WO2018066114A1 - 多層配線板の製造方法 - Google Patents
多層配線板の製造方法 Download PDFInfo
- Publication number
- WO2018066114A1 WO2018066114A1 PCT/JP2016/079856 JP2016079856W WO2018066114A1 WO 2018066114 A1 WO2018066114 A1 WO 2018066114A1 JP 2016079856 W JP2016079856 W JP 2016079856W WO 2018066114 A1 WO2018066114 A1 WO 2018066114A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- peeling
- wiring layer
- reinforcing sheet
- multilayer wiring
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 90
- 239000002184 metal Substances 0.000 claims abstract description 90
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 58
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims description 73
- 239000000463 material Substances 0.000 claims description 39
- 238000005530 etching Methods 0.000 claims description 20
- 238000010030 laminating Methods 0.000 claims description 6
- 238000009413 insulation Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 392
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 42
- 239000011347 resin Substances 0.000 description 36
- 229920005989 resin Polymers 0.000 description 36
- 239000010949 copper Substances 0.000 description 34
- 229910052802 copper Inorganic materials 0.000 description 33
- 239000002585 base Substances 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 24
- 239000011521 glass Substances 0.000 description 22
- 239000010408 film Substances 0.000 description 20
- 238000007689 inspection Methods 0.000 description 14
- 238000007747 plating Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 238000005452 bending Methods 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 239000004088 foaming agent Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 239000011889 copper foil Substances 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 9
- 229920002120 photoresistant polymer Polymers 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000002787 reinforcement Effects 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 238000003475 lamination Methods 0.000 description 6
- 239000002923 metal particle Substances 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- -1 plates Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000011162 core material Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 239000009719 polyimide resin Substances 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- 239000004908 Emulsion polymer Substances 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 description 1
- RIRXDDRGHVUXNJ-UHFFFAOYSA-N [Cu].[P] Chemical compound [Cu].[P] RIRXDDRGHVUXNJ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 1
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical compound C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5226—Via connections in a multilevel interconnection structure
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
- H05K3/4682—Manufacture of core-less build-up multilayer circuits on a temporary carrier or on a metal foil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
- H01L21/4857—Multilayer substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/32—Holders for supporting the complete device in operation, i.e. detachable fixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49822—Multilayer substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/007—Manufacture or processing of a substrate for a printed circuit board supported by a temporary or sacrificial carrier
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
- H05K3/025—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/42—Plated through-holes or plated via connections
- H05K3/429—Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
- H05K3/4652—Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0271—Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/095—Conductive through-holes or vias
- H05K2201/096—Vertically aligned vias, holes or stacked vias
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/03—Metal processing
- H05K2203/0384—Etch stop layer, i.e. a buried barrier layer for preventing etching of layers under the etch stop layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4697—Manufacturing multilayer circuits having cavities, e.g. for mounting components
Definitions
- the present invention relates to a method for manufacturing a multilayer wiring board.
- multilayered printed wiring boards have been widely used.
- Such a multilayer printed wiring board is used for the purpose of weight reduction and size reduction in many portable electronic devices.
- the multilayer printed wiring board is required to further reduce the thickness of the interlayer insulating layer and further reduce the weight of the wiring board.
- a multilayer printed wiring board manufacturing method using a coreless build-up method has been adopted as a technology that satisfies such requirements.
- the coreless build-up method is a method called build-up method on a so-called core (core material), in which insulating layers and wiring layers are alternately stacked (build-up) to form a multilayer, and then the core (core material) is removed.
- core core material
- the wiring board is formed only with the build-up layer.
- Patent Document 1 Japanese Patent Application Laid-Open No.
- an insulating resin layer is attached to the carrier surface of a carrier-attached copper foil as a support, and a photoresist is processed on the ultrathin copper layer side of the carrier-attached copper foil.
- a process such as pattern electrolytic copper plating, resist removal, forming a build-up wiring layer, peeling a support substrate with a carrier, and removing an ultrathin copper layer.
- an RDL-First is formed by forming a wiring layer and, if necessary, a build-up wiring layer on the surface of the coreless support, and further peeling the support if necessary, and then mounting the chip. There is a method called (Redistribution Layer-First) method.
- Patent Document 2 Japanese Patent Laid-Open No. 2015-35551
- formation of a metal peeling layer on the main surface of a support made of glass or silicon wafer formation of an insulating resin layer thereon
- Formation of a redistribution layer including a build-up layer, mounting and sealing of a semiconductor integrated circuit thereon exposure of the release layer by removing the support, exposure of the secondary mounting pad by removing the release layer
- Patent Document 3 Japanese Patent Laid-Open No.
- Patent Document 4 Japanese Patent Laid-Open No. 2015-170767 discloses the formation of a release layer on a coreless support, the formation of a buried wiring layer and a buildup layer thereon, and the formation of a wiring board on the surface of the buildup layer.
- a circuit board manufacturing method including mounting, carrier peeling, and mounting of a semiconductor chip is disclosed.
- This release layer contains a composition that generates a gas due to the irradiation of ultraviolet rays, thereby making it possible to easily and easily remove the support substrate and remove the release layer without damaging the wiring layer. ing.
- Patent Document 5 Japanese Patent Laid-Open No. 2014-2142078 discloses a pressure-sensitive adhesive sheet comprising a porous material layer and a thermal foaming agent-containing pressure-sensitive adhesive layer. Use a paper-based or resin-based porous material, and use a mixture of a microcapsule-type thermal foaming agent and an acrylic polymer obtained by solution polymerization or emulsion polymerization as a thermal foaming agent-containing pressure-sensitive adhesive layer. It is described.
- Patent Document 6 Japanese Patent Laid-Open No.
- 2013-237721 discloses a re-peeling water-dispersed acrylic pressure-sensitive adhesive composition containing, as raw material monomers, an acrylic emulsion polymer, a perfluoroalkyl group-containing oligomer, and an ionic compound.
- a product is disclosed, and it is described that an acrylic emulsion-based polymer is composed of a (meth) acrylic acid alkyl ester and a carboxyl group-containing unsaturated monomer.
- the build-up layer may be locally locally bent when the base material is peeled off from the base material with the build-up layer produced using the coreless build-up method.
- Such a large curvature of the build-up layer may cause disconnection or peeling of the wiring layer inside the build-up layer, and as a result, the connection reliability of the wiring layer may be reduced.
- the present inventors have laminated a multilayer wiring layer by laminating a reinforcing sheet having a Vickers hardness lower than that of a base material on a laminate with a multilayer wiring layer containing a peelable base material. It was found that reinforcement can be performed without locally bending, thereby improving the connection reliability of the multilayer wiring layer and the flatness (coplanarity) of the surface of the multilayer wiring layer.
- the object of the present invention is to reinforce the multilayer wiring layer without locally bending it, thereby improving the connection reliability of the multilayer wiring layer and the flatness (coplanarity) of the surface of the multilayer wiring layer. Another object is to provide a method for manufacturing a multilayer wiring board.
- a step of preparing a laminated sheet comprising a substrate, a first release layer, and a metal layer in order, Forming a first wiring layer on the surface of the metal layer;
- the manufacturing method of this invention it is a process flowchart which shows the process from preparation of a lamination sheet to lamination
- it is a process flowchart which shows the process from peeling of a base material to mounting of an electronic device.
- the manufacturing method of a multilayer wiring board according to the present invention includes (1) preparation of a laminated sheet, (2) formation of a first wiring layer, (3) formation of a laminate with a multilayer wiring layer, (4) Lamination of reinforcing sheets, (5) Peeling of substrate, (6) Etching removal of metal layer performed as desired, (7) Surface treatment of first wiring layer performed as desired, (8) Electronic element performed as desired And (9) each step of peeling the reinforcing sheet.
- the laminated sheet includes a substrate, a first release layer, and a metal layer in this order, and therefore can be said to include a peelable substrate. Further, the reinforcing sheet has a Vickers hardness lower than that of the base material.
- the multilayer wiring layer is locally enlarged by laminating a reinforcing sheet having a Vickers hardness lower than that of the base material on the multilayer body with a peelable base material. Reinforcement can be performed without bending, whereby the connection reliability of the multilayer wiring layer and the flatness (coplanarity) of the surface of the multilayer wiring layer can be improved.
- a laminated sheet 10 serving as a base for forming a multilayer wiring board is prepared.
- the laminated sheet 10 includes a base material 12, a first release layer 14, and a metal layer 16 in this order.
- the laminated sheet 10 may be in the form of a so-called copper foil with carrier.
- the material of the base 12 is not particularly limited, and may be any of glass, ceramics, resin, and metal. Moreover, the form of the base material 12 is not specifically limited, either, a sheet
- the substrate 12 may be a laminate of these sheets, films, plates, foils and the like. For example, the substrate 12 may function as a rigid support such as a glass plate, a ceramic plate, or a metal plate, or may have a non-rigid form such as a metal foil or a resin film. .
- the substrate 12 include a metal sheet, a glass sheet, a ceramic plate (plate), a laminate of a metal sheet and a prepreg, a metal sheet coated with an adhesive, and a resin sheet (particularly a hard resin sheet).
- Preferred examples of the metal of the substrate 12 include copper, titanium, nickel, stainless steel, aluminum and the like.
- Preferable examples of the ceramic include alumina, zirconia, silicon nitride, aluminum nitride (fine ceramics) and the like.
- the resin include epoxy resin, aramid resin, polyimide resin, nylon resin, liquid crystal polymer, PEEK resin, polyimide resin, polyamideimide resin, polyethersulfone resin, polyphenylene sulfide resin, PTFE resin, ETFE resin and the like. It is done. More preferably, the coefficient of thermal expansion (CTE) is less than 25 ppm / K (preferably 1.0 to 23 ppm / K, more preferably 1 from the viewpoint of preventing warpage of the coreless support due to heating when mounting the electronic device. 0.0 to 15 ppm / K, more preferably 1.0 to 10 ppm / K).
- the substrate 12 preferably has a Vickers hardness of 500 to 3000 HV, more preferably 550 to 2500 HV, and even more preferably 600 to 2000 HV.
- the substrate 12 is preferably made of a resin film, glass or ceramics, more preferably glass or ceramics, and particularly preferably glass.
- a glass sheet When glass is used as the substrate 12, it has advantages such as being light, having a low coefficient of thermal expansion, high insulation, being rigid and having a flat surface, so that the surface of the metal layer 16 can be made extremely smooth.
- the base material 12 when the base material 12 is glass, it has the surface flatness (coplanarity) advantageous at the time of electronic device mounting, and has chemical resistance in the desmear and various plating processes in the printed wiring board manufacturing process. There are advantages such as points.
- the glass constituting the substrate 12 include quartz glass, borosilicate glass, alkali-free glass, soda lime glass, aminosilicate glass, and combinations thereof, and alkali-free glass is particularly preferable.
- the alkali-free glass is a glass mainly containing silicon dioxide, aluminum oxide, boron oxide, and alkaline earth metal oxides such as calcium oxide and barium oxide, and further containing boric acid and substantially no alkali metal. That is.
- This alkali-free glass has a low and stable thermal expansion coefficient in the range of 3 to 5 ppm / K in a wide temperature range from 0 ° C to 350 ° C, so that the glass warpage is minimized when a semiconductor chip is mounted as an electronic element. There is an advantage that it can be limited.
- the thickness of the substrate 12 is preferably 100 to 2000 ⁇ m, more preferably 300 to 1800 ⁇ m, and still more preferably 400 to 1100 ⁇ m. When the thickness is within such a range, it is possible to reduce the thickness of the printed wiring board and reduce the warpage that occurs when mounting electronic components while ensuring an appropriate strength that does not hinder handling.
- the surface of the substrate 12 on the first release layer 14 side (the adhesion metal layer side, if present) has an arithmetic average roughness Ra of 0.1 to 70 nm measured according to JIS B 0601-2001. It is preferably 0.5 to 60 nm, more preferably 1.0 to 50 nm, particularly preferably 1.5 to 40 nm, and most preferably 2.0 to 30 nm.
- the smaller the arithmetic average roughness the lower the average arithmetic roughness Ra can be obtained on the surface of the metal layer 16 opposite to the first release layer 14 (the outer surface of the metal layer 16).
- the wiring pattern is highly miniaturized to such an extent that the line / space (L / S) is 13 ⁇ m or less / 13 ⁇ m or less (for example, 12 ⁇ m / 12 ⁇ m to 1 ⁇ m / 1 ⁇ m). It is suitable for forming the formation.
- the laminated sheet 10 may have an adhesion metal layer and / or a peeling auxiliary layer on the surface of the substrate 12 on the first peeling layer 14 side, preferably the adhesion metal layer and the peeling auxiliary layer in this order. Have.
- the adhesion metal layer provided as desired is preferably a layer composed of at least one metal selected from the group consisting of Ti, Cr and Ni, from the viewpoint of ensuring adhesion with the base material 12, It may be a pure metal or an alloy.
- the metal constituting the adhesion metal layer may contain inevitable impurities due to raw material components, film formation processes, and the like.
- the adhesion metal layer is preferably a layer formed by a vapor phase method such as sputtering.
- the adhesion metal layer is particularly preferably a layer formed by a magnetron sputtering method using a metal target because the uniformity of the film thickness distribution can be improved.
- the thickness of the adhesion metal layer is preferably 5 to 500 nm, more preferably 10 to 300 nm, still more preferably 18 to 200 nm, and particularly preferably 20 to 150 nm. This thickness is a value measured by analyzing the cross section of the layer with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
- TEM-EDX energy dispersive X-ray spectrometer
- the peeling auxiliary layer provided as desired is a layer made of copper from the viewpoint of controlling the peeling strength with the first peeling layer 14 to a desired value. Copper constituting the peeling assisting layer may contain inevitable impurities due to raw material components, film forming steps, and the like. In addition, when exposed to the atmosphere before and after the formation of the peeling assist layer, the presence of oxygen mixed therein is allowed. However, although not particularly limited, it is desirable that the adhesion metal layer and the peeling auxiliary layer are continuously formed without opening to the atmosphere.
- the peeling assist layer is preferably a layer formed by a vapor phase method such as sputtering.
- the peeling auxiliary layer is particularly preferably a layer formed by a magnetron sputtering method using a copper target from the viewpoint of improving the uniformity of the film thickness distribution.
- the thickness of the peeling assist layer is preferably 5 to 500 nm, more preferably 10 to 400 nm, still more preferably 15 to 300 nm, and particularly preferably 20 to 200 nm. This thickness is a value measured by analyzing the cross section of the layer with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
- TEM-EDX energy dispersive X-ray spectrometer
- the material of the first release layer 14 is not particularly limited as long as it is a layer that enables the substrate 12 to be peeled off.
- the 1st peeling layer 14 can be comprised with the well-known material employ
- the first release layer 14 may be either an organic release layer or an inorganic release layer.
- organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids and the like.
- nitrogen-containing organic compounds include triazole compounds and imidazole compounds.
- examples of inorganic components used in the inorganic release layer include at least one metal oxide of Ni, Mo, Co, Cr, Fe, Ti, W, P, and Zn, a mixture of metal and nonmetal, carbon Layer and the like.
- the first release layer 14 is preferably a layer mainly containing carbon from the viewpoint of ease of peeling and film formation, and more preferably a layer mainly made of carbon or hydrocarbon.
- it is made of amorphous carbon, which is a hard carbon film, or a carbon-nitrogen mixture.
- the first release layer 14 (that is, the carbon layer) preferably has a carbon concentration measured by XPS of 60 atomic% or more, more preferably 70 atomic% or more, further preferably 80 atomic% or more, and particularly preferably. Is 85 atomic% or more.
- the upper limit value of the carbon concentration is not particularly limited, and may be 100 atomic%, but 98 atomic% or less is realistic.
- the first release layer 14 (particularly the carbon layer) can contain inevitable impurities (for example, oxygen, carbon, hydrogen, etc. derived from the surrounding environment such as the atmosphere).
- metal atoms may be mixed into the first release layer 14 (particularly the carbon layer) due to the method of forming the metal layer 16.
- Carbon has low mutual diffusivity and reactivity with the base material 12 and is heated at a high temperature between the metal layer 16 (for example, a copper foil layer) and the bonding interface even when subjected to press working at a temperature exceeding 300 ° C. It is possible to prevent the metal bond from being formed and to maintain a state in which the substrate 12 is easily peeled and removed.
- the first release layer 14 is also a layer formed by a vapor phase method such as sputtering, which suppresses excessive impurities in the amorphous carbon, and the formation of the adhesion metal layer and / or the release auxiliary layer described above. This is preferable from the viewpoint of continuous productivity.
- the thickness of the first release layer 14 is preferably 1 to 20 nm, more preferably 1 to 10 nm. This thickness is a value measured by analyzing the cross section of the layer with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
- TEM-EDX energy dispersive X-ray spectrometer
- the peeling strength of the first peeling layer 14 is 1 to 30 gf / cm from the viewpoint of reducing the stress concentration on the first wiring layer 18 when peeling the first peeling layer 14 as much as possible and facilitating the peeling process. It is preferably 3 to 20 gf / cm, more preferably 4 to 15 gf / cm.
- the peel strength of the first release layer 14 is measured as follows. First, the 1st peeling layer 14 is formed on the base material 12, the laminated sheet which formed the copper layer as the metal layer 16 on it is formed, the 18-micrometer-thick electrolytic copper plating layer is formed on it, A copper clad laminate is formed. Thereafter, in accordance with JIS C 6481-1996, the peel strength (gf / cm) when the electrolytic copper plating layer integrated with the metal layer 16 is peeled is measured.
- the peel strength of the first release layer 14 can be controlled by controlling the thickness of the first release layer 14, selecting the composition of the first release layer 14, and the like.
- the metal layer 16 is a layer made of metal, and preferably includes a power feeding layer that enables power feeding to the first wiring layer 18 described later.
- the metal layer 16 or the power feeding layer may be manufactured by any method, for example, wet film formation methods such as electroless copper plating and electrolytic copper plating, physical vapor deposition methods such as sputtering and vacuum deposition, It may be a copper foil formed by chemical vapor deposition or a combination thereof.
- the preferred metal constituting the feed layer is copper, and therefore the preferred feed layer can be an ultra-thin copper layer.
- a particularly preferable power feeding layer is a copper layer formed by a sputtering method or a vapor phase method such as vacuum deposition from the viewpoint of easily adapting to a fine pitch by ultrathinning, and most preferably a copper layer manufactured by a sputtering method. Is a layer.
- the ultra-thin copper layer is preferably a non-roughened copper layer, but pre-roughening, soft etching treatment, cleaning treatment, oxidation treatment, as long as it does not hinder the formation of wiring patterns during printed wiring board production.
- the secondary roughening may be caused by the reduction treatment.
- the thickness of the power feeding layer (for example, an ultrathin copper layer) constituting the metal layer 16 is not particularly limited, but is preferably 50 to 3000 nm, more preferably 70 to 2500 nm in order to cope with the fine pitch as described above. More preferably, it is 80 to 2000 nm, particularly preferably 90 to 1500 nm, particularly preferably 120 to 1000 nm, and most preferably 150 to 500 nm.
- a power feeding layer having a thickness within such a range (for example, an ultrathin copper layer) is manufactured by a sputtering method in terms of in-plane uniformity of film thickness and productivity in the form of a sheet or a roll. preferable.
- the surface of the metal layer 16 opposite to the first release layer 14 (the outer surface of the metal layer 16) has an arithmetic average roughness Ra of 1.0 to 100 nm, measured according to JIS B 0601-2001. More preferably, it is 2.0 to 40 nm, more preferably 3.0 to 35 nm, particularly preferably 4.0 to 30 nm, and most preferably 5.0 to 15 nm. In this way, the smaller the arithmetic average roughness, the line / space (L / S) is 13 ⁇ m or less / 13 ⁇ m or less (for example, 12 ⁇ m / 12 ⁇ m to 1 ⁇ m / 1 ⁇ m) in the printed wiring board manufactured using the laminated sheet 10. This is suitable for forming a highly fine wiring pattern. In the case of such a smooth surface, it is preferable to employ a non-contact type surface roughness measurement method for measuring the arithmetic average roughness Ra.
- the metal layer 16 may have a layer configuration of two or more layers.
- the metal layer 16 may have an antireflection layer on the surface of the power feeding layer on the first peeling layer 14 side in addition to the above power feeding layer. That is, the metal layer 16 may include a power feeding layer and an antireflection layer.
- the antireflection layer is preferably composed of at least one metal selected from the group consisting of Cr, W, Ta, Ti, Ni and Mo. It is preferable that at least the surface on the power feeding layer side of the antireflection layer is an aggregate of metal particles.
- the antireflection layer may have a layer structure composed entirely of an aggregate of metal particles, or a multilayer structure including a layer composed of an aggregate of metal particles and a non-particulate layer below the layer.
- the aggregate of metal particles constituting the surface on the power feeding layer side of the antireflection layer exhibits a desirable dark color due to its metallic material and granular form, and the dark color is between the wiring layer composed of copper. It provides the desired visual contrast and consequently improves visibility in image inspection (eg, automatic image inspection (AOI)). That is, the surface of the antireflection layer is visually recognized as black due to irregular reflection of light due to the convex shape of the metal particles.
- AOI automatic image inspection
- the antireflection layer is excellent in moderate adhesiveness and peelability with the first release layer 14, and adhesiveness with the power feeding layer, and is also excellent in peel resistance against the developer at the time of forming the photoresist layer.
- the glossiness Gs (60 °) of the surface on the power feeding layer side of the antireflection layer is preferably 500 or less, more preferably 450 or less, still more preferably 400 or less, Particularly preferred is 350 or less, and most preferred is 300 or less.
- the lower limit of the glossiness Gs (60 °) is preferably as low as possible, and is not particularly limited. However, the glossiness Gs (60 °) on the surface of the antireflection layer on the power feeding layer side is actually 100 or more. More realistically, it is 150 or more.
- the specular gloss Gs (60 °) by image analysis of the roughened particles can be measured using a commercially available gloss meter in accordance with JIS Z 8741-1997 (mirror gloss-measurement method).
- the surface of the antireflection layer on the power feeding layer side is a metal whose projected area equivalent circle diameter determined by SEM image analysis is 10 to 100 nm. It is preferably composed of an aggregate of particles, more preferably 25 to 100 nm, still more preferably 65 to 95 nm.
- a projected area equivalent circle diameter can be measured by photographing the surface of the antireflection layer with a scanning electron microscope at a predetermined magnification (eg, 50000 times) and analyzing the obtained SEM image. Specifically, an arithmetic average value of the projected area equivalent circle diameter measured using commercially available image analysis type particle size distribution software (for example, Mactech-VIEW, manufactured by Mounttech Co., Ltd.) is adopted.
- the antireflection layer is composed of at least one metal selected from Cr, W, Ta, Ti, Ni and Mo, preferably at least one metal selected from Ta, Ti, Ni and Mo, and more Preferably it is at least one metal selected from Ti, Ni and Mo, most preferably composed of Ti. These metals may be pure metals or alloys. In any case, it is preferred that these metals are essentially unoxidized (essentially not metal oxides) because they exhibit a desirable dark color that improves visual contrast with Cu, specifically reflective
- the oxygen content of the prevention layer is preferably 0 to 15 atomic%, more preferably 0 to 13 atomic%, and still more preferably 1 to 10 atomic%.
- the metal has a property that it does not dissolve in the copper flash etching solution, and as a result, can exhibit excellent chemical resistance with respect to the copper flash etching solution.
- the thickness of the antireflection layer is preferably 1 to 500 nm, more preferably 10 to 300 nm, still more preferably 20 to 200 nm, and particularly preferably 30 to 150 nm.
- the first wiring layer 18 is formed on the surface of the metal layer 16.
- the formation of the first wiring layer 18 is performed according to a known method through formation of a photoresist layer, formation of an electrolytic copper plating layer, peeling of the photoresist layer, and optionally copper flash etching.
- a photoresist layer is formed in a predetermined pattern on the surface of the metal layer 16.
- the photoresist is preferably a photosensitive film, such as a photosensitive dry film.
- the photoresist layer may be provided with a predetermined wiring pattern by exposure and development.
- An electrolytic copper plating layer is formed on the exposed surface of the metal layer 16 (that is, the portion not masked with the photoresist layer).
- the electrolytic copper plating may be performed by a known method and is not particularly limited.
- the photoresist layer is peeled off. As a result, the copper electroplating layer remains in the wiring pattern to form the first wiring layer 18, and the portion of the metal layer 16 where the wiring pattern is not formed is exposed.
- the metal layer 16 includes not only the power feeding layer but also the antireflection layer, a portion corresponding to the power feeding layer of the metal layer 16 may be removed by flash etching to expose the antireflection layer. This facilitates image inspection of the first wiring layer 18 to be described later.
- This flash etching solution uses a sulfuric acid / hydrogen peroxide mixture solution or a solution containing at least one of sodium persulfate and potassium persulfate, while avoiding excessive etching of the electrolytic copper plating layer. It is preferable in that the metal layer 16 can be reliably etched.
- the antireflection layer is included, the portion of the antireflection layer where the wiring pattern is not formed remains without being dissolved by the flash etching solution and exposed to the surface.
- At this time, at least one metal selected from Cr, W, Ta, Ti, Ni, and Mo that can constitute the antireflection layer has a property that it does not dissolve in the copper flash etching solution. Excellent chemical resistance to the liquid. That is, the antireflective layer, if present, is preferably left exposed for subsequent image inspection steps to be performed as desired without being removed by copper flash etching.
- a step of performing an image inspection of the coreless support with wiring layer may be performed after the flash etching while the antireflection layer is exposed.
- an optical automatic appearance inspection (AOI) apparatus is used to irradiate predetermined light from a light source to obtain a binarized image of a wiring pattern, and the binarized image and design data. This is done by trying pattern matching with an image and evaluating match / mismatch between them.
- AOI optical automatic appearance inspection
- insulating layers 20 and wiring layers 22 are alternately formed on the surface of the laminated sheet 10 on which the first wiring layers 18 are formed. Then, the multilayer body with a multilayer wiring layer 26 in which the first wiring layer 18 is incorporated in the form of a buried wiring layer is obtained.
- the wiring layer 22 has one or more layers, and may be referred to as an nth wiring layer 22 (n is an integer of 2 or more) following the expression of the first wiring layer 18.
- the insulating layer 20 may be one or more layers.
- the multilayer wiring board 40 in the present invention has at least two wiring layers (that is, at least the first wiring layer 18 and the second wiring layer 22) together with at least one insulating layer 20.
- a sequential stacked structure including the first wiring layer 18, the nth wiring layer 22, and the insulating layer 20 is generally referred to as a buildup layer or a buildup wiring layer.
- the structure of the well-known buildup wiring layer generally employ
- a solder resist layer and / or a surface metal treatment layer for example, OSP (Organic Solderability Preservative) treatment layer, Au plating layer, Ni— An Au plating layer or the like may be formed.
- OSP Organic Solderability Preservative
- the surface of the laminate 26 with a multilayer wiring layer opposite to the laminate sheet 10 is disposed on the surface opposite to the substrate 12 via the second release layer 28.
- a reinforcing sheet 30 having a low Vickers hardness is laminated.
- the reinforcement sheet 30 has lower Vickers hardness than the base material 12, when the reinforcement sheet 30 is laminated, the reinforcement sheet 30 itself bends preferentially over the base material 12, and may occur at the time of lamination. The stress can be released with the reinforcing sheet 30 itself, and as a result, the bending of the multilayer body with a multilayer wiring layer 26 including the base material 12 can be effectively prevented or suppressed.
- the multilayer body 26 with the multilayer wiring layer can be reinforced by the reinforcing sheet 30 without being greatly bent locally. That is, bending at the time of peeling is effectively prevented or suppressed.
- disconnection and peeling of the wiring layer inside the build-up wiring layer that may be caused by bending can be avoided, and the connection reliability of the multilayer wiring layer can be improved.
- the flatness (coplanarity) of the surface of the multilayer wiring layer can be improved by effectively preventing or suppressing the bending.
- the Vickers hardness of the reinforcing sheet 30 is preferably 2 to 99% of the Vickers hardness of the substrate 12, more preferably 6 to 90%, and further preferably 10 to 85%.
- the reinforcing sheet 30 has a Vickers hardness of 50 to 700 HV
- the substrate 12 has a Vickers hardness of 500 to 3000 HV
- the reinforcing sheet 30 has a Vickers hardness of 150 to 550 HV
- the substrate 12 has a Vickers hardness of 550 to 2500 HV
- the reinforcing sheet 30 has a Vickers hardness of 200 to 500 HV
- the substrate 12 has a Vickers hardness of 600 to 2000 HV.
- the Vickers hardness is measured in accordance with the “Vickers hardness test” described in JIS Z 2244-2009.
- Vickers hardness HV of various materials is exemplified below: sapphire glass (2300 HV), cemented carbide (1700 HV), cermet (1650 HV), quartz (crystal) (1103 HV), SKH56 (high speed tool) Steel, high speed steel (722HV), tempered glass (640HV), SUS440C (stainless steel) (615HV), SUS630 (stainless steel) (375HV), titanium alloy 60 (64 alloy) (around 280HV), Inconel (heat resistant nickel) Alloy) (150 to 280HV), S45C (carbon steel for machine structure) (201 to 269HV), Hastelloy alloy (corrosion resistant nickel alloy) (100 to 230HV), SUS304 (stainless steel) (187HV), SUS430 (stainless steel) ( 183HV), cast iron 160 ⁇ 180 Hv), titanium alloy (110 ⁇ 150HV), brass (80 ⁇ 150HV), and bronze (50 ⁇ 100H
- the reinforcing sheet 30 preferably has a spring limit value Kb 0.1 of 100 to 1500 N / mm 2 , more preferably 150 to 1200 N / mm, measured in accordance with a repeated deflection test of JIS H 3130-2012. mm 2 , more preferably 200 to 1000 N / mm 2 .
- Kb 0.1 100 to 1500 N / mm 2 , more preferably 150 to 1200 N / mm, measured in accordance with a repeated deflection test of JIS H 3130-2012. mm 2 , more preferably 200 to 1000 N / mm 2 .
- the reinforcing sheet 30 when the reinforcing sheet 30 is laminated or peeled off, the reinforcing sheet 30 itself bends, so that the stress that can be generated at the time of laminating or peeling can be released well. 12 can be prevented or suppressed more effectively.
- the reinforcing sheet 30 bent at the time of lamination or peeling can be instantaneously returned to its original flat shape by utilizing its elasticity, the flatness of the multilayer body with multilayer wiring layer 26 is more effectively maintained. can do.
- the reinforcing sheet 30 to which the peeling force is applied can be urged in the peeling direction (that is, the direction away from the multilayer body 26 with the multilayer wiring layer), As a result, even smoother peeling becomes possible.
- the material of the reinforcing sheet 30 is not particularly limited, but resin, metal, glass, or a combination thereof is preferable.
- the resin include an epoxy resin, a polyimide resin, a polyethylene resin, and a phenol resin, and a prepreg composed of such a resin and a fiber reinforcing material may be used.
- the metal include stainless steel and copper alloys (for example, bronze, phosphor copper, copper nickel alloy, copper titanium alloy) from the viewpoint of the above Vickers hardness and spring limit value Kb 0.1 .
- Stainless steel is particularly preferable from the viewpoint.
- the form of the reinforcing sheet 30 is not limited to a sheet shape as long as the bending of the multilayer body with a multilayer wiring layer 26 can be prevented or suppressed, and may be other forms of a film, a plate, and a foil, and preferably a sheet or a plate It is a form.
- the reinforcing sheet 30 may be a laminate of these sheets, films, plates, foils, and the like. Typical examples of the reinforcing sheet 30 include a metal sheet, a resin sheet (particularly a hard resin sheet), and a glass sheet.
- the thickness of the reinforcing sheet 30 is preferably 10 ⁇ m to 1 mm, more preferably 50 to 800 ⁇ m, and still more preferably 100 to 600 ⁇ m.
- the metal sheet 30 conforms to the ten-point average roughness Rz-jis (JIS B 0601-2001) on the surface on which the second release layer 28 is formed. Is preferably from 0.05 to 500 ⁇ m, more preferably from 0.5 to 400 ⁇ m, still more preferably from 1 to 300 ⁇ m. With such a surface roughness, it is considered that the adhesion with the second release layer 28 is enhanced by the anchor effect due to the unevenness of the surface, and the peel strength in the second release layer 28 is improved.
- Rz-jis JIS B 0601-2001
- the peel strength of the second release layer 28 is preferably 1.02 to 300 times the peel strength of the first release layer 14, more preferably 1.05 to 100 times, and even more preferably 3.0 to 50 times. Particularly preferably, it is 5.0 to 30 times.
- the peel strength of the second release layer 28 is preferably 30 to 300 gf / cm, more preferably 40 to 250 gf / cm, still more preferably 50 to 175 gf / cm, and particularly preferably 70 to 150 gf / cm. is there.
- the peel strength of the second release layer 28 can be measured basically in the same manner as the measurement method of the peel strength of the first release layer 14 described above, but the peel strength such as ultraviolet irradiation, heating, and dissolution is reduced. It should be noted that it refers to the peel strength measured before performing the treatment. Specifically, the peel strength of the second release layer 28 is measured as follows.
- the second release layer 28 is formed on the reinforcing sheet 30, and a copper foil having a thickness of 18 ⁇ m is laminated thereon to form a copper clad laminate. Thereafter, in accordance with JIS C 6481-1996, the peel strength (gf / cm) when the copper foil is peeled is measured.
- the configuration of the second peeling layer 28 is not particularly limited as long as the reinforcing sheet 30 can be attached to the multilayer body 26 with the multilayer wiring layer and the reinforcing sheet 30 can be peeled by some means.
- the second release layer 28 is preferably a layer that provides higher peel strength than the first release layer 14.
- the second release layer 28 can be, for example, a known layer called an adhesive layer, an adhesive release layer, a release layer, or the like (see, for example, Patent Documents 4 to 6).
- a method for comparing the magnitude relationship between the peeling strengths of the second peeling layer 28 and the first peeling layer 14 there is also a method of comparing the above-described absolute values of the peeling strengths. Comparison by measurement according to the embodiment is also effective.
- the peel strength of the first release layer 14 is a yield strength that is generated when the substrate 12 is peeled off from the build-up wiring layer
- the peel strength of the second release layer 28 is a laminate of the reinforcing sheet 30 with a multilayer wiring layer. It is also effective to compare the values measured as the yield strength generated when peeling from the body 26.
- the second release layer 28 typically has adhesiveness, and therefore it can be said that an adhesive layer or an adhesive release layer is typical. But the 2nd peeling layer 28 may be a peeling layer which does not have adhesiveness.
- a resin layer containing a foaming agent may be mentioned.
- This foaming agent-containing resin layer is a layer that can be mechanically peeled by performing heat treatment or ultraviolet treatment before peeling, and the peeling strength is controlled by controlling the foaming agent content, the resin layer The thickness can be controlled by controlling the thickness.
- a resin layer containing a foaming agent that is foamed by heat treatment there is a thermal foaming agent-containing pressure-sensitive adhesive layer as disclosed in Patent Document 5 (Japanese Patent Laid-Open No. 2014-214208).
- Patent Document 4 Japanese Patent Laid-Open No. 2015-170767
- a composition that generates gas due to ultraviolet irradiation The peeling layer containing is mentioned.
- Another preferred embodiment of the second release layer 28 is an acid-soluble or alkali-soluble resin layer.
- This acid-soluble or alkali-soluble resin layer is a layer that can be peeled off by dissolving it with a chemical (for example, an acid solution or an alkaline solution). It can be performed by controlling the amount and controlling the thickness of the resin layer.
- the base material 12 is peeled from the metal layer 16 by the first peeling layer 14. That is, the base material 12, the adhesion metal layer (when present), the peeling auxiliary layer (when present), and the first peeling layer 14 are peeled and removed.
- This peeling removal is preferably performed by physical peeling.
- the physical separation method is a method of separating the base material 12 and the like by peeling them from the build-up wiring layer by hand, jigs and tools, or the like.
- the reinforcing sheet 30 adhered through the second release layer 28 reinforces the multilayer body with multilayer wiring layer 26, thereby preventing the multilayer body with multilayer wiring layer 26 from being locally bent greatly. be able to.
- the reinforcing sheet 30 can reinforce the laminated body 26 with the multilayer wiring layer to resist the peeling force while the base material 12 is peeled, and can prevent or suppress the bending more effectively.
- disconnection and peeling of the wiring layer inside the build-up wiring layer that may be caused by bending can be avoided, and the connection reliability of the multilayer wiring layer can be improved.
- the flatness (coplanarity) of the surface of the multilayer wiring layer can be improved by effectively preventing or suppressing the bending.
- the first peeling is performed while more effectively avoiding peeling at the second peeling layer 28 when peeling the substrate 12. Peeling at the layer 14 is further facilitated. Therefore, the reinforcing sheet 30 that is in close contact with the multilayer body with a multilayer wiring layer 26 via the second release layer 28 can hold the contact state even more stably even when the substrate 12 is peeled off.
- Etching removal of metal layer (optional process) If desired, as shown in FIG. 2F, the metal layer 16 is removed by etching after the substrate 12 is peeled off and before the reinforcing sheet 30 is peeled off. Etching of the metal layer 16 may be performed based on a known method such as flash etching.
- the process of mounting the chip after forming the build-up wiring layer in this way is a technique called RDL-First method.
- the appearance inspection and the electrical inspection of the multilayer wiring layer that is, the first wiring layer 18 and the nth wiring layer 22
- the defective portion of each wiring layer is removed.
- chips can be mounted only on non-defective parts.
- the RDL-First method is economically advantageous as compared to the Chip-First method, which is a method of sequentially laminating wiring layers on the surface of the chip, in that waste of the chip can be avoided.
- the product yield can be improved by performing the appearance inspection and electrical inspection on the wiring layer before chip mounting.
- a solder resist layer After the above-described steps, a solder resist layer, a surface metal treatment layer (for example, OSP (Organic Solderability Preservative) treatment layer, Au plating layer, Ni—Au plating layer) is formed on the surface of the first wiring layer 18 as necessary. Etc.), metal pillars for mounting electronic elements, and / or solder bumps may be formed.
- OSP Organic Solderability Preservative
- an electronic element is formed on the surface of the first wiring layer 18 after the removal of the metal layer 16 (or after the subsequent electrical inspection) and before the reinforcing sheet 30 is peeled off. 32 is mounted.
- the manufacturing method of the present invention by adopting the second release layer 28 and the reinforcing sheet 30, excellent surface flatness (coplanarity) advantageous for mounting the electronic element 32 is obtained, and the first wiring layer 18 is embedded in the embedded electrode. It can be realized on the surface of the build-up wiring layer included. As a result, the connection yield for mounting the electronic elements can be increased.
- Examples of the electronic element 32 include a semiconductor element, a chip capacitor, and a resistor.
- Examples of the electronic element mounting method include a flip chip mounting method and a die bonding method.
- the flip chip mounting method is a method in which the mounting pad of the electronic element 32 and the first wiring layer 18 are joined.
- a columnar electrode (pillar), a solder bump 34, or the like may be formed on the mounting pad as shown in FIG. 2G, and the sealing resin film 36 is formed on the surface including the first wiring layer 18 before mounting.
- NCF (Non-Conductive Film) or the like may be pasted.
- the joining is preferably performed using a low melting point metal such as solder, but an anisotropic conductive film or the like may be used.
- the die bonding adhesion method is a method in which the surface opposite to the mounting pad surface of the electronic element 32 is adhered to the first wiring layer 18.
- a paste or film which is a resin composition containing a thermosetting resin and a thermally conductive inorganic filler.
- the electronic element 32 is preferably sealed with a sealing material 38 as shown in FIG.
- the reinforcing sheet 30 is peeled off from the laminated body 26 with the multilayer wiring layer by the second peeling layer 28 to obtain the multilayer wiring board 40.
- physical separation, chemical separation, or the like can be employed.
- the physical separation method is a method of obtaining the multilayer wiring board 40 that is separated by peeling the reinforcing sheet 30 and the like from the build-up wiring layer by hand, jigs and tools, or the like.
- the second release layer 28 is less peelable than the first release layer 14 in that it has a higher peel strength than the first release layer 14, but as described above,
- 28 is a resin layer containing a foaming agent
- heat treatment or ultraviolet treatment is performed before peeling to foam the foaming agent in the second peeling layer 28, thereby weakening the second peeling layer 28 and facilitating physical peeling.
- the second release layer 28 is an acid-soluble or alkali-soluble resin layer
- the physical release can be facilitated by dissolving the second release layer 28 with a chemical (for example, an acid solution or an alkali solution). It can be carried out.
- the chemical separation method is employed, the multilayer wiring board 40 can be obtained using an etching solution that dissolves both the reinforcing sheet 30 and the second release layer 28.
- At least one side of the substrate 12 and / or the reinforcing sheet 30 extends from the end of the build-up wiring layer.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Laminated Bodies (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
前記金属層の表面に第1配線層を形成する工程と、
前記積層シートの前記第1配線層が形成された面に絶縁層及び配線層を交互に形成して、前記第1配線層が埋込み配線層の形で組み込まれた、多層配線層付積層体を得る工程と、
前記多層配線層付積層体の前記積層シートと反対側の表面に、第2剥離層を介して、前記基材よりもビッカース硬度が低い補強シートを積層する工程と、
前記基材を前記金属層から前記第1剥離層で剥離する工程と、
前記補強シートを前記多層配線層付積層体から前記第2剥離層で剥離して多層配線板を得る工程と、
を含む、多層配線板の製造方法が提供される。
本発明による多層配線板の製造方法は、(1)積層シートの用意、(2)第1配線層の形成、(3)多層配線層付積層体の形成、(4)補強シートの積層、(5)基材の剥離、(6)所望により行われる金属層のエッチング除去、(7)所望により行われる第1配線層の表面処理、(8)所望により行われる電子素子の搭載、及び(9)補強シートの剥離の各工程を含む。積層シートは、基材、第1剥離層及び金属層を順に備えており、それ故、剥離可能な基材を含むといえる。また、補強シートは基材よりもビッカース硬度が低いものである。このように、多層配線板の製造において、剥離可能な基材を含む多層配線層付積層体に、基材よりもビッカース硬度が低い補強シートを積層させることにより、多層配線層を局部的に大きく湾曲させることなく補強することができ、それにより多層配線層の接続信頼性と多層配線層表面の平坦性(コプラナリティ)を向上できる。
図1(a)に示されるように、多層配線板を形成するためのベースとなる積層シート10を用意する。積層シート10は、基材12、第1剥離層14及び金属層16を順に備える。積層シート10は、いわゆるキャリア付銅箔の形態であってもよい。
図1(b)に示されるように、金属層16の表面に第1配線層18を形成する。典型的には、第1配線層18の形成は、公知の手法に従い、フォトレジスト層の形成、電気銅めっき層の形成、フォトレジスト層の剥離、及び所望により銅フラッシュエッチングを経て行われる。例えば、以下のとおりである。まず、金属層16の表面にフォトレジスト層を所定のパターンで形成する。フォトレジストは感光性フィルムであるのが好ましく、例えば感光性ドライフィルムである。フォトレジスト層は、露光及び現像により所定の配線パターンを付与すればよい。金属層16の露出表面(すなわちフォトレジスト層でマスキングされていない部分)に電気銅めっき層を形成する。電気銅めっきは公知の手法により行えばよく、特に限定されない。次いで、フォトレジスト層を剥離する。その結果、電気銅めっき層が配線パターン状に残って第1配線層18を形成し、配線パターンを形成しない部分の金属層16が露出する。
図1(c)に示されるように、積層シート10の第1配線層18が形成された面に絶縁層20及び配線層22を交互に形成して、第1配線層18が埋込み配線層の形で組み込まれた、多層配線層付積層体26を得る。配線層22は1層以上であり、第1配線層18の表現に倣って、第n配線層22(nは2以上の整数)と称することもできる。絶縁層20は1層以上であればよい。すなわち、本発明における多層配線板40は少なくとも2層の配線層(すなわち少なくとも第1配線層18及び第2配線層22)を少なくとも1層の絶縁層20とともに有するものである。第1配線層18、第n配線層22及び絶縁層20で構成される逐次積層構造はビルドアップ層ないしビルドアップ配線層と一般的に称される。本発明の製造方法においては、一般的にプリント配線板において採用される公知のビルドアップ配線層の構成を採用すればよく特に限定されない。
図1(d)に示されるように、多層配線層付積層体26の積層シート10と反対側の表面に、第2剥離層28を介して、基材12よりもビッカース硬度が低い補強シート30を積層する。そして、補強シート30は基材12よりもビッカース硬度が低いことで、補強シート30を積層する際に、基材12よりも優先的に補強シート30自体が撓むことで、積層時に発生しうる応力を補強シート30自体で上手く逃がすことができ、その結果、基材12を含む多層配線層付積層体26の湾曲を効果的に防止ないし抑制することができる。したがって、多層配線層付積層体26は補強シート30によって局部的に大きく湾曲されることなく補強されることができる。すなわち、剥離時の湾曲が効果的に防止ないし抑制される。こうして、湾曲により引き起こされることがあるビルドアップ配線層内部の配線層の断線や剥離を回避して、多層配線層の接続信頼性を向上することができる。また、湾曲が効果的に防止ないし抑制されることで、多層配線層表面の平坦性(コプラナリティ)を向上することができる。
図2(e)に示されるように、基材12を金属層16から第1剥離層14で剥離する。すなわち、基材12、密着金属層(存在する場合)、剥離補助層(存在する場合)、及び第1剥離層14が剥離除去される。この剥離除去は、物理的な剥離により行われるのが好ましい。物理的分離法は、手や治工具、機械等で基材12等をビルドアップ配線層から引き剥がすことにより分離する手法である。このとき、第2剥離層28を介して密着した補強シート30が多層配線層付積層体26を補強していることで、多層配線層付積層体26が局部的に大きく湾曲するのを防止することができる。すなわち、補強シート30は、基材12が剥離される間、引き剥がし力に抗すべく多層配線層付積層体26を補強し、湾曲をより一層効果的に防止ないし抑制することができる。こうして、湾曲により引き起こされることがあるビルドアップ配線層内部の配線層の断線や剥離を回避して、多層配線層の接続信頼性を向上することができる。また、湾曲が効果的に防止ないし抑制されることで、多層配線層表面の平坦性(コプラナリティ)を向上することができる。
所望により、図2(f)に示されるように、基材12の剥離後で、かつ、補強シート30の剥離前に、金属層16をエッチングにより除去する。金属層16のエッチングは、フラッシュエッチング等の公知の手法に基づき行えばよい。
上記工程の後、必要に応じて、第1配線層18の表面には、ソルダ―レジスト層、表面金属処理層(例えば、OSP(Organic Solderbility Preservative)処理層、Auめっき層、Ni-Auめっき層等)、電子素子搭載用の金属ピラー、及び/又ははんだバンプ等が形成されていてもよい。
所望により、図2(g)に示されるように、金属層16の除去後(或いはその後の電気検査後)で、かつ、補強シート30の剥離前に、第1配線層18の表面に電子素子32を搭載させる。本発明の製造方法においては、第2剥離層28及び補強シート30を採用することで、電子素子32の搭載に有利となる優れた表面平坦性(コプラナリティ)を、第1配線層18を埋込み電極として含むビルドアップ配線層の表面において実現することができる。その結果、電子素子搭載の接続歩留まりを高くすることができる。
図3(h)及び(i)に示されるように、補強シート30を多層配線層付積層体26から第2剥離層28で剥離して多層配線板40を得る。この分離工程においては、物理的な分離、化学的な分離等が採用されうる。物理的分離法は、手や治工具、機械等で補強シート30等をビルドアップ配線層から引き剥がすことにより分離する多層配線板40を得る手法である。この場合、第2剥離層28は第1剥離層14よりも高い剥離強度を有している点で、第1剥離層14よりも剥離しにくいといえるが、前述のように、第2剥離層28が発泡剤入り樹脂層の場合、剥離前に熱処理又は紫外線処理を行って第2剥離層28中の発泡剤を発泡させることで、第2剥離層28を脆弱化し、物理的な剥離を容易に行うことができる。あるいは、第2剥離層28が酸可溶型又はアルカリ可溶型樹脂層の場合、薬品(例えば酸溶液又はアルカリ溶液)で第2剥離層28を溶解させることで、物理的な剥離を容易に行うことができる。一方、化学的分離法を採用する場合、補強シート30及び第2剥離層28の両方を溶解するエッチング液を用いて多層配線板40を得ることができる。
基材12及び/又は補強シート30の少なくとも一辺がビルドアップ配線層の端部から延出しているのが好ましい。こうすることで、基材ないし補強シートを剥離する際、端部を把持することが可能となり、剥離を容易にすることができるとの利点がある。
Claims (12)
- 基材、第1剥離層及び金属層を順に備えた積層シートを用意する工程と、
前記金属層の表面に第1配線層を形成する工程と、
前記積層シートの前記第1配線層が形成された面に絶縁層及び配線層を交互に形成して、前記第1配線層が埋込み配線層の形で組み込まれた、多層配線層付積層体を得る工程と、
前記多層配線層付積層体の前記積層シートと反対側の表面に、第2剥離層を介して、前記基材よりもビッカース硬度が低い補強シートを積層する工程と、
前記基材を前記金属層から前記第1剥離層で剥離する工程と、
前記補強シートを前記多層配線層付積層体から前記第2剥離層で剥離して多層配線板を得る工程と、
を含む、多層配線板の製造方法。 - 前記基材の剥離後で、かつ、前記補強シートの剥離前に、前記金属層をエッチングにより除去する工程をさらに含む、請求項1に記載の方法。
- 前記補強シートのビッカース硬度が、前記基材のビッカース硬度の2~99%である、請求項1又は2に記載の方法。
- 前記補強シートのビッカース硬度が、前記基材のビッカース硬度の6~90%である、請求項1又は2に記載の方法。
- 前記補強シートのビッカース硬度が、前記基材のビッカース硬度の10~85%である、請求項1又は2に記載の方法。
- 前記補強シートのビッカース硬度が50~700HVであり、かつ、前記基材のビッカース硬度が500~3000HVである、請求項1~5のいずれか一項に記載の方法。
- 前記補強シートのビッカース硬度が150~550HVであり、かつ、前記基材のビッカース硬度が550~2500HVである、請求項1~5のいずれか一項に記載の方法。
- 前記補強シートのビッカース硬度が200~500HVであり、かつ、前記基材のビッカース硬度が600~2000HVである、請求項1~5のいずれか一項に記載の方法。
- JIS H 3130:2012に準拠して測定される、前記補強シートのばね限界値Kb0.1が100~1500N/mm2である、請求項1~8のいずれか一項に記載の方法。
- JIS H 3130:2012に準拠して測定される、前記補強シートのばね限界値Kb0.1が150~1200N/mm2である、請求項1~8のいずれか一項に記載の方法。
- JIS H 3130:2012に準拠して測定される、前記補強シートのばね限界値Kb0.1が200~1000N/mm2である、請求項1~8のいずれか一項に記載の方法。
- 前記基材の剥離後で、かつ、前記補強シートの剥離前に、前記金属層をエッチングにより除去する工程と、
前記金属層の除去後で、かつ、前記補強シートの剥離前に、前記第1配線層の表面に電子素子を搭載させる工程と、
をさらに含む、請求項1及び3~11のいずれか一項に記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680089184.0A CN109691246B (zh) | 2016-10-06 | 2016-10-06 | 多层布线板的制造方法 |
JP2018543545A JP6731061B2 (ja) | 2016-10-06 | 2016-10-06 | 多層配線板の製造方法 |
US16/339,806 US10840180B2 (en) | 2016-10-06 | 2016-10-06 | Production method for multilayer wiring board |
PCT/JP2016/079856 WO2018066114A1 (ja) | 2016-10-06 | 2016-10-06 | 多層配線板の製造方法 |
KR1020197005358A KR102179806B1 (ko) | 2016-10-06 | 2016-10-06 | 다층 배선판의 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/079856 WO2018066114A1 (ja) | 2016-10-06 | 2016-10-06 | 多層配線板の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018066114A1 true WO2018066114A1 (ja) | 2018-04-12 |
Family
ID=61830969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/079856 WO2018066114A1 (ja) | 2016-10-06 | 2016-10-06 | 多層配線板の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10840180B2 (ja) |
JP (1) | JP6731061B2 (ja) |
KR (1) | KR102179806B1 (ja) |
CN (1) | CN109691246B (ja) |
WO (1) | WO2018066114A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022102182A1 (ja) * | 2020-11-11 | 2022-05-19 | 三井金属鉱業株式会社 | 配線基板の製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI643532B (zh) * | 2017-05-04 | 2018-12-01 | 南亞電路板股份有限公司 | 電路板結構及其製造方法 |
TWI750828B (zh) * | 2019-10-03 | 2021-12-21 | 精材科技股份有限公司 | 晶片封裝體及其製造方法 |
TWI759095B (zh) * | 2021-02-04 | 2022-03-21 | 欣興電子股份有限公司 | 封裝結構及其製作方法 |
CN115835530A (zh) * | 2021-09-17 | 2023-03-21 | 无锡深南电路有限公司 | 一种电路板的加工方法及电路板 |
CN114937614A (zh) * | 2022-05-25 | 2022-08-23 | 长电集成电路(绍兴)有限公司 | 布线层结构的制备方法 |
CN116321810A (zh) * | 2023-02-09 | 2023-06-23 | 无锡深南电路有限公司 | 线路板制备方法以及线路板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003158239A (ja) * | 2001-11-22 | 2003-05-30 | Sony Corp | マルチチップ回路モジュール及びその製造方法 |
JP2007150002A (ja) * | 2005-11-29 | 2007-06-14 | Tdk Corp | 半導体ic内蔵基板及びその製造方法 |
JP2013069808A (ja) * | 2011-09-21 | 2013-04-18 | Shinko Electric Ind Co Ltd | 半導体パッケージ及びその製造方法 |
WO2014054811A1 (ja) * | 2012-10-04 | 2014-04-10 | Jx日鉱日石金属株式会社 | 多層プリント配線基板の製造方法及びベース基材 |
JP2014110390A (ja) * | 2012-12-04 | 2014-06-12 | Shinko Electric Ind Co Ltd | 配線基板の製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6071597A (en) * | 1997-08-28 | 2000-06-06 | 3M Innovative Properties Company | Flexible circuits and carriers and process for manufacture |
JP4273895B2 (ja) | 2003-09-24 | 2009-06-03 | 日立化成工業株式会社 | 半導体素子搭載用パッケージ基板の製造方法 |
US8188375B2 (en) | 2005-11-29 | 2012-05-29 | Tok Corporation | Multilayer circuit board and method for manufacturing the same |
JP5117692B2 (ja) * | 2006-07-14 | 2013-01-16 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
JP5324051B2 (ja) | 2007-03-29 | 2013-10-23 | 新光電気工業株式会社 | 配線基板の製造方法及び半導体装置の製造方法及び配線基板 |
JP2013237721A (ja) | 2012-05-11 | 2013-11-28 | Nitto Denko Corp | 再剥離用水分散型アクリル系粘着剤組成物、及び粘着シート |
JP2014214208A (ja) | 2013-04-25 | 2014-11-17 | 日東電工株式会社 | 加熱発泡型再剥離性粘着シート |
JP2015035551A (ja) | 2013-08-09 | 2015-02-19 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
JP6299290B2 (ja) | 2014-03-07 | 2018-03-28 | 富士通株式会社 | 回路基板の製造方法 |
US10109540B2 (en) * | 2016-06-08 | 2018-10-23 | International Business Machines Corporation | Fabrication of sacrificial interposer test structure |
-
2016
- 2016-10-06 WO PCT/JP2016/079856 patent/WO2018066114A1/ja active Application Filing
- 2016-10-06 JP JP2018543545A patent/JP6731061B2/ja active Active
- 2016-10-06 KR KR1020197005358A patent/KR102179806B1/ko active IP Right Grant
- 2016-10-06 CN CN201680089184.0A patent/CN109691246B/zh active Active
- 2016-10-06 US US16/339,806 patent/US10840180B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003158239A (ja) * | 2001-11-22 | 2003-05-30 | Sony Corp | マルチチップ回路モジュール及びその製造方法 |
JP2007150002A (ja) * | 2005-11-29 | 2007-06-14 | Tdk Corp | 半導体ic内蔵基板及びその製造方法 |
JP2013069808A (ja) * | 2011-09-21 | 2013-04-18 | Shinko Electric Ind Co Ltd | 半導体パッケージ及びその製造方法 |
WO2014054811A1 (ja) * | 2012-10-04 | 2014-04-10 | Jx日鉱日石金属株式会社 | 多層プリント配線基板の製造方法及びベース基材 |
JP2014110390A (ja) * | 2012-12-04 | 2014-06-12 | Shinko Electric Ind Co Ltd | 配線基板の製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022102182A1 (ja) * | 2020-11-11 | 2022-05-19 | 三井金属鉱業株式会社 | 配線基板の製造方法 |
JPWO2022102182A1 (ja) * | 2020-11-11 | 2022-05-19 | ||
JP7212210B2 (ja) | 2020-11-11 | 2023-01-24 | 三井金属鉱業株式会社 | 配線基板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200045829A1 (en) | 2020-02-06 |
JPWO2018066114A1 (ja) | 2019-03-22 |
US10840180B2 (en) | 2020-11-17 |
CN109691246A (zh) | 2019-04-26 |
JP6731061B2 (ja) | 2020-07-29 |
CN109691246B (zh) | 2022-02-25 |
KR102179806B1 (ko) | 2020-11-17 |
KR20190058460A (ko) | 2019-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018097265A1 (ja) | 多層配線板の製造方法 | |
JP6415760B2 (ja) | キャリア付銅箔、並びに配線層付コアレス支持体及びプリント配線板の製造方法 | |
WO2018066114A1 (ja) | 多層配線板の製造方法 | |
JP6203988B1 (ja) | キャリア付銅箔及びその製造方法、並びに配線層付コアレス支持体及びプリント配線板の製造方法 | |
WO2018097264A1 (ja) | 多層配線板の製造方法 | |
WO2018066113A1 (ja) | 多層配線板の製造方法 | |
WO2018116477A1 (ja) | 多層配線板の製造方法 | |
KR102225796B1 (ko) | 배선판의 제조 방법 | |
JP7212210B2 (ja) | 配線基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018543545 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16918310 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197005358 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16918310 Country of ref document: EP Kind code of ref document: A1 |