickness because the thickness of an energy-beam curable resin film is below the said upper limit.
  • the thickness of the energy ray curable resin film means the thickness of the entire energy ray curable resin film.
  • the thickness of the energy ray curable resin film composed of a plurality of layers is the energy ray. It means the total thickness of all layers constituting the curable resin film.
  • the curing condition when the energy ray curable resin film is applied to the bump forming surface of the semiconductor wafer and cured to form the first protective film is such that the first protective film exhibits its function sufficiently.
  • the illuminance of the energy beam when the energy beam curable resin film is cured is preferably 180 to 280 mW / cm 2 .
  • the amount of energy rays during the curing is preferably 450 to 1000 mJ / cm 2 .
  • the energy ray curable resin film can be formed using an energy ray curable resin film forming composition containing the constituent material.
  • an energy ray curable resin film is formed on a target site by applying a composition for forming an energy ray curable resin film on the surface on which the energy ray curable resin film is to be formed and drying it as necessary. it can.
  • the content ratio of components that do not vaporize at room temperature is usually the same as the content ratio of the components of the energy beam curable resin film.
  • Coating of the composition for forming an energy ray curable resin film may be performed by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, or a die coater. And a method using various coaters such as a knife coater, a screen coater, a Meyer bar coater, and a kiss coater.
  • the drying conditions of the energy ray curable resin film forming composition are not particularly limited, but the energy ray curable resin film forming composition is preferably heat-dried when it contains a solvent described later.
  • the energy ray-curable resin film-forming composition containing a solvent is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes.
  • the energy ray curable resin film forming composition examples include an energy ray curable resin film forming composition (IV) containing the energy ray curable component (a) (in the present specification, simply “resin”). Layer forming composition (IV) ”and the like.
  • the energy ray curable component (a) is a component that is cured by irradiation with energy rays, and is also a component for imparting film forming property, flexibility, and the like to the energy ray curable resin film.
  • Examples of the energy ray-curable component (a) include a polymer (a1) having an energy ray-curable group and a weight average molecular weight of 80000 to 2000000, and an energy ray-curable group and a molecular weight of 100 to 80000.
  • a compound (a2) is mentioned.
  • the polymer (a1) may be crosslinked at least partly with a crosslinking agent or may not be crosslinked.
  • Polymer (a1) having an energy ray curable group and having a weight average molecular weight of 80,000 to 2,000,000 examples include an acrylic polymer (a11) having a functional group capable of reacting with a group of another compound, An acrylic resin (a1-1) obtained by polymerizing a group that reacts with a functional group and an energy ray curable compound (a12) having an energy ray curable group such as an energy ray curable double bond. .
  • Examples of the functional group capable of reacting with a group possessed by another compound include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (one or two hydrogen atoms of the amino group are substituted with a group other than a hydrogen atom). Group), an epoxy group, and the like.
  • the functional group is preferably a group other than a carboxy group from the viewpoint of preventing corrosion of a circuit such as a semiconductor wafer or a semiconductor chip.
  • the functional group is preferably a hydroxyl group.
  • the acrylic polymer (a11) having the functional group examples include those obtained by copolymerizing an acrylic monomer having the functional group and an acrylic monomer having no functional group. In addition to monomers, monomers other than acrylic monomers (non-acrylic monomers) may be copolymerized.
  • the acrylic polymer (a11) may be a random copolymer or a block copolymer.
  • acrylic monomer having a functional group examples include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, a substituted amino group-containing monomer, and an epoxy group-containing monomer.
  • hydroxyl group-containing monomer examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (meth) Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic non-methacrylates such as vinyl alcohol and allyl alcohol Saturated alcohol (unsaturated alcohol which does not have a (meth) acryloyl skeleton) etc. are mentioned.
  • Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citracone Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the ethylenically unsaturated dicarboxylic acids; carboxyalkyl esters of (meth) acrylic acid such as 2-carboxyethyl methacrylate, etc. It is done.
  • monocarboxylic acids having an ethylenically unsaturated bond such as (meth) acrylic acid and crotonic acid
  • fumaric acid, itaconic acid maleic acid, citracone
  • Ethylenically unsaturated dicarboxylic acids such as acids (dica
  • the acrylic monomer having a functional group is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, more preferably a hydroxyl group-containing monomer.
  • the acrylic monomer having the functional group that constitutes the acrylic polymer (a11) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. You can choose.
  • acrylic monomer having no functional group examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) acrylate n.
  • acrylic monomer having no functional group examples include alkoxy such as methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, and ethoxyethyl (meth) acrylate.
  • the acrylic monomer which does not have the functional group constituting the acrylic polymer (a11) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • non-acrylic monomer examples include olefins such as ethylene and norbornene; vinyl acetate; styrene.
  • the said non-acrylic monomer which comprises the said acrylic polymer (a11) may be only 1 type, may be 2 or more types, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
  • the ratio (content) of the amount of the structural unit derived from the acrylic monomer having the functional group to the total amount of the structural unit constituting the polymer is 0.1 to 50 mass. %, More preferably 1 to 40% by mass, and particularly preferably 3 to 30% by mass.
  • the acrylic resin (a1-1) obtained by copolymerization of the acrylic polymer (a11) and the energy ray-curable compound (a12) The content of the linear curable group can easily adjust the degree of curing of the first protective film within a preferable range.
  • the acrylic polymer (a11) constituting the acrylic resin (a1-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. You can choose.
  • the content of the acrylic resin (a1-1) is preferably 1 to 40, more preferably 2 to 30, and more preferably 3 to 20. Particularly preferred.
  • the energy ray curable compound (a12) is one or two selected from the group consisting of an isocyanate group, an epoxy group and a carboxy group as a group capable of reacting with the functional group of the acrylic polymer (a11). Those having the above are preferred, and those having an isocyanate group as the group are more preferred. For example, when the energy beam curable compound (a12) has an isocyanate group as the group, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
  • the energy beam curable compound (a12) preferably has 1 to 5 energy beam curable groups in one molecule, and more preferably has 1 to 2 energy beam curable groups.
  • Examples of the energy ray curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1- (bisacryloyloxymethyl).
  • Ethyl isocyanate An acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; Examples thereof include an acryloyl monoisocyanate compound obtained by a reaction of a diisocyanate compound or polyisocyanate compound, a polyol compound, and hydroxyethyl (meth) acrylate.
  • the energy beam curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
  • the energy ray-curable compound (a12) constituting the acrylic resin (a1-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • the content of the energy beam curable group derived from the energy beam curable compound (a12) with respect to the content of the functional group derived from the acrylic polymer (a11). is preferably 20 to 120 mol%, more preferably 35 to 100 mol%, and particularly preferably 50 to 100 mol%. When the ratio of the content is within such a range, the adhesive force of the first protective film is further increased.
  • the upper limit of the content ratio is 100 mol%
  • the energy ray curable compound (a12) is a polyfunctional compound (having two or more of the groups in one molecule)
  • the upper limit of the content ratio may exceed 100 mol%.
  • the polymer (a1) has a weight average molecular weight (Mw) of preferably 100,000 to 2,000,000, and more preferably 300,000 to 1500,000.
  • Mw weight average molecular weight
  • the “weight average molecular weight” is as described above.
  • the polymer (a1) is at least partially crosslinked by a crosslinking agent
  • the polymer (a1) has been described as constituting the acrylic polymer (a11).
  • a monomer that does not correspond to any of the monomers and has a group that reacts with the crosslinking agent is polymerized to be crosslinked at the group that reacts with the crosslinking agent, or the energy ray-curable compound ( In the group which reacts with the functional group derived from a12), it may be crosslinked.
  • the polymer (a1) contained in the resin layer forming composition (IV) and the energy ray curable resin film may be only one kind, two kinds or more, and a combination thereof when they are two kinds or more.
  • the ratio can be arbitrarily selected.
  • Compound (a2) having an energy ray curable group and a molecular weight of 100 to 80,000 Examples of the energy ray-curable group in the compound (a2) having an energy ray-curable group and having a molecular weight of 100 to 80,000 include a group containing an energy ray-curable double bond. ) An acryloyl group, a vinyl group, etc. are mentioned.
  • the compound (a2) is not particularly limited as long as it satisfies the above conditions, but has a low molecular weight compound having an energy ray curable group, an epoxy resin having an energy ray curable group, and an energy ray curable group.
  • a phenol resin etc. are mentioned.
  • examples of the low molecular weight compound having an energy ray curable group include polyfunctional monomers or oligomers, and an acrylate compound having a (meth) acryloyl group is preferable.
  • examples of the acrylate compound include 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and 2,2-bis [4 -((Meth) acryloxypolyethoxy) phenyl] propane, ethoxylated bisphenol A di (meth) acrylate, 2,2-bis [4-((meth) acryloxydiethoxy) phenyl] propane, 9,9-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene, 2,2-bis [4-((meth) acryloxypolypropoxy) phenyl] propane,
  • the epoxy resin having an energy ray curable group and the phenol resin having an energy ray curable group are described in, for example, paragraph 0043 of “JP 2013-194102 A”. Things can be used.
  • Such a resin corresponds to a resin constituting a thermosetting component described later, but is treated as the compound (a2) in the present invention.
  • the weight average molecular weight of the compound (a2) is preferably 100 to 30000, and more preferably 300 to 10000.
  • the compound (a2) contained in the resin layer forming composition (IV) and the energy ray curable resin film may be only one type, two or more types, and in the case of two or more types, a combination thereof and The ratio can be arbitrarily selected.
  • composition for resin layer formation (IV) and the energy ray curable resin film contain the compound (a2) as the energy ray curable component (a), the polymer having no energy ray curable group ( It is also preferable to contain b).
  • the polymer (b) may be crosslinked at least partially by a crosslinking agent, or may not be crosslinked.
  • polymer (b) having no energy ray curable group examples include acrylic polymers, phenoxy resins, urethane resins, polyesters, rubber resins, and acrylic urethane resins.
  • the polymer (b) is preferably an acrylic polymer (hereinafter sometimes abbreviated as “acrylic polymer (b-1)”).
  • the acrylic polymer (b-1) may be a known one, for example, a homopolymer of one acrylic monomer or a copolymer of two or more acrylic monomers. Alternatively, it may be a copolymer of one or two or more acrylic monomers and a monomer (non-acrylic monomer) other than one or two or more acrylic monomers.
  • acrylic monomer constituting the acrylic polymer (b-1) examples include (meth) acrylic acid alkyl ester, (meth) acrylic acid ester having a cyclic skeleton, glycidyl group-containing (meth) acrylic acid ester, Examples include hydroxyl group-containing (meth) acrylic acid esters and substituted amino group-containing (meth) acrylic acid esters.
  • substituted amino group is as described above.
  • Examples of the (meth) acrylic acid alkyl ester include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n- (meth) acrylate.
  • Examples of the (meth) acrylic acid ester having a cyclic skeleton include (meth) acrylic acid cycloalkyl esters such as isobornyl (meth) acrylate and dicyclopentanyl (meth) acrylate; (Meth) acrylic acid aralkyl esters such as (meth) acrylic acid benzyl; (Meth) acrylic acid cycloalkenyl esters such as (meth) acrylic acid dicyclopentenyl ester; Examples include (meth) acrylic acid cycloalkenyloxyalkyl esters such as (meth) acrylic acid dicyclopentenyloxyethyl ester.
  • Examples of the glycidyl group-containing (meth) acrylic ester include glycidyl (meth) acrylate.
  • Examples of the hydroxyl group-containing (meth) acrylic acid ester include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxy (meth) acrylate. Examples include propyl, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like.
  • Examples of the substituted amino group-containing (meth) acrylic acid ester include N-methylaminoethyl (meth) acrylate.
  • non-acrylic monomer constituting the acrylic polymer (b-1) examples include olefins such as ethylene and norbornene; vinyl acetate; styrene.
  • Examples of the polymer (b) that is at least partially crosslinked by a crosslinking agent and does not have an energy ray-curable group include those in which a reactive functional group in the polymer (b) has reacted with a crosslinking agent. Can be mentioned.
  • the reactive functional group may be appropriately selected according to the type of the crosslinking agent and the like, and is not particularly limited.
  • examples of the reactive functional group include a hydroxyl group, a carboxy group, and an amino group, and among these, a hydroxyl group having high reactivity with an isocyanate group is preferable.
  • the crosslinking agent is an epoxy compound
  • examples of the reactive functional group include a carboxy group, an amino group, an amide group, and the like. Among these, a carboxy group having high reactivity with an epoxy group is preferable.
  • the reactive functional group is preferably a group other than a carboxy group in terms of preventing corrosion of a circuit of a semiconductor wafer or a semiconductor chip.
  • Examples of the polymer (b) having the reactive functional group and not having the energy ray-curable group include those obtained by polymerizing at least the monomer having the reactive functional group.
  • Examples of the polymer (b) having a hydroxyl group as a reactive functional group include those obtained by polymerizing a hydroxyl group-containing (meth) acrylic acid ester. Examples thereof include those obtained by polymerizing a monomer in which one or two or more hydrogen atoms are substituted with the reactive functional group in a non-acrylic monomer or a non-acrylic monomer.
  • the ratio (content) of the amount of the structural unit derived from the monomer having the reactive functional group to the total amount of the structural unit constituting the polymer (b) is 1-20.
  • the mass is preferably 2% by mass, and more preferably 2 to 10% by mass. When the ratio is within such a range, the degree of cross-linking becomes a more preferable range in the polymer (b).
  • the weight average molecular weight (Mw) of the polymer (b) having no energy ray curable group is 10,000 to 2,000,000 from the viewpoint that the film-forming property of the resin layer forming composition (IV) becomes better. It is preferably 100,000 to 1500,000.
  • the “weight average molecular weight” is as described above.
  • the polymer (b) having no energy ray curable group contained in the resin layer forming composition (IV) and the energy ray curable resin film may be only one kind or two or more kinds. When it is above, those combinations and ratios can be arbitrarily selected.
  • Examples of the resin layer forming composition (IV) include those containing one or both of the polymer (a1) and the compound (a2). And when the composition (IV) for resin layer formation contains the said compound (a2), it is preferable to also contain the polymer (b) which does not have an energy-beam curable group further, In this case, the said ( It is also preferable to contain a1). Further, the resin layer forming composition (IV) does not contain the compound (a2), and contains both the polymer (a1) and the polymer (b) having no energy ray-curable group. Also good.
  • the resin layer forming composition (IV) contains the polymer (a1), the compound (a2) and the polymer (b) having no energy ray curable group
  • the content of the compound (a2) is 10 to 400 parts by mass with respect to 100 parts by mass of the total content of the polymer (a1) and the polymer (b) having no energy ray-curable group.
  • the amount is preferably 30 to 350 parts by mass.
  • the ratio of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group to the total content of components other than the solvent. (That is, the total content of the energy beam curable component (a) and the polymer (b) having no energy beam curable group) of the energy beam curable resin film is preferably 5 to 90% by mass. It is more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass. When the ratio of the content of the energy ray curable component is within such a range, the energy ray curable property of the energy ray curable resin film becomes better.
  • Resin layer forming composition (IV) is composed of a thermosetting component, a photopolymerization initiator, a filler, a coupling agent, a crosslinking agent, and a general-purpose additive in addition to the energy ray-curable component. You may contain 1 type, or 2 or more types selected from the group. For example, by using the resin layer forming composition (IV) containing the energy ray curable component and the thermosetting component, the formed energy ray curable resin film has an adhesive force to an adherend by heating. And the strength of the first protective film formed from this energy beam curable resin film is also improved.
  • thermosetting component examples include thermosetting component, photopolymerization initiator, filler, coupling agent, crosslinking agent, and general-purpose additive in the resin layer forming composition (IV) are the heat in the resin layer forming composition (III).
  • hardenable component (B) a photoinitiator, a filler (D), a coupling agent (E), a crosslinking agent (F), and a general purpose additive is mentioned.
  • thermosetting component the photopolymerization initiator, the filler, the coupling agent, the cross-linking agent, and the general-purpose additive may each be used alone, Two or more kinds may be used in combination, and when two or more kinds are used in combination, their combination and ratio can be arbitrarily selected.
  • the content of the thermosetting component, photopolymerization initiator, filler, coupling agent, cross-linking agent and general-purpose additive in the resin layer forming composition (IV) may be appropriately adjusted according to the purpose. It is not limited.
  • the resin layer forming composition (IV) preferably further contains a solvent since its handleability is improved by dilution.
  • the solvent contained in the resin layer forming composition (IV) include the same solvents as those in the resin layer forming composition (III).
  • the solvent contained in the resin layer forming composition (IV) may be only one kind or two or more kinds.
  • composition for forming an energy ray curable resin film such as the resin layer forming composition (IV) is obtained by blending each component for constituting the composition.
  • the order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • Adhesion layer improves the adhesion between the first base material and the buffer layer, and highly suppresses peeling of the first base material and the buffer layer in the first protective film forming sheet. Therefore, the 1st protective film formation sheet provided with the contact
  • the adhesion layer is in the form of a sheet or film.
  • a layer containing ethylene-vinyl acetate copolymer resin (EVA) or the like can be mentioned.
  • the adhesion layer may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same or different from each other. It is not limited.
  • the thickness of the adhesion layer is preferably 10 to 100 ⁇ m, more preferably 25 to 85 ⁇ m, and particularly preferably 40 to 70 ⁇ m.
  • the “thickness of the adhesion layer” means the thickness of the entire adhesion layer.
  • the thickness of the adhesion layer composed of a plurality of layers means the total thickness of all the layers constituting the adhesion layer. means.
  • Adhesion layer forming composition An adhesion layer can be formed using the composition for adhesion layer formation containing the constituent material.
  • the adhesion layer can be formed at a target site by extruding the composition for forming the adhesion layer on the surface on which the adhesion layer is to be formed. A more specific method for forming the adhesion layer will be described later in detail, along with methods for forming other layers.
  • the ratio of the content of components that do not vaporize at room temperature in the composition for forming an adhesion layer is usually the same as the ratio of the contents of the components of the adhesion layer.
  • Adhesion layer forming composition examples include an adhesive layer forming composition (VI) containing an ethylene-vinyl acetate copolymer resin (EVA).
  • EVA ethylene-vinyl acetate copolymer resin
  • the density of the ethylene-vinyl acetate copolymer resin is preferably 1100 kg / m 3 or less, more preferably 850 to 1100 kg / m 3 , and particularly preferably 900 to 1000 kg / m 3 .
  • density of ethylene-vinyl acetate copolymer resin means a value measured in accordance with JIS K7112: 1999 unless otherwise specified.
  • the melting point of the ethylene-vinyl acetate copolymer resin is preferably 50 to 95 ° C., more preferably 65 to 85 ° C.
  • melt flow rate (MFR) at 190 ° C. of the ethylene-vinyl acetate copolymer resin is preferably 1 to 10 g / 10 minutes, and more preferably 3 to 8 g / 10 minutes.
  • melt flow rate of ethylene-vinyl acetate copolymer resin means a value measured according to JIS K7210: 1999 unless otherwise specified.
  • the content of the adhesive layer forming composition (VI) and the ethylene-vinyl acetate copolymer resin in the adhesive layer is preferably 80 to 100% by mass.
  • the adhesive layer forming composition (VI) and the adhesive layer may contain other components other than the ethylene-vinyl acetate copolymer resin within a range not impairing the effects of the present invention.
  • the other components are not particularly limited and can be appropriately selected depending on the purpose.
  • the composition for forming the adhesion layer (VI) and the other component contained in the adhesion layer may be only one kind, or two or more kinds, and when there are two or more kinds, the combination and ratio thereof are arbitrarily selected. it can.
  • the contents of the adhesive layer forming composition (VI) and the other components of the adhesive layer are not particularly limited, and may be appropriately selected depending on the purpose.
  • the first protective film forming sheet can be produced by sequentially laminating the above-described layers so as to have a corresponding positional relationship.
  • the method for forming each layer is as described above.
  • a first protective film-forming sheet in which a first base material, a buffer layer, and a curable resin film are laminated in this order in the thickness direction can be manufactured by the method described below. That is, a buffer layer is laminated
  • a protective film-forming sheet is obtained.
  • the release film may be removed when the first protective film forming sheet is used.
  • the first protective film forming sheet provided with a layer other than each of the above-described layers is formed in the above-described manufacturing method, so that the stacking position of the other layer is an appropriate position, It can manufacture by adding suitably either or both of a lamination process.
  • a first protective film-forming sheet in which the first base material, the adhesion layer, the buffer layer, and the curable resin film are laminated in this order in the thickness direction can be manufactured by the method described below. That is, the adhesion layer and the buffer layer are laminated on the first substrate in this order by coextrusion molding the adhesion layer forming composition and the buffer layer forming composition on the first substrate. Then, a curable resin film is separately laminated on the release film by the same method as described above. Next, the adhesive layer, the buffer layer, the curable resin film, and the release film are formed on the first substrate by laminating the curable resin film on the release film with the buffer layer on the first substrate and the adhesion layer. To obtain a first protective film forming sheet laminated in this order. The release film on the curable resin film may be removed when the first protective film forming sheet is used.
  • the first protective film forming sheet of the present invention can be used, for example, as follows. That is, first, the first protective film forming sheet is bonded to the bump forming surface of the semiconductor wafer by the curable resin film. At this time, by bonding the curable resin film while heating, the curable resin film is softened, and the curable resin film is brought into close contact with the bump forming surface. Next, if necessary, the surface opposite to the bump forming surface of the semiconductor wafer (that is, the back surface) is ground, and then the back surface is protected with a protective film forming sheet (in this specification, for protecting the back surface). , Referred to as “second protective film forming sheet”).
  • the second protective film forming sheet examples include a sheet provided with a second protective film forming film that can form a second protective film for protecting the back surface of the semiconductor wafer and the semiconductor chip by curing.
  • the second protective film forming sheet may further include a dicing sheet.
  • the “other layers to be peeled” means, for example, the first base material 11 and the buffer layer 13 in the case of the first protective film forming sheet 1 shown in FIG. 1, and the first protection shown in FIG. In the case of the film forming sheet 2, the first base material 11, the adhesion layer 14, and the buffer layer 13.
  • the first protective film is formed on the bump forming surface of the semiconductor wafer by curing the curable resin film.
  • the semiconductor device can be manufactured by the same method as the conventional method. That is, the semiconductor wafer with the first protective film is diced to form a semiconductor chip, and the semiconductor chip with the first protective film is picked up. What is necessary is just to harden a 2nd protective film formation film at a suitable timing according to the kind, and to form a 2nd protective film. The picked-up semiconductor chip is flip-chip mounted on the wiring board to finally constitute a semiconductor device.
  • the first protective film forming sheet of the present invention By using the first protective film forming sheet of the present invention, at the stage where this sheet is bonded to the bump forming surface of the semiconductor wafer, at least the upper part of the bump protrudes through the curable resin film, Residue of the curable resin film is suppressed. As a result, at least the upper part of the bumps protrudes through the first protective film.
  • a semiconductor chip having such a first protective film and bumps is flip-chip mounted on a wiring board, the electrical connection between the semiconductor chip and the wiring board becomes good.
  • the process from the bonding of the first protective film forming sheet of the present invention to the bump forming surface of the semiconductor wafer to the formation of the first protective film will be described in more detail with reference to the drawings.
  • FIG. 3 is a cross-sectional view schematically showing an example of a method of using the first protective film forming sheet 1 shown in FIG.
  • the first protective film forming sheet 1 is used, first, as shown in FIG. 3A, the first protective film forming sheet 1 is placed on the bump forming surface 9 a of the semiconductor wafer 9 with the curable resin film 12. Arrange to face each other.
  • the height of the bump 91 is not particularly limited, but is preferably 120 to 300 ⁇ m, more preferably 150 to 270 ⁇ m, and particularly preferably 180 to 240 ⁇ m.
  • the function of the bump 91 can be further improved.
  • the height of the bump 91 is equal to or less than the upper limit value, the effect of suppressing the remaining of the curable resin film 12 on the upper portion of the bump 91 is further increased.
  • the “bump height” means the height of the bump at the highest position from the bump formation surface.
  • the width of the bump 91 is not particularly limited, but is preferably 170 to 350 ⁇ m, more preferably 200 to 320 ⁇ m, and particularly preferably 230 to 290 ⁇ m.
  • the width of the bump 91 is equal to or larger than the lower limit value, the function of the bump 91 can be further improved.
  • the height of the bump 91 is equal to or less than the upper limit value, the effect of suppressing the remaining of the curable resin film 12 on the upper portion of the bump 91 is further increased.
  • the “bump width” is obtained by connecting two different points on the bump surface with a straight line when viewed in a plan view from the direction perpendicular to the bump formation surface. It means the maximum value of the line segment.
  • the distance between adjacent bumps 91 is not particularly limited, but is preferably 250 to 800 ⁇ m, more preferably 300 to 600 ⁇ m, and particularly preferably 350 to 500 ⁇ m.
  • the function of the bump 91 can be further improved.
  • the effect which suppresses the residual of the curable resin film 12 in the bump 91 upper part becomes higher because the distance is below the upper limit.
  • “distance between adjacent bumps” means the minimum distance between the surfaces of adjacent bumps.
  • the curable resin film 12 is brought into contact with the bumps 91 on the semiconductor wafer 9, and the first protective film forming sheet 1 is pressed against the semiconductor wafer 9.
  • the first surface 12 a of the curable resin film 12 is sequentially pressure-bonded to the surface 91 a of the bump 91 and the bump forming surface 9 a of the semiconductor wafer 9.
  • the curable resin film 12 is heated by heating the curable resin film 12, spreads between the bumps 91 so as to cover the bumps 91, adheres closely to the bump formation surface 9 a, and the surface 91 a of the bump 91.
  • the bump 91 is buried so as to cover the surface 91a in the vicinity of the bump forming surface 9a.
  • the curable resin film 12 of the first protective film forming sheet 1 is bonded to the bump forming surface 9 a of the semiconductor wafer 9.
  • a method for pressure-bonding the first protective film forming sheet 1 to the semiconductor wafer 9 As described above, as a method for pressure-bonding the first protective film forming sheet 1 to the semiconductor wafer 9, a known method in which various sheets are pressure-bonded to an object can be applied. For example, a method using a laminating roller, etc. Is mentioned.
  • the heating temperature of the first protective film-forming sheet 1 when it is pressure-bonded to the semiconductor wafer 9 may be a temperature at which curing of the curable resin film 12 does not proceed at all or excessively, and is 80 to 100 ° C. Is preferable, and 85 to 95 ° C. is more preferable.
  • the pressure when the first protective film-forming sheet 1 is pressure-bonded to the semiconductor wafer 9 is not particularly limited, but is preferably 0.1 to 1.5 MPa, and more preferably 0.3 to 1 MPa.
  • the curable resin film 12 and the buffer layer 13 in the first protective film forming sheet 1 are pressed by the bumps 91.
  • the first surface 12a of the curable resin film 12 and the first surface 13a of the buffer layer 13 are deformed into a concave shape.
  • the curable resin film 12 to which the pressure was applied from the bump 91 as it is tearing occurs.
  • the upper portion 910 of the bump 91 protrudes through the curable resin film 12. .
  • the upper part 910 of the bump 91 does not penetrate the buffer layer 13. This is because the buffer layer 13 has a buffering action against the pressure applied from the bump 91.
  • the curable resin film 12 remains or not substantially remains on the upper portion 910 of the bump 91. do not do.
  • the curable resin film almost does not remain above the bumps means that the curable resin film remains slightly above the bumps unless otherwise specified. This means that when the semiconductor chip provided with the bump is flip-chip mounted on the wiring board, the electrical connection between the semiconductor chip and the wiring board is not hindered.
  • the remaining of the curable resin film 12 can be suppressed when the curable resin film 12 is deformed by applying pressure from the bump 91 as described above.
  • the film 12 is particularly designed to be easily broken. That is, in the 1st sheet
  • the surface (back surface) 9b opposite to the bump forming surface 9a of the semiconductor wafer 9 is further ground as necessary.
  • a second protective film forming sheet (not shown) is attached to the back surface 9b.
  • the first base material 11 and the buffer layer 13 are peeled from the curable resin film 12.
  • the curable resin film 12 is cured to form a first protective film 12 ′ on the bump forming surface 9a as shown in FIG.
  • the 1st protective film formation sheet 1 shown in FIG. 1 was used was demonstrated here, the 1st protective film formation of other embodiments, such as the 1st protective film formation sheet 2 shown in FIG.
  • the first protective film forming sheet has the same effect as the case of using the first protective film forming sheet 1.
  • FIG. 4 is a cross-sectional view schematically showing an example of a method of using the first protective film forming sheet 2 shown in FIG. Even when the first protective film forming sheet 2 is used, first, as shown in FIG. 4A, the first protective film forming sheet 2 is formed of the curable resin film 12 with the bump forming surface 9 a of the semiconductor wafer 9. It arrange
  • the curable resin film 12 is brought into contact with the bumps 91 on the semiconductor wafer 9 while heating, and the first protective film forming sheet 2 is pressed against the semiconductor wafer 9.
  • the first surface 12 a of the curable resin film 12 is sequentially pressure-bonded to the surface 91 a of the bump 91 and the bump forming surface 9 a of the semiconductor wafer 9.
  • the curable resin film 12 of the first protective film forming sheet 2 is bonded to the bump forming surface 9a of the semiconductor wafer 9.
  • the first protective film forming sheet 2 can be pressure-bonded to the semiconductor wafer 9 by the same method as in the case where the first protective film forming sheet 1 is used.
  • the curable resin film 12 and the buffer layer 13 in the first protective film forming sheet 2 are pressed by the bumps 91. Initially, the first surface 12a of the curable resin film 12 and the first surface 13a of the buffer layer 13 are deformed into a concave shape. And in the curable resin film 12 to which the pressure was applied from the bump 91 as it is, tearing occurs. Finally, when the first surface 12a of the curable resin film 12 is pressure-bonded to the bump forming surface 9a of the semiconductor wafer 9, the upper portion 910 of the bump 91 protrudes through the curable resin film 12. .
  • the adhesive layer 14 has the first substrate in the process of bonding the curable resin film 12 to the bump forming surface 9 a of the semiconductor wafer 9.
  • the peeling of the material 11 and the buffer layer 13 is highly suppressed, and the laminated structure of the first base material 11, the adhesion layer 14 and the buffer layer 13 is more stably maintained.
  • the bumps are obtained by the same action as that of the first protective film forming sheet 1. No or almost no curable resin film 12 remains on the upper portion 910 of 91.
  • the surface (back surface) 9b opposite to the bump forming surface 9a of the semiconductor wafer 9 is further ground as necessary.
  • a second protective film forming sheet (not shown) is attached to the back surface 9b.
  • the first base material 11, the adhesion layer 14, and the buffer layer 13 are peeled from the curable resin film 12.
  • the curable resin film 12 is cured to form a first protective film 12 ′ on the bump forming surface 9a as shown in FIG. 4 (d).
  • Whether or not the curable resin film or the protective film remains on the upper part of the bump can be confirmed, for example, by acquiring SEM image data of the bump.
  • Polymer component Polymer component (A) -1 Polyvinyl butyral having structural units represented by the following formulas (i) -1, (i) -2 and (i) -3 (“S-LEC manufactured by Sekisui Chemical Co., Ltd.”) BL-10 ", weight average molecular weight 25000, glass transition temperature 59 ° C)
  • Polymer component (A) -2 butyl acrylate (hereinafter abbreviated as “BA”) (55 parts by mass), methyl acrylate (hereinafter abbreviated as “MA”) (10 parts by mass), glycidyl methacrylate (Hereinafter, abbreviated as “GMA”) (20 parts by mass) and 2-hydroxyethyl acrylate (hereinafter abbreviated as “HEA”) (15 parts by mass).
  • BA butyl acrylate
  • MA methyl acrylate
  • GMA glycidyl methacrylate
  • HOA 2-hydroxyethyl acrylate
  • n 1 is an integer from 68 to 74.
  • Epoxy resin (B1) -1 Liquid bisphenol F type epoxy resin ("YL983U” manufactured by Mitsubishi Chemical Corporation)
  • Epoxy resin (B1) -2 Multifunctional aromatic epoxy resin (“EPPN-502H” manufactured by Nippon Kayaku Co., Ltd.)
  • Epoxy resin (B1) -3 Dicyclopentadiene type epoxy resin (“EPICLON HP-7200” manufactured by DIC) ⁇ Thermosetting agent Thermosetting agent (B2) -1: Novolac-type phenolic resin (“BRG-556” manufactured by Showa Denko KK) ⁇ Curing Accelerator Curing Accelerator (C) -1: 2-Phenyl-4,5-dihydroxymethylimidazole (Curesol 2PHZ-PW manufactured by Shikoku Kasei Kogyo Co., Ltd.) Filler Filler (D) -1: Spherical silica modified with an epoxy group (“Admanano YA050C-MKK” manufactured by Admatechs)
  • Example 1 ⁇ Manufacture of sheet for forming first protective film> (Manufacture of a composition for forming a thermosetting resin film)
  • Polymer component (A) -1, epoxy resin (B1) -1, epoxy resin (B1) -2, epoxy resin (B1) -3, thermosetting agent (B2) -1, and curing accelerator (C)- 1 is dissolved or dispersed in methyl ethyl ketone so that the ratio of these contents becomes the value shown in Table 1, and stirred at 23 ° C., so that the solid content concentration is as a composition for forming a thermosetting resin film.
  • a resin layer forming composition (III) of 55% by mass was obtained.
  • the description of “-” in the column of the content component in Table 1 means that the composition for forming a thermosetting resin film does not contain the component.
  • thermosetting resin film formed above is formed on the release-treated surface of a release film (“SP-PET 381031” manufactured by Lintec Co., Ltd., thickness 38 ⁇ m) obtained by releasing one side of a polyethylene terephthalate film by silicone treatment.
  • a thermosetting resin film having a thickness of 30 ⁇ m was formed by applying the composition for heating and drying by heating at 120 ° C. for 2 minutes.
  • the thermosetting resin film on the release film and the buffer layer formed on the first substrate are bonded together, and the adhesion layer, the buffer layer, the thermosetting resin film, and the release are formed on the first substrate.
  • stacking a film in this order was obtained.
  • thermosetting resin film A buffer layer having a thickness of 1000 ⁇ m was formed by the same method as above except that the coating amount of the composition for forming a buffer layer was changed. Next, this buffer layer was cut into a disk shape having a diameter of 8 mm to obtain a test piece of the buffer layer. Moreover, the 1000-micrometer-thick thermosetting resin film was formed by the method similar to the above except having changed the coating amount of the composition for thermosetting resin film formation. Next, this thermosetting resin film was cut into a disk shape having a diameter of 8 mm to obtain a test piece of a thermosetting resin film.
  • the installation location of the test piece of the shear viscosity measuring apparatus is kept warm at 90 ° C. in advance, and the test piece of the buffer layer and the thermosetting resin film obtained above is placed on this installation location, and the upper surface of the test piece
  • the test piece was fixed and installed at the installation location by pressing the measuring jig against the test piece.
  • the generated strain was increased stepwise from 0.01% to 1000% under the conditions of a temperature of 90 ° C. and a measurement frequency of 1 Hz, and the shear modulus G ′ of the test piece at the applied strain was measured.
  • the results are shown in FIG. In FIG. 5, the measurement value indicated as “Example 1” is the measurement value for the test piece of the thermosetting resin film.
  • thermosetting resin film of the first protective film forming sheet obtained above was brought into contact with the bumps of the semiconductor wafer, and the first protective film forming sheet was pressed against the semiconductor wafer while heating.
  • a semiconductor wafer having a bump height of 210 ⁇ m, a bump width of 250 ⁇ m, and a distance between the bumps of 400 ⁇ m was used.
  • the heating temperature of the first protective film forming sheet was 90 ° C., and the pressure was 0.5 MPa. Thereby, the thermosetting resin film was bonded together to the bump formation surface of the semiconductor wafer.
  • thermosetting resin film was exposed.
  • SEM scanning electron microscope
  • the shear modulus Gb ′ is not constant in the function (function Fb) of the strain of the buffer layer and the shear modulus G ′ (Gb ′).
  • the region (variable region Rb) was present, and the shear modulus Gb ′ when the strain of the buffer layer was 300% was included in the region (variable region Rb).
  • the region where the shear modulus Gc ′ is not constant (variable region Rc) ) Existed.
  • the strain of 300% of the thermosetting resin film could not be observed directly, but in Example 3, the shear modulus Gc when the strain of the thermosetting resin film is 300%. 'Was included in the region (variable region Rc).
  • thermosetting resin film remained on the bumps of the semiconductor wafer.
  • the present invention can be used for manufacturing a semiconductor chip or the like having bumps in connection pad portions used in a flip chip mounting method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Laminated Bodies (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

この第1保護膜形成用シートは、第1基材と、第1基材上に形成された緩衝層と、緩衝層上に形成された硬化性樹脂フィルムと、を備えており、緩衝層と硬化性樹脂フィルムについて、それぞれ、直径8mm、厚さ1mmの試験片を作製し、これら試験片に、90℃、1Hzの条件でひずみを発生させ、これら試験片のせん断弾性率G'を測定するひずみ分散測定を行ったとき、緩衝層の試験片のひずみが300%のときの緩衝層の試験片のせん断弾性率Gb300'と、硬化性樹脂フィルムの試験片のひずみが300%のときの硬化性樹脂フィルムの試験片のせん断弾性率Gc300'とが、Gb300'≧Gc300'の関係を満たす。

Description

第1保護膜形成用シート
 本発明は、第1保護膜形成用シートに関する。
 本願は、2016年10月5日に、日本に出願された特願2016-197523号に基づき優先権を主張し、その内容をここに援用する。
 従来、MPUやゲートアレー等に用いる多ピンのLSIパッケージをプリント配線基板に実装する場合には、半導体チップとして、その接続パッド部に共晶ハンダ、高温ハンダ、金等からなる凸状電極(以下、本明細書においては「バンプ」と称する)が形成されたものを用い、所謂フェースダウン方式により、それらのバンプをチップ搭載用基板上の相対応する端子部に対面、接触させ、溶融/拡散接合するフリップチップ実装方法が採用されてきた。
 この実装方法で用いる半導体チップは、例えば、回路面にバンプが形成された半導体ウエハの、回路面(換言するとバンプ形成面)とは反対側の面を研削したり、ダイシングして個片化することにより得られる。このような半導体チップを得る過程においては、通常、半導体ウエハのバンプ形成面及びバンプを保護する目的で、硬化性樹脂フィルムをバンプ形成面に貼付し、このフィルムを硬化させて、バンプ形成面に保護膜を形成する。
 一方で、半導体装置には、より高い機能を有することが期待され、半導体チップのサイズが拡大する傾向にある。しかし、サイズが拡大された半導体チップは、基板に実装された状態での反りの発生によって、バンプが変形し易く、特に半導体チップの端部やその近傍に位置するバンプにクラックが発生し易い。バンプ形成面に形成された保護膜には、このようなバンプの破損を抑制することも期待される。
 半導体ウエハのバンプ形成面における保護膜の形成方法について、図6を参照しながら説明する。
 保護膜の形成には、図6(a)に示すような保護膜形成用シート8を用いる。保護膜形成用シート8は、基材81上に緩衝層83及び硬化性樹脂フィルム82がこの順に積層されてなるものである。緩衝層83は、緩衝層83とこれに隣接する層へ加えられる力に対して、緩衝作用を有する。
 まず、保護膜形成用シート8を、その硬化性樹脂フィルム82が半導体ウエハ9のバンプ形成面9aに対向するように配置する。
 次いで、保護膜形成用シート8を半導体ウエハ9に圧着させて、図6(b)に示すように、半導体ウエハ9のバンプ形成面9aに、保護膜形成用シート8の硬化性樹脂フィルム82を貼り合わせる。このときの硬化性樹脂フィルム82の貼り合わせは、硬化性樹脂フィルム82を加熱しながら行う。これにより、半導体ウエハ9のバンプ形成面9aと、バンプ91の表面91aには、硬化性樹脂フィルム82が密着するが、バンプ91が硬化性樹脂フィルム82を貫通すれば、バンプ91の表面91aの一部には、緩衝層83も密着する。
 このような硬化性樹脂フィルム82の貼り合わせの後、さらに必要に応じて、半導体ウエハ9のバンプ形成面9aとは反対側の面(裏面)9bを研削した後、半導体ウエハ9の裏面9bに別途、この裏面9bを保護するための保護膜形成用シートを貼付する(図示略)。
 次いで、図6(c)に示すように、硬化性樹脂フィルム82から基材81及び緩衝層83を剥離させる。
 次いで、硬化性樹脂フィルム82を硬化させて、図6(d)に示すように、保護膜82’を形成する。
 このような保護膜の形成方法では、バンプ91の上部910が保護膜82’を貫通して突出した状態となることが必要である。そのためには、基材81及び緩衝層83を剥離させた段階で、上記のように、バンプ91の上部910が硬化性樹脂フィルム82を貫通して突出しており、バンプ91の上部910に、硬化性樹脂フィルム82が残存していない状態とすることが重要である。これとは逆に、バンプ91の上部910に、硬化性樹脂フィルム82が残存してしまっている状態の一例を図7に示す。ここでは、バンプ91の表面91aの全面が硬化性樹脂フィルム82で被覆されてしまっている例を示しているが、これは硬化性樹脂フィルム82の残存状態の一例であり、例えば、バンプ91の上部910において、表面91aの一部が硬化性樹脂フィルム82によって被覆されずに露出している場合もある。
 このように、バンプ上部での硬化性樹脂フィルムの残存を伴わずに保護膜を形成可能とされている保護膜形成用シートとしては、シートの半導体ウエハへの貼付温度における硬化性樹脂フィルムの貯蔵剪断弾性率と緩衝層の貯蔵剪断弾性率との弾性比率が特定範囲に規定されたもの(特許文献1参照)、シートの半導体ウエハへの貼付温度における硬化性樹脂フィルムの溶融粘度が特定範囲に規定されたもの(特許文献2参照)が、それぞれ開示されている。
 特許文献1及び2で開示されている保護膜形成用シートは、いずれもこのシートを半導体ウエハへ貼付するときの温度における、硬化性樹脂フィルムの物性を規定するものである。しかし、このシートを構成する緩衝層及び硬化性樹脂フィルムは、半導体ウエハへの貼付の初期段階と中盤以降の段階とでは、ひずみの程度が大きく異なる。これは、図6(a)及び図6(b)からも明らかである。そして、このようにひずみの程度が異なれば、緩衝層及び硬化性樹脂フィルムの一部の物性は大きく変化する。本発明者らはこの点に着目し、検討した結果、貼付段階の中でも特に、バンプ上部が硬化性樹脂フィルムを貫通して突出しようとする、貼付の中盤以降の段階において、硬化性樹脂フィルム等の物性が適切となるように調節することが、バンプ上部での硬化性樹脂フィルムの残存を抑制するために重要であるとの知見を得た。これに対して、特許文献1及び2で開示されている保護膜形成用シートは、いずれもこのような点を考慮して構成されたものではなく、バンプ上部での硬化性樹脂フィルムの残存抑制効果が不十分になる可能性がある。
特開2015-206006号公報 特許第5666335号公報
 本発明は、半導体ウエハのバンプを有する表面に貼付し、硬化させることによって、前記表面に保護膜を形成するための硬化性樹脂フィルムを備えた保護膜形成用シートであって、硬化性樹脂フィルムを前記表面に貼付したときに、バンプ上部での硬化性樹脂フィルムの残存を抑制できる、新規の保護膜形成用シートを提供することを目的とする。
 本発明は、第1基材と、前記第1基材上に形成された緩衝層と、前記緩衝層上に形成された硬化性樹脂フィルムと、を備え、前記硬化性樹脂フィルムは、半導体ウエハのバンプを有する表面に貼付し、硬化させることによって、前記表面に第1保護膜を形成するためのものであり、温度90℃、周波数1Hzの条件で、直径8mm、厚さ1mmの前記緩衝層の試験片にひずみを発生させて、前記緩衝層の試験片のせん断弾性率G’を測定する、ひずみ分散測定を行ったときに、前記緩衝層の試験片のひずみが300%のときの、前記緩衝層の試験片のせん断弾性率がGb300’であり、温度90℃、周波数1Hzの条件で、直径8mm、厚さ1mmの前記硬化性樹脂フィルムの試験片にひずみを発生させて、前記硬化性樹脂フィルムの試験片のせん断弾性率G’を測定する、ひずみ分散測定を行ったときに、前記硬化性樹脂フィルムの試験片のひずみが300%のときの、前記硬化性樹脂フィルムの試験片のせん断弾性率がGc300’であり、前記Gb300’と、前記Gc300’とが、
 式(w1): Gb300’≧Gc300’
の関係を満たす、第1保護膜形成用シートを提供する。
 本発明の第1保護膜形成用シートにおいては、前記緩衝層の試験片のひずみが200%のときの、前記緩衝層の試験片のせん断弾性率Gb200’と、前記硬化性樹脂フィルムの試験片のひずみが200% のときの、前記硬化性樹脂フィルムの試験片のせん断弾性率Gc200’とが、
 式(w2): Gb200’≧Gc200’
の関係を満たしてもよい。
 本発明の第1保護膜形成用シートにおいては、前記緩衝層の試験片のひずみが400%のときの、前記緩衝層の試験片のせん断弾性率Gb400’と、前記硬化性樹脂フィルムの試験片のひずみが400%のときの、前記硬化性樹脂フィルムの試験片のせん断弾性率Gc400’とが、
 式(w3): Gb400’≧Gc400’
の関係を満たしてもよい。
 本発明の第1保護膜形成用シートにおいては、前記ひずみ分散測定によって得られた、前記緩衝層の試験片のひずみと、前記緩衝層の試験片のせん断弾性率Gb’と、の関数において、前記せん断弾性率Gb’が一定ではない領域が存在し、前記緩衝層の試験片のひずみが300%であるときの前記せん断弾性率Gb’が、前記領域に含まれてもよい。
 本発明の第1保護膜形成用シートにおいては、前記ひずみ分散測定によって得られた、前記硬化性樹脂フィルムの試験片のひずみと、前記硬化性樹脂フィルムの試験片のせん断弾性率Gc’と、の関数において、前記せん断弾性率Gc’が一定ではない領域が存在し、前記硬化性樹脂フィルムの試験片のひずみが300%であるときの前記せん断弾性率Gc’が、前記領域に含まれてもよい。
 本発明の第1保護膜形成用シートにおいては、前記硬化性樹脂フィルムが、樹脂成分を含有し、前記硬化性樹脂フィルムの充填材の含有量が45質量%以下であり、前記樹脂成分の重量平均分子量が30000以下であってもよい。
 本発明の第1保護膜形成用シートを、半導体ウエハのバンプを有する表面に貼付し、硬化性樹脂フィルムを硬化させることによって、前記表面に第1保護膜を形成できる。そして、硬化性樹脂フィルムを前記表面に貼付したときに、バンプ上部での硬化性樹脂フィルムの残存を抑制できる。
本発明の第1保護膜形成用シートの一実施形態を模式的に示す断面図である。 本発明の第1保護膜形成用シートの他の実施形態を模式的に示す断面図である。 図1に示す第1保護膜形成用シートの使用方法の一例を模式的に示す断面図である。 図2に示す第1保護膜形成用シートの使用方法の一例を模式的に示す断面図である。 実施例及び比較例の緩衝層及び熱硬化性樹脂フィルムの試験片についての、せん断弾性率G’の測定結果を示すグラフである。 半導体ウエハのバンプ形成面における保護膜の形成方法を模式的に説明するための断面図である。 バンプの上部に硬化性樹脂フィルムが残存している状態の一例を模式的に示す断面図である。
◇第1保護膜形成用シート
 本発明の第1保護膜形成用シートは、第1基材と、前記第1基材上に形成された緩衝層と、前記緩衝層上に形成された硬化性樹脂フィルムと、を備える。
 前記硬化性樹脂フィルムは、半導体ウエハのバンプを有する表面に貼付し、硬化させることによって、前記表面に第1保護膜を形成するためのものである。
 そして、本発明の第1保護膜形成用シートは、下記式(w1)の関係を満たす。
 Gb300’≧Gc300’ ・・・・(w1)
 ここで、Gb300’は、前記緩衝層の試験片に対してひずみ分散測定を行ったときに、前記緩衝層の試験片のひずみが300%のときの、前記緩衝層の試験片のせん断弾性率である。このときのひずみ分散測定は、直径8mm、厚さ1mmの前記緩衝層の試験片に、温度90℃、周波数1Hzの条件で、ひずみを発生させて、前記緩衝層の試験片のせん断弾性率G’を測定することで行う。
 また、Gc300’は、前記硬化性樹脂フィルムの試験片に対してひずみ分散測定を行ったときに、前記硬化性樹脂フィルムの試験片のひずみが300%のときの、前記硬化性樹脂フィルムの試験片のせん断弾性率である。このときのひずみ分散測定は、前記緩衝層の試験片の場合と同じ方法で行う。すなわち、直径8mm、厚さ1mmの前記硬化性樹脂フィルムの試験片に、温度90℃、周波数1Hzの条件で、ひずみを発生させて、前記硬化性樹脂フィルムの試験片のせん断弾性率G’を測定することで、ひずみ分散測定を行う。
 ひずみ分散測定を行う前記試験片は、上記のように、いずれも円形のフィルム状である。
 本発明の第1保護膜形成用シートは、その硬化性樹脂フィルムを介して、半導体ウエハのバンプを有する表面(本明細書においては、「バンプ形成面」と称することがある)に貼付して使用される。このとき、硬化性樹脂フィルムを加熱しながらバンプ形成面に貼付することで、軟化した硬化性樹脂フィルムは、バンプを覆うようにしてバンプ間に広がり、バンプ形成面と密着するとともに、バンプの表面、特にバンプ形成面の近傍部位の表面を覆って、バンプを埋め込む。この状態の硬化性樹脂フィルムは、この後、硬化によって最終的に第1保護膜を形成する。そして、この第1保護膜は、バンプ形成面と、バンプの前記表面と、に密着した状態で、バンプ形成面とバンプを保護する。第1保護膜形成用シートを貼付した後の半導体ウエハは、例えば、バンプ形成面とは反対側の面が研削された後、第1基材及び緩衝層が取り除かれ、さらに第1保護膜の形成後、最終的には、この第1保護膜を備えた半導体チップの状態で、半導体装置に組み込まれる。
 本発明の第1保護膜形成用シートを用いることにより、半導体ウエハのバンプ形成面に硬化性樹脂フィルムを貼付したときに、バンプ上部での硬化性樹脂フィルムの残存を抑制できる。これは、硬化性樹脂フィルム及び緩衝層が、前記式(w1)の関係を満たしているためである。第1保護膜形成用シートの半導体ウエハへの貼付の中盤以降に、硬化性樹脂フィルム及び緩衝層のひずみの程度が、貼付の初期段階とは大きく異なった段階において、これら(硬化性樹脂フィルム及び緩衝層)のせん断弾性率が上記のような特定の関係を有していることにより、バンプの上部は、硬化性樹脂フィルムを容易に貫通して突出可能となっている。
 前記第1保護膜形成用シートは、前記式(w1)の関係を満たす。すなわち、前記第1保護膜形成用シートを構成する緩衝層及び硬化性樹脂フィルムについて、それぞれ直径8mm、厚さ1mmの試験片を作製し、温度90℃、周波数1Hzの条件で、これら試験片にひずみを発生させて、これら試験片のせん断弾性率G’を測定するひずみ分散測定を行う。すると、本発明においては、緩衝層の試験片のひずみが300%のときの、緩衝層の試験片のせん断弾性率Gb300’と、硬化性樹脂フィルムの試験片のひずみが300%のときの、硬化性樹脂フィルムの試験片のせん断弾性率Gc300’とが、Gb300’≧Gc300’の関係を満たす。
 第1保護膜形成用シートを半導体ウエハのバンプ形成面へ貼付するときには、この貼付の初期段階と中盤以降の段階とでは、前記シートを構成する緩衝層のひずみの程度と、硬化性樹脂フィルムのひずみの程度とは、いずれも大きく異なる。本発明を特定するために、緩衝層及び硬化性樹脂フィルムの試験片のせん断弾性率G’として、これら試験片のひずみが300%のときの値(Gb300’、Gc300’)を採用する理由が、ここにある。緩衝層は、そのひずみの程度が異なれば、その一部の物性は大きく変化する。同様に、硬化性樹脂フィルムも、そのひずみの程度が異なれば、その一部の物性は大きく変化する。硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ上部での硬化性樹脂フィルムの残存を抑制するためには、硬化性樹脂フィルムの貼付段階の中でも特に、バンプ上部が硬化性樹脂フィルムを貫通して突出しようとする段階(換言すると、貼付の中盤以降の段階、又は、緩衝層及び硬化性樹脂フィルムのひずみの程度がある程度大きくなった段階)において、緩衝層及び硬化性樹脂フィルムのせん断弾性率G’の関係を規定することが重要である。そのために、本発明においては、前記式(w1)の関係を満たすものとしている。Gb300’及びGc300’は、それぞれ緩衝層及び硬化性樹脂フィルムの、これらのひずみの程度が大きくなった段階でのせん断弾性率G’である。
 前記第1保護膜形成用シートは、前記式(w1)の関係を満たせばよく、換言すると、Gb300’/Gc300’の値が1以上であればよい。本発明の上述の効果がより高くなる点から、Gb300’/Gc300’の値は、1よりも大きいことが好ましく、10以上であることがより好ましく、100以上であることがさらに好ましく、例えば、1000以上であってもよい。
 前記第1保護膜形成用シートにおいて、緩衝層のせん断弾性率G’、及び緩衝層の前記試験片のせん断弾性率G’は、いずれも、緩衝層の含有成分の種類又は含有量を調節することで、容易に調節できる。そのためには、緩衝層を形成するための、後述する緩衝層形成用組成物中の含有成分の種類又は含有量を調節すればよく、例えば、後述する緩衝層形成用組成物(V)中のポリα-オレフィン等の、主たる含有成分の種類又は含有量を調節することが好ましい。
 前記第1保護膜形成用シートにおいて、硬化性樹脂フィルムのせん断弾性率G’、及び硬化性樹脂フィルムの前記試験片のせん断弾性率G’は、いずれも、硬化性樹脂フィルムの含有成分の種類又は含有量を調節することで、容易に調節できる。そのためには、硬化性樹脂フィルムを形成するための、後述する硬化性樹脂フィルム形成用組成物中の含有成分の種類又は含有量を調節すればよい。例えば、後述する樹脂層形成用組成物(III)を用いる場合には、この組成物中の重合体成分(A)、熱硬化性成分(B)、硬化促進剤(C)又は充填材(D)等の、主たる含有成分の種類又は含有量を調節することが好ましい。
 前記第1保護膜形成用シートは、さらに、前記ひずみ分散測定を行ったときに、下記式(w2)の関係を満たすことが好ましい。
 Gb200’≧Gc200’ ・・・・(w2)
 ここで、Gb200’は、緩衝層の試験片のひずみが200%のときの、緩衝層の試験片のせん断弾性率である。また、Gc200’は、硬化性樹脂フィルムの試験片のひずみが200%のときの、硬化性樹脂フィルムの試験片のせん断弾性率である。
 前記式(w2)の関係を満たす第1保護膜形成用シートは、硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ上部での硬化性樹脂フィルムの残存を抑制する効果がより高くなる。
 前記第1保護膜形成用シートは、前記式(w2)の関係を満たすこと、換言すると、Gb200’/Gc200’の値が1以上であることが好ましい。本発明の上述の効果がより高くなる点から、Gb200’/Gc200’の値は、1よりも大きいことがより好ましく、10以上であることがさらに好ましく、100以上であることが特に好ましく、例えば、1000以上であってもよい。
 前記第1保護膜形成用シートは、さらに、前記ひずみ分散測定を行ったときに、下記式(w3)の関係を満たすことが好ましい。
 Gb400’≧Gc400’ ・・・・(w3)
 ここで、Gb400’は、緩衝層の試験片のひずみが400%のときの、緩衝層の試験片のせん断弾性率である。また、Gc400’は、硬化性樹脂フィルムの試験片のひずみが400%のときの、硬化性樹脂フィルムの試験片のせん断弾性率である。
 前記式(w3)の関係を満たす第1保護膜形成用シートは、硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ上部での硬化性樹脂フィルムの残存を抑制する効果がより高くなる。
 前記第1保護膜形成用シートは、前記式(w3)の関係を満たすこと、換言すると、Gb400’/Gc400’の値が1以上であることが好ましい。本発明の上述の効果がより高くなる点から、Gb400’/Gc400’の値は、1よりも大きいことがより好ましく、10以上であることがさらに好ましく、100以上であることが特に好ましく、例えば、1000以上であってもよい。
 本発明の上述の効果がより高くなる点から、前記第1保護膜形成用シートは、前記式(w1)の関係を満たし、かつ前記式(w2)及び(w3)の少なくとも一方の関係を満たすことが好ましく、前記式(w1)、(w2)及び(w3)の関係をすべて満たすことがより好ましい。
 前記第1保護膜形成用シートは、前記ひずみ分散測定によって得られた、緩衝層の試験片のひずみと、緩衝層の試験片のせん断弾性率Gb’と、の関数(本明細書においては、「関数Fb」と称することがある)において、せん断弾性率Gb’が一定ではない領域(本明細書においては、「変動領域Rb」と称することがある)が存在するものが好ましく、緩衝層の試験片のひずみが300%であるときのせん断弾性率Gb’が、前記領域(変動領域Rb)に含まれるものがより好ましい。このような第1保護膜形成用シートは、硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ上部での硬化性樹脂フィルムの残存を抑制する効果がより高くなる。
 前記第1保護膜形成用シートは、前記ひずみ分散測定によって得られた、硬化性樹脂フィルムの試験片のひずみと、硬化性樹脂フィルムの試験片のせん断弾性率Gc’と、の関数(本明細書においては、「関数Fc」と称することがある)において、せん断弾性率Gc’が一定ではない領域(本明細書においては、「変動領域Rc」と称することがある)が存在するものが好ましく、硬化性樹脂フィルムの試験片のひずみが300%であるときのせん断弾性率Gc’が、前記領域(変動領域Rc)に含まれるものがより好ましい。このような第1保護膜形成用シートは、硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ上部での硬化性樹脂フィルムの残存を抑制する効果がより高くなる。
 本発明の上述の効果がより高くなる点から、前記第1保護膜形成用シートは、前記関数Fbにおいて変動領域Rbが存在し、かつ、前記関数Fcにおいて変動領域Rcが存在するものが好ましく、緩衝層の試験片のひずみが300%であるときのせん断弾性率Gb’が変動領域Rbに含まれ、かつ、硬化性樹脂フィルムの試験片のひずみが300%であるときのせん断弾性率Gc’が変動領域Rcに含まれるものがより好ましい。
 なお、本明細書において、「せん断弾性率が一定ではない」とは、対象とする領域において、「せん断弾性率の最小値(Pa)がせん断弾性率の最大値(Pa)の90%未満である([せん断弾性率の最小値(Pa)]/[せん断弾性率の最大値(Pa)]×100の値が90未満である)」ことを意味する。換言すると、「せん断弾性率が一定である」とは、対象とする領域において、「せん断弾性率の最小値(Pa)がせん断弾性率の最大値(Pa)の90%以上である」ことを意味する。
 前記第1保護膜形成用シートの関数Fbにおいて、変動領域Rbが存在するか否かは、上述のせん断弾性率G’の場合と同様に、緩衝層の含有成分の種類又は含有量を調節することで、容易に調節できる。
 前記第1保護膜形成用シートの関数Fcにおいて、変動領域Rcが存在するか否かは、上述のせん断弾性率G’の場合と同様に、硬化性樹脂フィルムの含有成分の種類又は含有量を調節することで、容易に調節できる。
 図1は、本発明の第1保護膜形成用シートの一実施形態を模式的に示す断面図である。なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
 図1に示す第1保護膜形成用シート1は、第1基材11と、第1基材11上に形成された緩衝層13と、緩衝層13上に形成された硬化性樹脂フィル12と、を備えてなる。
 より具体的には、第1保護膜形成用シート1は、第1基材11の一方の表面(以下、「第1面」と称することがある)11aに、緩衝層13が積層され、緩衝層13の第1基材11が設けられている側とは反対側の表面(以下、「第1面」と称することがある)13aに、硬化性樹脂フィルム12が積層されてなる。このように、第1保護膜形成用シート1は、第1基材11、緩衝層13及び硬化性樹脂フィルム12がこの順に、これらの厚さ方向において積層されてなるものである。図1中、符号12aは、硬化性樹脂フィルム12の緩衝層13が設けられている側とは反対側の表面(以下、「第1面」と称することがある)を示す。
 図2は、本発明の第1保護膜形成用シートの他の実施形態を模式的に示す断面図である。
 なお、図2以降の図において、既に説明済みの図に示すものと同じ構成要素には、その説明済みの図の場合と同じ符号を付し、その詳細な説明は省略する。
 図2に示す第1保護膜形成用シート2は、第1基材11と緩衝層13との間に、密着層14を備えている(第1基材11上に形成された密着層14と、密着層14上に形成された緩衝層13と、を備えている)点以外は、図1に示す第1保護膜形成用シート1と同じものである。
 すなわち、第1保護膜形成用シート2は、第1基材11の第1面11aに、密着層14が積層され、密着層14の第1基材11が設けられている側とは反対側の表面(以下、「第1面」と称することがある)14aに、緩衝層13が積層されており、第1基材11、密着層14、緩衝層13及び硬化性樹脂フィルム12がこの順に、これらの厚さ方向において積層されてなるものである。
 本発明の第1保護膜形成用シートは、図1及び図2に示すものに限定されず、本発明の効果を損なわない範囲内において、図1及び図2に示すものにおいて、一部の構成が変更、削除又は追加されたものであってもよい。
 例えば、本発明の第1保護膜形成用シートは、基材とは反対側の最表層(図1及び図2に示す第1保護膜形成用シートにおいては硬化性樹脂フィルム12)に剥離フィルムを備えていてもよい。
 次に、本発明の第1保護膜形成用シートを構成する各層について説明する。
◎第1基材
 第1基材は、シート状又はフィルム状であり、その構成材料としては、例えば、各種樹脂が挙げられる。
 前記樹脂としては、例えば、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
 また、前記樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
 また、前記樹脂としては、例えば、ここまでに例示した前記樹脂の1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂の1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。
 なお、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の両方を包含する概念とする。(メタ)アクリル酸と類似の用語につても同様であり、例えば、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を包含する概念であり、「(メタ)アクリロイル基」とは、「アクリロイル基」及び「メタクリロイル基」の両方を包含する概念である。
 第1基材を構成する樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1基材は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 なお、本明細書においては、第1基材の場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。
 第1基材の厚さは、5~1000μmであることが好ましく、10~500μmであることがより好ましく、15~300μmであることがさらに好ましく、20~150μmであることが特に好ましい。
 ここで、「第1基材の厚さ」とは、第1基材全体の厚さを意味し、例えば、複数層からなる第1基材の厚さとは、第1基材を構成するすべての層の合計の厚さを意味する。
 第1基材は、厚さの精度が高いもの、すなわち、部位によらず厚さのばらつきが抑制されたものが好ましい。上述の構成材料のうち、このような厚さの精度が高い第1基材を構成するのに使用可能な材料としては、例えば、ポリエチレン、ポリエチレン以外のポリオレフィン、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体等が挙げられる。
 第1基材は、前記樹脂等の主たる構成材料以外に、充填材、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒、軟化剤(可塑剤)等の公知の各種添加剤を含有していてもよい。
 第1基材は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよいし、他の層が蒸着されていてもよい。
 前記硬化性樹脂フィルムがエネルギー線硬化性である場合、第1基材はエネルギー線を透過させるものが好ましい。
 第1基材は、公知の方法で製造できる。例えば、樹脂を含有する第1基材は、前記樹脂を含有する樹脂組成物を成形することで製造できる。
◎緩衝層
 緩衝層は、緩衝層とこれに隣接する層へ加えられる力に対して、緩衝作用を有する。ここで「緩衝層と隣接する層」とは、主に硬化性樹脂フィルムと、その硬化物に相当する第1保護膜である。
 緩衝層は、シート状又はフィルム状であり、前記式(w1)の関係を満たす限り、その構成材料は、特に限定されない。
 好ましい緩衝層としては、例えば、ポリα-オレフィン等の各種樹脂を含有するものが挙げられる。
 緩衝層は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 緩衝層の厚さは、150~1000μmであることが好ましく、150~800μmであることがより好ましく、200~600μmであることがさらに好ましく、250~500μmであることが特に好ましい。
 ここで、「緩衝層の厚さ」とは、緩衝層全体の厚さを意味し、例えば、複数層からなる緩衝層の厚さとは、緩衝層を構成するすべての層の合計の厚さを意味する。
<<緩衝層形成用組成物>>
 緩衝層は、前記樹脂等の、緩衝層の構成材料を含有する緩衝層形成用組成物を用いて形成できる。例えば、緩衝層の形成対象面に対して、緩衝層形成用組成物を押出成形することにより、目的とする部位に緩衝層を形成できる。緩衝層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。緩衝層形成用組成物中の、常温で気化しない成分同士の含有量の比率は、通常、緩衝層の前記成分同士の含有量の比率と同じとなる。なお、本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
<緩衝層形成用組成物(V)>
 緩衝層形成用組成物としては、例えば、ポリα-オレフィンを含有する緩衝層形成用組成物(V)等が挙げられる。
 前記ポリα-オレフィンは、α-オレフィンから誘導された構成単位を有するものであればよい。
 ポリα-オレフィンの構成単位は、1種のみでもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。すなわち、ポリα-オレフィンは、1種のモノマーが重合してなる単独重合体であってもよいし、2種以上のモノマーが共重合してなる共重合体であってもよい。
 ポリα-オレフィンは、エチレン-α-オレフィン共重合体であることが好ましい。
 ポリα-オレフィンの密度は、890kg/m以下であることが好ましく、830~890kg/mであることがより好ましく、850~875kg/mであることが特に好ましい。なお、本明細書において、「ポリα-オレフィンの密度」とは、特に断りのない限り、ASTM D1505に準拠して測定した値を意味する。
 ポリα-オレフィンの融点は、55℃以下であることが好ましく、50℃以下であることがより好ましい。
 ポリα-オレフィンの190℃でのメルトフローレイト(MFR)は、1~6g/10分であることが好ましく、2.5~4.5g/10分であることがより好ましい。
 また、ポリα-オレフィンの230℃でのメルトフローレイト(MFR)は、2~12g/10分であることが好ましく、4~9g/10分であることがより好ましい。
 なお、本明細書において、「ポリα-オレフィンのメルトフローレイト」とは、特に断りのない限り、ASTM D1238に準拠して測定した値を意味する。
 緩衝層形成用組成物(V)及び緩衝層のポリα-オレフィンの含有量は、80~100質量%であることが好ましい。
[他の成分]
 緩衝層形成用組成物(V)及び緩衝層は、本発明の効果を損なわない範囲内において、ポリα-オレフィン以外の、他の成分を含有していてもよい。
 前記他の成分としては、特に限定されず、目的に応じて適宜選択できる。
 緩衝層形成用組成物(V)及び緩衝層が含有する前記他の成分は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 緩衝層形成用組成物(V)及び緩衝層の前記他の成分の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
◎硬化性樹脂フィルム
 硬化性樹脂フィルムは、半導体ウエハのバンプ形成面(換言すると回路面)、及びこのバンプ形成面上に設けられたバンプを保護するための層であり、第1の態様では熱硬化性樹脂フィルムであり、第2の態様ではエネルギー線硬化性樹脂フィルムである。前記硬化性樹脂フィルムは、硬化によって第1保護膜を形成する。
 硬化性樹脂フィルムは、シート状又はフィルム状であり、前記式(w1)の関係を満たす限り、その構成材料は、特に限定されない。
 硬化性樹脂フィルムは、熱硬化性及びエネルギー線硬化性のいずれであってもよいが、熱硬化性であることが好ましい。
 なお、本発明において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、その例として、紫外線、放射線、電子線等が挙げられる。
 紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンHランプ、キセノンランプ、ブラックライト又はLEDランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 本発明において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。
 硬化性樹脂フィルムは、樹脂成分を含有し、樹脂成分以外に充填材を含有していてもよいし、含有していなくてもよく、充填材の含有量が45質量%以下であるものが好ましい。
 硬化性樹脂フィルムにおいて、前記樹脂成分の重量平均分子量は1000000以下であることが好ましく、例えば、800000以下、500000以下、300000以下、200000以下、100000以下、50000及び30000以下等のいずれかであってもよい。
 一方、硬化性樹脂フィルムにおいて、前記樹脂成分の重量平均分子量の下限値は、特に限定されず、例えば、5000及び8000のいずれかであってもよい。
 前記樹脂成分がこれらの各条件を満たすことにより、第1保護膜形成用シートは、バンプ上部での硬化性樹脂フィルムの残存を抑制する効果がより高くなる。
 なお、本明細書において、重量平均分子量とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。
 前記樹脂成分の重量平均分子量は、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内となるように、適宜調節できる。
 前記重量平均分子量の好ましい例としては、例えば、5000~1000000、5000~800000、5000~500000、5000~300000、5000~200000、5000~100000、5000~50000、及び5000~30000が挙げられる。
 前記重量平均分子量の好ましい他の例としては、例えば、8000~1000000、8000~800000、8000~500000、8000~300000、8000~200000、8000~100000、8000~50000、及び8000~30000が挙げられる。
 ただし、前記重量平均分子量は、これらに限定されない。
 硬化性樹脂フィルムの充填材の含有量は、40質量%以下であることがより好ましく、30質量%以下であることが特に好ましい。
 一方、硬化性樹脂フィルムの充填材の含有量の下限値は、特に限定されない。例えば、硬化性樹脂フィルムの充填材の含有量は、0質量%以上、5質量%以上、及び10質量%以上等のいずれかであってもよい。
 硬化性樹脂フィルムの充填材の含有量は、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内となるように、適宜調節できる。
 硬化性樹脂フィルムの充填材の含有量で好ましい例としては、0~45質量%、0~40質量%、及び0~30質量%等が挙げられる。
 ただし、硬化性樹脂フィルムの充填材の含有量は、これらに限定されない。
 硬化性樹脂フィルムは、樹脂成分を含有し、充填材の含有量が45質量%以下であり、前記樹脂成分の重量平均分子量が30000以下であるものが特に好ましい。このような条件を満たすことにより、第1保護膜形成用シートは、バンプ上部での硬化性樹脂フィルムの残存を抑制する効果がさらに高くなる。
 前記樹脂成分及び充填材の種類は特に限定されない。
 このような硬化性樹脂フィルムとしては、例えば、樹脂成分を含有し、充填材の含有量が好ましくは0~45質量%、より好ましくは0~40質量%、さらに好ましくは0~30質量%であり、前記樹脂成分の重量平均分子量が30000以下(例えば、5000~30000、8000~30000等)であるものが挙げられる。
 硬化性樹脂フィルムは、その構成材料を含有する硬化性樹脂フィルム形成用組成物を用いて形成できる。例えば、後述する熱硬化性樹脂フィルム形成用組成物及びエネルギー線硬化性樹脂フィルム形成用組成物中の樹脂に相当する成分は、すべて前記樹脂成分に包含される。
○熱硬化性樹脂フィルム
 好ましい熱硬化性樹脂フィルムとしては、例えば、前記樹脂成分として重合体成分(A)を含有し、さらに熱硬化性成分(B)を含有するものが挙げられる。
 熱硬化性樹脂フィルムは1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 熱硬化性樹脂フィルムの厚さは、1~100μmであることが好ましく、5~75μmであることがより好ましく、5~50μmであることが特に好ましい。熱硬化性樹脂フィルムの厚さが前記下限値以上であることで、保護能がより高い第1保護膜を形成できる。また、熱硬化性樹脂フィルムの厚さが前記上限値以下であることで、過剰な厚さとなることが抑制される。
 ここで、「熱硬化性樹脂フィルムの厚さ」とは、熱硬化性樹脂フィルム全体の厚さを意味し、例えば、複数層からなる熱硬化性樹脂フィルムの厚さとは、熱硬化性樹脂フィルムを構成するすべての層の合計の厚さを意味する。
<<熱硬化性樹脂フィルム形成用組成物>>
 熱硬化性樹脂フィルムは、その構成材料を含有する熱硬化性樹脂フィルム形成用組成物を用いて形成できる。例えば、熱硬化性樹脂フィルムの形成対象面に熱硬化性樹脂フィルム形成用組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に熱硬化性樹脂フィルムを形成できる。熱硬化性樹脂フィルムのより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。熱硬化性樹脂フィルム形成用組成物中の、常温で気化しない成分同士の含有量の比率は、通常、熱硬化性樹脂フィルムの前記成分同士の含有量の比率と同じとなる。
 熱硬化性樹脂フィルム形成用組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。
 熱硬化性樹脂フィルム形成用組成物の乾燥条件は、特に限定されないが、熱硬化性樹脂フィルム形成用組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。溶媒を含有する熱硬化性樹脂フィルム形成用組成物は、例えば、70~130℃で10秒~5分の条件で乾燥させることが好ましい。
<樹脂層形成用組成物(III)>
 熱硬化性樹脂フィルム形成用組成物としては、例えば、重合体成分(A)及び熱硬化性成分(B)を含有する熱硬化性樹脂フィルム形成用組成物(III)(本明細書においては、単に「樹脂層形成用組成物(III)」と略記することがある)等が挙げられる。
[重合体成分(A)]
 重合体成分(A)は、熱硬化性樹脂フィルムに造膜性や可撓性等を付与するための重合体化合物であり、重合性化合物が重合反応して形成されたとみなせる成分である。なお、本明細書において重合反応には、重縮合反応も含まれる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する重合体成分(A)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 重合体成分(A)としては、例えば、アクリル系樹脂((メタ)アクリロイル基を有する樹脂)、ポリビニルアセタール等が挙げられる。
 重合体成分(A)における前記アクリル系樹脂としては、公知のアクリル重合体が挙げられる。
 アクリル系樹脂の重量平均分子量(Mw)は、5000~1000000であることが好ましく、8000~800000であることがより好ましい。アクリル系樹脂の重量平均分子量がこのような範囲であることで、硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ上部での硬化性樹脂フィルムの残存を抑制する効果がより高くなる。
 アクリル系樹脂のガラス転移温度(Tg)は、-50~70℃であることが好ましく、-30~60℃であることがより好ましい。アクリル系樹脂のTgがこのような範囲であることで、硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ上部での硬化性樹脂フィルムの残存を抑制する効果がより高くなる。
 アクリル系樹脂を構成するモノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 アクリル系樹脂としては、例えば、1種又は2種以上の(メタ)アクリル酸エステルの重合体;
 (メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される2種以上のモノマーの共重合体;
 1種又は2種以上の(メタ)アクリル酸エステルと、(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される1種又は2種以上のモノマーと、の共重合体等が挙げられる。
 アクリル系樹脂を構成する前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル;
 (メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル;
 (メタ)アクリル酸イミド;
 (メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸N-メチルアミノエチル等の置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基を意味する。
 アクリル系樹脂は、ビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の他の化合物と結合可能な官能基を有していてもよい。アクリル系樹脂の前記官能基は、後述する架橋剤(F)を介して他の化合物と結合してもよいし、架橋剤(F)を介さずに他の化合物と直接結合していてもよい。アクリル系樹脂が前記官能基により他の化合物と結合することで、第1保護膜形成用シートを用いて得られたパッケージの信頼性が向上する傾向がある。
 重合体成分(A)における前記ポリビニルアセタールとしては、公知のものが挙げられる。
 なかでも、好ましいポリビニルアセタールとしては、例えば、ポリビニルホルマール、ポリビニルブチラール等が挙げられ、ポリビニルブチラールがより好ましい。
 ポリビニルブチラールとしては、下記式(i)-1、(i)-2及び(i)-3で表される構成単位を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 (式中、l、m及びnは、それぞれ独立に1以上の整数である。)
 ポリビニルアセタールの重量平均分子量(Mw)は、5000~200000であることが好ましく、8000~100000であることがより好ましい。ポリビニルアセタールの重量平均分子量がこのような範囲であることで、硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ上部での硬化性樹脂フィルムの残存を抑制する効果がより高くなる。
 ポリビニルアセタールのガラス転移温度(Tg)は、40~80℃であることが好ましく、50~70℃であることがより好ましい。ポリビニルアセタールのTgがこのような範囲であることで、硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ上部での硬化性樹脂フィルムの残存を抑制する効果がより高くなる。
 ポリビニルアセタールを構成する3種以上のモノマーの比率は任意に選択できる。
 樹脂層形成用組成物(III)において、溶媒以外の全ての成分の総含有量に対する重合体成分(A)の含有量の割合(すなわち、熱硬化性樹脂フィルムの重合体成分(A)の含有量)は、重合体成分(A)の種類によらず、5~25質量%であることが好ましく、5~15質量%であることがより好ましい。
[熱硬化性成分(B)]
 熱硬化性成分(B)は、熱を反応のトリガーとして、熱硬化性樹脂フィルムを硬化させて、硬質の第1保護膜を形成するための成分である。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する熱硬化性成分(B)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 熱硬化性成分(B)は、エポキシ系熱硬化性樹脂であることが好ましい。
(エポキシ系熱硬化性樹脂)
 エポキシ系熱硬化性樹脂は、エポキシ樹脂(B1)及び熱硬化剤(B2)からなる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有するエポキシ系熱硬化性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
・エポキシ樹脂(B1)
 エポキシ樹脂(B1)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビフェニル化合物、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等、2官能以上のエポキシ化合物が挙げられる。
 エポキシ樹脂(B1)は、不飽和炭化水素基を有するエポキシ樹脂であってもよい。不飽和炭化水素基を有するエポキシ樹脂は、不飽和炭化水素基を有しないエポキシ樹脂よりもアクリル系樹脂との相溶性が高い。そのため、不飽和炭化水素基を有するエポキシ樹脂を用いることで、第1保護膜形成用シートを用いて得られたパッケージの信頼性が向上する。
 不飽和炭化水素基を有するエポキシ樹脂としては、例えば、多官能系エポキシ樹脂のエポキシ基の一部が不飽和炭化水素基を有する基に変換されてなる化合物が挙げられる。このような化合物は、例えば、エポキシ基へ(メタ)アクリル酸又はその誘導体を付加反応させることにより得られる。
 また、不飽和炭化水素基を有するエポキシ樹脂としては、例えば、エポキシ樹脂を構成する芳香環等に、不飽和炭化水素基を有する基が直接結合した化合物等が挙げられる。
 不飽和炭化水素基は、重合性を有する不飽和基であり、その具体的な例としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)、(メタ)アクリロイル基、(メタ)アクリルアミド基等が挙げられ、アクリロイル基が好ましい。
 エポキシ樹脂(B1)の数平均分子量は、特に限定されないが、熱硬化性樹脂フィルムの硬化性、並びに第1保護膜の強度及び耐熱性の点から、300~30000であることが好ましく、400~10000であることがより好ましく、500~3000であることが特に好ましい。
 エポキシ樹脂(B1)のエポキシ当量は、100~1000g/eqであることが好ましく、300~800g/eqであることがより好ましい。
 エポキシ樹脂(B1)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
・熱硬化剤(B2)
 熱硬化剤(B2)は、エポキシ樹脂(B1)に対する硬化剤として機能する。
 熱硬化剤(B2)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。前記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。
 熱硬化剤(B2)のうち、フェノール性水酸基を有するフェノール系硬化剤としては、例えば、多官能フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、アラルキルフェノール樹脂等が挙げられる。
 熱硬化剤(B2)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド(以下、「DICY」と略記することがある)等が挙げられる。
 熱硬化剤(B2)は、不飽和炭化水素基を有するものでもよい。
 不飽和炭化水素基を有する熱硬化剤(B2)としては、例えば、フェノール樹脂の水酸基の一部が、不飽和炭化水素基を有する基で置換されてなる化合物、フェノール樹脂の芳香環に、不飽和炭化水素基を有する基が直接結合してなる化合物等が挙げられる。
 熱硬化剤(B2)における前記不飽和炭化水素基は、上述の不飽和炭化水素基を有するエポキシ樹脂における不飽和炭化水素基と同様のものである。
 熱硬化剤(B2)のうち、例えば、多官能フェノール樹脂、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、アラルキルフェノール樹脂等の樹脂成分の数平均分子量は、300~30000であることが好ましく、400~10000であることがより好ましく、500~3000であることが特に好ましい。
 熱硬化剤(B2)のうち、例えば、ビフェノール、ジシアンジアミド等の非樹脂成分の分子量は、特に限定されないが、例えば、60~500であることが好ましい。
 熱硬化剤(B2)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、熱硬化剤(B2)の含有量は、エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましく、例えば、1~150質量部、1~100質量部、及び1~75質量部のいずれかであってもよい。熱硬化剤(B2)の前記含有量が前記下限値以上であることで、熱硬化性樹脂フィルムの硬化がより進行し易くなる。また、熱硬化剤(B2)の前記含有量が前記上限値以下であることで、熱硬化性樹脂フィルムの吸湿率が低減されて、第1保護膜形成用シートを用いて得られたパッケージの信頼性がより向上する。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、熱硬化性成分(B)の含有量(例えば、エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量)は、重合体成分(A)の含有量100質量部に対して、600~1000質量部であることが好ましい。熱硬化性成分(B)の前記含有量がこのような範囲であることで、バンプ上部での硬化性樹脂フィルムの残存を抑制する効果がより高くなり、かつ硬質な第1保護膜を形成できる。
 さらに、このような効果がより顕著に得られる点から、熱硬化性成分(B)の含有量は、重合体成分(A)の種類に応じて、適宜調節することが好ましい。
 例えば、重合体成分(A)が前記アクリル系樹脂である場合、樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、熱硬化性成分(B)の含有量は、重合体成分(A)の含有量100質量部に対して、700~1000質量部であることが好ましく、750~1000質量部であることがより好ましく、750~900質量部であることが特に好ましい。
 例えば、重合体成分(A)が前記ポリビニルアセタールである場合、樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、熱硬化性成分(B)の含有量は、重合体成分(A)の含有量100質量部に対して、600~1000質量部であることが好ましく、650~1000質量部であることがより好ましく、650~950質量部であることが特に好ましい。
[硬化促進剤(C)]
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、硬化促進剤(C)を含有していてもよい。硬化促進剤(C)は、樹脂層形成用組成物(III)の硬化速度を調整するための成分である。
 好ましい硬化促進剤(C)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類(1個以上の水素原子が水素原子以外の基で置換されたイミダゾール);トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類(1個以上の水素原子が有機基で置換されたホスフィン);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する硬化促進剤(C)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 硬化促進剤(C)を用いる場合、樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、硬化促進剤(C)の含有量は、熱硬化性成分(B)の含有量100質量部に対して、0.01~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。硬化促進剤(C)の前記含有量が前記下限値以上であることで、硬化促進剤(C)を用いたことによる効果がより顕著に得られる。また、硬化促進剤(C)の含有量が前記上限値以下であることで、例えば、高極性の硬化促進剤(C)が、高温・高湿度条件下で熱硬化性樹脂フィルム中において被着体との接着界面側に移動して偏析することを抑制する効果が高くなり、第1保護膜形成用シートを用いて得られたパッケージの信頼性がより向上する。
[充填材(D)]
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、充填材(D)を含有していてもよい。熱硬化性樹脂フィルムが充填材(D)を含有することにより、熱硬化性樹脂フィルムを硬化して得られた第1保護膜は、熱膨張係数の調整が容易となる。例えば、第1保護膜の熱膨張係数を第1保護膜の形成対象物に対して最適化することで、第1保護膜形成用シートを用いて得られたパッケージの信頼性がより向上する。また、熱硬化性樹脂フィルムが充填材(D)を含有することにより、第1保護膜の吸湿率を低減したり、放熱性を向上させたりすることもできる。
 充填材(D)は、有機充填材及び無機充填材のいずれでもよいが、無機充填材であることが好ましい。
 好ましい無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
 これらの中でも、無機充填材は、シリカ又はアルミナであることが好ましい。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する充填材(D)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III)において、溶媒以外の全ての成分の総含有量に対する充填材(D)の含有量の割合(すなわち、熱硬化性樹脂フィルムの充填材(D)の含有量)は、45質量%以下(0~45質量%)であることが好ましい。充填材(D)の含有量がこのような範囲であることで、バンプ上部での硬化性樹脂フィルムの残存を抑制する効果がより高くなる。
 一方、充填材(D)を用いる場合、樹脂層形成用組成物(III)において、溶媒以外の全ての成分の総含有量に対する充填材(D)の含有量の割合(すなわち、熱硬化性樹脂フィルムの充填材(D)の含有量)は、5~45質量%であることがより好ましく、5~40質量%であることがさらに好ましく、10~30質量%であることが特に好ましい。充填材(D)の含有量がこのような範囲であることで、バンプ上部での硬化性樹脂フィルムの残存を抑制する効果がより高くなるとともに、上記の熱膨張係数の調整がより容易となる。
[カップリング剤(E)]
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、カップリング剤(E)を含有していてもよい。カップリング剤(E)として、無機化合物又は有機化合物と反応可能な官能基を有するものを用いることにより、熱硬化性樹脂フィルムの被着体に対する接着性及び密着性を向上させることができる。また、カップリング剤(E)を用いることで、熱硬化性樹脂フィルムを硬化して得られた第1保護膜は、耐熱性を損なうことなく、耐水性が向上する。
 カップリング剤(E)は、重合体成分(A)、熱硬化性成分(B)等が有する官能基と反応可能な官能基を有する化合物であることが好ましく、シランカップリング剤であることがより好ましい。
 好ましい前記シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有するカップリング剤(E)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 カップリング剤(E)を用いる場合、樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムにおいて、カップリング剤(E)の含有量は、重合体成分(A)及び熱硬化性成分(B)の総含有量100質量部に対して、0.03~20質量部であることが好ましく、0.05~10質量部であることがより好ましく、0.1~5質量部であることが特に好ましい。カップリング剤(E)の前記含有量が前記下限値以上であることで、充填材(D)の樹脂への分散性の向上や、熱硬化性樹脂フィルムの被着体との接着性の向上など、カップリング剤(E)を用いたことによる効果がより顕著に得られる。また、カップリング剤(E)の前記含有量が前記上限値以下であることで、アウトガスの発生がより抑制される。
[架橋剤(F)]
 重合体成分(A)として、他の化合物と結合可能なビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の官能基を有するものを用いる場合、樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、架橋剤(F)を含有していてもよい。架橋剤(F)は、重合体成分(A)中の前記官能基を他の化合物と結合させて架橋するための成分であり、このように架橋することにより、熱硬化性樹脂フィルムの初期接着力及び凝集力を調節できる。
 架橋剤(F)としては、例えば、有機多価イソシアネート化合物、有機多価イミン化合物、金属キレート系架橋剤(金属キレート構造を有する架橋剤)、アジリジン系架橋剤(アジリジニル基を有する架橋剤)等が挙げられる。
 前記有機多価イソシアネート化合物としては、例えば、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物及び脂環族多価イソシアネート化合物(以下、これら化合物をまとめて「芳香族多価イソシアネート化合物等」と略記することがある);前記芳香族多価イソシアネート化合物等の三量体、イソシアヌレート体及びアダクト体;前記芳香族多価イソシアネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等が挙げられる。前記「アダクト体」は、前記芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物又は脂環族多価イソシアネート化合物と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン又はヒマシ油等の低分子活性水素含有化合物との反応物を意味する。前記アダクト体の例としては、後述するようなトリメチロールプロパンのキシリレンジイソシアネート付加物等が挙げられる。また、「末端イソシアネートウレタンプレポリマー」とは、先に説明したとおりである。
 前記有機多価イソシアネート化合物として、より具体的には、例えば、2,4-トリレンジイソシアネート;2,6-トリレンジイソシアネート;1,3-キシリレンジイソシアネート;1,4-キシレンジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-2,4’-ジイソシアネート;3-メチルジフェニルメタンジイソシアネート;ヘキサメチレンジイソシアネート;イソホロンジイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート;ジシクロヘキシルメタン-2,4’-ジイソシアネート;トリメチロールプロパン等のポリオールのすべて又は一部の水酸基に、トリレンジイソシアネート、ヘキサメチレンジイソシアネート及びキシリレンジイソシアネートのいずれか1種又は2種以上が付加した化合物;リジンジイソシアネート等が挙げられる。
 前記有機多価イミン化合物としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等が挙げられる。
 架橋剤(F)として有機多価イソシアネート化合物を用いる場合、重合体成分(A)としては、水酸基含有重合体を用いることが好ましい。架橋剤(F)がイソシアネート基を有し、重合体成分(A)が水酸基を有する場合、架橋剤(F)と重合体成分(A)との反応によって、熱硬化性樹脂フィルムに架橋構造を簡便に導入できる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する架橋剤(F)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 架橋剤(F)を用いる場合、樹脂層形成用組成物(III)の架橋剤(F)の含有量は、重合体成分(A)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.1~10質量部であることがより好ましく、0.5~5質量部であることが特に好ましい。架橋剤(F)の前記含有量が前記下限値以上であることで、架橋剤(F)を用いたことによる効果がより顕著に得られる。また、架橋剤(F)の前記含有量が前記上限値以下であることで、架橋剤(F)の過剰使用が抑制される。
[他の成分]
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムは、本発明の効果を損なわない範囲内において、上述の重合体成分(A)、熱硬化性成分(B)、硬化促進剤(C)、充填材(D)、カップリング剤(E)及び架橋剤(F)以外の、他の成分を含有していてもよい。
 前記他の成分としては、例えば、エネルギー線硬化性樹脂、光重合開始剤、汎用添加剤等が挙げられる。前記汎用添加剤は、公知のものであり、目的に応じて任意に選択でき、特に限定されないが、好ましいものとしては、例えば、可塑剤、帯電防止剤、酸化防止剤、着色剤(染料、顔料)、ゲッタリング剤等が挙げられる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムが含有する前記他の成分は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III)及び熱硬化性樹脂フィルムの前記他の成分の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
[溶媒]
 樹脂層形成用組成物(III)は、さらに溶媒を含有することが好ましい。溶媒を含有する樹脂層形成用組成物(III)は、取り扱い性が良好となる。
 前記溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オール)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(アミド結合を有する化合物)等が挙げられる。
 樹脂層形成用組成物(III)が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(III)が含有する溶媒は、樹脂層形成用組成物(III)中の含有成分をより均一に混合できる点から、メチルエチルケトン等であることが好ましい。
 樹脂層形成用組成物(III)の溶媒の含有量は、特に限定されず、例えば、溶媒以外の成分の種類に応じて適宜選択すればよい。
<<熱硬化性樹脂フィルム形成用組成物の製造方法>>
 樹脂層形成用組成物(III)等の熱硬化性樹脂フィルム形成用組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
○エネルギー線硬化性樹脂フィルム
 前記エネルギー線硬化性樹脂フィルムは、エネルギー線硬化性成分(a)を含有する。
 エネルギー線硬化性樹脂フィルムにおいて、エネルギー線硬化性成分(a)は、未硬化であることが好ましく、粘着性を有することが好ましく、未硬化でかつ粘着性を有することがより好ましい。
 エネルギー線硬化性樹脂フィルムは1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 エネルギー線硬化性樹脂フィルムの厚さは、1~100μmであることが好ましく、5~75μmであることがより好ましく、5~50μmであることが特に好ましい。エネルギー線硬化性樹脂フィルムの厚さが前記下限値以上であることで、保護能がより高い第1保護膜を形成できる。また、エネルギー線硬化性樹脂フィルムの厚さが前記上限値以下であることで、過剰な厚さとなることが抑制される。
 ここで、「エネルギー線硬化性樹脂フィルムの厚さ」とは、エネルギー線硬化性樹脂フィルム全体の厚さを意味し、例えば、複数層からなるエネルギー線硬化性樹脂フィルムの厚さとは、エネルギー線硬化性樹脂フィルムを構成するすべての層の合計の厚さを意味する。
 エネルギー線硬化性樹脂フィルムを半導体ウエハのバンプ形成面に貼付し、硬化させて、第1保護膜を形成するときの硬化条件は、第1保護膜が十分にその機能を発揮する程度の硬化度となる限り特に限定されず、熱硬化性樹脂フィルムの種類に応じて、適宜選択すればよい。
 例えば、エネルギー線硬化性樹脂フィルムの硬化時における、エネルギー線の照度は、180~280mW/cmであることが好ましい。そして、前記硬化時における、エネルギー線の光量は、450~1000mJ/cmであることが好ましい。
<<エネルギー線硬化性樹脂フィルム形成用組成物>>
 エネルギー線硬化性樹脂フィルムは、その構成材料を含有するエネルギー線硬化性樹脂フィルム形成用組成物を用いて形成できる。例えば、エネルギー線硬化性樹脂フィルムの形成対象面にエネルギー線硬化性樹脂フィルム形成用組成物を塗工し、必要に応じて乾燥させることで、目的とする部位にエネルギー線硬化性樹脂フィルムを形成できる。エネルギー線硬化性樹脂フィルム形成用組成物中の、常温で気化しない成分同士の含有量の比率は、通常、エネルギー線硬化性樹脂フィルムの前記成分同士の含有量の比率と同じとなる。
 エネルギー線硬化性樹脂フィルム形成用組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。
 エネルギー線硬化性樹脂フィルム形成用組成物の乾燥条件は、特に限定されないが、エネルギー線硬化性樹脂フィルム形成用組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。溶媒を含有するエネルギー線硬化性樹脂フィルム形成用組成物は、例えば、70~130℃で10秒~5分の条件で乾燥させることが好ましい。
<樹脂層形成用組成物(IV)>
 エネルギー線硬化性樹脂フィルム形成用組成物としては、例えば、前記エネルギー線硬化性成分(a)を含有するエネルギー線硬化性樹脂フィルム形成用組成物(IV)(本明細書においては、単に「樹脂層形成用組成物(IV)」と略記することがある)等が挙げられる。
[エネルギー線硬化性成分(a)]
 エネルギー線硬化性成分(a)は、エネルギー線の照射によって硬化する成分であり、エネルギー線硬化性樹脂フィルムに造膜性や、可撓性等を付与するための成分でもある。
 エネルギー線硬化性成分(a)としては、例えば、エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1)、及びエネルギー線硬化性基を有する、分子量が100~80000の化合物(a2)が挙げられる。前記重合体(a1)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。
(エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1))
 エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1)としては、例えば、他の化合物が有する基と反応可能な官能基を有するアクリル系重合体(a11)と、前記官能基と反応する基、及びエネルギー線硬化性二重結合等のエネルギー線硬化性基を有するエネルギー線硬化性化合物(a12)と、が重合してなるアクリル系樹脂(a1-1)が挙げられる。
 他の化合物が有する基と反応可能な前記官能基としては、例えば、水酸基、カルボキシ基、アミノ基、置換アミノ基(アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基)、エポキシ基等が挙げられる。ただし、半導体ウエハや半導体チップ等の回路の腐食を防止するという点では、前記官能基はカルボキシ基以外の基であることが好ましい。
 これらの中でも、前記官能基は、水酸基であることが好ましい。
・官能基を有するアクリル系重合体(a11)
 前記官能基を有するアクリル系重合体(a11)としては、例えば、前記官能基を有するアクリル系モノマーと、前記官能基を有しないアクリル系モノマーと、が共重合してなるものが挙げられ、これらモノマー以外に、さらにアクリル系モノマー以外のモノマー(非アクリル系モノマー)が共重合したものであってもよい。
 また、前記アクリル系重合体(a11)は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。
 前記官能基を有するアクリル系モノマーとしては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、置換アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。
 前記水酸基含有モノマーとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル;ビニルアルコール、アリルアルコール等の非(メタ)アクリル系不飽和アルコール((メタ)アクリロイル骨格を有しない不飽和アルコール)等が挙げられる。
 前記カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸(エチレン性不飽和結合を有するモノカルボン酸);フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸(エチレン性不飽和結合を有するジカルボン酸);前記エチレン性不飽和ジカルボン酸の無水物;2-カルボキシエチルメタクリレート等の(メタ)アクリル酸カルボキシアルキルエステル等が挙げられる。
 前記官能基を有するアクリル系モノマーは、水酸基含有モノマー、カルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。
 前記アクリル系重合体(a11)を構成する、前記官能基を有するアクリル系モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 前記官能基を有しないアクリル系モノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル等が挙げられる。
 また、前記官能基を有しないアクリル系モノマーとしては、例えば、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル等のアルコキシアルキル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸フェニル等の(メタ)アクリル酸アリールエステル等を含む、芳香族基を有する(メタ)アクリル酸エステル;非架橋性の(メタ)アクリルアミド及びその誘導体;(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸N,N-ジメチルアミノプロピル等の非架橋性の3級アミノ基を有する(メタ)アクリル酸エステル等も挙げられる。
 前記アクリル系重合体(a11)を構成する、前記官能基を有しないアクリル系モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 前記非アクリル系モノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。
 前記アクリル系重合体(a11)を構成する前記非アクリル系モノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 前記アクリル系重合体(a11)において、これを構成する構成単位の全量に対する、前記官能基を有するアクリル系モノマーから誘導された構成単位の量の割合(含有量)は、0.1~50質量%であることが好ましく、1~40質量%であることがより好ましく、3~30質量%であることが特に好ましい。前記割合がこのような範囲であることで、前記アクリル系重合体(a11)と前記エネルギー線硬化性化合物(a12)との共重合によって得られた前記アクリル系樹脂(a1-1)において、エネルギー線硬化性基の含有量は、第1保護膜の硬化の程度を好ましい範囲に容易に調節可能となる。
 前記アクリル系樹脂(a1-1)を構成する前記アクリル系重合体(a11)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(IV)において、アクリル系樹脂(a1-1)の含有量は、1~40であることが好ましく、2~30であることがより好ましく、3~20であることが特に好ましい。
・エネルギー線硬化性化合物(a12)
 前記エネルギー線硬化性化合物(a12)は、前記アクリル系重合体(a11)が有する官能基と反応可能な基として、イソシアネート基、エポキシ基及びカルボキシ基からなる群より選択される1種又は2種以上を有するものが好ましく、前記基としてイソシアネート基を有するものがより好ましい。前記エネルギー線硬化性化合物(a12)は、例えば、前記基としてイソシアネート基を有する場合、このイソシアネート基が、前記官能基として水酸基を有するアクリル系重合体(a11)のこの水酸基と容易に反応する。
 前記エネルギー線硬化性化合物(a12)は、1分子中に前記エネルギー線硬化性基を1~5個有することが好ましく、1~2個有することがより好ましい。
 前記エネルギー線硬化性化合物(a12)としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;
 ジイソシアネート化合物又はポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;
 ジイソシアネート化合物又はポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物等が挙げられる。
 これらの中でも、前記エネルギー線硬化性化合物(a12)は、2-メタクリロイルオキシエチルイソシアネートであることが好ましい。
 前記アクリル系樹脂(a1-1)を構成する前記エネルギー線硬化性化合物(a12)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 前記アクリル系樹脂(a1-1)において、前記アクリル系重合体(a11)に由来する前記官能基の含有量に対する、前記エネルギー線硬化性化合物(a12)に由来するエネルギー線硬化性基の含有量の割合は、20~120モル%であることが好ましく、35~100モル%であることがより好ましく、50~100モル%であることが特に好ましい。前記含有量の割合がこのような範囲であることで、第1保護膜の接着力がより大きくなる。なお、前記エネルギー線硬化性化合物(a12)が一官能(前記基を1分子中に1個有する)化合物である場合には、前記含有量の割合の上限値は100モル%となるが、前記エネルギー線硬化性化合物(a12)が多官能(前記基を1分子中に2個以上有する)化合物である場合には、前記含有量の割合の上限値は100モル%を超えることがある。
 前記重合体(a1)の重量平均分子量(Mw)は、100000~2000000であることが好ましく、300000~1500000であることがより好ましい。
 ここで、「重量平均分子量」とは、先に説明したとおりである。
 前記重合体(a1)が、その少なくとも一部が架橋剤によって架橋されたものである場合、前記重合体(a1)は、前記アクリル系重合体(a11)を構成するものとして説明した、上述のモノマーのいずれにも該当せず、かつ架橋剤と反応する基を有するモノマーが重合して、前記架橋剤と反応する基において架橋されたものであってもよいし、前記エネルギー線硬化性化合物(a12)に由来する、前記官能基と反応する基において、架橋されたものであってもよい。
 樹脂層形成用組成物(IV)及びエネルギー線硬化性樹脂フィルムが含有する前記重合体(a1)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(エネルギー線硬化性基を有する、分子量が100~80000の化合物(a2))
 エネルギー線硬化性基を有する、分子量が100~80000の化合物(a2)中の前記エネルギー線硬化性基としては、エネルギー線硬化性二重結合を含む基が挙げられ、好ましいものとしては、(メタ)アクリロイル基、ビニル基等が挙げられる。
 前記化合物(a2)は、上記の条件を満たすものであれば、特に限定されないが、エネルギー線硬化性基を有する低分子量化合物、エネルギー線硬化性基を有するエポキシ樹脂、エネルギー線硬化性基を有するフェノール樹脂等が挙げられる。
 前記化合物(a2)のうち、エネルギー線硬化性基を有する低分子量化合物としては、例えば、多官能のモノマー又はオリゴマー等が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
 前記アクリレート系化合物としては、例えば、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピルメタクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシポリエトキシ)フェニル]プロパン、エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシジエトキシ)フェニル]プロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、2,2-ビス[4-((メタ)アクリロキシポリプロポキシ)フェニル]プロパン、トリシクロデカンジメタノールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシエトキシ)フェニル]プロパン、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン等の2官能(メタ)アクリレート;
 トリス(2-(メタ)アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、エトキシ化グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレート;
 ウレタン(メタ)アクリレートオリゴマー等の多官能(メタ)アクリレートオリゴマー等が挙げられる。
 前記化合物(a2)のうち、エネルギー線硬化性基を有するエポキシ樹脂、エネルギー線硬化性基を有するフェノール樹脂としては、例えば、「特開2013-194102号公報」の段落0043等に記載されているものを用いることができる。このような樹脂は、後述する熱硬化性成分を構成する樹脂にも該当するが、本発明においては前記化合物(a2)として取り扱う。
 前記化合物(a2)の重量平均分子量は、100~30000であることが好ましく、300~10000であることがより好ましい。
 樹脂層形成用組成物(IV)及びエネルギー線硬化性樹脂フィルムが含有する前記化合物(a2)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[エネルギー線硬化性基を有しない重合体(b)]
 樹脂層形成用組成物(IV)及びエネルギー線硬化性樹脂フィルムは、前記エネルギー線硬化性成分(a)として前記化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましい。
 前記重合体(b)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。
 エネルギー線硬化性基を有しない重合体(b)としては、例えば、アクリル系重合体、フェノキシ樹脂、ウレタン樹脂、ポリエステル、ゴム系樹脂、アクリルウレタン樹脂等が挙げられる。
 これらの中でも、前記重合体(b)は、アクリル系重合体(以下、「アクリル系重合体(b-1)」と略記することがある)であることが好ましい。
 アクリル系重合体(b-1)は、公知のものでよく、例えば、1種のアクリル系モノマーの単独重合体であってもよいし、2種以上のアクリル系モノマーの共重合体であってもよいし、1種又は2種以上のアクリル系モノマーと、1種又は2種以上のアクリル系モノマー以外のモノマー(非アクリル系モノマー)と、の共重合体であってもよい。
 アクリル系重合体(b-1)を構成する前記アクリル系モノマーとしては、例えば、(メタ)アクリル酸アルキルエステル、環状骨格を有する(メタ)アクリル酸エステル、グリシジル基含有(メタ)アクリル酸エステル、水酸基含有(メタ)アクリル酸エステル、置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、先に説明したとおりである。
 前記(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル等が挙げられる。
 前記環状骨格を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル等が挙げられる。
 前記グリシジル基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸グリシジル等が挙げられる。
 前記水酸基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。
 前記置換アミノ基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸N-メチルアミノエチル等が挙げられる。
 アクリル系重合体(b-1)を構成する前記非アクリル系モノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。
 少なくとも一部が架橋剤によって架橋された、前記エネルギー線硬化性基を有しない重合体(b)としては、例えば、前記重合体(b)中の反応性官能基が架橋剤と反応したものが挙げられる。
 前記反応性官能基は、架橋剤の種類等に応じて適宜選択すればよく、特に限定されない。例えば、架橋剤がポリイソシアネート化合物である場合には、前記反応性官能基としては、水酸基、カルボキシ基、アミノ基等が挙げられ、これらの中でも、イソシアネート基との反応性が高い水酸基が好ましい。また、架橋剤がエポキシ系化合物である場合には、前記反応性官能基としては、カルボキシ基、アミノ基、アミド基等が挙げられ、これらの中でもエポキシ基との反応性が高いカルボキシ基が好ましい。ただし、半導体ウエハや半導体チップの回路の腐食を防止するという点では、前記反応性官能基はカルボキシ基以外の基であることが好ましい。
 前記反応性官能基を有する、エネルギー線硬化性基を有しない重合体(b)としては、例えば、少なくとも前記反応性官能基を有するモノマーを重合させて得られたものが挙げられる。アクリル系重合体(b-1)の場合であれば、これを構成するモノマーとして挙げた、前記アクリル系モノマー及び非アクリル系モノマーのいずれか一方又は両方として、前記反応性官能基を有するものを用いればよい。反応性官能基として水酸基を有する前記重合体(b)としては、例えば、水酸基含有(メタ)アクリル酸エステルを重合して得られたものが挙げられ、これ以外にも、先に挙げた前記アクリル系モノマー又は非アクリル系モノマーにおいて、1個又は2個以上の水素原子が前記反応性官能基で置換されてなるモノマーを重合して得られたものが挙げられる。
 反応性官能基を有する前記重合体(b)において、これを構成する構成単位の全量に対する、反応性官能基を有するモノマーから誘導された構成単位の量の割合(含有量)は、1~20質量%であることが好ましく、2~10質量%であることがより好ましい。前記割合がこのような範囲であることで、前記重合体(b)において、架橋の程度がより好ましい範囲となる。
 エネルギー線硬化性基を有しない重合体(b)の重量平均分子量(Mw)は、樹脂層形成用組成物(IV)の造膜性がより良好となる点から、10000~2000000であることが好ましく、100000~1500000であることがより好ましい。ここで、「重量平均分子量」とは、先に説明したとおりである。
 樹脂層形成用組成物(IV)及びエネルギー線硬化性樹脂フィルムが含有する、エネルギー線硬化性基を有しない重合体(b)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(IV)としては、前記重合体(a1)及び前記化合物(a2)のいずれか一方又は両方を含有するものが挙げられる。そして、樹脂層形成用組成物(IV)は、前記化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましく、この場合、さらに前記(a1)を含有することも好ましい。また、樹脂層形成用組成物(IV)は、前記化合物(a2)を含有せず、前記重合体(a1)、及びエネルギー線硬化性基を有しない重合体(b)をともに含有していてもよい。
 樹脂層形成用組成物(IV)が、前記重合体(a1)、前記化合物(a2)及びエネルギー線硬化性基を有しない重合体(b)を含有する場合、樹脂層形成用組成物(IV)において、前記化合物(a2)の含有量は、前記重合体(a1)及びエネルギー線硬化性基を有しない重合体(b)の総含有量100質量部に対して、10~400質量部であることが好ましく、30~350質量部であることがより好ましい。
 樹脂層形成用組成物(IV)において、溶媒以外の成分の総含有量に対する、前記エネルギー線硬化性成分(a)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量の割合(すなわち、エネルギー線硬化性樹脂フィルムの前記エネルギー線硬化性成分(a)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量)は、5~90質量%であることが好ましく、10~80質量%であることがより好ましく、20~70質量%であることが特に好ましい。エネルギー線硬化性成分の含有量の前記割合がこのような範囲であることで、エネルギー線硬化性樹脂フィルムのエネルギー線硬化性がより良好となる。
 樹脂層形成用組成物(IV)は、前記エネルギー線硬化性成分以外に、目的に応じて、熱硬化性成分、光重合開始剤、充填材、カップリング剤、架橋剤及び汎用添加剤からなる群より選択される1種又は2種以上を含有していてもよい。例えば、前記エネルギー線硬化性成分及び熱硬化性成分を含有する樹脂層形成用組成物(IV)を用いることにより、形成されるエネルギー線硬化性樹脂フィルムは、加熱によって被着体に対する接着力が向上し、このエネルギー線硬化性樹脂フィルムから形成された第1保護膜の強度も向上する。
 樹脂層形成用組成物(IV)における前記熱硬化性成分、光重合開始剤、充填材、カップリング剤、架橋剤及び汎用添加剤としては、それぞれ、樹脂層形成用組成物(III)における熱硬化性成分(B)、光重合開始剤、充填材(D)、カップリング剤(E)、架橋剤(F)及び汎用添加剤と同じものが挙げられる。
 樹脂層形成用組成物(IV)において、前記熱硬化性成分、光重合開始剤、充填材、カップリング剤、架橋剤及び汎用添加剤は、それぞれ、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。
 樹脂層形成用組成物(IV)における前記熱硬化性成分、光重合開始剤、充填材、カップリング剤、架橋剤及び汎用添加剤の含有量は、目的に応じて適宜調節すればよく、特に限定されない。
 樹脂層形成用組成物(IV)は、希釈によってその取り扱い性が向上することから、さらに溶媒を含有するものが好ましい。
 樹脂層形成用組成物(IV)が含有する溶媒としては、例えば、樹脂層形成用組成物(III)における溶媒と同じものが挙げられる。
 樹脂層形成用組成物(IV)が含有する溶媒は、1種のみでもよいし、2種以上でもよい。
<<エネルギー線硬化性樹脂フィルム形成用組成物の製造方法>>
 樹脂層形成用組成物(IV)等のエネルギー線硬化性樹脂フィルム形成用組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
◎密着層
 密着層は、第1基材及び緩衝層の密着性を向上させ、第1保護膜形成用シートにおいて、第1基材及び緩衝層の剥離を高度に抑制する。したがって、密着層を備えた第1保護膜形成用シートは、その使用時において、第1基材、密着層及び緩衝層の積層構造をより安定して維持できる。
 密着層は、シート状又はフィルム状である。
 好ましい密着層としては、例えば、エチレン-酢酸ビニル共重合樹脂(EVA)等を含有するものが挙げられる。
 密着層は1層(単層)のみでもよいし、2層以上の複数層でもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。
 密着層の厚さは、10~100μmであることが好ましく、25~85μmであることがより好ましく、40~70μmであることが特に好ましい。
 ここで、「密着層の厚さ」とは、密着層全体の厚さを意味し、例えば、複数層からなる密着層の厚さとは、密着層を構成するすべての層の合計の厚さを意味する。
<<密着層形成用組成物>>
 密着層は、その構成材料を含有する密着層形成用組成物を用いて形成できる。例えば、密着層の形成対象面に対して、密着層形成用組成物を押出成形することにより、目的とする部位に密着層を形成できる。密着層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。密着層形成用組成物中の、常温で気化しない成分同士の含有量の比率は、通常、密着層の前記成分同士の含有量の比率と同じとなる。
<密着層形成用組成物(VI)>
 密着層形成用組成物としては、例えば、エチレン-酢酸ビニル共重合樹脂(EVA)を含有する密着層形成用組成物(VI)等が挙げられる。
 エチレン-酢酸ビニル共重合樹脂の密度は、1100kg/m以下であることが好ましく、850~1100kg/mであることがより好ましく、900~1000kg/mであることが特に好ましい。なお、本明細書において、「エチレン-酢酸ビニル共重合樹脂の密度」とは、特に断りのない限り、JIS K7112:1999に準拠して測定した値を意味する。
 エチレン-酢酸ビニル共重合樹脂の融点は、50~95℃であることが好ましく、65~85℃であることがより好ましい。
 エチレン-酢酸ビニル共重合樹脂の190℃でのメルトフローレイト(MFR)は、1~10g/10分であることが好ましく、3~8g/10分であることがより好ましい。
 なお、本明細書において、「エチレン-酢酸ビニル共重合樹脂のメルトフローレイト」とは、特に断りのない限り、JIS K7210:1999に準拠して測定した値を意味する。
 密着層形成用組成物(VI)及び密着層のエチレン-酢酸ビニル共重合樹脂の含有量は、80~100質量%であることが好ましい。
[他の成分]
 密着層形成用組成物(VI)及び密着層は、本発明の効果を損なわない範囲内において、エチレン-酢酸ビニル共重合樹脂以外の、他の成分を含有していてもよい。
 前記他の成分としては、特に限定されず、目的に応じて適宜選択できる。
 密着層形成用組成物(VI)及び密着層が含有する前記他の成分は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 密着層形成用組成物(VI)及び密着層の前記他の成分の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
◇第1保護膜形成用シートの製造方法
 前記第1保護膜形成用シートは、上述の各層を対応する位置関係となるように順次積層することで製造できる。各層の形成方法は、先に説明したとおりである。
 例えば、第1基材、緩衝層及び硬化性樹脂フィルムがこの順に、これらの厚さ方向において積層されてなる第1保護膜形成用シートは、以下に示す方法で製造できる。すなわち、第1基材に対して、緩衝層形成用組成物を押出成形することにより、第1基材上に緩衝層を積層する。また、剥離フィルムの剥離処理面上に、上述の硬化性樹脂フィルム形成用組成物を塗工し、必要に応じて乾燥させることで、硬化性樹脂フィルムを積層する。そして、この剥離フィルム上の硬化性樹脂フィルムを第1基材上の緩衝層と貼り合わせることで、第1基材上に緩衝層、硬化性樹脂フィルム及び剥離フィルムがこの順に積層されてなる第1保護膜形成用シートを得る。剥離フィルムは、第1保護膜形成用シートの使用時に取り除けばよい。
 上述の各層以外の他の層を備えた第1保護膜形成用シートは、上述の製造方法において、前記他の層の積層位置が適切な位置となるように、前記他の層の形成工程及び積層工程のいずれか一方又は両方を適宜追加して行うことで、製造できる。
 例えば、第1基材、密着層、緩衝層及び硬化性樹脂フィルムがこの順に、これらの厚さ方向において積層されてなる第1保護膜形成用シートは、以下に示す方法で製造できる。すなわち、第1基材に対して、密着層形成用組成物及び緩衝層形成用組成物を共押出成形することにより、第1基材上に密着層及び緩衝層をこの順に積層する。そして、上記と同じ方法で、別途、剥離フィルム上に硬化性樹脂フィルムを積層する。次いで、この剥離フィルム上の硬化性樹脂フィルムを、第1基材及び密着層上の緩衝層と貼り合わせることで、第1基材上に、密着層、緩衝層、硬化性樹脂フィルム及び剥離フィルムがこの順に積層されてなる第1保護膜形成用シートを得る。硬化性樹脂フィルム上の剥離フィルムは、第1保護膜形成用シートの使用時に取り除けばよい。
◇第1保護膜形成用シートの使用方法
 本発明の第1保護膜形成用シートは、例えば、以下のように使用できる。
 すなわち、まず第1保護膜形成用シートを、その硬化性樹脂フィルムにより半導体ウエハのバンプ形成面に貼り合わせる。このとき、硬化性樹脂フィルムを加熱しながら貼り合わせることで、硬化性樹脂フィルムを軟化させ、硬化性樹脂フィルムをバンプ形成面に密着させる。
 次いで、必要に応じて、半導体ウエハのバンプ形成面とは反対側の面(すなわち裏面)を研削した後、この裏面に、この裏面を保護するための保護膜形成用シート(本明細書においては、「第2保護膜形成用シート」と称する)を貼付する。第2保護膜形成用シートとしては、例えば、硬化によって、半導体ウエハ及び半導体チップの裏面を保護するための第2保護膜を形成できる、第2保護膜形成フィルムを備えたものが挙げられる。第2保護膜形成用シートは、第2保護膜形成フィルム以外に、さらにダイシングシートを備えて構成されたものであってもよい。
 次いで、半導体ウエハのバンプ形成面に貼り合わせた第1保護膜形成用シートのうち、硬化性樹脂フィルムのみをバンプ形成面に残して、その他の層を硬化性樹脂フィルムから剥離させる。ここで「剥離させるその他の層」とは、例えば、図1に示す第1保護膜形成用シート1の場合には、第1基材11及び緩衝層13であり、図2に示す第1保護膜形成用シート2の場合には、第1基材11、密着層14及び緩衝層13である。
 次いで、硬化性樹脂フィルムを硬化させることにより、半導体ウエハのバンプ形成面に第1保護膜を形成する。
 以降は、従来法と同様の方法により、半導体装置の製造までを行うことができる。すなわち、第1保護膜を備えた状態の半導体ウエハをダイシングして半導体チップを形成し、第1保護膜を備えた状態の半導体チップをピックアップする。第2保護膜形成フィルムは、その種類に応じて適切なタイミングで硬化させ、第2保護膜を形成すればよい。ピックアップした半導体チップは、配線基板にフリップチップ実装し、最終的に半導体装置を構成する。
 本発明の第1保護膜形成用シートを用いることにより、このシートを半導体ウエハのバンプ形成面へ貼り合わせた段階では、バンプの少なくとも上部が硬化性樹脂フィルムを貫通して突出し、バンプ上部での硬化性樹脂フィルムの残存が抑制される。その結果、バンプの少なくとも上部が第1保護膜を貫通して突出した状態となる。このような第1保護膜及びバンプを備えた半導体チップを配線基板にフリップチップ実装したときには、半導体チップと配線基板との電気的接続が良好となる。
 以下、本発明の第1保護膜形成用シートを半導体ウエハのバンプ形成面へ貼り合わせてから、第1保護膜を形成するまでの過程について、図面を参照しながらさらに詳細に説明する。
 図3は、図1に示す第1保護膜形成用シート1の使用方法の一例を模式的に示す断面図である。
 第1保護膜形成用シート1の使用時には、まず、図3(a)に示すように、第1保護膜形成用シート1を、その硬化性樹脂フィルム12が半導体ウエハ9のバンプ形成面9aに対向するように配置する。
 バンプ91の高さは特に限定されないが、120~300μmであることが好ましく、150~270μmであることがより好ましく、180~240μmであることが特に好ましい。バンプ91の高さが前記下限値以上であることで、バンプ91の機能をより向上させることができる。また、バンプ91の高さが前記上限値以下であることで、バンプ91上部での硬化性樹脂フィルム12の残存を抑制する効果がより高くなる。
 なお、本明細書において、「バンプの高さ」とは、バンプのうち、バンプ形成面から最も高い位置に存在する部位での高さを意味する。
 バンプ91の幅は特に限定されないが、170~350μmであることが好ましく、200~320μmであることがより好ましく、230~290μmであることが特に好ましい。バンプ91の幅が前記下限値以上であることで、バンプ91の機能をより向上させることができる。また、バンプ91の高さが前記上限値以下であることで、バンプ91上部での硬化性樹脂フィルム12の残存を抑制する効果がより高くなる。
 なお、本明細書において、「バンプの幅」とは、バンプ形成面に対して垂直な方向からバンプを見下ろして平面視したときに、バンプ表面上の異なる2点間を直線で結んで得られる線分の最大値を意味する。
 隣り合うバンプ91間の距離は、特に限定されないが、250~800μmであることが好ましく、300~600μmであることがより好ましく、350~500μmであることが特に好ましい。前記距離が前記下限値以上であることで、バンプ91の機能をより向上させることができる。また、前記距離が前記上限値以下であることで、バンプ91上部での硬化性樹脂フィルム12の残存を抑制する効果がより高くなる。
 なお、本明細書において、「隣り合うバンプ間の距離」とは、隣り合うバンプ同士の表面間の距離の最小値を意味する。
 次いで、半導体ウエハ9上のバンプ91に硬化性樹脂フィルム12を接触させて、第1保護膜形成用シート1を半導体ウエハ9に押し付ける。これにより、硬化性樹脂フィルム12の第1面12aを、バンプ91の表面91a及び半導体ウエハ9のバンプ形成面9aに、順次圧着させる。このとき、硬化性樹脂フィルム12を加熱することで、硬化性樹脂フィルム12は軟化し、バンプ91を覆うようにしてバンプ91間に広がり、バンプ形成面9aに密着するとともに、バンプ91の表面91a、特にバンプ形成面9aの近傍部位の表面91aを覆って、バンプ91を埋め込む。
 以上により、図3(b)に示すように、半導体ウエハ9のバンプ形成面9aに、第1保護膜形成用シート1の硬化性樹脂フィルム12を貼り合わせる。
 上記のように、第1保護膜形成用シート1を半導体ウエハ9に圧着させる方法としては、各種シートを対象物に圧着させて貼付する公知の方法を適用でき、例えば、ラミネートローラーを用いる方法等が挙げられる。
 半導体ウエハ9に圧着させるときの第1保護膜形成用シート1の加熱温度は、硬化性樹脂フィルム12の硬化が全く又は過度に進行しない程度の温度であればよく、80~100℃であることが好ましく、85~95℃であることがより好ましい。
 第1保護膜形成用シート1を半導体ウエハ9に圧着させるときの圧力は、特に限定されないが、0.1~1.5MPaであることが好ましく、0.3~1MPaであることがより好ましい。
 上記のように、第1保護膜形成用シート1を半導体ウエハ9に圧着させると、第1保護膜形成用シート1中の硬化性樹脂フィルム12及び緩衝層13は、バンプ91から圧力を加えられ、初期には、硬化性樹脂フィルム12の第1面12a及び緩衝層13の第1面13aが凹状に変形する。そして、このままバンプ91から圧力を加えられた硬化性樹脂フィルム12において、破れが生じる。最終的に、硬化性樹脂フィルム12の第1面12aが半導体ウエハ9のバンプ形成面9aに圧着された段階では、バンプ91の上部910が硬化性樹脂フィルム12を貫通して突出した状態となる。なお、この最終段階において、通常、バンプ91の上部910は、緩衝層13を貫通しない。これは、緩衝層13がバンプ91から加えられる圧力に対して、緩衝作用を有するためである。
 図3(b)に示すように、第1保護膜形成用シート1を半導体ウエハ9のバンプ形成面9aに貼付した段階では、バンプ91の上部910に、硬化性樹脂フィルム12は全く又はほぼ残存しない。なお、本明細書において「バンプの上部に硬化性樹脂フィルムがほぼ残存しない」とは、特に断りのない限り、バンプの上部に硬化性樹脂フィルムが僅かに残存しているものの、その残存量が、このバンプを備えた半導体チップを配線基板にフリップチップ実装したときに、半導体チップと配線基板との電気的接続を妨げない程度であることを意味する。
 このように、バンプ91の上部910において、硬化性樹脂フィルム12の残存を抑制できるのは、上記のように硬化性樹脂フィルム12がバンプ91から圧力を加えられ、変形したときに、硬化性樹脂フィルム12が特に破れ易いように設計されているからである。すなわち、第1保護膜形成用シート1において、硬化性樹脂フィルム12及び緩衝層13が前記式(w1)の関係を満たしていることにより、これら(硬化性樹脂フィルム12及び緩衝層13)に大きなひずみが発生したときに、緩衝層13は適切な緩衝作用を示し、硬化性樹脂フィルム12は適切な状態に破損する。
 第1保護膜形成用シート1を半導体ウエハ9のバンプ形成面9aに貼付した後は、さらに必要に応じて、半導体ウエハ9のバンプ形成面9aとは反対側の面(裏面)9bを研削した後、この裏面9bに第2保護膜形成用シート(図示略)を貼付する。
 次いで、図3(c)に示すように、硬化性樹脂フィルム12から第1基材11及び緩衝層13を剥離させる。
 次いで、硬化性樹脂フィルム12を硬化させることにより、図3(d)に示すように、バンプ形成面9aに第1保護膜12’を形成する。
 なお、ここでは、図1に示す第1保護膜形成用シート1を用いた場合について説明したが、図2に示す第1保護膜形成用シート2等、他の実施形態の第1保護膜形成用シートを用いた場合も、この第1保護膜形成用シートは第1保護膜形成用シート1を用いた場合と同様の効果を奏する。
 図4は、図2に示す第1保護膜形成用シート2の使用方法の一例を模式的に示す断面図である。
 第1保護膜形成用シート2の使用時にも、まず、図4(a)に示すように、第1保護膜形成用シート2を、その硬化性樹脂フィルム12が半導体ウエハ9のバンプ形成面9aに対向するように配置する。
 次いで、半導体ウエハ9上のバンプ91に、硬化性樹脂フィルム12を加熱しながら接触させて、第1保護膜形成用シート2を半導体ウエハ9に押し付ける。これにより、硬化性樹脂フィルム12の第1面12aを、バンプ91の表面91a及び半導体ウエハ9のバンプ形成面9aに、順次圧着させる。以上により、図4(b)に示すように、半導体ウエハ9のバンプ形成面9aに、第1保護膜形成用シート2の硬化性樹脂フィルム12を貼り合わせる。
 このとき、第1保護膜形成用シート2は、第1保護膜形成用シート1を用いた場合と同様の方法で、半導体ウエハ9に圧着させることができる。
 上記のように、第1保護膜形成用シート2を半導体ウエハ9に圧着させると、第1保護膜形成用シート2中の硬化性樹脂フィルム12及び緩衝層13は、バンプ91から圧力を加えられ、初期には、硬化性樹脂フィルム12の第1面12a及び緩衝層13の第1面13aが凹状に変形する。そして、このままバンプ91から圧力を加えられた硬化性樹脂フィルム12において、破れが生じる。最終的に、硬化性樹脂フィルム12の第1面12aが半導体ウエハ9のバンプ形成面9aに圧着された段階では、バンプ91の上部910が硬化性樹脂フィルム12を貫通して突出した状態となる。この最終段階において、通常、バンプ91の上部910は、緩衝層13を貫通しない。
 また、第1保護膜形成用シート2を用いていることにより、上記のように、半導体ウエハ9のバンプ形成面9aに硬化性樹脂フィルム12を貼り合わせる過程において、密着層14は、第1基材11及び緩衝層13の剥離を高度に抑制し、第1基材11、密着層14及び緩衝層13の積層構造がより安定して維持される。
 図4(b)に示すように、第1保護膜形成用シート2を半導体ウエハ9のバンプ形成面9aに貼付した段階では、第1保護膜形成用シート1の場合と同様の作用により、バンプ91の上部910に、硬化性樹脂フィルム12は全く又はほぼ残存しない。
 第1保護膜形成用シート2を半導体ウエハ9のバンプ形成面9aに貼付した後は、さらに必要に応じて、半導体ウエハ9のバンプ形成面9aとは反対側の面(裏面)9bを研削した後、この裏面9bに第2保護膜形成用シート(図示略)を貼付する。
 次いで、図4(c)に示すように、硬化性樹脂フィルム12から第1基材11、密着層14及び緩衝層13を剥離させる。
 次いで、硬化性樹脂フィルム12を硬化させることにより、図4(d)に示すように、バンプ形成面9aに第1保護膜12’を形成する。
 バンプの上部における、硬化性樹脂フィルム又は保護膜の残存の有無は、例えば、バンプについてSEMの撮像データを取得することにより確認できる。
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。
 熱硬化性樹脂フィルム形成用組成物の製造に用いた成分を以下に示す。
・重合体成分
 重合体成分(A)-1:下記式(i)-1、(i)-2及び(i)-3で表される構成単位を有するポリビニルブチラール(積水化学工業社製「エスレックBL-10」、重量平均分子量25000、ガラス転移温度59℃)
 重合体成分(A)-2:アクリル酸ブチル(以下、「BA」と略記する)(55質量部)、アクリル酸メチル(以下、「MA」と略記する)(10質量部)、メタクリル酸グリシジル(以下、「GMA」と略記する)(20質量部)及びアクリル酸-2-ヒドロキシエチル(以下、「HEA」と略記する)(15質量部)を共重合してなるアクリル系樹脂(重量平均分子量800000、ガラス転移温度-28℃)。
Figure JPOXMLDOC01-appb-C000002
 (式中、lは約28であり、mは1~3であり、nは68~74の整数である。)
・エポキシ樹脂
 エポキシ樹脂(B1)-1:液状ビスフェノールF型エポキシ樹脂(三菱化学社製「YL983U」)
 エポキシ樹脂(B1)-2:多官能芳香族型エポキシ樹脂(日本化薬社製「EPPN-502H」)
 エポキシ樹脂(B1)-3:ジシクロペンタジエン型エポキシ樹脂(DIC社製「EPICLON HP-7200」)
・熱硬化剤
 熱硬化剤(B2)-1:ノボラック型フェノール樹脂(昭和電工社製「BRG-556」)
・硬化促進剤
 硬化促進剤(C)-1:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製「キュアゾール2PHZ-PW」)
・充填材
 充填材(D)-1:エポキシ基で修飾された球状シリカ(アドマテックス社製「アドマナノ YA050C-MKK」)
[実施例1]
<第1保護膜形成用シートの製造>
(熱硬化性樹脂フィルム形成用組成物の製造)
 重合体成分(A)-1、エポキシ樹脂(B1)-1、エポキシ樹脂(B1)-2、エポキシ樹脂(B1)-3、熱硬化剤(B2)-1、及び硬化促進剤(C)-1を、これらの含有量の割合が表1に示す値となるようにメチルエチルケトンに溶解又は分散させて、23℃で撹拌することで、熱硬化性樹脂フィルム形成用組成物として、固形分濃度が55質量%である樹脂層形成用組成物(III)を得た。なお、表1中の含有成分の欄の「-」との記載は、熱硬化性樹脂フィルム形成用組成物がその成分を含有していないことを意味する。
(第1保護膜形成用シートの製造)
 小型Tダイ押出機(東洋精機製作所社製「ラボプラストミル」)を用いて、ポリエチレンテレフタレート(PET)製フィルム(東レ社製「ルミラー(登録商標)」、厚さ100μm)に対して、エチレン-酢酸ビニル共重合樹脂(三井・デュポンポリケミカル社製「エバフレックス(登録商標)EV260」、密度950kg/m、融点72℃未満、メルトフローレイト(190℃)6g/10分)と、エチレン-α-オレフィンコポリマー(三井化学社製「タフマーDF640」、密度864kg/m、融点50℃未満、メルトフローレイト(190℃)3.6g/10分、メルトフローレイト(230℃)6.7g/10分)と、を共押出成形することにより、前記PET製フィルムからなる第1基材上に、エチレン-酢酸ビニル共重合樹脂からなる密着層、及びエチレン-α-オレフィンコポリマーからなる緩衝層(厚さ400μm)を、この順に積層した。
 別途、ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)の前記剥離処理面に、上記で得られた熱硬化性樹脂フィルム形成用組成物を塗工し、120℃で2分加熱乾燥させることにより、厚さ30μmの熱硬化性樹脂フィルムを形成した。
 次いで、剥離フィルム上の熱硬化性樹脂フィルムと、第1基材上に形成した前記緩衝層とを貼り合わせて、第1基材上に、密着層、緩衝層、熱硬化性樹脂フィルム及び剥離フィルムがこの順に積層されてなる、図2に示す構成の第1保護膜形成用シートを得た。
<第1保護膜形成用シートの評価>
(緩衝層及び熱硬化性樹脂フィルムのせん断弾性率G’の測定)
 緩衝層形成用組成物の塗工量を変更した点以外は、上記と同様の方法で、厚さ1000μmの緩衝層を形成した。次いで、この緩衝層を直径8mmの円板状に裁断して、緩衝層の試験片を得た。
 また、熱硬化性樹脂フィルム形成用組成物の塗工量を変更した点以外は、上記と同様の方法で、厚さ1000μmの熱硬化性樹脂フィルムを形成した。次いで、この熱硬化性樹脂フィルムを直径8mmの円板状に裁断して、熱硬化性樹脂フィルムの試験片を得た。
 せん断粘度測定装置の試験片の設置箇所をあらかじめ90℃で保温しておき、この設置箇所へ、上記で得られた緩衝層及び熱硬化性樹脂フィルムの試験片を載置し、試験片の上面に測定治具を押し当てることで、試験片を前記設置箇所に固定して設置した。
 次いで、温度90℃、測定周波数1Hzの条件で、発生させたひずみを0.01%~1000%まで段階的に上昇させ、与えたひずみにおける、前記試験片のせん断弾性率G’を測定した。結果を図5に示す。図5中、「実施例1」と表示している測定値が、熱硬化性樹脂フィルムの試験片についての測定値である。
(バンプ上部での熱硬化性樹脂フィルムの残存有無の確認)
 上記で得られた第1保護膜形成用シートの熱硬化性樹脂フィルムを半導体ウエハのバンプに接触させて、第1保護膜形成用シートを加熱しながら半導体ウエハに圧着させた。半導体ウエハとしては、バンプの高さが210μmであり、バンプの幅が250μmであり、バンプ間の距離が400μmであるものを用いた。また、第1保護膜形成用シートの加熱温度は90℃とし、圧力は0.5MPaとした。これにより、半導体ウエハのバンプ形成面に熱硬化性樹脂フィルムを貼り合わせた。
 次いで、熱硬化性樹脂フィルムから第1基材、密着層及び緩衝層を剥離させ、熱硬化性樹脂フィルムを露出させた。
 次いで、走査型電子顕微鏡(SEM、キーエンス社製「VE-9700」)を用いて、半導体ウエハのバンプ形成面に対して垂直な方向と60°の角度を為す方向から、半導体ウエハのバンプの表面を観察し、バンプ上部での熱硬化性樹脂フィルムの残存の有無を確認した。結果を表1に示す。
[実施例2~3、比較例1~2]
<第1保護膜形成用シートの製造及び評価>
 熱硬化性樹脂フィルム形成用組成物の製造時において、各成分の種類及び含有量の割合のいずれか一方又は両方を、表1に示すとおりとした点、緩衝層の試験片のせん断弾性率G’を測定しなかった点以外は、実施例1と同じ方法で、第1保護膜形成用シートを製造及び評価した。結果を図5及び表1に示す。図5中、「実施例2」、「実施例3」、「比較例1」、「比較例2」と表示している測定値が、それぞれ、これら実施例又は比較例での、熱硬化性樹脂フィルムの試験片についての測定値である。
Figure JPOXMLDOC01-appb-T000003
 図5から明らかなように、実施例1~3においては、緩衝層及び熱硬化性樹脂フィルムが式(w1)の関係を満たしていた。実施例1~2においては、Gc300’を直接測定できなかったが、Gb300’>Gc300’の関係を満たすことは明らかである。
 さらに、実施例1~2においては、Gc200’及びGc400’も直接測定できなかったが、Gb200’>Gc200’、Gb400’>Gc400’の関係を満たすことも明らかであり、式(w2)及び(w3)の関係も満たしていた。一方、実施例3においては、式(w2)の関係を満たしていたが、式(w3)の関係を満たしていなかった。
 また、図5から明らかなように、実施例1~3においては、緩衝層のひずみとせん断弾性率G’(Gb’)との関数(関数Fb)において、せん断弾性率Gb’が一定ではない領域(変動領域Rb)が存在しており、かつ緩衝層のひずみが300%であるときのせん断弾性率Gb’が前記領域(変動領域Rb)に含まれていた。
 さらに、実施例1~3においては、熱硬化性樹脂フィルムのひずみとせん断弾性率G’(Gc’)との関数(関数Fc)において、せん断弾性率Gc’が一定ではない領域(変動領域Rc)が存在していた。そして、実施例1~2では、熱硬化性樹脂フィルムの300%というひずみを直接観測できなかったが、実施例3では、熱硬化性樹脂フィルムのひずみが300%であるときのせん断弾性率Gc’が前記領域(変動領域Rc)に含まれていた。
 そして、実施例1~3の第1保護膜形成用シートを用いた場合、SEMの撮像データから、半導体ウエハのバンプ上部において、熱硬化性樹脂フィルムが残存していないことを確認できた。
 これに対して、図5から明らかなように、比較例1~2においては、緩衝層及び熱硬化性樹脂フィルムが式(w1)の関係を満たしていなかった。比較例1~2においては、式(w2)の関係を満たしていたが、式(w3)の関係を満たしていなかった。
 そして、比較例1~2の第1保護膜形成用シートを用いた場合、半導体ウエハのバンプ上部において、熱硬化性樹脂フィルムが残存していることを確認できた。これら比較例でのSEMの撮像データでは、バンプの上部を含む表面の全域に縞状の模様が存在し、さらにバンプの大きさが見かけ上、実施例の場合よりも明らかに大きくなっていたことから、バンプの表面における、熱硬化性樹脂フィルムの残存を明確に確認できた。SEMの撮像データから、バンプの上部に残存している熱硬化性樹脂フィルムの厚さを算出したところ、比較例1では約9.4μmであり、比較例2では約4.8μmであった。
 本発明は、フリップチップ実装方法で使用される、接続パッド部にバンプを有する半導体チップ等の製造に利用可能である。
 1,2・・・第1保護膜形成用シート、11・・・第1基材、11a・・・第1基材の第1面、12・・・硬化性樹脂フィルム、12a・・・硬化性樹脂フィルムの第1面、12’・・・第1保護膜、13・・・緩衝層、13a・・・緩衝層の第1面、14・・・密着層、14a・・・密着層の第1面、9・・・半導体ウエハ、9a・・・半導体ウエハのバンプ形成面、91・・・バンプ、91a・・・バンプの表面、910・・・バンプの上部

Claims (6)

  1.  第1基材と、前記第1基材上に形成された緩衝層と、前記緩衝層上に形成された硬化性樹脂フィルムと、を備え、
     前記硬化性樹脂フィルムは、半導体ウエハのバンプを有する表面に貼付し、硬化させることによって、前記表面に第1保護膜を形成するためのものであり、
     温度90℃、周波数1Hzの条件で、直径8mm、厚さ1mmの前記緩衝層の試験片にひずみを発生させて、前記緩衝層の試験片のせん断弾性率G’を測定する、ひずみ分散測定を行ったときに、前記緩衝層の試験片のひずみが300%のときの、前記緩衝層の試験片のせん断弾性率がGb300’であり、
     温度90℃、周波数1Hzの条件で、直径8mm、厚さ1mmの前記硬化性樹脂フィルムの試験片にひずみを発生させて、前記硬化性樹脂フィルムの試験片のせん断弾性率G’を測定する、ひずみ分散測定を行ったときに、前記硬化性樹脂フィルムの試験片のひずみが300%のときの、前記硬化性樹脂フィルムの試験片のせん断弾性率がGc300’であり、
     前記Gb300’と、前記Gc300’とが、
     式(w1): Gb300’≧Gc300’
    の関係を満たす、第1保護膜形成用シート。
  2.  前記緩衝層の試験片のひずみが200%のときの、前記緩衝層の試験片のせん断弾性率Gb200’と、前記硬化性樹脂フィルムの試験片のひずみが200% のときの、前記硬化性樹脂フィルムの試験片のせん断弾性率Gc200’とが、
     式(w2): Gb200’≧Gc200’
    の関係を満たす、請求項1に記載の第1保護膜形成用シート。
  3.  前記緩衝層の試験片のひずみが400%のときの、前記緩衝層の試験片のせん断弾性率Gb400’と、前記硬化性樹脂フィルムの試験片のひずみが400%のときの、前記硬化性樹脂フィルムの試験片のせん断弾性率Gc400’とが、
     式(w3): Gb400’≧Gc400’
    の関係を満たす、請求項1又は2に記載の第1保護膜形成用シート。
  4.  前記ひずみ分散測定によって得られた、前記緩衝層の試験片のひずみと、前記緩衝層の試験片のせん断弾性率Gb’と、の関数において、前記せん断弾性率Gb’が一定ではない領域が存在し、前記緩衝層の試験片のひずみが300%であるときの前記せん断弾性率Gb’が、前記領域に含まれる、請求項1~3のいずれか一項に記載の第1保護膜形成用シート。
  5.  前記ひずみ分散測定によって得られた、前記硬化性樹脂フィルムの試験片のひずみと、前記硬化性樹脂フィルムの試験片のせん断弾性率Gc’と、の関数において、前記せん断弾性率Gc’が一定ではない領域が存在し、前記硬化性樹脂フィルムの試験片のひずみが300%であるときの前記せん断弾性率Gc’が、前記領域に含まれる、請求項1~4のいずれか一項に記載の第1保護膜形成用シート。
  6.  前記硬化性樹脂フィルムが、樹脂成分を含有し、
     前記硬化性樹脂フィルムの充填材の含有量が45質量%以下であり、
     前記樹脂成分の重量平均分子量が30000以下である、請求項1~5のいずれか一項に記載の第1保護膜形成用シート。
PCT/JP2017/032468 2016-10-05 2017-09-08 第1保護膜形成用シート WO2018066302A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201902955QA SG11201902955QA (en) 2016-10-05 2017-09-08 First protective film forming sheet
CN201780061254.6A CN109791887B (zh) 2016-10-05 2017-09-08 第一保护膜形成用片
KR1020197009563A KR102412725B1 (ko) 2016-10-05 2017-09-08 제1 보호막 형성용 시트
JP2018513675A JP6344811B1 (ja) 2016-10-05 2017-09-08 第1保護膜形成用シート
PH12019500713A PH12019500713A1 (en) 2016-10-05 2019-04-02 First protective film forming sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-197523 2016-10-05
JP2016197523 2016-10-05

Publications (1)

Publication Number Publication Date
WO2018066302A1 true WO2018066302A1 (ja) 2018-04-12

Family

ID=61830909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032468 WO2018066302A1 (ja) 2016-10-05 2017-09-08 第1保護膜形成用シート

Country Status (7)

Country Link
JP (1) JP6344811B1 (ja)
KR (1) KR102412725B1 (ja)
CN (1) CN109791887B (ja)
PH (1) PH12019500713A1 (ja)
SG (1) SG11201902955QA (ja)
TW (1) TWI649195B (ja)
WO (1) WO2018066302A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821231A (zh) * 2018-06-26 2018-11-16 清华大学 一种基于力学原理的表面具有微结构的高弹性基体及方法
JP2020063362A (ja) * 2018-10-17 2020-04-23 住友ベークライト株式会社 湿式摩擦材用接着剤組成物
CN111462625A (zh) * 2019-01-22 2020-07-28 郡是株式会社 覆盖膜
CN111748274A (zh) * 2019-03-27 2020-10-09 郡是株式会社 覆膜
WO2023136053A1 (ja) * 2022-01-12 2023-07-20 リンテック株式会社 第1保護膜形成用シート、半導体装置の製造方法、及びシートの使用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115176333A (zh) * 2020-02-27 2022-10-11 琳得科株式会社 保护膜形成用片、带保护膜的芯片的制造方法及层叠物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169484A (ja) * 2011-02-15 2012-09-06 Nitto Denko Corp 半導体装置の製造方法
JP2015084352A (ja) * 2013-10-25 2015-04-30 東レ株式会社 回路部材接着用積層シートおよび半導体装置の製造方法
JP2015206006A (ja) * 2014-04-22 2015-11-19 デクセリアルズ株式会社 保護テープ、及びこれを用いた半導体装置の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5666335B2 (ja) 2011-02-15 2015-02-12 日東電工株式会社 保護層形成用フィルム
JP2013004872A (ja) * 2011-06-20 2013-01-07 Hitachi Chem Co Ltd 半導体装置の製造方法、フィルム状接着剤及び接着剤シート
JP5944155B2 (ja) * 2011-12-12 2016-07-05 日東電工株式会社 積層シート、及び、積層シートを用いた半導体装置の製造方法
JP6059499B2 (ja) * 2012-10-05 2017-01-11 リンテック株式会社 表面保護シート
KR20140069508A (ko) * 2012-11-29 2014-06-10 제일모직주식회사 반도체 웨이퍼 표면 보호용 점착 필름
JP6298409B2 (ja) * 2012-11-30 2018-03-20 リンテック株式会社 硬化性樹脂膜形成層付シートおよび該シートを用いた半導体装置の製造方法
JP5950869B2 (ja) * 2013-06-20 2016-07-13 古河電気工業株式会社 半導体ウエハ表面保護用粘着テープ
SG11201602049TA (en) * 2013-09-30 2016-04-28 Lintec Corp Composite sheet for resin film formation
JPWO2015076127A1 (ja) * 2013-11-22 2017-03-16 リンテック株式会社 ダイシングシート用基材フィルムおよび基材フィルムの製造方法
US10253222B2 (en) * 2014-01-21 2019-04-09 Lintec Corporation Adhesive sheet for wafer protection
JP6322013B2 (ja) * 2014-03-20 2018-05-09 リンテック株式会社 粘着シート

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169484A (ja) * 2011-02-15 2012-09-06 Nitto Denko Corp 半導体装置の製造方法
JP2015084352A (ja) * 2013-10-25 2015-04-30 東レ株式会社 回路部材接着用積層シートおよび半導体装置の製造方法
JP2015206006A (ja) * 2014-04-22 2015-11-19 デクセリアルズ株式会社 保護テープ、及びこれを用いた半導体装置の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821231A (zh) * 2018-06-26 2018-11-16 清华大学 一种基于力学原理的表面具有微结构的高弹性基体及方法
JP2020063362A (ja) * 2018-10-17 2020-04-23 住友ベークライト株式会社 湿式摩擦材用接着剤組成物
CN111462625A (zh) * 2019-01-22 2020-07-28 郡是株式会社 覆盖膜
CN111748274A (zh) * 2019-03-27 2020-10-09 郡是株式会社 覆膜
WO2023136053A1 (ja) * 2022-01-12 2023-07-20 リンテック株式会社 第1保護膜形成用シート、半導体装置の製造方法、及びシートの使用
JP7323734B1 (ja) 2022-01-12 2023-08-08 リンテック株式会社 第1保護膜形成用シート、半導体装置の製造方法、及びシートの使用

Also Published As

Publication number Publication date
KR102412725B1 (ko) 2022-06-23
CN109791887A (zh) 2019-05-21
TW201821270A (zh) 2018-06-16
PH12019500713A1 (en) 2019-11-11
TWI649195B (zh) 2019-02-01
SG11201902955QA (en) 2019-05-30
JP6344811B1 (ja) 2018-06-20
KR20190056385A (ko) 2019-05-24
JPWO2018066302A1 (ja) 2018-10-04
CN109791887B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
JP6344811B1 (ja) 第1保護膜形成用シート
JP6225389B2 (ja) 第1保護膜形成用シート、第1保護膜形成方法及び半導体チップの製造方法
JP6213757B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
JP7233377B2 (ja) 熱硬化性樹脂フィルム及び第1保護膜形成用シート
WO2021172431A1 (ja) 樹脂フィルム、複合シート、及び半導体装置の製造方法
JP6209803B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
JP6438181B1 (ja) 半導体装置及びその製造方法
JP6273542B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
CN108140622B (zh) 热固性树脂膜和第2保护膜形成膜的套件、及其形成方法
JP6381828B2 (ja) 熱硬化性樹脂フィルム、第1保護膜形成用シート及び第1保護膜の形成方法
JP6229222B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
WO2017061364A1 (ja) 熱硬化性樹脂フィルム及び第1保護膜形成用シート
TWI758479B (zh) 膜狀透明接著劑以及紅外線感測器模組
JP7323734B1 (ja) 第1保護膜形成用シート、半導体装置の製造方法、及びシートの使用
TW202342273A (zh) 第1保護膜形成用片、半導體裝置之製造方法、以及片之用途
CN115244654A (zh) 保护膜形成用片

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513675

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197009563

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858141

Country of ref document: EP

Kind code of ref document: A1